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Key point summary 

   

 Cystic fibrosis (CF) is a common genetic disease caused by loss-of-function mutations 

in the CFTR gene, which encodes a channel protein, selective for anions. 

 

 In the lungs, the site of the most severe symptoms, CF causes abnormal electrolyte 

transport in epithelial cells which line the airways. 

 

 Airway epithelial ion transport can be assessed by measuring the trans-epithelial 

potential difference ( ) which shows characteristic changes in CF individuals. We 

developed a biophysical model of ion transport in human nasal epithelia, in order to 

investigate quantitatively which transport parameters underlie these observed 

bioelectric changes. 

 

 We found that loss of apical Cl
-
 permeability alone is insufficient to explain the 

bioelectric properties of CF epithelia. An increase of apical Na
+
 permeability must also 

occur. 

 

 This insight has important implications for our understanding of the physiology of CF 

disease, and hence for potential therapies aimed at correcting the CF ion transport 

defect.  
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Abstract 

 

Cystic Fibrosis (CF) is caused by mutations in the Cystic Fibrosis Transmembrane 

conductance Regulator (CFTR) gene, which encodes an anion channel. In the human lung 

CFTR loss causes abnormal ion transport across airway epithelial cells. As a result CF 

individuals produce thick mucus, suffer persistent bacterial infections and have a much 

reduced life expectancy. Trans-epithelial potential difference ( ) measurements are routinely 

carried out on nasal epithelia of CF patients in the clinic. CF epithelia exhibit a hyperpolarised 

basal  and a larger  change in response to amiloride (a blocker of the epithelial Na  

channel, ENaC). Are these altered bioelectric properties solely a result of electrical coupling 

between the ENaC and CFTR currents, or are they due to an increased ENaC permeability 

associated with CFTR loss? To examine these issues we have developed a quantitative 

mathematical model of human nasal epithelial ion transport. We find that while the loss of 

CFTR permeability hyperpolarises  and also increases amiloride-sensitive , these effects 

are too small to account for the magnitude of change observed in CF epithelia. Instead, a 

parallel increase in ENaC permeability is required to adequately fit observed experimental 

data. Our study provides quantitative predictions for the complex relationships between ionic 

permeabilities and nasal , giving insights into the physiology of CF disease that have 

important implications for CF therapy. 

 

 

Abbreviations 

 

CF, Cystic Fibrosis; CFTR, Cystic fibrosis transmembrane conductance regulator; ENaC, 

Epithelial Na  channel; PD, potential difference; , trans-epithelial PD; HNE, human nasal 

epithelial. 
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Introduction 

 

Cystic Fibrosis (CF) is a mono-genetic disorder that impairs quality of life and greatly reduces 

life expectancy (Davies et al., 2007). It is the most common fatal inherited genetic disease 

found in people of European descent (Dodge et al., 2007). CF is a complex disease, affecting 

several organs; however, the most frequent cause of death amongst CF sufferers is lung failure 

resulting from persistent bacterial infections. 

 

It is known that loss-of-function mutations in the CFTR gene product, an anion-selective 

channel, are the root cause of the disease. Thus, abnormal trans-epithelial electrolyte transport 

appears to be crucial to the pathogenesis of CF (Rowe et al., 2005). Measurements of the 

trans-epithelial potential difference ( ) across nasal epithelia can be used to investigate airway 

epithelial ion transport and such measurements are often made in vivo to aid diagnosis of CF in 

the clinic.  measurements are also used as outcome measures in clinical trials of drug and 

gene therapies for the disease (Rowe et al., 2011). CF epithelia show hyperpolarised basal  

(relative to non-CF epithelia), an increased depolarisation following block of the epithelial 

Na  channel (ENaC) with its inhibitor amiloride, a reduced or missing response when the 

driving force for apical Cl  efflux is increased, and no hyperpolarisation in response to raised 

intracellular cAMP levels (Knowles et al., 1995). 

