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ABSTRACT In this paper, we present a deep learning based method for blind hyperspectral unmixing in
the form of a neural network autoencoder. We show that the linear mixture model implicitly puts certain
architectural constraints on the network, and it effectively performs blind hyperspectral unmixing. Several
different architectural configurations of both shallow and deep encoders are evaluated. Also, deep encoders
are tested using different activation functions. Furthermore, we investigate the performance of the method
using three different objective functions. The proposed method is compared to other benchmark methods
using real data and previously established ground truths of several common data sets. Experiments show
that the proposed method compares favorably to other commonly used hyperspectral unmixing methods and
exhibits robustness to noise. This is especially true when using spectral angle distance as the network’s
objective function. Finally, results indicate that a deeper and a more sophisticated encoder does not
necessarily give better results.

INDEX TERMS Hyperspectral unmixing, autoencoder, deep learning, neural network, spectral angle
distance, endmember extraction.

I. INTRODUCTION
Hyperspectral imaging is a rapidly growing field of remote
sensing that has contributed significantly to Earth observa-
tions. In hyperspectral imaging, a special kind of sensor
simultaneously acquires a large number of spatially coregis-
tered images in many narrow, contiguous spectral bands, that
are measured in calibrated radiance units which are subse-
quently converted into reflectance. Due to the high spectral
resolution, it is possible to identify the material or mate-
rials present in each pixel of a hyperspectral image (HSI).
This makes HSIs very useful in applications such as land
cover classification, food crop monitoring, and geological
exploration.

The high spectral resolution of HSIs is achieved at the cost
of reduced spatial resolution. This is a direct consequence of
the physical limitations of the sensor as the cumulative energy
of incident light for each narrow band is too low to allow
for many pixels. As a result of the low spatial resolution,
each pixel of an HSI is usually a mixture of the reflectance
spectra of more than one distinct material in the scene.

The reflectance spectrum of a distinct or representative mate-
rial in a scene is known as an endmember spectrum, and the
relative proportion of an endmember in a pixel is called the
abundance fraction of that endmember.

The task of hyperspectral unmixing (HSU) [1] is to simul-
taneously estimate the endmembers in the HSI and also their
fractional abundances, i.e., the abundance vectors, for every
pixel in the HSI. Thus, the spectra of pixels are decomposed
into a weighted combination of the endmembers. Unmixing
methods depend on the underlying mixing models, which are
models of how the actual mixing of the spectra takes place.
There are two types of mixing models: non-linear and linear
models. Non-linear models attempt to model the physical
interactions between the light scattered by multiple materials
in the scene where the interactions can be at a classical (mul-
tilayered) level, or at a microscopic (intimate) level [2], [3].
In contrast, linear models make the assumption that mixing
takes place on a macroscopic scale and that the incident light
only interacts with a single material. The mixing takes place
within the instrument itself due to low spatial resolution [4].
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Thus, assuming the linear mixing model (LMM), if there
is more than one material within the boundaries of a pixel,
the observed spectral vector of the pixel will be a weighted
sum of the same number of endmembers representing the
materials plus noise that comes from the instruments. The
majority of current unmixing methods use the LMM.

In the last couple of decades, numerous unmixing meth-
ods have been introduced, and they can be classified into
geometrical, statistical, and sparse regression methods. The
geometric methods can further be categorized as pure
pixel methods or minimum volume methods [4]–[8]. Good
examples of methods representing these two categories are
Vertex Component Analysis (VCA) [9], and Minimum Vol-
ume Simplex Analysis (MVSA) [10]. Statistical methods are
another large category of unmixing methods where unmix-
ing is most often formulated as a statistical inference prob-
lem [11]–[13]. Sparse regression based unmixing methods
are based on the assumption that the observed spectra can
be expressed as linear combinations of known spectral sig-
natures which can be identified in spectral libraries, which
makes them semi-supervised in nature [14]–[17]. Methods
based on compressed sensing also belong to this category of
methods [4], [18]–[20].

