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Abstract 

Machine-based emotional intelligence is a requirement for natural interaction between humans 

and computer interfaces and a basic level of accurate emotion perception is needed for com­

puter systems to respond adequately to human emotion. Humans convey emotional information 

both intentionally and unintentionally via speech patterns. These vocal patterns are perceived 

and understood by listeners during conversation. This research aims to improve the automatic 

perception of vocal emotion in two ways. First, we compare two emotional speech data sources: 

natural , spontaneous emotional speech and acted or portrayed emotional speech. This com­

parison demonstrates the advantages and disadvantages of both acquisition methods and how 

these methods affect the end application of vocal emotion recognition. Second, we look at two 

classification methods which have gone unexplored in this field: stacked generalisation and 

unweighted vote. We show how these techniques can yield an improvement over traditional 

classification methods. 
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Chapter 1 

Introduction 

1.1 Introduction 

With the ever-increasing importance and reliance on computers in our society comes the un­

natural burden of interacting with those systems. This increase in human-computer interaction 

has, in tum, led to a marked increase in research on modelling such systems against human be­

haviour in an effort to enable more natural interaction. For this to succeed, these systems must 

have at least a basic level of emotional intelligence. 

Emotional intelligence is defined by Salovey et al. (2004) as having four branches: the 

perception of emotion, emotions facilitating thought, understanding emotions, and managing 

emotions. These will be discussed below, with the exception of emotions facilitating thought, 

as this assumes the ability to think independently, which current computer systems cannot. 

The perception of emotion is the ability to recognise emotion in oneself and others. These 

perceptions generally come from three channels: sight, sound, and language or contextual in­

formation present in text or prose. For example, a person may recognise that his or her friend 

feels distraught by the expression in the face or the tone of the voice. The perception of emotion 

also covers the recognition of emotion in oneself. An emotionally intelligent being is aware of 

the emotions expressed in itself at any time. 

Following perception, an emotionally intelligent being must be able to understand emotions 

and emotional characteristics in order to correctly process and respond to emotional informa­

tion. This consists of the knowledge of how emotions relate to one another, what causes them, 

what follows them, etc. Take, for example, a person who becomes angry at him or herself by 

missing the bus to work before an important meeting. The ability to determine the causes of this 

anger (e.g., the bus that is missed) is a critical part of emotional intelligence. An emotionally 

intelligent being will be aware of emotional changes and their nature. 

Emotional understanding is a prerequisite for managing emotions. An emotionally intelli­

gent being is one that can be open to all types of emotion, reflect on them, manage them in 
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oneself, and engage, prolong, or detach from an emotional state in oneself or others (Oatley, 

2004). A hypothetical situation may involve a doctor tending to a critically injured relative. The 

doctor must manage his or her emotions in order to operate in an effective manner. 

Humans feel most natural communicating with other humans because the extra information 

conveyed in their emotional expressions can be recognised, processed, and reflected. This infor­

mation is conveyed through several modes: facial expressions, vocal properties, bodily gestures, 

and behaviour. This added information helps people understand each other and interact more 

naturally and efficiently. 

The work in this thesis is dedicated to the perception of human emotion from the prosodic 

properties of speech. In other words, this thesis aims to build a system that can capture and 

interpret the vocal expression of emotion in humans. More specifically, we seek to improve on 

traditional emotional speech classification methods using ensemble or multi-classifier system 

(MCS) approaches. We also aim to examine the differences in perceiving emotion in human 

speech that is derived from different methods of acquisition. For example, how is the perception 

of acted emotion different from that of spontaneous or naturally occurring emotion? 

1.2 Research motivations and applications 

There are wide-ranging applications for emotionally intelligent systems in real-world situations. 

Taking advantage of the emotional information in speech allows more effective processing of 

the contextual (language) information and a much more natural interaction between humans and 

machines. The following are some examples of how emotion recognition can yield improvement 

in the field of human-computer interaction. Figure 1.1 shows the relationships between vocal 

emotion recognition and potential application areas. 

1.2.1 Health and public safety 

Situations in which public safety is a major issue would greatly benefit from real-time automatic 

affect recognition. For example, such a system could be placed in the cockpits of airliners, 

oceanliners, and buses, where one or two principal operators control the fate of the vessel. These 

systems would be used to detect pilot boredom, inattention, or fatigue (Pantie and Rothkrantz, 

2003). In private vehicles, detection of anger could reduce incidents of road rage by alerting the 

driver and trying to make them aware of the situation (Fragopanagos and Taylor, 2005). 

Affect recognition could avoid concerns of having observers constantly monitoring or record­

ing in situations where security or safety is of concern. For example, in hospitals, closed-circuit 

security systems, prisons, etc. (Pantie and Rothkrantz, 2003). These systems could alert per­

sonnel to certain situations such as disputes, accidents, riots or fighting. 
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Figure I. I: Applications of vocal emotion recognition 

1.2.2 Education 

Perception of human affect is important in areas where subjects are being taught or instructed. 

