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MATEMATIČKI ODSJEK
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Chapter 1

Introduction

Let G ∈ Fm×n be a matrix, where m ≥ n and F is either R or C. These fields are equipped
with the Euclidian scalar product, therefore a simple QR factorization of matrix G exists

G = QR =
[
Q1 Q2

] [R1

0

]
= Q1R1,

where Q is an unitary matrix and R1 is upper triangular.
Suppose we do not have the Euclidian scalar product, but a different one, described by

a diagonal matrix J = diag( j1, j2, . . . , jm), ji ∈ {−1, 1}. Our non-Euclidian J-scalar product
can then be represented as

[x, y] = 〈Jx, y〉 = y∗Jx =

m∑
i=1

jixiyi, x, y ∈ Fm. (1.1)

Note that the “J-scalar product” is a scalar product only if the matrix J is Hermitian and
positive definite. If this is not the case, we lost the property of non-negativity of the norm
of the vectors and the characterization of orthogonality, hence we need a new definition
of orthogonal matrices as well as a new definition for QR factorization. The new QR
factorization, with expect to the given J is usually called the JQR factorization. If J is
diagonal, where the diagonal elements are −1 or 1, the corresponding factorization is called
a hyperbolic QR factorization.

The purpose of this thesis is to present and explain a numerically stable algorithm
with a functional pivoting strategy for computing the hyperbolic QR factorization. In ev-
ery step of the algorithm, depending on the strategy, a Givens-like (block) rotations or a
Householder-like (block) J-reflectors will be used. In the next few chapters we will pro-
vide basic definitions of these objects and our implementation of them in the algorithm.
The pivoting strategy will be explained at the end. After presenting the theoretical back-
ground and a sequential pseudocode, an explanation of how the algorithm should look like
in parallel will be given. The implementation was tested on Intel Xeon Phi 7210.
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Chapter 2

Basic definitions

This chapter is meant to be a collection of all definitions used in this thesis. We begin with
an earlier mentioned definition of a J-scalar product.

Definition 2.1. Let J be a Cm×m matrix. A J-scalar product is

[x, y] = 〈Jx, y〉 = y∗Jx, x, y ∈ Fm. (2.1)

If J is of form J = diag( j1, j2, . . . , jm), where the diagonal elements satisfy ji ∈ {−1, 1},
then the product is called hyperbolic scalar product. If J is given by

J = diag(J0, J0, . . . , J0), J0 =

[
0 1
−1 0

]
then it is called symplectic.

From now on, our J will have a hyperbolic form, or often referred as indefinite. In
an Euclidian scalar product, unitary matrices do not change the angles between vectors, in
other words, they preserve the scalar product: 〈Ux,Uy〉 = 〈x, y〉. This motivates our next
definition.

Definition 2.2. A matrix U ∈ Cm×m is called a J-unitary, i.e., unitary according to the
scalar product defined by (1.1), if

[Ux,Uy] = [x, y], x, y ∈ Cm. (2.2)

As a consequence of the definition 2.2 and (2.1), U is J-unitary if and only if U∗JU = J
is satisfied. Due to simple calculations

0 = [Ux,Uy] − [x, y] = 〈x, (U∗JU − J)y〉, ∀x, y ∈ Cm

3



4 CHAPTER 2. BASIC DEFINITIONS

and choosing x = (U∗JU − J)y, we get U∗JU = J. The other way of the if statement is the
consequence of the fact 〈v, x〉 = 0,∀x⇒ v = 0.

Let us now properly define the main object of our interest: the hyperbolic QR factor-
ization.

Definition 2.3. (Hyperbolic QR factorization). Let G ∈ Cm×n, m ≥ n and let J have a
hyperbolic form, such that A = G∗JG is non-singular. A factorization

G = P1QRP∗2 = P1Q
[
R1
0

]
P∗2, Q∗J′Q = J′, J′ = P∗1JP1, (2.3)

where P1 and P2 are permutation matrices, matrix Q is J’-unitary and R1 is block upper
triangular with diagonal blocks of order 1 or 2, is called a hyperbolic QR factorization of
G according to J.

The definition is slightly different from the ordinary QR factorization, where row and
column permutations are not necessary for existence of the factorization. The necessity
for column permutations P2 will be clear later. For now, we can think of them as standard
Householder reflectors for a single column reduction, but the column needs to have some
extra properties which are crucial for the existence of the reflector. Let’s now explain why
row permutations are needed through a following example.

Example 2.4. We want to find the hyperbolic QR decomposition for a matrix

G =

[
x
y

]
, J = diag(1,−1).

where |y| ≥ |x|. Our aim is to find a matrix Q such that

G = QR =

[
a b
c d

] [
r
0

]
and Q is J-unitary. From the characterization Q∗JQ = J we get three different conditions:

|a|2 − |c|2 = 1,

|b|2 − |d|2 = −1,

ab − cd = 0,

and from the G = QR we obtain

x = ar
y = cr
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and finally
x
y

=
a
c
.

Using the fact that c , 0 (which is left for the reader to prove) we get

1 ≥
∣∣∣∣∣yx

∣∣∣∣∣2 =

∣∣∣∣∣ac
∣∣∣∣∣2 = 1 +

1
|c|2

which contradicts the fact 1 ≥ 1 + 1/|c|2.

The existence is yet to be shown. The basic idea is to compute a sequence of J-unitary
matrices Q(i) and apply them on G. The method is practically identical to the standard QR
factorization, but with a catch: we still need to find the reduction tools to accomplish that.

Just as J-unitary matrices have motivational origins as unitary matrices have, Hermitian
ones will have too, but an equivalent statement as a definition will be provided instead.

Definition 2.5. A matrix A ∈ Cn×n is called J-Hermitian if A = J−1A∗J is satisfied.

A generalized concept of reflectors is also an analogue definition of the properties sat-
isfied by unitary reflectors.

Definition 2.6. A matrix Q ∈ Cm×m will be called a J-reflector if the following conditions
are met:

1. Q is J-unitary: Q∗JQ = J

2. Q is J-Hermitian: JQ = Q∗J

3. Q is a reflector: Q2 = I.

Moreover, just like in an unitary case, any two of the conditions impose the third one
(proof of that fact can be found in [16]).

The next chapter will provide conditions when such a reflector exists.





Chapter 3

J-unitary Householder-like reflectors

Our aim in this chapter is to show some properties of J-reflectors as well as their existence.
Let M be an arbitrary subset of Fm and let J have a hyperbolic form. The J-orthogonal
companion od M in Fm is defined as

M ⊥ = {x ∈ Fm | [x, y] = 0, ∀y ∈M }.

From now on, M will be a subspace of Fm. It can also be shown that dim M +dim M ⊥ = m
and (M ⊥)⊥ = M . Further on, a subspace M will be called nondegenerate, with respect to
the J-scalar product, if

M ∩M ⊥ = {0}.

In other words, if x ∈M and [x, y] = 0, ∀y ∈M ⇒ x = 0. Otherwise, M is degenerate.
Therefore, we can conclude that when M or M ⊥ is nondegenerate, then the subspaces are
in a direct complement, meaning M +̇M ⊥ = Fm and vice versa.

Shifting now to matrices, a matrix W ∈ Fn×p, for some p, is said to be nondegenerate,
with respect to the J-scalar product, if and only if Im (W) is a nondegenerate subspace,
otherwise, W is degenerate.

At the moment, these definitoins seem disconnected from our theory, but they will play
an important role for the existence of such J-unitary reflectors. If one recalls, a House-
holder reflector in an Euclidian space is defined as

H̃(w) = In −
2

w∗w
ww∗,

where if we set w = f − g for some f , g ∈ Fm such that ‖ f ‖ = ‖g‖ and f ∗g , 0, we
get H̃(w) f = g. If observed more closely, we have a scalar product w∗w. Our aim is to
construct a similar object, so instead of an Euclidean scalar product, we will simply put a
J-scalar product there. If we proceed in that style, it is important to have w which satisfies
w∗Jw , 0 and a functional J-reflector H(w) (see definition 2.6 for J-reflectors), preferably

7



8 CHAPTER 3. J-UNITARY HOUSEHOLDER-LIKE REFLECTORS

with an ability to do things such as H(w) f = g, for some f , g ∈ Fm that satisfy f ∗J f = g∗Jg
and f ∗Jg , 0.

The requirement H2 = I contains a lot of information. The fact that (H − I)(H + I) = 0
holds, indicates that H has eigenvalues in {−1, 1}. If H , I, then H has exactly two
subspaces M− and M+ which correspond to eigenvalues −1 and 1 respectively. The spaces
also satisfy M +̇M ⊥ = Fm and

Hx = −x, ∀x ∈M−, (3.1)
Hy = y, ∀y ∈M+. (3.2)

Since H actually reflects M− with respect to M+, the name reflector is clarified. In the
Euclidean case, f − g is a normal of the hiperplane over which the reflection is done.

In addition, if H is J-unitary (2.2), then ∀x ∈M− and ∀y ∈M+ we have

[x, y] = [Hx,Hy] = [−x, y] = −[x, y],

from where we get [x, y] = 0. From this, we can conclude that M ⊥
− = M+ and vice versa,

M ⊥
+ = M−, so both spaces are nondegenerate. Now we see that H reflects a nondegenerate

space to its J-orthogonal complement. This discussion can be summarized as a proposition.

Proposition 3.1. Let J ∈ Fm×m have a hyperbolic form.

1. A matrix H ∈ Fm×m is a reflector if and only if there exists a pair of complementary
spaces M− and M+ such that

Hx = −x, ∀x ∈M−,

Hy = y, ∀y ∈M+.

2. Let H be a reflector. H is a J-reflector if and only if the above spaces M− and M+

are mutually J-orthogonal. If so, both subspaces are nondegenerate.

The complete proof of Proposition 3.1 can be found in [16]. A statement similar to
statement 2 in proposition 3.1 is also valid: H is a J-reflector if and only if there exists a
nondegenerate subspace M− such that (3.1) holds.

Let’s now make our first steps towards an existence of a such reflector.

3.1 Basic J-reflectors
Before we give a proper definition, an explanation of what a Moore–Penrose inverse is in
order.
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Definition 3.2. For A ∈ Fn×p, a pseudoinverse of A, also known as the Moore–Penrose
inverse, is defined as a matrix A+ ∈ Fp×n if it satisfies the following criteria:

1. AA+A = A

2. A+AA+ = A+

3. (AA+)∗ = AA+

4. (A+A)∗ = A+A.