 

These bioelectric properties arise as a direct result of mutations in the CFTR gene, but whether 

or not they are simply a consequence of the loss of apical anion permeability is a matter of 

debate. It has been suggested that CFTR regulates the activity of other transport processes in 

epithelial cells, in particular ENaC, with the loss of CFTR resulting in higher basal levels of 

apical Na  conductance (Stutts et al., 1995; Donaldson & Boucher, 2007). More recent 

studies, however, report that Na  absorption in pig and human CF airway epithelial cultures is 

not increased (Chen et al., 2010; Itani et al., 2011). These studies suggest that the loss of anion 

conductance can account for hyperpolarised basal  as well as the increased 

amiloride-sensitive  and altered short circuit current, because of the way the CFTR currents 

are electrically coupled to other transport processes. Previous modelling work from a kidney 

epithelial cell line provides qualitative support for this idea (Horisberger, 2003). 

This article is protected by copyright. All rights reserved. 4
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To assess these conflicting views we developed a detailed mathematical model of ion transport 

in human nasal epithelial (HNE) cells, so as to quantitatively investigate the relationship 

between individual ionic permeabilities and commonly measured bioelectric properties of the 

integrated epithelial transport system, such as basal  and amiloride-sensitive . Our model 

differs from most previous studies investigating airway epithelial physiology (Hartmann & 

Verkman, 1990; Duszyk & French, 1991; Warren et al., 2009; Falkenberg & Jakobsson, 2010) 

in that it focuses specifically on nasal epithelial cell components and parameter values. A 

modelling study focused on quantifying ionic permeabilities in non-CF HNE epithelia has 

recently been published, but this work did not consider ion transport in CF (Garcia et al., 2013). 

We use data from primary cultures of both CF and non-CF nasal epithelial cells for model 

validation, thus allowing us to investigate clinically relevant questions regarding how changes 

in the underlying transport components give rise to altered nasal  measurements in CF. 

 

We found that while the electrical coupling between CFTR and ENaC currents can cause, 

qualitatively, the type of changes seen in CF, the magnitudes of these effects are not large 

enough to explain CF abnormalities. Instead, apical Na  permeability must be increased in CF 

in order to quantitatively explain the differences observed in bioelectric properties between the 

non-CF and CF airway epithelium. 

 

 

Mathematical model of HNE cells 

 

Model overview 

Our mathematical model simulates a mono-layer of HNE cells placed between two well 

perfused compartments containing physiological saline solution (Fig. 1(a)), thus 

approximating the environment experienced by HNE cells in vivo during nasal  

measurements when the airway surface is flooded (or in vitro during an Ussing chamber 

experiment). In this model Na , Cl , K  and water, move between interstitial fluid and 

airway lumen (paracellular route) and between the cell and external solutions via transport 

processes in the apical and basolateral plasma membranes (Fig. 1(b)). The magnitude of the ion 

flux due to each of these component processes in the model is proportional to a transport 

This article is protected by copyright. All rights reserved. 5
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parameter that is related to the density of that component in the plasma membrane. 

 

Figure 1 here 

 

We calculate the flux of ions from each individual transport pathway as a function of the 

driving force and associated transport parameter, and employ an equivalent electrical circuit 

description of the epithelium to determine membrane and trans-epithelial potentials 

 in the open circuit configuration (Fig. 1(c)). This framework allows us to 

vary transport parameters or extracellular solution composition, and calculate the resultant 

changes in membrane potentials and  in a quantitative manner. It also allows a quantitative 

investigation of how these responses to perturbations change when transport processes are 

varied. 

 

Transport pathways included in model 

There are four ion channel components included in the model. ENaC and CFTR channels will 

give rise to apical Na  ( ) and Cl  ( ) currents respectively, and basolateral K  and 

Cl  channels facilitate the basolateral currents  and . Apical K
+
 channels are not 

included since they do not contribute substantially to  (Knowles et al., 1983; Willumsen et 

al., 1989a). Channel currents were modelled using the Goldman-Hodgkin-Katz (GHK) flux 

equation (Hille, 2001), which relates the trans-membrane electrochemical driving force 

(determined by the membrane potential and concentration gradient) to the trans-membrane 

current, given the permeability of the membrane to a particular ion (see SI section S1). For 

example, given apical membrane potential ( ), lumen and intracellular Na  concentrations 

( ), and the permeability of the apical membrane to Na  ( ), we can 

compute the ENaC current ( ). Paracellular ion currents ( , , , ) are also 

modelled using the GHK equation (with  as electrical driving force, and ion concentrations 

from the luminal and serosal compartments). 

