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Steady periodic and solitary waves propagating in a two-dimensional fluid bounded above by a flexible
sheet - which may be viewed as modeling an ice sheet - are considered in deep water. The nonlinear
elastic model is based on the special Cosserat theory of hyperelastic shells proposed by Toland (2008) for
this problem. Numerical solutions are computed via conformal mapping and a pseudo-spectral method.
New solitary waves are found by using a continuation method to follow the branch of elevation waves.
The results extend Guyenne and Părău’s findings (Guyenne &Părău (2012)). It is shown that, for periodic
waves, far along the branches the profiles become overhanging and ultimately approach configurations
with a trapped bubble at their troughs.
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1. Introduction

The flexural-gravity (FG) wave problem is concerned with deformations of a thin elastic sheet on the
surface of a fluid as it responds to and generates hydrodynamic excitation. Both bending and gravity act
as restoring forces. FG wave theory can be applied in offshore and polar engineering in the study of large
floating structures (such as floating runways) or to understand the response of floating ice sheets, either
used as runways or roads or responding to oceanic waves. FG waves are often generated by moving
loads such as vehicles or a landing aircraft. Large-amplitude deflections of the ice sheets, including
fully localized structures (Wilson (1958)) and periodic waves (Hegarty & Squire (2002)), have been
observed in the experiments. In order to understand forced responses, it is crucial to know the free
response of the system, such as periodic and solitary waves.These will be considered in the highly
nonlinear regime in this paper.

For simplicity we assume that the flow is two-dimensional, inviscid and irrotational. The large
floating structure or ice sheet resting on the top of the fluid is modeled as a thin elastic plate responding
to bending forces, while its inertia and forces due to stretching are neglected. For the ice sheet problem,
this is a reasonable approximation. The pressure jump exerted by the solid due to flexing can be modeled
with varying levels of complexity. The simplest model is a linear Euler beam theory whereby the
pressure jump isD ∂ 4

x ζ , whereζ is the free surface graph. The flexural rigidity coefficient is D =
Eh3

12(1−ν2)
, whereE is the Young’s modulus,ν the Poisson ratio andh the thickness of the plate. A

nonlinear model often used is the Kirchoff-Love (henceforth denoted as KL) model where the pressure
jump is equal toD ∂ 2

x κ whereκ is the curvature of the sheet. There are many results for the FG
problem with the KL model. Periodic waves were firstly studied by Forbes (1986) and Forbes (1988),
and extended to large amplitude by Vanden-Broeck & Părău (2011). Generalized solitary waves were
considered by Vanden-Broeck & Părău (2011) in the long wave regime in a fluid of finite depth and
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by Milewski et al (2011) in the vicinity of the phase speed minimum in deep water. In Părău & Dias
(2002), free solitary waves were considered in water of finite-depth. Using the normal form analysis,
they found there was a critical depth above which there were no small amplitude solitary waves since
the associated nonlinear Schrödinger equation (NLS) was of defocusing type. In other words, free
solitary waves bifurcating from infinitesimal periodic waves can only exist in relatively shallow fluids.
Most recently, Milewskiet al (2011) showed that solitary waves also occurred in deep water, but they
were of a new type in that they arose along a branch of generalized solitary waves of finite amplitude.
These latter two references also considered extensively the forcedproblem modelling a moving load on
floating ice.

Although the KL model is widely used in the literature, it does not appear to have an energy for-
mulation. It also does not allow the computation of overhanging waves of large amplitude. Recently,
Toland (2008) and Plotnikov & Toland (2011) used the Cosserat theory of hyperelastic shells satisfying
Kirchhoff’s hypotheses to arrive at a system with variational structure governing the FG problem. In this
case, the pressure jump due to bending across the elastic sheet and its corresponding potential energy
are of the form

D
(

∂ssκ +
1
2

κ3),

∫

κ2 ds (1..1)

wheres is the arc-length. Both this model and the KL model reduce to the Euler beam model for
small surface deflections, however this model is expressed in purely geometric terms and therefore
does not preclude complex surface shapes. Henceforth in this paper all computations will use this
model. Toland (2008) has rigorously proved the existence ofFG periodic waves for it and, numerically,
Blyth et al (2011) studied periodic waves in the absence of gravity. Guyenne & Părău (2012) have
computed both depression and elevation solitary waves which exist below the minimum of phase speed
at finite amplitude in deep water. Milewskiet al (2012) have extended the two-dimensional problem
modulational analysis to the arbitrary depth three-dimensional problem for all three elastic models.
They obtain Benney-Roskes-Davey-Stewartson (BRDS) modulation equations and contrast the three
models in the weakly nonlinear regime. Whilst they find that the models are qualitatively similar at
small amplitude, this is of course not true for the large amplitude solutions considered in this paper.

