

TESI DI DOTTORATO / PH.D. THESIS

Delayed-Input and

Non-Malleable
 Cryptographic Protocols

 LUISA SINISCALCHI

SUPERVISOR: PROF. IVAN VISCONTI

PHD PROGRAM DIRECTOR: PROF. PASQUALE CHIACCHIO

Dipartimento di Ingegneria dell’Informazione ed Elettrica
 e Matematica Applicata
Dipartimento di Informatica

Università degli Studi di Salerno

Dottorato di Ricerca in Informatica e Ingegneria dell’Informazione
Ciclo 30 – a.a 2016/2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by EleA@UniSA - Università degli Studi di Salerno

https://core.ac.uk/display/162607471?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

Contents

Introduction 5

1 Definitions 9
1.1 Notation, Definitions and Tools 9

1.1.1 Standard Definitions 10
1.1.2 Number-Theoretic Assumptions 13
1.1.3 Σ-Protocols 16

1.2 Commitment Schemes 21
1.2.1 t-Instance-Dependent Trapdoor Commitment

Schemes . 23
1.2.2 Non-Malleable Commitment Schemes 25

1.3 Delayed-Input Non-Malleable Zero Knowledge. . . . 28
1.4 Two-Party Computation 30

2 Improved OR Composition 35
2.1 Overview of the Chapter 35

2.1.1 Our Contribution 40
2.1.2 Our Techniques 41
2.1.3 Discussion 45
2.1.4 Applications 47

2.2 OR Composition of Σ̃-protocols: the CDS-OR Trans-
form . 50

2.3 Constructing t-IDTC Scheme 52
2.3.1 Constructing a 2-IDTC Scheme from a Chameleon

Σ-protocol. 52
2.3.2 Constructing a 3-IDTC Scheme. 54

iii

2.4 A New OR-Composition Technique 56

2.4.1 Witness Indistinguishability of Our Transform 59

2.5 Applications . 66

2.5.1 A 3-Round Efficient Perfectly Simulatable
Argument System 67

2.5.1.1 Preliminary Definitions 67

2.5.1.2 The Protocol 69

2.5.2 Efficient Resettable WI Argument System . 72

2.5.3 Efficient 4-Round Resettable Zero Knowl-
edge in the BPK model 80

2.5.4 Proof of Work of Knowledge 81

2.6 More About OR-Composition 83

2.6.1 More About Chameleon Σ-Protocols 83

2.6.2 Classification of Σ-Protocols 85

2.6.3 Efficiency 87

2.7 More About Σ-Protocols 89

2.7.1 Challenge Length of Σ-Protocols 91

2.7.2 Σ-protocol for the 1DDH Relation. 93

3 Non-Malleable Commitment Schemes 95

3.1 Overview of the Chapter 95

3.1.1 Towards 3-Round (Concurrent) NM Com-
mitments 96

3.1.2 Other 3-Round Challenges 97

3.1.3 Our Contribution 98

3.2 3-Round Concurrent Non-Malleable Commitments . 101

3.2.1 Informal Description 101

3.2.2 Our Compiler 102

3.3 More 3-Round Protocols Against Concurrent MiM
Attacks . 121

3.3.1 NMWI Argument Systems 121

3.3.2 Non-Malleable WI Arguments of Knowledge 123

3.3.3 Identification Schemes 126

3.4 3-Round One-One NM Commitments 129

3.4.1 Our 3-Round One-One NM Commitment . . 129

iv

4 Delayed-Input Non-Malleable Zero Knowledge 137
4.1 Overview of the Chapter 137

4.1.1 Our Contribution 139
4.1.2 Technical Overview of Our NMZK 141
4.1.3 4-Round Secure Multi-Party Coin Tossing . 147

4.2 4-Round Delayed-Input NMZK from OWFs 149
4.2.1 Our Protocol: NMZK. 149
4.2.2 Formal Description of Our Delayed-Input NMZK

and Security Proof 154
4.3 Multi-Party Coin-Tossing Protocol 168

4.3.1 4-Round Secure Multi-Party Coin Tossing:
ΠMPCT . 168

4.3.2 ΠMPCT: Informal Description and Security
Intuition . 169

4.3.3 ΠMPCT: Formal Description 171
4.4 Special WIPoK . 177

4.4.1 Improving the Soundness of LS 177

Conclusion 182

Bibliography 185

v

to my family.

2

Abstract

A major goal in the design of cryptographic protocols is to re-
duce the number of communication rounds. Since a cryptographic
protocol usually consists of a composition and interplay of some
subprotocols and cryptographic primitives, the natural approach
to save rounds consists in playing all subprotocols in parallel. Un-
fortunately this approach often fails since a subprotocol in order
to start could require as input the output of another subprotocol.
In such cases the two subprotocols must be played sequentially
therefore penalizing the overall round complexity.

In this thesis we provide delayed-input cryptographic protocols
that can be played in parallel with other subprotocols even in the
above scenario where the output of a subprotocol is required as
input by the other subprotocol. We show the actual impact of
our delayed-input cryptographic protocols by improving the round
efficiency of various applications.

More precisely, this thesis includes the following results:

1. The first OR-composition technique for Σ-protocols that re-
quires only one statement to be fixed when the protocol
starts, while the other statement can be defined in the last
round. Our OR-composition technique does not require com-
putational assumptions.

2. The first efficient 4-round resettable witness indistinguish-
able argument of knowledge. We make use of subexponential
hardness assumptions and of our OR-composition technique.
Previous constructions required 5 rounds.

4

3. The first 4-round delayed-input (i.e., the theorem and the
witness can be used just to compute the last round of the pro-
tocol) one-many (also many-many synchronous) non-malleable
zero-knowledge (NMZK) argument of knowledge ΠNMZK from
one-way functions.

4. The first 4-round (round optimal for black-box simulation)
multi-party coin tossing protocol from one-to-one one-way
functions. This construction makes use of ΠNMZK. Previous
constructions required much strong computational assump-
tions.

5. The first 3-round concurrent non-malleable commitment scheme
from subexponentially hard one-way permutations. The pro-
tocol is also delayed input and public coin.

Introduction

Reducing the round complexity of cryptographic protocols is an
important task in Cryptography. Many results have been pub-
lished in the past in order to show techniques that allow to save
communication rounds. However, the minimal number of rounds
required to realize several fundamental cryptographic primitives is
still an open question.

In this work we investigate and improve the round complexity
of some notorious cryptographic protocols.

We start from the well known witness-indistinguishable proof
system proposed by Lapidot and Shamir [LS90] (LS) that is a pow-
erful tool to improve the round efficiency of applications, since it
allows to specify in the last round the statement that is being
proved (this is a delayed-input property). Because of this spe-
cial feature, many round-optimal protocols have been designed
leveraging on LS. However these round-optimal protocols require
expensive NP reductions due to the fact that LS works for the
NP-completely language Hamiltonicity.

One of the goals of this thesis is to reduce the round com-
plexity of cryptographic protocols while also trying to avoid NP
reductions. We note that efficient witness-indistinguishable proof
systems exist for many interesting languages through the OR-
composition technique of Cramer, Damg̊ard and Schoenmakers
(CDS)[CDS94], that can be applied to all Σ-protocols. The CDS
OR-composition technique has found countless applications as build-
ing block for designing efficient protocols. Unfortunately, the CDS
OR-composition technique does not enjoy the delayed-input prop-
erty and this limitation sometimes penalizes the round complexity

6

of the higher-level protocols that make use of it.

In the first part of this work we show an unconditional OR-
composition technique for Σ-protocols, that requires only one state-
ment to be fixed when the protocol starts, while the other state-
ment can be defined in the last round. This seemingly partial
version of the delayed-input property is sufficient for many appli-
cations, since often one of the statements is fixed before the proof
starts. Concretely, we show how our new OR-composition tech-
nique can directly improve the round complexity of two higher-
level protocols obtaining: 1) an efficient perfect quasi-polynomial
time simulatable argument system that improves the round com-
plexity of a construction of Pass [Pas03] from four to three rounds;
2) an efficient resettable WI argument that improves the round
complexity of a construction of Scafuro and Visconti [SV12] from
five to four rounds.

Then, we move our target to round efficiency of non-malleable
protocols. Indeed, the round complexity of commitment schemes
secure against man-in-the-middle attacks has been the focus of ex-
tensive research for about 25 years. Very recently, Goyal, Pandey
and Richelson [GPR16] showed that 3 rounds are sufficient for
(one-left, one-right) non-malleable commitments, leaving open the
question of obtaining a similar results w.r.t. concurrent man-in-
the-middle adversaries.

In this work we solve the above open problem by showing
how to transform any 3-round (one-left one-right) non-malleable
commitment scheme (with some extractability property) into a 3-
round concurrent non-malleable commitment scheme. Our trans-
form makes use of complexity leveraging and can be instantiated
with the construction of [GPR16] giving a 3-round concurrent
non-malleable commitment scheme from one-way permutations
(OWPs) secure w.r.t. subexponential-time adversaries. We also
show one more candidate to instantiate our compiler, that relies on
sub-exponential OWPs. In more details, we propose a different ap-
proach for 3-round one-one non-malleable commitments that can
be instantiated with a limited form of non-malleability enjoyed
by both a subprotocol of [GRRV14] and a subprotocol of [GPR16]

7

(therefore we can instantiate our result in two completely different
ways).

Our 3-round concurrent non-malleable commitment scheme
can be used for 3-round arguments of knowledge and in turn for
3-round identification schemes secure against concurrent man-in-
the-middle attacks.

After our work, Khurana [Khu17] presented a 3-round concur-
rent non-malleable commitment scheme under number-theoretic
assumptions. Then a work of Khurana, Sahai [KS17] and a work
of Lin, Pass, Soni [LPS17] obtained a 2-round concurrent non-
malleable commitment scheme under stronger complexity-theoretic
assumptions.

Next, keeping in mind that the delayed-input property is im-
portant to improve the round complexity of cryptographic pro-
tocols, we design a non-malleable zero-knowledge argument sys-
tem that needs the statement and the witness only in the last
round. Then, we show how to obtain a construction that is round
optimal when security is prove through black-box simulation for
multi-party coin tossing relying on our new tool. In more details
we start from the following two results in the state-of-the art.

1. 4-round non-malleable zero knowledge (NMZK): Goyal et al.
in [GRRV14] showed the first 4-round one-one NMZK argu-
ment from one-way functions (OWFs). Their construction
requires the prover to know the instance and the witness
already at the 2nd round.

2. 4-round multi-party coin tossing (MPCT): Garg et al.
in [GMPP16] showed the first 4-round protocol for MPCT.
Their result crucially relies on 3-round 3-robust parallel non-
malleable commitments. So far there is no candidate con-
struction for such a commitment scheme under standard
polynomial-time hardness assumptions.

We improve the state-of-the art on NMZK and MPCT by pre-
senting the following two results:

1. a delayed-input 4-round one-many NMZK argument ΠNMZK

from OWFs; moreover ΠNMZK is also a delayed-input many-
many synchronous NMZK argument.

8

2. a 4-round MPCT protocol ΠMPCT from one-to-one OWFs;
ΠMPCT uses ΠNMZK as subprotocol and exploits the special
properties (e.g., delayed input, many-many synchronous) of
ΠNMZK.

Both ΠNMZK and ΠMPCT make use of a special proof of knowledge
that offers additional security guarantees when played in parallel
with other protocols. The new technique behind such a proof of
knowledge is of independent interest.

The results described in this thesis have all been published
in IACR conferences. In particular, our OR-composition appears
in TCC 2016-A ([CPS+16a]). The results on non-malleable com-
mitments are published in CRYPTO 2016 and CRYPTO 2017
([COSV16, COSV17b]). Finally, the 4-round one-many NMZK
argument and his application appear in TCC 2017 ([COSV17a]).

Chapter 1

Definitions

1.1 Notation, Definitions and Tools

We denote the security parameter by λ and use “|” as concatena-
tion operator (i.e., if a and b are two strings then by a|b we denote
the concatenation of a and b). For a finite set Q, x ← Q denotes
the algorithm that chooses x from Q with uniform distribution.
Usually we use the abbreviation ppt that stays for probabilistic
polynomial-time. We use poly(·) to indicate a generic polynomial
function of the input.

A polynomial-time relation Rel (or polynomial relation, in short)
is a subset of {0, 1}∗ × {0, 1}∗ such that membership of (x,w) in
Rel can be decided in time polynomial in |x|. For (x,w) ∈ Rel, we
call x the instance and w a witness for x. For a polynomial-time
relation Rel, we define the NP-language LRel as LRel = {x|∃w :
(x,w) ∈ Rel}. Analogously, unless otherwise specified, for an NP-
language L we denote by RelL the corresponding polynomial-time
relation (that is, RelL is such that L = LRelL). Following [GMY06],

we define L̂Rel to be the input language that includes both LRel

and all well formed instances that do not have a witness. More
formally, LRel ⊆ L̂Rel and membership in L̂Rel can be tested in
polynomial time. We implicitly assume that the verifier of a pro-
tocol for relation Rel executes the protocol only if the common
input x belongs to L̂Rel and rejects immediately common inputs

10 1. Definitions

not in L̂Rel.
Let A and B be two interactive probabilistic algorithms A and

B. We denote by 〈A(α), B(β)〉(γ) the distribution of B’s out-
put after running on private input β with A using private input
α, both running on common input γ. Typically, one of the two
algorithms receives 1λ as input. A transcript of 〈A(α), B(β)〉(γ)
consists of the messages exchanged during an execution where A
receives a private input α, B receives a private input β and both
A and B receive a common input γ. Moreover, we will refer to
the view of A as the messages it received during the execution
of 〈A(α), B(β)〉(γ), along with its randomness and its input. We
denote by Ar an algorithm A that receives as randomness r. We
say that a protocol (A,B) is public coin if B sends to A random
bits only.

A function ν(·) from non-negative integers to reals is called
negligible, if for every constant c > 0 and all sufficiently large
λ ∈ N we have ν(λ) < λ−c.

1.1.1 Standard Definitions

Definition 1.1.1 (One-way function (OWF)). A function f :
{0, 1}? → {0, 1}? is called one way if the following two conditions
hold:

• there exist a deterministic polynomial-time algorithm that on
input y in the domain of f outputs f(y);

• for every ppt algorithm A there exists a negligible function
ν, such that for every auxiliary input z ∈ {0, 1}poly(λ):

Prob
[
y←{0, 1}? : A(f(y), z) ∈ f−1(f(y))

]
< ν(λ).

We say that a OWF f is a one-way permutation (OWP) if f
is a permutation.

We will require that an algorithm that runs in time T̃ = 2λ
α

for some positive constant α < 1, can invert a OWP f . In this
case we say that f is T̃ -breakable.

1.1. Notation, Definitions and Tools 11

Definition 1.1.2 (Computational indistinguishability). Let X =
{Xλ}λ∈N and Y = {Yλ}λ∈N be ensembles, where Xλ’s and Yλ’s
are probability distribution over {0, 1}l, for same l = poly(λ). We
say that X = {Xλ}λ∈N and Y = {Yλ}λ∈N are computationally
indistinguishable, denoted X ≈ Y , if for every ppt distinguisher
D there exist a negligible function ν such that for sufficiently large
λ ∈ N, ∣∣∣Prob

[
t← Xλ : D(1λ, t) = 1

]
−

Prob
[
t← Yλ : D(1λ, t) = 1

] ∣∣∣ < ν(λ).

We note that in the usual case where |Xλ| = Ω(λ) and λ can be
derived from a sample of Xλ, it is possible to omit the auxiliary
input 1λ. In this work we also use the definition of Statistical
Indistinguishability. This definition is the same as Definition 1.1.2
with the only difference that the distinguisher D is unbounded. In
this case use X ≡s Y to denote that two ensembles are statistically
indistinguishable.

We note that in the usual case where |Xλ| = Ω(λ) and the
length λ can be derived from a sample of Xλ, it is possible to omit
the auxiliary input 1λ.

Definition 1.1.3 (Delayed-input proof/argument system). A pair
of ppt interactive algorithms Π = (P ,V) constitutes a proof sys-
tem (resp., an argument system) for an NP-language L, if the
following conditions hold:

Completeness: For every x ∈ L and w such that (x,w) ∈ RelL,
it holds that:

Prob [〈P(w),V〉(x) = 1] = 1.

Soundness: For every interactive (resp., ppt interactive) algo-
rithm P?, there exists a negligible function ν such that for
every x /∈ L and every z:

Prob [〈P?(z),V〉(x) = 1] < ν(|x|).

12 1. Definitions

A proof/argument system Π = (P ,V) for an NP-language L,
enjoys delayed-input completeness if P needs x and w only to
compute the last round of Π and V needs x only to compute the
output. Before that, P and V run having as input only the size of
x.

The notion of delayed-input completeness was defined in [CPS+16a].
We say that the transcript τ of an execution of (P ,V) is accepting
if V outputs 1. An interactive protocol Π = (P ,V) is public coin
if, at every round, V at each round simply tosses a predetermined
number of coins (random challenge) and sends them to P .

Definition 1.1.4 (Witness Indistinguishable (WI)). An argument/proof
system Π = (P ,V), is Witness Indistinguishable (WI) for a rela-
tion Rel if, for every malicious ppt verifier V?, there exists a neg-
ligible function ν such that for all x,w,w′ such that (x,w) ∈ Rel
and (x,w′) ∈ Rel it holds that:∣∣∣Prob [〈P(w),V?〉(x) = 1]−Prob [〈P(w′),V?〉(x) = 1]

∣∣∣ < ν(|x|).

The notion of a perfect WI proof system is obtained by requir-
ing ν(|x|) = 0.

Obviously one can generalize the above definitions of WI to
their natural adaptive-input variants, where the adversarial veri-
fier can select the statement and the witnesses adaptively, before
the prover plays the last round.

In this thesis we also consider a definition where the WI prop-
erty of LS still holds against a distinguisher with running time
bounded by T = 2λ

α
for some constant positive constant α < 1.

In this case we say that the instantiation of LS is T -witness indis-
tinguishable (T -WI).

Definition 1.1.5 (Proof of Knowledge [LP11b]). A proof system
Π = (P ,V) is a proof of knowledge (PoK) for the relation RelL
if there exist a probabilistic expected polynomial-time machine E,
called the extractor, such that for every algorithm P?, there ex-
ists a negligible function ν(λ), every statement x ∈ {0, 1}λ, every
randomness r ∈ {0, 1}? and every auxiliary input z ∈ {0, 1}?,

1.1. Notation, Definitions and Tools 13

Prob [〈P?r (z),V〉(x) = 1] ≤ Prob
[
w ← EP

?
r (z)(x) : (x,w) ∈ RelL

]
+ν(λ).

We also say that an argument system Π is a argument of knowl-
edge (AoK) if the above condition holds w.r.t. any ppt P?.

In this work we also consider the adaptive-PoK property. The
adaptive-PoK property ensures that the PoK property still holds
when a malicious prover can choose the statement adaptively at
the last round. In this case, to be consistent with Definition
1.1.5 where the extractor algorithm E takes as input the statement
proved by P?, we have to consider a different extractor algorithm.
This extractor algorithm takes as input the randomness r of P ,
the randomness r′ of V and outputs the witness for x ∈ L, where
x is selected by P?r when interacting with Vr′ .

In this work we use the 3-round public-coin WI Proof of Knowl-
edge (WIPoK) proposed by Lapidot and Shamir [LS90] (LS proto-
col), that relays on OWPs. LS enjoys delayed-input completeness
since the inputs for both P and V are needed only to play the
last round, and only the length of the instance is needed earlier.
The LS protocol is also sound when a malicious prover can choose
the statement adaptively at the third round. We refer to this
property as adaptive soundness. LS also enjoys the property of
adaptive PoK and adaptive WI. We also use a variant of LS that
relies on OWFs only. The additional round is indeed needed to
instantiate the commitment scheme used in LS under any OWF.
The reader can find more details in Section 4.4.

1.1.2 Number-Theoretic Assumptions

We define group generator algorithms to be probabilistic polynomial-
time algorithms that take as input security parameter 1λ and out-
put (G, q, g), where G is (the description of) a cyclic group of order
q and g is a generator of G. We assume that membership in G and
its group operations can be performed in time polynomial in the
length of q and that there is an efficient procedure to randomly

14 1. Definitions

select elements from G. Moreover, with a slight abuse of notation,
we will use G to denote the group and its description.

We consider the sub-exponential versions of the DLog and of
the DDH assumptions that posit the hardness of the computa-
tion of discrete logarithms and of breaking the Decisional Diffie-
Hellman assumption with respect to the group generator algorithm
IG that, on input λ, randomly selects a λ-bit prime q such that
p = 2q + 1 is also prime and outputs the order q group G of the
quadratic residues modulo p along with a random generator g of
G. The strong versions of the two assumptions posit the hardness
of the same problems even if p (and q) and generator g are chosen
adversarially. More precisely:

Assumption 1 (DLog Assumption). There exists a constant α such
that for every probabilistic algorithm A running in time 2λ

α
the

following probability is a negligible function of λ

Prob
[

(G, q, g)← IG(1λ); y ← Zq : A(gy) = y
]
.

Assumption 2 (Strong DLog Assumption [CD08]). Consider a pair
of probabilistic algorithms (A0, A1) such that A0, on input 1λ,
outputs (G, q, g), where G is the group of the quadratic residues
modulo p, where p is prime, p = 2q + 1, q is a λ-bit prime and
g ∈ G, along with some auxiliary information aux. There exists a
constant α such that for any such pair (A0, A1) running in time
2λ

α
the following probability is a negligible function of λ:

Prob
[

((G, q, g), aux)← A0(1λ); y ← Zq : A1(gy, aux) = y
]
.

We next introduce the DDH Assumption and the Strong DDH
Assumption which imply the DLog Assumption and the Strong
DLog Assumption, respectively.

Assumption 3 (DDH Assumption). There exists a constant α such
that, for every probabilistic algorithm A running in time 2λ

α
, the

following is a negligible function of λ∣∣Prob
[

(G, q, g)← IG(1λ);x, y, z ← Zq : A((G, q, g), gx, gy, gz) = 1
]
−

Prob
[

(G, q, g)← IG(1λ);x, y, z ← Zq : A((G, q, g), gx, gy, gxy) = 1
] ∣∣.

1.1. Notation, Definitions and Tools 15

Assumption 4 (Strong DDH Assumption). Consider a pair of prob-
abilistic algorithms (A0, A1) such that A0, on input 1λ, outputs
(G, q, g), where G is the group of the quadratic residues modulo
p, where p is prime, p = 2q + 1, q is a λ-bit prime and g ∈ G,
along with some auxiliary information aux. There exists a con-
stant α such that, for any such pair (A0, A1) running in time 2λ

α
,

the following is a negligible function of λ∣∣Prob
[
{((G, q, g), aux)← A0(1λ);x, y, z ← Zq :

A1((G, q, g), gx, gy, gz, aux) = 1
]
−

Prob
[
((G, q, g), aux)← A0(1λ);x, y, z ← Zq :

A1((G, q, g), gx, gy, gxy, aux) = 1
]∣∣

Following [HKR+14] and [CPS+16b] we also use the following
DDH variant.

Assumption 5 (1DDH). There exists a constant α such that, for
every probabilistic algorithm A running in time 2λ

α
, the following

is a negligible function of λ∣∣∣Prob
[

(G, q, g)← IG(1λ);α, β ← Zq : A((G, q, g), gx, gy, gxy+1) = 1
]
−

Prob
[

(G, q, g)← IG(1λ);α, β ← Zq : A((G, q, g), gx, gy, gxy) = 1
] ∣∣∣.

In the rest of the work we will refer to a tuple T =
(
(G, q, g), A =

gx, B = gy, C = gxy
)

as a DH tuple, to T =
(
(G, q, g), A = gx, B =

gy, C = gxy+1
)

as a 1-non-DH tuple and T =
(
(G, q, g), A =

gx, B = gy, C = gz
)

as a non-DH tuple.

Lemma 1.1.6. Assumption 5 is implied by the DDH assumption.

Proof. It is easy to see that under the DDH assumption, randomly
selected 1-non-DH tuples are indistinguishable from randomly se-
lected non-DH tuples. Indeed, let T = ((G, q, g), A,B,C) be any
tuple and consider tuple T ′ = ((G, q, g), A,B,C · g). Then we
have that if T is a randomly selected DH tuple, then T ′ is a ran-
domly selected 1-non-DH tuple; whereas, if T is a randomly se-
lected non-DH tuple then T ′ is statistically close to a randomly

16 1. Definitions

selected non-DH tuple. Moreover, by transitivity, we have that,
under the DDH assumption, randomly selected 1-non-DH tuples
are indistinguishable from randomly selected DH tuples.

1.1.3 Σ-Protocols

We consider 3-move protocols Π for a polynomial-time relation
Rel. Protocol Π is played by a prover P and a verifier V that
receive a common input x. P receives as an additional private
input a witness w for x and the security parameter 1λ in unary.
The protocol Π has the following form:

1. P executes algorithm P1 on common input x, private input
w, security parameter 1λ and randomness R obtaining a =
P1(x,w, 1λ;R) and sends a to V .

2. V , after receiving a from P , chooses a random challenge
c← {0, 1}l and sends c to P .

3. P executes algorithm P2 on input x,w,R, c and sends z ←
P2(x,w,R, c) to V .

4. V executes and outputs V(x, a, c, z) (i.e., V ’s decision to ac-
cept (b = 1) or reject (b = 0)).

We call (P1, P2,V) the algorithms associated with Π and l the
challenge length such that, wlog, the challenge space {0, 1}l is
composed of 2l different challenges.

The triple (a, c, z) of messages exchanged is called a 3-move
transcript. A 3-move transcript is honest if a, z correspond to the
messages computed running the honest algorithms, respectively,
of P1 and P2, and c is a random string, in {0, 1}l. A 3-move
transcript (a, c, z) is accepting for x if and only if V(x, a, c, z) = 1.
Two accepting 3-move transcripts (a, c, z) and (a′, c′, z′) for an
instance x constitute a collision if a = a′ and c 6= c′.

Definition 1.1.7 (Σ-protocol [CDS94]). A 3-move protocol Π with
challenge length l is a Σ-protocol for a relation Rel if it enjoys the
following properties:

1.1. Notation, Definitions and Tools 17

1. Completeness. If (x,w) ∈ Rel then all honest 3-move tran-
scripts for (x,w) are accepting.

2. Special Soundness. There exists an efficient algorithm
Extract that, on input x and a collision for x, outputs a
witness w such that (x,w) ∈ Rel.

3. Special Honest-Verifier Zero Knowledge (SHVZK).
There exists a PPT simulator algorithm Sim that takes as
input x ∈ LRel, security parameter 1λ and c ∈ {0, 1}l and
outputs an accepting transcript (a, c, z) for x where c is the
challenge. Moreover, for all l-bit strings c, the distribution
of the output of the simulator on input (x, c) is computa-
tionally indistinguishable from the distribution of the 3-move
honest transcript obtained when V sends c as challenge and
P runs on common input x and any private input w such
that (x,w) ∈ Rel.

We say that Π is Perfect when the two distributions are iden-
tical.

Not to overburden the descriptions of protocols and simulators,
we will omit the specification of the security parameter when it is
clear from the context.

In the rest of the thesis, we will call a 3-move protocol that
enjoys Completeness, Special Soundness and Honest-Verifier Zero
Knowledge (HVZK1) a Σ̃-protocol. The next theorem shows that
SHVZK can be added to a 3-move protocol with HVZK without
any significant penalty in terms of efficiency.

Theorem 1 ([Dam10]). Suppose relation Rel admits a 3-move pro-
tocol Π′ that is HVZK (resp., perfect HVZK). Then Rel admits
a 3-move protocol Π that is SHVZK (resp., perfect SHVZK) and
has the same efficiency.

1Recall that HVZK requires the existence of a simulator that generates a
full transcript. This is a seemingly weaker requirement than SHVZK where
the challenge is an input for the simulator.

18 1. Definitions

Proof. Let l be the challenge length of Π′, let (P ′1, P
′
2,V

′) be the
algorithms associated with Π′ and let Sim′ be the simulator for Π′.
Consider the following algorithms.

1. P1, on input (x,w) ∈ Rel, security parameter 1λ and ran-
domness R1, parses R1 as (r1, c

′′) where |c′′| = l, computes
a′ ← P ′1(x,w, 1λ; r1), and outputs a = (a′, c′′).

2. P2, on input (x,w) ∈ Rel, R1 and randomness R2 parses R1

as (r1, c
′′), c, sets c′ = c⊕c′′, computes z′ ← P ′2(x,w, r1, c

′;R2),
and sends it to V .

3. V, on input x, a = (a′, c′′), c and z′, returns the output of
V′(x, a′, c⊕ c′′, z′) to decide whether to accept or not.

Consider the following PPT simulator Sim that, on input an in-
stance x and a challenge c, runs Sim′ on input x and obtains
(a′, c′, z′). Then Sim sets c′′ = c ⊕ c′ and a = (a′, c′′) and outputs
(a, c, z′). It is easy to see that if Sim′ is a HVZK (resp. per-
fect HVZK) simulator for Π′ then Sim is a SHVZK (resp. perfect
SHVZK) simulator for Π.

Theorem 2. ([Dam10]) Let Π = (P ,V) be a Σ-protocol for rela-
tion RelL with negligible soundness error2, then Π is a proof of
knowledge for RelL.

Definition 1.1.8 (Delayed-input Σ-protocol). A Σ-protocol Π =
(P ,V) with P running PPT algorithms (P1, P2) is an delayed-input
Σ-protocol if P1 takes as input only the length of the common in-
stance and P2 takes as input the common instance x, the witness
w, the randomness R1 used by P1 and the challenge c received from
the verifier.

Definition 1.1.9 (Delayed-witness Σ-protocol). A Σ-protocol Π =
(P ,V) for a relation Rel with associated algorithms (P1, P2,V) is
a delayed-witness Σ-protocol if P1 takes as input only the common
instance x.

2The soundness error represents the probability of a malicious prover to
convince the verifier of a false statement.

1.1. Notation, Definitions and Tools 19

In a Chameleon Σ-protocol, the prover can compute the first
message by using the simulator and thus knowing only the input
but not the witness. Once the challenge has been received, the
prover can compute the last message (thus completing the inter-
action) by using the witness w (which is thus used only to com-
pute the last message) and the coin tosses used by the simulator
to compute the first message.

Definition 1.1.10 (Chameleon Σ-protocol). A Σ-protocol Π for
polynomial-time relation Rel is a Chameleon Σ-protocol if there
exists an SHVZK simulator Sim and an algorithm Psim satisfying
the following property:

Delayed Indistinguishability: for all pairs of challenges c0 and c1

and for all (x,w) ∈ Rel, the following two distributions {R←
{0, 1}|x|d ; (a, z0)← Sim(x, c0;R); z1 ← Psim((x, c0, R), w, c1) :
(x, a, c1, z1)} and {(a, z1)← Sim(x, c1) : (x, a, c1, z1)} are in-
distinguishable, where Sim is the SHVZK simulator and d is
such that Sim, on input an λ-bit instance, uses at most λd

random coin tosses. If the two distributions above are iden-
tical then we say that delayed indistinguishability is perfect,
and Π is a Perfect Chameleon Σ-protocol.

We remark that a Chameleon Σ-protocol Π has two modes
of operations: the standard mode when P runs P1 and P2, and
a delayed mode when P uses Sim and Psim. Moreover, observe
that since Sim is a simulator for Π, it follows from the delayed-
indistinguishability property that, for all challenges c and c̃ and
common inputs x, distribution

{R← {0, 1}|x|d ; (a, z̃)← Sim(x, c̃;R); z ← Psim((x, c̃, R), w, c) : (a, c, z)}

is indistinguishable from

{R← {0, 1}|x|d ; a← P1(x,w;R); z ← P2(x,w,R, c) : (a, c, z)}.

That is, the two modes of operations of Π are indistinguishable.
This property make us able to claim that if Π is WI when a WI

20 1. Definitions

challenger interacts with an adversary using (P1, P2), then Π is WI
even when the pair (Sim,Psim) is used. Finally, we observe that
Chameleon Σ-protocols do exist and Schnorr’s protocol [Sch89] is
one example. When considering the algorithms associated to a
Chameleon Σ-protocol, we will add Psim.

Theorem 3 ([CDS94]). Every Perfect Σ̃-protocol3 is Perfect WI.

In this work we are studying delayed-input protocols, therefore
we also consider the SHVZK property and the special-soundness
property that hold when a player has the freedom of specify the
theorem and the witness in the last round of the protocol.

Definition 1.1.11. A delayed-input 3-round protocol Π = (P ,V)
for relation RelL enjoys adaptive-input special soundness if there
exists a polynomial time algorithm such that, for any pair of ac-
cepting transcripts (a, c1, z1) for input x1 and (a, c2, z2) for input x2

with c1 6= c2, outputs witnesses w1 and w2 such that (x1, w1) ∈ RelL
and (x2, w2) ∈ RelL.

Definition 1.1.12. A delayed-input 3-round protocol Π = (P ,V)
for relation RelL enjoys adaptive-input Special Honest Verifier Zero-
knowledge (adaptive-input Special HVZK) if there exists a two
phases ppt simulator algorithm Sim that works as follow:

1. a ← Sim(1λ, c, κ; ρ), where 1λ is the security parameter, c
is the challenge κ is the size of the instance to be proved and
the randomness ρ;

2. z← Sim(x, ρ)4, where x is the instance to be proved.
Π is adaptive-input Special HVZK if any x ∈ L and for any c ∈
{0, 1}λ, the distribution of the transcripts (a, c, z), computed by
Sim, is computationally indistinguishable from the distribution of
a transcript obtained when V sends c as challenge and P runs on
common input x and any w (available only in the third round)
such that (x,w) ∈ RelL.

3We remind the reader that we call a 3-move protocol that enjoys Com-
pleteness, Special Soundness and Honest-Verifier Zero Knowledge (HVZK) a
Σ̃-protocol.

4To not overburden the notation we omit the randomness when we use the
adaptive-input Special HVZK5 simulator

1.2. Commitment Schemes 21

1.2 Commitment Schemes

Definition 1.2.1 (Commitment Scheme). Given a security pa-
rameter 1λ, a commitment scheme (Sen,Rec) is a two-phase pro-
tocol between two ppt interactive algorithms, a sender Sen and a
receiver Rec. In the commitment phase Sen on input a message m
interacts with Rec to produce a commitment com. In the decom-
mitment phase, Sen sends to Rec a decommitment information d

such that Rec accepts m as the commitment of com.
Formally, we say that CS = (Sen,Rec) is a perfectly binding

commitment scheme if the following properties hold:
Correctness:

- Commitment phase. Let com be the commitment of the
message m (i.e., com is the transcript of an execution
of CS = (Sen,Rec) where Sen runs on input a message
m). Let d be the private output of Sen in this phase.

- Decommitment phase6. Rec on input m and d accepts
m as decommitment of com.

Hiding: for a ppt adversary A and a randomly chosen bit b ∈
{0, 1}, consider the following hiding experiment ExpHidingbA,CS(λ):

- Upon input 1λ, the adversary A outputs a pair of mes-
sages m0,m1 that are of the same length.

- Sen on input the message mb interacts with A to pro-
duce a commitment of mb.

- A outputs a bit b′ and this is the output of the experi-
ment.

For any ppt adversary A, there exist a negligible function
ν, such that:∣∣∣Prob

[
ExpHiding0

A,CS(λ) = 1
]
−

Prob
[

ExpHiding1
A,CS(λ) = 1

] ∣∣∣ < ν(λ).

6In this work we consider a non-interactive decommitment phase only.

22 1. Definitions

Binding: for every commitment com generated during the com-
mitment phase by a possibly malicious unbounded sender
Sen? interacting with an honest receiver Rec, there exists at
most one message m that Rec accepts as decommitment of
com.

We also consider the definition of a commitment scheme where
the hiding property still holds against an adversary A running in
time bounded by T = 2λ

α
for some positive constant α < 1. In this

case we will say that a commitment scheme is T -hiding. We will
also say that a commitment scheme is T̃ -breakable to specify that
an algorithm running in time T̃ = 2λ

β
, for some positive constant

β < 1, recovers the (if any) only message that can be successfully
decommitment.

In the rest of the work we also use a non-interactive commit-
ment schemes, with secure parameter λ. In this case we consider
a commitment scheme as a pair of ppt algorithms (NISen,NIRec)
where:

- NISen takes as input (m;σ), where m ∈ {0, 1}poly(λ) is the mes-
sage to be committed and σ ← {0, 1}λ is randomness, and
outputs the commitment com and the decommitment dec;

- NIRec takes as input (dec, com, m) and outputs 1 if it accepts
m as a decommitment of com and 0 otherwise.

3-Round extractable commitment schemes. Informally,
a 3-round commitment scheme is extractable if there exists an ef-
ficient extractor that having black-box access to any efficient ma-
licious sender ExSen? that successfully performs the commitment
phase, outputs the only committed string that can be successfully
decommitted.

Definition 1.2.2 (Extractable Commitment Scheme [GLOV12]).
A 3-round perfectly (resp. statistically) binding commitment scheme
ExCS = (ExSen,ExRec) is an extractable commitment scheme if
given oracle access to any malicious sender ExSen?, there exists
an expected ppt extractor ExtCom that outputs a pair (τ, σ?) such
that the following properties hold:

1.2. Commitment Schemes 23

- Simulatability: τ is identically distributed to the view of
ExSen? (when interacting with an honest ExRec) in the com-
mitment phase.

- Extractability: the probability that there exists a decommit-
ment of τ to a message m′, where m 6= m′ is 0 (resp. negli-
gible).

If the definition holds only against honest sender, then we said
that the commitment scheme is honest extractable.

1.2.1 t-Instance-Dependent Trapdoor Commit-
ment Schemes

In this section, for integer t ≥ 2, we define the notion of a t-
Instance-Dependent Trapdoor Commitment scheme associated with
a polynomial-time relation Rel.

Definition 1.2.3 (t-Instance-Dependent Trapdoor Commitment
scheme). Let t ≥ 2 be an integer and let Rel be a polynomial-
time relation. A t-Instance-Dependent Trapdoor Commitment (a
t-IDTC, in short) scheme for Rel with message space M is a triple
of PPT algorithms (TCom,TDec,TFake) where TCom is the ran-
domized commitment algorithm that takes as input security pa-
rameter 1λ, an instance x ∈ L̂Rel (with |x| = poly(λ)) and a mes-
sage m ∈ M and outputs commitment com, decommitment dec,
and auxiliary information rand; TDec is the verification algorithm
that takes as input (x, com, dec,m) and decides whether m is the
decommitment of com; TFake is the randomized equivocation algo-
rithm that takes as input (x,w) ∈ Rel, messages m1 and m2 in M ,
commitment com of m1 with respect to instance x and associated
auxiliary information rand and produces decommitment informa-
tion dec2 such that TDec, on input (x, com, dec2,m2), outputs 1.

A t-Instance-Dependent Trapdoor Commitment scheme has the
following properties:

- Correctness: for all x ∈ L̂Rel, all m ∈M , it holds that

Prob
[
(com, dec, rand)← TCom(1λ, x,m) :

TDec(x, com, dec,m) = 1
]

= 1.

24 1. Definitions

- t-Special Extract: there exists an efficient algorithm ExtractTCom
that, on input x, commitment com, pairs (deci,mi)

t
i=1 of

openings and messages such that

– for 1 ≤ i < j ≤ t we have that mi 6= mj;

– TDec(x, com, deci,mi) = 1, for i = 1, . . . , t;

outputs w such that (x,w) ∈ Rel.

- Hiding (resp., Perfect Hiding): for every PPT (resp.,
unbounded) adversary A there exists a negligible function ν
(resp., ν(·) = 0) such that, for all x ∈ LRel and all m0,m1 ∈
M , it holds that

Prob
[
b← {0, 1}; (com, dec, rand)← TCom(1λ, x,mb) :

b = A(x, com,m0,m1)
]
≤ 1

2
+ ν(λ).

- Trapdoorness: the following two families of probability dis-
tributions are indistinguishable:

{(com, dec1, rand)← TCom(1λ, x,m1);

dec2 ← TFake(x,w,m1,m2, com, rand) : (com, dec2)}

and

{(com, dec2, rand)← TCom(1λ, x,m2) : (com, dec2)}

over all families {(x,w,m1,m2)} such that (x,w) ∈ Rel and
m1,m2 ∈M .

The perfect trapdoorness property requires the two probabil-
ity distributions to coincide for all (x,w,m1,m2) such that
(x,w) ∈ Rel and m1,m2 ∈M .

Definition 1.2.4 (WI t-Instance-Dependent Trapdoor Commit-
ment scheme). A t-Instance-Dependent Trapdoor Commitment scheme
is a WI t-Instance-Dependent Trapdoor Commitment if the follow-
ing property holds:

1.2. Commitment Schemes 25

- WI-Trapdorness: for every PPT (resp., unbounded) ad-
versary A there exists a negligible function ν (resp., ν(·) = 0)
such that, for all x ∈ LRel, all m1,m2 ∈M and for all w0, w1

s.t. (x,w0) ∈ Rel and (x,w1) ∈ Rel, it holds that

Prob
[
b← {0, 1}; (com, dec, rand)← TCom(1λ, x,m1),

(w1, w2,m2)← A(x, com) dec′ ← TFake(x,wb,m1,m2, com, rand) :

b = A(x, com, dec′)
]
≤ 1

2
+ ν(λ).

Definition 1.2.5 (Perfectly Binding t-Instance-Dependent Trap-
door Commitment scheme). A t-Instance-Dependent Trapdoor Com-
mitment scheme is a Perfectly Binding t-Instance-Dependent Trap-
door Commitment if the following property holds:

- Binding: for all x /∈ L̂Rel and for every commitment com

there exists at most one message m ∈ M for which there
exists a valid decommitment dec; that is, such that
TDec(x, com, dec,m) = 1.

1.2.2 Non-Malleable Commitment Schemes

Here we follow [LPV08]7. Let Π = (Sen,Rec) be a statistically
binding commitment scheme. Consider MiM adversaries that are
participating in left and right sessions in which poly(λ) commit-
ments take place. We compare between a MiM and a simulated
execution. In the MiM execution the adversary A, with auxil-
iary information z, is simultaneously participating in poly(λ) left
and right sessions. In the left sessions the MiM adversary A in-
teracts with Sen receiving commitments to values m1, . . . ,mpoly(λ)

using identities id1, . . . , idpoly(λ) of its choice. In the right ses-
sion A interacts with Rec attempting to commit to a sequence of
related values m̃1, . . . , m̃poly(λ) again using identities of its choice
ĩd1, . . . , ĩdpoly(λ). If any of the right commitments is invalid, or

7In this work we will consider only NM commitments w.r.t. commitments.