Now we have all the preliminaries to define a basic J-reflector.

Definition 3.3. (Basic J-reflector). Let J ∈ Fm×m be a given hyperbolic scalar product
matrix. For a given vector w ∈ Fm, a matrix H ∈ Fm×m defined by

H = H(W) = Im − 2w(w∗Jw)+w∗J (3.3)

will be called a basic J-reflector generated by w.

Moreover, it can be shown (see [16]) that (3.3) satisfies all three conditions from defi-
nition 2.6.

Also one thing remains to be clarified: what is (w∗Jw)+ in our case? Since w∗Jw is a
scalar, from statement in definition 3.2, we can easily calculate

(w∗Jw)+ =


1

w∗Jw
, if w∗Jw , 0,

0, if w∗Jw = 0.

3.2 Mapping by J-reflectors
Suppose that vectors f and g are given, and we are interested under which conditions there
exists a basic J-reflector H such that H f = g. Just from the definition of J-reflectors,
we can get two necessary conditions. From the first statement in the definition 2.6 of a
J-reflector, we get a J-isometry property:

f ∗J f = g∗Jg (3.4)

and from the second statement from the same proposition, we get a J-symmetry property:

g∗J f = f ∗Jg. (3.5)

In the unitary case (just put J = I) the above mentioned conditions are also sufficient
conditions fot the existence of such a mapping. We will show through an example that, for
a hyperbolic scalar product, (3.4) and (3.5) are not sufficient.
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Example 3.4. Let’s try to find a J-reflector H so that[
a b
c d

]
f = g, where f =

[
1
1

]
, g =

[
2
2

]
, J = diag(1,−1).

One can see that J-isometry and J-symmetry are satisfied since

f ∗J f = g∗Jg = 0, g∗J f = f ∗Jg = 0.

From the equation Hg = f we get

a + b = 2 (3.6)
c + d = 2. (3.7)

Since H is a J-reflector, H has to be J-unitary. From H∗JH = J we get

|a|2 − |c|2 = 1 (3.8)
ab − cd = 0 (3.9)

|b|2 − |d|2 = −1. (3.10)

H also needs to be J-Hermitian, meaning JH = H∗J:

a = a⇒ a ∈ R, (3.11)

d = d ⇒ d ∈ R, (3.12)
b + c = 0. (3.13)

Combining a ∈ R, (3.9) and (3.13), we get

b(a + d) = 0.

If b = 0, from (3.6) we get that a = 2 and from (3.10) we get |d|2 = 1 which gives d = 1
or d = −1, since d is real. From (3.7) we get c = 1 or c = 3, but this must be wrong,
because (3.8) says |c|2 = 3.

Suppose now that (a + d) = 0, so summing up (3.6) and (3.7) gives us c + b = 4.
Knowing b = −c, we get that c − c = 4 which is impossible.

We can conclude that for vectors f , g and J as such, a J-reflector does not exist, mean-
ing J-isometry and J-symmetry are not sufficient enough conditions.

At last, two the following theorems will provide sufficient conditions for the existence
of such mappings.
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Theorem 3.5. (Basic J-reflector mapping theorem). Let J ∈ Fm×m be a hyperbolic scalar
product matrix, and let f , g ∈ Fm be two discint vectors. There exists a basic J-reflector
H = H(w) such that H(w) f = g if and only if

1. vectors g and f satisfy the J-isometry (3.4) and J-symmetry (3.5) properties

2. d = g − f , 0 is nondegenerate, meaning d∗Jd , 0.

Furthermore, whenever H exists, it is unique. More precisely, H can be generated by
any vector w ∈ Fm such that

w = λd, λ ∈ F, λ , 0.

Then w is also nondegenerate and H(w) = H(d).
Finally, the same remains valid if we replace f with − f and d with s = f + g.

Theorem 3.5 gives us existence of mapping when [ f , f ] = [g, g].

Theorem 3.6. Let J ∈ Fm×m be as hyperbolic scalar product matrix and let f , g ∈ Fm be
two vectors such that f ∗J f = g∗Jg , 0. There exists a basic J-reflector H = H(w) such
that

H f = σg.

In the complex case F = C, the factor σ is given by

σ = − sign(g∗Jg)
f ∗Jg
| f ∗Jg|

, i f f ∗Jg , 0,

and if f ∗Jg = 0, we can take any σ ∈ C such that |σ| = 1.

Proofs of these theorems can be found in [16], as well as their generalizations for
mapping matrices F ∈ Fm×n into G ∈ Fm×n. This concludes the existence of such objects
and gives a way to construct them.

3.3 Householder J-reflectors in hyperbolic QR
Now we have a theoretical background, we are interested in how to use it. Suppose we have
a given matrix J = diag( j1, j2, . . . , jm) in a hyperbolic form and a matrix G ∈ Fm×n, m ≥ n,
so that A = G∗JG is non-singular. We want to find a sequence of J-unitary reflectors H(k),
k = 1, . . . , n so that

HG = H(k)H(k−1) . . .H(2)H(1)G = G(k), (3.14)
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where G(k) has the form

G(k) =



g(k)
11 g(k)

12 g(k)
13 . . . g(k)

1k . . . g(k)
1n

0 g(k)
22 g(k)

23 . . . g(k)
2k . . . g(k)

2n
0 0 g(k)

33 . . . g(k)
3k . . . g(k)

3n
...

...
...

. . .
...

...

0 0 0 . . . g(k)
kk . . . g(k)

kn
0 0 0 . . . g(k)

k+1,k . . . g(k)
k+1,n

...
...

...
...

...

0 0 0 . . . g(k)
m−1,k . . . g(k)

m−1,n

0 0 0 . . . g(k)
mk . . . g(k)

mn



=

[
G(k)

11 G(k)
12

0 G(k)
22

]
, J =

[
J1 0
0 J2

]
.

Just for the sake of explaining how the reduction with Householder reflectors should
work, suppose that in every step k of the method, there exists at least one column g(k)

l [k : m],
in a not yet reduced submatrix G(k)

22 , so that (g(k)
l [k : m])∗J2g(k)

l [k : m] , 0.
When we were explaining the purpose of row permutations P1, we did not properly

clarify the need for column permutations P2. For example, if we want to proceed with
the (k + 1)th step of reduction and g(k)

k [k : m] is J2-orthogonal, we would need to find a
nondegenerate column g(k)

l [k : m] in the submatrix G(k)
22 , and swap columns g(k)

k and g(k)
l in

G(k), in other words, we continue working on Ĝ(k) = G(k)P2.
At this point, ĝ(k)

k [k : m] is a nondegenerate column of the unreduced submatrix in Ĝ(k)
22 ,

and we want to find a J-reflector which will give us

H(k+1)g = f , where g =


gk

gk+1
...

gm

 =


ĝ(k)

kk
ĝ(k)

k+1,k
...

ĝ(k)
mk

 and f ∗J2 f = g∗J2g.

If we define
f = (|g∗J2g|

1
2 , 0, . . . , 0)

then f ∗J2 f = g∗J2g holds if g∗J2g > 0 and jk = 1. If jk = −1, then there exists an element
ji = 1 on the diagonal of J, but in J2. We now use a permutation matrix P1 for swapping
rows k and i in Ĝ(k) and also for swapping the diagonal elements jk and ji in J. Now, our
matrix J changed into J̃ = P∗1JP1, matrix Ĝ(k) changed into G̃(k) = P∗1Ĝ

(k) and g changed
into g̃ = P∗1g. The same thing is done if g∗J2g < 0 and jk = 1.

Now f ∗ J̃2 f = g̃∗ J̃2g̃ holds. Note that with swapping diagonal and row elements, we did
not change the nature of the J-scalar product in G, in other words, g̃∗ J̃2g̃ = g∗J2g holds.
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Let’s proceed with computing σ from Theorem 3.6:

σ = − sign(g̃∗ J̃2g̃)
f ∗ J̃2g̃

| f ∗ J̃2g̃|
= − j̃k

| f ∗ J̃2g̃| j̃kg̃k∣∣∣|g̃∗ J̃2g̃|
1
2 g̃k

∣∣∣ = −
g̃k

|g̃k|
= −

g̃(k)
kk

|g̃(k)
kk |
. (3.15)

Put w = (wk,wk+1, . . . ,wm) = σ f − g̃ and instead of just brainlessly computing w∗ J̃2w
in form of a sum, which consumes computing time, we can reuse g∗J2g as in the below
formulas:

|wk| =

∣∣∣∣∣ − g̃k

|g̃k|
|g∗J2g|

1
2 − g̃k

∣∣∣∣∣ =

∣∣∣∣∣g̃k

(
|g∗J2g|

1
2

|g̃k|
+ 1

)∣∣∣∣∣ =

(
|g∗J2g|

1
2

|g̃k|
+ 1

)
|g̃k| = |g∗J2g|

1
2 + |g̃k|,

w∗ J̃2w = |wk|
2 j̃k + · · · + |wm|

2 j̃m = j̃k
(
|g∗J2g| + 2|g̃k||g∗J2g|

1
2
)

+ g∗J2g. (3.16)

We see now that w is nondegenerate, because j̃k = sign(g∗J2g), therefore w∗ J̃2w , 0. The
only thing left is to define a J-reflector that satisfies H(w)g̃ = σ f . The reflector H(w) then
has a form:

H(w) = Im−k − 2
w∗wJ̃2

w∗ J̃2w
. (3.17)

Placing H(w) in a matrix as

H(k+1) =

[
Ik 0
0 H(w)

]
we get

G(k+1) = H(k+1)G̃(k) =



g̃(k+1)
11 g̃(k+1)

12 g̃(k+1)
13 . . . g̃(k+1)

1k . . . g̃(k+1)
1n

0 g̃(k+1)
22 g̃(k+1)

23 . . . g̃(k+1)
2k . . . g̃(k+1)

2n
0 0 g̃(k+1)

33 . . . g̃(k+1)
3k . . . g̃(k+1)

3n
...

...
...

. . .
...

...

0 0 0 . . . g̃(k+1)
kk . . . g̃(k+1)

kn
0 0 0 . . . 0 . . . g̃(k+1)

k+1,n
...

...
...

...
...

0 0 0 . . . 0 . . . g̃(k+1)
m−1,n

0 0 0 . . . 0 . . . g̃(k+1)
mn



.