Following the success of deep learning methods in com-
puter vision, image classification, and natural language pro-
cessing, the last few years have seen a great increase in the
application of deep learning methods for remote sensing data,
e.g., [21], [22]. A review of the literature shows that deep
learning has not been applied to the problem of HSU to the
same extent as to other applications in remote sensing, such as
classification. Recent applications of neural networkmethods
for unmixing are [23], [24], and [25] where an autoencoder
is used for abundance estimation, i.e., mapping input spectra
to abundance fractions but not extracting the actual endmem-
bers. In [26], a shallow symmetric, i.e., the encoder and
decoder have tied weights, nonnegative sparse autoencoder is
used to extract endmembers. The novelty of this method lies
in the use of an automatic sampler with a local outlier factor
and affinity propagation for intelligently selecting samples
for the training set. Another very recent unmixing method
using an autoencoder is [27], where a part-based autoen-
coder integrating a denoising part performs denoising on the
input data and removes redundant hidden nodes automatically
and thus estimates the number of endmembers in the HSI.
Another work using an autoencoder can be found in [28],
where an autoencoder cascade concatenates a marginalized
denoising autoencoder and a nonnegative sparse autoencoder
to solve the unmixing problem.

In this paper, we apply deep learning to the problem of
HSU in the form of an autoencoder having a deep encoder,
and where both the abundances sum to one constraint (ASC)
and the nonnegative abundances constraint (ANC) are
enforced using a custom layer and weight constraints. The
method additionally exploits sparsity in the abundance vec-
tors by employing a form of adaptive thresholding that
is optimized w.r.t. the objective function of the network.

This work is an extension of the work done in [29], which
investigated the performance of a simpler autoencoder archi-
tecture and did not use the spectral angle distance (SAD)
objective function. One important difference between the
proposed method and traditional methods is that there are
no tuning parameters other than the number of endmember
spectra to estimate, also the implementation of the framework
for the proposed method makes it very easy to use a custom
objective function of arbitrary complexity. The method does
not estimate the number of endmembers in an HSI. Hence the
number of endmembers has to be given.

Almost all other deep learning based methods for HSU
do not perform blind unmixing, i.e., estimate both the end-
member spectra and their abundances. To the authors’ best
knowledge, the only deep learning methods that perform
blind unmixing, are the methods in [26]–[29]. The proposed
method differs mainly from these methods by having both a
deep encoder and being able to exploit the sparsity of abun-
dances through a layer using a custom activation function
instead of explicit sparsity regularization. As a result, it does
not have a symmetrical architecture using tied weights for
the encoder and decoder. Additionally, we test many different
activation functions for the encoding part of the autoencoder
and use three different objective functions, whereas most of
the works using autoencoders for unmixing use the mean
squared error (MSE) objective function.

The performance of the autoencoder is evaluated on real
data sets using three different objective functions:MSE, spec-
tral information divergence (SID), and SAD. Also, we inves-
tigate how different activation functions in the encoder affect
its performance. Experiments show that both the SID and
SAD objective functions give significantly better results than
the MSE objective function, and having a deep encoder
gives slightly better results than architectures with a shallow
encoder.

The outline of the paper is as follows. In Section 2,
the method will be described in detail, in Section 3 we
will present the results of the experiments, and finally,
in Section 4, conclusions will be drawn.

A. NOTATION
In the paper, the following notation will be used. X ∈ RB×P

denotes the input HSI having P pixels and B spectral bands,
and xp will be used for the spectra of pixel number p where
p = 1, . . . ,P. The number of endmembers will be denoted
by R. The endmembers themselves will be denoted by mr ,
where r = 1, . . . ,R, and the matrix having the endmembers
as columns will be denoted M ∈ RB×R. The abundance
vector for pixel p will be denoted by sp = [s1,p, . . . , sR,p]T ,
and the matrix having all abundance vectors as columns will
be denoted using S ∈ RR×P. The activations of layer l in a
neural network will be denoted by a(l), where l = 0, . . . ,L
and L is the total number of layers (the input layer is not
counted as a layer and is thus layer number 0). The activation
of unit i in layer l will be denoted by a(l)i . The weights of
layer l in the network will be denoted byW (l).
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II. PROBLEM FORMULATION
We are given P observed spectra, each having B bands. After
estimating the number of endmembers in the scene as R,
we assume the LMM

xp =
R∑
r=1

sr,pmr + np = Msp + np, (1)

where np is noise and we assume that

sr,p ≥ 0 ∀r, ∀p (ANC), (2a)
R∑
r=1

sr,p = 1 ∀p (ASC). (2b)

If we consider the whole image at once, (1) can be written as

X = MS+ N . (3)

The problem investigated in this paper is the estimation
of the endmember matrix M and the abundance matrix S
in (3), given an HSI X , by interpreting the problem as blind
unmixing, and solving it in an unsupervised manner using
an autoencoder. We will show that the LMM constrains the
possible architecture of the autoencoder.