26 1. Definitions

undefined, its value is set to ⊥. For any i such that ĩdi = idj
for some j, set m̃i =⊥ (i.e., any commitment where the adversary
uses the same identity of one of the honest senders is considered

invalid). Let mim
A,m1,...,mpoly(λ)

Π (z) denote a random variable that
describes the values m̃1, . . . , m̃poly(λ) and the view of A, in the
above experiment. In the simulated execution, an efficient sim-
ulator S directly interacts with Rec. Let simS

Π(1λ, z) denote the
random variable describing the values m̃1, . . . , m̃poly(λ) committed
by S, and the output view of S; whenever the view contains in the
i-th right session the same identity of any of the identities of the
left session, then m̃i is set to ⊥.

In all the work we denote by δ̃ a value associated with the
right session (where the adversary A plays with a receiver NMRec)
where δ is the corresponding value in the left session. For example,
the sender commits to v in the left session while A commits to ṽ
in the right session.

Definition 1.2.6 (Concurrent NM commitment scheme [LPV08]).
A commitment scheme is concurrent NM with respect to commit-
ment (or a many-many NM commitment scheme) if, for every ppt
concurrent MiM adversary A, there exists a ppt simulator S such
that for all mi ∈ {0, 1}poly(λ) for i = {1, . . . , poly(λ)} the following
ensembles are computationally indistinguishable:

{mim
A,m1,...,mpoly(λ)

Π (z)}z∈{0,1}? ≈ {simS
Π(1λ, z)}z∈{0,1}? .

As in [LPV08] we also consider relaxed notions of concur-
rent non-malleability: one-many and one-one NM commitment
schemes. In a one-many NM commitment scheme, A participates
in one left and polynomially many right sessions. In a one-one (i.e.,
a stand-alone secure) NM commitment scheme, we consider only
adversaries A that participate in one left and one right session.
We will make use of the following proposition of [LPV08].

Proposition 1.2.7. Let (Sen,Rec) be a one-many NM commit-
ment scheme. Then, (Sen,Rec) is also a concurrent (i.e., many-
many) NM commitment scheme.

1.2. Commitment Schemes 27

Definition 1.2.8 (weak NM commitment scheme). A commit-
ment scheme is weak one-one (resp., one-many) non-malleable if
it is a one-one (resp., one-many) NM commitment scheme with
respect to MiM adversary that when receiving a well formed com-
mitment in the left session, except with negligible probability com-
putes well formed commitments (i.e., the computed commitments
can be opened to messages 6= ⊥) in the right sessions.

In the rest of the thesis, following [GRRV14], we assume that
identities are known before the protocol begins, though strictly
speaking this is not necessary, as the identities do not appear in
the protocol until after the first committer message. The MiM
can choose his identity adversarially as long as it differs from the
identities used by honest senders. As already observed in previous
work, when the identity is selected by the sender the id-based
definitions guarantee non-malleability as long as the MiM does not
behave like a proxy (an unavoidable attack). Indeed the sender
can pick as id the public key of a signature scheme signing the
transcript. The MiM will have to use a different id or to break
the signature scheme.

Definition 1.2.9 (synchronousNM commitment scheme). A com-
mitment scheme is synchronous one-one (resp., one-many) non-
malleable if it is one-one (resp., one-many) NM with respect to
synchronous MiM adversaries8.

We also consider the definition of a NM commitment scheme
secure against a MIM A running in time bounded by T = 2λ

α
for

some positive constant α < 1. In this case we will say that a com-
mitment scheme is T -non-malleable. We will also say that an NM
commitment scheme is T̃ -breakable to specify that an algorithm
which runs in time T̃ = 2λ

β
, for some positive constant β < 1, can

maul the committed message.
For some of our propose we use a 4-round synchronous honest-

extractable non-malleable commitment. That is, a commitment

8Following [LP11b] we say that a MiM is synchronous if it “aligns” the left
and the right sessions; that is, whenever it receives message i on the left, it
directly sends message i on the right, and vice versa.

28 1. Definitions

scheme that enjoys 1) non-malleability only against synchronous
adversaries, 2) is extractable w.r.t. honest sender (honest-extractable)
and 3) is public-coin. The non-malleable commitment Π pro-
vided in Figure 2 of [GPR16] enjoys non-malleability against syn-
chronous adversary (as proved in Theorem 1 of [GPR16]), is pub-
lic coin and can be instantiated in 4 rounds relying on OWFs
(the protocol can be squeezed to 3 rounds using OWPs). Also,
as stated in Section 5 of [GPR16], given a commitment computed
by the sender of Π one can rewind the sender in order to obtain
a new accepting transcript with the same first round (resp., first
two rounds if we consider the instantiation that relies on OWFs)
in order to extract a message m. Moreover, if the sender is honest,
then it is possible to claim that m is the actual message committed
by the sender. We remark that in this case we do not require any
form of extractability against malicious senders.

1.3 Delayed-Input Non-Malleable Zero

Knowledge.

Following [LP11a] we use a definition that gives to the adversary
the power of adaptive-input selection. More precisely, in [LP11a]
the adversary selects the instance and then a Turing machine out-
puts the witness in exponential time. Here we slightly deviate
(similarly to [DDO+01]) by 1) requiring the adversary to output
also the witness and 2) allowing the adversary to make this choice
at the last round. This choice is due to our application where
delayed-input non-malleable zero knowledge is used. Indeed we
will show that this definition is enough for our propose. More
precisely our definition (similarly to [COSV17b]) we will allow the
adversary to explicitly select the statement, and as such the ad-
versary will provide also the witness for the prover. The simulated
game however will filter out the witness so that the simulator will
receive only the instance. This approach strictly follows the one
of [DDO+01] where adaptive-input selection is explicitly allowed
and managed in a similar way. As final remark, our definition

1.3. Delayed-Input Non-Malleable Zero Knowledge. 29

will require the existence of a black-box simulator since a non-
black-box simulator could retrieve from the code of the adversary
the witness for the adaptively generated statement. The non-
black-box simulator could then run the honest prover procedure,
therefore canceling completely the security flavor of the simulation
paradigm.

Let Π = (P ,V) be a delayed-input interactive argument system
for a NP-language L with witness relation RelL. Consider a ppt
MiM adversary A that is simultaneously participating in one left
session and poly(λ) right sessions. Before the execution starts,
P ,V and A receive as a common input the security parameter in
unary 1λ. Additionally A receives as auxiliary input z ∈ {0, 1}?.
In the left session A verifies the validity of a statement x (chosen
adaptively in the last round of Π) by interacting with P using
identity id ofA’s choice. In the right sessionsA proves the validity
of the statements x̃1 . . . , x̃poly(λ)

9 (chosen adaptively in the last
round of Π) to the honest verifiers V1, . . . ,Vpoly(λ), using identities
ĩd1, . . . , ĩdpoly(λ) of A’s choice.

More precisely in the left session A, before the last round of Π
is executed, adaptively selects the statement x to be proved and
the witness w, s.t. (x,w) ∈ RelL, and sends them to P10.

Let ViewA(1λ, z) denote a random variable that describes the
view of A in the above experiment.

Definition 1.3.1 (Delayed-input NMZK). A delayed-input argu-
ment system Π = (P ,V) for an NP-language L with witness rela-
tion RelL is delayed-input non-malleable zero knowledge (NMZK)
if for any MiM adversary A that participates in one left session
and poly(λ) right sessions, there exists a expected ppt machine
S(1λ, z) such that:

1. The probability ensembles {S1(1λ, z)}λ∈N,z∈{0,1}? and
{ViewA(1λ, z)}λ∈N,z∈{0,1}? are computationally indistinguish-
able over λ, where S1(1λ, z) denotes the first output of S(1λ, z).

9We denote (here and in the rest of the work) by δ̃ a value associated with
the right session where δ is the corresponding value in the left session.

10The witness w sent by A will be just ignored by the simulator.

30 1. Definitions

2. Let (View, w1, . . . , wpoly(λ)) denote the output of S(1λ, z),
for some z ∈ {0, 1}?. Let x̃1, . . . , x̃poly(λ) be the right-session
statements appearing in View and let id and ĩd1, . . . , ĩdpoly(λ)

be respectively the identities used in the left and right sessions
appearing in View. Then for every i ∈ {1, . . . , poly(λ)}, if
the i-th right session is accepting and id 6= ĩdi, then w̃i is
s.t. (x̃i, w̃i) ∈ RelL.

The above definition of NMZK allows the adversary to select
statements adaptively in the last round both in left and in the right
sessions. Therefore any argument system that is NMZK according
to the above definition enjoys also adaptive-input argument of
knowledge. Following [LP11b] we say that a MiM is synchronous
if it “aligns” the left and the right sessions; that is, whenever it
receives message i on the left, it directly sends message i on the
right, and vice versa. In our work we also consider the notion
of delayed-input many-many synchronous NMZK, that is equal
to the notion of delayed-input NMZK except that polynomially
many left and right sessions are played in synchronously.

In the rest of the work, following [GRRV14], we assume that
identities are known before the protocol begins, though strictly
speaking this is not necessary, as the identities do not appear in the
protocol until after the first prover message. The MiM can choose
his identity adversarially as long as it differs from the identities
used by honest senders. As already observed in previous works,
when the identity is selected by the sender the id-based definitions
guarantee non-malleability as long as the MiM does not behave
like a proxy (an unavoidable attack). Indeed the sender can pick
as id the public key of a signature scheme signing the transcript.
The MiM will have to use a different id or to break the signature
scheme.

1.4 Two-Party Computation

Here we recall some useful definitions for one of our application.
Our Multi-Party Computation (MPC) protocol for coin tossing

1.4. Two-Party Computation 31

is secure in the same model used in [GMPP16], therefore some
definitions are taken almost verbatim from [GMPP16]. Always
following Garg et al. we only recall the security definition for the
the two party case. The description naturally extends to multi
party case as well (details can be found in [Gol09]).

Two-party protocol. A two-party protocol problem is cast
by specifying a random process that maps pairs of inputs to pairs
of outputs (one for each party). We refer to such a process as a
functionality and denote it F : {0, 1}∗×{0, 1}∗ → {0, 1}∗×{0, 1}∗
where F = (F1, F2). That is, for every pair of inputs (x, y), the
output-pair is a random variable (F1(x, y), F2(x, y)) ranging over
pairs of strings. The first party (with input x) wishes to obtain
F1(x, y) and the second party (with input y) wishes to obtain
F2(x, y).

Adversarial behavior. Loosely speaking, the aim of a secure
two-party protocol is to protect an honest party against dishonest
behavior by the other party. In this work, we consider malicious
adversaries who may arbitrarily deviate from the specified pro-
tocol. When considering malicious adversaries, there are certain
undesirable actions that cannot be prevented. Specifically, a party
may refuse to participate in the protocol, may substitute its lo-
cal input (and use instead a different input) and may abort the
protocol prematurely. One ramification of the adversary’s ability
to abort, is that it is impossible to achieve fairness. That is, the
adversary may obtain its output while the honest party does not.
In this work we consider a static corruption model, where one of
the parties is adversarial and the other is honest, and this is fixed
before the execution begins.

Communication channel. In our result we consider a secure
simultaneous message exchange channel in which all parties can
simultaneously send messages over the channel at the same com-
munication round but allowing a rushing adversary. Moreover, we
assume an asynchronous network11 where the communication is
open and delivery of messages is not guaranteed. For simplicity,

11The fact that the network is asynchronous means that the messages are
not necessarily delivered in the order which they are sent.

32 1. Definitions

we assume that the delivered messages are authenticated. This
can be achieved using standard methods.

Execution in the ideal model. An ideal execution proceeds
as follows. Each party obtains an input, denoted w (w = x for
P1, and w = y for P2). An honest party always sends w to the
trusted party. A malicious party may, depending on w, either
abort or send some w′ ∈ {0, 1}|w| to the trusted party. In case it
has obtained an input pair (x, y), the trusted party first replies
to the first party with F1(x, y). Otherwise (i.e., in case it receives
only one valid input), the trusted party replies to both parties with
a special symbol ⊥. In case the first party is malicious it may,
depending on its input and the trusted party’s answer, decide to
stop the trusted party by sending it⊥ after receiving its output. In
this case the trusted party sends ⊥ to the second party. Otherwise
(i.e., if not stopped), the trusted party sends F2(x, y) to the second
party. Outputs: An honest party always outputs the message
it has obtained from the trusted party. A malicious party may
output an arbitrary (probabilistic polynomial-time computable)
function of its initial input and the message obtained from the
trusted party.

Let F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ be a function-
ality where F = (F1, F2) and let S = (S1, S2) be a pair of non-
uniform probabilistic expected polynomial-time machines (repre-
senting parties in the ideal model). Such a pair is admissible if for
at least one i ∈ {0, 1} we have that Si is honest (i.e., follows the
honest party instructions in the above-described ideal execution).
Then, the joint execution of F under S in the ideal model (on input
pair (x, y) and security parameter λ), denoted IDEALF,S(z)(1

λ, x, y)
is defined as the output pair of S1 and S2 from the above ideal
execution.

Execution in the real model. We next consider the real
model in which a real (two-party) protocol is executed (and there
exists no trusted third party). In this case, a malicious party may
follow an arbitrary feasible strategy; that is, any strategy imple-
mentable by non-uniform probabilistic polynomial-time machines.
In particular, the malicious party may abort the execution at any

1.4. Two-Party Computation 33

point in time (and when this happens prematurely, the other party
is left with no output). Let F be as above and let Π be a two-
party protocol for computing F . Furthermore, let A = (A1, A2)
be a pair of non-uniform probabilistic polynomial-time machines
(representing parties in the real model). Such a pair is admissible
if for at least one i ∈ {0, 1} we have that Ai is honest (i.e., follows
the strategy specified by Π). Then, the joint execution of Π un-
der A in the real model, denoted REALΠ,A(z)(1

λ), is defined as the
output pair of A1 and A2 resulting from the protocol interaction.

Definition 1.4.1 (secure two-party computation). Let F and Π
be as above. Protocol Π is said to securely compute F (in the
malicious model) if for every pair of admissible non-uniform prob-
abilistic polynomial-time machines A = (A1, A2) that run with
auxiliary input z for the real model, there exists a pair of admis-
sible non-uniform probabilistic expected polynomial-time machines
S = (S1, S2) (that use z as auxiliary input) for the ideal model,
such that:

REALΠ,A(z)(1
λ) ≈ IDEALf,S(z)(1

λ).

34 1. Definitions

Chapter 2

Improved OR Composition

2.1 Overview of the Chapter

Witness-indistinguishable (WI) proofs. WI1 proofs are fun-
damental for the design of cryptographic protocols, particularly
when they are also proofs of knowledge (PoK). In a WIPoK the
prover P proves knowledge of a witness certifying the veracity
of a statement x ∈ L to a verifier V . WIPoKs can be used di-
rectly in some applications (e.g., in identification schemes) or can
be a building block for stronger security notions (e.g., for zero-
knowledge proofs using the FLS [FLS90] paradigm or for round-
optimal secure computation [KO04]).

Round complexity of cryptographic protocols has been exten-
sively studied both for its practical relevance and for its natu-
ral and conceptual interest. Regarding WIPoKs, we know from
Blum’s protocol [Blu86a] that 3-round WIPoKs exist for all NP
languages under the sole assumptions that one-way permutations
exist. This result is obtained by designing a WIPoK for the
language of Hamiltonian graphs and then by leveraging on the
NP-completeness of the language of Hamiltonian graphs. Under
stronger cryptographic assumptions, 2-round WI proofs, called
ZAPs, and non-interactive WI (NIWI) proofs have been shown

1We will use WI to mean both “witness indistinguishability” and “witness
indistinguishable”.

36 2. Improved OR Composition

in [DN00, GOS06, BP15]. Neither ZAPs nor NIWI proofs are
PoKs.

SinceNP reductions are extremely expensive, several practical
interactive PoKs have been designed for languages that are used in
real-world cryptographic protocols (e.g., for proving knowledge of
a discrete logarithm (DLog)). The study of such ad-hoc protocols
mainly concentrates on a standardized form of a 3-round PoK
referred to as Σ-protocol [Dam10, Sch89].

Σ-protocols. A Σ-protocol for an NP language L with witness
relation RL is a 3-round proof system jointly run by a prover P
and a verifier V in which P proves knowledge of a witness w for
x ∈ L. In a Σ-protocol the only message sent by V is a random
string called challenge. Such proof systems have two very useful
properties: special soundness, which is a strong form of proof of
knowledge, and special honest-verifier zero knowledge (SHVZK).
The latter property basically says the following: if the challenge
is known in advance, then by just knowing also the theorem, it
is possible to generate an accepting transcript without using the
witness. This is formalized through the existence of a special sim-
ulator, called the SHVZK simulator that, on input a theorem x
and a challenge c, will output (a, z) such that (a, c, z) is an ac-
cepting 3-message transcript for x and is indistinguishable from
the transcript produced by the honest prover when the challenge
is c. Blum’s protocol for Graph Hamiltonicity is an example of a
Σ-protocol. Another popular example of Σ-protocols is Schnorr’s
protocol [Sch89] for proving knowledge of a discrete logarithm.

The security provided by the SHVZK property is clearly insuf-
ficient as it gives no immediate guarantees against verifiers who
deviates from the protocol. Despite of this, the success of Σ-
protocols and their impact in various constructions [Lin15, LP15,
GK15, AOS13, SV12, PS96] is a fact. This is due to a break-
through of Cramer et al. [CDS94] that adds WI to the security of
Σ-protocol.

OR composition of Σ-protocols. Let L be a language that
admits a Σ-protocol ΠL. In [CDS94] it is shown how to use ΠL

2.1. Overview of the Chapter 37

and its properties to construct a new Σ-protocol, ΠOR
L , for prov-

ing the OR composition of theorems in L avoiding the NP re-
duction by crucially exploiting the honest-verifier zero-knowledge
(HVZK2) property of ΠL. The rationale behind the transforma-
tion can be informally explained as follows. The prover wishes
to prove a statement of the form ((x0 ∈ L) ∨ (x1 ∈ L)). The
näıve idea of simply running ΠL twice in parallel would not work
because the prover knows only one of the witnesses, say wb, and
cannot compute two accepting transcripts without knowing w1−b.
However, due to the HVZK property, the prover can generate an
accepting transcript for x1−b ∈ L even without knowing w1−b, by
running the HVZK simulator Sim associated with ΠL. Indeed, Sim
“only” needs in input the theorem x1−b and will output the entire
transcript, challenge included. The trick is then to generate the
challenges for the two executions of ΠL, in such a way that the
prover can control the challenge of exactly one of them (but not
both), and set it to the value generated by Sim. Note that, if run-
ning the algorithm of Sim is as efficient as running the algorithm
of P , then the composed protocol is efficient. We stress that this
OR-composition technique preserves SHVZK and will refer to it
as the CDS-OR technique.

A very interesting property of this transformation, besides the
fact that it does not need NP reduction, is that if Sim is a simula-
tor for perfect HVZK then ΠOR

L is WI (this was shown in [CDS94]).
This result was further extended by Garay et al. [GMY06] that
noted that the CDS-OR technique can be used also for Σ-protocols
that are computational HVZK. In this case the relation proved is
slightly different, namely, starting with a relation RelL and in-
stances x0 and x1, the resulting ΠOR

L protocol is computational
WI for the relation RelOR

L = {((x0, x1), w) : ((x0, w) ∈ RelL ∧ (x1 ∈
L)) ∨ ((x1, w) ∈ RelL ∧ (x0 ∈ L))}.
Delayed-input proofs. Often in cryptographic protocols there
is a preamble phase that has the purpose of establishing, at least

2HVZK requires the existence of a simulator that by receiving in input the
theorem gives in output an accepting triple (a, c, z). Clearly HVZK is implied
by SHVZK.

38 2. Improved OR Composition

in part, a statement to be proven with a WI proof. In such cases,
since one of the statements is fully specified only when the pream-
ble is completed, the WI proof can start only after the preamble
ends. Hence, the overall round complexity of protocols that follow
this paradigm amounts to the sum of the round complexity of the
preamble and of the WI proof.

In [LS90]3, Lapidot and Shamir (and later on Feige et al.
in [FLS90]) show a 3-round proof of knowledge for Hamiltonian
Graphs which has the special property that enjoys the delayed in-
put property. In more details, the prover can compute the first
round of the proof, without knowing the theorem to be proved
(that is, the graph) but only needs to know its size (that is, the
number of vertices). Such a 3-round protocol is a Σ-protocol (and
thus satisfies the SHVZK property) and is a WI proof. We will
refer to this protocol as LS.

The delayed-input property directly improves the round com-
plexity of all the cryptographic protocols that follow the paradigm
described above. The reason is that now the WI proof can start
even if the preamble that generates the statement is not completed
yet. It is worthy to note that in many applications the pream-
ble serves as a mean to generate some trapdoor theorem, that is
used only in the security proof. The “honest” theorem instead is
typically known already at the beginning of the protocol. This
technique has been used extensively and, most notably, it led to
the celebrated FLS paradigm that upgrades any WI proof system
into a zero-knowledge (ZK) proof system.

The delayed-input property of LS has been instrumental to pro-
vide round-efficient constructions from general assumptions, such
as: 4-round (optimal) secure 2PC where only one player gets the
output (5 rounds when both players get the output) [KO04], 4-
round resettable WI arguments [YZ07, SV12], 4-round (optimal)
resettable ZK for NP in the BPK model [YZ07, SV12].

Despite being so influential to achieve round efficiency for cryp-
tographic protocols, the power of LS unfortunately vanishes as
soon as practical constructions are desired. Indeed, similarly to

3See [OV12] for a detailed description of [LS90].

2.1. Overview of the Chapter 39

Blum’s protocol, LS is crucially based on specific properties of
Hamiltonian graphs. Thus, when used to prove more natural lan-
guages, which is the case of most of the applications using WI
proofs, it requires to perform rather inefficient NP reductions.

Efficient protocols and limits of the CDS-OR technique.
A natural question is what happens if we want to avoid the NP
reduction and we try to use the CDS-OR technique to construct
delayed-input adaptive WI proofs. A bit more specifically, we
know that there exist Σ-protocols that are delayed input. Schnorr’s
protocol [Sch89] for DLog is such an example since the first mes-
sage can be computed without knowing the instance, but only a
group generator. Thus the question is what happens if we apply
the CDS-OR technique to an delayed-input Σ-protocol. Do we
obtain a WI Σ-protocol that is delayed input as well?

Unfortunately, the answer is negative. The CDS-OR technique
does not preserve the delayed-input property, not even when used
to compose two Σ-protocols that are both delayed input. To see
why, recall that the CDS-OR composition technique when applied
to Σ-protocol ΠL for language L requires the prover to compute
two accepting transcripts, one of which is computed by running
the HVZK simulator Sim. Recall that Sim needs in input the
theorem to be proved. Hence, to prove knowledge of a witness
for the compound theorem (x0 ∈ L ∨ x1 ∈ L), the prover, who
knows one witness, say wb, needs to know also x1−b already at the
first round to be able to run the simulator. Thus, in the CDS-OR
technique the prover can successfully complete the protocol if and
only if both4 instances are specified already at the first round.

Because of this missing feature, the CDS-OR technique has
limited power in allowing one to obtain round-efficient/optimal
cryptographic protocols, compared to the number of rounds ob-
tained by using LS. As such, in some cases when focusing on effi-
cient constructions, the best round-complexity that we can achieve
using efficient Σ-protocols and avoiding NP reductions needs at

4To see why, note that the WI property requires that the prover would be
able to prove any of the two theorems, and thus potentially use the simulator
on either x0 or x1.

40 2. Improved OR Composition

least one additional round, therefore requiring at least 5-round if
one wants to match the previously mentioned applications (e.g.,
5-round resettable ZK for NP in the BPK model [YZ07, SV12] and
5-round resettable WI [YZ07, SV12]) argument systems.

Additionally, we note that the CDS-OR technique is the bot-
tleneck in the round-complexity of the 4-round straight-line per-
fect simulatable in quasi-polynomial time argument shown by Pass
in [Pas03]. This argument uses quasi-polynomial time simula-
tion and, potentially, it would only need three rounds as any Σ-
protocol. The additional first round is required precisely to de-
fine the trapdoor theorem. Hence, the following natural question
arises:

Given a language L with an delayed-input Σ-protocol
ΠL, is it possible to design an efficient Witness Indis-
tinguishable Σ-protocol ΠL

OR for proving knowledge of a
witness certifying that (x0 ∈ L∨ x1 ∈ L) that does not
require knowledge of both x0 and x1 to play the first
round?

2.1.1 Our Contribution

In this work we answer the above question positively for a large
class of Σ-protocols that includes all Σ-protocols used in efficient
constructions. Specifically, we propose a new OR-composition
technique for Σ-protocols that relaxes the need of having both
instances fixed before the Σ-protocol starts. Our technique allows
the composition of Σ-protocols for different languages and leads
to improved round complexity in previous efficient constructions
based on CDS-OR technique. Namely, we describe the follow-
ing two results that we obtain by making use of our new OR-
composition technique:

- Efficient 3-round straight-line perfect quasi-polynomial time
simulatable argument system for a large class of useful lan-
guages. The previous construction required four rounds [Pas03].

2.1. Overview of the Chapter 41

- Efficient 4-round rWI argument system. Previous construc-
tions required five rounds [YZ07, SV12].

Our new technique can also be used to replace LS towards
obtaining efficient round-optimal resettable zero-knowledge argu-
ments in the BPK model (using the constructions of [YZ07, SV12]).

Finally, we provide a precise classification of the Σ-protocols
that can be used in our new OR-composition technique. In the
following paragraphs we first provide a high-level description our
OR-composition technique, then we discuss the applications in
more details.

2.1.2 Our Techniques

Overview. We start by defining the setting we are considering.
Let L0 and L1 be any pair of languages admitting Σ-protocols Π0

and Π1. We want to construct a Σ-protocol ΠOR
L for the language

L = L0 ∨ L1. An instance of L is a pair (x0, x1) and we want
only x0 to be specified before ΠOR

L starts while x1 is specified only
upon the last round of the protocol5. We assume that Π1 is an
delayed-input Σ-protocol and thus the first prover message of Π1

can be computed without knowing x1. As mentioned earlier this
property is satisfied by popular Σ-protocols such as the ones for
Discrete Log, Diffie-Hellman triples, and of course, LS itself.

Now, recall that the problem with the CDS-OR technique was
that a prover needs to run Sim to compute the first round of the
protocol, and this necessarily requires knowledge of both theorems
before the protocol starts. We want instead that the prover uses
only knowledge of x0.

We solve this problem by introducing a new OR-composition
technique that does not require the prover to run Sim on x1 already
in the first round. Instead, our technique allows the prover to wait
and take action only in the third round when x1 is finally defined.

Our starting point is the well known fact that given any Σ-
protocol there exists an instance-dependent trapdoor commitment

5Like LS, we will just need the size of x1 to be known when ΠOR
L starts.

42 2. Improved OR Composition

(IDTC) scheme where the witness for the membership of the in-
stance in the language can be used as a trapdoor to open a com-
mitted message as any desired message, as in [DG03]. Our next
observation is that, instead of having the prover send the first
round for protocol Π1 in the clear, we can have him send a com-
mitment to it, and such commitment can be computed using an
instance-dependent trapdoor commitment based on Π0 with re-
spect to instance x0. Recall that this is possible, as in our setting
we assume that Π1 is an delayed-input Σ-protocol, so the prover
can honestly compute the first message of Π1 without knowing x1.
Therefore, the first round of our ΠOR

L protocol, is simply an IDTC
of a honest Π1’s first round.

Later on, upon receiving the challenge c from the verifier, and
after the theorem x1 is defined, the prover computes the third
round as follows. If she has received a witness for x0, then she will
run Sim on input (x1, c) to compute an accepting transcript of Π1

for x1. Then, using the witness w0 she will equivocate the com-
mitment sent in the first round, according to the message output
by Sim. Otherwise, if she has received a witness for x1 then she
does not need to equivocate: she will honestly open the commit-
ment, and honestly compute the third message of Π1. Therefore,
the third round of ΠOR

L , simply consists of an opening of the IDTC
together with the third message of Π1.

Now note that this idea works only if we have a special IDTC
scheme that has the following strong trapdoor property: a sender
can equivocate even a commitment that has been computed hon-
estly. Unfortunately, this property is not satisfied in general by any
trapdoor commitment based on Σ-protocols, but only for some.
This would restrict the class of Σ-protocols that we can use as
L0 in our technique. For example, this class would not contain
Blum’s protocol.

Our next contribution is the construction of IDTC schemes
that satisfy this strong trapdoor property, for a large class of Σ-
protocols. Towards this goal, we define the notion of a t-IDTC
scheme which are IDTCs for which the ability to open a commit-
ment in t ways implies knowledge of a witness for the instance

2.1. Overview of the Chapter 43

associated with the commitment. Next, we construct 2-IDTC and
3-IDTC schemes based on two different classes of Σ-protocols, the
union of which includes all the Σ-protocols that are commonly
used in cryptographic protocols. Finally, we provide a general
OR-composition technique for any pair of languages L0 and L1

such that L0 has a t-IDTC scheme and L1 has an delayed-input
Σ-protocol.

t-instance-dependent trapdoor commitment scheme. For
integer t ≥ 2, a t-IDTC scheme for a polynomial-time relation Rel
admitting Σ-protocol ΠRel is a triple (TCom,TDec,TFake) where
TCom, TDec are the honest commitment/decommitment proce-
dures and TFake is the equivocation procedure that, given a wit-
ness for an instance x, equivocates any commitment with respect
to x computed by TCom. The crucial differences between a t-IDTC
scheme and a regular trapdoor commitment scheme are:
(a) the trapdoor property is strong in the sense that knowledge
of the trapdoor (that is, the witness of the instance x) allows to
equivocate even commitments that have been honestly computed;
(b) the binding property is relaxed: in a t-IDTC scheme, the

sender can open the same commitment in t − 1 different ways,
even without the trapdoor. This relaxation allows us to build an
IDTC scheme from a wider class of Σ-protocols, which will cover
all the Σ-protocols that have been used in literature.

Constructing a 2-IDTC scheme. A 2-IDTC scheme can be
straight-forwardly constructed from any Σ-protocol Π0 that has
the following property: even if the first message a0 was computed
by the SHVZK simulator Sim, an accepting z0 can be efficiently
computed, for every challenge c0, by using knowledge of the wit-
ness and of the randomness used by Sim to produce a0. We call
the Σ-protocols that satisfy this property, chameleon Σ-protocols,
and we denote by Psim the special prover strategy that can answer
any challenge even starting from a simulated a0.

More precisely, given a chameleon Σ-protocol Π0 for a language
L0, one can construct a 2-IDTC scheme as follows. Let x0 ∈ L0.
To commit to a message m, the sender runs Sim(x0,m; r0) and

44 2. Improved OR Composition

obtains a0, z0. The commitment is the value a0. The opening is
the pair m, z0. The commitment is accepted iff (x0, a0,m, z0) is
accepting. To equivocate a0, as a message m′, run the special
prover algorithm Psim((x0,m, r0), w0,m

′) and obtain an accepting
z0.

Constructing a 3-IDTC scheme. We now discuss a different
committing strategy that works for Σ-protocols in which the sim-
ulated first message a0 can only be continued for the challenge
specified by Sim, even if a witness is made available. Blum’s pro-
tocol for Hamiltonicity is an example of a Σ-protocol with this
property.

To commit to m, the sender sends a pair (a0, a
′
0) where, with

probability 1/2, a0 is obtained by running Sim(x0,m) while a′0 is
computed by running the prover of Π0, and with probability 1/2
the above order is inverted. One can think of a commitment as
composed of two threads: a simulated thread and a honest thread.
To open the commitment, the prover sends m and z∗, and the
verifier accepts the decommitment if m, z∗ are accepting for one
of the threads; namely, the verifier checks that either (a0,m, z

∗)
or (a′0,m, z

∗) is accepting for x0 ∈ L0. To equivocate (a0, a
′
0) to a

message m′, the sender simply continues the thread of the honest
prover, using m′ as challenge and computes z∗ using the witness.
Clearly, a malicious sender can open in two different ways even
when x0 6∈ L. Nevertheless, three openings allow the extraction of
the witness for x0.

When our OR-composition technique is instantiated with a 3-IDTC
scheme we have that the resulting protocol is still WI since no
power is added to the verifier. However the protocol is not a Σ-
protocol since the special-soundness property is not guaranteed.
The reason is that, in a 3-IDTC scheme the sender can open the
commitment in two different ways even without having the trap-
door (i.e., the witness for x0 ∈ L0). Therefore, for any challenge c
sent by V , the fact that the commitment of a1 can be opened in
two ways gives a malicious prover P∗ two chances (a1, c, z1) and
(a′1, c, z

′
1) to successfully complete the protocol for a false state-

2.1. Overview of the Chapter 45

ment x1. Nevertheless, this extra freedom does not hurt soundness
as both openings (i.e., a1 and a′1) are fixed in advance, and thus
when x1 is not an instance of the language there exist only two
challenges c′ and c′′ that would allow P∗ to succeed. When the
challenge is long enough the success probability of P∗ is therefore
negligible.

Our construction when starting from a 3-IDTC scheme is 3-
special sound (i.e., answering to 3 challenges allows one to compute
a witness efficiently), and therefore it is a proof of knowledge when
the challenge is long enough.

2.1.3 Discussion

What really matters. Our new OR-composition technique works
only when the theorem that has not been defined yet (i.e., x1,
admits an delayed-input Σ-protocol). We stress that this is not a
limitation for the applications that we have in mind. In fact, in all
efficient protocols that make use of delayed-input proofs that we
are aware of, the preamble has always the purpose of generating
the trapdoor theorem. In practical scenarios6 L1 usually corre-
sponds to DLog or DDH. The fact that we can not have Blum’s
Σ-protocol for L1 when L1 is the language of Hamiltonian graphs,
is therefore not relevant as the actual language of interest is L0.

Comparison with the CDS-OR technique. We remark that
even in the extremely simplified case where:

1. the two instances x0 and x1 are for the same language L,

2. L admits an delayed-input Σ-protocol ΠL which is also SHVZK,

3. ΠL is chameleon and thus one can compute the first message
using Sim and then continue with the prover to answer to
arbitrary challenges,

6These are the only scenarios of interest for our work since if practical-
ity is not desired than one can just rely on the LS Σ-protocol and use NP
reductions.

46 2. Improved OR Composition

4. the prover knows in advance the witness w and instance xb
for which she will be able to honestly complete the protocol,

the CDS-OR technique fails in obtaining a Σ-protocol (or a WIPoK)
for the OR composition of instances of L if any one of the instances
is not known when the protocol starts.

Beyond Schnorr’s protocol. The works of Cramer [Cra96],
Cramer and Damg̊ard [CD98], and Maurer [Mau09, Mau15] showed
that a protocol (referred to as the Pre-Image Protocol) for proving
knowledge of a pre-image of a group homomorphism unifies and
generalizes a large number of protocols in the literature. Classic
Σ-protocols, such as Schnorr’s protocol [Sch89] and the Guillou-
Quisquater protocol [GQ88], are particular cases of this abstrac-
tion. We show that the Pre-Image Protocol is a chameleon Σ-
protocol and can thus be used in our construction.

What is in and what is out. As mentioned previously, the
Σ-protocol for L1 can be any delayed-input Σ-protocol. We now
discuss which Σ-protocols can be used to instantiate L0 in our OR
transform. For this purpose, we identify four classes of Σ-protocols
and we prove that any Σ-protocol that falls in any of the first three
classes can be used in our OR transform (by instantiating either
a 2-IDTC or a 3-IDTC scheme).

We also identify a class of Σ-protocols that is not suitable for
any of our techniques. Luckily, we have no example of natural Σ-
protocols that fall in this class, and in order to prove the separation
we had to construct a very contrived scheme. The four classes are
listed below.

• (Class 1) Σ-protocols that are Chameleon and do not require
the witness to compute the first round. This class of Σ-
protocols can be used to construct both 2-IDTC and 3-IDTC
schemes.

• (Class 2) Σ-protocols that are Chameleon and require the
prover to use the witness already to compute the first round.
This class of Σ-protocols can be used to construct a 2-IDTC
scheme.

2.1. Overview of the Chapter 47

• (Class 3) Σ-protocols that are not Chameleon but do not
require the prover to use the witness in the first round.
This class of Σ-protocols can be used to construct a 3-IDTC
scheme.

• (Class 4) Σ-protocols that are not Chameleon and require
the witness to be used already in the first round. This class
of Σ-protocols can not be used in our techniques.

The delayed-input features. We stress here that our techniques
allow to start and complete an efficient OR composition of two
Σ-protocols (with the discussed restrictions) provided that one
instance x0 is known and another one x1 will be known later.
Having a witness for the first or the second instance always allows
P to convince V . This contrasts with the CDS-OR technique
where knowing a witness for x0 would block P immediately since
P would need immediately x1 to continue, but x1 will not be
available until the third round.

2.1.4 Applications

Our new OR-composition technique does not provide the full power
of LS because it needs one theorem to be known before the pro-
tocol starts. However, as we show below, this seemingly weaker
property suffices to improve the round-complexity of some of the
previous constructions based on the CDS-OR technique. Such con-
structions aim to efficiently7 transform a Σ-protocol for a relation
Rel into a round-efficient argument with more appealing features.

Efficient 3-round straight-line perfect quasi-polynomial
time simulatable argument system. We achieve this result
directly, using the construction of Pass [Pas03] and replacing the
CDS-OR technique with our technique. As a result the first round
of the verifier of [Pas03] can be postponed, therefore reducing the

7By efficiently we mean that no NP reduction is needed and only a con-
stant number of modular exponentiations are added. We do not discuss the
practicality of the resulting constructions.

48 2. Improved OR Composition

round complexity from four to three rounds. Our construction
works for all languages admitting a perfect chameleon Σ-protocol.

Efficient 4-round resettable WI arguments. Security against
reset attacks has been extensively studied in literature [CGGM00,
DN00, COSV12, OV12, COP+14]. It is well known [CGGM00]
how to transform a Σ-protocol into a resettable WI protocol: the
verifier commits to the challenge c using a perfectly hiding com-
mitment scheme and sends it to the prover in the first round; the
prover then computes its messages with randomness derived by
applying a pseudo-random function (PRF) on the commitment
received. Soundness follows directly from the soundness of the Σ-
protocol due to the perfect hiding of the commitment. WI follows
from the fact that the protocol is zero knowledge against a stand-
alone verifier and thus concurrent WI. Then the use of the PRF
and the fact that all messages of the verifier are committed in ad-
vance upgrades concurrent WI to resettable WI. This approach,
however, generates a 5-round protocol.

Achieving the same result efficiently, namely, avoiding NP re-
ductions, in only four rounds is non-trivial. The reason is that if we
attempt to replace the 2-round perfectly hiding commitment with
a non-interactive commitment, we lose the unconditional sound-
ness property, and then it is not clear how to argue about compu-
tational soundness. More specifically, black-box extraction of the
witness is not possible (black-box extraction and resettable WI can
not coexist) and the adversarial prover could try to maul the com-
mitment of the verifier and adaptively generate the first round of
the Σ-protocol. In fact, even allowing complexity-leveraging argu-
ments (and thus, straight-line extraction), constructing a 4-round
WI argument system that avoids NP reductions and adds only
a few modular exponentiations to the underlying Σ-protocol has
remained so far an open problem.

We solve this problem by using our new OR-composition tech-
nique. We have the verifier commit to the challenge in the first
round, but then later, instead of sending the decommitment, she
will directly send the challenge and prove that either the chal-
lenge is the correct opening of the commitment or she solved some

2.1. Overview of the Chapter 49

hard puzzle (in our construction, computing the Discrete Log of a
random group element chosen by the prover). The puzzle is sent
by the prover in the second round and it will be solved by the
reduction in super-polynomial time in the proof of soundness.

This trick has been proposed in literature in various forms [Pas03,
DPV04] and we are using the form used in [DPV04] where the
puzzle is sent only in the second round. [DPV04] must use the
LS transform and therefore needs NP-reduction. As explained
earlier, going through LS was necessary as the CDS-OR transform
can be applied only if both statements are fixed at the beginning.

Our new OR transform solves precisely this problem, and it
allows the verifier to start the proof before the puzzle is defined,
and this proof can be done efficiently without NP reductions.

Resettable WI follows from the CGGM transformation and
the WI property of the proof generated by the prover. The groups
used for the commitment of the challenge and for the puzzle sent
by the prover, will be chosen appropriately so that the hardness
of computing discrete logarithms are different and guarantee that
our reductions work (i.e., we make use of complexity leveraging).

4-Round (optimal round) resettable ZK argument sys-
tems in the BPK model. Our new OR-composition technique
can find various other applications. Indeed, wherever there is a
round-efficient (but otherwise inefficient) construction based on
the use of LS without a corresponding efficient construction with
the same round complexity, then our technique constitutes a pow-
erful tool towards achieving computationally efficient and round-
efficient constructions. For instance, the 4-round (optimal round)
resettable ZK argument systems in the BPK model provided in [YZ07,
SV12], consists (roughly) of the parallel execution of a (resettable)
WI protocol from the prover to the verifier, where the prover
proves that either x ∈ L or he knows the secret key associated
to the public identity of the verifier, and a 3-round (resettably-
sound) WI protocol from the verifier to the prover, where V proves
knowledge of the secret key associate to its public key, or knowl-
edge of the solution of a puzzle computed by the prover. When
instantiated with efficient Σ-protocols, such construction requires

50 2. Improved OR Composition

5-rounds, where the additional round, from the prover to the ver-
ifier, is used to send the puzzle necessary for the verifier to start a
proof using the CDS-OR technique. We observe that this setting
closely resembles the setting of the 4-round resettable WI (rWI)
protocol that we provide in this work. As such, one could directly
instantiate the proof provided by the prover of the BPK model, with
our 4-round rWI protocol, and have the verifier just prove knowl-
edge of its secret keys, thus avoiding the need of the additional
first round.

Other applications. In [BKZZ16] the authors introduce a new
two-party protocol called Proof of Work or Knowledge (PoWorK).
In this setting a prover can convince a verifier that he has either
performed a work or he knows a witness for a public theorem.
Also, a malicious verifier is unable to distinguish which strategy
has been used by the prover. As also mentioned in [BKZZ16],
our OR-composition can be used to implements PoWorK based
on discrete logarithm assumption.

2.2 OR Composition of Σ̃-protocols: the

CDS-OR Transform

In this section we describe the CDS-OR [CDS94] transform in de-
tails. Let Π be a Σ̃-protocol for polynomial-time relation Rel with
challenge length l, associated algorithms (P1, P2,V) and HVZK
simulator Sim. The CDS-OR transform constructs a Σ̃-protocol
ΠOR with associated algorithms (POR

1 ,POR
2 ,VOR

Σ) for the relation

RelOR =
{

((x0, x1), w) :
(

(x0, w) ∈ Rel ∧ x1 ∈ L̂Rel

)
OR
(

(x1, w) ∈ Rel ∧ x0 ∈ L̂Rel

)}
.

We describe ΠOR below.

Protocol 1. CDS-OR Transform.
Common input: (x0, x1).
P’s private input: (b, w) with b ∈ {0, 1} and (xb, w) ∈ Rel.