 

We include descriptions of the Na -K -2 Cl  co-transport protein NKCC1 and 

Na -K -ATPase pump protein in our model, which generate the basolateral ion fluxes  

and  respectively. We use the model of Benjamin & Johnson to calculate flux from the 

Na -K -2 Cl  co-transporter (Benjamin & Johnson, 1997), and the model of Smith & 
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Crampin to describe active transport by the Na -K -ATPase (Smith & Crampin, 2004) (see 

SI section S1 for full details). The total flux along these transport pathways is proportional to 

the density of the relevant protein in the basolateral membrane, . 

 

In our model both apical and basolateral membranes are permeable to water. The 

trans-membrane water flux in both cases ( ) is assumed to be proportional to the 

trans-membrane osmolarity gradient , where the osmolarity here is given by the total Na , 

Cl  & K  concentrations as well as the concentration of impermeable anions in that given 

compartment. 

 

Transport kinetics 

Cellular variables evolve in time based on the net influx or efflux of ions and water, and we 

described these kinetics with a system of coupled, non-linear ordinary differential equations. 

 

Cell volume  changes if there is a net influx or efflux of water (water flux is positive in 

serosal to mucosal direction)  

 (1) 

The ionic composition of the intracellular compartment changes due to the net trans-membrane 

ion fluxes (positive ion currents denote a flux of positive ions out of the cell, positive  

denotes ion flux into the cell) 

 (2) 

 (3) 

 (4) 

The equivalent electrical circuit description of the epithelium (Fig. 1(c)) can be used to 

calculate how the membrane potentials change due to net apical, basolateral and paracellular 

currents (  is the capacitance per unit area of the plasma membrane) 

This article is protected by copyright. All rights reserved. 7
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 (5) 

 (6) 

The trans-epithelial potential difference, with the serosal compartment as the ground, is given 

by  (see SI, section S1). 

 

Baseline transport parameter values 

We initially found estimates of transport parameters, ( , , , , , ) 

from the relevant scientific literature, and refer to these as baseline parameter values (Table 1, 

note that here we assume  is non-selective and does not change in CF, the rationale for this 

is discussed later, see also SI section S4). These were used to give an order of magnitude 

estimate for each parameter and thus initially identify what region of parameter space our 

parameter estimation should focus on.  

Table 1 here 

 

 

Results 

 

CF epithelia have an increased  

We set out to determine then to compare the value of  in CF and non-CF nasal epithelial 

cells. To constrain the model we used extensive data sets obtained from cultured HNE cells, 

including time course data covering the addition of amiloride or reduction of  at the 

apical membrane (Willumsen et al., 1989a, 1989b; Willumsen & Boucher, 1991a, 1991b). We 

thus formulated an optimisation problem to minimise the residual errors between physiological 

properties predicted by the mathematical model, and those observed experimentally, by 

varying transport parameters of interest (see SI, section S2 for details).  

 

Figure 2 here 
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Using simulations made with parameter values optimised for non-CF epithelia, our model 

accurately fits the observed initial and final steady state values for membrane and 

trans-epithelial potentials ( ,  & ) and concentrations ( , ) both in 

amiloride addition and low  experiments (Fig. 2). A similar analysis was carried out to 

identify parameter values best describing corresponding experimental data obtained on CF 

epithelia (Fig. S3). The optimized parameter values for non-CF and CF epithelia are shown in 

Table 1. 

 

The optimal parameter values obtained for ENaC and CFTR permeability are similar to those 

estimated experimentally (Table 1). Examining the difference between optimal CF and non-CF 

parameter values, we found not only that in CF  must be reduced (as expected) but also 

that the value of  must be significantly increased. 

 

Very little experimental data is available on the magnitude and characteristics of paracellular 

permeability. In order to determine if increased  in CF epithelia was dependent on 

assumptions we had made regarding paracellular ion transport, we repeated the parameter 

estimation analysis assuming a lower  in CF (Willumsen & Boucher, 1989) and/or a cation 

selective paracellular transport (Levin et al., 2006; Flynn et al., 2009). We found that while 

these differences in paracellular transport do have an influence over the exact value of  or 

 estimated, they do not alter how each of these parameters changes in CF relative to 

non-CF epithelia (see SI Table S5 & S6). 