Human teachers can recognise student boredom, fatigue, and confusion and are then able to 

take steps to revive attention levels, or perhaps terminate the instruction if too many students are 

unable to process effectively. 

Emotion and affect recognition from speech would be beneficial in an automated tutoring 

environment. The system could determine the affective states of the students and depending 

on how well they appear to be learning, or based on feedback (levels of frustration, confusion, 

boredom, fatigue, etc.), adjust the rate at which the information is presented to make the learning 

as efficient as possible (Picard, 1997). 

1.2.3 Fraud and crime prevention 

Voice profiling is directly related to vocal affect recognition. Voice profiling aims to classify 

speech samples according to predefined psychological profiles. These profiles can be generated 

or trained on pathological examples. 

The use of voice profiling for fraud detection can be a useful measure to reduce the number 

of fraudulent insurance claims for insurance companies. The time needed to process claims can 

be reduced if claims that are potentially fraudulent are eliminated early on in the process. A 

system could be easily developed that allows claimants to provide information about their claim 

over the telephone with a disclaimer stating that their voice profile will be analysed for signs of 
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fraud. If the analysis comes back positive for possible fraud, the customer can be notified of the 

result and offered an opportunity to retract their claim without penalty. Such a system does have 

obvious drawbacks, for example people may be discouraged from submitting a valid claim over 

fears of a false-positive from the voice profile analysis. 

Another practical use of voice profiling would be for police and security in interviewing 

suspects for criminal cases. Suspects could be interviewed and their speech analysed by profiling 

software that could detect pathological patterns correlating to lying or nervousness. As with the 

above scenario, however, there are many ethical issues relating to this application and its output 

would have to be used only as one of many sources of information during interrogation. 

1.2.4 Leisure and entertainment 

An area ripe for new applications of emotion perception is that of leisure and entertainment. 

Here, the technology is applied in anecdotal ways. An example is the Sony ERS-7 Aibo Enter­

tainment Robot. This robotic pet dog learns from interaction with its "owner" and can express 

different emotional states. 

Computer video games are the result of billions of dollars of research and development 

investment aimed at making the player feel like he or she is experiencing reality. Emotion 

detection and synthesis in these games could greatly improve the gaming experience. Online 

games such as Everquest where human players interact with other human and computer players 

can benefit from both emotion recognition and synthesis to enhance the experience. Interaction 

with computer characters is often unnatural due to the lack of emotional understanding on the 

part of the computer character. Adding an affective element to these characters would introduce 

an entire new level to the gaming experience, providing a much more natural environment that 

would more closely model reality. This can be accomplished by integrating speech and facial 

expression recognition using cameras and microphones to measure the human player's affect. 

This affect can then be transmitted to other human or computer players in the game (Nakatsu 

et al. , 1999). 

The research of Breazeal and Aryananda (2002) has primarily focused on the integration of 

a multi-modal emotion classification system in a robot. This robot, named Kismet, responds to 

caretakers by way of sight and sound. An integrated affective intent classification system allows 

the basic recognition and modelling of primary emotions. The robot approximately models an 

infant that responds to affirmation, prohibition, attention and soothing. After more research, this 

could be extended to a more full set of emotions or affective states allowing the robot to interact 

naturally with human operators. 
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1.2.5 Employment 

Voice profiling can help streamline the processing of job applicant interviews. By interviewing 

applicants through an automated telephone system, the responses can be analysed for specific 

qualities which can be mapped to different positions within the company. For example, if a 

company is screening applicants for job openings in multiple departments, e.g., sales or cus­

tomer support, the applicants can be automatically sorted into groups based on how their voice 

profile fits the target profile for each category. Job positions where an employee is constantly 

interacting with customers may require specific voice qualities. An applicant with a monotone 

pitch contour can be screened out automatically, and an applicant with a melodic pitch contour 

can be placed in a sales category for further inspection. Such a system would not be designed to 

completely take the place of human interviewers, but can greatly reduce the time requirements 

for selecting candidates. 

1.2.6 Call-centres 

Last, we look at applications of emotionally intelligent systems in call-centres. This is the pri­

mary focus of the end result of this research. Call-centres often have a difficult task of managing 

customer disputes. Ineffective resolution of these disputes can often lead to customer discon­

tent, loss of business and in extreme cases, general customer unrest where a large amount of 

customers move to a competitor. It is therefore important for call-centres to take note of isolated 

disputes and effectively train service representatives to handle disputes in a way that keeps the 

customer satisfied (Petrushin, 2000). 

Additionally, a team lead or manager may want to inquire on the status of any currently 

active calls in order to help coach new or inexperienced CSRs. Additionally, a manager can 

use the information provided by a spoken affect recognition system in several other ways. First, 

if such a system is deployed with each CSR, then a manager or senior member of staff can 

preview the emotional states of every caller at once, having an "overview" snapshot in real time. 

Other uses include the generation of statistics on the number of angry or upset callers each CSR 

has or whether any CSRs are being angry at the customers. This can lead to action to correct 

this behaviour or find things that a CSR can improve on and in turn help the call-centre more 

effectively manage the customer base. 