A. THE PROPOSED METHOD
An autoencoder is a feedforward neural network that is
trained to reproduce its input by learning the identity function.
The autoencoder can be considered to consist of two parts:
An encoder, GE :RB×1

→ RR×1, which encodes the input xp
to a hidden representation, G(xp) = hp ∈ RR×1, and
a decoder, GD:RR×1

→ RB×1, which decodes the hid-
den representation hp to an approximation of the input,
GD(hp) = x̂p. The network is thus trained using backprop-
agation to minimize the loss function,

L(xp,GD(GE (xp))), (4)

where L(·, ·) is some measure of the discrepancy between
the input and the output. By having a hidden layer with only
a few units as the final layer of the encoder, it is mapping
spectral vectors of length B into a latent space. The decoder
then uses the latent vectors to reconstruct the input spectrum
as faithfully as possible. Autoencoders where the dimension-
ality of the hidden representation (the code) is lower than the
input/output dimension are known as under-complete autoen-
coders [30]. Fig. 1 shows a high level view of the proposed
autoencoder.

Since the output x̂p of the network is the reconstruction of
the input, xp, the output layer of the network (the last layer
of the decoder, GE ) has to have a linear activation function
(a rectified linear unit [31] (ReLU) would also suffice). The
action of this layer is thus the following linear transformation,

x̂p = W (L)a(L−1), (5)

where a(L−1) are the activations of the previous layer, and
W (L) are the weights of the output layer. If we compare (5) to
the LMM (1), it is evident that the activations vector a(L−1)

FIGURE 1. A high-level view of the proposed autoencoder. The latent
space is the space of the representations of the input signal after the
encoder has performed nonlinear dimensionality reduction on the input.
Its dimensionality is equal to the number of endmembers.

FIGURE 2. A schematic of the autoencoder showing the last two layers of
the encoder, and the decoder (output layer with linear activations). At the
end of training, the activations of the last hidden layer are the abundance
fractions, and the network’s weights connecting the last hidden layer and
the output layer are the endmembers.

has to be of dimension R× 1, andW (L−1) has to be a B× R
matrix, whereB is the number of bands. This leaves uswith no
flexibility regarding the structure of the decoder. It has to be
a linear transformation GD : RR×1

→ RB×1. This means that
we have to interpret the hidden representation hp = GE (xp) ∈
RR×1 as the abundance vector for the input spectrum xp,

and the weights of the decoder, WD = W (L)
∈ RB×R,

as a matrix whose columns are the endmembers. We have,
however, much more flexibility regarding the encoder part of
the network. The only requirements the LMM model places
on the encoder is that its last layer must have R units. It can
have many layers with non-linear activations, in contrast to
the decoder which must be a single layer with all units having
linear activation.

After training, the autoencoder has effectively performed
blind unmixing on the input image X according to (3), and
we can extract the matrix S as the matrix of the hidden acti-
vations hi for all theP pixels, and the endmembermatrixM as
the decoder’s weights. Fig. 2 shows a simplified schematic of
the autoencoder. The figure shows the last two layers of the
encoder, and the decoder which is simply the output layer.
The activations h = [h1, . . . , hR]T of the units in the last
hidden layer are the abundance fractions. A more detailed
schematic of the proposed method is shown in Fig. 3.
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FIGURE 3. A graphical representation of the proposed method. The autoencoder is trained on all the spectra in the HSI for a number of epochs. After
training, abundance maps can be extracted as the activations of the last hidden layer for each input spectra, and the weights of the decoder are the
endmember spectra.

The simple structure of the decoder affects the performance
of the autoencoder in reconstructing the input. Not being able
to match a sophisticated deep encoder with a matching deep
decoder limits the advantages of using a complex encoder
instead of a more simple one. However, our experiments still
show that a deep encoder can often be better than a simple
one.

B. THE ENCODER
In this work, an autoencoder having both a deep and a shallow
encoder was used and results obtained using both configura-
tions were compared. In the following, wewill use g to denote
the activation function of hidden layers that are not utility
layers. Utility layers are layers which have the same number
of units as the previous layer and where each unit performs
some transformation on the output of a corresponding unit in
the previous layer, i.e., they are not fully connected. Table 1
lists the layers of the encoder. A more detailed description of
the layers will be given below.