In this paper, we study large amplitude FG travelling waves in deep water using the nonlinear elastic-
ity model proposed by Toland (2008). Both periodic and solitary wave bifurcation branches are followed
to highly nonlinear regimes. For this model there are both elevation and depression solitary waves (de-
pression waves are waves whose midpoints lie below the mean water level), however in Guyenne &
Părău (2012) the branch of elevation waves was not fully explored. Hence, we extend their and show
that these waves’ branch includes the side-by-side assembly of several depression solitary waves, as a
“snaking” bifurcation is traced. For periodic waves, we provide evidence for overhanging waves which
ultimately approach a limiting configuration with a free surface profile touching itself at one point.

This paper is structured as follows. In §2, we briefly presenta conformal mapping technique used
for the steadily travelling potential flow wave problem. In §3, we present the numerical results for
solitary waves. Periodic waves, mainly focusing on the overhanging waves, are discussed in §4, and
some concluding remarks are presented in §5.

2. Formulation

Consider a train of waves propagating steadily at a constantvelocitycon the surface of a two-dimensional
fluid of infinite depth and bounded above by an elastic sheet. Introducing cartesian coordinates with
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gravity acting in the negativey-direction, and taking a frame of reference moving in thex-direction
with the wave results in a steady flow characterised by the velocity (−c,0) asy → −∞. The fluid is
assumed to be ideal and the flow to be irrotational. We can thenintroduce a potential functionφ , such
that the fluid velocity field(u,v) = (−c+ φx,φy). With the displacement of elastic sheet is designated
by y= ζ (x), the governing equations are































φxx+φyy = 0 for−∞ < y< ζ

φx →−c, φy → 0 asy→−∞

−(−c+φx)ζx+φy = 0 aty= ζ
1
2

(

φ2
x +φ2

y

)

− cφx+ ζ +
(

κ3

2 + ∂ssκ
)

= B at y= ζ

(2..1)

where∂s =
∂x√
1+ζ 2

x
in Cartesian coordinates. HereB is the Bernoulli constant. For solitary waves , the

flow approaches a uniform stream characterised by a constantvelocity (−c,0) in the far fieldx→±∞.
Choosingy = 0 on the free surface in the far field, it follows from the last of the equations (2..1) that
B = c2

2 . For periodic waves,B can be determined by choosingy = 0 as the mean water level, i.e. by
imposing

1
l

∫ l/2

−l/2
ζ dx = 0 (2..2)

wherel is the wavelength. The system (2..1) has been nondimensionalized by choosing

( D
ρg

)1/4
,

( D
ρg5

)1/8
,

(D3g
ρ3

)1/8
(2..3)

as the units of length, time and potential respectively. Here, ρ is the density of the fluid andg is the
acceleration due to gravity.

We shall solve the problem by a boundary integral method. Several approaches have been developed
over the years (see Vanden-Broeck (2010) for a review and further references). Here we follow the
approach used by Dyachenkoet al (1996) and later by Milewskiet al (2012) for the FG problem. The
main idea is to conformally map the physical domain into the lower half-plane of a new complex plane
whose horizontal and vertical coordinates will be denoted by ξ andη . The map itself can be defined as
the solution of the boundary value problem











yξ ξ + yηη = 0 for−∞ < η < 0

y=Y(ξ ,η) atη = 0

y∼ η asη →−∞
(2..4)

whereY(ξ ) = ζ (x(ξ ,0)). The harmonic conjugate variablex(ξ ,η) is defined through the Cauchy-
Riemann relations for the analytic functionz(ξ ,η) = x(ξ ,η)+ iy(ξ ,η). In the transformed plane, we
defineX(ξ ), x(ξ ,0), Φ(ξ ), φ(ξ ,0) andΨ (ξ ), ψ(ξ ,0), whereψ is the harmonic conjugate of the
potentialφ . From elementary harmonic analysis one obtains

Φξ =−H [Ψξ ], X = ξ −H [Y] (2..5)
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whereH is the Hilbert transform with the Fourier symboli sgn(k), i.e.,

H [ f ] = F
−1[i sgn(k)F

[

f
]]