2.2. OR Composition of Σ̃-protocols: the CDS-OR Transform 51

POR
1 ((x0, x1), (b, w);R1). Set ab = P1(xb, w;R1).

Compute (a1−b, c1−b, z1−b)← Sim(x1−b). Output (a0, a1).

POR
2 ((x0, x1), (b, w), c, R1). Set cb = c ⊕ c1−b. Compute zb ←

P2(xb, w, cb, R1). Output ((c0, c1), (z0, z1)).

VOR
Σ ((x0, x1), (a0, a1), c, ((c0, c1), (z0, z1))). VOR

Σ accepts if and only
if c = c0 ⊕ c1 and V(x0, a0, c0, z0) = 1 and V(x1, a1, c1, z1) =
1.

Theorem 4 ([CDS94, GMY06]). If Π is a Σ̃-protocol for Rel then
ΠOR is a Σ̃-protocol for RelOR and is WI for relation

Rel′OR = {((x0, x1), w) : ((x0, w) ∈ Rel ∧ x1 ∈ LRel)

OR((x1, w) ∈ Rel ∧ x0 ∈ LRel)}.

Moreover, if Π is a Perfect Σ̃-protocol for Rel then ΠOR is WI
for RelOR.

It is possible to extend the above construction to handle two
different relations Rel0 and Rel1 that admit Σ̃-protocols. Indeed
by Theorem 21, we can assume, wlog, that Rel0 and Rel1 have Σ̃-
protocols Π0 and Π1 with the same challenge length. Hence, the
construction outlined above can be used to construct Σ̃-protocol
ΠOR

Rel0,Rel1
for relation

RelOR = {((x0, x1), w) : ((x0, w) ∈ Rel ∧ x1 ∈ L̂Rel)

OR((x1, w) ∈ Rel ∧ x0 ∈ L̂Rel)}.

We have the following theorem.

Theorem 5. If Π0 and Π1 are Σ̃-protocols for Rel0 and Rel1, re-
spectively, then ΠOR

Rel0,Rel1
is a Σ̃-protocol for relation RelOR and is

WI for relation

Rel′OR = {((x0, x1), w) : ((x0, w) ∈ Rel ∧ x1 ∈ LRel0

OR((x1, w) ∈ Rel ∧ x0 ∈ LRel1)}.

Moreover, if Π0 and Π1 are Perfect Σ̃-protocols for Rel0 and Rel1
then ΠOR is Perfect WI for RelOR.

52 2. Improved OR Composition

We remark that if Π0 and Π1 are Σ-protocols then the CDS-
OR transform yields a Σ-protocol for RelOR and the equivalent of
Theorem 5 (and of Theorem 4) holds.

2.3 Constructing t-IDTC Scheme

2.3.1 Constructing a 2-IDTC Scheme from a Chameleon
Σ-protocol.

Let Π = (P ,V) with associated algorithms (P1, P2,V,Psim) be a
Chameleon Σ-protocol for polynomial-time relation Rel with a se-
curity parameter 1λ. Let l be the challenge length of Π and
let Sim be a SHVZK simulator associated to Π. We construct
a 2-IDTC scheme (TComΠ,TDecΠ,TFakeΠ) for Rel with messages
space M = {0, 1}l for x ∈ L̂R as follows.

Protocol 2. 2-IDTC scheme from Chameleon Σ-protocol Π.

- TComΠ(1λ, x,m1): On input x and m1 ∈ M , pick ran-
domness R and compute (a, z) ← Sim(x,m1;R). Output
com = a, dec = z and rand = R;

- TDecΠ(x, com, dec,m1): On input x, com, dec and m1, run
b = V(x, com,m1, dec) and accept m1 as the decommitted
message iff b = 1.

- TFakeΠ: On input (x,w) ∈ Rel, messages m1,m2 ∈ M ,
commitment com for m1 and rand for com, output z =
Psim((x,m1, rand), w,m2).

Theorem 6. If Π is a Chameleon Σ-protocol for Rel then Protocol 2
is a 2-IDTC scheme for Rel. Moreover, if Π is Perfect then so is
Protocol 2.

Proof. Correctness follows directly from the Completeness prop-
erty of Π.

2.3. Constructing t-IDTC Scheme 53

2-Special-Extract. Suppose com is a commitment with respect to
instance x and let dec1 and dec2 be two openings of com as mes-
sages m1 6= m2, respectively. Then, triplets (com,m1, dec1) and
(com,m2, dec2) are accepting transcripts for Π on common input x
with the same first round; that is, they constitute a collision for Π.
Therefore, we define algorithm ExtractTCom to be the algorithm
that runs algorithm Extract (that exists by the special soundness
of Π) on input the collision. ExtractTCom returns the witness for
x computed by Extract.
(Perfect) Trapdoorness. It follows from the (perfect)
delayed-indistinguishability property of Π as well as the (perfect)
Hiding property.

Theorem 7. If Π is a Chameleon Σ-protocol for Rel that enjoys the
(perfect) WI property, then the 2-IDTC scheme for Rel is (perfect)
WI 2-IDTC for Rel.

Proof. We recall that if Π is (perfect) WI he is (perfect) WI even
when the pair (Sim,Psim) is used (that is when 2-IDTC is playing
in the trapdoor mode). If exists an adversary that can contradict
the WI-Trapdorness of WI 2-IDTC it is possible to use it to make
a reduction to the WI of Π. More in details, let x ∈ L̂R be the
statement on input to the procedures of 2-IDTC. The reduction
works as a proxy between the adversary and the challenger of
the WI of Π (CH). The reduction chooses at random a messages
m1 ∈M and sends it to CH receiving back a. Then the reduction
send com = a to the adversary. Upon receiving m2 ∈ M and the
witnesses w0, w1 s.t. (x,w0) ∈ Rel and (x,w1) ∈ Rel from the
adversary the reduction sends m2, w0, w1 to CH. The reduction
obtains z from CH and he sets dec = z. The reduction sends dec
to the adversary and outputs the output of the adversary.

If Π is perfect WI then the WI 2-IDTC enjoys the perfect WI-
Trapdorness property.

Theorem 8. If Π is a Chameleon Σ-protocol for Rel, then the 2-
IDTC scheme for Rel is a perfect binding 2-IDTC for Rel.

54 2. Improved OR Composition

Proof. The property of perfect binding follows from the special
soundness of Π.

2.3.2 Constructing a 3-IDTC Scheme.

Let Rel be a polynomial-time relation as above admitting a delayed-
witness Σ-protocol Π with associated algorithms (P1, P2,V) and
security parameter 1λ. Let l denote the challenge length of Π.
We construct a 3-IDTC scheme for message space M = {0, 1}l for
x ∈ L̂R, as follows.

Protocol 3. 3-IDTC scheme.

- TComΠ: On input 1λ, x and m1 ∈ M , pick randomness R
and compute (a0, z) ← Sim(x,m1) and a1 ← P1(x;R). Let
com0 = a0 and com1 = a1. Output com = (comb, com1−b) for
a randomly selected bit b, dec = z and rand = R.

- TDecΠ: On input x, com = (com0, com1), dec and m1, ac-
cept m1 if and only if either V(x, com0,m1, dec) = 1 or
V(x, com1,m1, dec) = 1.

- TFakeΠ: On input (x,w) ∈ Rel, messages m1,m2 ∈ M ,
commitment com for m1 and rand for com, output z ←
P2(x,w, rand,m2).

Theorem 9. If Π is a delayed-witness Σ-protocol for Rel, with
the associated algorithms (P1, P2,V), then Protocol 3 is a 3-IDTC
scheme for Rel. Moreover, if Π is Perfect then so is Protocol 3.

Proof. Correctness follows from the completeness of Π.
3-Special Extract. It follows from the special soundness of Π.

Assume that the committer generates 3 accepting openings dec1,
dec2 and dec3, for distinct messages m1, m2 and m3, for the same
commitment com computed w.r.t. x. In this case, we have three
accepting transcript for Π and therefore at least two of them must
share the same first message, i.e., it is a collision. Thus we can run

2.3. Constructing t-IDTC Scheme 55

the extractor Extract for Π on the collision and obtain a witness
for x.

Trapdoorness. It follows from the SHVZK property of Π. We
prove this property via hybrid arguments.

The first hybrid,H1 is the real execution, where a honest prover
commits to a message following the honest commitment and de-
commitment procedure, without using the trapdoor. More for-
mally, in the hybrid H1 the prover performs the following steps:

- On input x and m1,m2 ∈M , the prover selects random coin
tosses R and computes (a0, z)← Sim(x,m2), a1 ← P1(x;R).
It picks b← {0, 1} and sends com = (ab, a1−b), dec = z, m2.

The second hybrid H2 is equal to H1 with the difference that a0

is computed using the algorithm P1 and z using P2. Formally:

- On input x and m1,m2 ∈ M , the prover selects random
coin tosses R = (r1, r2) and computes a0 ← P1(x; r1), z ←
P2(x,w, r1,m2) and a1 ← P1(x; r2). It picks b ← {0, 1} and
sends com = (ab, a1−b), dec = z, m2.

Due to the SHVZK property of Π, H1 is indistinguishable from
H2. Now we consider the hybrid H3 in which a1 is computed
using Sim(x,m2). Formally:

- On input x and m1,m2 ∈M , the prover selects random coin
tosses R and computes a0 ← P1(x;R), z ← P2(x,w,R,m2)
and (a1, z) ← Sim(x,m1). It picks b ← {0, 1} and sends
com = (ab, a1−b), dec = z, m2.

Even in this case, we can claim that H3 is indistinguishable from
H2 because of the SHVZK of Π. The proof ends with the obser-
vation that H3 is the experiment in which a sender commits to a
message m1 and opens to m2 using the trapdoor.

If Π is a perfect SHVZK protocol, then the sequence of hybrids
produces identical distributions.

56 2. Improved OR Composition

Theorem 10. If, Π is a is a delayed-witness Σ-protocol for Rel
that enjoys (perfect) WI property, with the associated algorithms
(P1, P2,V), then the 3-IDTC scheme for Rel is a (perfect) WI 3-
IDTC for Rel.

Proof. If exists an adversary against the WI-Trapdorness property
of WI 3-IDTC it is possible to use it to make a reduction to the WI
of Π. More in details, let x ∈ L̂R be the statement on input to the
procedures of 3-IDTC. The reduction works as a proxy between the
adversary and the challenger of the WI of Π (CH). Upon receiving
a0 from CH the reduction chooses at random a messages m1 ∈M
and runs (a1, z)← Sim(x,m1) and forwards com = (ab, a1−b) to the
adversary, where b ∈ {0, 1}. Upon receiving the reduction m2 ∈M
and the witnesses w0, w1 s.t. (x,w0) ∈ Rel and (x,w1) ∈ Rel from
the adversary sends m2, w0, w1 to CH. The reduction obtains z
from CH and he sets dec = z. The reduction sends dec to the
adversary and he outputs the output of the adversary. If Π is
perfect WI then the WI 3-IDTC enjoys the perfect WI-Trapdorness
property.

Theorem 11. If Π is a delayed-witness Σ-protocol for Rel, with the
associated algorithms (P1, P2,V), then the 3-IDTC scheme for Rel
is a perfect binding 3-IDTC for Rel.

Proof. The property of binding follows from the special soundness
of Π.

2.4 A New OR-Composition Technique

In this section we formally describe our new OR transform. Let
Rel0 be a relation admitting a t-IDTC scheme,
I = (TComΠ0 ,TDecΠ0 ,TFakeΠ0), with t = 2 or t = 3, and Rel1 a
relation admitting an delayed-input Σ-protocol Π1 with associated
algorithms (P 1

1 , P
1
2 ,V

1) and simulator Sim1. We show a Σ-protocol

2.4. A New OR-Composition Technique 57

ΠOR for the OR relation:

RelOR = {((x0, x1), w) : ((x0, w) ∈ Rel0 ∧ x1 ∈ L̂Rel1)

OR ((x1, w) ∈ Rel1 ∧ x0 ∈ L̂Rel0)}.

We denote by (POR
1 , POR

2 ,VOR) the algorithms associated with ΠOR.
We assume that the initial common input is x0. The other input
x1 and the witness w for (x0, x1) are made available to the prover
only after the challenge has been received. We let b ∈ {0, 1} be
such that (xb, w) ∈ Relb and assume that the message space of the
t-IDTC scheme I includes all possible first-round messages of Π1.
Note that for the constructions of the t-IDTC scheme we provide,
the message space coincides with the set of challenges of the under-
lying Σ-protocol and, in Section 2.7.1, we show that the challenge
length of a Σ-protocol can be easily expanded/reduced.

We remind that prover algorithm POR
2 receives as further in-

put the randomness (R1, rand1) used by POR
1 to produce the first-

round message.

Protocol 4. Protocol ΠOR for RelOR.
Common input: (x0, 1

λ), where 1λ is the security parameter.

1. POR
1 (x0, 1

λ). Pick random R1 and compute a1 ← P 1
1 (1λ;R1).

Then commit to a1 by running (com, dec1, rand1)← TComΠ0(1
λ, x0, a1).

Output com.

2. POR
2 ((x0, x1), c, (w, b), (rand1, R1)) (with (xb, w) ∈ Relb).

If b = 1, compute z1 ← P 1
2 (x1, w,R1, c) and output (dec1, a1, z1).

If b = 0, compute (a2, z2)← Sim1(x1, c), dec2 ←
TFakeΠ0(x0, w, a1, a2, com, rand1) and output (dec2, a2, z2).

3. VOR, on input (x0, x1), com, c, and (dec, a, z)) received from
ΠOR, outputs 1 iff

TDecΠ0(x0, com, dec, a) = 1 and V1(x1, a, c, z) = 1;

Theorem 12. If Rel0 admits a 2-IDTC (resp., 3-IDTC) scheme and if
Rel1 admits an delayed-input Σ-protocol, then ΠOR is a Σ-protocol
(resp., is a 3-round public-coin SHVZK PoK) for relation RelOR.

58 2. Improved OR Composition

Proof. Completeness follows by inspection. We next prove the
properties of Protocol 4 when instantiated with a 2-IDTC and 3-
IDTC schemes.

Proof for the construction based on the 2-IDTC scheme.
Special Soundness. It follows from the special soundness of the

underlying Σ-protocol Π1 and the 2-Special Extract of the 2-IDTC
scheme. More formally, consider a collision (com, c, (dec, a, z)) and
(com, c′, (dec′, a′, z′)) for input (x0, x1). We observe that:

- if a = a′ then (a, c, z) and (a′, c′, z′) is a collision for Π1 for
input x1; then we can obtain a witness w1 for x1 by the
Special Soundness property of Π1;

- if a 6= a′, then dec and dec′ are two openings of com with
respect to x0 for messages a 6= a′; then we can obtain a
witness w0 by the 2-Special Extract of the 2-IDTC scheme.

SHVZK property. Consider simulator SimOR that, on input (x0, x1)
and challenge c, sets (a, c, z) ← Sim1(x1, c) and (com, dec) ←
TComx0(a), and outputs (com, c, (dec, a, z)). Next, we show that
the transcript generated by SimOR is indistinguishable from the
one generated by a honest prover.

Let us first consider the case in which the prover of ΠOR receives
a witness for x1. In this case, if we sample a random distribution
(com, c, (dec, a, z)) of ΠOR on input (x0, x1) constrained to c being
the challenge we have that (a, c, z) has the same distribution as
in random transcript of Π1 on input x1 constrained to c being
the challenge; moreover, (com, dec) is a pair of commitment and
decommitment of a with respect to x0. By the property SHVZK
of Π1, this distribution is indistinguishable from (a, c, z) computed
as Sim1(x1, c) which is exactly as in the output SimOR.

Let us now consider the case in which the prover of ΠOR receives
a witness for x0. If we sample a random distribution (com, c, (dec, a, z))
of ΠOR on input (x0, x1) constrained to c being the challenge we
have that (a, c, z) are distributed exactly as in the output of SimOR

(that is by running Sim1 on input x1 and c). In addition, in the out-
put of SimOR, (com, dec) are commitment and decommitment of a

2.4. A New OR-Composition Technique 59

whereas in the view of ΠOR they are computed by means of TFake
algorithm. However, the two distributions are indistinguishable
by the trapdoorness of the Instance-Dependent Trapdoor Com-
mitment.

Proof for the construction based on the 3-IDTC scheme.

3-Special Soundness. This property ensures that there exists an ef-
ficient algorithm that, given three accepting transcripts, (a, c0, z0),
(a, c1, z1), (a, c2, z2) with ci 6= cj for 1 ≤ i < j ≤ 3, for the same
common input, outputs a witness for x.

Consider three accepting transcripts for ΠOR and input (x0, x1):

(com, c1, (dec1, a1, z1)), (com, c2, (dec2, a2, z2))

and
(com, c3, (dec3, a3, z3)).

We observe that:

- if ai = aj for some i 6= j then (ai, ci, zi) and (aj, cj, zj) is a
collision for Π1 for input x1; thus we can obtain a witness
w1 for x1 by the Special Soundness property of Π1;

- if ai 6= aj for all i 6= j, then, dec1 and dec2 and dec3 are three
openings of the same com with respect to x0 for messages a1,
a2 and a3; then we can obtain a witness w0 for x0 by the
3-Special Extract of the 3-IDTC scheme.

We stress that having a long enough challenge, 3-special soundness
implies the proof of knowledge property.

SHVZK property. This is similar to the proof for the construction
based on 2-IDTC.

2.4.1 Witness Indistinguishability of Our Trans-
form

In this section we discuss the adaptive WI property of ΠOR. Roughly
speaking, adaptive WI means that in the WI experiment the ad-
versary A is not forced to choose both theorems x0 and x1 at the

60 2. Improved OR Composition

onset of the experiment. Rather, she can choose theorem x1 and
witnesses w0, w1 adaptively, after seeing the first message of ΠOR

played by the prover on input x0. After x1, w0, w1 have been se-
lected by A, the experiment randomly selects b ← {0, 1}. The
prover then receives x1 and wb and proceeds to complete the pro-
tocol. The adversary wins the game if she can guess b with proba-
bility non-negligibly greater than 1/2. More formally, we consider
adaptive WI for polynomial-time relation

RelpOR = ((x0, x1), w) : ((x0, w) ∈ Rel0 ∧ x1 ∈ L̂Rel1)

OR((x1, w) ∈ Rel1 ∧ x0 ∈ L̂Rel0)

and for the weaker relation

RelcOR = ((x0, x1), w) : ((x0, w) ∈ Rel0 ∧ x1 ∈ LRel1)

OR((x1, w) ∈ Rel1 ∧ x0 ∈ LRel0)

The Adaptive WI experiment, ExpWIδA(x0, λ, aux) with δ ∈ {c, p},
is parameterized by PPT adversary A and has three inputs: in-
stance x0, security parameter λ, and auxiliary information aux for
A.

ExpWIδA(x0, λ, aux):

1. a = POR
1 (x0, 1

λ;R1), for random coin tosses R1;

2. A(x0, a, aux) outputs ((x1, w0, w1), c, state)
such that ((x0, x1), w0), ((x0, x1), w1) ∈ RelδOR;

3. b← {0, 1};

4. z ← POR
2 ((x0, x1), wb, R1, c);

5. b′ ← A(z, state);

6. If b = b′ then output 1 else output 0.

We set

AdvδA(x0, λ, aux) =

∣∣∣∣Prob
[

ExpWIδA(x0, λ, aux) = 1
]
− 1

2

∣∣∣∣

2.4. A New OR-Composition Technique 61

Definition 2.4.1. ΠOR is Adaptive Witness Indistinguishable (resp.,
Adaptive Perfect Witness Indistinguishable) if for every adversary
A there exists a negligible function ν such that for all aux and x0

it holds that AdvcA(x0, λ, aux) ≤ ν(λ) (resp., AdvpA(x0, λ, aux) = 0).

Next, in Theorem 13, we prove the Adaptive Perfect WI of ΠOR

when both Π0 and Π1 are perfect SHVZK. When one of Π0 and
Π1 is not perfect, we would like to prove that ΠOR is Adaptive WI.
In Theorem 14 we prove a weaker form of Adaptive WI in which
the adversary is restricted in his choice of witnesses (w0, w1) for
relation RelcOR.

Theorem 13. If Π0 and Π1 are perfect SHVZK then ΠOR is Adap-
tive Perfect Witness Indistinguishable.

Proof. The proof considers the following three cases:

Case 1. (x0, w0) ∈ Rel0 and (x1, w1) ∈ Rel1;

Case 2. (x1, w0) ∈ Rel1 and (x1, w1) ∈ Rel1;

Case 3. (x0, w0) ∈ Rel0 and (x0, w1) ∈ Rel0.

For each case we present a sequence of hybrids and prove that
pairs of consecutive hybrids are perfectly indistinguishable.

Case 1. The first hybrid experimentH1(x0, λ, aux) is the original
experiment ExpWIpA(x0, λ, aux) in which b = 1 (and thus P uses
witness w1). That is,

- In Step 1 of ExpWIpA(x0, λ, aux), the following steps are exe-
cuted:

1. a = P 1
1 (1λ;R1), for random coin tosses R1;

2. set a′ = a;

3. (com, dec, rand)← TComΠ0(x0, 1
λ, a) and outputs com.

- In Step 4 of ExpWIpA(x0, λ, aux), the following steps are exe-
cuted:

62 2. Improved OR Composition

1. z ← P 1
2 (x1, w1, c, R1);

2. set dec′ = dec;

3. output (dec′, a′, z).

The second hybrid experimentH2(x0, λ, aux) differs fromH1(x0, λ, aux)
in the way a′ and dec′ are computed. More specifically,

- Step 1 of ExpWIpA(x0, λ, aux) stays the same.

1. a = P 1
1 (1λ;R∗), for random coin tosses R∗;

2. a′ = P 1
1 (1λ;R1), for random coin tosses R1;

3. (com, dec, rand)← TComΠ0(x0, 1
λ, a) and outputs com.

- In Step 4 of ExpWIpA(x0, λ, aux), the following steps are exe-
cuted:

1. z ← P 1
2 (x1, w1, c, R1);

2. dec′ ← TFakeΠ0(x0, w0, a, a
′, com, rand);

3. (dec′, a′, z).

The trapdoorness of the instance-dependent trapdoor commit-
ment scheme based on Π0 and perfect WI of Π0 guarantee that
H1(x0, λ, aux) andH2(x0, λ, aux) are perfectly indistinguishable for
all λ.

The third hybrid experimentH3(x0, λ, aux) differs fromH2(x0, λ, aux)
in the way a′ and z are computed. More specifically,

- Step 1 of ExpWIpA(x0, λ, aux) stays the same.

1. a = P 1
1 (1λ;R1), for random coin tosses R1;

2. (com, dec, rand)← TComΠ0(x0, 1
λ, a) and outputs com.

- In Step 4 of ExpWIpA(x0, λ, aux), the following steps are exe-
cuted:

1. (a′, z)← Sim1(x1, c);

2. dec′ ← TFakeΠ0(x0, w0, a, a
′, com, rand);

2.4. A New OR-Composition Technique 63

3. (dec′, a′, z).

By the perfect SHVZK of Π1, we have that H2(x0, λ, aux) and
H3(x0, λ, aux) are perfectly indistinguishable for all λ. The proof
ends with the observation thatH3(x0, λ, aux) is exactly experiment
ExpWIpA(x0, λ, aux) when b = 0.

Case 2. The first hybrid experiment H1(x0, λ, aux) is again the
original experiment ExpWIpA(x0, aux) in which b = 1 (and thus
P uses witness w1). The second hybrid experiment H2(x0, λ, aux)
differs fromH1(x0, λ, aux) in the way z is computed (using as input
w0 instead of w1 when P2 is executed). More specifically,

- In Step 1 of ExpWIpA(x0, λ, aux), the following steps are exe-
cuted:

1. a = P 1
1 (1λ;R1), for random coin tosses R1;

2. (com, dec, rand)← TComΠ0(x0, 1
λ, a) and outputs com.

- In Step 4 of ExpWIpA(x0, λ, aux), the following steps are exe-
cuted:

1. z ← P 1
2 (x1, w0, c, R1);

2. output (dec, a, z)

The Perfect WI property of Π1 implies that H1(x0, λ, aux) is
perfectly indistinguishable from H2(x0, λ, aux). The proof ends
with the observation that H2(x0, λ, aux) is exactly the experiment
ExpWIpA(x0, λ, aux) when b = 0.

Case 3. The first hybrid experiment H1(x0, λ, aux) is again the
original experiment ExpWIpA(x0, λ, aux) in which b = 1 (and thus
P uses witness w1). The second hybrid experiment H2(x0, λ, aux)
differs from H1(x0, λ, aux) in the way TFake is executed (namely,
using as input w0 instead of w1). More specifically,

- Step 1 of ExpWIpA(x0, λ, aux) stays the same.

64 2. Improved OR Composition

1. a = P 1
1 (1λ;R1), for random coin tosses R1;

2. (com, dec, rand)← TComΠ0(x0, 1
λ, a) and outputs com.

- In Step 4 of ExpWIpA(x0, λ, aux), the following steps are exe-
cuted:

1. (a′, z)← Sim1(x1, c);

2. dec′ ← TFakeΠ0(x0, w0, a, a
′, com, rand);

3. (dec′, a′, z).

Note that Π0 is perfect SHVZK which implies that Π0 is perfect
WI and from Theorems 7 and 10 we can conclude that the IDTC
based on Π0 is also WI-IDTC. Therefore the WI-Trapdorness of
the WI-IDTC scheme based on Π0 implies that H1(x0, λaux) is
perfectly indistinguishable from H2(x0, λaux) for all λ. The proof
ends with the observation thatH2(x0, λ, aux) is exactly experiment
ExpWIpA(x0, λ, aux) when b = 0.

Next we consider the computational case in which one of Π0

and Π1 is not Perfect SHVZK (but they are both SHVZK).

Theorem 14. If Π0 and Π1 are SHVZK then ΠOR is Adaptive
Witness Indistinguishable with respect to adversaries that out-
put (x1, w0, w1) such that at least one of w0 and w1 is a witness
for x1 ∈ LRel1 .

Proof. We prove this theorem by considering the following two
cases:

Case 1. (x0, w0) ∈ Rel0 and (x1, w1) ∈ Rel1;

Case 2. (x1, w0) ∈ Rel1 and (x1, w1) ∈ Rel1.

Case 1. In this case the proof follows closely the one of Case
1 of Theorem 13, with the difference that hybrids here are only
computationally indistinguishable.

2.4. A New OR-Composition Technique 65

Case 2. In this case we show that there exists A′ for Case 1 that
has the same success probability of A. Suppose indeed that both
w0 and w1 are witnesses for x1 and that A breaks the Adaptive
WI property of ΠOR. Then, by definition of RelcOR and by Defini-
tion 2.4.1, there exists A′ that has in his description a witness w2

for x0. Indeed, the output of A interacting with P((x0, x1), w2)
would necessarily be distinguishable from the output of the inter-
action with either P((x0, x1), w0) or P((x0, x1), w1). Therefore A′
would contradict Case 1 and thus there exists no successful A for
Case 2.

In Theorem 14 we force the adversary of the Adaptive WI to
output two witnesses w0 and w1, where at least one of w0 and w1 is
a witness for instance x1 ∈ LRel1 . In fact we can not demonstrate
the Adaptive WI of ΠOR when both witnesses are for instance
x0 ∈ LRel0 , because Π0 is SHVZK, so we are not guarantee that is
WI (Theorem 20). Therefore we can not rely on this property to
demonstrate that ΠOR is adaptive WI. Furthermore, we can not
use the same idea of Case 2 of Theorem 14 because the instance x1

is adaptively chosen. However, using the transformation described
in Section 2.2 we can obtain from Π0 a Σ-protocol Π0 for Rel0 that
is WI (note that in Case 3 we are guaranted that x0 ∈ LRel0). We
can use Π0 to construct a WI-IDTC following Theorems 7 and 10.
Finally we will apply our OR-transformation on the WI-IDTC
constructed from Π0 and Π1 obtaining an OR-composition ΠOR

that is adaptive WI with no restriction. In more details, we have
the following theorem.

Theorem 15. If Π0 and Π1 are SHVZK then ΠOR is Adaptive Wit-
ness Indistinguishable.

Proof. We prove this theorem by considering the following three
cases:

Case 1 (x0, w0) ∈ Rel0 and (x1, w1) ∈ Rel1;

Case 2 (x1, w0) ∈ Rel1 and (x1, w1) ∈ Rel1;

Case 3 (x0, w0) ∈ Rel0 and (x0, w1) ∈ Rel0.

66 2. Improved OR Composition

Case 1 and Case 2. For this two cases the proofs are the same,
respectively, of the Case 1 and Case 2. of Theorem 14.

Case 3. In this case the proof follows closely the one of Case
3 of Theorem 13, with the difference that hybrid experiments
(H1(x0, λ, aux) and H2(x0, λ, aux)) are only computationally indis-
tinguishable. In more details if it exists a distinguisher between
these hybrid experiments we can made a reduction to the WI-
Trapdorness of WI-IDTC construct from Π0. The reduction works
as a proxy between the malicious verifier V? and the challenger of
the WI of Π (CH) w.r.t. the messages of the WI-IDTC and for all
the other messages he follows the steps described in H1(x0, λ, aux)
(that are equal to the steps of H2(x0, λ, aux)). More in details, the
reduction obtains a commit com of a random message from CH
that he sends to V?. Then upon receiving x1, c, w0, w1 from V? the
reduction computes the step 3 of H1 obtaining (a′, z) and forwards
a′ and the witnesses w0, w1 to CH. Upon receiving dec from CH
sent dec, a′, z to V?, and outputs the output of V?. It easy to see
that if CH uses the witness w1 the reduction acts as described in
H1, otherwise acts as described in H2. This observation conclude
the proof.

2.5 Applications

In this section, we describe the application of our new OR-composition
technique for constructing a 3-round straight-line perfect quasi-
polynomial time simulatable argument system, an efficient 4-round
resettable WI argument system and an efficient 4-round resettable
zero knowledge with concurrent soundness argument system in the
BPK model. For the last application we provide only an informal
protocol description.

2.5. Applications 67

2.5.1 A 3-Round Efficient Perfectly Simulat-
able Argument System

In [Pas03], Pass introduced relaxed notion of zero knowledge and
knowledge extraction in which the simulator and the extractor are
allowed to run in quasi-polynomial time. Allowing the simula-
tor to run in quasi-polynomial time typically dispenses with the
need of rewinding the verifier; that is, the simulator is straight-
line. In [Pas03], Pass first describes the following 2-round perfect
ZK argument for any language L. The verifier V sends a value
Y = f(y) for a randomly chosen y where f is a sub-exponentially
hard OWF and the first round of a ZAP protocol. The prover P
then sends a commitment to (y′|w′) and uses the second round
of the ZAP to prove that either y′ = f−1(y) or w′ is a witness
for x ∈ L. If language L admits a Σ-protocol ΠL then the above
construction can be implemented as an efficient 4-round argument
with quasi-polynomial time simulation. The function f is con-
cretely instantiated to be an exponentiation in a group in which
the Discrete Log problem is hard and the ZAP is replaced with
the CDS-OR composition of ΠL and Schnorr’s Σ-protocol for the
Discrete Log.

Note that Schnorr’s Σ-protocol is delayed input and thus we
can use it as Σ-protocol Π1 in our OR transform in conjunction
with any Chameleon Σ-protocol Π0. One drawback of reducing to
three round the result of [Pas03] is that we can use only a perfect
Σ-protocol since our goal is to obtain perfect WI in just three
rounds.

2.5.1.1 Preliminary Definitions

We start by providing some useful definitions.

Simulation in quasi-polynomial time. Since the verifier in
an interactive argument is often modeled as a PPT machine, the
classical zero-knowledge definition requires that the simulator runs
also in (expected) polynomial time. In [Pas03], the simulator is

68 2. Improved OR Composition

allowed to run in time λpoly(log(λ)). Loosely speaking, we say that
an interactive argument is λpoly(log(λ))-perfectly simulatable if for
any adversarial verifier there exists a simulator running in time
λpoly(log(λ)), where λ is the size of the statement being proved,
whose output is identically distributed to the output of the adver-
sarial verifier.

Definition 2.5.1 (One-way functions for sub-exponential circuits. [Pas03]).
A function f : {0, 1}∗ → {0, 1}∗ is called one-way for sub-exponential
circuits if there exists a constant α such that the following two con-
dition holds:

- there exist a deterministic polynomial-time algorithm that on
input y outputs f(y);

- for every probabilistic algorithm A with running time bounded
by 2λ

α
, all sufficiently large λ’s, and every auxiliary input

z ∈ {0, 1}poly(λ)

Prob
[
y

R← {0, 1}∗ : A(f(y), z) ∈ f−1(f(y))
]
<

1

poly(2λα)
.

Now we define straight-line T (λ)-perfectly simulatable interac-
tive arguments.

For our result we consider a one-way functions for sub-exponential
circuits that has an efficiently recognizable range (as in [Pas03])

Definition 2.5.2 (straight-line T (λ) simulatability, Def. 31 of [Pas04a]).
Let T (λ) be a class of functions that is closed under composition
with any polynomial. We say that an interactive argument (proof)
(P ,V) for the language L ∈ NP, with the witness relation RelL, is
straight-line T (λ)-simulatable if for every PPT machine V? there
exists a probabilistic simulator S with running time bounded by
T (λ) such that the following two ensembles are computationally in-
distinguishable (when the distinguish gap is a function in λ = |x|)

• {(〈P(w),V?(z)〉(x))}z∈{0,1}∗,x∈L for arbitrary w s.t. (x,w) ∈
RelL

• {(〈S,V?(z)〉(x))}z∈{0,1}∗,x∈L

2.5. Applications 69

We note that the above definition is very restrictive. In fact,
the simulator is supposed to act as a cheating prover, with its
only advantage being the possibility of running in time T (λ), in-
stead of in polynomial time. Trivially, it does not exist a straight-
line T (λ)-simulatable proof for non-trivial languages (this should
be contrasted with straight-line simulatable interactive arguments,
which instead does exist).

The following theorem shows the importance of straight-line
λpoly(log(λ))-perfect simulatability by connecting it to concurrent
composition of arguments.

Theorem 16. If the interactive argument Π = (P ,V) is straight-
line λpoly(log(λ))-simulatable then it is also straight-line concurrent
λpoly(log(λ))-simulatable.

2.5.1.2 The Protocol

For any NP-language L we consider the perfect chameleon Σ-
protocol ΠL for the relation RL. Also we consider the Schnorr Σ-
protocol ΠDLOG for the following relation DLOG = {((G, q, g, Y), y) :
gy = Y } with the associated NP-language LDLOG, over groups G
of prime-order q, and use our OR-composition technique to ob-
tain a new perfect Σ-protocol ΠOR = (POR,VOR) for the relation
RelOR = {((xL, xDLOG), w) : ((xL, w) ∈ RelL ∧ xDLOG ∈ L̂DLOG)OR
((xDLOG, w) ∈ DLOG ∧ xL ∈ L̂RelL)} with challenge length l = λ
and associated algorithms POR

1 , POR
2 and VOR.

Let f be a sub-exponentially hard one-way function that has
an efficiently recognizable range implemented using DLog as de-
scribed before, with the only change that for some constant α s.t.
0 < λ < 1, f is one-way w.r.t. circuits of size 2λ

α
. Let L ∈ NP

and k = 1
α

+ 1. Our 3-round straight-line quasi-polynomial time
simulatable argument system for x ∈ L is the following.

Protocol 5. A 3-round straight-line quasi-polynomial time simulat-
able argument system.
Common input: An instance x of a language L ∈NP with
witness relation RL and a perfect chameleon Σ-protocol, and 1λ

as security parameter.

70 2. Improved OR Composition

Private input: P has w as a private input, s.t. (x,w) ∈ RelL.

Round 1. P → V :

1. On input a randomness R1, P uniformly chooses (p, q, g)
where p = 2q + 1 is a safe prime and g is a generator of a
group Gq of size q. We remark that (p, q, g) are parameters
selected so that the function f(y) = gy is a one-way function
for some constant α w.r.t circuits of size 2λ

α
.

2. P computes a← POR
1 ((x, 1λ

α
);R1).

3. P sends (p, q, g) and a to V .

Round 2. V → P :

1. V chooses y ← Zq and computes Y = gy.

2. V chooses c← {0, 1}l.

3. V sends c and Y to P .

Round 3. P → V :

1. P computes z ← POR
2 ((x, ((p, q, g), Y)) , w, c, R1).

2. P sends z to V .

3. V accepts if and only if VOR((x, ((p, q, g), Y)) , a, c, z) = 1.

We remark that we are using the same assumption of [CD08]
that allows the adversary of DLog to generate the DLog parame-
ters while the challenger selects the random element of the group.

Theorem 17. If ΠOR is a perfect Σ-protocol for OR composition of
RelL and DLOG, then Protocol 5 is a 3-round straight-line perfectly
λO(logk λ)-simulatable argument of knowledge.

Proof. Completeness follows directly from the completeness of ΠOR.
Soundness/knowledge extraction. We show that Π is an

argument of knowledge; this directly implies soundness. The claim
follows from the fact that the argument system ΠOR used is a proof

2.5. Applications 71

of knowledge when the challenge is long enough, and from the fact
that a PPT adversary only finds a pre-image to Y (for f) with
negligible probability. More formally, we construct a polynomial-
time extractor E for every polynomial-time P? for protocol Π. E
internally incorporates P? and each time ΠOR proves a new theo-
rem it proceeds as follows. E invokes the extractor EOR for ΠOR. E
outputs whatever EOR outputs. By the proof knowledge property
of ΠOR, the output of E will either be a witness w for the state-
ment proved, or the pre-image of Y . If E outputs w, we are done.
Otherwise, if it outputs y with non-negligible probability, then we
can construct a reduction that breaks the DLog assumption (still
in the form proposed by [CD08]).

Quasi-polynomial time perfect simulation. Consider a
straight-line simulator Sim that computes the first round as the
honest prover. This is possible because ΠOR does not need any
witness to computes the first round. After the simulator receives
Y it checks that Y has a pre-image. Sim thereafter performs an ex-
haustive search to find a pre-image y of a value Y for the function
f . To perform this task Sim tries all possible values y′ ∈ {0, 1}logk λ

and checks if f(y′) = Y . This thus takes time poly(2logk λ), since
the time it takes to evaluate the function f is a polynomial in λ.
After having found a value y such that f(y) = Y , Sim uses y as
witness to complete the execution of ΠOR (instead of using a real
witness for x, as the honest prover would do). Clearly the running

time of Sim is bounded by λO(logk λ). We proceed to show that the
output of the simulator is identically distributed to the output of
any adversarial verifier in a real execution with an honest prover.
Note that the only difference between a real execution and a simu-
lated execution is in the choice of the witness used in the last stage
of the protocol. Therefore, from the perfect adaptive WI property
of ΠOR we have that the output of the simulated execution is iden-
tically distributed to the output of the real execution.

72 2. Improved OR Composition

2.5.2 Efficient Resettable WI Argument Sys-
tem

In this section, we show how to efficiently transform any Σ-protocol
Π into a resettable WI (rWI) argument system at the cost of
adding only one extra round and a constant number of modular
exponentiations.

Resettable witness indistinguishability was introduced in [CGGM00].
Very roughly, a resetting verifier is a PPT adversary that is able to
interact with the prover polynomially many times with possibly
distinct inputs forcing the prover to execute the protocol using
the same randomness several times. Namely, we can think of a
prover under a reset attack as being equipped with a vector of in-
puts x̄ and a vector of random tapes ~ω. The malicious verifier can
adaptively start a new interaction with the prover by specifying
the input xi and the randomness ωj to be used in the interac-
tion. Moreover, the malicious verifier has complete control over
the schedule of the messages. A concurrent verifier is a restricted
form of resetting verifier that cannot start two interactions with
the same randomness. A formal definition is found in [CGGM00].

An informal description. Let Rel be a polynomial-time re-
lation with Σ-protocol Π. Now we give an high-level overview of
our 4-round rWI argument system ΠWI = (P ,V) for Rel. The
basic idea is to have V that commits to the challenge of Π in
the first round of ΠWI . Subsequently, P and V play Σ-protocol Π
where at the second round (corresponding to the 3 round of ΠWI),
V decommits to the challenge. To prove rWI we need that the
commitment computed in the first round to be perfectly binding
for V? so that reset attacks are ineffective, then we can demon-
strate the rWI of ΠWI relying on the WI of Π. Instead, to prove
soundness against P? we need that the commitment computed in
the first round enjoys the property of trapdoorness. In this way
we can rewind P? and using the special soundness of Π to reach a
contradiction.

In order to implement this aspect we use a perfectly binding

2.5. Applications 73

2-IDTC for the following relation:

DDH =
{(

((G, q, g), A = ga, B = gb, C = gab), b
)

: Ab = C
}
.

over groups G of prime-order q.

The perfectly binding 2-IDTC is perfectly binding when an in-
stance T is s.t. T /∈ LDDH, and it enjoys the property of per-
fect trapdoorness when T ∈ LDDH. Therefore we need to en-
sure that V? to compute the commitment of the challenge can
not choose an instance T s.t. T ∈ LDDH. For this reason we
add a protocol Π1−DDH to ensure that T /∈ TDDH. In more de-
tails, the protocol Π1−DDH proves that T has the following form
T = ((G, q, g), A = ga, B = gb, C = gab+1), and this implies that
T /∈ LDDH. On the other hand in the proof of soundness we want
to cheat, in order to use the trapdoorness of perfectly binding
2-IDTC. We could use our OR-composition technique combining
Π1−DDH with Schnorr’s protocol, obtaining ΠOR that T /∈ LDDH

or it knows the DLog of a challenge sent by the receiver. Note
that our OR-composition is crucial because the instance for the
Schnorr’s protocol is available only in the second round of ΠWI .
In the proof of soundness we can break the DLog challenge run-
ning in super-polynomial time therefore succeeding in equivocate
the commitment in order to rewinding the malicious prover P?.
Rewinding P? we obtain a collision for a false statement x and
therefore by the special soundness of Π, it is possible to extract a
witness w for s.t (x,w) ∈ RelL and reaching a contradiction. In-
stead V? will not be able to decommit to a different message since
otherwise we could use V? to break in polynomial time the DLog
challenge.

Formal description of our 4-round efficient resettable
WI. Let ΠDLOG be an delayed-input Σ-protocol for the discrete
log polynomial-time relation

DLOG = {((G, q, g, Y), y) : gy = Y }

over groups G of prime-order q; e.g., Schnorr’s Σ-protocol [Sch89].