 

Feasible ranges of  differ between populations of non-CF & CF nasal 

epithelial cells 

Although our optimisation results provide good evidence for a change in , we were 

conscious that the data which we used for fitting in the optimisation problem were the mean of 

several experiments carried out on different primary cultures of HNE cells. Variations in the 

experimental results obtained from these cells show that a large range of values of, for 

example, intracellular , are physiologically reasonable. We wanted to make sure that by 

optimising parameter fits to average data we did not exclude parameter sets that could account 

for both CF and non-CF data given the full range of possible variation (e.g. (Willumsen & 

Boucher, 1991b)). 

This article is protected by copyright. All rights reserved. 9
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Figure 3 here 

 

To achieve this, we carried out a large number of simulations with the model, as illustrated 

schematically in figure 3. We first used Monte Carlo sampling to randomly generate  

parameter sets, sampling values for each transport parameter ( , , , ,  , 

) from a uniform distribution on a bounded region (from zero to five times) around the 

relevant baseline parameter value (Figure 3(a)). This process provided a population of model 

parameter sets, each with a unique set of parameter values, steady state variable values, kinetic 

properties and so on (Figure 3(b)). We next separated the sample population (Figure 3(c)) into 

1975 parameter sets which predicted observed steady state and kinetic properties of non-CF 

HNE cells and 2430 which reproduced the observed steady state and kinetic behaviour of CF 

HNE cells (see Table 2 for both non-CF and CF filtering bounds). The other parameter sets 

which produced non-physiological values or unstable kinetics were discarded (see SI, section 

S3 for full details). 

 

Table 2 here 

 

Figure 4 illustrates the distributions of transport parameter values which remain after applying 

the non-CF (blue) and CF (red) filters (see also SI, figures S4 & S5, and tables S5 & S6 

respectively). While the non-CF and CF distributions are similar for some parameters, the 

distributions of  and  differ markedly, CFTR permeability being decreased and 

ENaC permeability increased in the disease state. Thus, extending our analysis to take into 

account the full distribution of allowed cellular variable values, rather than focusing on mean 

behaviour, confirms that ENaC permeability must be increased in CF relative to non-CF cells, 

in order to explain the observed quantitative differences in electrophysiological properties. 

 

Figure 4 here 

 

We repeated this Monte Carlo filtering analysis to determine whether or not decreased 

paracellular permeability in CF, and/or selectivity of the paracellular pathway, would 

significantly alter these conclusions. Again we found this was not the case: neither a higher 

shunt resistance in CF nor a cation-selective paracellular pathway affected our conclusions that 

This article is protected by copyright. All rights reserved. 10
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permeability distributions were shifted in CF epithelia, with median CFTR permeability 

decreased and median ENaC permeability increased (see SI section S4, figures S6-S8). 

 

Increased  can explain hyperpolarised  in CF, reduced  

cannot 

To further investigate the functional relationship between each individual transport parameter 

 and the epithelial bioelectric properties in question (i.e. model outputs basal , 

, and ) we carried out a variance based sensitivity analysis 

(Sobie, 2009; Taylor et al., 2009) using the 1975 parameter sets in the non-CF distribution 

along with their model outputs (see Figures 5 and 6, and SI section S4). The co-efficients we 

obtained (Figures 5(c) and 6(c)) gave us an objective means of quantifying the relative 

influence of each transport parameter on these bioelectric properties. 

 

Figure 5 here 

 

Figure 5 (a) and (b) show scatter plots of  and  respectively (from the non-CF 

parameter value distributions), against basal (steady state)  predicted by each. Figure 5(c) 

summarises the results of the sensitivity analysis. There is a negative correlation between  

and  apparent in (a), and confirmed by the large negative regression coefficient  

(-1.49mV) in (c). A significant correlation between  and  is not clear in (b). The 

sensitivity analysis confirms that while  does influence  to an extent, on average over 

this region of parameter space it has a much smaller effect than ,  or  (regression 

coefficient = -0.02mV, ). Therefore an increase in  is necessary to 

hyperpolarise basal  to the values seen in CF epithelia, while changes in  do not 

influence  to the same extent. 

 

Amiloride-sensitive  is inversely related to , but is more strongly 

influenced by  

Figure 6 (a) and (b) illustrate the relationship between the  and  parameter values 

respectively, from the non-CF distributions, and the corresponding predicted 

This article is protected by copyright. All rights reserved. 11
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. Not surprisingly, there is a positive correlation between  and 

. However the relationship between  and  is less 

obvious. The results of the sensitivity analysis in Figure 6(c) show that  has the second 

greatest influence on . While increasing  tends to increase the 

magnitude of  increasing  tends to decrease its magnitude. 