Hidden layers 1 to 4 all have the same activation function g,
where g can be the Sigmoid [32], ReLU, or the Leaky
ReLU (LReLU) [33] activation function. They apply the
transformation

a(l) = g(W (l)a(l−1)), (6)

to their input a(l−1) from the previous layer, so together they
reduce the dimensionality of the input a(0) = xp in steps

TABLE 1. The layers of the encoder. The activation function g can be one
of several types. Utility activation means that the layer performs some
transform other than normal activation on the outputs of the previous
layer.

from B to R. It is essential that the activation function g
is not linear, because then the encoder would simply be
performing principal components analysis (PCA) dimension-
ality reduction. In our experiments, g was the Sigmoid,
ReLU, or LReLU. The LReLU function is considered to be
a better activation function than the standard ReLU function
because it has nonzero gradient for all inputs [33].

Hidden layer 5 is a Batch Normalization layer. Batch Nor-
malization normalizes the activations of the previous layer
at each batch, i.e., it applies a transformation that maintains
the mean activation of every unit close to zero, and then
applies scaling and shifting, parametrized by two learnable
parameters, γ and β. If we let a(5)i , i = 1, . . . ,m be the values
of the inputs from the previous layer for a batch B, we can
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write the effect of the Batch Normalization layer as

a(6)i = BNγ,β (a
(5)
i ) = γ â(5)i + β, (7)

where

â(5)i =
a(5)i − µB√
σ 2
B + ε

,

µB =
1
m

m∑
i=1

a(5)i ,

σ 2
B =

1
m

m∑
i=1

(a(5)i − µB)
2,

γ and β are learnable parameters, and ε is a very small
number. Batch Normalization whitens the data which is well
known for speeding up learning in neural networks [34], and
reduces so called internal covariance shift, which is a term
used for the change of a layer’s activations distribution over
time [35].

Hidden layer 6 is a sparsity enhancing layer that seeks to
exploit sparsity in abundance maps by using a soft thresh-
olding ReLU activation function with a dynamic threshold
α that is a learnable parameter for each unit in the layer.
If we denote this activation function by θα then this layer is
dynamically thresholding the abundance fractions, which are
the input from the previous layer, according to

a(7) = θα(a(6)) = max(0, a(6) − α), (8)

where α is an R× 1 vector.
Layer 8 enforces the ASC. It performs the following trans-

form on the inputs from the previous layer

a(8)i =
a(7)i∑R
j=1 a

(7)
j

, (9)

which enforces the ASC. For convenience, we will denote the
action of this layer using an operator notation, so (9) can be
written as

a(8) = Ha(7).

Layer 9, which is the last layer of the encoder, applies
multiplicative Gaussian noise to its inputs. White noise injec-
tion into input and hidden layers of neural networks has been
found to act as a powerful regularizer [36]. This type of layer
is sometimes referred to as a Gaussian Dropout layer. Since
it is a regularization layer, it is only active during training of
the network.

The encoding of the input xp = a(0) can now be written out
fully by combining all the equations for all the layers as

GE (xp) = G(Hθα(BN(a(5)))), (10)

where BN(·) is Batch Normalization, a(5) is given by

a(5) = g(W (4)g(W (3)g(W (2)g(W (1)a(0))))), (11)

and the functionG denotes the action of theGaussianDropout
layer. This encoding of the input xp is then extracted as the

abundance fractions of the R endmembers. The autoencoder’s
reconstruction of its input after training can now be written as

GD(GE (xp)) = WDHθα(BN(a(5))), (12)

since the Gaussian Dropout layer is only active during train-
ing, and whereWD contains the endmembers in its columns.
The quantityHθα(BN(a(5))) is an R×1 vector containing the
abundance fractions for the input spectra.

C. OBJECTIVE FUNCTIONS
In this paper, we used the MSE, SID and SAD measures as
objective functions for the neural network. The MSE objec-
tive function is given by

JMSE =
1
P

P∑
p=1

‖xp − x̂p‖22. (13)

The SAD objective function is given by [37]

JSAD =
1
P

P∑
p=1

arccos

(
〈xp, x̂p〉∥∥xp∥∥2 ∥∥x̂p∥∥2

)
, (14)

and measures the angle between spectra in their signal space
in radians. Lastly, the SID objective function is given by [38]

JSID =
1
P

P∑
p=1

B∑
n=1

pn log
(
pn
qn

)
+

B∑
n=1

qn log
(
qn
pn

)
, (15)

where

pn =
xi,n∑M
k=1 xi,k

, qn =
x̂i,n∑M
k=1 x̂i,k

,

are estimates of the probability mass functions of the target
and estimated spectra, respectively.