Does this method really form a hyperbolic QR factorization in the sense of Definition
2.3 is unclear. Due to all row and column permutations, instead of the form (3.14), we got

H(n)(P(n)
1 )∗H(n−1)(P(n−1)

1 )∗ . . .H(2)(P(2)
1 )∗H(1)(P(1)

1 )∗GP(1)
2 P(2)

2 . . . P(n−1)
2 P(n)

2 = R. (3.18)
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The proof that the sequence of transformations (3.18) really satisfies a hyperbolic QR
factorization can be found in [15]. The final matrices, as in the Definition 2.3 of the hyper-
bolic QR factorization, would then be:

P̃1 = P(1)
1 P(2)

1 . . . P(n)
1 , (3.19)

P̃2 = P(1)
2 P(2)

2 . . . P(n)
2 , (3.20)

Q̃ = (P(n)
1 )∗ . . . (P(2)

1 )∗H(1)P(2)
1 H(2)P(3)

1 H(3) . . . P(n)
1 H(n), (3.21)

Ã = (P̃2)∗AP̃2. (3.22)

Of course, this approach is not always possible. Problems occur when there are no
more nondegenerate columns left in the submatrix of G̃(k), or in the numerical world, a
J2-scalar product is smaller than some treshold ε > 0, (g̃(k)[k : m])∗J2(g̃(k)[k : m]) < ε.
In addition, a question of numerical stability rises which is why another method will be
presented in the next chapter.



Chapter 4

A Givens-like algorithm

As we saw in the previous chapter, problems occur when there are no more nondegenerate
columns in the working submatrix. In such case we then need to combine two columns
and figure out how to annihilate them both. In that case, G may have a 2 × 2 block in the
reduced form. This is still compatible with the definition of a hyperbolic QR factorization
2.3. From now on, let J = ( j1, j2, . . . , jm) have a hyperbolic form, G ∈ Cm×n, m ≥ n, and
let A = G∗JG be non-singular.

Let us introduce elementary J-unitary rotations Ug,Uh ∈ R
m×m. They have value 1 on

the diagonal and 0 everywhere else, except in some arbitrary positions (s, s), (s, l), (l, s),
(l, l):

Ug([s, l], [s, l]) =

[
cos(ϕ) sin(ϕ)
− sin(ϕ) cos(ϕ)

]
, (4.1)

and

Uh([s, l], [s, l]) =

[
cosh(ϕ) sinh(ϕ)
sinh(ϕ) cosh(ϕ)

]
. (4.2)

Ug is an ordinary Givens rotation. There exists an angle ϕ so that Ug annihilates an element
at the position (s, l). Matrix Ug is also J-unitary if the elements in J satisfy js = jl. Matrix
Uh is J-unitary if the elements of J satisfy js = − jl.

Example 4.1. For given matrices G, and J

G =


1 4 2
1 4 −2
1 −1 0
1 4 2

 , J = diag(1,−1, 1, 1)

find the J-unitary rotation U([1, 3], [1, 3]) that will annihilate the element at the position
(1, 3). First note that the J-unitary rotation is a trigonometric rotation Ug with the follow-

15
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ing form

Ug([1, 3], [1, 3]) =


cos(ϕ) 0 sin(ϕ) 0

0 1 0 0
− sin(ϕ) 0 cos(ϕ) 0

0 0 0 1

 .
We want to to find the angle ϕ such that the new element at the position (1, 3) is equal to
zero, i.e.,

Ug([1, 3], [1, 3]) G([1, 3], [1, 3]) =

[
cos(ϕ) sin(ϕ)
− sin(ϕ) cos(ϕ)

] [
1
1

]
=

[
x
0

]
.

Simple computation yields

cos(ϕ) + sin(ϕ) = r,
− sin(ϕ) + cos(ϕ) = 0,

and we get a solution ϕ = π
4 ⇒ cos(ϕ) = 1

√
2
, sin(ϕ) = 1

√
2
. Computing UgG we really see

that the element in position (1, 3) is 0.

UgG =


1
√

2
0 1

√
2

0
0 1 0 0
− 1
√

2
0 1

√
2

0
0 0 0 1



1 4 2
1 4 −2
1 −1 0
1 4 2

 =


√

2 3
√

2
2

√
2

1 4 −2
0 −5

√
2

2 −
√

2
1 4 2

 .
Note that rows , 1, 3 did not change.

If one recalls, our matrix G(k) after the k − 1 steps had the form

G(k) =



g(k)
11 g(k)

12 g(k)
13 . . . g(k)

1k . . . g(k)
1n

0 g(k)
22 g(k)

23 . . . g(k)
2k . . . g(k)

2n
0 0 g(k)

33 . . . g(k)
3k . . . g(k)

3n
...

...
...

. . .
...

...

0 0 0 . . . g(k)
kk . . . g(k)

kn
0 0 0 . . . g(k)

k+1,k . . . g(k)
k+1,n

...
...

...
...

...

0 0 0 . . . g(k)
m−1,k . . . g(k)

m−1,n

0 0 0 . . . g(k)
mk . . . g(k)

mn



=

[
G(k)

11 G(k)
12

0 G(k)
22

]
, J =

[
J(k)

1 0
0 J(k)

2

]
.

Moreover, let the norms of the columns of G(k)
22 are zeros or very small even if the elements

in such columns are of reasonable size. This is possible only if there are mixed signs in
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J. If the norms of the columns are exactly equal to 0 (and the elements in the columns are
not 0), than there is no hyperbolic rotation that will annihilate the given sub-column to one
element. For example, there is no hyperbolic rotation which annihilates

G(k)
22 =

[
1
1

]
, J(k)

2 = diag(1,−1).

Moreover, even if the J-norm of the column of G(k)
22 is small (but the elements of G(k)

22 rea-
sonable in size), the hyperbolic angle will be quite big, and corresponding transformation
Uh catastrophically conditioned. Therefore, we need to find another way to make matrix G
close to the triangular. An idea is to work with two columns if the norms of the columns
are small, and their J-scalar product is big enough.

Suppose we have a criteria that guarantees us which two columns in G(k)
22 would be

good candidates for the annihilation process. How we find those two pivot columns will be
explained later, but for now, just for the sake of explaining the method, a pair of columns
(g(k)

s [k : m], g(k)
l [k : m]) in G(k)

22 will be chosen as pivot columns if the matrix

A2 :=
[
(g(k)

s [k : m])∗J(k)
2 (g(k)

s [k : m]) (g(k)
s [k : m])∗J(k)

2 (g(k)
l [k : m])

(g(k)
l [k : m])∗J(k)

2 (g(k)
s [k : m]) (g(k)

l [k : m])∗J(k)
2 (g(k)

l [k : m])

]
(4.3)

is non-singular, indefinite and with nonzero off-diagonal elements. It will be shown later
that, if the case is that we cannot perform annihilation using Householder J-reflectors, then
there always exist such columns in the working submatrix G(k)

22 that satisfy (4.3) if and only
if A = G∗JG is non-singular.

After we found two good pivot columns, if necessary, two column permutations of G(k)

are performed in order to swap columns k ←→ s and k + 1←→ l, thus Ĝ(k) = G(k)P2.
The main idea is to reduce column ĝ(k)

k [k : m] up to 2 elements using Ug. The simplest
way to apply the Givens rotations in the complex case is to make column ĝ(k)

k [k : m] real.
This is done by multiplying Ĝ(k) with

Φ1 = diag
(
1, 1, . . . , 1,

ĝ(k)
kk

|ĝ(k)
kk |
,

ĝ(k)
k+1,k+1

|ĝ(k)
k+1,k+1|

, . . . ,
ĝ(k)

mm

|ĝ(k)
mm|

)
.

Note that a matrix Φ = diag(eiϕ2 , eiϕ2 , . . . , eiϕm) is J-unitary, for all J of hyperbolic
forms, meaning Φ∗JΦ = J.

Now, ˆ̂G(k) = Φ1Ĝ(k), and we simply annihilate all the elements in ˆ̂g(k)
k [k : m] correspond-

ing to sign jk, and the element ˆ̂g(k)
k,k is replaced by their norm. Similar holds for the elements

that correspond to sign − jk — element ˆ̂g(k)
k,k+1 is replaced by their norm. If the element at

position (k, k + 1) is not corresponding to sign − jk, we perform another row permutation
P∗1

ˆ̂G(k).
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The same procedure is repeated on P∗1 ˆ̂g(k)
k+1[r+1 : m], where r is the last row in P∗1 ˆ̂g(k)

k [k :
m] that has a nonzero element after performing Givens rotations on the kth column of the
working submatrix (note that r = 1 or r = 2). Remember that after every row permutation on
ˆ̂G(k), we need to apply a diagonal permutation on J, since we need to preserve the J-scalar

product.
This yields

G̃(k) = Uk+1,−1P∗1,4Uk+1,1P∗1,3Φ2Uk,−1P∗1,2Uk,1P∗1,1Φ1G(k)P2,

where Ui, j is a composition of multiple Givens rotations and since a composition of mul-
tiple J-unitary matrices is again a J-unitary matrix, Ui, j is J-unitary. To simplify, we can
accomplish the same thing if we do all the row permutations first and then annihilate the
elements. This yields

G̃(k) = (Uk+1,−1Uk+1,1Φ2Uk,−1Uk,1Φ1)(P∗1,4P∗1,3P∗1,2P∗1,1)G(k)P2 = Q(k)P∗1G
(k)P2, (4.4)

J̃(k) = P∗1JP1. (4.5)

Note that Q(k) is J-unitary, (Q(k))∗JQ(k) = J, since it is a composition of J-unitary matrices.
There are five possible forms we can get after performing Givens rotations on two pivot

columns. We will split them in cases A and B, depending on how many nonzero elements
we have in kth column of G̃(k)

22 .

Case A: The block G̃(k)[k : k + 4, k : k + 2] has exactly two nonzero elements in the first
column. This small part of G̃(k) will be denoted by Gr2 = G̃(k)[k : k + r, k : k + 2] and the
corresponding part of J̃(k) will be Jrr = J̃(k)[k : k + r, k : k + r].

A1: Four nontrivial rows:

G42 =


g11 g12

g21 g22

0 g32

0 g42

 , J44 = diag( j11,− j11, j33,− j33), (4.6)

where g11, g21, g32, g42 are real and nonzero. At least g12 or g22 is nonzero, otherwise A2

would have a zero off-diagonal element and since J-unitary transformations preserve J-
scalar products (by definition), A2 remains unchanged.