74 2. Improved OR Composition

Consider also the following polynomial-time relation

1DDH =
{(

((G, q, g), A = ga, B = gb, C = gab+1), b+1
)

: Ab+1 = C
}
.

over groups G of prime-order q. We will refer to a tuple T =(
(G, q, g), A = ga, B = gb, C = gab

)
as DH tuple and T ′ =

(
(G, q, g), A =

ga, B = gb, C = gab+1
)

a 1-non-DH tuple.
Let ΠDDH be a Chameleon Σ-protocol for DDH ([Ped91]), and

the Chameleon Σ-protocol Π1DDH for 1DDH described in Section 2.7.2.
From Theorem 8 follows that we can use ΠDDH to build a per-

fectly binding 2-IDTC scheme (TComΠDDH ,TDecΠDDH ,TFakeΠDDH)
for DDH.

Note that Π1DDH is Chameleon Σ-protocol and ΠDLOG is delayed-
input Σ-protocol, therefore we can apply Theorem 12 and con-
struct the protocol ΠOR, with the associated algorithms (POR

1 , POR
2 ,VOR),

for the following polynomial-time relation

RelOR =
{

((x0, x1), w) :
(
(x0, w) ∈ DLOG ∧ x1 ∈ L̂1DDH

)
OR(

(x1, w) ∈ 1DDH ∧ x0 ∈ L̂DLOG

)}
.

We denote by x the common input and by w the witness re-
ceived by P s.t. (x,w) ∈ Rel. We also consider a Σ-protocol Π,
with the associated algorithm (P1, P2,V) for the polynomial-time
relation Rel.

Security parameters are λ, λ̂. Given the security parameter λ
we choose λ̂ s.t. 2λ̂ < 2λ · poly(λ), where an adversary that runs

in time 2λ̂ can compute the discrete log of an element Y ∈ Zq̂ and
the 1DDH assumption still holds against adversary that running
in time 2λ̂.

The security of our proposed rWI ΠWI = (P ,V) for Rel is
based on the 1DDH assumption and on a strengthening of it (see
Assumption 5).

Protocol 6.
Public input: instance x and security parameter 1λ.
Private input to P: witness w such (x,w) ∈ Rel.

Round 1: from V to P .

2.5. Applications 75

1.1 Committing to the challenge c of Π

V randomly selects (G, q, g)← IG(1λ) and (Ĝ, q̂, ĝ)← IG(1λ̂)
and sends them to P ;

V randomly selects r1, r2,← Zq, computes A = gr1 , B =
gr2 , C = Ar2 · g and sets T = ((G, q, g), A,B,C);

V randomly selects c← Zq and computes (com, dec, rand)←
TComΠDDH(1λ, T, c);

V sends ((Ĝ, q̂, ĝ), T, com) to P ;

1.2 Computing first round of ΠOR.

V randomly selects coin tosses R1, sets aOR = POR
1 (T ;R1)

and sends aOR to P ;

Round 2: from P to V .

2.1 Picking randomness.

P reads ω from its random tape, computes R̄ = Fω(x, T, (Ĝ, q̂, ĝ), com, aOR)
and parses it as R̄ = (R2, R3);

2.2 Computing first round of Π.

P sets a = P1(x,w;R2) and sends it to V ;

2.3 Preparing second input for ΠOR and sending the challenge for
ΠOR.

P randomly selects y ← Zq̂, sets Y = ĝy and sends it to V ;

P randomly selects cOR ← {0, 1}lOR
and sends it to V ;

Round 3: from V to P .

3.1 Opening commitment of challenge for Π.

V sends (c, dec) to P ;

3.2 Computing third round of ΠOR.

V randomly selects coin tosses R4 and sets wOR = r2 and
computes and sends zOR = POR

2 ((T, (Ĝ, q̂, ĝ, Y), cOR, wOR, R1;R4);

76 2. Improved OR Composition

Round 4: from P to V .

4.1 Verification of ΠOR.

If VOR((T, ((Ĝ, q̂, ĝ, Y)), aOR, cOR, zOR) = 0, P aborts;

4.2 Checking the decommitment.

If TDecΠDDH(T, com, dec, c) = 0 then P aborts;

4.3 Compute third round of Π.

P computes z = P2(x,w, c, R2;R3) and sends it to V ;

V’s decision: V accepts if and only if V(x, a, c, z) = 1.

Theorem 18. If polynomial-time relation Rel admits a Σ-protocol
Π then, under the DDH assumption against sub-exponential ad-
versary, ΠWI = (P ,V) is an argument system rWI for Rel.

Completeness is straightforward.

Soundness. Let P? be an efficient algorithm that starts poly(λ)
concurrent interactions with an honest verifier V . We show that
for any common input x ∈ {0, 1}λ, if P?, for x 6∈ LRel, makes the
honest verifier V accept with non-negligible probability in one of
the poly(λ) concurrent interactions, then we can reach a contra-
diction using the special soundness of Π.

In order to do that we consider the following four hybrid ex-
periments H0,H1,H2 and H3.

The first hybrid experiment H0(aux) is simply the real game
between P? and the honest verifier V . Note that in H0(aux) P?
can convince V of a false statement, x 6∈ LRel, in one of the poly(λ)
concurrent interactions, it comes from the assumption.

In the second hybrid experiment, H1(aux), P? interacts in
poly(λ) concurrent interactions with a verifier V1 that, for every
interactions, computes the following steps. Upon receiving Y , V1,
running in time at most 2λ̂, computes the discrete logarithm y of
Y (i.e. Y = gy). Then, V1 sets wOR = y at Step 3.2. Therefore,
V1 uses y instead of r2 to compute message zOR. H0(aux) and
H1(aux) are statistical indistinguishable because of the perfect

2.5. Applications 77

adaptive WI of ΠOR, it still holds that P?, for x 6∈ LRel, makes the
honest verifier V accept with non-negligible probability in one of
the poly(λ) concurrent interactions. Therefore there exists a por-
tion non-negligible of randomness used by P? for which he declares
an x s.t. x 6∈ LRel in one of the poly(λ) concurrent interactions,
and he makes the honest verifier accept with non-negligible prob-
ability in that interaction. Let i be the index of this interaction.
Furthermore let rand be a prefix of the randomness for which P?
declares an x s.t. x 6∈ LRel in the i-th interaction.

The next hybrid H2 takes as auxiliary input (aux) the prefix of
randomness rand and the index i. The verifier V2 interacts with
P? that is executed using the randomness that have as a prefix
rand. Until the interaction with index i V2 acts as V1. In the i-th
interaction V2 modifies the Step 1.1 choosing T as a DH-tuple. In
more details, in the Step 1.1 of the i-th interaction V2 picks at
random r1, r2,← Zq, computes A = gr1 , B = gr2 , C = Ar2 and
sets T = ((G, q, g), A,B,C). V2 computes all the other steps as V1

does.

Lemma 2.5.3. In the hybrid H2(aux) P?, for x 6∈ LRel, makes
the honest verifier V accept with non-negligible probability in the
interaction with index i.

Proof. From the hybrid H1(aux) follows that P? fed with the ran-
domness that have as a prefix rand in the interaction with index
i declares statement x s.t. x 6∈ LRel and makes the honest veri-
fier accept with non-negligible probability. We observe that x is
chosen before the interaction with index i is started, and before
that the hybrids H1(aux) and H2(aux) are identical distributed.
Therefore, if in H1(aux) P?, running using the prefix of random-
ness rand, chooses a statement x s.t. x 6∈ LRel in the interaction
with index i it continues, with non negligible probability, to do
the same in H2(aux).

Now, we can argue that the interaction with index i is com-
pleted by P? with non-negligible probability also inH2(aux). Sup-
pose by contradiction that is not the case, then we can construct
an adversary A that breaks the Assumption 5 (i.e. 1DDH as-

78 2. Improved OR Composition

sumption). In more details, let C1DDH be the challenger of 1DDH
game. A acts as V2 against P? (iP? is fed with the randomnesses
of the form r = rand||r′) except that in the interaction with in-
dex i, for witch he has the following behavior. Upon receiving
T ? = ((G, q, g), A?, B?, C?) from C1DDH A sets T = T ?, then he
continues the interaction with P? computing all the other steps
as V2 does. If P? completes that in the interaction with index i

A outputs 1, otherwise he outputs a bit b, where b ∈ {0, 1}. Ob-
serve that if T ? is a 1-non-DH tuple then A acts as V1 of H1(aux)
otherwise he acts as V2 of H2(aux).

The running time of the adversary A is dominated by 2λ̂ that
is the time needed to compute the discrete logarithm of Y but the
1DDH assumption still holds against adversary that runs in time
2λ̂, therefore we reach a contradiction.

These two observations conclude the proof.

The next hybrid H3(aux) takes as auxiliary input (aux) the
prefix of randomness rand and the index i of the interaction. The
verifier V3 acts as the verifier V2 excepted that in the interaction
with index i. In the Step 3.1 of the i-th interaction he runs the
trapdoor procedure TFake in order to equivocate the opening of
the commitment computed at first round.

It follows from the statistically trapdoorness of 2-IDTC that
H2 and H3 are statistically close. Therefore P? feed with the ran-
domness that have as a prefix rand in the i-th interaction chooses
a statement x /∈ LRel and has a non-negligible probability of mak-
ing the verifier accept in this interaction. V3 can rewinds P? at
the ending of the second round and equivocate the opening of
the commitment made in the first round w.r.t. different values:
c, and ĉ respectively before and after the rewind. Note that the
distribution seen by P? before and after the rewind is statisti-
cal close therefore V3 obtains with non-negligible probability two
transcripts (a, c, z) and (a, ĉ, ẑ) that are a collision for x. It fol-
lows from the special soundness of Π, that is possible to extract
(in super-polynomial time) a witness for x ∈ LRel. Contradiction.

2.5. Applications 79

Proof of rWI. The idea of the proof for rWI is very simple. We
consider the prover P1 that, when instructed to use randomness
with index j and input with index i and receives first message msg,
checks first if a tuple (j, i, msg, R) has been stored in a previous
step. If such a tuple is found then R is used as source of ran-
domness; otherwise, a fresh R is selected and tuple (j, i, msg, R)
is stored. Clearly, by pseudo-randomness, P1 is indistinguishable
from the honest prover P .

Now we observe that the resetting verifier V? is performing an
attack on P1 in which two distinct interactions use the same ran-
domness iff they share j, the input and the first message. More
precisely, we say that interactions t1 and t2 between P1 and V?
are a collision if they share the input, the randomness used by P1

and the first message and V? opens the commitment in the first
messages in two different ways. If V? has a non-negligible proba-
bility of producing a transcript then we can break the Strong DLog
Assumption (see Assumption 2). Consider algorithm DL that re-
ceives as input (x̄, w̄0, w̄1) for which V? distinguishes (x̄, w̄0) from
(x̄, w̄1). DL interacts with V? and at the start of the interaction
guesses two interactions t1 < t2 (in the hope they constitute a
collision). In all interactions other than t1 and t2, DL runs just
like P1. When DL receives the discrete logarithm parameters from
V? as part of the first message of interaction t1, it forwards them
to the challenger of the discrete logarithm and receives Y (and
the task is to compute the discrete logarithm of Y) and uses it as
part of the second message of interaction t1. When interaction t2
is activated DL checks if the first message is the same as the first
message of interaction t1. If this is the case (and this happens with
non-negligible probability) DL continues and sends the same sec-
ond message, including Y . Notice that V? expects to receive the
same message since it thinks it is interacting with P1 that is using
the same randomness. Otherwise, DL aborts. Then DL rewinds
V? and sends a different challenge for the ΠOR protocol in each
of the two interactions. In at least one of them V? has opened
the commitment to a different message than the one committed
in the first message. This means that V? has used knowledge of

80 2. Improved OR Composition

the discrete logarithm of Y to complete the interaction and thus
DL can extract it.

Finally, let us consider the case in which V? produces a collision
in his resetting attack only with negligible probability. This means
that V? is conducting a successful concurrent WI attack on the
argument system. Standard arguments show that this contradicts
the WI of Π8.

2.5.3 Efficient 4-Round Resettable Zero Knowl-
edge in the BPK model

Let Rel be a polynomial-time relation with Σ-protocol Π = (P ,V).
In this section we give an informal description of an efficient 4-
round argument system (ΠBPK) for Rel, that is resettable zero
knowledge and concurrently sound in the BPK model.

In our protocol we consider that each entry of the verifier’s
identities file is an element of a group G in which is hard to compute
the discrete logarithm. ΠBPK = (P ,V) for Rel consists of the
interleaved execution of two protocols: ΠWI , in which P acts a
prover, and ΠOR, in which V acts as a prover. ΠOR is the Σ-
protocol obtained from the OR composition of two Schnorr’s Σ-
protocols Π0 and Π1. ΠOR is used by the verifier V to prove that
she knows either the discrete logarithm of a selected identity id, or
the discrete logarithm of an elements sent by the prover P at the
second round of ΠBPK. ΠWI is the rWI argument system described
in Section 2.5.2, and it is used by the prover P to show that she
know either the witness for the theorem x to be proved or the
discrete logarithm of id.

To prove concurrent soundness of ΠBPK we use the same ar-
guments of Section 2.5.2, with the difference that at the end of
the proof we can extract (in sub-exponential time) the discrete
logarithm of id (instead of a witness for x), and construct a re-
duction using complexity leveraging to break the assumption that

8We are implicitly using the fact that the Σ-protocol Π is WI. This is
certainly true if Π is perfect [CDS94]. If Π is only computational then we
consider self OR composition of Π which by [GMY06] is WI.

2.5. Applications 81

it is hard to compute the discrete logarithm of an elements in G.

To prove rZK we consider a simulator B that rewinds the ver-
ifier V to get the discrete logarithm of id (used as a witness by V
to run ΠOR) and uses this witness to complete the execution of the
protocol ΠWI . We observe that B works correctly only if the first
round of ΠWI can be computed without using the witness. In this
case we have no problem, because we can construct ΠWI starting
form a Σ-protocol Π′ that enjoys this property. More specifically,
Π′ is the result of an OR composition (using [CDS94]) of Π and
of a Schnorr’s Σ-protocol that is delayed witness. It is easy to see
that the property of delayed witness of Schnorr’s Σ-protocol holds
even in Π′ and in turn in ΠWI . The last observation make us able
to conclude the proof sketch.

2.5.4 Proof of Work of Knowledge

In [BKZZ16] the authors introduce a new class of prover veri-
fier protocol called Proof of Work or Knowledge (PoWorK). Fol-
lowing [BKZZ16], a PoWorK protocol Π = (P ,V) has two mode
operations: (a) the Proof of Knowledge (PoK) mode, where P
convinces V that he knows a witness for some instance, or (b) the
Proof of WorK (PoW) mode, where P makes calls to the puzzle
solving algorithm to solve a certain puzzle. Furthermore a mali-
cious verifier V? does not distinguish between the PoK mode and
PoW mode. As a counterpart if a malicious prover P? has a run-
ning time (in number of steps) less than a specified parameter f
calibrated according to the hardness of the puzzle, then there ex-
ists a knowledge extractor that extract the witness for the instance
proved by P? (f -soundness).

In order to formalize the work aspect in [BKZZ16] the authors
give the notion of puzzle system. A puzzle system PuzSys is a tu-
ple of algorithms PuzSys = (Sample, Solve,Verify) that are defined
in the following way. Sample on input the security parameter 1λ

and the hardness factor h outputs a puzzle puz; Solve on input
the security parameter 1λ, a hardness factor h and a puzzle in-
stance puz outputs a potential solution sol; Verify on input the

82 2. Improved OR Composition

security parameter 1λ, a hardness factor h a puzzle instance puz,
and solution sol outputs 0 or 1.

Loosely speaking in [BKZZ16] require that the algorithms Sample
and Verify are efficient. Furthermore, it is difficult to compute a
solution for a sampled puzzle, that is, if puzzle system is f -hard,
then the Solve algorithm can not take less of f -steps of computa-
tion.

Using our OR-composition we can also implement PoWorK
protocol, where the prover proves either the knowledge of a witness
for some instance or a solution for a puzzle.

More formally, let Π be a Chameleon Perfect Σ-protocol (or
a delayed-witness Perfect Σ-protocol) for Rel, and let PuzSys =
(Sample, Solve,Verify) a puzzle system, that has an associated delayed-
input Perfect Σ-protocol ΠP for the relation Puzzle = {puz ←
Sample(1λ, h) : ∃ sol s.t. Verify(1λ, h, puz, sol) = 1}.

We can use ΠP and Π as input of our OR-composition described
in Section 2.4 and obtaining a ΠOR = (POR,VOR) for the following
relation

RelOR =
{

((x0, x1), w) :
(
(x0, w) ∈ L ∧ x1 ∈ L̂Puzzle

)
OR(

(x1, w) ∈ Puzzle ∧ x0 ∈ L̂
)}

where the statement x1 (the puzzle) is sent by V at the second
round.

First of all we observe that POR can work in PoK mode and
PoW mode. When POR works in PoK mode he computes the third
round of ΠOR using the witness w0 s.t. (x0, w0) ∈ RelL. Instead
when POR works in the PoW mode, he runs Solve obtaining a
witness w1 s.t. (x1, w1) ∈ Puzzle and he computes the third round
of ΠOR using the witness w1 (i.e. a solution for the puzzle). The
perfect indistinguishability follows from the perfect adaptive WI
property of ΠOR, and f -soundness follows from the PoK of ΠOR.

As the PoWorK protocols constructed in [BKZZ16], also our
contraction is 3-round and public coin. Note, also, that we do not

2.6. More About OR-Composition 83

require the additional feature for the puzzle system that in [BKZZ16]
is called ”density” and it is needed in [BKZZ16].

Instantiation of the puzzle system. In [BKZZ16] one of the
construction of the puzzle system is based on discrete logarithm
problem. In that case we need a delayed-input Σ-protocol for
Puzzle relation that corresponds to the DLog relation, therefore
we can use the Schnorr’s Σ-protocol.

2.6 More About OR-Composition

In this section we give some more details about our OR-compostion.
In particular we show that the pre-image protocol described in [Mau15,
Cra96] is a Chameleon Σ-Protocol, therefore can be used to in-
stantiate our OR-composition. Then, we provide a precise clas-
sification of the Σ-Protocols that can be used in our new OR-
composition technique. Finally we discuss the efficiency of our
technique.

2.6.1 More About Chameleon Σ-Protocols

Here we described the pre-image protocol for proving knowledge
of a pre-image of a value in the range of a homomorphic function.
This protocol is an abstraction of a large class of protocols like
Schnorr’s [Sch89] protocol and Guillou-Quisquater [GQ88]. This
abstraction is first described in [Cra96, CD98] and later observed
in [Mau15].

Let (G, ?) and (H,⊗) be two groups whose operations are ef-
ficiently computable, and let f : G → H be a one-way homomor-
phism from G to H. That is, f(x ? y) = f(x)⊗ f(y).

The pre-image protocol Π for relation Rel = {(x,w) : x =
f(w)} with associated algorithm (P1, P2,V)) and with challenge
length l is described below:

Common input: (description of) G and H and x ∈ H;

Prover’s private input: w such that x = f(w).

84 2. Improved OR Composition

- Algorithm P1.

On input (x,w) ∈ Rel and random coin tosses R1, P1 picks
k ← G, sets a← f(k) and outputs a.

- Algorithm P2.

On input (x,w) ∈ Rel, k, and challenge c, P2 computes and
outputs z = k ? wc.

- Algorithm V.

On input (x, a, c, z), V outputs 1 iff f(z) = a⊗ xc.

The simulator Sim of Π on input instance x and challenge c
works as follows:

- randomly pick z ← G;

- compute a = f(z)⊗ x−c;

- return (a, z).

Theorem 3 of [Mau15] describes the two conditions under which
the pre-image protocol is a Σ-protocol. Specifically, for integer y,
u ∈ G and (x,w) ∈ Rel we have:

- gcd(c1 − c2, y) = 1, for all challenges c1 6= c2 ∈ {0, 1}l;

- f(u) = xy.

Theorem 19. The Pre-Image Protocol is a Chameleon Σ-protocol.

Proof. We describe algorithm Psim. Let (a, z̃) be the output of
Sim on input x and challenge c̃. PPT algorithm Psim on input x, c̃
and the witness w for x and challenge c, computes and outputs
z = z̃ ? w−c̃ ? wc.

The triple (a, c, z) is an accepting transcript because the test
(f(z) = a⊗ xc) of V is successful. Indeed we have

a⊗xc = f(z̃)⊗x−c̃⊗xc = f(z̃)⊗f(w)−c̃⊗f(w)c = f(z̃?w−c̃?wc) = f(z).

2.6. More About OR-Composition 85

We show now the property of indistinguishability for Chameleon
Σ-protocols. We prove that for all pairs of challenges c̃ and c and
for all (x,w) ∈ Rel the two following distributions are indistin-
guishable:

- (a, c, z), where a = f(z)⊗ x−c;

- (a, c, z), where a = f(z̃)⊗ x−c̃ z = z̃ ? w−c̃ ? wc.

From the SHVZK property follows that the first distribution
is perfect indistinguishable from a real transcript a = f(k), c,
z = k ? wc (where k is a random element of G) produced by Π.

We note that z̃ is a random element of G, so z̃ ? w−c̃ is also
a random element of G, for this reason we can set k̄ = z̃ ? w−c̃,
and obtain that the second distribution a = f(k̄), c, z = k̄ ? wc is
identically distributed to a transcript given in output by Π.

2.6.2 Classification of Σ-Protocols

We provide examples for the four classes of Σ-protocols mentioned
in Section 2.1. Table 2.1 summarizes the classes of Σ-protocols
that can be used to construct either a 2-IDTC scheme or a 3-IDTC
scheme, or both, and the class of Σ-protocols that cannot be used
to instantiate any of our IDTC schemes.

(Class 1) (Class 2) (Class 3) (Class 4)

2-IDTC Yes Yes No No
3-IDTC Yes No Yes No

Figure

2.1 Class of Σ-protocols

Examples of Class 1 and Class 3 Σ-protocols. The Class
1 is the class of Σ-protocols that are Chameleon and that are
delayed-witness Σ-protocols. Schnorr’s Σ-protocol for DLog is an
example of Class 1 Σ-protocol. Indeed, its first round consists of
the prover sending a random group element. Moreover, even if this
value is computed by a simulator, knowledge of the witness and

86 2. Improved OR Composition

of the randomness used by the simulator suffices for the prover to
answer any challenge.

The Class 3 is the class of Σ-protocols that are not Chameleon
and that are delayed-witness Σ-protocols. For instance, Blum’s
Σ-protocol for Hamiltonian graphs belongs to Class 3. In fact this
Σ-protocol requires the prover only to know the graph to compute
the first round.

An example of a Class 2 Σ-protocol. Recall that Class 2
is the class of Σ-protocols that are Chameleon and that are not
delayed-witness Σ-protocols. We construct a Class 2 Σ-protocol
Π = (P ,V) for the relation DLOG = {((G, q, g, Y), y) : gy = Y } by
using Pedersen’s commitment scheme [Ped91] as a 2-IDTC scheme.
The TCom algorithm of the 2-IDTC scheme for DLOG based on
Pedersen’s commitment takes as input the description of a cyclic
group G of order q, a generator g of G and an element Y ∈ G.
To commit to m, TCom selects r ← Zq uniformly at random and
returns com = gr·Y m, dec = r, rand = r. The decommitment algo-
rithm TDec is straightforward and the trapdoor algorithm TFake,
knowing the discrete log of Y , can open the commitment com as
any message m′.

We are now ready to describe our proposed Class 2 Σ-protocol
for DLOG with common input (G, q, g, Y). In the first round,
P computes (comp, dec

0
p, rand) ← TCom(G, g, Y, 0) and then uses

TFake to compute an opening dec1
p of comp as 1. Finally, P com-

putes (com0, dec0, rand0)← TCom(G, g, Y, dec0
p) and (com1, dec1, rand1)

← TCom(G, g, Y, dec1
p) and sends (comp, com0, com1) to V that replies

with a one bit challenge b. P answers by sending decbp and decb.
The simulator Sim for the SHVZK receives an instance (G, q, g, Y)
and a bit b and computes (comp, dec

b
p, rand)← TCom((G, q, g, Y), b).

Commitment decbp is committed twice obtaining com0 and com1

and only comb is opened. Notice that, since Pedersen’s commit-
ment is perfectly hiding, then the simulation of Sim is perfect.
Clearly, P needs the witness of Y for computing the first round.
Moreover, the proposed protocol is Chameleon since Sim commits
twice to the same opening of the commitment comp but then P ,

2.6. More About OR-Composition 87

once the discrete log of Y becomes available, can computed dec1−b
p

and then open com1−b as dec1−b
p .

Examples of Class 4 Σ-protocols. Recall that Class 4 is the
class of Σ-protocols that are not Chameleon and that are not
delayed-witness Σ-protocols.

As an example of a Class 4 Σ-protocol we consider the proto-
col obtained from the Class 2 Σ-protocol described in the previous
paragraph in which dec0

p and dec1
p are committed by using a (non-

interactive) commitment scheme that is perfectly binding e com-
putationally hiding instead of a Pedersen’s commitment scheme.
For example, the ElGamal encryption scheme can be used to con-
struct such a commitment scheme. In this case, the Σ-protocol
obtained is only computational HVZK.

2.6.3 Efficiency

We now give a briefly comparison our OR transform and the CDS-
OR transform in terms of number of modular exponentiations that
they involve.

For this comparison we consider a protocol ΠOR that proves
the knowledge of one out of two discrete logarithms. Therefore
the OR transforms has on input Π0 and Π1 both corresponding to
Schnorr’s Σ-protocol.

We consider two cases:

- 1st case: Π0 is Schnorr’s Σ-protocol for relation DLOG =
{((G ′, q′, g′, Y ′), y′) : gy

′
= Y ′}, where q′ is prime and G ′ is a

group of order q′ of the quadratic residues modulo p′ s.t. p′ =
2q′ + 1, where |p′| = 2048 and |q′| = 2047. Π1 is Schnorr’s
Σ-protocol for relation DLOG = {((G, q, g, Y), y) : gy = Y },
where q is prime and G is a group of order q of the quadratic
residues modulo p s.t. p = 2q + 1, where |p| = 1024 and
|q| = 1023.

- 2nd case: Π0 and Π1 are both like Π1 described in the 1st
case.

88 2. Improved OR Composition

In both cases we instantiate t−IDTC from Π0.

The execution of Schnorr’s Σ-protocol costs 1 modular expo-
nentiation, while the execution of the simulator of Schnorr’s Σ-
protocol costs 2 modular exponentiations. By exponentiation mod
p or exponentiation mod p′, we indicate, respectively the exponen-
tiation modulo a prime of 1024 bits and the exponentiation modulo
a prime of 2048 bits.

To evaluate the cost of our OR transform, we first note that the
number of modular exponentiations of our OR transform are dif-
ferent when it is instantiated using a 2−IDTC scheme or 3−IDTC
scheme, even when the 2−IDTC scheme and 3−IDTC schemes
are constructed from the same Σ-protocol. In particular if the
scheme are constructed from Schnorr’s Σ-protocol run the algo-
rithm TCom costs 2 modular exponentiations in the case of 2−IDTC
and it costs 3 modular exponentiations in the case of a 3−IDTC.

From this observation follows that to compute the first round of
our our OR transform we need 1 exponentiation mod p to compute
the first round of Schnorr’s Σ-protocol plus the cost to execute
TCom.

To compute the third round of our OR transform we need 2
exponentiations mod p when we run equivocal procedure TFake,
because we need to execute again a simulator of Π1. Otherwise
no other exponentiations is required. Therefore in the worst case
to compute the third round of our OR transform we need 2 expo-
nentiations mod p.

Summing up:

- in the 1st case our OR transform costs 3 exponentiations
mod p plus 2 exponentiations mod p′ if we use a 2−IDTC
scheme (or 3 exponentiations mod p′ if we use a 3−IDTC
scheme).

- in the 2nd case our OR transform costs 3 exponentiations
mod p plus 4 exponentiations mod p if we use a 2−IDTC
scheme (or 6 exponentiations mod p if we use a 3−IDTC
scheme). Note that in this case to commit to a first round

2.7. More About Σ-Protocols 89

of Schnorr’s Σ-protocol where |a| = 1024 bits, we need to
run twice the TCom procedure.

The CDS-OR transform costs in both cases 3 modular expo-
nentiations. In the 1st case the 2 exponentiations are mod p and 1
exponentiation is mod p′, in the 2nd case all the exponentiations
are mod p.

2.7 More About Σ-Protocols

In this last section we will give some additional theorems on Σ-
protocol, that have been used during the Chapter. Furthermore,
we will described a Σ-protocol for the 1DDH relation.

Theorem 20. For every relation Rel such that LRel 6∈ BPP there
exist Σ-protocols that are not WI.

Proof. Let Π′ = (P ′,V ′) be a Σ-protocol for the relation Rel with
challenge length l and let (P ′1, P

′
2,V

′) be the triple of PPT algo-
rithms associated to Π′. We use these algorithms to describe a
Σ-protocol Π with associated algorithms (P1, P2,V) that is not
WI. Consider (x,w) ∈ Rel.

1. P1 on input (x,w) and randomness R1 parses it as (r1, cp)
where cp is an l-bit string, computes a′ ← P ′1(x,w; r1), and
outputs a = (a′, cp).

2. P2, on input (x,w), R1, a challenge c computes z′ ← P ′2(x,w, r1, c)
and if c = cp then it also sets z = w otherwise it sets z = z′;
finally it outputs z.

3. V, on input x, a = a′, cp, c and z, makes the following steps:
in case c is different from cp it outputs V′(x, a′, c, z) otherwise
it output 1 iff (x, z) ∈ Rel.

We now check that Π is a Σ-protocol.

90 2. Improved OR Composition

- Completeness: The completeness of Π follows from the
completeness of Π′ except when c is equal to cp. In this case
P has a witness and sends it to V that still accepts.

- Special Soundness: Extract on input a collision
(a = (a′, cp), c1, z1) (a = (a′, cp), c2, z2) works as follows:

– if c1 and c2 are different from cp then it runs the extrac-
tor Extract′ of Π′ on input x and a collision (a′, c1, z1)
(a′, c2, z2) returning its output.

– if c1 is equal to cp, it outputs z1 while instead if c2 is
equal to cp it outputs z2.

- SHVZK Sim(x, c) of Π works as follows:

– computes (a′, z′) ← Sim′(x, c), where Sim′(x, c) is the
simulator of Π′;

– picks cp ← {0, 1}l.
– if cp is equal to c then it aborts, otherwise it outputs

(a = (a′, cp), z
′).

We prove that Π is computational SHVZK, namely: for any
l-bit string c, the transcript given in output by Sim(x, c) is com-
putationally indistinguishable from a honest transcript where the
challenge is c and P runs on common input x and private input w
such that (x,w) ∈ Rel.

Suppose there exists a distinguisher A for the SHVZK of Π,
then we can show a distinguisher A′ for the SHVZK of Π′.
A′ runs A that outputs a pair (x,w) and a challenge c. A′

then asks the challenger of SHVZK to produce a transcript (either
honest or simulated) for instance x, witness w and challenge c.
A′ obtains from the challenger a pair (a′, z′) such that (a′, c, z′) is
an accepting transcript. A′ picks randomly an l-bit string c′, sets
a = a′|c′, z = z′, feeds (a, z) to A, and outputs what A outputs.

We note that the success probability of A′ is statistically close
to the one of A since the probability that c is equal to c′ is negligi-
ble and this case is the only deviation among the two distributions.

2.7. More About Σ-Protocols 91

We finally note that Π′ is not WI since an adversarial verifier
V? can obtain a witness by just sending a challenge c that is equal
to cp. As a consequence V? can get and output a witness for
x ∈ L during an execution with P . Clearly no PPT simulator can
produce the same output unless L ∈ BPP.

2.7.1 Challenge Length of Σ-Protocols

In this section we show how one can reduce or stretch the size of
the challenge in a Σ-protocol and in a Σ̃-protocol.

Challenge-length amplification. The challenge of a Σ-protocol
can be extended through parallel repetition.

Lemma 2.7.1. [CDS94, Dam10] Let Π be a Σ-protocol (resp.
Σ̃-protocol) for relation Rel and challenge length l. Running Π k-
times in parallel for the same instance x corresponds to running
Σ-protocol (resp. Σ̃-protocol) for Rel with challenge length k · l.

Challenge-length reduction.

Lemma 2.7.2. [Dam10] Given a Σ-protocol of challenge length
l for the relation Rel, is possible to construct a Σ-protocol, for the
same relation Rel with challenge length l′ where l′ < l.

We now show that Lemma 2.7.2 it is true even when we con-
sider a Σ̃-protocol. One possibility to obtain this result is to con-
vert the Σ̃-protocol in a Σ-protocol, and then use Lemma 2.7.2.
We show how to obtain the same result without first converting
the Σ̃-protocol to a Σ-protocol.

Lemma 2.7.3. For any Σ̃-protocol Π = (P ,V), for a relation Rel
with challenge length l, simulator Sim, and the associated triple
(P1, P2,V), there exists a Σ̃-protocol Π′ = (P ′,V ′), for the same
relation Rel, with challenge length l′, where l′ < l and with the
same efficiency.

92 2. Improved OR Composition

Proof. We show Π′ by presenting the associated triple (P ′1, P
′
2,V

′)
of efficient PPT algorithms.

1. P ′1 on input (x,w) and randomness R1 computes and outputs
a← P1(x,w;R1).

2. P ′2 on input (x,w), c ∈ {0, 1}l′ , R1 and randomness R2,
parses R2 as (pad,R′2) where pad is an (l− l′)-bit string, sets
c′ = c|pad, computes z ← P2(x,w,R1, c

′;R′2) and outputs
z′ = (z, pad).

3. V′ on input x, a, z′ = (z, pad) and c, outputs the output of
V(a, c|pad, z).

Completeness follows directly from the completeness of Π.

HVZK We can consider the simulator Sim′, that on input x runs
as follows:

- runs (a, c, z)← Sim(x);

- sets pad equal to the last l− l′ bits of c, and sets c′ equal to
the fist l′ bits of c;

- outputs (a, c′, (z, pad)).

Special soundness follows directly from the special soundness
of Π.

From Lemma 2.7.1, 2.7.2 and 2.7.3, we can claim the following
theorem.

Theorem 21. Suppose that relation Rel has a Σ-protocol (Σ̃-protocol)
Π. Then, for any challenge length l, Rel admits a Σ-protocol (Σ̃-
protocol) Π′ with challenge length l′. If l′ ≤ l than Π′ is almost
as efficient as Π. Otherwise the communication and computation
complexities of Π′ are l′/l times the ones of Π.

2.7. More About Σ-Protocols 93

2.7.2 Σ-protocol for the 1DDH Relation.

Let 1DDH be the following relation

1DDH =
{(

((G, q, g), A = ga, B = gb, C = gab+1), b+1
)

: Ab+1 = C
}

and let ΠDDH be a Chameleon Σ-protocol for DDH ([Ped91]). We
can use ΠDDH to build a Chameleon Σ-protocol Π1DDH for 1DDH in
the following way. P and V on common input T =

(
(G, q, g), A,B,C

)
construct the tuple T ′ =

(
(G, q, g), A′, B′, C ′/g

)
, then they engage

ΠDDH on input T ′.

Theorem 22. Π1DDH is a Chameleon Σ-protocol for 1DDH.

It is easy to observe that if T is a 1-non-DH tuple, then T ′

is a DH-tuple and P has a witness for it. Furthermore the com-
pleteness, the SHVZK and the special soundness of Π1DDH follow
from the completeness, the SHVZK and the special soundness of
ΠDDH. Finally, Π1DDH is a Chameleon Σ-protocol because ΠDDH is
a Chameleon Σ-protocol.

94 2. Improved OR Composition

Chapter 3

Non-Malleable
Commitment Schemes

3.1 Overview of the Chapter

Commitment schemes are fundamental in Cryptography. They
require a sender to fix a message that can not be changed anymore,
but that will remain hidden to a receiver until the sender decides
to reveal it.

In order to model modern real-world adversaries, commitment
schemes have been proposed with additional security properties.
Here we consider the intriguing question of constructing a scheme
that remains secure against man-in-the-middle (MiM) attacks: a
non-malleable (NM) commitment scheme [DDN91].

This fascinating setting is much harder to deal with than the
classic stand-alone setting. Indeed while we know 1-round and
2-round regular commitment schemes under various assumptions
([GL89, NY89, Ped91, Nao91, HM96]), Pass proved that NM com-
mitments1 require at least 3 rounds [Pas13] when security is proved
through a black-box reduction to a falsifiable (polynomial) hard-
ness assumption. Instead in different and more controversial mod-
els (e.g., assuming the existence of a trusted random string, by

1We consider the notion of NM commitment w.r.t. commitment.

96 3. Non-Malleable Commitment Schemes

modeling hash functions as random oracles, by weakening the se-
curity definition admitting an inefficient challenger) we know con-
structions of non-interactive NM commitments [DG03, PPV08].

The round complexity of NM commitment schemes in the stan-
dard model has puzzled researchers for long time. Starting from
the construction of [DDN91] that required a logarithmic number
of rounds, various constant-round schemes were proposed [Bar02,
PR05b, PR05a, PR08a, PW10, LP11b, Goy11, GLOV12, GRRV14,
BGR+15, LP15, COSV17b, COSV16]. Interestingly Ciampi et al.
in [COSV17b] show a 4-round commitment scheme that is secure
also when the adversary mounts a concurrent MiM attack, a set-
ting that corresponds to what can actually happen when sender
and receiver are connected through a communication network like
the Internet. In such a much more interesting setting a MiM ad-
versary receives multiple commitments from senders and sends his
commitments to multiple receivers.

3.1.1 Towards 3-Round (Concurrent) NM Com-
mitments

The existence of 3-round NM commitment schemes is an impor-
tant question first because 3 is the best possible constant (in light
of the lower bound of [Pas13]), and second because 3 is the smallest
number of rounds for a primitive that often makes use of commit-
ment schemes: proofs of knowledge.

The importance of obtaining 3-round (and not just any constant-
round) NM commitments motivated the following works. The re-
sult of [GPR16] showed that 3 rounds are sufficient for (one-left,
one-right) non-malleable commitments. Then, the work of [Khu17]
realizes a 3-round concurrent non-malleable commitment under
number theoretic assumptions. Furthermore the work of [KS17]
and the work of [LPS17], decrease the round complexity of concur-
rent non-malleable commitment to two, but they require stronger
complexity theoretic assumptions. Therefore the following natural
and important question remains open.

Main Open Question: Can we construct a 3-round concurrent non-

3.1. Overview of the Chapter 97

malleable commitment scheme under standard generic assump-
tions, rather than specific number-theoretic assumptions?

3.1.2 Other 3-Round Challenges

We list here 3 other interesting settings where no 3-round con-
struction is known against concurrent MiM adversaries.

- Proofs2 of knowledge are very useful in Cryptography. They
have been studied in particular when there are only 3 rounds
and the verifier just sends random bits (e.g., Σ-protocols [CDS94,
Dam10], Blum’s protocol for Hamiltonicity [Blu86b]). De-
spite their importance, there is no construction for 3-round
proofs of knowledge (PoK) that is sufficiently secure under
concurrent MiM attacks. This is due to the fact that such
attacks are in general extremely difficult to deal with. Even
though there exist constructions with a constant number of
rounds, the case of just 3 rounds so far has remained un-
solved.

- Lapidot and Shamir in [LS90] proposed a 3-round public-coin
delayed-input WIPoK for NP: the LS protocol. As we said
before, when a PoK is used as sub-protocol the delayed-input
feature is instrumental to give a better round complexity to
the external protocol. An additional features of delayed-
input protocols is that they allow to shift large part of the
computation to an off-line phase. Unfortunately the LS pro-
tocol and the PoKs of [CPS+16b, CPS+16a] are not secure
against concurrent MiM attacks and this penalizes those ap-
plications where both round complexity and security against
concurrent MiM attacks are important.

- We notice that identification schemes have been often pro-
posed (e.g., [FFS87]) through the paradigm of proving “knowl-

2For simplicity in the informal part of the work we will not make a strict
distinction between proofs and arguments. In the formal part we will use
appropriate terms.

98 3. Non-Malleable Commitment Schemes

edge” of a secret3. Under this formulation there are constant-
round constructions that are proven secure against concur-
rent MiM attacks [BFGM01]. However no 3-round scheme
known in literature is proven secure in presence of a concur-
rent MiM adversary.

3.1.3 Our Contribution

In this work we study 3-round commitment scheme in presence of
concurrent MiM attacks and solve in the positive the above open
problems.

3-Round concurrent NM commitment schemes and more.
In the main result of this chapter, we show a transform that on in-
put any 3-round NM commitment scheme4 gives a 3-round concur-
rent NM commitment scheme. The construction of [GPR16] can
be used to instantiate our transform, therefore obtaining a 3-round
concurrent NM commitment scheme based on any one-way permu-
tation secure against subexponential-time adversaries. This result
solves the main open question. Moreover our scheme (still when
instantiated with the one of [GPR16] and using a proper one-way
permutation) is public coin and (if desired5) has the delayed-input
property.

Our transform extends the security of the underlying commit-
ment scheme to multiple receivers. It is known that this implies
security also with multiple senders [LPV08]. The crucial idea
of our transform is to combine the underlying NM commitment

3Other notions based on signature or decryption capabilities are considered
weaker since in some applications the verifier wants to make sure that the
prover is the actual entity matching the announced identity. Indeed without
a PoK a prover could give some partial information about his secret to others
that can still succeed in convincing the verifier, even though they do not know
the full secret.

4We also require the scheme to be extractable. Extractability often comes
for free since it is commonly used in the non-malleability proof.

5Our transform can be instantiated in two ways. In the former the message
to commit is required already when playing the first round, while in the latter
the message to commit is required when playing the third round only.

3.1. Overview of the Chapter 99

scheme along with a one-time pad, to produce a commitment of a
message that by itself, in case of a malleability attack, will have
sufficient structure to be recognized by a distinguisher in the ses-
sion in which it appears. Therefore a successful concurrent MiM
even playing multiple commitments with multiple receivers will
have to maul the underlying commitment scheme in at least one
session. Since the message has sufficient structure with respect to
that single session, we are able to translate the concurrent MiM
attack into a non-concurrent MiM that violates the security of the
underlying (non-concurrent) NM commitment scheme. We will
implement the idea of committing to a message with structure by
forcing a successful concurrent MiM to commit to the solution of a
puzzle in at least one session. We will use complexity leveraging to
show that the attack of the concurrent MiM is indistinguishable
from the attack of a polynomial-time simulator that plays with
receivers only.

Furthermore we propose a different approach for 3-round one-
one non-malleable commitments that can be instantiated with a
limited form of non-malleability enjoyed by both a subprotocol
of [GRRV14] and a subprotocol of [GPR16] (therefore we can in-
stantiate our result in two completely different ways). The main
result of the chapter can still be instantiated using our 3-round
one-one non-malleable commitment scheme.

Our 3-round one-one non-malleable commitment scheme com-
bines some ideas of the first mentioned result of the chapter along
with the concept of weak non-malleable commitment. In partic-
ular we start with a scheme that is one-one non-malleable only
against synchronous adversaries that do not commit to ⊥. Note
that both a subprotocol of [GRRV14] and a subprotocol of [GPR16]
satisfy this security property. Considering this notion we construct
a compiler that, on input a 3-round synchronous weak one-one
NM commitment scheme, gives as output a 3-round extractable
one-one NM commitment scheme assuming OWPs secure against
subexponential-time adversaries.