 

Figure 6 here 

 

Loss of Cl  conductance can hyperpolarise basal , but not to the extent 

seen in CF 

It is clear that  can influence basal , even if it does not do so to the same extent as . 

We wanted to determine, quantitatively, what magnitude of a change in basal  the model 

would predict upon loss of  alone, and compare this to the hyperpolarisation of  

observed in CF. Therefore, for each parameter set producing plausible physiological values in 

the non-CF distribution, we set  and found the new steady state of the system. We 

define  as the difference between this new , and the initial basal  

when . 

 

We can analyse the magnitude of  and its relationship to  

(change in  induced by reducing ) which is commonly used as a measure of the 

underlying Cl  conductance (see Figure S9). For a given , CFTR loss can 

depolarise or hyperpolarise , depending on the magnitudes of the other transport parameter 

values. The average  observed experimentally in non-CF HNE cells was not 

greater than -15mV (Willumsen et al., 1989a), a value close to that reported in vivo, in nasal 

PD measurements. However, the maximum hyperpolarisation achieved by blocking , was 

around -4mV. This is much smaller in magnitude than the average hyperpolarisation seen in CF 

patients (and in primary cultures of CF HNE cells (Willumsen & Boucher, 1991b)), which is 

around -20mV (Knowles et al., 1995). 

 

This article is protected by copyright. All rights reserved. 12
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Discussion 

We have developed a mathematical model of ion transport in human nasal epithelial cells. As 

the nasal epithelium is the site of in vivo measurements made on patients, it has been well 

characterised (Willumsen & Boucher, 1989, 1991b; Willumsen et al., 1989b) and is clinically 

important in the diagnosis of CF. The advantages of specifically modelling nasal epithelia are 

thus twofold. First, it offers the opportunity to exploit a very large body of existing 

measurements (Simmonds et al., 2011) for validation and parameter estimation purposes. 

Second, by leading to a better quantitative analysis of nasal potential difference measurements, 

it improves our understanding of CF disease. 

 

The agreement between our model predictions and the known physiology, in terms of 

capturing essential changes in membrane potentials and intracellular ion concentrations 

(Figure 2), suggests that the model provides a realistic picture of the major epithelial ion 

transport processes which determine nasal trans-epithelial potential. Fitting the model to 

experimental observations, we found not only that  must be reduced, but also that  

had to increase (Table 1) to account for the bioelectric properties of CF epithelial cells. This 

prediction also held when we ran multiple simulations to take into account cell variability: 

parameter sets resulting in steady-state and kinetic characteristics typical of CF cells included 

not only reduced  but also increased  (Figure 4). The fact that our analysis did not 

make any initial judgements regarding how parameters should vary in the disease state, and 

hence did not bias our analysis in finding these results, gives us confidence in their validity and 

further demonstrates that the findings regarding ENaC and CFTR permeabilities are robust.  

 

Impact of model assumptions 

 

Inevitably, when describing a complex biological system with a mathematical model, one 

makes a number of assumptions in order to concentrate on the phenomena of interest, and to 

keep the analysis tractable. The main assumption we make is that Na
+
, Cl

-
 and K

+
 currents 

largely determine nasal  and that the membrane permeabilities of these ions can be 

estimated from trans-epithelial electrical recordings. In making this simplification we 

This article is protected by copyright. All rights reserved. 13
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implicitly assume that bicarbonate transport does not substantially impact . In our analysis 

we saw that  has little effect on basal  (Figure 5), and limited effect on 

 (Fig.6(b),(c)). It is therefore likely that including bicarbonate transport 

would not alter this picture, as there is significantly less HCO3
-
 transport through CFTR 

channels than Cl
-
 (Poulsen et al., 1994). Indeed a very recent paper carries out a similar 

analysis for non-CF nasal epithelia and essentially validates this approach (Garcia et al., 2013). 

 

Initially, we also made the assumption that changes in paracellular permeability do not drive 

the bioelectric changes observed in CF. Later, by relaxing this condition, we found that while 

differences in paracellular permeability or selectivity do influence estimates of  and , 

they do not alter how each of these parameters changes in CF relative to non-CF epithelia (see 

SI Table S5 & S6, figures S6-S8). The magnitude of the increase in  will therefore be 

influenced by an increased shunt resistance (2-fold rather than 3-fold increase), but the increase 

of this transport parameter in the disease state is observed consistently. 