A2: Three nontrivial rows:

G32 =

g11 g12

g21 g22

0 g32

 , J33 = diag( j11,− j11, j33), (4.7)

with g11, g21, g32 real and nonzero. Also, g12 is nonzero or g22 is nonzero.
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A3: Two nontrivial rows:

G22 =

[
g11 g12

g21 g22

]
, J22 = diag( j11,− j11), (4.8)

with g11, g21 real and nonzero. Also, g12 is nonzero or g22 is nonzero. This is the case where
we already have a diagonal block of order 2 which is the form we needed.

Case B: The block G̃(k)[k : k + 4, k : k + 2] has exactly one nonzero elements in the first
column. This small part of G̃(k) will be denoted by Gr2 = G̃(k)[k : k + r, k : k + 2] and the
corresponding part of J̃(k) will be Jrr = J̃(k)[k : k + r, k : k + r].

B1: Three nontrivial rows:

G32 =

g11 g12

0 g22

0 g32

 , J33 = diag( j11,− j33, j33), j11 = j33, (4.9)

with g11, g22, g32 real and nonzero, while g12 is nonzero.
B2: Two nontrivial rows:

G22 =

[
g11 g12

0 g22

]
, J22 = diag( j11, j22), j11 = − j22, (4.10)

with g11, g22 real and nonzero, while g12 is nonzero. This is also the case where we already
have a diagonal block of order 2 which is the form we needed.

Remark 4.2. Case A1 can be transformed into A2 and case B2 can be transformed into
B1 using Uh transformations, but Uh can be very ill conditioned if | tanh(ϕ)| ≈ 1, meaning
we will get wrong results if implementing it in our algorithm. It can be done for example if
| tanh(ϕ)| ≤ 0.5, but since the following steps of reduction will have the same complexity as
applying Uh, this was not implemented.

4.1 Proper forms
We saw all possible forms of Gr2. The matrix can then be rewritten as

Gr2 =

[
G1

G2

]
,

where

G1 =

[
g11 g12

g21 g22

]
, and G2 =


0 g32

0 g42

 , if r = 4,[
0 g32

]
, if r = 3.

(4.11)
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Forms of Gr2 as described in A1, A2 and B1 will be called proper forms if det G1 , 0.
If looked more closely, B1 is already a proper form. The next steps will describe how to
change forms A1 and A2 into proper forms (if they are not) and how to transform those
forms into 2 × 2 blocks.

We give the transformation to proper forms as lemmas without proof (for proof see
[15]).

Lemma 4.3. Let G32, J33 be in form A2 as in (4.7). There exist permutation matrices P′1,
P′2 and J′33-unitary matrix U, such that

G′32 := U−1(P′1)∗G32P′2, U∗J′33U = J′33, J′33 := (P′1)∗J33P′1,

and G′32, J′33 are in proper form, meaning det G′1 , 0.

Lemma 4.3 does not give us the answer how to do that, just guarantees the existence.
However, the proof of the lemma contains a recipe for that. If G32 is not in proper form,
we swap columns in G32 and make the first column real using a J33-unitary matrix Φ as
described earlier. This gives us

G̃32 = ΦG32P′2 =

g̃11 g̃12

g̃21 g̃22

g̃31 0

 . (4.12)

Now, if j11 = j33, by using Ug([1, 3], [1, 3]), we annihilate g̃31. If j11 , j33, we annihilate
g̃31 by using Ug([2, 3], [2, 3]), since j22 = j33. This gives

G′32 = UgΦG32P′2 =

g
′
11 g′12

g′21 g′22
0 g′32

 . (4.13)

Note that G′32 has still the same form as in A2, but now it is in a proper form, meaning
det G′1 , 0 (see the proof of the lemma for that fact [15]). Remember, all the transforma-
tions we did on that small block must also be done on G̃(k). These transformations are in
the same fashion as before, so instead of using notation ˜̃G(k), we will simply continue using
G̃(k). Therefore, without loss of generality, (4.4) still holds.

Lemma 4.4. Let G42, J44 be in form A1 as in (4.6). There exist permutation matrices P′1,
P′2 and J′44-unitary matrix U, such that

G′42 := U−1(P′1)∗G42P′2, U∗J′44U = J′44, J′44 := (P′1)∗J44P′1,

and G′42, J′44 are in proper form, meaning det G′1 , 0.

Transforming G42 into G′42 is done the same way as (4.13), but instead of one Givens
rotation, we will have to use two, since G42 has four nonzero elements in the first column
and two in the second column.
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4.2 Block J-unitary reduction
Reduction of proper forms has to be done with a different kind of J-unitary matrices which
can annihilate blocks. There exist such block J-rotations and they can be represented as
(see [18])

U =

[
(I − YX)1/2 Y
−X (I − XY)1/2

]
, (4.14)

where X, Y are rectangular and the dimensions of X and Y∗ are the same. Let YX and
XY have the same orders as J̃1

(k)
and J̃2

(k)
, respectively. If Y = J̃1

(k)
X∗ J̃2

(k)
, then U is

J̃(k)-unitary (see [18]) and

U−1 =

[
(I − YX)1/2 −Y

X (I − XY)1/2

]
.

The following lemmas provide existence and shape of U that we need for the further
reduction of proper forms (for proof see [15]), but first we need to define some auxiliary
variables

z := (det G1)−1 (4.15)

a := j11 j33|z|2(g2
21 − g2

11)(g2
32 − g2

42) (4.16)

r := (1 + a)−
1
2 . (4.17)

These variables were defined for the most general form G42. If the block is G32 of form
(4.7), just put g42 = 0. The same goes for other forms.

Variable z is well defined, since we are dealing with proper forms. The definition of
r, on the other hand, needs more clarification. Matrix A2 (4.3) did not change, because
J-unitary matrices preserve J-scalar products, therefore it is non-singular and indefinite.
By the Sylvester’s criterion,

0 > det(A2) = det(G∗42J44G42) = − j11 j33(g2
21 − g2

11)(g2
32 − g2

42) (4.18)

and (4.18) can be rewritten as
−(a + 1)/|z| < 0,

so a > −1, thus r is well defined.

Lemma 4.5. Let G42 and J44 be in proper form of A1 (4.6). There exists a block J44-unitary
matrix U defined by (4.14) such that

U−1G42 = G42 =

[
G′1
0

]
, G′1 =

[
g′11 g′12
g′21 g′22

]
.



22 CHAPTER 4. A GIVENS-LIKE ALGORITHM

The blocks of U are

X = rz
[
g21g32 −g11g32

g21g42 −g11g42

]
, Y = j11 j33rz

[
g21g32 −g21g42

g11g32 −g11g42

]
,

(I − XY)1/2 = I +
j11 j33r|z|2(g2

21 − g2
11)

1 +
√

a + 1

[
−g2

32 g32g42

−g32g42 g2
42

]
,

(I − YX)1/2 = I +
j11 j33r|z|2(g2

32 − g2
42)

1 +
√

a + 1

[
−g2

21 g11g21

−g11g21 g2
11

]
.

Lemma 4.6. Let G32 and J33 be in proper form of A2 (4.7) or B1 (4.9). There exists a block
J33-unitary matrix U defined by (4.14) such that

U−1G32 = G32 =

[
G′1
0

]
, G′1 =

[
g′11 g′12
g′21 g′22

]
.

The blocks of U are

X = rz
[
g21g32 −g11g32

]
, Y = j11 j33rz

[
g21g32

g11g32

]
, (I − XY)1/2 = r,

(I − YX)1/2 = I +
j11 j33r|z|2g2

32

1 +
√

a + 1

[
−g2

21 g11g21

−g11g21 g2
11

]
.

The end of this section needs one final comment. After all the transformations we did,
we preserved the form (4.4)

G(k+1) = Q(k)P∗1G
(k)P2,

J̃(k) = P∗1JP1.

This is the same set of transformations as we have done with Householder reflectors, where
we had the form (3.18), so again, the sequence (4.4) really satisfies a hyperbolic QR fac-
torization (see [15]). The final matrices, as in the definition of the hyperbolic QR decom-
position 2.3, would then be just the same as in the Householder case:

P̃1 = P(1)
1 P(2)

1 . . . P(n)
1 , (4.19)

P̃2 = P(1)
2 P(2)

2 . . . P(n)
2 , (4.20)

Q̃ = (P(n)
1 )∗ . . . (P(2)

1 )∗Q(1)P(2)
1 Q(2)P(3)

1 Q(3) . . . P(n)
1 Q(n), (4.21)

Ã = (P̃2)∗AP̃2. (4.22)



Chapter 5

Pivoting

Until now, we saw that the earlier mentioned algorithms do well when we have a good
pivoting strategy, but no particular strategy was yet presented. We will explain how the
algorithm for the hyperbolic QR factorization is connected to the Hermitian indefinite fac-
torization.

In the 1970s, Bunch, Kaufman and Parlett [4, 5, 6, 7, 8] developed a certain amount of
algorithms for computing the Hermitian indefinite factorization (HIF), an indefinite ana-
logue of the Cholesky factorization. Exactly those strategies will be useful to us to generate
a consistent pivoting strategy which guarantees numerical stability.

5.1 Connections between HIF and hyperbolic QR
The Hermitian indefinite factorization of a matrix A has a form

A = PR∗JRP∗, (5.1)

where P is a permutation matrix, R is block upper triangular with diagonal blocks of order
1 or 2, and J is a signature matrix. Its existence is due to the following proposition.

Proposition 5.1. Let A be Hermitian and non-singular. Then A can be factored as

A = PT LDL∗P, (5.2)

where P is a permutation matrix, D is Hermitian with diagonal blocks of order 1 or 2 and L
is a lower triangular matrix with ones on the diagonal if D has a 1×1 block, or a diagonal
block of I2 if D has a 2 × 2 block.

Since we can compute an eigenvalue decomposition of D as D = S ∗
√
|∆|J
√
|∆|S , where

J is the signature matrix of eigenvalues, then (5.2) can be rewritten as (5.1).