3-round arguments of knowledge and ID schemes against
concurrent MiM attacks. We notice that our 3-round concur-

100 3. Non-Malleable Commitment Schemes

rent NM commitment scheme is a commit-and-prove argument of
knowledge (AoK). This means that one can see our scheme as a
commitment followed by an AoK about the committed value. By
applying a simple change to the statement of the underlying AoK
we obtain a 3-round concurrent NM witness-indistinguishable AoK
(concurrent NMWIAoK) a notion introduced in [OPV08] and later
on extended in [LPV09]. We stress that the delayed-input and
public-coin properties of our commitment scheme are preserved
by our concurrent NMWIAoK.

Notice that AoKs under standard assumptions require at least
3 rounds. The simulation-based notion for concurrent non-malleable
arguments of knowledge (i.e., concurrent NM zero knowledge)
requires at least a polylogarithmic number of rounds [CKPR01,
BPS06] when the simulator is black box. In [OPV08] it is shown
how to get concurrent NM zero knowledge (NMZK) in the bare
public-key (BPK) model [CGGM00, MR01] with just two execu-
tions of a concurrent NMWIAoK. Therefore here we directly ob-
tain a round-efficient concurrent NMZKAoK in the BPK model.
Notice also that by making use of the delayed-input feature the
simulator can extend a main thread avoiding issues due to aborting
adversaries as discussed in [SV12, ORSV13].

Finally, we notice that one can get an identification scheme se-
cure in the PoK sense in the concurrent6 setting of [BFGM01] as
well as under the stronger definition based on matching conversa-
tions of [BR93, Kat02] naturally extended to multiple concurrent
sessions. Following [OPV08, COSV12], the key idea consists in us-
ing an identity that has two possible secrets such that knowledge
of one witness does not allow to compute the other one in poly-
nomial time. Then, by using our implementation of a concurrent
NMWIAoK for proving knowledge of a secret associated to such
identity we obtain a 3-round identification scheme secure against
concurrent MiM attacks.

6In [BFGM01] a notion called CR2 is proposed to deal with concurrent
MiM attacks and reset attacks. Reset attack were also considered in the
notion CR1+ introduced in [BPSV08]. Since reset attacks are out of the
scope of this work, we will focus on concurrent MiM attacks only.

3.2. 3-Round Concurrent Non-Malleable Commitments 101

Other applications. In [GMPP16] it is showed that the ex-
istence of a 3-round 3-robust parallel non-malleable commitment
scheme implies the existence of a 4-round protocol for secure multi-
party coin tossing for polynomially many coins and of a 4-round
secure two-party protocol for any functionality in the simultane-
ous channel. One of the candidate instantiations of such special
commitment scheme is our 3-round concurrent non-malleable com-
mitment scheme.

3.2 3-Round Concurrent Non-Malleable

Commitments

In this section we show the main result of this work, a transform
that starting from a 3-round extractable one-one non-malleable
commitment scheme outputs a 3-round concurrent non-malleable
commitment scheme.

3.2.1 Informal Description

Our transform takes as input a 3-round extractable one-one NM
commitment scheme Πwsyn, a OWP f , a non-interactive perfectly
binding commitment scheme NI, the 3-round delayed-input adap-
tive WI/PoK LS and outputs a 3-round fully concurrent (i.e.,
many-many) NM commitment scheme ΠNMCom = (NMSen,NMRec).

Let m be the message that NMSen wants to commit. The
high-level idea of our compiler is depicted in Fig. 3.1. The sender
NMSen, on input the session-id id and the message m, computes
the 1st round of the protocol by running LS and sending the 1st
round of wsyn to commit to a random message s0 using id as
session-id. In the 2nd round the receiver NMRec sends the chal-
lenges of wsyn and LS, also sends a random value Y in the range
of the OWP f 7. In the last round NMSen commits to message m
using NI, therefore obtaining com, then computes the last round

7When sampling from the range of f corresponds to picking a random
string, we have that our commitment scheme is public coin.

102 3. Non-Malleable Commitment Schemes

awsyn(s0), aLS

cwsyn(s0), cLS, Y

s1, zwsyn(s0), zLS, com(m)

NMSen(m) NMRec

- Y is an element taken from the range of the OWP f .

- com(m) is the perfectly binding commitment of m com-
puted using NI.

- (awsyn(s0), cwsyn(s0), zwsyn(s0)) = τ is the transcript of the
execution of the NM commitment scheme Πwsyn when the
sender commits to s0.

- (aLS, cLS, zLS) = π is the transcript of LS proving knowl-
edge of either m and the randomness used to compute
com, or of (s0, dec), s.t. f(s0⊕s1) = Y and dec is a valid
decommitment of s0 w.r.t. τ .

Figure 3.1 Informal description of our 3-round concurrent NM commitment
scheme.

of wsyn, completes the transcript of LS, and finally sends a ran-
dom string s1. The protocol LS is used by NMSen to prove to
NMRec that either she knows message m and the randomness
used to compute com, or she knows the values (s0, dec), such that
f(s0 ⊕ s1) = Y and dec is a valid decommitment to s0 w.r.t. the
commitment computed using Πwsyn. We observe that NMSen needs
m only when computing the 3rd round, therefore our construction
enjoys delayed-input correctness.

3.2.2 Our Compiler

Our compiler needs the following tools:

3.2. 3-Round Concurrent Non-Malleable Commitments 103

1. a OWP f that is secure against ppt adversaries and T̃f -
breakable;

2. a non interactive perfectly binding commitment scheme NI =
(NISen,NIRec) that is TNI-hiding and T̃NI-breakable;

3. a 3-round extractable one-one NM commitment scheme
Πwsyn = (Senwsyn,Recwsyn) that is Twsyn-hiding/non-malleable,
and T̃wsyn-breakable;

4. the LS proof system LS = (P ,V) for the language

L =
{(

(a, c, z), Y, s1, com, id
)

: ∃ (m,σ) s.t.

com = NISen(m;σ) OR(
∃(ρ, s0)s.t. a = Senwsyn(id, s0; ρ) AND

z = Senwsyn(id, c, s0; ρ) AND Y = f(s0 ⊕ s1)
)}

that is TLS-WI for the corresponding relation RelL.
Let λ be the security parameter of our scheme. We will use

wlog λ also as security parameter for the hardness to invert f
with respect to polynomial time adversaries. Then we consider the
following hierarchy of security levels for the above tools: Tf <<
TNI <<

√
Twsyn << Twsyn <<

√
TLS << TLS where by “T << T ′”

we mean that “T · poly(λ) < T ′”. We also require that:

- NI is TNI-hiding, but is also T̃NI =
√
Twsyn-breakable;

- Πwsyn is Twsyn hiding/non-malleable, but the hiding is also
T̃wsyn =

√
TLS-breakable.

Now we need to define different security parameters, one for
each tool involved in the security proof to be consistent with the
hierarchy of security levels defined above (a similar use of security
parameters has been proposed in [PW10]). Given the security
parameter λ of our scheme, we will make use of the following
security parameters (all polynomially related to λ and such that
the above hierarchy of security levels holds): λ for f , λNI for NI,
λwsyn for Πwsyn, λLS for LS.

We denote by Params the function that on input λ outputs
(λNI, λwsyn, λLS, `) where ` is the size of the theorem to be proved

104 3. Non-Malleable Commitment Schemes

using LS8. Our concurrent NM commitment scheme ΠNMCom =
(NMSen,NMRec) is fully described in Fig. 3.2 and an high-level
overview is given in Fig. 3.1.

Theorem 23. Suppose there exist OWPs secure against subexponential-
time adversaries, then ΠNMCom is a perfectly binding delayed-input
commitment scheme.

Before start the proof of security, we recall that LS and NI
can be constructed from OWPs secure against subexponential-
time adversaries as well as Πwsyn that can be constructed from
OWPs secure against subexponential-time using the constructions
of [GPR16] or the construction showed in Section 3.4.1.

Proof. Correctness. The delayed-input correctness of ΠNMCom

follows by inspection considering the delayed-input completeness
of LS, and the correctness of Πwsyn and NI.

Binding. To prove the binding property we only observe
that the message given in output in the decommitment phase of
ΠNMCom is the message committed using NI. Moreover the decom-
mitment phase of ΠNMCom coincides with the decommitment of NI
and Πwsyn. Since they are both perfectly binding we have that
therefore ΠNMCom is perfectly binding too.

Hiding. The hiding property follows directly from the non-
malleability property proved in Theorem 24. Indeed the proof of
Theorem 24 does not rely on the hiding of ΠNMCom.

In this section we prove our main theorem.

Theorem 24. Suppose there exist OWPs secure against subexponential-
time adversaries, then ΠNMCom is concurrent (i.e., many-many)
non-malleable.

Proof. Since we can use Proposition 1.2.7, we only need to prove
that our commitment enjoys one-many non-malleability. More

8To compute 1st and 2nd round of LS only the length ` of the instance is
required.

3.2. 3-Round Concurrent Non-Malleable Commitments 105

Common input: Security parameters: λ,
(λNI, λwsyn, λLS, `) = Params(λ).
NMSen’s identity: id ∈ {0, 1}λ.
Input to NMSen: m ∈ {0, 1}poly{λ}.

Commitment Phase:
1. NMSen→ NMRec

1. Pick s0 ∈ {0, 1}λ.
2. Pick a randomness ρ ∈ {0, 1}λnm and compute

awsyn = Senwsyn(id, s0; ρ).
3. Pick a randomness α ∈ {0, 1}λLS and compute

aLS = P(`;α).
4. Send (awsyn, aLS) to NMRec.

5. NMRec→ NMSen
1. Pick a randomness γ and run Recwsyn on input

(id, awsyn; γ) to obtain cnm.
2. Pick a randomness β and run V to obtain cLS.
3. Pick a random y ∈ {0, 1}λ and compute Y = f(y).
4. Send (cwsyn, cLS, Y) to NMSen.

5. NMSen→ NMRec
1. Pick a randomness σ ∈ {0, 1}λNI and compute

(com, dec) = NISen(m;σ).
2. Pick s1 ← {0, 1}λ.
3. Compute (zwsyn, decwsyn) = Senwsyn(id, cwsyn, s0; ρ).
4. Set x =

(
(awsyn, cwsyn, zwsyn), Y, s1, com, id

)
and

w = (m,σ,⊥,⊥) with (|x| = `). Run zLS =
P(x,w, cLS;α) where x is the theorem to be proven
and w is the witness.

5. Send (zwsyn, com, zLS, s1) to NMRec.
6. NMRec: Set x =

(
(awsyn, cwsyn, zwsyn), Y, s1, com, id

)
and abort iff (aLS, cLS, zLS) is not accepting for V with
respect to x.

Decommitment Phase:
1. NMSen → NMRec: Send (dec,m, decwsyn, s0) to

NMRec.
2. NMRec: Accept m as the committed message iff

1. NIRec(dec, com,m) = 1 and
2. Recwsyn on input γ, (awsyn, cwsyn, zwsyn, id), s0 and

decwsyn outputs 1.

Figure 3.2 Our 3-round concurrent NM commitment scheme.

106 3. Non-Malleable Commitment Schemes

formally with respect to a one-many adversary A, we need to
show that for all m ∈ {0, 1}poly(λ) it holds that:

{mimA,mΠNMCom
(z)}z∈{0,1}? ≈ {simS

ΠNMCom
(1λ, z)}z∈{0,1}?

where S is the simulator depicted in Fig. 3.3.
This means that the real execution in which the sender runs

NMSen to commit to a message m must be indistinguishable with
respect to an execution in which a simulator Sim runs internally
the MiM adversarial A sending a commitment of 0λ, and then for-
wards the messages that A sends in the right sessions to receivers
NMRec1, . . . ,NMRecpoly(λ).

We remark that in the security proof we denote by δ̃i a value
associated with the i-th right session (where the adversary A plays
with a receiver NMReci with i ∈ {1, . . . , poly(λ)}) where δ is the
corresponding value in the left session. For example, the sender
commits to v in the left session while A commits to ṽi in the i-th
right session.

To prove the indistinguishability of the above two experiments
we proceed by showing 3 hybrid experiments9 Hm

i (z) with i =
1, 2, 3, where m is the message committed in the left session. Fol-
lowing [LP11b] we denote by {mimAHmi (z)}z∈{0,1}? the random vari-
able describing the view of the MiM A combined with the value
it commits in the right interaction in hybrid Hm

i (z) (as usual, the
committed value is replaced by ⊥ if the right interaction does not
correspond to a commitment that can be successfully opened or if
A has copied the identity of the left interaction).

The first hybrid is the experiment in which in the left ses-
sion NMSen commits to m, while in the right session we run
NMRec1, . . . ,NMRecpoly(λ) for the rights sessions played by A. We
refer to this hybrid experiment as Hm

1 (z), details follow below.

Hm
1 (z).
Left session:

9We will describe the hybrid experiments in a succinct way focusing on the
key steps (e.g., omitting sampling of randomness, generation of parameters
λNI, λwsyn, λLS, `).

3.2. 3-Round Concurrent Non-Malleable Commitments 107

1. First round.

(a) Pick s0 ← {0, 1}λ.
(b) Compute awsyn = Senwsyn(id, s0; ρ).
(c) Compute aLS = P(1λLS , `;α).
(d) Send (awsyn, aLS) to A.

2. Third round, upon receiving (cwsyn, cLS, Y) from A.

(a) Compute (com, dec) = NISen(m;σ).
(b) Pick s1 ← {0, 1}λ.
(c) Compute (zwsyn, decwsyn) = Senwsyn(id, cwsyn, s0; ρ).
(d) Set x =

(
(awsyn, cwsyn, zwsyn), Y, s1, com, id

)
and w =

(m,σ,⊥,⊥) with (|x| = `). Run zLS = P(x,w, cLS;α).
(e) Send (zwsyn, com, zLS, s1) to A.

Right sessions: act as a proxy betweenA and NMRec1, . . . ,NMRecpoly(λ).
We have that for allm ∈ {0, 1}poly(λ) {mimAHm1 (z)}z∈{0,1}? clearly

corresponds to
{mimA,mΠNMCom

(z)}z∈{0,1}? . Before we move on with the sequence of
hybrid experiments we need to prove that, for all i ∈ {1, . . . , poly(λ)}
A does not manage to invert any values Ỹi in the right sessions
by sending a value s̃1i such that f(s̃0i ⊕ s̃1i) = Ỹi where s̃0i is the
message committed in the i-th right session through wsyn.

Lemma 3.2.1. Let pi be the probability that in the i-th right
session, for i ∈ {1, . . . , poly(λ)}, A sends a value s̃1i such that
f(s̃1i ⊕ s̃0i) = Ỹi where s̃0i is the value committed using wsyn.
Then pi < ν(λ) for some negligible function ν.

Proof. Suppose by contradiction that for a right session i the claim
does not hold. We can construct an adversary Af that inverts the
OWP f in polynomial time. Formally we consider a challenger
Cf of f that chooses a random Y in the range of f and sends
it to Af . Af wins if it gives as output y such that Y = f(y).
Before describing the adversary we need to consider the augmented
machine M that will be used by Af . M internally executes A,
and interacts with an external receiver Recext of the protocol Πwsyn

acting as the sender. Formally M acts as follows.

M(Y, ϕ, z)

108 3. Non-Malleable Commitment Schemes

1. Act in the left session with A (that runs using randomness
ϕ) as in Hm

1 (z).

2. For all j 6= i ∈ {1, . . . poly(λ)} run NMRecj as in Hm
1 (z).

Instead run NMReci as described in steps 3, 4 and 5.

3. Upon receiving the 1st round of the i-th right session (ãwsyni , ãLSi)
from A, send ãwsyni to Recext.

4. Upon receiving c̃nmi
from Recext, run as follows:

(a) Run V to obtain c̃LSi
.

(b) Set Ỹi = Y .

(c) Send (c̃wsyni
, c̃LSi

, Ỹi) to A.

5. Upon receiving the 3rd round of the
i-th right session (z̃wsyni , ˜comi, z̃LSi , s̃1i), set

x̃ =
(
(ãwsyni , c̃wsyni , z̃wsyni), Ỹ , s̃1i, ˜comi, ĩd

)
and abort iff

(ãLSi , c̃LSi , z̃LSi) is not accepting for V with respect to x̃.

6. Send z̃wsyni to Recext.

Notice that the above execution ofM is distributed identically
to Hm

1 (z) when Recext plays identically as honest receiver. Now we
can conclude the proof of this lemma by describing how Af works.
Af runs the extractor of Πwsyn using M as sender (recall that an
extractor of Πwsyn plays only having access to a sender of Πwsyn).
We have that the extractor with non-negligible probability outputs
the committed message of an execution that inverts f . By using
the randomness ϕ, Af can reconstruct the view of A and retrive
the value s̃1i. Therefore A running in polynomial time10 outputs
with non-negligible probability the value y = s̃0i ⊕ s̃1i such that
f(y) = Y .

10The extractor is an expected polynomial-time algorithm while Af must
be a strict polynomial-time algorithm. Therefore Af will run the extractor
up to a given upperbounded number of steps that is higher than the expected
running time of the extractor. Obviously with non-negligible probability the
truncated extraction procedure will be completed successfully and this is suf-
ficient for Af to invert f . The same standard argument about truncating the
execution of an expected polynomial-time algorithm will be needed later but
for simplicity we will not repeat this discussion.

3.2. 3-Round Concurrent Non-Malleable Commitments 109

We now consider the second hybrid experiment Hm
2 (z) where

in the left session, after receiving Y from A, the sender in time
Tf finds a value y such that Y = f(y). Then the sender sets and
sends s1 = y ⊕ s0, where s0 is the value committed using Πwsyn.
The only difference between this hybrid experiment and Hm

1 (z) is
that Hm

2 (z) runs in time sub-exponential in λ, and the value s1 is
equal to y ⊕ s0 where Y = f(y). Formally Hm

2 (z) is the following
experiment.

Hm
2 (z).

Left session:

1. First round.

(a) Pick s0 ← {0, 1}λ.
(b) Compute awsyn = Senwsyn(id, s0; ρ).
(c) Compute aLS = P(1λLS , `;α).
(d) Send (awsyn, aLS) to A.

2. Third round. Upon receiving (cwsyn, cLS, Y) from A.

(a) Compute (com, dec) = NISen(m;σ).
(b) Run in time Tf to compute y such that Y = f(y).

(c) Set s1 = y ⊕ s0.
(d) Compute (zwsyn, decwsyn) = Senwsyn(id, cwsyn, s0; ρ).
(e) Set x =

(
(awsyn, cwsyn, zwsyn), Y, s1, com, id

)
and w =

(m,σ,⊥,⊥) with (|x| = `). Run zLS = P(x,w, cLS;α).
(f) Send (zwsyn, com, zLS, s1) to NMRec.

Right sessions: Act as a proxy between A and
NMRec1, . . . ,NMRecpoly(λ).

When switching from Hm
1 (z) to Hm

2 (z) we will make sure that
the following two properties hold.

1. For all message m ∈ {0, 1}poly(λ) it holds that mimAHm1 (z) ≈
mimAHm2 (z).11

11To simplify the notation here, and in the rest of the proof, we will omit
that the indistinguishability between two distributions must hold for every
auxiliary input z.

110 3. Non-Malleable Commitment Schemes

2. Let pi be the probability that in the i-th right session of
H2, for i ∈ {1, . . . , poly(λ)}, A sends a value s̃1i such that
f(s̃1i⊕s̃0i) = Ỹi where s̃0i is the value committed using wsyn.
Then pi < ν(λ) for some negligible function ν.

We now prove that the above two properties hold.

Lemma 3.2.2. For all message m ∈ {0, 1}poly(λ) it holds that
mimAHm1 (z) ≈ mimAHm2 (z).

Proof. Suppose by contradiction that the distribution of mimAHm1 (z)

is distinguishable from mimAHm2 (z); this means that there exists a
distinguisher D that can tell apart such two distributions. We
now use D and A to construct an adversary AHiding that breaks
the hiding of Πwsyn in time poly(λ) · TNI therefore reaching a con-
tradiction12. Let CHiding be the challenger of the hiding game, we
consider two randomly chosen challenge messages (m0,m1) sent
to CHiding. We now provide a formal description of the adversary
AHiding.

AHiding(m0,m1, z)

1. Upon receiving the 1st round awsyn from CHiding, run as fol-
lows:

(a) Compute aLS = P(1λLS , `;α).

(b) Send (awsyn, aLS) to A.

2. Upon receiving (cwsyn, cLS, Y) from A, send cwsyn to Cwsyn.

3. Upon receiving the 3rd round zwsyn from CHiding, run as fol-
lows:

(a) Compute y such that Y = f(y), set s1 = m0 ⊕ y.

(b) Compute (com, dec) = NISen(m;σ).

(c) Set x =
(
(awsyn, cwsyn, zwsyn), Y, s1, com, id

)
and w =

(m,σ,⊥,⊥) with (|x| = `). Run zLS = P(x,w, cLS;α).

12Recall that Πwsyn is secure against adversaries running in time poly(λ) ·
TNI < Twsyn.

3.2. 3-Round Concurrent Non-Malleable Commitments 111

(d) Send (zwsyn, com, zLS, s1) to A.

4. Simulate NMRec1, . . . ,NMRecpoly(λ) with A when A plays as
a sender.

5. Let M be an empty tuple. For all i ∈ {1, . . . , poly(λ)},
consider ˜comi, the non-interactive commitment received by
NMReci, run in time TNI to compute m̃i such that ∃ ˜dec :
1 = NIRec(˜comi, ˜dec, m̃i) and add m̃i to M .

6. Give M and the view of A to the distinguisher D and output
what D outputs.

The proof ends with the observation that if CHiding has committed
to m0 then the xor of the committed value with s1 is equal to y
such that f(y) = Y , like inHm

2 (z). If instead CHiding has committed
to m1 then the xor of the committed value and s1 is equal to a
random value, like in Hm

1 (z).

Lemma 3.2.3. Let pi be the probability that in the i-th right ses-
sion of H2, for i ∈ {1, . . . , poly(λ)}, A sends a value s̃1i such that
f(s̃1i ⊕ s̃0i) = Ỹi where s̃0i is the value committed using wsyn.
Then pi < ν(λ) for some negligible function ν.

Proof. Suppose by contradiction that for a right session i the claim
does not hold. We can construct a distinguisher Dwsyn and an
adversary Awsyn that break the non-malleability of Πwsyn. Let Cwsyn

be the challenger of the NM commitment and let (m0,m1) be two
randomly chosen challenge messages given to Cwsyn.

Awsyn(m0,m1, z)

Left session:

1. Act as AHiding acts in the left session.

Right sessions:

1. For all j 6= i ∈ {1, . . . , poly(λ)} run NMRecj as in
Hm

2 (z). Instead run NMReci as described in steps 1.1,
1.2 and 1.3.

112 3. Non-Malleable Commitment Schemes

(a) Forward ãwsyni to Recwsyn.

(b) Upon receiving c̃wsyn from Recwsyn, pick a random
c̃LSi , pick a random Ỹi and send (c̃wsyni , c̃LSi , Ỹi) to
A.

(c) Upon receiving z̃wsyni from A, send it to Recwsyn.

Let mimAwsyn(z) be the view of mimAwsyn(z) and the tuple of
committed messages in the right session. The distinguisher Dwsyn

takes as input mimAwsyn(z) and acts as follows.

Dwsyn(mimAwsyn(z)) : Let s̃0i be the committed message sent in
the i-right session by Awsyn to NMRec. Reconstruct the output
messages of A (using the same randomness of mimAwsyn(z)) to pick
s̃1i. If f(s̃1i ⊕ s̃0i) = Ỹi output 1 and output 0 otherwise. The
proof ends with the observation that if Cwsyn has committed to m0

then the xor of the committed value with s1i is equal to y such
that f(y) = Y like in Hm

2 . If instead CHiding has committed to m1

then the xor of the committed value with s1i is equal to a random
string as in Hm

1 .

The third hybrid experiment that we consider is equal toHm
2 (z)

with the difference that the LS proof system is executed using
s0 and the randomness of the non-malleable commitment of s0.
Recall that f(s0 ⊕ s1) = Y . We observe that in the left session
of Hm

2 (z) it already holds that f(s0 ⊕ s1) = Y , therefore we can
switch the witness used in LS and complete the execution of the
proof system. Formally Hm

3 (z) is the following experiment.

Hm
3 (z).

Left sessions:

1. First round.

(a) Pick s0 ← {0, 1}λ.
(b) Compute awsyn = Senwsyn(id, s0; ρ).
(c) Compute aLS = P(1λLS , `;α).
(d) Send (awsyn, aLS) to A.

2. Third round. Upon receiving (cwsyn, cLS, Y) from A.

3.2. 3-Round Concurrent Non-Malleable Commitments 113

(a) Compute (com, dec) = NISen(m;σ).
(b) Run in time Tf to compute y such that Y = f(y).
(c) Set s1 = s0 ⊕ y.
(d) Compute (zwsyn, decwsyn) = Senwsyn(id, cwsyn, s0; ρ).
(e) Compute (com, dec) = NISen(1λNI ,m;σ).
(f) Set x =

(
(awsyn, cwsyn, zwsyn), Y, s1, com, id

)
and

w = (⊥,⊥, s0, ρ) with (|x| = `). Run zLS = P(x,w, cLS;α).
(g) Send (zwsyn, com, zLS, s1) to A.

Right sessions: Act as a proxy between A and
NMRec1, . . . ,NMRecpoly(λ).

Even in this case we need to prove the following two properties.
1. For all message m ∈ {0, 1}poly(λ) it holds that mimAHm2 (z) ≈

mimAHm3 (z).
2. Let pi be the probability that in the i-th right session of
H3, for any i ∈ {1, . . . , poly(λ)}, A sends a value s̃1i such
that f(s̃1i⊕ s̃0i) = Ỹi where s̃0i is the value committed using
wsyn. Then pi < ν(λ) for some negligible function ν.

Lemma 3.2.4. For any message m ∈ {0, 1}poly(λ) it holds that
mimAHm2 (z) ≈ mimAHm3 (z).

Proof. Suppose by contradiction that there exist a adversary A
and a distinguisher D that can tell apart such two distributions.
We can use this adversary and the associated distinguisher to
construct an adversary ALS for the TLS-witness-indistinguishable
property of the LS protocol. Let CLS be the WI challenger, the
adversary works as follows. ALS(z)

1. Pick s0 ← {0, 1}λ.
2. Compute awsyn = Senwsyn(id, s0; ρ).

3. Upon receiving aLS from CLS, send (awsyn, aLS) to A.

4. Upon receiving (cwsyn, cLS, Y) from A run as follows:

(a) Run in time Tf to compute y such that Y = f(y).

(b) Set s1 = s0 ⊕ y.

114 3. Non-Malleable Commitment Schemes

(c) Compute (zwsyn, decwsyn) = Senwsyn(id, cwsyn, s0; ρ).

(d) Compute (com, dec) = NISen(1λNI ,m;σ).

(e) Set x =
(
(awsyn, cwsyn, zwsyn), Y, s1, com, id

)
, w0 = (⊥,⊥

, s0, ρ),
w1 = (m,σ,⊥,⊥) and send (x, cLS, w0, w1) to CLS.

5. Upon receiving zLS from CLS, send (zwsyn, com, zLS) to A.

6. Simulate NMRec1, . . . ,NMRecpoly(λ) with A, when A plays as
a sender.

7. Let M be an empty tuple. For all i ∈ {1, . . . , poly(λ)},
consider ˜comi, the non-interactive commitment received by
NMReci, and run in time T̃NI to compute m̃i such that ∃ ˜dec :
1 = NIRec(˜comi, ˜dec, m̃i) and add m̃i to M .

8. Give M and the view of A to the distinguisher D.

9. Output what D outputs.

The proof ends with the observation that if CLS has has used as
witness the randomness of the non-malleable commitment of the
value s0 such that f(s0⊕s1) = Y then we are in the hybrid exper-
iment Hm

3 (z). If instead CLS has used as a witness the randomness
used to compute the non-interactive commitment NI then we are
in the hybrid experiment Hm

2 (z).

Lemma 3.2.5. Let pi be the probability that in the i-th right ses-
sion of Hm

3 , for i ∈ {1, . . . , poly(λ)}, A sends a value s̃1i such
that f(s̃1i⊕ s̃0i) = Ỹi where s̃0i is the value committed using wsyn.
Then pi < ν(λ) for some negligible function ν.

Proof. Suppose by contradiction that for a right session i the claim
does not hold, then we can construct an adversary A′LS for the TLS

witness-indistinguishable property of the LS protocol. Let CLS be
the WI challenger, the adversary works as follows.

A′LS(z)

3.2. 3-Round Concurrent Non-Malleable Commitments 115

1. Pick s0 ← {0, 1}λ.
2. Compute awsyn = Senwsyn(id, s0; ρ).

3. Upon receiving aLS from CLS, send (awsyn, aLS) to A.

4. Upon receiving (cwsyn, cLS, Y) from A, run as follow:

(a) Run in time Tf to compute y such that Y = f(y).

(b) Set s1 = s0 ⊕ y.

(c) Compute (zwsyn, decwsyn) = Senwsyn(id, cwsyn, s0; ρ).

(d) Compute (com, dec) = NISen(1λNI ,m;σ).

(e) Set x =
(
(awsyn, cwsyn, zwsyn), Y, s1, com, id

)
, w0 = (⊥,⊥

, s0, ρ),
w1 = (m,σ,⊥,⊥) and send (x, cLS, w0, w1) to CLS.

5. Upon receiving zLS from CLS, send (zwsyn, com, zLS) to A.

6. Simulate NMRec1, . . . ,NMRecpoly(λ) with A, when A plays as
a sender.

7. Run in time T̃wsyn to extract the value s̃0i from the non-
malleable commitment sent by A in the i-th session. Output
1 if f(s̃0i ⊕ s̃1i) = Ỹi and output 0 otherwise.

The proof ends with the observation that if CLS has used w0 =
(⊥,⊥, s0, ρ) as a witness then A acts as in Hm

3 (z), sending with
non-negligible probability two shares such that the xor of them
gives a puzzle solution. If CLS has used w1 = (m,σ,⊥,⊥) then the
xor of the two shares is with overwhelming probability different
from a puzzle solution as in Hm

2 (z).

The next hybrid experiment that we consider is H0
3(z). The

only differences between this hybrid experiment and Hm
3 (z) is that

the sender, using NI, commits to a message 0λ instead of m. For-
mally the hybrid experiment is the following.

H0
3(z).

Left session:

116 3. Non-Malleable Commitment Schemes

1. First round.

(a) Pick s0 ← {0, 1}λ.
(b) Compute awsyn = Senwsyn(id, s0; ρ).
(c) Compute aLS = P(`;α).
(d) Send (awsyn, aLS) to A.

2. Third round. Upon receiving (cwsyn, cLS, Y) from A, run
as follows:

(a) Run in time Tf to compute y such that Y = f(y).
(b) Set s1 = s0 ⊕ y.
(c) Compute (zwsyn, decwsyn) = Senwsyn(id, cwsyn, s0; ρ).
(d) Compute (com, dec) = NISen(0λ;σ).

(e) Set x =
(
(awsyn, cwsyn, zwsyn), Y, s1, com, id

)
and w =

(⊥,⊥, s0, ρ) with (|x| = `). Run zLS = P(x,w, cLS;α).
(f) Send (zwsyn, com, zLS, s1) to A.

Right sessions: Act as a proxy between A and
NMRec1, . . . ,NMRecpoly(λ).

We now prove the following properties.

1. Let pi be the probability that in the i-th right session of H0
3,

for any i ∈ {1, . . . , poly(λ)}, A sends a value s̃1i such that
f(s̃1i⊕s̃0i) = Ỹi where s̃0i is the value committed using wsyn.
Then pi < ν(λ) for some negligible function ν.

2. For any message m ∈ {0, 1}poly(λ) it holds that mimAHm3 (z) ≈
mimAH0

3
(z).

Lemma 3.2.6. Let pi be the probability that in the i-th right
session of H0

3, for i ∈ {1, . . . , poly(λ)}, A sends a value s̃1i such
that f(s̃1i⊕ s̃0i) = Ỹi where s̃0i is the value committed using wsyn.
Then pi < ν(λ) for some negligible function ν.

Proof. Suppose by contradiction that there exists a right session
i ∈ {1, . . . , poly(λ)} in which A commit to a string s̃0 such that
f(s̃0i ⊕ s̃1i) = Ỹi using Πwsyn. Then we can construct an ad-
versary ANI that breaks the hiding property of the non interac-
tive commitment scheme NI. Let CNI be the challenger that on

3.2. 3-Round Concurrent Non-Malleable Commitments 117

input m0 = 0λ and m1 = m, picks a random bit b, computes
(com, dec) = NISen(1λNI ,mb;σ) and sends com to ANI.

Before describing ANI we need to consider, as in the proof of
Lemma 3.2.1, a machine M that internally executes A, and in-
teracts with a receiver Recext of the protocol Πwsyn acting as the
sender.

Formally M acts as follows.

M(com, ϕ, z)
Run A using randomness ϕ.

1. Pick s0 ← {0, 1}λ.
2. Compute awsyn = Senwsyn(id, s0; ρ).

3. Compute aLS = P(1λLS , `;α).

4. Send (awsyn, aLS) to A.

5. Upon receiving (cwsyn, cLS, Y) from A, run as follows:

(a) Run in time Tf to compute y such that Y = f(y).

(b) Set s1 = s0 ⊕ y.

(c) Compute (zwsyn, decwsyn) = Senwsyn(id, cwsyn, s0; ρ).

(d) Set x =
(
(awsyn, cwsyn, zwsyn), Y, s1, com, id

)
and w = (⊥

,⊥, s0, ρ) with (|x| = `). Run zLS = P(x,w, cLS;α).

(e) Send (zwsyn, com, zLS, s1) to A.

6. Let i ∈ {1, . . . , poly(λ)} be the right session that contradicts
the claim. For all j 6= i ∈ {1, . . . poly(λ)} run NMRecj as in
H4(m, z). Run NMReci as follows.

(a) Upon receiving the 1rd round of the i-th right session
(ãwsyni , ãLSi) from A, send ãwsyni to the external receiver
Recext.

(b) Upon receiving c̃nmi
from Recext, run as follows:

i. Run V to obtain c̃LSi
.

ii. Pick a random Ỹi.
iii. Send (c̃wsyni

, c̃LSi
, Ỹi) to A.

118 3. Non-Malleable Commitment Schemes

(c) Upon receiving the 3rd round of the i-th right session
(z̃wsyni , ˜comi, z̃LSi , s̃1i),

set x̃ =
(
(ãwsyni , c̃wsyni , z̃wsyni), Ỹ , s̃1i, ˜comi, ĩd

)
and abort

iff (ãLSi , c̃LSi , z̃LSi) is not accepted by V with respect to
x̃.

(d) Send z̃wsyni to Recext.

Now we can conclude the proof of this lemma by describing how
ANI works. ANI runs the extractor of the protocol Πwsyn using M
as sender (recall that an extractor of Πwsyn plays only having ac-
cess to a sender of Πwsyn). Since the extractor with non-negligible
probability outputs the committed message we have that ANI re-
trives s̃0i. Moreover ANI gets s̃1i by reconstructing the view of A
using the randomness ϕ. Since by contradiction A contradicts the
claim of this lemma, we have that ANI can break the hiding of NI
because f(s̃0i ⊕ s̃1i) = Ỹ with non-negligible probability in H0

3(z)
where m0 = 0λ is committed in com, while the same happens with
negligible probability only in Hm

3 (z) where m1 = m. Therefore
if this happens, ANI outputs 0, otherwise ANI outputs a random
bit.

Lemma 3.2.7. For any message m ∈ {0, 1}poly(λ) it holds that
mimAHm3 (z) ≈ mimAH0

3
(z).

Proof. Suppose by contradiction that there exists a distinguisher
D and an adversary A such that mimAHm3 (z) is distinguishable from

mimAH0
3
(z) then we can construct an adversary ANI that breaks

the hiding property of the non-interactive commitment scheme
NI. Let CNI be the challenger that on input m0 = 0λ and m1 = m,
picks a random bit b, computes (com, dec) = NISen(1λNI ,mb;σ) and
sends com to ANI. Before describing ANI, we consider the following
experiment Emb(ϕ, com, z).

Emb
(ϕ, com, z).

The randomness required from all next steps is take from ϕ.

Run A(z).

3.2. 3-Round Concurrent Non-Malleable Commitments 119

Left session:

1. First round.

(a) Pick s0 ← {0, 1}λ.
(b) Compute awsyn = Senwsyn(id, s0; ρ).
(c) Compute aLS = P(`;α).
(d) Send (awsyn, aLS) to A.

2. Third round. Upon receiving (cwsyn, cLS, Y) from A, run
as follows:

(a) Run in time Tf to compute y such that Y = f(y).
(b) Set s1 = s0 ⊕ y.
(c) Compute (zwsyn, decwsyn) = Senwsyn(id, cwsyn, s0; ρ).
(d) Set x =

(
(awsyn, cwsyn, zwsyn), Y, s1, com, id

)
and w =

(⊥,⊥, s0, ρ) with (|x| = `). Run zLS = P(x,w, cLS;α).
(e) Send (zwsyn, com, zLS, s1) to A.

Right sessions: Act as a proxy between A and
NMRec1, . . . ,NMRecpoly(λ).

Now we are ready to describe the adversary ANI for the hiding
of NI. ANI executes the following steps.

1. Let M be an empty tuple. ANI runs Emb
(ϕ, com, z).

2. For all i ∈ {1, . . . , poly(λ)}, ANI runs the extractor of LS
on the i-th right session of the execution of Emb

(ϕ, com, z)
obtaining m̃i and adds it to M .

3. Using the randomness ϕ, ANI reconstructs the view of A in
the execution of Emb

(ϕ, com, z). Use such view and M as
input to D.

4. Output what D outputs.

The proof ends with the observation that if CNI has committed
to 0λ then the view of A and the distribution of the committed
messages coincide with H0

3, otherwise they coincide with Hm
3 .

120 3. Non-Malleable Commitment Schemes

Common input: Security parameters: λ, (λNI, λwsyn, λLS, `) =
Params(λ). Identity: id ∈ {0, 1}λ.
Internal simulation of the left session:

1. Pick s0 ← {0, 1}λ.
2. Pick a randomness ρ, and compute (decwsyn, awsyn) =
Senwsyn(id, s0; ρ).

3. Pick a randomness α and compute aLS = P(`;α).
4. Send (awsyn, aLS) to A.
5. Upon receiving (cwsyn, cLS, Y) from A.

1. Pick a randomness σ and compute (com, dec) =
NISen(1λNI , 0λ;σ).

2. Pick s1 ← {0, 1}λ.
3. Compute zwsyn = Senwsyn(id, cwsyn, s0; ρ).
4. Set x =

(
(awsyn, cwsyn, zwsyn), Y, s1, com, id

)
and w =

(0λ, σ,⊥,⊥) with (|x| = `). Run zLS = P(x,w, cLS;α)
where x is the theorem to be proven and w is the wit-
ness.

5. Send (zwsyn, com, zLS, s1) to A.
Stand-alone commitment:

1. Sim acts as a proxy between A and NMReci for i =
1, . . . , poly(λ).

Figure 3.3 The simulator Sim.

The entire security proof now is almost over because we have
proved that for all m ∈ {0, 1}poly(λ) the following relation holds:

{mimA,mΠNMCom
(z)}z∈{0,1}? = {mimAHm1 (z)}z∈{0,1}?

≈ {mimAHm2 (z)}z∈{0,1}? ≈ {mimAHm3 (z)}z∈{0,1}?
≈ {mimAH0

3
(z)}z∈{0,1}? ≈ {mimAH0

2
(z)}z∈{0,1}?

≈ {mimAH0
1
(z)}z∈{0,1}? = {simS

ΠNMCom
(1λ, z)}z∈{0,1}? .

We show in Figure 3.3 the simulator Sim.
We observe that in this proof we had to consider a delayed-

input version of our commitment scheme. Indeed, the sender

3.3. More 3-Round Protocols Against Concurrent MiM Attacks121

can choose the message m to be committed by sending the non-
interactive commitment com of the message m in the third round.
It is easy to see that the same security proof still works when
the non-interactive commitment is sent in the 1st round, but then
clearly the delayed-input property is lost.

3.3 More 3-Round Protocols Against

Concurrent MiM Attacks

In this section we show how to obtain some forms of 3-round ar-
guments of knowledge and of 3-round identification schemes that
are secure against concurrent MiM attacks.

3.3.1 NMWI Argument Systems

The definition of non-malleable witness indistinguishability (NMWI)
given in [OPV08] requires that the witness encoded in the proof
given by the MiM A be independent of the witness used by the
honest prover in his proof. The concept of witness encoded in
a proof becomes clear when considering commit-and-prove argu-
ment systems. In such arguments, the transcript includes a com-
mitment that encodes in an unambiguous way the witness used
by the prover. In a NMWI commit-and-prove argument system,
the witness encoded in the proof produced by the A must be in-
dependent of the witness used (and thus encoded by the honest
prover) in the proof in which A acts as a verifier. Similarly to the
case of non-malleable commitments, one can give a definition with
or without sessions ids. Here we use the one without sessions ids
since it is more useful in the applications.

Let A be a MiM interacting in the left proof with P that is
running on input x and witness w. In the right proof A interacts
with V on common input x̃ chosen by A. We denote by z the
auxiliary information available to A. NMWI is defined in terms of
the random variable wmimA(x,w, z) that is the view of A that we
denote by ViewPA(x,w, z) (i.e., the view of A when running with z

122 3. Non-Malleable Commitment Schemes

as auxiliary input and playing with P that runs on input (x,w))
and the witness encoded in the right proof given by A. If the right
proof is not accepting or the transcript is identical to the one of
the left proof then the witness encoded is ⊥; otherwise the string
w committed by A in the right proof is returned. In other words,
wmimA(x,w, z) consists of the view of A and the witness encoded
in the right proof unless the proof is not accepting.

Definition 3.3.1 (NMWI argument system [OPV08]). A commit-
and-prove argument system Π = (P ,V) for an NP-language L and
corresponding relation RelL is a non-malleable witness indistin-
guishable argument if, for all ppt man-in-the-middle adversaries
A, for all x ∈ L and all w,w′ such that RelL(x,w), RelL(x,w′)
for all auxiliary information z it holds that {wmimA(x,w, z)} ≈
{wmimA(x,w′, z)}.

The above notion extends in a straight-forward way to the case
of a concurrent MiM adversary trivially. Formally, the concurrent
MiM A opens poly(λ) left and right proofs each with a common
input of length poly(λ). A interacts in the i-th left proof with an
instance of the honest prover P on common input “xi ∈ L” and
private input wi such that RelL(xi, wi). In the j-th right proof A
is interacting with the honest verifier V on common input x̃j of
its choice.