. (2..6)

whereF is the Fourier transform andF−1 is its inverse. By application of the relation (2..5) and
chain rule, the kinematic boundary condition is reduced to the simple expressionΨξ = 0 (i.e. the stream
function is constant on the free surface), and the dynamic boundary condition to

c2

2J
+Y+M = B (2..7)

whereJ , X2
ξ +Y2

ξ andM takes the form

M =
κxx

1+ ζ 2
x
− ζxζxxκx

(1+ ζ 2)2 +
κ3

2
=

1
2

[κξ ξ

J
+
(κξ

J

)

ξ
+κ3

]

(2..8)

and

κ =
XξYξ ξ −Xξ ξYξ

J3/2
(2..9)

Equation (2..7) together withXξ = 1−H [Yξ ], completes the formulation as a system of integro-
differential equations. The unknowns are solvingc andY in the case of solitary waves. For periodic
waves, we takeB as an unknown and (2..2) needs to be satisfied. In all computations, the waves are
assumed to be symmetric with respect tox = 0. The nonlinear algebraic-differential equation (2..7) is
solved using a collocation method with a set of cosine basis functions whose coefficients are solved with
Newton’s method. That is, we set

Y(ξ ) =
N

∑
j=1

a j cos( jπξ/L)

with the a j as unknowns to be solved through Newton iteration. The equation (2..7) is evaluated on
uniform grid points in[0,L] with the Hilbert transform and derivatives obtained by using the Fourier
multipliers, while the nonlinear terms are computed in the physical space. For solitary waves the period
L is chosen sufficiently large such that the solution does not change whenL is further increased whilst for
periodic waves we chooseL = π (see Section 4.).N is also chosen sufficiently large so that the solution
no longer changes ifN is increased. The method was used successfully in Milewskiet al (2012).

3. Solitary Waves

Some insight into the problem can be gained by first considering linear periodic waves. The equations
(2..1) have the exact “trivial” solutionφ =−cx, ζ = 0 which corresponds to a uniform stream. Writing
φ = −cx+ϕ and linearising (2..1) by assuming that|ϕ | and|ζ | are small leads to periodic waves with
speed given by the dispersion relation (see for example Squireet al (1996) for details)

c2 =
1
k
+ k3 (3..1)

wherec is the phase speed andk the wavenumber.
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The phase speed has a global minimumc= c∗ for k= k∗ where

k∗ =
(1

3

)1/4
≈ 0.7598, c∗ =

√

3
1
4 +3−

3
4 ≈ 1.3247 (3..2)

Whilst periodic nonlinear waves can bifurcate from anyk, solitary waves bifurcate generically from
particulark corresponding to extrema of phase speed. There, the group speed is equal to the phase
speed, a necessary condition for the existence of weakly nonlinear solitary waves. If the extremum
occurs at finitek, the solitary waves will generally have decaying oscillatory tails. Whether or not
solitary waves bifurcate from a finitek extremum can be decided using normal form analysis. Assuming
ζ = εA(εx) eik∗x+ c.c.+o(ε), c= c∗+ ε2C+o(ε2), whereε is a small parameter, one can show that
the envelope of the carrier oscillation is governed by the steady cubic nonlinear Schrödinger equation
(NLS)

k∗CA+
37/8

2
AXX =

1
44

·3−9/8|A|2A (3..3)

The derivation is well known, so we omit the details here. It can be found in Părău & Dias (2002),
and a more complete derivation of the time dependent NLS equation can be found in Guyenne & Părău
(2012) or Milewskiet al (2011). Since (3..3) does not support localised solution (i.e. the corresponding
time-dependent NLS is defocusing) it predicts the non-existence of small amplitude solitary waves.
Nevertheless, Milewskiet al (2011) and Guyenne & Părău (2012) found solitary waves with finite
amplitude andc< c∗ for the full potential system (2..1).

The amplitude-speed bifurcation diagram for both elevation and depression solitary waves are shown
in Figure 1. The depression branch mostly reproduces the result of Guyenne & Părău (2012) (although
we extend the branch continuously toc = 0). It is clear from the figure that both branches start at
finite amplitudes forc = c∗ ≈ 1.3247. This is different from the well-known case of gravity-capillary
solitary waves which bifurcate from a train of infinitesimalperiodic waves (see Vanden-Broeck (2010)
for a review). Typical profiles of the depression solitary wave are shown in Figure 2. As in Guyenne
& Părău (2012) we find that as the speedc decreases, the depression solitary waves become steeper,
eventually with an overhanging profiles. Further down the curve the profile develops a point of contact
with a “trapped bubble” at the trough. For even smaller values ofc the profiles become self-intersecting
which is nonphysical, but mathematically well-defined. Solutions can be computed for all values of
c down to a static statec = 0 at which point there is no flow and the only fluid effect is hydrostatic
pressure. (Of course, the solution branch continues symmetrically for c negative.) A similar trapped
bubble structure has also been found in capillary-gravity waves by Vanden-Broeck & Dias (1992). In all
the computations of Figure 2, 2048 Fourier modes were used and the physical domain size is changed
appropriately for the sake of accuracy depending on the decay of the solution.

