

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

SOME FACTORS INFLUENCING THE SUDDEN DEATH SYNDROME IN CUT FLOWER PLANTS

A thesis presented in partial fulfilment

of the requirements for the degree of

Master of Horticultural Science

at Massey University

Clinton N Bowyer

1996

ABSTRACT

Soil/root mixes from plants with the Sudden Collapse Syndrome of cut flower plants were tested for *Phytophthora* infection using a lupin (*Lupinus angustifolius*) baiting technique. *Boronia heterophylla* and *Leucadendron* 'Wilsons Wonder' root samples both caused the lupin seedlings to exhibit symptoms of *Phytophthora* infection.

The efficacy of phosphorous acid (Foschek® 500 at 1000 ppm and 2000 ppm) and a combination of phosphorous acid and an additional product (Foschek® 500 and C408 at 1000/200 ppm and 2000/400 ppm) in controlling *Phytophthora cinnamomi* root infections of *L*. 'Wilsons Wonder', *B.heterophylla* and *B. megastigma* rooted cuttings was compared with fosetyl-AI (Aliette® 80 SP at 1000 ppm and 2000 ppm) under conditions of high disease pressure.

The fungicides were applied as a root drench 7 days prior to the roots being inoculated by a split wheat technique and the effect of the fungicides and their concentrations on the rate of plant mortality was measured.

The results were species dependent. The treatments delaying plant mortality most effectively were fosetyl-AI at 2000 ppm on *L*. 'Wilsons Wonder', phosphorous acid at 2000 ppm on *B. heterophylla* and both fosetyl-AI at 1000 or 2000 ppm and phosphorous acid at 2000 ppm on *B. megastigma*.

The allelopathic activity of the root bark of *Protea cynaroides, L.* 'Wilsons Wonder', *Macadamia* 'Beaumont' and *Knightia excelsa* was evaluated as a growth inhibitor for *Phytophthora cinnamomi*.

The results indicate that by day 4 the root bark of *M*. 'Beaumont' reduced the growth rate of *Phytophthora cinnamomi* by 76.8% while that of *Protea cynaroides* inhibited the growth totally. The root bark of *L*. 'Wilsons Wonder' had no effect on the growth rate but that of *K*. *excelsa* enhanced the growth rate by 128% by day 4.

The root bark of *Protea cynaroides* plants previously infected with an unnamed, indigenous *Phytophthora* species provided greater resistance to the growth rate of *Phytophthora cinnamomi* than the root bark of uninfected plants. On the corn meal agar, the leachate of the infected *Protea cynaroides* root bark exhibited a 'zone of inhibition' which prevented the growth of *Phytophthora cinnamomi*. Possible reasons for this are discussed.

ACKNOWLEDGEMENTS

I am extremely grateful to my supervisor, Dr Bruce Christie, for all his support, advice, and encouragement during this thesis project. Without his patience, ideas and constructive criticism, this study may never have reached fruition and for this I am truly indebted to him.

I am also grateful to my other supervisor, Dr John Clemens who ensured that this project did not get out of hand by providing a steadying influence during the course of the study.

My thanks go to Dr George Mason of Taranaki Nuchem Limited for his generous donation of chemicals for the trials, his expertise and contribution to plant material.

Thanks, also, to Sue Bindon for her help in the laboratory preparation of the CMA plates.

Plant material was supplied by Geoff Jewell of Te Horo Ornamentals and Jack Harre of Protea Nurseries.

Thanks, too, to the management of the Bay of Plenty Polytechnic for their contribution towards the time needed to complete this study and the financial assistance they gave me.

I would like to thank the Frank Sydenham Trust for their financial support of this study.

Finally an extra special thank you to my wife, Martine and my children, Ruben, Tinka and Marlo who gave up so much so that I could complete this project, who encouraged me to continue when the road seemed endless and who helped me prepare the experiments which seemed to take forever to set up; I love you all very much.