Let X,W be respectively the sequence of instances and wit-
nesses in input to P in the left proofs. Now the distribution
wmimA(X,W, z) consists of the view ViewPA(X,W, z) of A along
with a sequence (w̃1, . . . , w̃poly(λ)) and it holds that: if the j-th
right proof is not accepting or the transcript is identical to the
one of a left proof then w̃j =⊥; otherwise, w̃j is the witness en-
coded in the j-th right proof.

Definition 3.3.2 (cNMWI argument [OPV08]). A commit-and-
prove argument system Π = (P ,V) for an NP-language L and
corresponding relation RelL is concurrent non-malleable witness
indistinguishable if, for all ppt concurrent man-in-the-middle ad-
versaries A, for all sequences X of poly(λ) elements of L of length

3.3. More 3-Round Protocols Against Concurrent MiM Attacks123

poly(λ), for all sequences W and W ′ of witnesses for X, and
for all auxiliary information z it holds that {wmimA(X,W, z)} ≈
{wmimA(X,W ′, z)}.

3.3.2 Non-Malleable WI Arguments of Knowl-
edge

Our concurrent NM commitment scheme when instantiated with-
out sessions ids, can be used to obtain almost directly a commit-
and-prove AoK. Recall that in our scheme there is a non-interactive
commitment com of m and then rest of the protocol is an AoK.
This AoK is used by the sender to claim that either he knows the
message committed in com, or he committed through Πwsyn to a
share s0 that allows to compute the solution of the puzzle.

In order to be fully compliant with the notion of commit-and-
prove AoK, we just need to make a trivial change to the statement
of the LS subprotocol. Given an instance x ∈ L and a witness w
the prover of our commit-and-prove AoK uses the non-interactive
commitment to commit to w, and uses the rest to prove that either
he knows the committed message w that moreover is a witness for
x ∈ L or again, he committed through Πwsyn to a share s0 that
allows to compute the solution of the puzzle.

More formally, we define a commit-and-prove AoK ΠCaP =
(PCaP,VCaP) that corresponds to our concurrent NM commitment
scheme with some minimal changes. First, PCaP and VCaP have as a
common input an instance x ∈ L, where L is an NP-language. Sec-
ond, PCaP has as private input w such that (x,w) ∈ RelL. Third,
PCaP runs the sender NMSen having as input w, while VCaP runs
the receiver NMRec with the exception of running the LS subpro-
tocol LS for:

LCaP =
{(
x, (a, c, z), Y, s1, com, id

)
:

(∃ (w, σ) s.t. com = NISen(w;σ) AND (x,w) ∈ RelL)

OR
(
∃(ρ, s0) s.t. a = Senwsyn(id, s0; ρ)

ANDz = Senwsyn(id, c, s0; ρ) AND Y = f(s0 ⊕ s1)
)}

124 3. Non-Malleable Commitment Schemes

that is WI for the relation

RelLCaP
=
{((

x, (a, c, z), Y, s1, com, id
)
, (w, σ, s0, ρ)

)
:

(com = NISen(w;σ) AND(x,w) ∈ RelL)

OR
(
a = Senwsyn(id, s0; ρ)

ANDz = Senwsyn(id, c, y; ρ) AND Y = f(s0 ⊕ s1)
)}
.

We can now claim the following theorem.

Theorem 25. Suppose there exist OWPs secure against subexponential-
time adversaries, then ΠCaP is a 3-round concurrent NMWI argu-
ment of knowledge.

Proof. The proof of this theorem is pretty straightforward given
the previous proof for the concurrent non-malleability of our com-
mitment scheme, therefore here we just point out the main intu-
ition.

First of all, ΠCaP is clearly a commit-and-prove AoK. Indeed,
there exists a commitment of the witness and there is an AoK
proving that the committed message is a witness. In order to
see this, notice that for any ppt malicious prover succeeding with
non-negligible probability in proving a statement x ∈ L, the ex-
tractor of LS (of course this needs to be run against an augmented
machine) would return (in expected polynomial time and with
overwhelming probability) the committed witness since otherwise
it would return a share s0 that combined with s1 allows to invert
the OWP in polynomial time.

We can now focus on the concurrent NMWI property, and
we can assume (by contradiction) that the adversary succeeds in
encoding in the right sessions witnesses that are related to the wit-
nesses encoded in the left sessions. Notice that the proof is almost
identical to the one of Theorem 24. We can indeed prove the case
of one prover and multiple verifiers (i.e., one-many), and then we
can apply the fact that any one-many NMWIAoK is also a con-
current NMWIAoK. Indeed this was used in [OPV08] and follows
similar arguments given in [PR05a, LPV08]. For the one-many
case we can therefore follow the proof of Theorem 24 with the

3.3. More 3-Round Protocols Against Concurrent MiM Attacks125

following trivial change. Instead of running hybrid experiments
starting with a message m and ending with a message 0, in the
proof of one-many concurrent NMWI we start with a witness w0

and end with a witness w1. Everything else remains untouched
and all the reductions work directly.

We finally notice that ΠCaP can be instantiated to be public-
coin and delayed-input, precisely as our concurrent non-malleable
commitment scheme. While what we discussed above applies to ar-
guments only, techniques to obtain proofs can be found in [CVZ11].

Instances with just one witness and non-transferability.
Recall that the definition of NMWI considers two experiments
that differ only on the witness used by the prover. Therefore it
is unclear which security is given by a NMWIAoK when the in-
stance has only one witness. In order to understand the security
guaranteed by ΠCaP in such a case, consider the proof of concur-
rent NMWI, and thus, in turn, consider the proof of concurrent
non-malleability of our commitment scheme. Notice that while the
sequence of hybrids goes from an experiment where the committed
message is m to an experiment where the committed message is 0,
there is an experiment H3(·, z) in which the committed message
is irrelevant. Indeed, the entire execution is based on inverting
the OWP, in encrypting it through the shares s0 and s1 and in
using this witness in the execution of LS. This experiment can be
seen as the execution of a quasi-polynomial time simulator that
breaks the puzzle13 following the approach of [Pas03]14. Therefore
following the same observations of [Pas03, Pas04b] on the secu-
rity offered by quasi-polynomial time simulation, our concurrent
NMWIAoK even for instances with just one witness would not
help the adversary in proving a statement whose witness is much
harder to compute than breaking the puzzle.

13The puzzle can be implemented through a OWP that can be inverted in
quasi-polynomial time.

14The work of Pass did not take into account MiM attacks.

126 3. Non-Malleable Commitment Schemes

The above discussion explains also the non-transferability fla-
vor of ΠCaP. Indeed, at first sight, a MiM attack of an adversary
A to an AoK should be an attempt of A to transfer the proof
that it gets from the prover to a verifier. As such, an AoK that is
secure against concurrent MiM attacks should provide some non-
transferability guarantee. Since the success of A during a MiM at-
tack can be replicated without a MiM attack by a quasi-polynomial
time simulator, we have that ΠCaP guarantees non-transferability
whenever computing the witnesses for the considered instances is
assumed to be harder than breaking the puzzle.

Using NMWI for NMZK in the Bare Public-Key (BPK)
model. In [OPV08] it is shown that a concurrent NMWIAoK Π
gives directly a concurrent NMZKAoK in the BPK model. The
construction is straightforward as it just consists of running Π
twice, first from the verifier to the prover (proving knowledge of
one out of two secrets) and then from the prover to the verifier
(proving knowledge of either a witness for x ∈ L or of one out of
the two secrets of the verifier).

Our construction from Theorem 25 when combined with the
construction of [OPV08] gives a candidate round-efficient concur-
rent NMZKAoK in the BPK model.

3.3.3 Identification Schemes

Identification schemes represent one of the most successful real-
world applications of cryptographic protocols. We show here a 3-
round identification scheme secure against concurrent MiM attacks
following the concept of proving knowledge of a secret.

Identification schemes based on proving knowledge of a
secret. The importance of this setting was for instance discussed
in [COSV12] mentioning the following example. Consider a verifier
V that provides a service to restricted group of provers P . A
malicious prover P? could give to another party B that is not part
of the group, some partial information about his secret that is

3.3. More 3-Round Protocols Against Concurrent MiM Attacks127

sufficient for B to obtain the service from V , while still B does
not know P?’s secret. The paradigm of proving knowledge of a
secret in an identification scheme allows to prevent attacks like
the one just described. When the identification scheme consists
in proving knowledge of a secret the sole fact that B convinces V
is sufficient to claim that one can extract the whole secret from
B. This implies that B obtained P?’s secret corresponding to his
identity, and thus B is actually P?15.

We now introduce a security definition that takes into ac-
count concurrent MiM attacks similarly to the definition CR2
(concurrent-reset on-line) of [BFGM01]. The definition of [BFGM01]
also includes possible reset attacks in addition to allowing A to
invoke multiple concurrent executions of the prover in the left ses-
sions while A is interacting with the verifier. In the remaining
part of this section we will ignore reset attacks since they are
out of the purpose of our work. As described in [Kat02] in most
network-based settings reset attacks are not an issue. Following
the notation of [Kat02] we now give a formal security definitions
for an identification scheme.

Definition 3.3.3. Let Π = (K,P ,V) be a tuple of ppt algorithms.
We say Π is an identification scheme secure against man-in-the-
middle attacks if the following conditions hold:

Correctness. For all (pk, sk) output by K(1λ), we have

Prob [〈P(sk),V〉(pk) = 1] = 1.

Security. For all ppt adversaries A there exists a negligible
function ν such that

Prob
[

(pk, sk)← K(1λ) : 〈AP(sk),V〉(pk) = 1 AND τ /∈ T
]
< ν(λ),

where A has oracle access to a stateful (i.e., non-resettable) P(sk),
T is defined as the transcripts set of the interactions between P(sk)
and A, and τ is defined as the transcript of one of the interactions
between A and V. All interactions can be arbitrarily interleaved
and A controls the scheduling of the messages.

15This is instead not likely to happen in scenarios where the same secret
key is used for other critical tasks such as signatures of any type of document.

128 3. Non-Malleable Commitment Schemes

Identification scheme from NMWI. Our construction ΠID =
(KID,PID,VID) follows the approach of [OPV08, COSV12]. Let
f : {0, 1}λ → {0, 1}λ be a one-way permutation, let λ be the
security parameter. The public key of PID is the pair (pk0, pk1),
the secret key is skb for a randomly chosen bit b, such that pkb =
f(skb). Therefore the algorithm KID takes as input the security
parameter and outputs ((pk0, pk1), skb) as described above. The
protocol simply consists in PID running our 3-round concurrent
NMWIAoK ΠCaP with VID to prove that it knows the pre-image
of either pk0 or pk1. Formally, let Lid be the following language
Lid = {(y0, y1) : ∃ x ∈ {0, 1}λ such that y0 = f(x) OR y1 =
f(x)}, then the identification scheme consists of PID proving the
statement (pk0, pk1) ∈ Lid using ΠCaP. Fig. 3.4 summarizes our
identification scheme. Now we can claim the following theorem.

PID(sk, pk)

pk = (pk0, pk1)

sk = skb

VID(pk)

Concurrent NMWIAoK
(pk0, pk1) ∈ Lid

Figure 3.4 Our 3-round identification scheme ΠID from our 3-round concur-
rent NMWIAoK.

Theorem 26. Assume the existence of OWPs secure against subexponential-
time adversaries then ΠID is an identification scheme secure against
concurrent MiM attacks.

The proof is again straight-forward. If a PPT A succeeds then
concurrent NMWI of ΠCaP guarantees that the witness that he
encoded in the proof is independent of the one encoded in the
proofs given by P . Therefore by using the AoK property of ΠCaP

we can invert f with non-negligible probability.

3.4. 3-Round One-One NM Commitments 129

3.4 3-Round One-One NM Commitments

In this section we show our one-one non-malleable commitment
scheme. In particular we construct a compiler that, on input a 3-
round synchronous weak one-one NM commitment scheme, gives
as output a 3-round extractable one-one NM commitment scheme
assuming OWPs secure against subexponential-time adversaries.

awsyn, aLS

cwsyn, cLS, Y

zwsyn, zLS

NMSen(m, id) NMRec(id)

- Y is an element taken from the range of the OWP f .

- τ = (awsyn, cwsyn, zwsyn) is the transcript of
〈Senwsyn(m),Recwsyn〉(id).

- (aLS, cLS, zLS) is the transcript of LS for proving knowl-
edge of either the decommitment of τ to a message 6=⊥
or of the preimage of Y .

Figure 3.5 Informal description of our 3-round NM commitment scheme
Π1−1NMCom.

3.4.1 Our 3-Round One-One NM Commitment

Our construction is based on a compiler that takes as input a 3-
round synchronous weak one-one NM commitment scheme Πwsyn =
(Senwsyn,Recwsyn), a OWP f , a WI adaptive PoK for NP LS, and
outputs a 3-round extractable one-one NM commitment scheme
Π1−1NMCom = (NMSen,NMRec).

In order to construct our compiler we consider the following
tools:

130 3. Non-Malleable Commitment Schemes

Common input: security parameters: λ, (λwsyn, λLS, `) =
Params(λ), id ∈ {0, 1}λ.
Input to NMSen: m ∈ {0, 1}poly{λ}.
Commitment phase:

1. NMSen→ NMRec

1. Run Senwsyn on input 1λwsyn , id and m thus obtaining the
1st round awsyn of Πwsyn.

2. Run P on input 1λLS and ` thus obtaining the 1st round
aLS of LS.

3. Send (awsyn, aLS) to NMRec.

2. NMRec→ NMSen

1. Run Recwsyn on input id and awsyn thus obtaining the 2nd
round cwsyn of Πwsyn.

2. Run V on input aLS thus obtaining the 2nd round cLS of
LS.

3. Pick a random Y ∈ {0, 1}λ.
4. Send (cwsyn, cLS, Y) to NMSen.

3. NMSen→ NMRec

1. Run Senwsyn on input cwsyn thus obtaining the 3rd round
zwsyn of Πwsyn and the decommitment information decwsyn.

2. Set x = (awsyn, cwsyn, zwsyn, Y, id) and w = (m, decwsyn,⊥)
with |x| = `. Run P on input x, w, and cLS thus obtaining
the 3rd round zLS of LS.

3. Send (zwsyn, zLS) to NMRec.

4. NMRec: Set x = (awsyn, cwsyn, zwsyn, Y, id) and abort iff
(aLS, cLS, zLS) is not accepted by V for x ∈ L.

Decommitment phase:

1. NMSen→ NMRec: Send (decwsyn,m) to NMRec.

2. NMRec: accept m as the committed message if and only if
Recwsyn on input (m, decwsyn) accepts m as a committed mes-
sage of (awsyn, cwsyn, zwsyn, id).

Figure 3.6 Our 3-round NM commitment scheme Π1−1NMCom.

3.4. 3-Round One-One NM Commitments 131

1. a OWP f that is secure against ppt adversaries and that is
T̃f -breakable;

2. a 3-round one-one synchronous weak NM commitment scheme
Πwsyn = (Senwsyn,Recwsyn) that is Twsyn-hiding/NM, and T̃wsyn-
breakable;

3. the LS PoK LS = (P ,V) for the language

L =
{

(a, c, z, Y, id) : ∃ (m, dec, y) s.t.(
Recwsyn on input (a, c, z,m, dec, id)

accepts m 6=⊥ as a decommitment of (a, c, z, id)

OR Y = f(y)
)}

that is TLS-WI for the corresponding relation RelL.
Let λ be the security parameter of our scheme. We use w.l.o.g.

λ also as security parameter for the one-wayness of f with respect
to polynomial-time adversaries. We consider the following hier-
archy of security levels: T̃f << Twsyn << T̃wsyn =

√
TLS << TLS

where by “T << T ′” we mean that “T · poly(λ) < T ′”.
Now, similarly to [PW10, COSV16], we define different security

parameters, one for each tool involved in the security proof to
be consistent with the hierarchy of security levels defined above.
Given the security parameter λ of our scheme, we will make use
of the following security parameters: 1) λ for the OWP f ; 2) λwsyn

for the synchronous weak one-one NM commitment scheme; 3) λLS

for LS.
All of them are polynomially related to λ and they are such that

the above hierarchy of security levels holds. In the construction
we assume for simplicity to have a function Params that on input
λ outputs (λwsyn, λLS, `) where ` is the length of the theorem to be
proved using LS.16 The detailed scheme is described in Fig. 3.6
and a compact version is depicted in Fig. 3.5.

Roughly speaking our compiler works as follows. Let m be
the message that NMSen wants to commit. The sender NMSen,
on input the session-id id and the message m, computes the 1st

16To compute 1st and 2nd round of LS only the length ` of the instance is
required.

132 3. Non-Malleable Commitment Schemes

round of the protocol by sending the 1st round aLS of LS and the
1st round awsyn of Πwsyn (to commit to the message m using id as
session-id). In the 2nd round the receiver NMRec sends challenges
cwsyn and cLS of Πwsyn and LS, also picks and sends an element Y in
the range of f . In the 3rd round NMSen computes the 3rd round
of Πwsyn and completes the transcript for LS by sending zwsyn and
zLS. Let τ = (awsyn, cwsyn, zwsyn) be the transcript of the execution
of Πwsyn. LS is used by NMSen to prove knowledge of either a
decommitment of τ to a message 6=⊥ or of a preimage of Y .

Theorem 27. Suppose there exists a synchronous weak one-one
NM commitment scheme and OWPs, both secure against subexponential-
time adversaries, then Π1−1NMCom is a one-one NM commitment
scheme.

We are now ready to start the proof, that is divided in two
parts. First we prove that Π1−1NMCom is a commitment scheme.
Then we prove that Π1−1NMCom is a NM commitment scheme. Be-
fore that, we recall that LS can be constructed from OWPs secure
against subexponential-time adversaries as well as Πwsyn that can
be constructed from OWPs secure against subexponential-time
using the constructions of [GPR16, GRRV14].

Lemma 3.4.1. Π1−1NMCom is a statistically-binding computationally-
hiding commitment scheme.

Proof. Correctness. The correctness of Π1−1NMCom follows imme-
diately from the delayed-input completeness of LS, and the cor-
rectness of Πwsyn.

Perfect Binding. Observe that the message given in output
in the decommitment phase of Π1−1NMCom is the message commit-
ted using Πwsyn. Moreover the decommitment phase of Π1−1NMCom

coincides with the decommitment phase of Πwsyn. Since Πwsyn is
perfectly binding we have that the same holds for Π1−1NMCom.

Hiding. Following Def. 1.2.1 to prove the hiding of Π1−1NMCom

we have to show that the experiment ExpHiding0
A,Π1−1NMCom

(λ) in
which NMSen commits to a message m0 is computationally indis-
tinguishable from the experiment ExpHiding1

A,Π1−1NMCom
(λ) in which

3.4. 3-Round One-One NM Commitments 133

NMSen commits to a message m1. In order to prove this indistin-
guishability we consider the following hybrid experiments.

- The 1st hybrid experiment H0(λ) is equal to the real game
experiment ExpHiding0

A,Π1−1NMCom
(λ), with the difference that

a value y s.t. Y = f(y) is computed and used as a witness
for LS. Observe that in order to compute y the commitment
phase takes time T̃f . The indistinguishability betweenH0(λ)
and ExpHiding0

A,Π1−1NMCom
(λ) comes from the adaptive-input

WI of LS, that holds against adversaries with running time
bounded by TLS >> T̃f .

- The 2nd hybrid H1(λ) differs from H0(λ) in the message
committed by the adversary using Πwsyn. More precisely,
Πwsyn is used by NMSen to commit to the message m1 instead
of m0. The indistinguishability between H0(λ) and H1(λ)
comes from the hiding of Πwsyn and noticing that the hiding
of Πwsyn still holds against adversaries with running time
bounded by Twsyn >> T̃f .

The proof ends with the observation thatH1(λ) ≈ ExpHiding1
A,Π1−1NMCom

(λ).

The indistinguishability betweenH1(λ) and ExpHiding1
A,Π1−1NMCom

(λ)
comes from the adaptive-WI property of LS and from the observa-
tion that, as before, the adaptive-input WI of LS still holds against
adversaries with running time bounded by TLS >> T̃f .

Lemma 3.4.2. Π1−1NMCom is a one-one NM commitment scheme.

The proof of security is divided in two cases, in the first case we
consider an adversarial MiM ANMCom that acts in a synchronized
way, while in the second case ANMCom is non-synchronized. In both
cases we want to show that the committed value (and the view) of
ANMCom when interacting with a prover NMSen that commits to
a message m is indistinguishable from the committed value (and
the view) of a simulator. The proof for the synchronous case goes
through a series of hybrid experiments listed below.

134 3. Non-Malleable Commitment Schemes

- We consider the real game experimentHm
1 (z) in which in the

left session NMSen commits to m, while in the right session
NMRec interacts with ANMCom. Now we prove that in the
right session the MiM adversary ANMCom does not commit
to a message m̃ =⊥. By contradiction if ANMCom commits
to m̃ =⊥ then the witness used to complete an accepting
transcript for LS is a value ỹ s.t. f(Ỹ) = ỹ. Then, by
using the adaptive-input PoK property of LS we can reach a
contradiction by inverting f in polynomial time.

- The 2nd hybrid is Hm
2 (z) and it differs from Hm

1 (z) only in
the witness used to compute the LS transcript. The adver-
sary ANMCom, running in sub-exponential time, computes a
value y s.t. f(y) = Y , and uses it as witness for the exe-
cution of LS. From the adaptive-input WI (that is stronger
than inverting the OWP and of breaking Πwsyn) of LS, the
view and the committed message of ANMCom do not change
between Hm

2 (z) and Hm
1 (z).

- We now consider the hybrid experiment H0
1(z) that differs

from the first hybrid experiment that we have considered
Hm

1 (z) in the committed message. Indeed in this case, the
message committed in the left session is 0λ. We observe that
H0

1(z) actually is the simulated game. As for the hybrid
experiment Hm

1 (z) we need to prove that in the right session
the MiM adversary ANMCom does not commit to a message
m̃ =⊥. By contradiction if ANMCom commits to m̃ =⊥ then
the witness used to complete an accepting transcript for LS
is a value ỹ s.t. f(Ỹ) = ỹ. Then, by using the adaptive-
input PoK property of LS we can reach a contradiction by
inverting f in polynomial time.

- The last hybrid experiment that we consider is H0
2(z) and it

differs fromH0
1(z) only in the witness used to compute the LS

transcript. In more details the adversaryANMCom, running in
sub-exponential time, computes a value y s.t. f(y) = Y , and
uses it as witness for the execution of LS. From the adaptive-

3.4. 3-Round One-One NM Commitments 135

input WI (that is stronger than inverting the OWP and of
breaking Πwsyn) of LS, the view and the committed message
of ANMCom do not change between H0

2(z) and H0
1(z).

To conclude this proof we show that the view and the com-
mitted message of ANMCom acting in Hm

1 (z) are indistinguishable
from the view and the committed message of ANMCom acting in
H0

1(z). For what has been argued above, it remains to show that
the view and the committed message of Hm

2 (z) are indistinguish-
able from the view and the committed message of H0

2(z). This
is ensured by the synchronous weak one-one non-malleability of
Πwsyn. Here we need only to use a weak synchronous one-one NM
commitment since we are guaranteed, from the above arguments,
that whenever ANMCom completes a commitment in a right session
the underlying commitment computed through Πwsyn corresponds
to ⊥ with negligible probability only both in Hm

2 (z) and in H0
2(z).

The proof for the asynchronous case is much simpler and relies
on the hiding of Π1−1NMCom. More precisely we observe that in
case of asynchronous scheduling it is possible to rewind the ad-
versary ANMCom without rewinding the sender in the left session.
This allows us to extract (in polynomial time) the witness used
by the adversary in the execution of LS, that with overwhelming
probability corresponds to the committed message. Therefore we
contradict the hiding of Π1−1NMCom. Note that the only two pos-
sible schedules that are possible for a 3-round NM commitment
scheme is the synchronous one or a one that allow the extraction
of the message from the transcript of LS without rewinding the
sender (i.e. asynchronous schedule). This observation concludes
the proof.

136 3. Non-Malleable Commitment Schemes

Chapter 4

Delayed-Input
Non-Malleable Zero
Knowledge

4.1 Overview of the Chapter

Non-malleable zero-knowledge (NMZK) and secure multi-party
computation (MPC) are fundamental primitives in Cryptography.
In this work we will study these two primitives and for the case of
MPC we will focus on the coin-tossing functionality that is among
the most studied functionalities.

NMZK. The first construction of NMZK was given by Dolev
at at. in [DDN91]. Later on, Barak in [Bar02] showed the first
constant-round construction. An improved construction was then
given by Pass and Rosen in [PR05b, PR08b]. The work of Goyal
et al. [GRRV14] obtained the first round-optimal construction re-
quiring only 4 rounds and one-way functions (OWFs). Their con-
struction requires the instance and the witness to be known al-
ready when the prover plays his first round. Their definition is
the standard one-one definition where the adversary opens two
sessions, one with a prover and one with a verifier.

The fact that the instance and the witness need to be known al-
ready at the second round is an important limitation when NMZK

138 4. Delayed-Input Non-Malleable Zero Knowledge

is used as subprotocol to prove statements about another subpro-
tocol played in parallel. Moreover the one-one security is an im-
portant limitation when NMZK is used in a multi-party scenario
where several of such argument systems are played in parallel.

The above two limitations clearly raise the following natural
and interesting open questions:

Open Question 1: is there a 4-round delayed-input NMZK ar-
gument system?

Open Question 2: is there a 4-round many-many synchronous
NMZK argument system?

Multi-party coin-flipping (MPCT). In [KOS03], Katz et
al. obtained a constant-round secure MPC protocol using sub-
exponential hardness assumptions. This results was then improved
by Pass in [Pas04b] that showed how to get bounded-concurrent
secure MPC for any functionality with standard assumptions. Fur-
ther results of Goyal [Goy11] and Goyal et al. [GLOV12] relied on
better assumptions but with a round complexity still far from op-
timal.

A recent work of Garg et al. [GMPP16] makes a long jump
ahead towards fully understanding the round complexity of secure
MPCT. They show that the existence of a 3-round 3-robust par-
allel non-malleable commitment scheme implies a 4-round proto-
col for secure MPCT for polynomially many coins with black-box
simulation. Some candidate instantiations of such special commit-
ment scheme [GMPP16, Pol16] are the one of Pass et al. [PPV08]
based on non-falsifiable assumptions, or the one described in this
thesis based on sub-exponentially OWPs. The achieved round
complexity (i.e., 4 rounds) is proven optimal in [GMPP16] when
simulation is black box and the number of bits in the output of
the functionality is superlogarithmic.

A very recent line of works [ACJ17, BHP17, HHPV17, BGJ+17]
improves the round complexity of MPC for any functionality, con-
structing a 4-round MPC protocol that relays on number theo-
retic assumptions or LWE. Furthermore the work of [BL17] con-
struct a 5-round MPC protocol for any functionality from any
5-round delayed-semi-malicious oblivious transfer (OT) protocol.

4.1. Overview of the Chapter 139

The above state-of-the art leaves open the following question.

Open Question 3: is there a 4-round secure MPCT protocol
under standard generic assumptions, rather than specific number-
theoretic assumptions?

4.1.1 Our Contribution

In this work we solve the above 3 open problems. More precisely
we present the following results:

1. a delayed-input 4-round one-many NMZK argument ΠNMZK

from OWFs, therefore solving Open Question 1; moreover
ΠNMZK is also a delayed-input many-many synchronous NMZK
argument, therefore solving Open Question 2;

2. a 4-round MPCT protocol ΠMPCT from one-to-one OWFs,
therefore solving Open Question 31.

The two constructions are not uncorrelated. Indeed ΠMPCT

uses ΠNMZK as subprotocol and exploits the special properties (e.g.,
delayed input, many-many synchronous) of ΠNMZK. Moreover both
ΠNMZK and ΠMPCT make use of a special proof of knowledge that
offers additional security guarantees when played in parallel with
other protocols. Designing such a proof of knowledge is an addi-
tional contribution of this work and is of independent interest.

Interestingly, several years after the 4-round zero knowledge
argument system from OWFs of [BJY97], the same optimal round
complexity and optimal complexity assumptions have been shown
sufficient in this work for delayed-input NMZK and in [COP+14]
for resettably sound zero knowledge.

More details on our two new constructions follow below.
MPCT from NMZK. A first main idea that allows us to

bypass the strong requirements of the construction of [GMPP16]
is that we avoid robust/non-malleable commitments and instead
focus on non-malleable zero knowledge. Since we want a 4-round
MPCT protocol, we need to rely on 4-round NMZK. The only
known construction is the one of [GRRV14]. Unfortunately their

1An unpublished prior work of Goyal et al. [GKP+17] achieves the same
result on MPCT using completely different techniques.

140 4. Delayed-Input Non-Malleable Zero Knowledge

NMZK argument system seems to be problematic to use in our
design of a 4-round MPCT protocol. There are two main reasons.
The first reason is that the construction of [GRRV14] uses the tech-
nique of secure computation in the head and therefore requires the
instance already in the second round. This is often a problem when
the NMZK argument is played in parallel with other subprotocols
as in our construction. Indeed these additional subprotocols end
in the 3rd or 4th round and typically2 need to be strengthened
by a zero-knowledge proof of correctness. The second reason is
that in the setting of 4-round MPCT the adversary can play as
a many-many synchronous man-in-the-middle (MiM), while the
construction of [GRRV14] is proved one-one non-malleable only.

We therefore improve the state-of-the-art on NMZK construct-
ing a delayed-input NMZK argument system. Our construction
only needs one-way functions and is secure even when a) there are
polynomially many verifiers (i.e., it is a one-many NMZK argu-
ment), and b) there are polynomially many provers and they are
in parallel. We will crucially use both the delayed-input property
and security with parallelized many provers and verifiers in our
secure MPCT construction.

Other applications. Interestingly our one-many (many-many
synchronous) delayed-input NMZK argument has been used to de-
velop important cryptographic protocols. In particular, in [COSV17c]
the authors construct a 4-round (round optimal) two-party compu-
tation protocol with simultaneous message exchange channel that
crucially relays on our NMZK. Furthermore, the work of [BL17] in
order to construct a 5-round MPC protocol also uses our NMZK.
In both constructions the delayed-input property and the retained
security under parallel composition are crucial.

2Indeed, even the construction of [GMPP16] that makes use of a special
non-malleable commitments requires also a delayed-input zero-knowledge ar-
gument.

4.1. Overview of the Chapter 141

4.1.2 Technical Overview of Our NMZK

Issues in natural constructions of NMZK. A natural con-
struction of a NMZK argument from OWFs consists of having: 1)
a 3-round sub-protocol useful to extract a trapdoor from the ver-
ifier of NMZK; 2) a 4-round non-malleable commitment of the
witness for the statement to be proved; 3) a 4-round witness-
indistinguishable proof of knowledge (WIPoK) to prove that either
the committed message is a witness or the trapdoor is known. By
combining instantiations from OWFs of the above 3 tools in par-
allel we could obtain 4-round NMZK from OWFs. The simulator-
extractor for such a scheme would 1) extract the trapdoor from the
verifier; 2) commit to 0 in the non-malleable commitment; 3) use
the trapdoor as witness in the WIPoK; 4) extract the witness from
the arguments given by the MiM by extracting from the WIPoK
or from the non-malleable commitment.

Unfortunately it is not clear how to prove the security of this
scheme when all sub-protocols are squeezed into 4 rounds. The
problem arises from the interactive nature of the involved primi-
tives. Indeed notice that the 4-round non-malleable commitment
is executed in parallel with the 4-round WIPoK. When in a hy-
brid of the security proof the trapdoor is used as witness in the
4-round WIPoK played on the left, the MiM could do the same and
also commits to the message 0 in the non-malleable commitment.
To detect this behavior, in order to break the WI, the reduction
should extract the message committed in the non-malleable com-
mitment by rewinding the MiM. This implies that also the 4-round
WIPoK involved in the reduction must be rewound (we recall that
these two sub-protocols are executed in parallel). It is important
to observe that if in some hybrid we allow the MiM to commit to
the message 0 when the witness of the WIPoK given on the left is
switched to the trapdoor, then the simulator-extractor (that cor-
responds to the final hybrid) will have no way to extract a witness
from the MiM (and this is required by the definition of NMZK).
Indeed from a successful MiM that commits to 0 the extraction
from the WIPoK can only give in output the trapdoor. Therefore

142 4. Delayed-Input Non-Malleable Zero Knowledge

the simulator-extractor would fail.

A special delayed-input WIPoK ΠOR. In order to over-
come the above problem we follow a recent idea proposed in [COSV17b]
where non-interactive primitives instead of 3-rounds WIPoKs are
used in order to construct a concurrent non-malleable commit-
ment in four rounds. In this way, in every security reduction to
such primitives, it will be always possible to extract the message
committed in the non-malleable commitment without interfering
with the challenger involved in the reduction.

In [COSV17b] the authors propose an ad-hoc technique that
avoids such a rewinding issue by using a combination of instance-
dependent trapdoor commitments (IDTCom) and special honest-
verifier zero knowledge (Special HVZK) proofs of knowledge. In
this work we propose a generic approach to construct a special
delayed-input WIPoK ΠOR that can be nicely composed with other
protocols in parallel. We construct ΠOR in two steps.

In 1st step we consider the construction of 3-round WIPoK
for NP of Lapidot and Shamir (LS) [LS90]3 that enjoys adaptive-
input Special HVZK4 and observe that LS does not enjoy adaptive-
input special soundness. That is, given and accepting transcript
(a, 0, z0) for the statement x0 and an accepting transcript (a, 1, z1)
for the statement x1, then only the witness x1 can be efficiently ex-
tracted. More precisely, only the witness for the statement where
the challenge-bit was equal to 15 can be extracted. Therefore
we propose a compiler that using LS = (P ,V) in a black-box
way outputs a 3-round protocol LS′ = (P ′,V ′) that maintains the
adaptive-input Special HVZK and moreover enjoys adaptive-input
special soundness.

In the second step we show how to combine the OR composi-
tion of statements proposed in [CDS94] with LS′ in oder to obtain

3See Section 4.4.1 for a detailed description of [LS90].
4By adaptive-input we mean that the security of the cryptographic prim-

itive holds even when the statement to be proved is adversarially chosen in
the last round.

5For ease of exposition be consider LS with one-bit challenge, but our result
hold for an arbitrarily chosen challenge length.

4.1. Overview of the Chapter 143

a WIPoK ΠOR such that: a) a reduction can be successfully com-
pleted even when there are rewinds due to another protocol played
in parallel; b) the statement (and the corresponding witness) are
required to be known only in the last round. Both properties are
extremely helpful when a WIPoK is played with other protocols
in parallel.

We now give more details about the two steps mentioned above.

- First step: LS′ = (P ′,V ′). Our construction of LS′ works
as follows. The prover P ′ runs two times P using different ran-
domnesses thus obtaining two first rounds of LS a0 and a1. Upon
receiving the challenge-bit b from the verifier V , the statement x
to be proved and the corresponding witness w, P ′ runs P in order
to compute the answer z0 with respect to the challenge b for a0

and the answer z1 with respect to the challenge 1 − b for a1. V ′
accepts if both (a0, b, z0, x) and (a1, 1−b, z1, x) are accepting for V .
We now observe that every accepting transcript for LS′ contains
a sub-transcript that is accepting for V where the bit 1 has been
used as a challenge. From what we have discussed above, it is easy
to see that LS′ enjoys adaptive-input special soundness.

- Second step: adaptive-input PoK for the OR of statements.
We combine together two executions of LS′ by using the trick for
composing two Σ-protocols Σ0,Σ1 to construct a Σ-protocol for the
NP-language L0 OR L1 [CDS94]. Let the compound statement
to be proved (x0, x1), with x0 ∈ L0 and x1 ∈ L1, and let wb be the
witness for xb. The protocol ΠOR proposed in [CDS94] considers
two Σ-protocols Σ0 and Σ1 (respectively for L0 and L1) executed
in parallel, but after receiving the challenge c form the verifier, the
prover can use as challenges for Σ0 and Σ1 every pair (c0, c1) s.t.
c0 ⊕ c1 = c. Therefore the prover could choose in advance one of
the challenge to be used, (e.g., c1−b), and compute the other one
by setting cb = c⊕ c1−b. In this way the transcript for Σ1−b can be
computed using the Special HVZK simulator while the transcript
for Σb is computed using the witness wb. Thus the prover has the
“freedom” of picking one out of two of the challenge before seeing
c, but still being able to complete the execution of both Σ0 and
Σ1 for every c. We will show that this “freedom” is sufficient to

144 4. Delayed-Input Non-Malleable Zero Knowledge

switch between using w0 and w1 (in order to prove WI) even when
it is required to answer to additional (and different) challenges
c1, . . . , cpoly(λ) (i.e., when some rewinds occur). Indeed it is possible
to change the witness used (from w0 to w1) in two steps relying
first on the Special HVZK of Σ1, and then on the Special HVZK
of Σ0. More precisely we consider the hybrid experiment Hw0 as
the experiment where in ΠOR the witness w0 is used (analogously
we define Hw1). We now consider Hw0,w1 that differs from Hw0

because both the witnesses w0 and w1 are used. We prove that
Hw0 and Hw0,w1 are indistinguishable due to the Special HVZK
of Σ1 even tough ΠOR is rewound polynomially many times. The
reduction works as follows. A challenge c1 is chosen before the
protocol ΠOR starts and the Special HVZK challenger is invoked
thus obtaining (a1, z1). The transcript for Σ0 is computed by the
reduction using the witness w0 in order to answer to the challenge
ci0 = ci⊕c1 for i = 1, . . . , poly(λ). We recall the we are in a setting
where ΠOR could be rewound, and therefore the reduction needs
to answer to multiple challenges. We observe that the reduction
to the Special HVZK is not disturbed by these rewinds because c1

can be kept fixed. The same arguments can be used to prove that
Hw0,w1 is computationally indistinguishable from Hw1 .

We then show that ΠOR preserves the special-soundness of the
input Σ-protocols, as well as preserves the adaptive-input special
soundness when instead of two Σ-protocols, two instantiations of
LS′ are used. Moreover the above reductions to Special HVZK
can be done relying on adaptive-input Special HVZK. Finally ΠOR

can be upgrade from adaptive-input special soundness to adaptive-
input PoK using a theorem of [CPS+16b].

Our NMZK argument system NMZK. We run ΠOR in par-
allel with a 4-round public-coin one-one honest-extractable syn-
chronous non-malleable commitment scheme Πnm

6. A construction
for such a scheme in 4 rounds was given by [GPR16]. The prover
of the NMZK argument runs ΠOR in order to prove either the

6All such properties are pretty standard except honest extractability. In-
formally, this property means that there is a successful extractor that gives in
output the committed message having black-box access to a honest sender.

4.1. Overview of the Chapter 145

validity of some NP-statement, or that the non-malleable com-
mitment computed using Πnm contains a trapdoor. The simulator
for NMZK works by extracting the trapdoor, committing to it us-
ing the non-malleable commitment, and using knowledge of both
the trapdoor and the opening information used to compute the
non-malleable commitment as a witness for ΠOR. The 3-round
subprotocol from OWFs for the trapdoor extraction follows the
one of [COSV17b]. More precisely the trapdoor is represented by
the knowledge of two signatures under a verification key sent by
the verifier in the 1st round. In order to allow the extraction of
the trapdoor, the verifier of NMZK sends a signature of a message
randomly chosen in the 3rd round by the prover.

The security proof of one-many NMZK. The simulator
of NMZK extracts the trapdoor7, and commits to it using Πnm.
In each hybrid experiments of the security proof we want to guar-
antee that in each right sessions the MiM still uses a witness for
the statement proved and does not use the trapdoor. In this way
we are ensured that in the simulated experiment (which corre-
sponds to the last hybrid experiments) we continue to extract the
witnesses for the statements proved by MiM in the poly(λ) right
sessions.

The first observation is that in the real game experiments the
MiM does not use the trapdoor in all right sessions, otherwise it
is possible to made a reduction to the security of the signature
scheme. Then, in the first hybrid we switch to the commitment
of two signatures of two different messages in Πnm and we want
to ensure that the MiM does not do the same. For this proof we
follow the same approach provided in [COSV16]. The reduction to
the non-malleability of the underlying commitment scheme isolates
one right session guessing that the MiM has committed there to the
trapdoor. The distinguisher for the non-malleable commitment
takes as input the committed message an checks if it corresponds
to two signatures of two different messages for a given signature
key.

7The trapdoor for our protocol is represented by two signatures for a ver-
ification key chosen by the verifier.

146 4. Delayed-Input Non-Malleable Zero Knowledge

The above proof approach works only with synchronous ses-
sions (i.e., for synchronous one-many NMZK). Indeed Πnm is se-
cure only in the synchronous case. In order to deal with the asyn-
chronous case we rely on the honest-extractability of Πnm. We
recall that ΠOR is run in parallel with Πnm in order to ensure that
either the witness for an NP-statement x is known or the trap-
door has been correctly committed using Πnm. For our propose
we only need to ensure that the MiM never commits to the trap-
door. If this is not the case than there exists a right session where
the MiM is committing correctly to the trapdoor using Πnm with
non-negligible probability. This means that we can extract the
message committed by the MiM by just relying on the honest-
extractability of Πnm. Therefore we can make a reduction to the
hiding of Πnm

8.

In the remained hybrids we switch the witness used to compute
the transcript of ΠOR: we start to prove using ΠOR that the mes-
sage committed in Πnm are two signatures 9. In order to prove that
also the MiM continues to not use the trapdoor in all right sessions
the trapdoor we will relay on the adaptive-input Special HVZK
property of ΠOR. In more details, in the right sessions we can ex-
tracted a witness wOR from the transcript of ΠOR, and then check
that wOR does not correspond to the trapdoor and to the open-
ing information of the commitment computed using Πnm. In these
reductions it is crucial that the rewinds made by the extractor of
ΠOR do not disturb the challengers involved in the reductions.

To demonstrate that the view of the MiM in this hybrid ex-
periments remains indistinguishable from the view of the MiM
in the real game we will relay on the hiding of Πnm and on the
adaptive-input Special HVZK of ΠOR.

From one-many NMZK to synchronous many-many
NMZK. Our one-many NMZK is also synchronous many-many
NMZK. Indeed, the simulator can extract (simultaneously) the

8A rewind made in an asynchronous session does not interfere with (i.e.,
does not rewind) the challenger of the hiding of Πnm.

9For this part of the proof we use the approach that we explained in the
previous paragraph.

4.1. Overview of the Chapter 147

trapdoor from the right sessions, playing as described above. The
only substantial difference is that we need to use a many-one non-
malleable commitment with all the properties listed above. Fol-
lowing the approach proposed in the security proof of Proposition
1 provided in [LPV08], it is possible to claim that a synchronous
(one-one) non-malleable commitment is also synchronous many-
one non-malleable.