23
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Now let A be given as A = G∗JG by G and J. If we have a hyperbolic QR factorization
of G, as in definition 2.3, we instantly have a Hermitian indefinite factorization of A (5.1),

A = (P1QRP∗2)∗J(P1QRP∗2) ⇒ A = P2R∗J′RP∗2, Q∗J′Q = J′, J′ = P∗1JP1. (5.3)

First we will explain an outline of the method how to compute the Hermitian indefinite
factorization. We will not go into details, yet explain the basic idea which will give us
a pivoting strategy we can use for our hyperbolic QR factorization, since the connection
between elements of A and G∗JG is simply

ai j = g∗i Jg j,

where gi is the ith column of G. Second, the pivoting strategy will provide numerical
stability, because the strategy will be derived from the fact that we want to minimize the
pivot growth in every step of computing the Hermitian indefinite factorization. Third, an
explanation that the algorithm for Hermitian indefinite factorization and the algorithm for
the hyperbolic QR factorization provide almost the same result will be given, if the same
pivoting strategy is used. The main difference is observed in the case of 2×2 pivots, where
zeroes on the diagonal in matrix A can be represented as different difference of squares,
i.e., if

G =

[
g2

g2

]
, J = diag(1,−1),

then A = G∗JG = 0 for all elements g.

An outline for computing the Hermitian indefinite factorization
The proof of proposition 5.1 (see, for example [17, chapter 5]) gives us a purely theoretical
approach on how to compute (5.1). It is purely theoretical, because it is potentially numer-
ically unstable. First if there exists a nonzero element on the diagonal of A, we put in place
(1, 1). If all diagonal elements are zero, then there exists a off-diagonal element ai j in A
which is nonzero, otherwise A would be singular. Now we take the 2 × 2 submatrix A11 as

A11 =

[
aii ai j

a ji a j j

]
and place it in position (1 : 2, 1 : 2). The Hermitian structure of A is then left intact. Thus,

A =

[
A11 A12

A∗12 A22

]
=

[
I 0

L12 I

] [
A11 0
0 S

] [
I L∗21
0 I

]
, (5.4)

Where A11 is a 1 × 1 or a 2 × 2 matrix and the other blocks are

L21 = A∗12A−1
11 , S = A22 − L21A11L∗21 = A22 − A∗12A−1

11 A12.
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The same technique is then repeated on S .
A following example taken from [8] shows why this strategy is numerically unstable.

Example 5.2. Let Ax = b be a linear 2 × 2 system, where

A =

[
ε 1
1 εd

]
, b =

[
1
0

]
, 0 < ε � d ≤ 1.

The condition number of A,

κ∞(A) = ‖A‖∞‖A−1‖∞ =
(1 + ε)2

1 − dε2 = 1 + ε + O(ε2),

is a fairly small number, so the solution to the linear system can be computed with small
relative errors. The Hermitian indefinite factorization, as in (5.1), is computed as

A =

[
ε1/2 0
ε−1/2 (1/ε − dε)1/2

] [
1 0
0 −1

] [
ε1/2 (1/ε − dε)1/2

0 ε−1/2

]
.

If ε is very small, then (1/ε − dε)1/2 ≈ ε−1/2. Taking this into consideration, the solution x̂
derived from this factorization is then

x̂ =

[
0
1

]
,

while the exact solution is

x =
1

1 − dε2

[
−dε

1

]
and the relative error is

‖x − x̂‖∞
‖x‖∞

≤ dε.

However, if we solve the same system with the Gaussian elimination with partial pivoting,
we get

x̃ =

[
−dε

1

]
,

with a relative error
‖x − x̃‖∞
‖x‖∞

≤ dε2,

which is considerably better.
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Pivot growth
All the results stated in this subsection can be found in [17, chapters 6–7,9–11]. First, let
us define some auxiliary variables. Let A ∈ Fn×n be non-singular and Hermitian.

µ0 = max
i, j
|ai j|, µ1 = max

i
|aii|, ν = |a11a22 − a2

12|. (5.5)

Lemma 5.3. Suppose a pivot of order 1 is chosen which is put at the position (1, 1), in
other words µ1 = |a11| , 0. Then

1. max
i
|(L∗21)1i| ≤

µ0

µ1
,

2. max
i, j
|S i j| ≤ µ0

(
1 +

µ0

µ1

)
.

If a pivot of order 2 is chosen, and A11 from (5.4) is put at the position (1 : 2, 1 : 2), and if
| det A11| = ν ≥ µ2

0 + µ2
1 holds, then

1. max
i, j
|(L∗21)i j| ≤ µ0

µ0 + µ1

ν
, for i = 1, 2,

2. max
i, j
|S i j| ≤ µ0

1 +
2

1 − µ0
µ1

.
We now want to minimize the pivot growth of matrix S in (5.4). Suppose that A(k) is

the submatrix of order k which we yet need to factorize and let F(k)
i , i = 1, 2, denote the

pivot growth of matrix S (k) depending on the strategy. Lemma 5.3 gives

F(k)
1 = 1 +

µ(k)
0

µ(k)
1

, F(k)
2 = 1 +

2

1 − µ(k)
0

µ(k)
1

.

Suppose that we have a strategy S α, 0 < α < 1 which is a pivot of order 1 if and only if

µ(k)
1

µ(k)
0

≥ α.

This strategy S α gives

F(k)
1 ≤ 1 +

1
α
, F(k)

2 ≤ 1 +
2

1 − α
.

The idea is to compare the pivot growth when two steps of order 1 are performed and one
step of order two. In other words, we need to compare F(k)

1 and F(k+1)
1 with F(k)

2 . Now define

G(α) = max
{(

1 +
1
α

)2

, 1 +
2

1 − α

}
.
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We are looking for α ∈ 〈0, 1〉 that minimizes G(α). Since both functions are continuous,
the first one is monotone decreasing and the second one is monotone increasing for α ∈
〈0, 1〉, we get that the α0 which minimizes G is given as an intersection between these two
functions, (

1 +
1
α

)2

= 1 +
2

1 − α
,

from where we get

α0 =
1 +
√

17
8

≈ 0.6403882 . . . (5.6)

The second part of the Lemma 5.3 required that | det A11| = ν ≥ µ2
0 + µ2

1, so this discus-
sion was made under that assumption.

Pivoting strategy
The first attempt of a consistent pivoting strategy is very obvious. Let A(k) be the unreduced
part of A in step k, in other words S = A(k). The steps of a pivoting strategy, so-called the
complete pivoting strategy, that minimizes pivot growth are:

1. Find µ0 = maxi, j |a
(k)
i j | = |apl| and µ1 = max j |a

(k)
j j | = |a

(k)
rr |.

2. If µ(k)
1 ≥ α0µ

(k)
0 do pivot 1, otherwise do pivot 2.

3. In the case of pivot 1, put element a(k)
rr at the position (1, 1)

4. In the case of pivot 2, put matrix A(k)
11 at the position (1 : 2, 1 : 2), defined as

A(k)
11 =

a(k)
pp a(k)

pl

a(k)
lp a(k)

ll

 .
It can be shown that, if we choose this strategy, then ν ≥ µ2

0 + µ2
1 is satisfied.

However, this obvious strategy includes going through all elements of A(k), therefore
we need to compute the whole submatrix A(k) = (G(k)

22 )∗J2G
(k)
22 in every step. This consumes

a lot of computing time, so instead of the complete pivoting strategy that searches the
rest of the matrix for pivots, somewhat relaxed pivoting strategy, so-called partial pivoting
strategy, exists and better suits our situation (see, for example [7]).

The steps of partial pivoting for an Hermitian indefinite factorization of a yet unreduced
submatrix A(k) are:

1. Determine λ = |a(k)
r1 | = max2≤i≤k |a

(k)
i1 |.

2. If |a(k)
11 | ≥ α0λ, take a(k)

11 as pivot.

3. Determine σ = max1≤i≤k |a
(k)
ir |, i , r.
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4. If |a(k)
11 |σ ≥ α0λ

2, take a(k)
11 as pivot.

5. If |a(k)
rr | ≥ α0σ, take a(k)

rr as pivot.

6. Otherwise, do pivot of order 2 where

A(k)
11 =

[
a(k)

11 a(k)
1r

a(k)
r1 a(k)

rr

]
.

5.2 Pivoting in hyperbolic QR
As we saw, the connection between these two factorizations is

ai j = g∗i Jg j,

more precisely, if

A =

[
I 0

L12 I

] [
A11 0
0 S

] [
I L∗21
0 I

]
(5.7)

and if A = G∗JG, where

G =

[
G11 G12

0 G22

]
, (5.8)

then A also has the following form

A =

[
I 0

G∗12(G∗11)−1 I

] [
G∗11J1G11 0

0 G∗22J2G22

] [
I G−1

11 G12

0 I

]
. (5.9)

From here, we see that
A(k) = S = (G(k)

22 )∗J2G
(k)
22

in every step. Note that G−1
11 is always well defined. It is either block of order 1 in the case

of a single pivot, where a non-degenerate column was chosen, therefore G11 , 0, or a block
of order 2 in case of 2 pivot columns, where G11 = G′1 and G′1 is the 2 × 2 matrix in the
proper form.

This is the main reason why in the Definition 2.3 of the hyperbolic QR matrix G∗JG is
non-singular. Now we can see that we cannot avoid 2 × 2 blocks on the diagonal of G.

If the partial pivoting strategy choses a single element aii as pivot, then we do a reduc-
tion of the first column in G̃(k)

22 by the J-unitary Householder reflector. The pivot column
is then g̃i, located as the first column in G̃(k)

22 . Note that g̃i is then nondegenerate, so we
construct the reflector as before. If pivot of order 2 is chosen, then the reduction would be
done with the Givens-like algorithm.

There is one thing left unclear: all the conditions we imposed on A2 from (4.3) when
we were explaining which two columns we consider ’good’ for our Givens algorithm.
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The non-singularity and nonzero off-diagonal elements are clear, since A2 = A11 and A11

satisfies the same. The indefiniteness, which as we saw was crucial for building the J-
unitary matrices U (4.14), needs justification. First, note that det A11 is a real number. This
is clear from the definition (4.3) of A2. If we follow the partial pivoting strategy, the pivot
of order 2 is chosen if

|a11| < α0|ar1|, (5.10)
|a11|σ < α0|ar1|, (5.11)
|arr| < α0σ, (5.12)
|ar1| , 0. (5.13)

If det A11 ≥ 0, then
|a11||arr| ≥ |ar1|

2.

But,

|ar1|
2 ≤ |a11||arr| < |a11|α0σ < |a11|α0

α0|ar1|
2

|a11|
= α2

0|ar1|
2

and, since |ar1| , 0, this is a contradiction with the fact that 1 < α2
0, therefore A11 is

indefinite and so is A2.
This shows why a consistent pivoting strategy for the indefinite QR would not break

down if A = G∗JG is non-singular.