CONTENTS

PAGE

ABSTRACT	ii
ACKNOWLEDGEMENTS	iv
CONTENTS	vi
LIST OF TABLES	xi
LIST OF MAPS	xiii
LIST OF FIGURES	xiv
LIST OF PLATES	xv

CHAPTER ONE

1.0 IN1	RODU	TION2
1.0.1	Ration	ale for the study2
	1.0.2	Objectives4
		1.0.2.1 Investigation of Cause of Ornamental
		Plant Deaths4
		1.0.2.2 Chemical Control of P. cinnamomi4
		1.0.2.3 Natural Defences and Resistance
		Against Phytophthora cinnamomi4
CHAP	TER TW	D
2.0	INTRO	DUCTION7
2.1	CUT F	OWER FAMILIES AND GENERA7

	2.1.1	The Proteaceae8
	2.1.2	The Rutaceae9
2.2	NATU	RAL HABITAT OF THE CUT FLOWER
	CROP	S USED IN THIS STUDY
	2.2.1	Rainfall12
	2.2.2	Temperature13
	2.2.3	Wind13
	2.2.4	Variations in microclimate13
	2.2.5	Soil type15
2.3	ROOT	DISEASE REPORTS19
	2.3.1	Symptoms of Phytophthora cinnamomi20
2.4	HISTO	ORY AND ORIGIN OF Phytophthora cinnamomi24
	2.4.1	Centre of Origin24
	2.4.2	Current Distribution of Phytophthora
		cinnamomi26
	2.4.3	Dissemination of Phytophthora cinnamomi28
2.5	CLAS	SIFICATION OF Phytophthora cinnamomi30
	2.5.1	The Order: Peronosporales31
	2.5.2	The Family: Pythiaceae31
	2.5.3	The Genus: Phytophthora31
	2.5.4	Life Cycle of Phytophthora cinnamomi32
2.6	RESIS	TANCE AND SUSCEPTIBILITY

	cinnaı	momi34
	2.7.1	Soil Temperature34
	2.7.2	Soil Moisture34
CHAP	TER 3	
3.0	INTRO	DUCTION
3.1	METH	ODS AND MATERIALS
	3.1.1	Source of potentially infected soil/root
		samples39
	3.1.2	Lupin Baiting Technique
	3.1.3	Assessment criteria41
3.2	RESU	LTS41
3.3	DISCU	ISSION46
CHAP	TER 4	
4.0	INTRO	DUCTION
4.1	METH	ODS AND MATERIALS51
	4.1.1	Source of Phytophthora cinnamomi51
	4.1.2	Corn meal agar (CMA) preparation52
	4.1.3	Chemical trial layout and treatments54
	4.1.4	Source of inoculum55
	4.1.5	Root Inoculation Technique55
	4.1.6	Assessment criteria57

2.7 ENVIRONMENTAL EFFECTS ON Phytophthora

	4.1.7	The effect of Aliette ® 80SP, Foschek ® 500
		and Foschek ®/C 408 on Phytophthora
		cinnamomi growth in vitro58
4.2	RESUL	_TS59
4.3	DISCU	SSION62
CHAPT	TER 5	
5.0	INTRO	DUCTION71
5.1	METH	ODS AND MATERIALS
	5.1.1	Source of Root Bark75
	5.1.2	Bark powder/CMA preparation and
		inoculation76
	5.1.3	Assessment criteria77
	5.1.4	Determination of 'zone of inhibition'77
		5.1.4.1 Protea cynaroides root bark powder
		influence on growth rate of
		Phytophthora cinnamomi: (I)78
		5.1.4.2 Influence of Protea cynaroides root
		bark powder influence on growth
		rate of Phytophthora cinnamomi (II)78
5.2	RESU	LTS80
	5.2.1	The effect of bark extracts on the time
		course of Phytophthora cinnamomi hyphal
		growth on CMA agar80

	5.2.2	The effect of Protea cynaroides root bark
		infected with an undescribed Phytophthora
		species on the growth of Phytophthora
		cinnamomi.on CMA84
	5.2.3	The effect of different rates of Protea
		cynaroides root bark infected with an
		undescribed Phytophthora species on the
		growth of Phytophthora cinnamomi.on CMA85
5.3	DISCU	SSION90
CHAPT	TER 6	
6.1	THE E	FFECT OF THE INTRODUCTION OF
	Phytop	ohthora cinnamomi TO CUT FLOWER
	SPECI	ES HABITATS98
6.2	THE EI	FFECT OF Phytophthora ON CUT FLOWERS
	IN THE	BAY OF PLENTY99
6.3	СНЕМІ	CAL CONTROL OF Phytophthora cinnamomi99
6.4	Phytop	ohthora cinnamomi, A RECENT PATHOGEN
	OF TH	E PROTEACEAE101
6.5	FUTUF	RE DIRECTIONS FOR Phytophthora cinnamomi
	RESEA	ARCH101
ABBRI	EVIATIO	NS102
PLANTS USED IN THIS STUDY103		
BIBLIOGRAPHY 104		