The branch of elevation solitary waves, which was not explored fully in Guyenne & Părău (2012), is
far more complicated. The detail of the amplitude-speed bifurcation diagram are shown in Figure 3, and
same curve on energy-speed axes are shown in Figure 5. The energy of steady solitary waves is given
by

Energy= − c
2

∫

Ydξ +
1
2

∫

Y2Xξ dξ +
1
2

∫ (Yξ ξ Xξ −Xξ ξYξ )
2

J5/2
dξ . (3..4)
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FIG. 1. Elevation (solid curve) and depression (dashed curve) branches of solitary wave solutions. More detail of
the elevation wave branch is shown in Figure 3.
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FIG. 2. Free-surface profiles of depression solitary waves, fromc near the bifurcation pointc∗ (top) to the static state
c= 0 (bottom). From top to bottom:c= 1.3, c= 0.7, c= 0.3, c= 0.Only part of the horizontal domain is shown.
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FIG. 3. The “snaking” bifurcation of the elevation branch of solitary waves. Starting from the ‘star’ and following
the path 1©→ 2©→ 3©→ 4©→ 5©. The waves corresponding to the circled numbers have the same propagation
speedc= 1.25 and the profiles are shown in Figure 5. There is a turning point between every two adjacent circled
numbers. The sharp nature of the second turning point (labeled as a ‘square’) is shown in more detail.
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FIG. 4. Typical profiles of the elevation solitary waves at speedc= 1.25. From top to bottom, the profiles correspond
to 1©− 5© labeled in Figure 3 respectively.
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FIG. 5. Energy-speed bifurcation diagram of elevation solitary waves. The curve begins from the star and is com-
puted up to the circle. The path has been labeled with arrows.The dashed line represents the translating speed
c= 1.25, and the intersection points with solid curve correspondto the circled numbers1©− 5© in Figure 3.

The curves exhibit multiple turning points. Such multiple turning points have also been found in
the bifurcation diagram of the elevation capillary-gravity solitary waves by Diaset al (1996). The
profiles corresponding to the labelled points on the curves are shown in Figure 4. The elevation wave
numerical computations required a large number of Fourier modes (typically 8192) and domain size
(typically L=400) since the solitary waves can be very broad. The computations were stopped after
passing through the forth turning point when two almost completely separated depression solitary waves
appear. At this point the solution becomes very sensitive (presumably since the waves are far apart their
separation is sensitive to perturbations) and more accurate computations became prohibitive. At turning
points the parameter along the curve had to be changed, and wealternated between usingζ (0) andc in
order to complete the curve.

From the profiles in Figure 4 and the corresponding energy bifurcation diagram in Figure 5, one
sees that the solutions either have two or four main troughs.Along each “arm” of the energy bifurcation
figure the number of troughs doesn’t change and the separation distance between the troughs is the main
qualitative change in the solutions. The profiles3© and 4© have approximately twice the energy of1©
2© and 5© since they have double the number of similar amplitude troughs.

4. Periodic Waves

In this section we use the nonlinear elasticity model of Toland (2008) to calculate weakly nonlinear and
fully nonlinear solutions for periodic waves. Such resultswere previously computed by Vanden-Broeck
& Părău (2011) for the KL model. For simplicity we assume that the water is of infinite depth. Solutions
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for weakly nonlinear periodic waves can be constructed analytically by using a Stokes expansion, i.e.
an asymptotic expansion in powers of the wave amplitude. Wilton (1915) used the Stokes expansion to
study capillary-gravity waves and his results showed that,in contrast to pure gravity waves, there may
be many families of solutions with a given base period.