Chapter 6

Implementation

In this chapter, we will sum up the algorithm in form of code. Fortran open source routines
BLAS [3] and LAPACK [11] were used as much as possible. These routines, or functions,
have optimal way of performing linear algebra operations. In order to be optimal, BLAS
and LAPACK, assume all matrices and vectors are in a column major layout, meaning that
a matrix G ∈ Cm×n is stored in one array and in the first m spaces is the first column, in the
second m spaces is the second column, etc. We then access an element Gi j as G[i + M ∗ j].

First a sequential implementation will be presented after which we will discuss which
regions were parallelised and how.

6.1 Sequential implementation
Assume we have a matrix G of the dimension M × N as an input, where M � N, and the
signature matrix J of the dimension M×M. After allocating memory and reading the data,
we enter a for loop.

We consider a variable x to be zero if |x| < EPSILON, where EPSILON is a constant
from library float.h defined as the minimal positive number such that 1.0+EPSILON , 1.0.

1 f o r ( i n t k = 0 ; k < N; ++k ) {
2
3 / / −−−−−−−−−−−−−−−−−− PARTIAL PIVOTING −−−−−−−−−−−−−−−−−−

4
5 compute Akk ;
6 i f ( k == N−1) go to PIVOT 1 ;
7
8 f i n d lambda ;
9 i f ( cabs ( Akk ) >= ALPHA ∗ lambda ) go to PIVOT 1 ;

10
11 f i n d sigma ;
12 i f ( cabs ( Akk ) ∗ s igma >= ALPHA ∗ lambda ∗ lambda ) go to PIVOT 1 ;
13
14 compute Arr ;
15 i f ( cabs ( Arr ) >= ALPHA ∗ s igma ) {

31
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16 swap columns k and r i n G;
17 u p d a t e Pco l ;
18 Akk = Arr ;
19 go to PIVOT 1 ;
20 }

21
22 / / −−−−−−−−−−−−−−−−−− START OF PIVOT2 −−−−−−−−−−−−−−−−−−
23
24 i f ( r != k +1) {
25 swap columns k+1 and r i n G;
26 u p d a t e Pco l ;
27 }

28
29 make t h e 1 s t column i n G[ k :M, k :N] r e a l ;
30
31 f i n d t h e f i r s t i d x >= k so t h a t G[ i d x + M∗k ] != 0 ;
32 i f ( i d x != k ) {
33 swap rows k and i d x ;
34 u p d a t e Prow ;
35 swap d i a g o n a l e l s k and i d x i n J ;
36 }

37 do p l a n e r o t a t i o n s wi th G[ k + M∗k ] on a l l e l s w i th s i g n J [ k ] ;
38
39 f i n d t h e f i r s t i d x so t h a t J [ i d x ] = −J [ k ] and G[ i d x + M∗k ] != 0 ;
40 i f ( i d x != k +1) {
41 swap rows k+1 and i d x ;
42 u p d a t e Prow ;
43 swap d i a g o n a l e l s k+1 and i d x i n J ;
44 }

45 do p l a n e r o t a t i o n s wi th G[ k+1 + M∗k ] on a l l e l s w i th s i g n J [ k +1 ] ;
46
47
48 / / keep t r a c k of forms , so t h a t
49 / / we can d e t e r m i n e t h e c a s e s A1 , A2 , A3 , B1 , B2
50 i n t k t h n o n z e r o s = number o f nonze ro e l s i n G[ k :M, k ] ;
51
52 make t h e 1 t s column i n G[ ( k+ k t h n o n z e r o s ) :M, ( k +1) :N] r e a l ;
53
54 f i n d t h e f i r s t i d x >= ( k+ k t h n o n z e r o s ) so t h a t G[ i d x + M∗ ( k +1) ] != 0 ;
55 i f ( i d x != k + k t h n o n z e r o s ) {
56 swap rows k+ k t h n o n z e r o s and i d x ;
57 u p d a t e Prow ;
58 swap d i a g o n a l e l s k+ k t h n o n z e r o s and i d x i n J ;
59 }

60 do p l a n e r o t a t i o n s wi th G[ ( k+ k t h n o n z e r o s ) + M∗ ( k +1) ] on a l l e l s w i th
61 s i g n J [ k+ k t h n o n z e r o s ] ;
62
63 f i n d t h e f i r s t i d x > ( k+ k t h n o n z e r o s ) so t h a t
64 J [ i d x ] = −J [ k+ k t h n o n z e r o s ] and G[ i d x + M∗ ( k +1) ] != 0 ;
65
66 i f ( i d x != k+ k t h n o n z e r o s +1) {
67 swap rows k+ k t h n o n z e r o s +1 and i d x ;
68 u p d a t e Prow ;
69 swap d i a g o n a l e l s k+ k t h n o n z e r o s +1 and i d x i n J ;
70 }

71 do p l a n e r o t a t i o n s wi th G[ ( k+ k t h n o n z e r o s +1) + M∗ ( k +1) ] on a l l e l s w i th
72 s i g n J [ k+ k t h n o n z e r o s +1 ] ;
73
74 / / keep t r a c k of forms
75 i n t k k t h n o n z e r o s = number o f nonze ro e l s i n
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76 G[ ( k+ k t h n o n z e r o s ) :M, k +1 ] ;
77
78 / / c o n d i t i o n A3
79 i f ( k t h n o n z e r o s == 2 && k k t h n o n z e r o s == 0) go to LOOP END ;
80
81 / / c o n d i t i o n B2
82 i f ( k t h n o n z e r o s == 1 && k k t h n o n z e r o s == 1) go to LOOP END ;
83
84 / / h a n d l e t h e A1 form
85 i f ( k t h n o n z e r o s == 2 && k k t h n o n z e r o s == 2) {
86
87 / / check i f i t s a p r o p e r form
88 i f ( cabs ( d e t (G[ k : k +1 , k : k +1] ) ) < EPSILON ) {
89 swap columns k and k+1 i n G;
90 u p d a t e Pco l ;
91
92 make t h e 1 s t and t h e 2nd row i n G[ k :M, k :N] r e a l ;
93 do a p l a n e r o t a t i o n wi th G[ k + M∗k ] on an e l w i th s i g n J [ k ] ;
94 do a p l a n e r o t a t i o n wi th G[ k+1 + M∗k ] on an e l w i th
95 s i g n J [ k +1 ] ;
96 }

97
98
99 / / do t h e f i n a l r e d u c t i o n

100 compute a , z , r ;
101 f i l l a 4x4 m a t r i x Uˆ { −1 } ;
102 G[ k : k +4 , k :N] = Uˆ { −1 } ∗ G[ k : k +4 , k :N ] ;
103
104 k = k +1;
105 go to LOOP END ;
106 } / / end of c a s e A1
107
108
109 / / h a n d l e forms A2 and B1
110 e l s e i f ( k t h n o n z e r o s == 2 && k k t h n o n z e r o s == 1 | |

111 k t h n o n z e r o s == 1 && k k t h n o n z e r o s == 2) {
112
113 / / check i f i t s a p r o p e r form , B1 i a l r e a d y i n p r o p e r !
114 i f ( cabs ( d e t (G[ k : k +1 , k : k +1] ) ) < EPSILON ) {
115 swap columns k and k+1 i n G;
116 u p d a t e Pco l ;
117
118 make t h e 1 s t and t h e 2nd row i n G[ k :M, k :N] r e a l ;
119 do p l a n e r o t a t i o n s wi th one of t h e f i r s t two rows i n G[ k :M, k :N]
120 t o e l i m i n a t e G[ k+2 + M∗k ] ;
121 }

122
123 / / do t h e f i n a l r e d u c t i o n
124 compute a , z , r ;
125 f i l l a 3x3 m a t r i x Uˆ { −1 } ;
126 G[ k : k +3 , k :N] = Uˆ { −1 } ∗ G[ k : k +3 , k :N ] ;
127
128 k = k +1;
129 go to LOOP END ;
130 } / / end of c a s e s A2 and B1
131
132 / / i f h e r e A i s c l o s e t o s i n g u l a r
133 e x i t ( −4) ;
134
135 / / −−−−−−−−−−−−−−−−−− START OF PIVOT1 −−−−−−−−−−−−−−−−−−
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136 PIVOT 1 :
137
138 i f ( Akk > 0 && J [ k ] < 0) {
139 f i n d t h e f i r s t i d x > k so t h a t J [ i d x ] = 1 ;
140 swap rows k and i d x i n G;
141 u p d a t e Prow ;
142 swap d i a g o n a l e l e m n t s k and i d x i n J ;
143 }

144
145 e l s e i f ( Akk < 0 && J [ k ] > 0) {
146 f i n d t h e f i r s t i d x > k so t h a t J [ i d x ] = −1;
147 swap rows k and i d x i n G;
148 u p d a t e Prow ;
149 swap d i a g o n a l e l e m n t s k and i d x i n J ;
150 }

151
152 / / compute r e f l e c t o r c o n s t a n t H sigma
153 d ou b l e complex H sigma = 1 ;
154 i f ( cabs (G[ k+M∗k ] ) >= EPSILON ) H sigma = −G[ k+M∗k ] / cabs (G[ k+M∗k ] ) ;
155
156 f i l l f [ k :M] = ( c s q r t ( c abs ( Akk ) ) ∗ H sigma , 0 , . . . , 0 ) ;
157 tempf = f ;
158 f [ k :M] = f [ k :M] − G[ k , k :M] ;
159
160 d ou b l e complex wJw = Akk + J [ k ] ∗ ( c abs ( Akk ) + 2 ∗ c s q r t ( cabs ( Akk ) ) ∗ cabs (G[ k + M∗k ] ) ) ;
161
162 / / make t h e r e f l e c t o r H[ k :M, k :M]
163 f o r ( j = k ; j < M; ++ j )
164 f o r ( i = k ; i < M; ++ i )
165 H[ i + M∗ j ] = −2 ∗ f [ i ] ∗ c o n j ( f [ j ] ) ∗ J [ j ] / wJw ;
166
167 f o r ( i = k ; i < M; ++ i ) H[ i + M∗ i ] += 1 ;
168
169 / / a p p l y t h e r e f l e c t o r on a s u b m a t r i x
170 G[ k :M, ( k +1) :M] = H[ k :M, k :M] ∗ G[ k :M, ( k +1) :M] ;
171 G[ k :M, k ] = t empf ;
172
173 LOOP END : c o n t i n u e ;
174 }

Because we are storing matrices in a column order, it is wise to fill matrix H as we did in
lines 160–162. Accessing array memory consecutively boosts performance. Note that in
the case of column or row swaps, just the nonzero pieces of the vectors should be swapped.
If the corresponding elements in vectors are zero, we gain nothing from swapping them.