 

 

Quantifying the influence of CFTR and ENaC currents on nasal  

 

Published modelling work investigating the electrical coupling of CFTR & ENaC fluxes 

(Horisberger, 2003) showed that increasing  could decrease amiloride-sensitive  in a 

kidney epithelial cell model, and Falkenberg and Jakobsson note that  is most sensitive to 

basal apical anion permeability, after the addition of amiloride (Falkenberg & Jakobsson, 

2010). More recently, evidence from pig and human airway epithelial cell lines showed that 

experimentally decreasing apical Cl  conductance can increase  (Chen et 

al., 2010; Itani et al., 2011). Our analyis confirms that this relationship exists, qualitatively. 

However, our modelling approach allows us to quantitatively determine the influence each 

transport parameter has on the electrical properties of the epithelium (Figures 5 and 6). Thus, 

we can show that the magnitude of changes in going from non-CF to CF levels of anion 

permeability were not sufficient to explain the experimentally observed  hyperpolarised basal 

, the increased amiloride-sensitive , and the decreased . In 

contrast, sensitivity analysis shows that  significantly hyperpolarises basal , and is the 

most important factor in determining the magnitude of . Without altering 

This article is protected by copyright. All rights reserved. 14
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 from non-CF levels, the magnitude of the hyperpolarisation of basal  and of increased 

amiloride sensitive  could not be explained. 

 

One can intuitively understand how the relative influences of ENaC and CFTR permeability on 

basal and amiloride sensitive  arise, by examining the driving force for movement of Na  

and Cl  ions across the apical membrane. Basal  depends implicitly on apical Na
+ 

& Cl
-
 

currents, and the change in these currents with respect to permeability are proportional to 

driving force. Hence the relative driving force for movement of different ions explains the 

relative sensitivity of  to different permeabilities. 

 

In the representative example of best fit non-CF parameter values (Table 1), the driving force 

for Na  absorption across the apical membrane at steady state is -65.8mV, as opposed to 

+1.1mV for Cl  transport. At these physiological potentials, the Cl  driving force is thus 

 of that for Na , consistent with the results of our sensitivity analysis:  has a much 

greater influence on  than . How then, can we explain the influence of  on 

amiloride-sensitive ? After amiloride is added  is dramatically reduced and  

changes, altering the apical Cl  driving force and consquently . Again taking these 

best-fit parameters, this driving force goes from +1.1mV to -9.5mV for Cl
-
, while . 

Therefore  now has a greater relative influence on  & , while  can have no 

further effect. 

 

The results of our sensitivity analysis are in agreement with a range of additional experimental 

data not used to constrain the model. For example, we found basal  to be strongly dependent 

on  (hyperpolarising). This was observed experimentally by Mall et al (Mall et al., 2000) 

who blocked basolateral K  channels in human bronchial epithelial (HBE) cells. Modelling 

studies have also shown that  can be increased by stimulating basolateral K  currents 

(Falkenberg & Jakobsson, 2010), supporting the hypothesis that increased basolateral K  

conductance is necessary to hyperpolarise the basolateral (and consequently, apical) 

membrane, providing an increased driving force for Cl- secretion (Cotton, 2000). Further,  

tends to be depolarised by  in our model, which agrees with the observations of Fischer 

and colleaguesl in human and bovine tracheal primary cultures (Fischer et al., 2007) who also 

found  to be dependent on . 
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Finally, it is interesting to note how our model predicts that the density of Na
+
-K

+
-ATPase 

pumps is higher in CF than non-CF cells. This may be necessary in order to deal with the 

increased rate of Na  absorption, and higher pump expression has been reported in CF 

tracheal and nasal epithelia (Stutts et al., 1986). 

 

 

Implications for clinical Nasal Potential Difference measurements 

 

Figure 7 here 

 

In figure 7 we show the output of simulations of the first three stages of a standard nasal 

potential difference (nasal ) clinical recording: measurement of a basal  value, relaxation 

to a new steady state value following apical amiloride addition and transition to third  value 

upon transfer to Cl  free conditions (while maintaining amiloride presence). Simulations 

were run with four different parameterisations: (a) optimal non-CF values (black), (b) optimal 

non-CF with reduced  (5% of optimal level, black, dashed), (c) optimal CF values (grey), 

and (d) optimal CF values with optimal non-CF  levels (grey, dashed). These simulations 

illustrate the major findings of our study, and emphasise the potential utility of this 

mathematical modelling approach. 