4.1.3 4-Round Secure Multi-Party Coin Toss-
ing

Our MPCT protocol will critically make use of our delayed-input
synchronous many-many NMZK from OWFs, and of an additional
instantiation of ΠOR. Similarly to [GMPP16] our protocol consists
of each party committing to a random string r, that is then sent in
the clear in the last round. Moreover there will be a simulatable
proof of correctness of the above commitment w.r.t. r, that is
given to all parties independently. The output consists of the

⊕
of all opened strings. We now discuss in more details the messages
exchanged by a pair of parties P1 and P2 in our multi-party coin
tossing protocol ΠMPCT. The generalization to n players is straight-
forward and discussed in Section 4.3.1.

Informal description of the protocol. P1, using a perfectly
binding computationally hiding commitment scheme, commits in
the first round to a random string r1 two times thus obtaining
com0, com1. Moreover P1 runs ΠOR in order to prove knowledge of
either the message committed in com0 or the message committed
in com1. In the last (fourth) round P1 sends r1. In parallel, an
execution of a NMZK ensures that both com0 and com1 contain
the same message r1 (that is sent in the fourth round)10. When P1

receives the last round that contains r2, P1 computes and outputs
r1 ⊕ r2. P2 symmetrically executes the same steps using as input
r2.

10Notice here how crucial is to delayed-input have synchronous many-many
NMZK.

148 4. Delayed-Input Non-Malleable Zero Knowledge

The simulator for ΠMPCT runs the simulator of NMZK and ex-
tracts the input r? from the malicious party using the PoK extrac-
tor of ΠOR. At this point the simulator invokes the functionality
thus obtaining r and plays in the last round rs = r ⊕ r?. Note
that the values that the simulator commits in com0 and com1 are
unrelated to rs and this is possible because the NMZK is simu-
lated. The extraction of the input from the adversary made by
the simulator needs more attention. Indeed the security of NMZK
will ensure that, even though the simulator cheats (he commits to
a random string in both com0 and com1) the adversary can not do
the same. Therefore the only way he can complete an execution of
ΠMPCT consists of committing two times to r? in the first round,
and send the same value in the fourth round. This means that
the value extracted (in the third round) from the PoK extractor
of ΠOR is the input of the malicious party. Our security proof
consists of showing the indistinguishability of hybrid experiments.
The first hybrid experiment differs from the real game by using
the simulator of NMZK. The simulator, in order to extract the
trapdoor from the adversary, rewinds from the third to the second
round, thus rewinding also ΠOR. Indeed the adversary, for every
different second round of the NMZK could sent a different second
round for ΠOR. This becomes a problem when we consider the
hybrid experiment Hi where the witness for ΠOR changes. Due to
the rewinds made by the simulator of the NMZK it is not clear
how to rely on the security of the WI property of ΠOR (the chal-
lenger of WI would be rewound). This is the reason why, also in
this case, we need to consider an intermediate hybrid experiment
Hw0,w1 where both witnesses of ΠOR can be used. Then we can
prove the indistinguishability between Hw0,w1 and Hi still relying
on the Special HVZK of the sub-protocol used in ΠOR (Blum’s
protocol suffices in this case).

4.2. 4-Round Delayed-Input NMZK from OWFs 149

4.2 4-Round Delayed-Input NMZK from

OWFs

4.2.1 Our Protocol: NMZK.

For our construction of a 4-round delayed-input non-malleable zero
knowledge NMZK = (PNMZK,VNMZK) for the NP-language L we
use the following tools.

1. A signature scheme Σ = (Gen, Sign,Ver);
2. A 4-round public-coin synchronous honest-extractable non-

malleable commitment scheme NM = (S,R).
3. Two instantiations of the adaptive-input special sound LS

protocol in order to construct a 4-round delayed-input public-
coin proof system for the OR of statements ΠOR = (POR,VOR)
as described in Section. 2.2. More in details we use the fol-
lowing proof systems.

1. A 4-round delayed-input public coin LSL = (PL,VL) for
the NP-language L with adaptive-input Special HVZK
simulator SL. LSL = (PL,VL) is adaptive-input special
sound for the corresponding relation RelL with instance
length `L.

2. A 4-round delayed-input public coin LSnm = (Pnm,Vnm)
with adaptive-input Special HVZK simulator Snm. LSnm =
(Pnm,Vnm) is adaptive-input special sound for the NP-
relation RelLnm where

Lnm = {(vk, τ = (id, nm1, nm2, nm3, nm4), s1 :

∃(decnm, s0, σ1, msg1, σ2, msg2) s.t.

Ver(vk, msg1, σ1) = 1 ANDVer(vk, msg2, σ2) = 1

AND msg1 6= msg2 AND

R accepts (id, s1, decnm) as a valid decommitment of τ

AND s0 ⊕ s1 = σ1||σ2}.

We denote with `nm the dimension of the instances
belonging to Lnm. Informally by running LSnm one
can prove that the message committed using a non-

150 4. Delayed-Input Non-Malleable Zero Knowledge

malleable commitment XORed with the value s1 rep-
resents two signatures for two different messages w.r.t.
the verification key vk.

Moreover ΠOR is also adaptive-input PoK for the relation
RelLOR

= {((xL, xnm), w) : ((xL, w) ∈ RelL) OR ((xnm, w) ∈
RelLnm)} (see Theorem 35 in Section. 4.4.1 for more details).

Overview of our protocol: NMZK. We now give an high-level
description of our delayed-input NMZK of Fig. 4.1. For a formal
description see Fig. 4.2.

In the first round VNMZK computes a pair of signature-verification
keys (sk, vk) sending vk to PNMZK. Also VNMZK computes the (pub-
lic coin) first rounds nm1 of NM, ls1

L ← VL(1λ, `L) and ls1
nm ←

VL(1λ, `nm). VNMZK completes the first round by sending (vk, ls1
L, ls

1
nm, nm1)

to PNMZK.
In the second round PNMZK computes ls2

L ← PL(1λ, ls1
L, `L)

and sends ls2
L. Furthermore picks ls3

nm ← {0, 1}λ and runs ls2
nm ←

Snm(1λ, ls1
nm, ls

3
nm, `nm) in order to send ls2

nm. PNMZK now commits to
a random message s0 using the non-malleable commitment NM by
running S on input 1λ, s0, nm1 and the identity id thus obtaining
and sending nm2. Also PNMZK sends a random message msg.

In the third round of the protocol, upon receiving msg, VNMZK

computes and sends a signature σ of msg by running Sign(sk, msg).
VNMZK picks and sends c ← {0, 1}λ. Also he computes and sends
the (public coin) third rounds nm3 of NM.

In the fourth round PNMZK checks whether or not σ is a
valid signature for msg w.r.t. the verification key vk. In the nega-
tive case PNMZK aborts, otherwise he continues with the following
steps. PNMZK computes ls3

L = ls3
nm ⊕ c. Upon receiving the in-

stance x to be proved and the witness w s.t. (x,w) ∈ RelL, PNMZK

completes the transcript for LSL running ls4
L ← PL(x,w, ls3

L). At
this point PNMZK completes the commitment of s0 by running S
on input nm3 thus obtaining (nm4, decnm). PNMZK picks a ran-
dom string s1, sets xnm = (vk, id, nm1, nm2, nm3, nm4, s1) and runs
ls4

nm ← Snm(xnm). PNMZK completes the fourth round by sending
(ls3

L, ls
4
L, nm4, s1, ls

3
nm, ls

4
nm, x, xnm).

4.2. 4-Round Delayed-Input NMZK from OWFs 151

The verifier VNMZK accepts x iff the following conditions are
satisfied:

1. c is equal to ls3
L ⊕ ls3

nm;
2. VL(x, ls1

L, ls
2
L, ls

3
L, ls

4
L) = 1 and

3. Vnm(xnm, ls
1
nm, ls

2
nm, ls

3
nm, ls

4
nm) = 1.

PNMZK(id) VNMZK(id)
vk

Upon receiving x, w
s.t. (x, w) ∈ RelL

msg

σ

ls2L, ls
2
nm

c

ls3L, ls
4
L, ls

3
nm, ls

4
nm

ls1L, ls
1
nm nm1

nm2(s0)

nm3

nm4(s0) s1

- vk is a a verification key of a signature scheme and σ is a valid
signature of the message msg.

- s0 and s1 are two random strings.
- τ = (id, nm1, nm2, nm3, nm4) represents the transcript of
〈S(s0),R〉(id) that is, a commitment of the message s0

computed using the synchronous honest-extractable non-
malleable commitment scheme NM.

- ((ls1
L, ls

1
nm), (ls2

L, ls
2
nm), c, (ls3

L, ls
4
L, ls

3
nm, ls

4
nm)) is the transcript

generated from an execution of ΠOR, in more details:
- c is equal to ls3

nm ⊕ ls3
L.

- (ls1
L, ls

2
L, ls

3
L, ls

4
L) is the transcript output from the honest

prover procedure of LSL proving the knowledge of the
witness for x ∈ L.

- (ls1
nm, ls

2
nm, ls

3
nm, ls

4
nm) is the transcript output of a adaptive-

input Special HVZK simulator of LSnm proving knowl-
edge of a decommitment of τ to the message s0 s.t.
s0 ⊕ s1 = σ1||σ2 where σ1, σ2 are two signatures of two
different messages w.r.t vk.

Figure 4.1 Our 4-round delayed-input NMZK

The simulator extractor. Informally, the simulator SimNMZK

152 4. Delayed-Input Non-Malleable Zero Knowledge

Common input: security parameter λ, identity id ∈ {0, 1}λ
instances length: `L, `nm.
Input to PNMZK: (x,w) s.t. (x,w) ∈ RelL, with (x,w) available
only in the 4th round.

1. VNMZK → PNMZK

1. Run (sk, vk)← Gen(1λ).
2. Run ls1

L ← VL(1λ, `L).
3. Run ls1

nm ← Vnm(1λ, `nm).
4. Run R on input 1λ and id thus obtaining nm1.
5. Send (vk, ls1

L, ls
1
nm, nm1) to PNMZK.

2. PNMZK → VNMZK

1. Run ls2
L ← PL(1λ, `L).

2. Pick ls3
nm ← {0, 1}λ run ls2

nm ← Snm(1λ, ls1
nm, ls

3
nm, `nm).

3. Pick s0 ← {0, 1}λ and run S on input 1λ, id, nm1, s0

(in order to commit to the message s0) thus obtaining
nm2.

4. Pick a message msg← {0, 1}λ.
5. Send (ls2

L, ls
2
nm, msg, nm2) to VNMZK.

3. VNMZK → PNMZK

1. Pick c← {0, 1}λ.
2. Run R on input nm2 thus obtaining nm3.
3. Run Sign(sk, msg) to obtain a signature σ of msg.
4. Send (c, nm3, σ) to PNMZK.

4. PNMZK → VNMZK

1. If Ver(vk, msg, σ) 6= 1 then abort, continue as follows
otherwise.

2. Compute ls3
L = c⊕ ls3

nm.
3. Run ls4

L ← PL(x,w, ls3
L).

4. Run S on input nm3 thus obtaining (nm4, decnm).
5. Pick s1 ← {0, 1}λ, set xnm =

(vk, nm1, nm2, nm3, nm4, s1) and run ls4
nm ← Snm(xnm).

6. Send (ls3
L, ls

4
L, nm4, s1, ls

3
nm, ls

4
nm, x, xnm) to VNMZK.

5. VNMZK: output 1 iff the following conditions are satisfied.

1. c is equal to ls3
L ⊕ ls3

nm.
2. VL(x, ls1

L, ls
2
L, ls

3
L, ls

4
L) = 1.

3. Vnm(xnm, ls
1
nm, ls

2
nm, ls

3
nm, ls

4
nm) = 1.

Figure 4.2 Formal construction of our delayed-input NMZK.

4.2. 4-Round Delayed-Input NMZK from OWFs 153

of our protocol interacts with the adversaryANMZK emulating both
the prover in the left session and polynomially many verifiers in
the right sessions. In the right sessions SimNMZK interacts with
ANMZK as the honest verifiers do. While, in the left session for
an instance x ∈ L chosen adaptively by ANMZK, SimNMZK proves,
using ΠOR, that the message committed in NM contains two sig-
natures of two different messages w.r.t. the verification key vk.
In more details SimNMZK runs the adaptive-input Special HVZK
simulator of LSL to complete the transcript for LSL w.r.t. the
instance x. In order to use the honest prover procedure to com-
pute the transcript of LSnm, SimNMZK extracts two signatures for
two different messages by rewinding ANMZK from the third to the
second round and by committing to them using NM11. More pre-
cisely the simulator commits to a random string s0, but computes
s1 s.t. s1 = (σ1||σ2) ⊕ s0

12. Therefore the execution of ΠOR

can be completed by using the knowledge of the two signatures
committed using NM. We use the xor trick originally provided
in [COSV16] in order to avoid any additional requirement w.r.t.
the underlying non-malleable commitment scheme NM. Indeed
if the sender of NM could decide the message to commit in the
last round, then SimNMZK can simply compute the first round of
NM, extract the signature, and compute the last round of NM by
committing to σ1||σ2. It is important to observe that even though
the non-malleable commitment scheme of [GPR16] fixes the mes-
sage to be committed in the third round, there is in general no
guarantee that such a scheme is secure against an adversary that
adaptively chooses the challenge messages in the last round of
the non-malleability security game. Therefore, even though the
completeness of our scheme would work without using the trick
of [COSV16], it would be unclear, in general, how to prove the
security of our final scheme. A formal description of SimNMZK can
be found in the proof of Theorem 28.

11W.l.o.g. we assume that the signatures σ1, σ2 include the signed messages.
12For ease of exposition we will simply say that ANMZK commits to two

signatures using NM.

154 4. Delayed-Input Non-Malleable Zero Knowledge

4.2.2 Formal Description of Our Delayed-Input
NMZK and Security Proof

The formal construction of our delayed-input NMZK NMZK =
(PNMZK,VNMZK) for the NP-language L can be found in Fig. 4.2.

Theorem 28. If OWFs exist, then NMZK is a 4-round delayed-
input NMZK AoK for NP .

Proof. We divide the security proof in two parts, proving that
NMZK enjoys delayed-input completeness and NMZK. The proof
of NMZK is divided also in two lemmas, one for each of the two
properties of Def. 1.3.1. Before that, we recall that LSnm and
LSL can be constructed from OWFs (see Sec. 1.1) as well as Σ
(using [Rom90]) and the 4-round public-coin synchronous honest-
extractable non-malleable commitment scheme NM (see Theorem
1 of [GPR16]).

(Delayed-Input) Completeness. The completeness follows
directly from the delayed-input completeness of LSnm and LSL,
the correctness of NM and the validity of Σ. We observe that, due
to the delayed-input property of LSL, the statement x (and the
respective witness w) are used by PNMZK only to compute the last
round. Therefore also NMZK enjoys delayed-input completeness.

(Delayed-Input) NMZK. Following Definition 1.3.1 we start
by describing how the simulator SimNMZK for NMZK works. In the
left session SimNMZK interacts with the MiM adversary ANMZK in
the following way. Upon receiving the first round, vk, ls1

L, ls1
nm,

nm1, from ANMZK, SimNMZK on input ls1
nm computes ls2

nm by run-
ning Pnm. SimNMZK picks ls3

L ← {0, 1}λ and runs SL on input 1λ,
`L, ls1

L, ls3
L thus obtaining ls2

L. SimNMZK, in order to commit to a
random message s0 runs S on input nm1, the identity id and s0

thus obtaining nm2. SimNMZK sends ls2
L, ls

2
nm, nm2 and a random

message msg1 to ANMZK. Upon receiving the third round, c, nm3,
σ1, and instance x to be proved from ANMZK, the simulator checks
whether or not σ1 is a valid signature for msg1 w.r.t. the veri-
fication key vk. In the negative case SimNMZK aborts, otherwise
SimNMZK rewinds ANMZK from the third to the second round in

4.2. 4-Round Delayed-Input NMZK from OWFs 155

order to obtain a second signature σ2 for a different message msg2.
After the extraction of the signatures SimNMZK returns to the main
thread and computes the fourth round as follows13.

SimNMZK completes the commitment of s0 by running S on
input nm3 thus obtaining (nm4, decnm) and sending nm4. Further-
more SimNMZK sets s1 s.t. s1 = (σ1||σ2)⊕ s0,
xnm = (vk, id, nm1, nm2, nm3, nm4, s1), wnm = (decnm, s0, σ1, msg1, σ2, msg2)
and completes the transcript for LSnm obtaining ls4

nm by running
the prover procedure Pnm on input xnm, wnm and ls3

L ⊕ c. At this
point SimNMZK runs the adaptive-input Special HVZK simulator
SL on input x thus obtaining ls4

L. Then the values
(ls3

L, ls
4
L, nm4, s1, ls

3
nm, ls

4
nm, x, xnm) are sent to ANMZK. At the end of

the execution SimNMZK outputs ANMZK’s view in the main thread.
Furthermore, he uses the extractor of LSL to extract and output,
from the poly(λ) right sessions, the witnesses w̃1, . . . , w̃poly(λ) used
by ANMZK to compute the transcript of ΠOR (the witnesses corre-
spond to statements x̃i proved by ANMZK in the i-th right session,
for i = 1, . . . , poly(λ)).

Lemma 4.2.1. {SimNMZK
1(1λ, z)}λ∈N,z∈{0,1}∗ ≈

{ViewANMZK(1λ, z)}λ∈N,z∈{0,1}∗ , where SimNMZK
1(1λ, z) denotes the

1st output of SimNMZK.

In order to prove the above lemma we consider the series of
hybrid experiments described below. In the proof we denote with
{ViewANMZK

Hi (1λ, z)}λ∈N,z∈{0,1}∗ the random variable that describes
the view of ANMZK in the hybrid Hi(1

λ, z). Let p the probability
that in the real execution ANMZK completes the left session.

- We start considering the hybrid experiment H0(1λ, z) in which in
the left session PNMZK interacts with ANMZK and in the i-th right
session VNMZKi interacts with ANMZK, for i = 1, . . . , poly(λ). Note
that {ViewANMZK

H0
(1λ, z)}λ∈N,z∈{0,1}∗ = {ViewANMZK(1λ, z)}λ∈N,z∈{0,1}∗ .

13Note that it is possible to complete the main thread, due to the delayed-
input completeness of LSnm, and to the fact that we do not need to change
the second round of NM (that is, we do not need to change the committed
message s0) in order to have xnm ∈ Lnm.

156 4. Delayed-Input Non-Malleable Zero Knowledge

The hybrid experiment H1(1λ, z) differs from H0(1λ, z) only in
the fact that in the left session ofH1(1λ, z) ANMZK is rewound from
the third to the second round, in order to extract two signatures
σ1, σ2 for two distinct messages (msg1, msg2) w.r.t. a verification
key vk. Note that after p rewinds the probability of not obtaining
a valid new signature is less than 1/2. Therefore the probabil-
ity that ANMZK does not give a second valid signature for a ran-
domly chosen message after λ/p rewinds is negligible in λ. For the
above reason the procedure of extraction of signatures for differ-
ent messages in H1(1λ, z) succeeds except with negligible proba-
bility. Observe that the above deviation increases the abort prob-
ability of the experiment only by a negligible amount, therefore
{ViewANMZK

H0
(1λ, z)}λ∈N,z∈{0,1}∗ ≡s {ViewANMZK

H1
(1λ, z)}λ∈N,z∈{0,1}∗ .

- The hybrid experiment H2(1λ, z) differs from H1(1λ, z) only in
the message committed using NM. Indeed PNMZK commits using
NM to two signatures σ1, σ2 of two distinct messages (msg1, msg2)
instead of a random message. In more details, PNMZK commits
to a random string s0 using NM and in 4th round sets and sends
s1 = (σ1||σ2) ⊕ s0, instead of sending s1 as a random string. Ob-
serve that the procedure of extraction of the signatures succeeds
in H2(1λ, z) with non-negligible probability, because the first three
rounds are played exactly as in H1(1λ, z). Now we can claim that
{ViewANMZK

H2
(1λ, z)}λ∈N,z∈{0,1}∗ and {ViewANMZK

H1
(1λ, z)}λ∈N,z∈{0,1}∗ are

computationally indistinguishable by using the computationally-
hiding property of NM. Suppose by contradiction that there exist
an adversary ANMZK and a distinguisher DNMZK such that DNMZK

distinguishes {ViewANMZK
H1

(1λ, z)}λ∈N,z∈{0,1}∗ from

{ViewANMZK
H2

(1λ, z)}λ∈N,z∈{0,1}∗ . Then we can construct an adversary
AHiding that breaks the computationally hiding of NM in the follow-
ing way. AHiding sends to the challenger of the hiding game CHiding

two random messages (m0,m1). Then, in the left session AHiding

acts as PNMZK except for messages of NM for which he acts as
proxy between CHiding and ANMZK. When AHiding computes the last
round of the left session AHiding sets and sends s1 = σ1||σ2 ⊕m0.
In the right sessions AHiding interacts with AZK acting as VNMZK

does. At the end of the execution AHiding runs DNMZK and outputs

4.2. 4-Round Delayed-Input NMZK from OWFs 157

what DNMZK outputs. It is easy to see that if CHiding commits to m1

then, AZK acts as in H1(1λ, z), otherwise he acts as in H2(1λ, z).
Note that the reduction to the hiding property of NM is possible
because the rewinds to extract a second signature do not affect the
execution with the challenger of NM that remains straight-line.

- The hybrid experimentH3(1λ, z) differs fromH2(1λ, z) in the way
the transcript of LSnm is computed. More precisely, the prover
Pnm of LSnm is used to compute the messages ls2

nm and ls4
nm in-

stead of using the adaptive-input Special HVZK simulator. Note
that due to the delayed-input property of LSnm the statement
xnm = (vk, nm1, nm2, nm3, nm4, s1) and the witness
wnm = (decnm, s0, σ1, msg1, σ2, msg2) are required by Pnm only to
compute ls4

nm and are not needed to compute ls2
nm. Observe that

the procedure of extraction of the signatures succeeds in H3(1λ, z)
with non-negligible probability due to the adaptive-input Special
HVZK of LSnm. From the adaptive-input Special HVZK of LSnm

it follows that {ViewANMZK
H2

(1λ, z)}λ∈N,z∈{0,1}∗ and

{ViewANMZK
H3

(1λ, z)}λ∈N,z∈{0,1}∗ are computationally indistinguishable.

- The hybrid H4(1λ, z) differs from H3(1λ, z) in the way the tran-
script of LSL is computed. More precisely, the adaptive-input Spe-
cial HVZK simulator of LSL is used to compute the messages ls2

L

and ls4
L using as input ls1

L received by ANMZK, the statement x and
a random string ls3

L chosen by the hybrid experiment. We observe
that in order to complete the execution of ΠOR the honest prover
procedure Pnm can be used on input xnm, wnm and ls3

nm = ls3
L ⊕ c.

Moreover adaptive-input Special HVZK of LSL ensures that the
extraction procedure of the signatures succeeds in H4(1λ, z) with
non-negligible probability and that {ViewANMZK

H4
(1λ, z)}λ∈N,z∈{0,1}∗ ≈

{ViewANMZK
H3

(1λ, z)}λ∈N,z∈{0,1}∗ . Note that H4(1λ, z) corresponds to
the simulated experiment, that is the experiment where SimNMZK

interacts with the adversary ANMZK emulating both a prover in the
left session and polynomially many verifiers in the right sessions.
This implies that {ViewANMZK

H4
(1λ, z)}λ∈N,z∈{0,1}∗ = {S1(1λ, z)}λ∈N,z∈{0,1}? .

The proof ends with the observation that for all λ ∈ N, z ∈
{0, 1}∗ it holds that: {ViewANMZK(1λ, z)}λ,z = {ViewANMZK

H0
(1λ, z)}λ,z ≈

158 4. Delayed-Input Non-Malleable Zero Knowledge

· · · ≈ {ViewANMZK
H4

(1λ, z)}λ,z = {S1(1λ, z)}λ,z

Lemma 4.2.2. Let x̃1, . . . , x̃poly(λ) be the right-session statements
appearing in View = SimNMZK

1(1λ, z) and let id be the identity
of the left session and ĩd1, . . . , ĩdpoly(λ) be the identities of right
sessions appearing in View. If the i-th right session is accepting
and id 6= ĩdi for i = 1, . . . , poly(λ), then except with negligible
probability, the second output of SimNMZK(1λ, z) is w̃i such that
(x̃i, w̃i) ∈ RelL for i = 1, . . . , poly(λ).

Overview of the proof of Lemma 4.2.2.. We now recon-
sider the hybrid experiments Hk for k = 0, . . . , 4 described in
the security proof of Lemma 4.2.1, and prove that in all hybrids
ANMZK chooses a statement x̃i ∈ L and uses the witnesses for it to
complete the transcripts of ΠOR in the i-th the right session, for
i = 1, . . . , poly(λ).

In the hybridsH0, . . . ,H2 we will relay on the following chain of
implications. If in the right sessions ANMZK never commits to the
signatures14 then the transcript computed using LSnm corresponds
to a false instance. Since ΠOR enjoys adaptive-input PoK property
we can argue that the transcript for ΠOR is computed by ANMZK

using a witness w̃i for the statement x̃i. This means that ANMZK

completes transcript corresponding to LSL using the witness w̃i
s.t. (x̃i, w̃i) ∈ RelL for i ∈ {1, . . . , poly(λ)}.

In order to prove that ANMZK does not commit to two sig-
natures in any of the right sessions of H0, . . . ,H2, we rely on the
“mild” non-malleability and on the honest-extraction property en-
joyed by NM. More precisely, in these hybrid experiments, we use
the honest-extraction15 property to extract the signatures from

14We recall that ANMZK to commit to the signatures follows the following
procedure. ANMZK commits using NM to a message s̃0 and sends a string s̃1
s.t. s̃0 ⊕ s̃1 = σ̃1||σ̃2 and σ̃1, σ̃2 are two signatures for two different messages
w.r.t. the verification key ṽk sent in the first round of the i-th right session

15Observe that in our case is sufficient that the extraction holds against
honest sender, because for our security proof we only need to be sure that the
commitment computed using NM is not a commitment of signatures.

4.2. 4-Round Delayed-Input NMZK from OWFs 159

the right sessions (that by contradiction are committed using NM
by ANMZK).

Since in H2 we are guaranteed that in all the right sessions
ANMZK chooses a statement x̃i ∈ L and uses the witnesses for it
to run ΠOR, we can claim that ANMZK still does the same in H3.
Otherwise, we can construct a reduction that breaks the adaptive-
input Special HVZK of LSnm. Indeed, it is possible to check which
witness is using ANMZK to compute ΠOR in the right sessions of H3

by running the extractor of ΠOR. Therefore, if in a right session, let
us say the i-th, we do not extract a witness for statement x̃i (chosen
by ANMZK) from ΠOR, then it is possible to make a reduction to the
adaptive-input Special HVZK of LSnm. Similar arguments can be
used to prove that also in H4 (which corresponds to the simulated
experiment) we continue to extract the witnesses for x̃i ∈ L for
i = 1, . . . , poly(λ). During the proof we need to show that the
rewinds made by the honest-extractor and by the extractor of ΠOR

do not interfere with the various reductions. Roughly speaking,
our security proof works because only non-interactive primitives
are used, therefore the rewinds made by the extractors of NM and
of ΠOR do not rewind the challenger involved in the reductions.
In particular, let us consider the hybrid H3 where we switch from
the adaptive-input Special HVZK simulator of LSnm to the honest
prover procedure and H4 where we start to use adaptive-input
Special HVZK simulator of LSL. In this reductions the rewinds
made by the extractor of ΠOR do not affect the reduction. Indeed,
when we rely on adaptive-input Special HVZK of LSL (LSnm) the
honest prover procedure of LSnm (LSL) can be used in order to
complete the execution of ΠOR. In this way the third round ls3

L

(ls3
nm) can be kept fixed thus computing ls3

nm = ci ⊕ ls3
L (ls3

L =
ci ⊕ ls3

nm) for every ci that could be sent by ANMZK during the
rewinds. We observe that it would be not clear how to do such a
security proof by directly relying on the WI property of ΠOR. It
follows the formal proof of this lemma.

Formal proof of Lemma 4.2.2. In order to simplify the se-
curity proof, here we actually consider the notions of multi-SHVZK

160 4. Delayed-Input Non-Malleable Zero Knowledge

and multi-hiding instead of adaptive-input Special HVZK and hid-
ing. The only differences with the classical definition of adaptive-
input Special HVZK is the following. Let (ls1, ls3, x) be a challenge.
The challenger of multi-SHVZK picks a random bit b and compute
an accepting transcript t = (ls1, ls2, ls3, ls4) for x. If b = 0 then t
has been computed by using the honest prover procedure P , other-
wise has been computed using the adaptive-input Special HVZK
simulator. The adversary, upon receiving t, either outputs his
guess b′ ∈ {0, 1}, or asks to receive another transcript t according
to a new possibly challenge (ls1′ , ls3′, x′). Note that the adversary
can ask a polynomial number of transcripts according to differ-
ent challenges before he outputs b′. The adversary is successful if
Prob [b = b′]− 1/2 is non-negligible in the security parameter. It
is easy to see that a protocol is adaptive-input Special HVZK iff
it is multi-SHVZK.

The only differences with the classical definition of hiding is the
following. Let m0 and m1 be the challenge messages. The chal-
lenger of multi-hiding picks a random bit b and compute the com-
mitment of mb. The adversary, upon receiving the commitment,
either outputs his guess b′ ∈ {0, 1}, or asks to receive another com-
mitment of mb (the latter step can be executed a polynomial num-
ber of times). The adversary is successful if Prob [b = b′] − 1/2
is non-negligible in the security parameter. It is easy to see that
a commitment scheme is hiding iff it is multi-hiding.

We now reconsider the hybrid experiments Hk for k = 0, . . . , 4
described in the security proof of Lemma 4.2.1, and we want to
show that in each of these hybrid experiments in every right ses-
sions ANMZK does not cheat. In other words we want to ensure,
that for every i-th accepting right session of Hk(1

λ, z) ANMZK

chooses a statement x̃i and completes the corresponding transcript
of ΠOR using the witness w̃i s.t. (x̃i, w̃i) ∈ RelL, and id 6= ĩdi, for
all i = 1, . . . , poly(λ) and all k = 0, . . . , 4. In more details we prove
that the following claim holds in all the hybrid experiments.

Claim 4.2.3. Let x̃1, . . . , x̃poly(λ) be the right-session statements
appearing in view of ANMZK and let id be the identity of the left
session and ĩd1, . . . , ĩdpoly(λ) be the identities of right sessions ap-

4.2. 4-Round Delayed-Input NMZK from OWFs 161

pearing in this view. If the i-th right session is accepting and
id 6= ĩdi for i = 1, . . . , poly(λ), then except with negligible proba-
bility, ANMZK computes the transcript of ΠOR using a witness wi
s.t. (x̃i, w̃i) ∈ RelL.

We start by reconsidering the hybrid experiments H0(1λ, z)
and demonstrate that the following claim holds in H0(1λ, z).

Claim 4.2.4. The probability that ANMZK commits using NM to a
message s̃0 and sends a string s̃1 s.t. s̃0 ⊕ s̃1 = σ̃1||σ̃2 and σ̃1, σ̃2

are two signatures for two different messages w.r.t. the verification
key ṽk sent in the first round of the i-th right session for some
i ∈ {1, . . . , poly(λ)} is negligible.

Suppose by contradiction ANMZK commits to the signatures
in the i-th right sessions the that we can construct an adversary
AΣ that breaks the security of the signature scheme Σ, for some
i ∈ {1, . . . , poly(λ)}. Let ṽk be the challenge verification key. The
adversary AΣ interacts against the MiM adversary ANMZK in the
left session as a honest prover does. In the rights sessions he acts
as a honest verifier does except for a i-th right session, for which he
acts in the following way. In the i-th right session ANMZK uses ṽk
to compute the first round and the oracle Sign(s̃k, ·) to compute a
signature σ̃1 of a message ˜msg1 sent by ANMZK in the second round.
At the end of the execution AΣ extracts from the commitment τ̃ =
(ĩd, ñm1, ñm2, ñm3, ñm4) computed using NM two signatures σ̃1, σ̃2

for two different messages ˜msg1, ˜msg2 w.r.t. ṽk. ANMZK outputs
σ̃2, ˜msg2. Observe that the extraction succeeds with non-negligible
probability, because by contradiction we are assuming that ANMZK

commits (correctly) to two signatures in τ̃ . The proof ends with
the observation that Sign(s̃k, ·) is called only once.

Note that from Claim 4.2.4 follows that ANMZK does not com-
mit to two signatures (except with negligible probability) which
implies that in H0(1λ, z) the transcript computed using LSnm cor-
responds to a false instance. Since ΠOR enjoys adaptive-input PoK
property we can argue thatANMZK in the i-th right sessions chooses
a true statement x̃i and computes the transcript of LSL (therefore

162 4. Delayed-Input Non-Malleable Zero Knowledge

the transcript of ΠOR) using a witness wi s.t. (x̃i, w̃i) ∈ RelL, for
all i = 1, . . . , poly(λ). For the above chain of implications we can
conclude that also the Claim 4.2.3 holds in H0(1λ, z).

The next hybrid that we reconsider is H1(1λ, z). It is already
showed in the proof of Lemma 4.2.1, that the view of ANMZK in
H0(1λ, z) is statistically close to the view of ANMZK in H1(1λ, z),
this implies that the Claim 4.2.3 and Claim 4.2.4 still hold in in
H1(1λ, z).

The next hybrid that we reconsider is H2(1λ, z). To prove
that the Claim 4.2.4 still holds in H2(1λ, z) we use two different
properties of NM. We cannot rely only on the non-malleability of
NM because this property holds only against a synchronous MiM.
Therefore for the asynchronous case we need relay on the multi-
hiding of NM.

We demonstrate this claim arguing separately that a) a syn-
chronous ANMZK, except with negligible probability, does not com-
mit to the pair of signatures in any of the synchronous right ses-
sions; b) an asynchronous ANMZK does not commit to the pair
of signatures in any of the asynchronous right sessions. In more
details.

(a) Suppose by contradiction that the right session where the
synchronous ANMZK commits to the signatures with non-
negligible probability in the i-th right session (with i ∈
{1, . . . , poly(λ)}). This means that when PNMZK commits
to the signatures in the left session ANMZK starts to commit
to the signatures with non-negligible probability in at least
one synchronous right sessions. Based on this observation
we can construct a distinguisher Dnm and an adversary Anm

that breaks the synchronous non-malleability of NM. Let
Cnm be the challenger of NM and let (m0,m1) be the two
random challenge messages.

In the left session Anm acts as PNMZK does with ANMZK ac-
cording to both H2(1λ, z) and H1(1λ, z) with the following
differences: 1) Anm plays as proxy between Cnm and ANMZK

w.r.t. messages of NM; 2) two signatures σ1, σ2 are extracted

4.2. 4-Round Delayed-Input NMZK from OWFs 163

from the left session through rewinds; 3) during rewinds of
the left a random third round ñm3 is played to simulate the
receiver of NM in the right sessions; 4) Anm in the last round
of the left session sends s1 s.t. s1 = m0 ⊕ σ1||σ2.

In the right sessions ANMZK acts as VNMZK does according to
bothH2(1λ, z) andH1(1λ, z) except for the i-th right session.
In this ANMZK acts as VNMZK does except for the messages of
NM for which he acts as a proxy between Cnm and ANMZK.
Then Dnm, on input the message m̃ committed in the i-th
right session by Anm and his randomness, reconstructs the
view of ANMZK and recovers the messages s̃1 sent by ANMZK

in the last round of the i-th right session. If s̃1⊕ m̃ = σ1||σ2

then Dnm outputs a random bit, and 0 otherwise. Since by
contradiction ANMZK commits to the signatures with over-
whelming probability in at least one right session only when
PNMZK commits to the signatures, then Dnm can tell apart
which message has been committed by the MiM adversary
Anm. We notice that the reduction in the i-th right session
queries the receiver of NM involved in the reduction only
once. This because during the extraction of the signatures,
from the left session, all the messages ñm3 can be simulated
by the reduction due to the public-coin property of NM.

(b) Suppose by contradiction that the right session where the
asynchronous ANMZK commits with non-negligible probabil-
ity to the signatures is the i-th right session (with
i ∈ {1, . . . , poly(λ)}), then we construct an adversary AHiding

that break the multi-hiding of NM. Let Cnm be the challenger
of NM. The adversary AHiding that we construct interacts
with ANMZK in the left and the right sessions according to
both H2(1λ, z) and H1(1λ, z) for all messages except for the
messages of NM. For these messages AHiding acts as a proxy
between ANMZK and the challenger CHiding in the left session.
More formally, against the challenger of multi-hiding CHiding,
AHiding works as following.

1. Upon receiving the 1st round fromANMZK, AHiding sends

164 4. Delayed-Input Non-Malleable Zero Knowledge

two random messages m0,m1 as the challenge message
together with nm1 received from ANMZK to CHiding.

2. Upon receiving nm2 from CHiding, AHiding uses it to com-
pute and send the 2nd round of NMZK to ANMZK on
the left.

3. Upon receiving the 3rd round from ANMZK, ANMZK ex-
tracts two valid signatures σ1, σ2 for two different mes-
sages from the left session and sends nm3 received from
ANMZK to CHiding.

4. Upon receiving nm4 from CHiding, AHiding uses nm4 to
complete the left session against ANMZK sending s1 s.t.
s1 = m0 ⊕ σ1||σ2.

5. Consider the i-th right session. If AHiding extracts from
the commitment τ̃ = (ĩd, ñm1, ñm2, ñm3, ñm4) two sig-
natures σ̃1, σ̃2 for two different messages then he out-
puts 1, otherwise he outputs a random bit.

It easy to see that if CHiding commits to m1 then, AZK acts as
in H1(1λ, z), otherwise AZK acts as in H2(1λ, z).

Observe that when AHiding rewinds the right sessions it could
happen that also the left session is rewound. This does not
cause any problem, because if AHding has to play again the
second round of the left session he starts a new interaction
against the challenger of multi-hiding executing all steps de-
scribed above starting from step 1. We also observe that
all the sessions where the extraction on the right rewinds
CHiding are actually synchronized. Therefore, in that case we
can rely on the non-malleability of NM (following the part
(a) of the proof). Finally note that in H2(1λ, z) ASHVZK ex-
tracts two signatures from the left session with non-negligible
probability, for the same arguments provided in the proof of
Lemma 4.2.1.

Note that the Claim 4.2.4 still holds in H2(1λ, z). Therefore
for the same chain of implications described in H0(1λ, z) we can

4.2. 4-Round Delayed-Input NMZK from OWFs 165

conclude that also in H2(1λ, z) ANMZK in the i-th accepting right
session chooses a statement x̃i and computes the transcript of ΠOR

using a witness wi s.t. (x̃i, w̃i) ∈ RelL, for all i = 1, . . . , poly(λ),
e.g. the Claim 4.2.3 holds also H2(1λ, z).

The next hybrid that we reconsider is H3(1λ, z). We show
that Claim 4.2.3 holds in H3(1λ, z), otherwise we can break the
multi-SHVZK of LSnm. Roughly speaking, we demonstrate that
ANMZK in H2(1λ, z) does not commit to the signatures (expect
with negligible probability) in all the right sessions. Therefore the
only witnesses that is possible to extract (using the extractor of
ΠOR), in the i-th accepting right session, from the transcript of ΠOR

is a wi s.t. (x̃i, w̃i) ∈ RelL, for all i = 1, . . . , poly(λ). In H3(1λ, z)
we can check which witnesses is extracted from the transcript of
ΠOR in the right sessions, and made a reduction to multi-SHVZK
of LSnm if we do not extracted the witnesses for the statements
x̃1, . . . , x̃poly(λ). More details follow.

Suppose by contradiction that the Claim 4.2.3 does not hold,
then we can construct an adversary ASHVZK against the multi-
SHVZK of LSnm. Let CSHVZK be the challenger for the security
game of multi-SHVZK. ASHVZK works as following.

1. ASHVZK interacts with ANMZK in order to receive the first
round and sends ls1

nm to CSHVZK.

2. Upon receiving ls2
nm from CSHVZK uses it to compute and send

to ANMZK the second round according to both H3(1λ, z) and
H2(1λ, z).

3. Upon receiving the third round from ANMZK, ASHVZK ex-
tracts the signatures σ1, σ2 from the left session and com-
putes the fourth round nm4 of NM and sets s1 = σ1||σ2 ⊕
s0, xnm = (vk, id, nm1, nm2, nm3, nm4, s1),
wnm = (decnm, s0, σ1, msg1, σ2, msg2). He sends to the chal-
lenger of the SHVZK CSHVZK the statement xnm the witness
wnm and the round ls3

nm received from ANMZK.

4. Upon receiving ls4
nm from CSHVZK he uses it to compute the

last round of NMZK.

166 4. Delayed-Input Non-Malleable Zero Knowledge

5. Consider the i-th right session. ASHVZK using the extractor
of ΠOR (that exists for the adaptive-PoK property enjoyed
by ΠOR) extracts from the transcript of ΠOR a witness w̃OR,i

for the statement (x̃i OR x̃nm,i). Then if (x̃i, w̃OR,i) ∈ RelL
ASHVZK outputs a random bit, otherwise he outputs 1.

It easy to see that if CSHVZK sends ls2
nm, ls

4
nm that are computed

using the honest prover procedure of LSnm then, AZK acts as in
H3(1λ, z), otherwise he acts as in H2(1λ, z). Observe that when
ASHVZK rewinds the right session it could happen that also the
left session is rewound. This does not cause any problem because
ASHVZK can keep fixed ls3

nm during the rewinds in order to complete
an accepting transcript for ΠOR even tough different third rounds
of ΠOR are sent during the rewinds by ANMZK. More precisely
when multiple third rounds c1, c2, . . . , cpoly(λ) are received, ASHVZK

just computes ls3
L

′
= ls3

nm ⊕ ci for i = 1, . . . , poly(λ) and runs the
honest prover procedure PL on input statement x, the witness w
and the challenge ls3

L

′
thus obtaining ls4

L

′
. In this way ASHVZK can

complete the execution against ANMZK by sending in the fourth
round (ls4

L

′
, nm4, s1, ls

4
nm, x, xnm) without rewinding CSHVZK. We ob-

serve that a rewind made on the right could rewind the entire left
session. In this case the challenger needs to be invoked multi-
ple times in order to receive multiple transcripts w.r.t. ΠL. The
multi-SHVZK allow to do such interaction against CSHVZK. Fi-
nally note that in H3(1λ, z) ASHVZK extracts two signatures from
the left session with non-negligible probability, for the same argu-
ments provided in the proof of Lemma 4.2.1.

The next hybrid that we reconsider is H4(1λ, z). Also, in this
hybrid we show that Claim 4.2.3 still holds, otherwise we can break
the multi-SHVZK of LSL. The security proof is almost equal to the
security proof showed to demonstrate that the Claim 4.2.3 holds
in H4(1λ, z).