6.2 Parallelisation
Almost everything can be parallelised in this algorithm. Parallelisation means that multiple
processes are executed simultaneously.

For parallelisation we used OpenMP, an application programming interface that sup-
ports shared memory multiprocessing in C [14]. Shared memory is a part of memory which
can be accessed by multiple threads at the same time and for OpenMP it is the L3 cache.
The temporary view of memory allows the thread to cache variables and thereby to avoid
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going to memory for every reference to a variable. Each thread also has access to another
type of memory that must not be accessed by other threads, called the private memory
known as L1 cache. L1 is the ’fast’ memory, but with very limited storage, while L3 is the
largest and the ’slowest’ (if we do not include RAM).

Cache optimization is important for performance when using OpenMP. For example,
when a parallel region starts, the shared variables are stored into L3 cache. If they do not
fit in L3, since the memory is much smaller than RAM, a part of it is stored. If a thread
constantly needs a call to the L3 cache, then, first a request to L2 cache is sent, then if data
is not there, a request to the L3 cache is sent. Then data is sent to L1 cache over L2 cache,
which takes more time. Therefore, we should avoid cache misses as much as possible.
Optimizing cache performance in our case means that a single thread should not ’jump’
too far across memory.

For boosting BLAS and LAPACK, an Intel Math kernel library was used [12]. Basi-
cally, when a program is linked to the MKL library, a routine gets a team of threads.

OpenMP and MKL allow a user to specify the number of threads. Since we used nested
parallelism (parallel MKL routines in parallel OpenMP regions), we have to be aware of
overheads. Overheads occur when we have too many threads with no work, an opposite of
doing useful work.

When using OpenMP, overheads can occur when two threads update individual ele-
ments in the shared memory which are close to each other, more precisely in the same
cache line (for more information see [9]). This situation is called false sharing. Since we
have to update our matrix G frequently, and G will be a shared variable in parallel regions,
we should not send intertwined chunks of G to threads if we can send it as a compact block.
Mainly, MKL will handle the division into blocks and we just need to make sure we do not
assign to many threads to a specific region.

Let us now take a look on how to boost performance of our sequential code.

Reduction
First, all sums should be performed using the reduction technique.

1 i n t n t h r e a d s = (M−k ) /D > o m p g e t m a x t h r e a d s ( ) ? (M−k ) /D : o m p g e t m a x t h r e a d s ( ) ;
2 i f ( (M−k ) /D == 0) n t h r e a d s = 1 ;
3
4 # pragma omp p a r a l l e l f o r r e d u c t i o n ( + : Akk ) n u m t h r e a d s ( n t h r e a d s )
5 f o r ( i = k ; i < M; ++ i ) Akk += c o n j (G[ i +M∗k ] ) ∗ J [ i ] ∗ G[ i +M∗k ] ;

For example, in figure 6.1, ideally the first four threads would form their ’mini’ sums:
40, 29, 35, 30. After that, other two threads would compute 69 and 65 from the previous
’mini’ sums, and at last, one thread would sum it all up into 134.

Reduction was also implemented in annihilation of elements using Givens rotations.
One process had a job of annihilating elements of class 1 with a team of threads for reduc-
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Figure 6.1: Example of reduction on a sum.

tion and the other did the same thing on elements of class −1. This way, an annihilation
of one column has the complexity O(log M). While performing reduction, it is handy for
OpenMP to use variables loaded into cache as much as possible, so we made the kth col-
umn real and performed reduction in the same parallel region. An example of code using a
reduction technique with Givens rotations is given below.

1 # pragma omp p a r a l l e l n u m t h r e a d s ( 2 )
2 {
3 / / f i r s t t h r e a d k i l l s p o s i t i v e s
4 i f ( o m p g e t t h r e a d n u m ( ) == 0) {
5 i n t o f f s e t ;
6 f o r ( o f f s e t = 1 ; o f f s e t < np ; o f f s e t ∗= 2) {
7
8 i n t n t h r e a d s l o c = np / ( 2 ∗ o f f s e t ) ;
9 i f ( n t h r e a d s l o c == 0) n t h r e a d s l o c = 1 ;

10 e l s e i f ( n t h r e a d s l o c > o m p g e t m a x t h r e a d s ( ) / 2 )
11 n t h r e a d s l o c = o m p g e t m a x t h r e a d s ( ) / 2 ;
12
13 # pragma omp p a r a l l e l f o r n u m t h r e a d s ( n t h r e a d s l o c )
14 f o r ( i = 0 ; i < np − o f f s e t ; i += 2∗ o f f s e t ) {
15
16 i n t m k l n t h r e a d s = (N−k ) /D > m k l g e t m a x t h r e a d s ( ) / 2 ?
17 (N−k ) /D : m k l g e t m a x t h r e a d s ( ) / 2 ;
18 i f ( ( N−k ) /D == 0) m k l n t h r e a d s = 1 ;
19 m k l s e t n u m t h r e a d s ( m k l n t h r e a d s ) ;
20
21 / / G[ p [ i ] , k ] d e s t r o y s G[ p [ i + o f f s e t ] , k ]
22 / / f i r s t i f k t h column i s n t r e a l , make i t r e a l
23
24 i f ( cimag (G[ p [ i ] + M∗k ] ) != 0) {
25 dou b l e complex s c a l = c o n j (G[ p [ i ] + M∗k ] ) / cabs (G[ p [ i ] + M∗k ] ) ;
26 G[ p [ i ] + M∗k ] = cabs (G[ p [ i ] + M∗k ] ) ;
27 i n t Nk = N − k − 1 ;
28 z s c a l (&Nk , &s c a l , &G[ p [ i ] + M∗ ( k +1) ] , &M) ;
29 }

30
31 i f ( cimag (G[ p [ i + o f f s e t ] + M∗k ] ) != 0) {
32 dou b l e complex s c a l = c o n j (G[ p [ i + o f f s e t ] + M∗k ] ) / cabs (G[ p [ i + o f f s e t ] + M∗k ] ) ;
33 G[ p [ i + o f f s e t ] + M∗k ] = cabs (G[ p [ i + o f f s e t ] + M∗k ] ) ;
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34 i n t Nk = N − k − 1 ;
35 z s c a l (&Nk , &s c a l , &G[ p [ i + o f f s e t ] + M∗ ( k +1) ] , &M) ;
36 }

37 d ou b l e c ;
38 d ou b l e complex s ;
39 d ou b l e complex e l i m i n a t o r = G[ p [ i ] + M∗k ] ;
40 d ou b l e complex e l i m i n a t e d = G[ p [ i + o f f s e t ] + M∗k ] ;
41 z r o t g (& e l i m i n a t o r , &e l i m i n a t e d , &c , &s ) ;
42
43 / / a p p l y t h e r o t a t i o n
44 i n t Nk = N−k ;
45 z r o t (&Nk , &G[ p [ i ] + M∗k ] , &M, &G[ p [ i + o f f s e t ] + M∗k ] , &M, &c , &s ) ;
46 G[ p [ i + o f f s e t ] + M∗k ] = 0 ;
47 }

48 }

49 } / / end of i f
50 / / second t h r e a d k i l l s n e g a t i v e s
51 e l s e {
52 i n t o f f s e t ;
53 f o r ( o f f s e t = 1 ; o f f s e t < nn ; o f f s e t ∗= 2) {
54
55 i n t n t h r e a d s l o c = nn / ( 2 ∗ o f f s e t ) ;
56 i f ( n t h r e a d s l o c == 0) n t h r e a d s l o c = 1 ;
57 e l s e i f ( n t h r e a d s l o c > o m p g e t m a x t h r e a d s ( ) / 2 )
58 n t h r e a d s l o c = o m p g e t m a x t h r e a d s ( ) / 2 ;
59
60 # pragma omp p a r a l l e l f o r n u m t h r e a d s ( n t h r e a d s l o c )
61 f o r ( i = 0 ; i < nn − o f f s e t ; i += 2∗ o f f s e t ) {
62
63 i n t m k l n t h r e a d s = (N−k ) /D > m k l g e t m a x t h r e a d s ( ) / 2 ?
64 (N−k ) /D : m k l g e t m a x t h r e a d s ( ) / 2 ;
65 i f ( ( N−k ) /D == 0) m k l n t h r e a d s = 1 ;
66 m k l s e t n u m t h r e a d s ( m k l n t h r e a d s ) ;
67
68 / / G[ n [ i ] , k ] d e s t r o y s G[ n [ i + o f f s e t ] , k ]
69 / / make them r e a l
70
71 i f ( cimag (G[ n [ i ] + M∗k ] ) != 0) {
72 d ou b l e complex s c a l = c o n j (G[ n [ i ] + M∗k ] ) / cabs (G[ n [ i ] + M∗k ] ) ;
73 G[ n [ i ] + M∗k ] = cabs (G[ n [ i ] + M∗k ] ) ;
74 i n t Nk = N − k − 1 ;
75 z s c a l (&Nk , &s c a l , &G[ n [ i ] + M∗ ( k +1) ] , &M) ;
76 }

77
78 i f ( cimag (G[ n [ i + o f f s e t ] + M∗k ] ) != 0) {
79 d ou b l e complex s c a l = c o n j (G[ n [ i + o f f s e t ] + M∗k ] ) / cabs (G[ n [ i + o f f s e t ] + M∗k ] ) ;
80 i n t Nk = N − k − 1 ;
81 z s c a l (&Nk , &s c a l , &G[ n [ i + o f f s e t ] + M∗ ( k +1) ] , &M) ;
82 }

83
84 d ou b l e c ;
85 d ou b l e complex s ;
86 d ou b l e complex e l i m i n a t o r = G[ n [ i ] + M∗k ] ;
87 d ou b l e complex e l i m i n a t e d = G[ n [ i + o f f s e t ] + M∗k ] ;
88 z r o t g (& e l i m i n a t o r , &e l i m i n a t e d , &c , &s ) ;
89
90 / / a p p l y t h e r o t a t i o n
91 i n t Nk = N−k ;
92 z r o t (&Nk , &G[ n [ i ] + M∗k ] , &M, &G[ n [ i + o f f s e t ] + M∗k ] , &M, &c , &s ) ;
93 G[ n [ i + o f f s e t ] + M∗k ] = 0 ;
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94 }

95 }

96 } / / end of e l s e
97 } / / end of p a r a l l e l r e g i o n

As we can see, an additional array n was needed for mapping which row had signs −1 in J
and an additional array p for mapping positive signs. The predefined variable D was used
to specify a chunk size. It helps us calculate the number of threads, so that each thread
does work on a chunk of size D.