Both the SID and SAD objective functions differ from
the MSE function in one important aspect. They are scale
invariant while the MSE function is not. MSE sensitivity to
the scale of spectra can be seen as a drawback regarding its
use as an objective function in unmixing applications since
it will discriminate between the same endmember in a scene
based on its absolute magnitude. The scale invariance of the
SID and the SAD objective functions could potentially lead
to an incorrect scale of estimated endmembers, but as long
as the ASC on abundances is enforced in the neural network,
the relative scale of the endmember spectra is not affected.

III. EXPERIMENT RESULTS
In this section, we evaluate the proposed autoencoder method
using real hyperspectral data. Different objective functions
and activation functions will be evaluated and compared. The
results obtained using the proposed method for each data set
will then be compared to the methods tabulated in Table 2.

Table 3 summarizes all the different configurations of the
autoencoder that will be used in the experiment.

In the experiment, all the configurations were tested with
the three different objective functions and each configuration
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TABLE 2. The benchmark methods used in comparison with the proposed
method.

TABLE 3. Different Autoencoder configurations and their names.

was run 50 times. The objective here is to see if different acti-
vation functions of a deep encoder will have any significant
effect, and to see if there is anything to be gained from having
a deep encoder instead of a shallow one. Also, to investigate
the effects of replacing the sparsity-inducing soft thresh-
olding ReLU layer with a corresponding soft thresholding
LReLU layer. The numbers in the second column of Table 3
indicate both the number of hidden layers in the encoder
(the count of numbers) and their sizes (number of hidden
units) as multiples of the encoding dimension (the number
of endmembers).

Evaluating and comparing HSU methods using real hyper-
spectral data is currently challenging because of the limited
number of real HSIs with ground truth for endmember spec-
tral signatures available (labeled HSIs). A recent effort to
remedy this, described in detail in [44], has lead to 15 com-
mon HSIs along with 18 versions of ground truth for them
being made publicly available on the web1 for use in HSU
research. For many scenes, the endmember spectral signa-
tures are chosen manually by the authors from existing spec-
tra in the image based on their expertise and understanding.
In some cases, there can be pure pixels representing certain

1Available here: http://lesun.weebly.com/hyperspectral-data-set.html

endmembers. After the ground truth endmembers have been
selected, their validity is verified by comparing them to other
ground truths in the literature, by doing a consistency check
with the abundance labeling, and by relying on the authors’
expertise.

The data sets used in this paper are summarized in Table 4.
They consist of small regions of interest in the case of the
Samson and the Jasper Ridge HSIs, and the whole Urban
HSI. All of these HSIs are popular and widely used data
sets in HSU research. Some corrupted, and water-absorption
bands have been removed in the case of the Jasper Ridge and
the Urban data sets. More detailed description of these data
sets can be found in [44]. In order to compare our proposed
method to other state-of-the-art methods using these data sets,
we use the above-mentioned ground truths and calculate the
SAD between the endmember spectra obtained and the given
ground truth endmember spectra.

A. AUTOENCODER ARCHITECTURE
There are a number of hyperparameters in the proposed
method that need to be set. Most of them concern the archi-
tecture of the network itself, i.e., the number of hidden layers
and their sizes. Others are parameters for the gradient descent
optimizer used and regularization parameters such as the
Gaussian Dropout rate. The hyperparameters are the follow-
ing: the number of hidden layers of the encoder, the number
of units in each layer, the batch size, the optimizer used for
gradient descent (and its parameters), and the rate of the
Gaussian Dropout. The only real hyperparameter from the
HSU viewpoint that needs to be estimated is R, the number
of endmembers.

The current values for the number of layers and number
of units of each hidden layer of the encoder were roughly
determined by systematic experimentation. A rather low rate
of Gaussian Dropout was selected based on experimentation.
The choice of optimizer was found to have somewhat more
effect than was expected. A number of common optimiz-
ers for gradient descent such as Rmsprop [45], Adam [46],
Adadelta [47], Adamax [47], were tested, and the Adam
optimizer was found to give the best results.