To construct “Wilton ripples”, we introduce a small parameterε which is a measure of the amplitude
of the wave, so that the wave reduces to a uniform stream asε → 0 and write the expansions

φ = cx+ εφ1+ ε2φ2+ ε3φ3+ · · ·
ζ = εζ1+ ε2ζ2+ ε3ζ3+ · · ·
c = c0+ εc1+ ε2c2+ ε3c3+ · · ·
B = B0+ εB1+ ε2B2+ ε3B3+ · · ·

Substituting this ansatz into the system (2..1) and equating powers ofε lead to a succession of linear
systems. These linear systems can be solved, although the amount of algebra increases rapidly as the
order increases. At leading order,

ζ1(x) = coskx (4..1)

φ1(x,y) = c0ekysinkx (4..2)

c2
0 =

1
k
+ k3 (4..3)

The definition ofε is such that the coefficient of coskx in (4..1) is 1. The leading order solution (4..1)-
(4..3) is the solution to the linearized problem and (4..3) is the dispersion relation (3..1). It has a global
minimum defined by (3..2) and there are particular values ofk for which linear waves of wavenumbers
k andmk travel at the same speed. Ifm> 2 is an integer these waves can be used to construct other
solutions with the same period as (4..1). To see this, write

c2
0 =

1
k
+ k3 =

1
mk

+(mk)3 (4..4)

and solve fork. This leads to

k=
[ 1

m(m2+m+1)

]1/4
(4..5)

Therefore when (4..5) is satisfied the solutions (4..1) and (4..2) need to be replaced by

ζ1(x) = coskx+Amcosmkx (4..6)

φ1(x,y) = c0ekysinkx+Amc0emkysinmkx (4..7)

whereAm is a constant. The value ofAm is then found at higher order in the expansions in power ofε.
The existence of many families of solution comes from the fact that the value ofAm is not unique. For
example calculating solutions up to second order shows thatA2 =± 1

2. The details of the calculations are
identical to those presented by Vanden-Broeck & Părău (2011) for the KL model since the two models
agree up to second order. Form> 2, it is necessary to go to higher order to impose the solvability
condition forAm and the Wilton ripples no longer agree even at small amplitude. Figure?? shows
typicalm= 3 profiles. Clearly, at large amplitudes, such profiles also have overturning points.

Lastly we consider the limiting configuration of very steep periodic waves. In the fully nonlinear
regime, overhanging profiles are typical in water wave problems in the presence of additional surface
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FIG. 6. Typical profiles of large amplitude Wilton-like periodic flexural-gravity waves form= 3. Note that one of
the profiles is overhanging.

effects such as surface tension. This has been found analytically for pure capillary waves (Crapper
(1957)) and computed numerically for capillary-gravity periodic waves (see Vanden-Broeck (2010) for
a review). Furthermore, these overhanging waves ultimately approach limiting configurations in which
the free surface touches itself at one point forming a “trapped bubble”. Forbes (1988) suggested that
overhanging waves should also occur in the FG problem. This was confirmed numerically by Vanden-
Broeck & Părău (2011) using the KL model, however, due to numerical difficulties, the computations
had to be stopped much before a profile with a trapped bubble was reached. Overhanging waves up
to the configuration with a trapped bubble, and beyond that, unphysical self-intersecting profiles, can
easily be computed when the nonlinear elastic model of Toland (2008) is used.

As an example of our numerical experiments, we chose 2π as the wavelength to avoid the critical
values (4..5). The results are presented in Figure 7, and were obtained with 512 grid points (256 Fourier
modes) and∆ξ ≈ 0.012, and are unchanged within graphical accuracy when the number of grid points
is increased. As propagating speedc decreases, the periodic waves demonstrate overhanging structure,
and finally reach static configurations corresponding toc= 0 where the only hydrodynamic effect is the
hydrostatic pressure. The self-intersecting structure inthe static state has been partially enlarged in the
bottom graph for clarity.

5. Conclusions

An efficient numerical procedure to compute nonlinear steady flexural-gravity free-surface flows is im-
plemented. The flow is assumed to be potential and a simple conservative nonlinear elastic model is
used to model the floating structure. Solitary and periodic waves are computed. New elevation solitary
waves are found. These complement the results of Guyenne & P˘arău (2012). For periodic waves, the
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FIG. 7. Typical profiles of overhanging structure in periodic flexural-gravity waves. Top: profiles with different
propagating speed,c= 0.9 (circles),c= 0.7 (dot-dashed curve),c= 0.5 (dotted curve),c= 0.3 (dashed curve) and
c= 0.1 (solid curve). Bottom: the periodic waves reach ‘limiting’ configuration corresponding to the static state.

present elastic model enables the computation of overhanging waves even beyond the limiting configu-
ration where the free surface touches itself at one point. Whilst it is beyond the scope of this paper, we
believe that the stability problem for both branches of solitary waves could be particularly interesting.
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