Division into blocks
We can also boost performance when copying arrays. Since we have a lot of row and
column permutations, therefore a lot of column swapping. This is done by slicing a vec-
tor in chunks of size D and then calling a team of threads so that every chunk is copied
simultaneously. Fortunately, MKL cares for such things.

1 i n t m k l n t h r e a d s = M/D > m k l g e t m a x t h r e a d s ( ) ? M/D : m k l g e t m a x t h r e a d s ( ) ;
2 i f (M/D == 0) m k l n t h r e a d s = 1 ;
3 m k l s e t n u m t h r e a d s ( m k l n t h r e a d s ) ;
4 zswap(&M, &G[M∗ p i v o t r ] , &inc , &G[M∗k ] , &i n c ) ;

The algorithm also has a multiplication of two matrices, the reflector H and the sub-
matrix in G. Jobs here are also divided between threads in a way that each thread gets
a chunk of memory, also handled with MKL. The block-like division is true as long as
OMP SCHEDULE is set to static and it is static by default.

For details, see full code of both implementations on github [2].

6.3 Intel Xeon Phi 7210

The program was tested on a Intel’s Xeon Phi 7210 [10]. This processor has characteristic
memory structure: it has a high-bandwidth memory with a data transfer rate over 400 GB/s
(memory bandwidth is the rate at which data can be read and stored). HBM can be used
either as a last-level cache, or as addressable memory. The Flat mode uses the entirety of
HBM as addressable memory, whereas Cache mode uses the entirety of HBM as cache.
With Hybrid mode, a portion of the HBM is used as addressable memory and the rest is
used as cache. In the Flat mode, all memory allocated with mkl malloc() is allocated as
HBM by default (if it fits). In this case, the shared memory is the L2 cache of size 32 MB,
whereas the HBM is 16 GB, in our case, meant for array allocation.

We used HDM in the Flat mode. Each core has 512 KB of L2 cache, out of total 64
cores, and each core can have up to 4 threads. Binding memory allocation on HMB is done
during runtime as

1 numac t l −−membind 1 make . / . . .
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which binds the memory of our application to node number 1, which is in our case a node
with HBM.

MKL can have a pre-set number of threads or it can be left to the system to decide how
many threads it will be given, but while using MKL in nested parallelism with OpenMP,
the MKL DYNAMICS variable needs to be set to false, otherwise, MKL would perform
sequentially in parallel regions (we are using that in the reduction process with Givens).
We also set the maximum level of active parallel levels to 3 (again because of the reduc-
tion process with Givens). MKL DYNAMICS was true for regions when we were not in
OpenMP parallel regions, since then the system optimizes the workload for BLAS and
LAPACK routines by itself. In nested areas, a mkl get max threads() function was used.
This function returns the number of OpenMP threads available for Intel MKL to use in
internal parallel regions, so if all OpenMP threads are busy, the MKL regions will perform
singlethreadedly. For more information on the variables and environment see [1, 13]

Results
The following numbers are the results of our implementation on Xeon Phi 7210. Matrices
were randomly generated. Variable pivoti stands for the count of pivots of order i, where ti

is the time needed for them. Time tstrat is the time spent on choosing a strategy. The relative
error is rel. err. = ‖A−G̃∗J′G̃‖2/‖A‖2. Time spent in each part of the algorithm for matrices
is 6.3. The best choice for chunk size D turned out to be D = 64.

Table 6.1: Table of results for different size problems.

M N t(s) pivot1 t1(s) pivot2 t2(s) tstrat(s) rel. err. · 10−12

4000 1000 88.12 254 39.06 373 14.28 34.78 2.52039
5000 2000 303.28 568 129.65 716 36.31 137.32 6.95133
7000 3000 1097.29 732 320.90 1134 466.81 309.57 1.02424
9000 6000 6444.14 1418 1181.70 2291 4014.95 1246.9 2.45308

Further work
One way to improve our implementation is to try computing Akk not with reduction, but
with BLAS’ zdot function which computes the dot product x∗y. The rule of thumb is:
BLAS with MKL usually does it better. We should then build a temporary vector with
each element scaled with +1 or −1 depending on the corresponding sign in J and then
use the zdot routine. Since we also need an index of the maximal element by absolute
value r, we can use OpneMP’s user defined reduction to do so. In this approach we do not
need critical regions which were necessary to use in order to store the maximum value for
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Figure 6.2: Portion of time spent for matrices in 6.1 of sizes 4000× 1000 and 5000× 2000,
respectively.
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Figure 6.3: Portion of time spent for matrices in 6.1 of sizes 7000× 3000 and 9000× 6000,
respectively.

finding λ in the partial pivoting strategy and its index. The segment of the code as it is in
this moment, containing critical regions, is listed below.

1 / / f i n d p i v o t l a m b d a
2
3 # pragma omp p a r a l l e l f o r n u m t h r e a d s ( ( i n t ) c s q r t ( n t h r e a d s ) )
4 f o r ( i = k +1; i < N; ++ i ) {
5 d ou b l e complex Aik = 0 ; / / Aik = g i ∗ J gk , b u t on a s u b m a t r i x G[ k :M, k :N]
6
7 # pragma omp p a r a l l e l f o r r e d u c t i o n ( + : Aik ) n u m t h r e a d s ( ( i n t ) c s q r t ( n t h r e a d s ) )
8 f o r ( j = k ; j < M; ++ j ) Aik += c o n j (G[ j +M∗ i ] ) ∗ J [ j ] ∗ G[ j +M∗k ] ;
9

10 # pragma omp c r i t i c a l
11 i f ( p i v o t l a m b d a < cabs ( Aik ) ) {
12 p i v o t l a m b d a = cabs ( Aik ) ;
13 p i v o t r = i ;
14 }



6.3. INTEL XEON PHI 7210 41

500 1,500 2,500 3,500 4,500 5,500 6,500
20

40

60

80

100

120

N

tim
e

(m
in

)

Time needed to compute the QR factorization of a 9000 × N matrix.

15 }
16
17 i f ( cabs ( Akk ) >= ALPHA ∗ p i v o t l a m b d a ) go to PIVOT 1 ;

The critical regions do not allow threads to change the value of pivot lambda at the same
time, otherwise it would be a thread-race. Critical regions usually cause overheads (threads
need to synchronize and do stuff one at a time).

An even better approach wold be to combine steps 1 and 2 from the partial pivoting
strategy, immediately. If |a(k)

11 | > α0|a
(k)
j1 | for some index j, we can stop and proceed to

pivot 1, since λ is not needed afterwards. This way, not every a(k)
j1 is computed. This can

be implemented without critical regions with the user defined reduction, but only if we
compute all the a(k)

j1 in advance with zdot. It can also be implemented with critical regions,
as it is now, just with a small modification. We should then have one shared variable so
that the threads can atomically check if the search is finished earlier. The same goes for
combining steps 3 and 4 in the partial pivoting strategy.

The performance of the application should then be checked with any tool that allows
an insight in memory leaks, cache misses, instructions per second, etc. This analysis can
help determine which part of the application spends too much time and why.
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Sažetak

U ovom radu prezentirali smo kako računati hiperboličku QR J-faktorizaciju. Prvo je
postavljena teorija koja nam daje dva načine redukcije matrice G ∈ Cm×n, m ≥ n, na blok
gornjetrokutastu formu. Jedan način je redukcija jednog stupca pomoću J-Householdero-
vog reflektora. Razjašnjeni su nužni i dovoljni uvjeti postojanja takvih operatora. Drugi
način je redukcija dva stupca koristeći Givensove rotacije. U tom poglavlju je obradeno što
sve zovemo pravilnom (’proper’) formom, kako svesti matrice na pravilnu formu, te kako
tu pravilnu formu do kraja reducirati J-unitarnim matricama manjih dimenzija.

Nadalje, indefinitni QR povezali smo sa još jednom faktorizacijom, hermitskom in-
definitnom faktorizacijom. Pokazali smo kako su te dvije faktorizacije povezane i koja
je optimalna strategija pivotiranja u hermitskoj indefinitnoj faktorizaciji (ona koja ima naj-
manji pivotni rast u svakom slučaju izbora strategije, nebitno biraju li se dva ili jedan stupac
za redukciju). Ista pivotna strategija primijenjena je i na QR faktorizaciju.

Naposljetku, prezentiran je sekvencijalni algoritam redukcije matrice G na gorenje blok
trokutastu formu, kao i njegovi dijelovi koji su paralelizirani. Pri optimizaciji koda, u obzir
je uzeta i arhitektura memorije računala, te način funkcioniranja biblioteka OpenMP i MKL
koje smo koristili za paralelizaciju. Testiranja na umjetno generiranim matricama izvedena
su na Intelovom Xeon Phi 7210 računalu, gdje je takoder u obzir uzeta posebna memorijska
arhitektura računala.





Summary

In this thesis, a way of computing a J-unitary QR factorization was presented. The the-
oretical part was set first, in order to explain two possible ways of transforming a matrix
G ∈ Cm×n, m ≥ n, into a block upper triangular matrix. One way to do this is with J-unitary
Householder like reflectors. The necessary and sufficient conditions for their existence
were formed. The other way to do this is using Givens rotations. In that chapter, a term
proper form was defined, how to transform matrices into proper forms and, in the end, how
are those proper forms fully reduced with J-unitary matrices of smaller dimensions.

Furthermore, we showed how indefinite QR is connected to the Hermitian indefinite
factorization. An optimal pivoting strategy for the Hermitian indefinite factorization was
presented, based on minimizing the pivot growth (regardless of the fact that one or two
columns were chosen as pivotal). The same strategy was then used in the QR factorization.

At last, a sequential version of the algorithm for reducing the matrix G to a block upper
triangular form was presented, as well as with the parallelised segments of it. The memory
architecture was took into account while optimizing the code as well as the optimal usage of
OpenMP and MKL libraries. The tests on randomly generated matrices were performed on
Intel’s Xeon Phi 7210. The special architecture of Xeon Phi was also taken into account.
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