Automated telephone systems are another potential application area that humans find them­

selves interacting with more and more. These systems have speech recognition units that process 

user requests through spoken language. A spoken affect recognition system can help process 

callers according to perceived urgency. If a caller is detected as being angry or confused in 

the automated system, their call can be switched over to a human operator for assistance. This 

could be particularly useful for the elderly who can often be disoriented when interacting with 
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automated telephone systems. Petrushin (2000) built a system to monitor voice-mail messages 

in a call-centre and prioritise them with respect to emotional content. Such systems can make 

interaction with automated call-centres more efficient and less daunting. 

1.3 Methodology 

In this section we present the methodology followed during the development of this thesis. Fig­

ure 1.2 shows a flow diagram describing the methodology. Because the research focus is primar­

ily a classification problem, that being the classification of different emotions, the methodology 

followed is much like any other classification problem. The first step is a review of the literature 

relevant to the field. Previous research on automatic emotion recognition was surveyed to build 

a knowledge of the state of the art. 

Once a general knowledge of the state of the art was achieved, data had to be collected. For­

tunately, a natural speech database was provided through the partner company for this project. A 

second speech database was collected from a previous study on emotion research (Nwe, 2003). 

Unlike the natural set, this database used actors and actresses. This provided a way to compare 

the classification methods on different types of data as well as investigate inherent differences 

between the two datasets. To gain a ground truth on the natural database, a system was devel­

oped to allow human listeners to judge the emotions present in the database. 

Utcnlurc mriew 

ESMBS datase1 

Figure 1.2: A flow diagram of the methodology followed for this thesis. 

Next, characteristics of emotional speech from the existing literature were reviewed. Promi­

nent psychologists such as Klaus Scherer who have explored emotion research for many years 

provide a strong basis for this area. These characteristics were extracted and compiled into 

feature vectors. These feature vectors describe the most relevant characteristics of emotional 
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speech. Briefly, these include the fundamental frequency, energy, and formant frequency con­

tours as well as features relating to rhythm such as the rate of speech. 

Classification algorithms were then reviewed. As a starting point, artificial neural networks 

were experimented with, as they have proven quite useful in previous studies. These are sub­

sequently improved upon using support vector machines. Feature selection techniques such as 

forward selection, genetic search, and principal component analysis were compared to reduce 

dimensionality in the feature space. 

We then tested novel ensemble classification approaches in this field of using stacked gen­

eralisation and a simple voting scheme. Stacked generalisation takes as input base-classifier 

predictions and target classes and attempts to predict when the base-classifiers are incorrect. 

The voting scheme takes the predicted classes from each base-level classifier and determines 

the class with the greatest popularity. 

The last step was to build an implementation of the theoretical system. This took all previous 

steps, the algorithms for endpoint detection, feature extraction, the use of the feature selected 

sets, and classification and brought them together into a single, modular system. This application 

reads input from a microphone or WAVE file and outputs a prediction based on the recorded 

speech sample. A modular artificial neural network functions as a plug-in to facilitate efficient 

replacement. Figure 1.3 shows the data flow for the emotion recognition system. 

Speech signal End-point detection Feature extrnction 
& posl-processing 

Training data 

Classification Output 

Figure 1.3: A data flow diagram of the real-time emotion recognition system. 

1.4 Structure of the thesis 

This thesis is organised as follows. In Chapter 2, a brief history of emotion research and the­

oretical representations of emotion are presented. This chapter also introduces the expression 

of emotion in humans and lists previous work in automatic spoken emotion recognition. Some 

areas which require additional attention are defined. 

Chapter 3 presents the three data acquisition methods that are applied to vocal emotion re­

search. Next, the two emotional speech datasets used in this research are introduced. The first 

database is collected from a call-centre and consists of natural interactions between humans. 

The second database is collected from non-professional actors and actresses. The advantages 

and disadvantages of each collection method and how it affects the research are discussed in 
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detail. 

Different emotions induce different physiological changes in the body, which in turn directly 

affect prosodic patterns in speech. Chapter 4 formalises and reviews correlations and character­

istics of emotional speech. 

Building on Chapter 4, Chapter 5 explores features chosen to describe emotional content 

contained in speech. These features are taken from previous research and experimental features 

based on the formant frequencies are investigated. 

Chapter 6 introduces several classification algorithms used in this research. These algorithms 

are compared against each other in an attempt to reveal the most efficient and suitable candidate 

for use in the system. Feature selection methods are also compared. Next, we introduce two 

ensemble techniques: stacked generalisation and unweighted vote. 

Chapter 7 presents the experimental results based on the classification and feature selection 

algorithms described in Chapter 6. This chapter also offers an in-depth look at the building of 

a prototype emotion classification system. The system is developed using existing algorithms 

and is brought together using C and C++. It functions in real-time and performs automatic 

classification via a modular artificial neural network. 

Finally, Chapter 8 presents a conclusion and directions for future work. 