 

Trace (a) & (b) illustrate how the loss of apical Cl  permeability (in a non-CF HNE cell) alone 

cannot account for CF bioelectric properties. With a reduction to 5% of non-CF  levels, 

the level of  increases and  decreases, but the change of tens 

of millivolts in basal  seen in patients is not observed as only a modest hyperpolarisation 

occurs. 

 

Trace (c) & (d) illustrate how our model can be used to investigate strategies aimed at 

normalising ion transport in CF epithelia. Here we simulate the effect of theoretically 

increasing  from CF to non-CF levels, in a CF HNE cell. We see that this can ameliorate 

the  and  responses towards non-CF magnitudes, but basal 

 remains hyperpolarised at a typical CF level. This simulation investigates the changes in  

caused by a hypothetical therapy aimed at increasing Cl- secretion alone. Although the exact 
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pathophysiology of CF lung disease is controversial, the hyperpolarized  experienced by CF 

epithelia will undoubtedly alter driving forces for trans-epithelial ion (and water) movement, a 

factor which may contribute to the development of CF lung disease. Thus we can see that such 

a strategy (e.g. stimulating calcium-activated Cl  channels (CaCC) in the apical membrane 

(Cuthbert, 2011)) would not help with restoring basal  in native tissues to desired non-CF 

levels. 

 

The measurement of nasal trans-epithelial potentials is widely used as an aid to CF diagnosis 

and clinical management. Hyperpolarised basal  and larger amiloride-sensitive  changes 

are hallmarks of CF disease and have, in recent years, also become central to the debate on the 

role of sodium hyper-absorption in CF pathology. These same altered bioelectric properties are 

the foundation of therapeutic approaches aimed at reducing ENaC activity (Hofmann et al., 

1998; Coote et al., 2009). The correct interpretation of trans-epithelial potentials therefore 

carries important implications for both understanding CF and assessing potential therapies. 

The model presented here therefore can become a highly valuable tool for the interpretation of 

clinical nasal potential difference measurements and for the development of more effective 

treatment. 
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Figure  1: Schematic diagram of epithelial layer (a) and individual epithelial cell (b) 

separating the airway lumen from the interstitial fluid. Electrolyte transport occurs across 

the apical and basolateral membranes, and along the paracellular path through tight junctions. 

Transport parameters characterize flux through each pathway: CFTR and ENaC channels in 

the apical membrane are characterized by apical Cl  permeability ( ) and apical Na  

permeability( ) respectively; K  and Cl  channels in the basolateral membrane are 

characterized by the basolateral K  ( ) and Cl  ( ) permeabilities; The transport 

parameters for the Na -K -ATPase pump proteins and NKCC cotransport proteins in the 

basolateral membrane are their densities per unit area of the membrane,  and  

respectively. The state of the cell at any time is described by six variables, cell volume ( ), 

moles of Na , Cl  and K  in the cell (  respectively), and apical ( ) and 

basolateral ( ) membrane potentials. (c) Equivalent electrical circuit representation of 

airway epithelium.  and  are coupled electrically via the current along the 

paracellular pathway ( ). The trans-epithelial potential difference  is given by the 

difference between lumen and serosal potential (i.e. ). 
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Figure  2: Model predictions for  ,  ,  and  (solid and dashed lines) 

are plotted for simulations of "+amiloride" and " " experiments, and compared 

with their observed values (symbols). Data used is from non-CF HNE cells, and parameter 

values used for the simulation are those which were found to minimise the residual error 

between model output and this data (Table 1). 
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Figure  3: Monte Carlo filtering analysis approach to determine distributions of 

transport parameter values in CF and non-CF HNE cells. (a) A large sample ( ) of 

parameter sets was generated, each set is a vector 

. Each parameter  is 

sampled from a uniform distribution  around its baseline value (see Table 1). (b) 

For each parameter set , the values of variables  at steady state and their value after 