The single hyperparameter that had the greatest effect
on the results of the autoencoder was the batch size. The
batch size is the number of random training samples utilized
in a single iteration for gradient descent. Experimentation
showed that the batch size needed to be very low or around 5
for all real data sets tested except for Samson where the
batch size was set to 20. Too large or too small batch size
usually resulted in a poor solution for the least represented
endmember, i.e., the endmember present in the fewest pix-
els of the HSI. A good example of this behavior is the
‘‘road’’ endmember in the Jasper Ridge HSI. The batch size
is effectively the sample size used to estimate the gradient
for backpropagation, hence a small batch size results in a
noisy gradient. A noisy gradient could help the network avoid
ending in saddle points or local minima. This problem of
underrepresented endmembers needs further investigation.
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TABLE 4. The data sets used.

FIGURE 4. Variability of extracted endmembers for the Jasper Ridge data
set as extracted by the autoencoder using the Sigmoid configuration and
the SAD objective function. The red curves are the ground truth used, and
the blue curves are the extracted endmembers from 50 runs.

The variability of all four endmembers estimated for the
Jasper Ridge data set as extracted using the Sigmoid configu-
ration of the autoencoder is shown in Fig. 4. The figure shows
clearly that the autoencoder has some difficulty with one end-
member, which is the underrepresented ‘‘road’’ endmember.
The number of samples of this endmember during training
is much lower than for the other endmembers, making the
endmember not as well defined and stable as the others. The
underrepresented endmember often appears to be a mixture
of at least two other endmembers.

B. PERFORMANCE OF DIFFERENT AUTOENCODER
CONFIGURATIONS BY DATA SETS
In this subsection, we will evaluate the performance of the
autoencoder for different configurations and objective func-
tions. The results for Samson, Jasper Ridge, and Urban data
sets are shown in Fig. 5, Fig. 6, and Fig. 7, respectively.

The three figures show clearly that the SAD objective
function gives the best results, followed closely by the SID
objective function. The MSE objective function performs
relatively poorly compared to the two other in all cases except
for the Urban data set with a shallow encoder configuration.
In almost all cases, the results for the SAD objective function
have less variance than the results for the SID objective
function.

The difference between different configurations is much
less clear than the difference between different objective
functions. Based on these three data sets, it is not possible
to draw any conclusions about which configuration gives the
best results as this seems to be data set dependent. The best
results are obtained using a deep encoder, but it is only for the
Urban data set that the difference between the deep encoder
and the shallow encoder seems to be significant. Another
observation is that the ReLU and LReLU activation functions

FIGURE 5. Performance of different autoencoder configurations for the
Samson data set measured as SAD from the ground truth.

FIGURE 6. Performance of different autoencoder configurations for the
Jasper Ridge data set measured as SAD from the ground truth.

seem to make the autoencoder more stable and consistent as
the results for these configurations have less variance than
the ones using the Sigmoid activation function. Fig. 5 for
the Samson data set does, however, show clearly that for this
particular data set and batch size, the MSE objective function
gives markedly worse results when the activation function is
not the Sigmoid function.

Perhaps the most important conclusion that can be drawn
from these results is the fact that a deeper and more com-
plex encoder does not give any significant advantage over a
shallow one. This should not really be surprising since the
decoder is only a single layer and is not able to take advantage
of a powerful encoder.
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TABLE 5. Mean Spectral Angle Distance (SAD) in radians with standard deviation from ground truth.

TABLE 6. Robustness to noise. Mean SAD in radians from ground truth with standard deviation for data set Jasper Ridge.

FIGURE 7. Performance of different autoencoder configurations for the
Urban data set measured as spectral angle distance from the ground
truth.

FIGURE 8. Performance of NMF, `1-NMF, `1/2-NMF, CoNMF and DCD
relative to method VCA.

C. COMPARISON WITH OTHER METHODS
In this subsection the performance of the proposed
method will be compared to the methods NMF, `1-NMF,
`1/2-NMF, CoNMF, and DCD described at the beginning of
this section.

FIGURE 9. Mean SAD for all three autoencoder objective functions as
function of SNR.

Table 5 shows the average SAD of all the endmembers
of each data set from the ground truth established in [44].
All the values in the table are the mean of 50 runs, and the
values in bold typeface are the lowest values for each data set.
VCAwas used to initialize the endmember matrices and fully
constrained least squares regression was used to initialize
the abundance matrices for all NMF methods, and also the
DCD method. The proposed method performs substantially
better than all the comparison methods for all the data sets
tested. Fig. 8 is a graphical representation of the performance
of eachmethod relative to the VCAmethod. The bars indicate
percentage improvement over VCA.