LIST OF TABLES

Page

Table 1:	The location and number of each plant species
	used in the trial39
Table 2:	Percentage of blue lupin, (Lupinus angustifolius)
	plants with symptoms of Phytophthora infection
	when grown in soil/root samples from
	Leucadendron' Wilsons Wonder' (3 isolates),
	Protea cynaroides, Boronia heterophylla and
	Weinmannia racemosa 'Kiwi Red'43
Table 3:	The location and plant source of the two isolates of
	Phytophthora cinnamomi initally trialled for the
	experiments51
Table 4:	The formulations and rates of the chemicals used
	in the trial53
Table 5:	Layout of the number of plants per species and
	the rates of chemical applied to them
	the fates of chemical applied to them.
Table 6:	Number of days required for 50% and 100%
	of treated Leucadendron 'Wilsons Wonder' plants to
	die as a result of inoculation with Phytophthora
	cinnamomi63

Table 7:	Number of days required for 50% and 100%
	of treated Boronia heterophylla plants to die as
	a result of inoculation with Phytophthora
	cinnamomi64

Table 8:	Number of days required for 50% and 100%
	of treated Boronia megastigma plants to die as
	a result of inoculation with Phytophthora
	cinnamomi65

LIST OF MAPS

Page

Map 1:	The distribution of the Family Rutaceae throughout
	the world (Armstrong, 1978)10
Map 2:	The distribution of the tribe Boroniae throughout
	Australia (Armstrong, 1978)10
Map 3:	Climatic Regions of the Cape of Good Hope,
	South Africa (Adapted from Vogts, 1989)14
Map 4:	Commonwealth Mycological Institute Map 302
	(revised 1978) showing centre of origin and
	distribution of P. cinnamomi throughout the world25
Map 5:	Location of the four properties from which plant
	material and soil/root mix samples were collected42

LIST OF FIGURES

Page

Figure 1:	Time course of chemical treatments on death of
	(A) Boronia megastigma, (B) B. heterophylla and
	(C) Leucadendron 'Wilsons Wonder' plants
	inoculated with Phytophthora cinnamomi60

Figure 2: Effect of bark extracts on time course of *Phytophthora cinnamomi* hyphal growth on CMA agar83

Figure 3:	Effect of Protea cynaroides root bark from healthy
	and infected plants on time course of hyphal growth
	from an undescibed Phytophthora species on
	CMA agar87

LIST OF PLATES

Page

Plate 1:	The sudden collapse and death of an 18-month old
	Boronia heterophylla plant in a commercial planting
	at the author's property at Ohauiti, Tauranga, 199522
Plate 2:	A 1-year old Leucadendron 'Wilson's Wonder' plant
	which is showing symptoms of 'patch death'23
Plate 3:	Blue lupin (Lupinus angustifolius) baiting for
	Phytophthora species: Control and Boronia
	<i>heterophylla</i> plants after 7 days44
Plate 4:	Blue lupin (Lupinus angustifolius) baiting for
	Phytophthora species: Control, Protea cynaroides
	and Boronia heterophylla plants after 4 days44
Plate 5:	Blue lupin (Lupinus angustifolius) baiting for
	Phytophthora species: Control and three different
	Leucadendron 'Wilsons Wonder' plants45
Plate 6:	Blue lupin (Lupinus angustifolius) baiting for
	Phytophthora species: Control and three different
	Leucadendron 'Wilsons Wonder' plants'
	root systems45

Plate 7:	The wound inoculation technique using a split, wheat
	grain placed in contact with a wounded root
	of Boronia heterophylla and sealed with Gladwrap®
	plastic cling film

- Plate 8: Toxicity symptoms on the leaves of *L*. 'Wilsons Wonder' plants after the roots were drenched in 5,000/1000 ppm of Foschek®/C 40869
- Plate 9: Toxicity symptoms on the leaves of *L*. 'Wilsons Wonder' plants after the roots were drenched in 10,000/2000 ppm of Foschek®/C 408. Note the severe leaf browning......69

- Plate 12: Advanced symptoms of *Phytophthora* infection in field grown, 3-year-old *Protea cynaroides*. Stem lesioning occurs and rapidly girdles the stem bark......71

- Plate 15: The effect on the growth of *Phytophthora cinnamomi* of the different concentrations (0.01, 0,05 and 0.1g) of root bark extract from a *Protea cynaroides* infected with an undescribed, indigenous *Phytophthora* species and an uninfected *Protea cynaroides......*89