' and ' ' perturbations are calculated. (c) Bounds are placed on the 

allowed values of these model outputs, for both CF and non-CF states, and parameter sets are 

classified on this basis. (d) Filtered parameter distributions can be examined to assess how 

transport parameters vary between normal and disease states. 
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Figure  4: Distributions of each transport parameter, found by constraining allowed 

model behaviour in non-CF (blue) and CF (red) states. In sequence from low to high, 

features denoted in each boxplot are: 1st, 25th, 50th (median), 75th, and 99th percentiles of the 

given parameters distribution. 
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Figure  5: Sensitivity analysis investigating the influence of model parameters on . A 

multiple regression of the form  was fit 

using the set of normalised parameter values  in the non-CF parameter distribution as 

regressors, and the corresponding model output  as the independent variable (see SI, 

section S4). Basal  plotted as a function of (a)  and (b) , for the 1975 parameter 

sets belonging to the non-CF distribution. (c) Strength of linear interaction ( ) between 

transport parameters  and , found via 

sensitivity analysis.  hyperpolarises  ( =-1.49mV), but changing  has little 

influence ( =-0.02mV).  
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Figure  6: Sensitivity analysis investigating the influence of model parameters on 

. Amiloride-sensitive  plotted against (a)  and (b) , for their 

non-CF distributions. (c) Sensitivity analysis results plotting strength of interaction ( ) 

between  and transport parameters 

.  tends to decrease this metric, despite its 

limited affect on basal . 
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Figure  7: Simulations of first stages of a clinical nasal PD test. Basal  is recorded 

initially for several minutes, then amiloride is added to the perfusing solution at  minutes 

to block ENaC channels (causing ), and the resultant change in  is recorded. At 

 minutes the solution perfusing the luminal surface is changed to a low Cl  one 

( mM) to introduce a diffusion potential for Cl  efflux, and the resultant change in 

 is recorded. Restoring non-CF  levels in a CF cell does not correct hyperpolarised 

basal  (grey solid line  grey dashed line). Also, reducing  alone to CF levels, in a 

non-CF cell, does not reproduce a typical CF trace (black solid line  black dashed line). 
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Table 1: Baseline values used (column 3) and numerical estimates found for parameter values 

in non-CF and CF cells (columns 5 and 6) for each free transport parameter (rows 1 to 

6). *  and  estimated by authors. 

 

Parameter Units Baseline Reference Non-CF CF 

 m/s 0.028 (Willumsen & Boucher, 1991b) 0.024 0.065 

 m/s 0.072 (Willumsen & Boucher, 1991b) 0.066 0.006 

 m/s 0.080 (Falkenberg & Jakobsson, 2010) 0.103 0.400 

 mol/cm
2
 0.400 * 0.127 0.489 

 mol/cm
2
 0.400 * 0.188 2.000 

 m/s 0.100 (Falkenberg & Jakobsson, 2010) 0.097 0.144 
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Table 2: Constraints on allowed variable values in CF and non-CF cells, based on data from 

primary cultures of HNE cells. 

 

Property Units Non-CF Source CF Source 

  Lower Upper  Lower Upper  

 mM 18.0 43.2 (Willumsen & Boucher, 

1991b) 

21.0 51.3 (Willumsen & 

Boucher, 1991a) 

 mM 32.5 84.4 (Willumsen et al., 1989a) 32.5 84.4 (Willumsen et al., 

1989b) 

 mV -38.6 -14.9 (Willumsen & Boucher, 

1991b) 

-37.7 6.7 (Willumsen & 

Boucher, 1991a) 

 mV -45.1 -24.2 (Willumsen & Boucher, 

1991b) 

-59.3 -33.6 (Willumsen & 

Boucher, 1991a) 

 mV -15.5 -2.7 (Willumsen & Boucher, 

1991b) 

-59.2 -8.2 (Willumsen & 

Boucher, 1991a) 

 mV -14.0 -5.5 (Willumsen et al., 1989a; 

Willumsen & Boucher, 

1991b) 

-47.4 -29.0 (Willumsen et al., 

1989b; Willumsen 

& Boucher, 

1991a) 

 mV 4.7 10.1 (Willumsen et al., 1989a; 

Willumsen & Boucher, 

1991b) 

30.1 47.1 (Willumsen et al., 

1989b; Willumsen 

& Boucher, 

1991a) 

 mV 9.2 15.0 (Willumsen et al., 1989a) -5.3 11.1 (Willumsen et al., 

1989b) 

 mV -12.7 -6.1 (Willumsen et al., 1989a) -16.5 9.9 (Willumsen et al., 

1989b) 
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