D. ROBUSTNESS TO NOISE
Here we investigate the robustness of the proposed method
to noise and compare it to the other benchmark methods.
For this experiment we used the Jasper Ridge data set and
added low pass filtered Gaussian noise, resulting in a sig-
nal to noise ratio (SNR) of 10, 20, 30, and 40 dB, respec-
tively. Only the Sigmoid configuration of the autoencoder
was used. The results are shown in Table 6. The figures in
the table are mean SAD of 50 runs in radians from the
ground truth used and the standard deviations. A bar chart
of the robustness to noise results for the autoencoder for
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FIGURE 10. Estimated abundance maps for the Samson data set. The topmost image is a simulated RGB image of the data set.
The images in the second row are the ground truth abundance maps. The images in the third row were obtained by the proposed
method. The images in the bottom row were obtained by the DCD method. The images in the first column represent the ‘‘Soil’’
endmember, the images in the second column the ‘‘Trees’’ endmember, and the third column the ‘‘Water’’ endmember. The text in
the subfigure captions gives the sparsity of the abundance maps as the percentage of pixels with abundance fractions less than
0.0001. (a) Simulated RGB image. (b) Sparsity(%) 15.19. (c) Sparsity(%) 18.58. (d) Sparsity(%) 46.01. (e) Sparsity(%) 8.81.
(f) Sparsity(%) 50.24. (g) Sparsity(%) 71.07. (h) Sparsity(%) 7.30. (i) Sparsity(%) 20.86. (j) Sparsity(%) 8.76.

the three objective functions used can be seen in Fig. 9.
Of these three, SAD clearly exhibits the most robustness
to noise and gives similar results for all SNR values used.
The SID objective function seem to have much less toler-
ance to noise than both the SAD and the MSE objective
functions.

E. ABUNDANCE MAPS
The metric we have used to compare the different meth-
ods has been the mean SAD from a previously established
ground truth for endmember spectral signatures. We have
not evaluated the abundance maps quantitatively in this
paper. We conclude this section by evaluating the estimated
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abundance maps of the proposed method for the Samson
data set. We compare it qualitatively to the abundance map
ground truth for the Samson data set and the abundance maps
estimated by the best of the other methods as determined by
visual inspection. Of all the methods, the `1/2 method was
found to give themost sparse abundancemaps. However, they
were not found to be the best by visual inspection.

The comparison method obtaining the best abundance
maps for the Samson data set by visual inspection was the
DCDmethod. It was also the method that achieved the lowest
mean SAD from the ground truth endmembers of all the
comparison methods. Fig. 10 shows the estimated abundance
maps for the Samson data set along with a simulated RGB
image. The figures in the second row labeled (b), (c), and (d)
are the ground truth abundance maps that correspond to
the ground truth endmember spectral signatures used in this
work. The figures in the third row labeled (e), (f) and (g) are
(one solution) the estimated abundance maps produced by
the proposed method. The configuration used is the Sigmoid
configuration. As can be seen from the figure, these abun-
dancemaps are very visually similar to the ground truthmaps,
but they have substantially higher sparsity for the ‘‘water’’
and the ‘‘trees’’ endmembers. The last row of figures are the
abundancemaps estimated by theDCDmethod. They all have
substantially lower sparsity than the other maps and are not
as visually similar to the ground truth maps. The ‘‘water’’
abundance map exhibits considerable mixing and hence low
sparsity.

IV. CONCLUSIONS
In this paper, we have proposed a deep learning based method
for blind hyperspectral unmixing in the form of an asymmet-
rical autoencoder. Various configurations of the decoder part
of the autoencoder were tested and compared. Three different
objective functions were tested with all configurations. In this
work, we focused on endmember spectra extraction and used
previously established endmember ground truth for common
data sets for evaluation. The comparison methods are some
of the most benchmarked methods in HSU. Experimental
results show clearly that the SAD objective function yields
better results than the SID or theMSE objective function. The
results also indicate that a deep and more complex encoder
does not give markedly better results than a single layer
encoder. Experiments with data with added noise showed
very good robustness to noise, especially using the SAD
objective function. Overall, the proposed method was found
to perform substantially better than the comparison methods
for all three data sets tested.
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