Note that H4(1λ, z) corresponds to the simulated experiment,
that is the experiment where SimZK interacts with the adver-
sary ANMZK emulating both a prover in the left session and poly-
nomially many verifiers in the right sessions. Furthermore the
Claim 4.2.3 holds in H4(1λ, z), which means that we are ensured

4.2. 4-Round Delayed-Input NMZK from OWFs 167

(with high probability) that in the simulated experiment ANMZK

uses the witnesses to complete the transcripts of LSL in all the right
sessions. Therefore the ANMZK behavior allows SimNMZK to ex-
tract the witnesses used by ANMZK (that is internally executed by
SimNMZK) using the extractor of ΠOR (that exists for the adaptive-
PoK property enjoyed by ΠOR).

This observations conclude the proof.

Theorem 29. If OWFs exists, then NMZK is a delayed-input syn-
chronous many-many NMZK AoK for NP .

Proof. The proof proceeds very similarly to the one showed for
Theorem 28. The main difference between these two proofs is that
we now have to consider also polynomially many synchronous left
sessions played in parallel. Therefore the only difference between
this proof and the one of Theorem 28 is that in the reductions
we need to rely on the security of a many-one non-malleable com-
mitment scheme and on the adaptive-input SHVZK that is closed
under parallel composition. Therefore, when we make a reduc-
tion on the adaptive-input SHVZK, we can simply use the parallel
version of the primitives. Regarding a many-one non-malleable
commitment, we notice that using the same arguments of the se-
curity proof of Proposition 1 provided in [LPV08], it is possible
to claim that a synchronous (one-one) non-malleable commitment
is also synchronous many-one non-malleable. Therefore no ad-
ditional assumptions are required in order to prove that NMZK
is also delayed-input synchronous many-many NMZK. Note also
that, the simulator needs to extract the trapdoor (the signatures
of two different messages) in all the left (synchronous) sessions
completed in the main thread. We can show that the extraction
succeeds except with negligible probability using the same argu-
ments used in the security proof of Theorem 28.

168 4. Delayed-Input Non-Malleable Zero Knowledge

4.3 Multi-Party Coin-Tossing Protocol

4.3.1 4-Round Secure Multi-Party Coin Toss-
ing: ΠMPCT

The high-level idea of our protocol ΠMPCT significantly differs from
the one of [GMPP16] (e.g., we use our 4-round delayed-input syn-
chronous many-many NMZK instead of 3-round 3-robust parallel
non-malleable commitment scheme). Similarly to [GMPP16] our
protocol simply consists of each party committing to a random
string r, which is opened in the last round along with a simulat-
able proof of correct opening given to all parties independently.
The output consists of the ⊕ of all opened strings. Let’s see in
more details how our ΠMPCT works. For our construction we use
the following tools.

1. A non-interactive perfectly binding computationally hiding
commitment scheme PBCOM = (Com,Dec).

2. A Σ-protocol BLL = (PL,VL) for the NP-language L =
{com : ∃ (dec,m) s.t. Dec(com, dec,m) = 1} with Special
HVZK simulator SimL. We uses two instantiations of BLL in
order to construct the protocol for the OR of two statements
ΠOR as described earlier. ΠOR is a proof system for the NP-
language Lcom = {(com0, com1) : ∃ (dec,m) s.t. Dec(com0, dec,m) =
1 OR Dec(com1, dec,m) = 1} 16. Informally, by running
ΠOR, one can prove the knowledge of the message commit-
ted in com0 or in com1.

3. A 4-round delayed-input synchronous many-many NMZK
NMZK = (PNMZK,VNMZK) for the following NP-language

LNMZK = {((com0, com1),m) : ∀i ∈ {0, 1} ∃ deci
s.t. Dec(comi, deci,m) = 1}.

Informally, by running NMZK, one can prove that 2 commit-
ments contain the same message m.

16We use ΠOR in a non-black box way, but for ease of exposition sometimes
we will refer to entire protocol ΠOR in order to invoke the proof of knowledge
property enjoyed by ΠOR.

4.3. Multi-Party Coin-Tossing Protocol 169

4.3.2 ΠMPCT: Informal Description and Secu-
rity Intuition

The high level description of our protocol between just two parties
(A1, A2) is given in Fig. 4.3. For a formal description of ΠMPCT

we refer the reader to Sec. 4.3.3. In Fig. 4.3 we consider an ex-
ecution of ΠMPCT that goes from A1 to A2 (the execution from
A2 to A1 is symmetric). We recall that the protocol is executed
simultaneously by both A1 and A2. The main idea is the follow-
ing. Each party commits to his input using two instantiations of
a non-interactive commitment. More precisely we have that A1

computes two non-interactive commitments com0 and com1 (along
with their decommitment information dec0 and dec1) of the mes-
sage r1. Each party also runs ΠOR for the NP-language Lcom, from
the first to the third round, in order to prove knowledge of the mes-
sage committed in com0 or in com1. In the last round each party
sends his own input (i.e. r1 for A1 and r2 for A2) and proves, us-
ing a delayed-input synchronous many-many non-malleable ZK for
the NP-language LNMZK, that messages committed using PBCOM
were actually equal to that input (i.e. r1 for A1 and r2 for A2).
That is, A1 sends r1 and proves that com0 and com1 are valid com-
mitments of the message r1.

Intuition about the security of ΠMPCT. Let A∗1 be the
corrupted party.

Informally the simulator Sim works as follows. Sim starts an
interaction against A∗1 using as input a random string y until the
third round of ΠMPCT is received by A∗1. More precisely, in the first
round he computes two commitments com0 and com1 (along with
their decommitment information dec0 and dec1) of y, and runs
POR using as a witness (dec1, y). After the 3rd round Sim extracts
the input r∗1 of the corrupted party A∗1 using the extractor EOR

of ΠOR (that exists from the PoK property of ΠOR) and sends r∗1
to the ideal world functionality. At this point Sim receives r from
the ideal-world functionality, and completes the execution of the
4th round by sending r2 = r ⊕ r∗1. We observe that Sim, in order
to send a string r2 that differs from y in the 4th round, has to

170 4. Delayed-Input Non-Malleable Zero Knowledge

a0, a1 nmzk1

nmzk2

nmzk3

nmzk4

c

c0, z0, c1, z1

A1(r1) A2(r2)

r2
Output r = r1 ⊕ r2

com0, com1

– com0 and com1 are two non-interactive commitments of the
message r1 computed using PBCOM.

– (a0, a1, c0, c1, z0, z1) is the transcript generated from an execu-
tion of the WIPoK ΠOR in which POR proves the knowledge
of either the message committed in com0 or in com1.

– (nmzk1, nmzk2, nmzk3, nmzk4) in the transcript generated from
an execution of the delayed-input synchronous many-many
NMZK NMZK in which PNMZK proves that both com0 and
com1 are valid commitments of the message r1.

Figure 4.3 ΠMPCT: Informal description of the execution from A1 to A2.
The execution from A2 to A1 is symmetric.

cheat in NMZK. This is done by simply running the simulator of
NMZK. To prove the security of our scheme we will go through a
sequence of hybrid experiments in order to show that the output
view of the adversary in the real world can be simulated in the
ideal world by Sim. The security proof strongly relies on the non-
malleable zero knowledge property of NMZK. Indeed the aim of
NMZK is to ensure that the adversary does not maul the messages
received from Sim. That is, the behavior of A∗1 allows to extract, in
every hybrid experiments that we will consider, the correct input
of A∗1. This holds even in case the commitments sent by Sim to
A∗1 are commitments of a random string y, and the value sent in
the 4th round is inconsistent with the value committed in the first
round.

4.3. Multi-Party Coin-Tossing Protocol 171

4.3.3 ΠMPCT: Formal Description

Let P = {P1, . . . , Pn} be the set of parties. Furthermore, denote
by (id1, . . . , idn)17 the unique identities of parties {P1, . . . , Pn},
respectively. Let us denote by FMPCT : (1λ)n → {0, 1}λ the func-
tion FMPCT(r1, . . . , rn) = r1 ⊕ · · · ⊕ rn. The protocol starts with
each party Pi choosing a random string ri for i = 1, . . . , n. It
consists of four rounds, i.e., all parties send messages in each
round and the messages of all executions are seen by every party.
Following [GMPP16] we describe the protocol between two par-
ties (A1, A2) observing that the real protocol actually consists of
n simultaneous executions of a two-party coin-tossing protocol
ΠMPCT = (A1, A2) between parties (Pi, Pj) where Pi acts as A1

with input ri and Pj acts as A2 with input rj (both are symmet-
ric). Let the input of A1 be r1, and the input of A2 be r2. The
set of messages enabling A1 to learn the output are denoted by
(m1,m2,m3,m4) where (m1,m3) are sent by A1 and (m2,m4) are
sent by A2. Likewise, the set of messages enabling A2 to learn the
output are denoted by (m̃1, m̃2, m̃3, m̃4) where (m̃1, m̃3) are sent
by A2 and (m̃2, m̃4) are sent by A1. Therefore, messages (ml, m̃l)
are simultaneously exchanged in the l-th round for l = 1, . . . , 4.

Protocol ΠMPCT. Common input: security parameter λ, in-
stances length: `NMZK, `com.
Round 1. We first describe how A1 constructs m1.

1. Compute (com0, dec0)← Com(r1) and (com1, dec1)← Com(r1).
2. Compute a0 ← PL(1λ, com0, (dec0, r1)).
3. Pick c1 ← {0, 1}λ and compute (a1, z1)← SimL(1λ, com1, c1).
4. Run VNMZK on input 1λ and `NMZK thus obtaining the 1st

round nmzk1 of NMZK.
5. Message m1 is defined to be (com0, com1, a0, a1, nmzk1).

Likewise, A2 performs the same action as A1 in order to construct
m̃1 = (˜com0, ˜com1, ã0, ã1, ˜nmzk1).

17As discuss in the Definition 1.3.1 the use of the identifiers can be avoid,
we use them, to uniformity of notation.

172 4. Delayed-Input Non-Malleable Zero Knowledge

Round 2. In this round A2 sends message m2 and A1 sends m̃2.
We first describe how A2 constructs m2.

1. Run PNMZK on input 1λ, id2, `NMZK and nmzk1 thus obtain-
ing the 2nd round nmzk2 of NMZK.

2. Pick c← {0, 1}λ.
3. Define message m2 = (c, nmzk2).

Likewise, A1 performs the same actions as A2 in the previous step
to construct the message m̃2 = (c̃, ˜nmzk2).
Round 3. In this round A1 sends message m3 and A2 sends m̃3.
A1 prepares m3 as follows.

1. Compute c0 = c⊕ c1 and z0 ← PL(c0).
2. Run VNMZK on input nmzk2 thus obtaining the 3rd round

nmzk3 of NMZK.
3. Define m3 = (nmzk3, c0, c1, z0, z1

)
.

Likewise, A2 performs the same actions as A1 in the previous step
to construct the message m̃3 = (˜nmzk3, c̃0, c̃1, z̃0, z̃1).
Round 4. In this round A2 sends message m4 and A1 sends m̃4.
A2 prepares m4 as follows.

1. Check that the following conditions are satisfied: a) c =
c0 ⊕ c1; b) the transcript a0, c0, z0 is accepting w.r.t. the
instance com0; c) the transcript a1, c1, z1 is accepting w.r.t.
the instance com1. If one of the check fails then output ⊥,
otherwise continue with the following steps.

2. Set xNMZK = (˜com0, ˜com1, r2) and wNMZK = (˜dec0, ˜dec1).
3. Run PNMZK on input nmzk3, the statement to be proved
xNMZK and the witness wNMZK s.t. (xNMZK, wNMZK) ∈ RelLNMZK

,
thus obtaining the 4th round nmzk4 of NMZK.

4. Define m4 = (r2, xNMZK, nmzk4).
Likewise, A1 performs the same actions as A2 in the previous step
to construct the message m̃4 = (r1, x̃NMZK, ˜nmzk4).
Output computation of ΠMPCT. Check, for each party, if
(nmzki1, nmzki2, nmzki3, nmzki4) is accepting for VNMZK with respect
to the instance xiNMZK (i = 1, . . . , n) and that all pairs of parties
used the same inputs (r1, . . . , rn). If so, output r = r1 ⊕ · · · ⊕ rn.

4.3. Multi-Party Coin-Tossing Protocol 173

Theorem 30. If one-to-one OWFs exist, then the multi-party pro-
tocol ΠMPCT securely computes the multi-party coin-tossing func-
tionality with black-box simulation.

Proof. Let P = {P1, . . . , Pn} be the set of parties participating in
the execution of ΠMPCT. Also let P ∗ ⊆ P be the set of parties
corrupted by the adversary A. The simulator Sim only generates
messages on behalf of parties P \ P ∗. In particular, we show that
for every adversary A there exists an “ideal” world adversary Sim
such that

REALΠMPCT,A(z)(1
λ) ≈ IDEALFMPCT,Sim(z)(1

λ).

We prove this claim by considering hybrid experimentsH1, . . . ,H7

as described below. Without loss of generality we will assume
that party P1 is the only honest party since our protocol is secure
against n− 1 corruptions. We denote the output of the parties in
the hybrid experiment Hi with {OUTHi,A(z)(1

λ)}.
- The 1st hybrid experimentH1 is identical to the real execution.

More specifically, H1 starts A with fresh randomness and
interacts with it as P1 would do using uniform randomness r1

as input. The output of H1 consists of A’s view. We observe
that, by construction, the output of A in the real execution
is identically distributed to H1. Moreover, all the messages
generated on the behalf of P ∗ are honestly computed with
overwhelming probability due to the soundness of NMZK.

- The 2nd hybrid experiment H2 is identical to H1 except that
this hybrid experiment also extracts the P ∗’s inputs r∗2, . . . , r

∗
n.

In order to obtain r∗2, . . . , r
∗
n, H2 runs the extractor EOR of

ΠOR on each execution of ΠOR made by a malicious party.
Note that the existence of EOR is guaranteed from the adaptive-
input PoK property of ΠOR. If the extractor fails, then H2

aborts. At this point H2 completes the 4th round and pre-
pares the output exactly as H1

18.

18Also in this case we are considering an adversary that completes the
execution of ΠMPCT against Sim with non-negligible probability. In the case
that the abort probability of the adversary is overwhelming then the security
proof is already over.

174 4. Delayed-Input Non-Malleable Zero Knowledge

{OUTH1,A(z)(1
λ)} and {OUTH2,A(z)(1

λ)} are statistically
close, and the extraction is successful in expected polyno-
mial time, both claims follow from the adaptive-input PoK
property of ΠOR. Observe that we are guaranteed that what
EOR outputs correspond to the input of the the malicious
party, from the fact that with non-negligible probability A
correctly computes all the steps of ΠMPCT. More precisely
the soundness of NMZK ensures that the extracted values
correspond to the r∗2, . . . , r

∗
n received in the last round.

- The 3rd hybrid experiment H3 differs from H2 in the way
the transcript for the delayed-input synchronous many-many
NMZK NMZK is computed. More precisely in this hybrid ex-
periment the simulator SimNMZK for NMZK is used. Follow-
ing [GMPP16, ACJ17] the extraction of NMZK’s trapdoor
and the extraction of P ∗’s input are performed during the
same steps. Observe that these two extraction procedures do
not interfere with each other, indeed they just rewind from
the third to the second round by sending a freshly generated
second round.

The first property of SimNMZK (see Definition 1.3.1) en-
sures that {OUTH2,A(z)(1

λ)} is computationally indistinguish-
able from {OUTH3,A(z)(1

λ)}. Moreover the second property

enjoyed by SimNMZK (simulation-extraction) ensures that in
H3 the witnesses can be extracted from A (one witness
for every execution of NMZK made by every malicious P ∗i),
therefore we are guaranteed that A correctly computes all
the steps of ΠMPCT. That is, the value r∗2, . . . , r

∗
n sent by the

malicious party in the last round are actually committed
in the second round sent by A. It is important to observe
that in this hybrid experiment the probability that A com-
pletes the third round is negligible close to the probability
of completing the third round in H2 (otherwise the output
of the two experiments would be distinguishable). Therefore
the probability that EOR works correctly in this experiment
is negligibly close to the probability that EOR works in H2.
This holds because, following the Definition 1.1.5, the prob-

4.3. Multi-Party Coin-Tossing Protocol 175

ability of EOR to given in output a valid witness for the in-
stance (com0, com1) is negligible close to the probability that
A completes an accepting third round.

- The 4th hybrid experiment H4 differs from H3 in the way com1

is computed. More precisely, instead of committing to r1 in
com1 a commitment of a random string y is made. We claim
that {OUTH3,A(z)(1

λ)} and {OUTH4,A(z)(1
λ)} are computa-

tionally indistinguishable due to the computationally hiding
of PBCOM. We claim also that in H4 A still behaves cor-
rectly, indeed we can use the simulator extractor SimNMZK in
order to check whether the theorem proved by every party
controlled by A using NMZK are still true. If it is not the
case, then we can make a reduction to the hiding of com1

19.
- The 5th hybrid experiment H5 follows the same steps of H4

except that the honest prover procedure (PL), instead of
the Special HVZK simulator (SimL), is used to compute
the prover’s messages a1, z1 of the transcript τ1 = (a1, c1, z1)
w.r.t. the instance com1.

Suppose now by contradiction that the output distribu-
tions of the hybrid experiments are distinguishable, then we
can show a malicious verifier V? that distinguishes between
a transcript τ1 = (a1, c1, z1) computed using SimL and one
computed using the honest prover procedure. In more de-
tails, let CSHVZK be the challenger of the Special HVZK. V?
picks c1 ← {0, 1}λ and sends c1 to CSHVZK. Upon receiving
a1, z1 from CSHVZK V? plays all the messages of ΠMPCT as in
H4 (H5) except for the messages of τ1 where he V? acts as a
proxy between CSHVZK and P ?. At the end of the execution
V? runs the distinguisher D that distinguishes the output
distribution of H4 from the output distribution of H5 and
outputs what D outputs. We observe that if CSHVZK sends a
simulated transcript then P ?

2 acts as in H4 otherwise he acts
as in H5.

19In order to extract the witnesses for the theorems proved by every party
controlled by A, SimNMZK needs to rewind also from the 4th to the 3rd round,
but this does not affect the reduction.

176 4. Delayed-Input Non-Malleable Zero Knowledge

There is a subtlety in the above reduction V? runs the
SimNMZK that rewinds from the third to the second round.
This means that V? has to be able to complete during the
rewinds the third round while receiving different challenges
c1, . . . , cpoly(λ) w.r.t. ΠOR. Since we are splitting the chal-
lenge c, V? can just keep fixed the value c1 reusing the same
z1 (sent by CSHVZK) and computing an answer to a0 using the
knowledge of the decommitment information of com0. To ar-
gue that A correctly computes all the steps of ΠMPCT, also
in this hybrid experiment we can use the simulator-extractor
SimNMZK to check whether the theorem proved by A is still
true. If it is not the case we can construct a reduction to
the Special HVZK property of BLL. Note that the rewinds
of SimNMZK from the fourth to the third round do not affect
the reduction. Moreover, the fact that SimNMZK extracts the
witnesses for the theorems proved by every party controlled
by A still ensures that A behaves honestly.

- H6 proceeds exactly as H5 except that the Special HVZK sim-
ulator (SimL), instead of honest procedure (PL), is used
to compute the prover’s messages a0, z0 of the transcript
τ0 = (a0, c0, z0) w.r.t. the instance com0.

We claim that {OUTH5,A(z)(1
λ)} and {OUTH6,A(z)(1

λ)}
are computationally indistinguishable due the same argu-
ments used to prove that {OUTH4,A(z)(1

λ)} ≈ {OUTH5,A(z)(1
λ)}.

Furthermore we claim that A still behaves honestly for the
same arguments given in H5.

- The 7th hybrid experiment H7 differs from H6 in the way com0

is computed. More precisely, instead of committing to r1 in
com0, a commitment of a random string y is computed. For
the same arguments used to prove that {OUTH3,A(z)(1

λ)} ≈
{OUTH4,A(z)(1

λ)}, we claim that {OUTH6,A(z)(1
λ)} ≈ {OUTH7,A(z)(1

λ)}
and that A still behaves honestly. We observe that r1 ap-
pears only in the 4th round. More precisely there is no rela-
tion between r1 and the values committed in H1. Therefore
the security proof is almost over. Indeed our simulator Sim
proceeds as H7 until the 3rd round, then invokes the func-

4.4. Special WIPoK 177

tionality thus obtaining a value r and completes the 4th
round of H7 setting r1 = r ⊕ · · · ⊕ r∗n.

4.4 Special WIPoK

4.4.1 Improving the Soundness of LS

In this section we show that the LS protocol does not enjoys special
soundness when the statement to be proved is adaptively chosen by
the prover in the last round. That is, if two accepting transcripts
(that share the first round) are provided w.r.t. to two different
instances x0 and x1, then only the witness w for xb is extracted
(with b ∈ {0, 1}). More precisely, given the accepting transcript
(ls1, ls2

0, ls
3
0) for the statement x0 and (ls1, ls2

1, ls
3
1) for the statement

x1 (with ls2
0 6= ls2

1) then it could be that only wb can be extracted.
We provide a construction that overcomes this issue, allowing the
extraction of the witnesses for both x0 and x1 thus obtaining a
Σ-protocol where the special soundness holds even when the two
accepting transcripts refer to different theorems adaptively chosen
in the last round. Following [CPS+16b] we refer to this property
as adaptive-input special soundness.

Before showing why LS is not already adaptive-input special
sound and how our construction works, we briefly describe the LS
protocol with one-bit challenge following [OV12].

Let P be prover and V the verifier. The common input of P
and V is κ, that represents the number of vertexes of the instance
G to be proved. The graph G is represented by a κ× κ adjacency
matrix MG where MG[i][j] = 1 if there exists an edge between
vertexes i and j in G. A non-edge position i,j is a pair of vertexes
that are not connected in G and for which MG[i][j] = 0.

- P picks a random κ-vertex cycle graph C and commits bit-by-
bit to the corresponding adjacency matrix using a statisti-
cally binding commitment scheme.

- V responds with a randomly chosen bit b.

178 4. Delayed-Input Non-Malleable Zero Knowledge

- P on input the graph G and the Hamiltonian cycle w executes
the following steps. If b = 0, P opens all the commitments,
showing that the matrix committed in the first round is ac-
tually an κ-vertex cycle. If b = 1, P sends a permutation
π mapping the vertex of C in G. Then it opens the com-
mitment of the adjacency matrix of C corresponding to the
non-edges of the graph G.

- V accepts (outputs 1) if what he receives in the third round
is consistent with the bit b that he was sent in the second
round.

Getting the answer for both b = 0 and b = 1 (w.r.t. to the
same graph G) allows the extraction of the cycle for G. The reason
is the following. For b = 0 one gets the random cycle C. Then
for b = 1 one gets the permutation mapping the random cycle in
the actual cycle that is given to P before the last message of the
protocol.

We now observe that a malicious prover P? could gives the
answer for b = 0 w.r.t. to the graph G0 and the answer for b = 1
w.r.t. the graph G1 (due to the delayed-input nature of LS). This
means that even knowing two accepting transcripts that share the
first round, the permutation that maps the vertexes of C in G0 it
is not known. Therefore an efficient algorithm can only compute
the cycle w1 of G1 and gets no information about the Hamilto-
nian cycle of G0. Summing up, given the accepting transcripts
(ls1, 0, ls3

0) for the graph G0 and (ls1, 1, ls3
1) for the graph G1, only

the Hamiltonian cycle for G1 can be computed. That is, only the
cycle for the graph proved by P? to be Hamiltonian using as a
second round the challenge 1 can be efficiently computed. Start-
ing from this observation, in order to allow an efficient algorithm
to compute cycles for both G0 and G1, we construct an improved
version of LS that we denoted with LSimp = (P imp,V imp). LSimp

uses LS in a black-box way. For ease of exposition we use the fol-
lowing notation. ls1 ← P(1λ, κ; ρ) denotes that P is executed on
input the security parameter (in unary) 1λ, κ and the randomness
ρ and gives in output the first round of LS ls1. ls3 ← P(G,w, ls2, ρ)
denotes that P has computed the third round of LS by running on

4.4. Special WIPoK 179

input the graph G, the cycle w for the graph G, the bit ls2 and the
randomness used to compute ls1. V(ls1, ls2, ls3, G) denotes the out-
put of V on input ls1, ls2, ls3 and the graph G. Let κ be the number
of vertexes of the graph G to be proved, our LSimp = (P imp,V imp)
works as follows.

1. P imp on input the security parameter λ, κ and the random-
ness ρ0||ρ1 computes ls1

0 ← P(1λ, κ; ρ0), ls1
1 ← P(1λ, κ; ρ1)

and sends (ls0
1, ls

1
1) to V imp.

2. V imp picks and sends a random bit b.
3. P imp, upon receiving b, on input the graph G and the Hamil-

tonian cycle w for G computes ls3
0 ← P(G,w, b, ρ0), ls3

1 ←
P(G,w, 1− b, ρ1) and sends (ls3

0, ls
3
1).

4. V imp accepts iff V(G, ls1
0, b, ls

3
0) = 1 and V(G, ls1

1, 1−b, ls3
1) = 1.

Theorem 31. Assuming one-to-one OWFs, LSimp is a Σ-protocol
with adaptive-input Special HVZK simulator and adaptive-input
special soundness. Moreover LSimp is Zero Knowledge.

Proof. (Delayed-input) Completeness. The (delayed-input)
completeness of LSimp comes from the (delayed-input) complete-
ness of LS.
Adaptive-input special soundness. Let us consider two ac-
cepting transcripts that share the first round for LSimp:

(
(ls0, ls1), 0, (ls3

0, ls
3
1)
)

for the statement G and
(
(ls0, ls1), 1, (ls3

1

′
, ls3

1

′
)
)

for the statement

G′. We can isolate the sub-transcripts (ls0, 0, ls
3
0) and (ls0, 1, ls

3
0

′
)

and observe that V(G, ls1
0, 0, ls

3
0) = 1 = V(G′ls1

0, 1, ls
3
0

′
). From what

we discuss before about LS we know that in this case the wit-
ness w for G′ can be extracted. Also let us now consider the two
sub-transcripts (ls1, 1, ls

3
1) and (ls1, 0, ls

3
1

′
). Also in this case, by

observing that V(G, ls1, 1, ls
3
1) = 1 = V(G′, ls1, 0, ls

3
1

′
), the cycle for

G can be efficiently computed.
Adaptive-input Special HVZK. Following [MV16], we con-
sider an adaptive-input Special HVZK simulator S associated to
the LS protocol. This is equal to a Special HVZK simulator with
the additional property that the first round can be simulated with-
out knowing the instance to be proved (see Definition 1.1.12). In
more details S works in two phases. In the first phase just 1λ, the

180 4. Delayed-Input Non-Malleable Zero Knowledge

challenge ls2, the number of vertexes κ is used to output the first
round ls1. We denote this phase using: ls1 ← S(1λ, ls2, κ). In the
second phase S takes as input the instance and output the third
round ls3. We denote this phase using ls3 ← S(G). The adaptive-
input Special HVZK simulator S imp for LSimp just internally runs
S two times, once using b and once using 1− b as a challenge. In
more details the two phase of S imp are the following.

1. S imp, on input 1λ, the challenge b, κ and the randomness
ρb||ρ1−b, computes ls1

b ← S(1λ, b, κ; ρb), ls1
1−b ← S(1λ, 1 −

b, κ; ρ1−b) and outputs (ls1
b , ls

1
1−b).

2. S imp, on input the graph G, ρ0 and ρ1 computes ls3
b ←

S(G, ρb), ls3
1−b ← S(G, ρ1−b) and outputs (ls3

b , ls
3
1−b).

The transcript
(
(ls1

b , ls
1
1−b), b, (ls3

b , ls
3
1−b)

)
output by S imp is is

computationally indistinguishable from a transcript computed by
P imp (that uses as input an Hamiltonian cycle w of G) due to the
security of the underlying adaptive-input Special HVZK simulator
S.
Zero-Knowledge. The ZK simulator of LSimp just needs to guess
the bit b chosen by the adversarial verifier and runs the adaptive-
input Special HVZK simulator.

It is easy to see that (as for LS) if we consider λ parallel
executions of LSimp then we obtain a protocol LSλ that still en-
joys adaptive-input completeness, adaptive-input special sound-
ness, adaptive-input Special HVZK. Moreover LSλ is WI. Formally,
we can claim the following theorems.

Theorem 32. Assuming one-to-one OWFs, LSλ is a Σ-protocol
with adaptive-input Special HVZK, adaptive-input special sound-
ness and WI.

Proof. Completeness, adaptive-input special soundness and adaptive-
input Special HVZK come immediately from the adaptive-input
special soundness and adaptive-input Special HVZK of LSimp. The
WI comes from the observation that LSimp is WI (due to the zero
knowledge property), and that WI is preserved under parallel (and
concurrent) composition.

4.4. Special WIPoK 181

Theorem 33. Assuming OWFs, LSλ is a 4-round public-coin inter-
active protocol with adaptive-input Special HVZK, adaptive-input
special soundness and WI.

Proof. The proof of this theorem just relies on the observation that
in order to instantiate a statistically binding commitment scheme
using OWFs an additional round is required to compute the first
round of Naor’s commitment scheme [Nao91].

Observe that since Hamiltonicity is an NP-complete language,
the above constructions work for any NP language through NP
reductions. For simplicity in the rest of the work we will omit the
NP reduction therefore assuming that the above scheme works
directly on a given NP-language L.

Combining (adaptive-input) Special HVZK PoK Through [CDS94]
In our work we use the well known technique for composing two
Σ-protocols to compute the OR of statements [CDS94, GMY06],
described in Section 2.2. In our work we instantiate ΠOR using as
Π0 and Π1 the Blum’s protocol [Blu86a] for the NP-complete lan-
guage for graph Hamiltonicity (that also is a Σ-Protocol). There-
fore Th. 4 (and Th. 2) can be applied.

We also consider an instantiation of ΠOR using as Π = (P ,V)
our LSλ. If we instantiate ΠOR using LSλ and the corresponding
adaptive-input Special HVZK simulator LSλ, then ΠOR is adaptive-
input special soundness. More formally we can claim the following
theorem.

Theorem 34. If ΠOR is instantiated using LSλ (and the correspond-
ing adaptive-input Special HVZK simulator Sλ), then ΠOR enjoys
the delayed-input completeness and adaptive-input special sound
for the NP-relation RelLOR

.

Proof. The delayed-input completeness follows from the delayed-
input completeness of LSλ.

Adaptive-input special soundness. Let us consider two
accepting transcripts that share the first round for ΠOR:(
(π0, π1), π2, (π2

0, π
3
0, π

2
1, π

3
1)
)

for the statement (x0, x1) and

(
(π0, π1), π2′, (π2

0
′
, π3

0
′
, π2

1
′
π3

1
′
)
)

for the statement (x′0, x
′
1), where

π2 6= π2′. We observe that since π2 6= π2′, π2 = π2
0 ⊕ π2

1 and
π2′ = π2

0
′ ⊕ π2

1
′

it holds that either π2
0 6= π2

0
′

or π2
1 6= π2

1
′
. Sup-

pose w.l.o.g. that π2
0 6= π2

0
′
. Then we are guaranteed from the

adaptive-input special soundness of LSλ that using the transcripts
(π0, π

2
0, π

3
0) and (π0, π

2
0
′
, π3

0
′
) the values (wa, wb) s.t. (x0, wa) ∈

RelL0 and (x′0, wb) ∈ RelL0 can be extracted in polynomial-time.
The same arguments can be used when π2

1 6= π2
1
′
.

Using a result of [CPS+16b] we can claim the following theo-
rem.

Theorem 35. ΠOR instantiated using LSλ is adaptive-input PoK
for the NP-relation RelLOR

.

It would be easy to prove that ΠOR is also WI, however in this
work we are not going to rely directly on the WI property of ΠOR,
in order to deal with the rewinding issue that we have described
earlier. More precisely, in the two main contributions of this work
we will use ΠOR (the one instantiated from Blum’s protocol and
the one instantiated using LSλ) in a non-black box way in order
to prove the security of our protocols. It will be crucial for our
reduction to rely on the (adaptive-input) Special HVZK of Π0

and Π1 instead of using directly the WI property of ΠOR. The
intuitively reason is that it is often easier in a reduction to rely
on the security of a non-interactive primitive (like Special HVZK
is) instead of an interactive primitive (like WI). This is the reason
why we use the OR composition of [CDS94, GMY06] combined
with the Blum’s protocol (or the LS protocol) instead of relying
on the (adaptive-input) WI provided by a Blum’s protocol (LS
protocol).

In the rest of the work, in order to rely on OWFs only, we
sometimes use a four round version of Blum’s and LS protocols.
In this case there is an additional initial round that goes from the
verifier to the prover and corresponds to the first round of Naor’s
commitment scheme [Nao91].

Conclusion

In this thesis we developed new cryptographic building blocks that
can be used to improve the overall round complexity of the pro-
tocols they are used in. We have considered both constructions
of theoretical interest and practical constructions. We have also
shown round-efficient larger protocols that make use of our build-
ing blocks and improve the state of the art.

Some interesting and important open questions related to our
work are still open.

Our OR-composition technique relaxes the requirement of the
CDS-OR technique consisting in specifying all instances already
at the beginning of the protocol. However still our result does
not match the power of LS where no theorem is required for the
protocol to start. An immediate open question is whether one
can improve our OR transform so that none of the two theorems
is required when the protocol starts. A first step to answer this
question is made in [CPS+16b] that realizes an OR-composition
where no theorem is needed for the protocol to start, however this
construction relays on DDH assumption. It is interesting to obtain
the same result without requiring computational assumptions.

Regarding non-malleable commitment schemes various natu-
ral and fascinating questions remain open after our work. Ex-
amples of open questions about concurrent NM commitments are
the following: 1) the existence of 3-round schemes based on stan-
dard generic hardness assumptions (e.g., trapdoor permutations)
w.r.t. polynomial-time adversaries only; 2) the existence of 3-
round schemes with black-box use of primitives.

Other interesting questions for future work are the existence of

184 4. Delayed-Input Non-Malleable Zero Knowledge

a 4-round multi-party computation protocol for any functionality
under standard generic hardness assumptions (e.g., trapdoor per-
mutations) w.r.t. polynomial-time adversaries only, rather than
specific number-theoretic assumptions.

4.4. Special WIPoK 185

Acknowledgments

I would like to express my deepest gratitude to my advisor Ivan
Visconti who didn’t ask me to pay for his advices. If he had asked
that, I believe a whole life of work wouldn’t be enough to repay
my debt. His valuable lessons and his constant support allowed
me to grow up during these 3 years.

I have a debt of gratitude to Carlo Blundo: he planted the first
seed of this PhD during my master thesis. I am very grateful for
his support.

I am thankful to Giuseppe Persiano for his valuable advices.
I would like to thank Rafail Ostrovsky who gave me the op-

portunity to spend more then a year at UCLA. It was a great
experience that taught me a lot, not only from a research point of
view.

I really enjoyed the three months that I spent with the people of
the crypto group of Aarhus University, thanks to Claudio Orlandi
and Ivan Daamgard for giving me this opportunity.

I would like to thank Yuval Ishai and Sanjam Garg for review-
ing my PhD thesis.

Thanks to my co-author, colleague and very good friend Michele
Ciampi, I am happy to have shared these 3 years with him. A
big ”thank you” also goes to all other my friends, especially to
Alessandro who is always there for me.

Last but not least, I would like to thank all my family. In
particular, my parents Maria Rosaria and Francesco, my results
are the sum of their life lessons and their love. Thanks to Anna
for being an amazing sister. Finally thanks to you, the one who
allows my smile to shine.

186 4. Delayed-Input Non-Malleable Zero Knowledge

Bibliography

[ACJ17] Prabhanjan Ananth, Arka Rai Choudhuri, and Abhishek
Jain. A new approach to round-optimal secure multiparty
computation. In Jonathan Katz and Hovav Shacham, edi-
tors, Advances in Cryptology - CRYPTO 2017 - 37th An-
nual International Cryptology Conference, Santa Barbara,
CA, USA, August 20-24, 2017, Proceedings, Part I, vol-
ume 10401 of Lecture Notes in Computer Science, pages
468–499. Springer, 2017.

[AOS13] Masayuki Abe, Tatsuaki Okamoto, and Koutarou Suzuki.
Message recovery signature schemes from sigma-protocols.
IEICE Transactions, 96-A(1):92–100, 2013.

[Bar02] Boaz Barak. Constant-round coin-tossing with a man in
the middle or realizing the shared random string model.
In 43rd Symposium on Foundations of Computer Science
(FOCS 2002), 16-19 November 2002, Vancouver, BC,
Canada, Proceedings, pages 345–355, 2002.

[BFGM01] Mihir Bellare, Marc Fischlin, Shafi Goldwasser, and Sil-
vio Micali. Identification protocols secure against reset
attacks. In Advances in Cryptology - EUROCRYPT 2001,
International Conference on the Theory and Application
of Cryptographic Techniques, Innsbruck, Austria, May 6-
10, 2001, Proceeding, pages 495–511, 2001.

[BGJ+17] Saikrishna Badrinarayanan, Vipul Goyal, Abhishek Jain,
Yael Tauman Kalai, Dakshita Khurana, and Amit Sahai.
Promise zero knowledge and its applications to round op-

188 BIBLIOGRAPHY

timal mpc. Cryptology ePrint Archive, Report 2017/1088,
2017. https://eprint.iacr.org/2017/1088.

[BGR+15] Hai Brenner, Vipul Goyal, Silas Richelson, Alon Rosen,
and Margarita Vald. Fast non-malleable commitments.
In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, Denver, CO,
USA, October 12-6, 2015, pages 1048–1057, 2015.

[BHP17] Zvika Brakerski, Shai Halevi, and Antigoni Polychroni-
adou. Four round secure computation without setup. In
Yael Kalai and Leonid Reyzin, editors, Theory of Cryptog-
raphy - 15th International Conference, TCC 2017, Bal-
timore, MD, USA, November 12-15, 2017, Proceedings,
Part I, volume 10677 of Lecture Notes in Computer Sci-
ence, pages 645–677. Springer, 2017.

[BJY97] Mihir Bellare, Markus Jakobsson, and Moti Yung. Round-
optimal zero-knowledge arguments based on any one-way
function. In Advances in Cryptology - EUROCRYPT ’97,
International Conference on the Theory and Application
of Cryptographic Techniques, Konstanz, Germany, May
11-15, 1997, Proceeding, volume 1233 of Lecture Notes in
Computer Science, pages 280–305. Springer, 1997.

[BKZZ16] Foteini Baldimtsi, Aggelos Kiayias, Thomas Zacharias,
and Bingsheng Zhang. Indistinguishable proofs of work
or knowledge. In Jung Hee Cheon and Tsuyoshi Tak-
agi, editors, Advances in Cryptology - ASIACRYPT 2016
- 22nd International Conference on the Theory and Ap-
plication of Cryptology and Information Security, Hanoi,
Vietnam, December 4-8, 2016, Proceedings, Part II, vol-
ume 10032 of Lecture Notes in Computer Science, pages
902–933, 2016.

[BL17] Fabrice Benhamouda and Huijia Lin. k-round mpc from
k-round ot via garbled interactive circuits. Cryptol-
ogy ePrint Archive, Report 2017/1125, 2017. https:

//eprint.iacr.org/2017/1125.

https://eprint.iacr.org/2017/1088
https://eprint.iacr.org/2017/1125
https://eprint.iacr.org/2017/1125

BIBLIOGRAPHY 189

[Blu86a] Manuel Blum. How to prove a theorem so no one else can
claim it. In In Proceedings of the International Congress
of Mathematicians, 1986.

[Blu86b] Manuel Blum. How to prove a theorem so no one else can
claim it. In In Proceedings of the International Congress
of Mathematicians, 1986.

[BP15] Nir Bitansky and Omer Paneth. Zaps and non-interactive
witness indistinguishability from indistinguishability ob-
fuscation. In Yevgeniy Dodis and Jesper Buus Nielsen,
editors, Theory of Cryptography - 12th Theory of Cryp-
tography Conference, TCC 2015, Warsaw, Poland, March
23-25, 2015, Proceedings, Part II, volume 9015 of Lec-
ture Notes in Computer Science, pages 401–427. Springer,
2015.

[BPS06] Boaz Barak, Manoj Prabhakaran, and Amit Sahai. Con-
current non-malleable zero knowledge. In 47th Annual
IEEE Symposium on Foundations of Computer Science
(FOCS 2006), 21-24 October 2006, Berkeley, California,
USA, Proceedings, pages 345–354, 2006.

[BPSV08] Carlo Blundo, Giuseppe Persiano, Ahmad-Reza Sadeghi,
and Ivan Visconti. Improved security notions and pro-
tocols for non-transferable identification. In Computer
Security - ESORICS 2008, 13th European Symposium on
Research in Computer Security, Málaga, Spain, October
6-8, 2008. Proceedings, volume 5283 of Lecture Notes in
Computer Science, pages 364–378. Springer, 2008.

[BR93] Mihir Bellare and Phillip Rogaway. Entity authentica-
tion and key distribution. In Douglas R. Stinson, editor,
Advances in Cryptology - CRYPTO ’93, 13th Annual In-
ternational Cryptology Conference, Santa Barbara, Cal-
ifornia, USA, August 22-26, 1993, Proceedings, volume
773 of Lecture Notes in Computer Science, pages 232–249.
Springer, 1993.

[CD98] Ronald Cramer and Ivan Damg̊ard. Zero-knowledge
proofs for finite field arithmetic; or: Can zero-knowledge

190 BIBLIOGRAPHY

be for free? In Hugo Krawczyk, editor, Advances in Cryp-
tology - CRYPTO ’98, 18th Annual International Cryptol-
ogy Conference, Santa Barbara, California, USA, August
23-27, 1998, Proceedings, volume 1462 of Lecture Notes
in Computer Science, pages 424–441. Springer, 1998.

[CD08] Ran Canetti and Ronny Ramzi Dakdouk. Extractable
perfectly one-way functions. In Automata, Languages and
Programming, 35th International Colloquium, ICALP
2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings,
Part II - Track B: Logic, Semantics, and Theory of Pro-
gramming & Track C: Security and Cryptography Foun-
dations, pages 449–460, 2008.

[CDS94] Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmak-
ers. Proofs of partial knowledge and simplified design of
witness hiding protocols. In YvoG. Desmedt, editor, Ad-
vances in Cryptology — CRYPTO ’94, volume 839 of Lec-
ture Notes in Computer Science, pages 174–187. Springer
Berlin Heidelberg, 1994.

[CGGM00] Ran Canetti, Oded Goldreich, Shafi Goldwasser, and
Silvio Micali. Resettable zero-knowledge (extended ab-
stract). In F. Frances Yao and Eugene M. Luks, editors,
Proceedings of the Thirty-Second Annual ACM Sympo-
sium on Theory of Computing, May 21-23, 2000, Port-
land, OR, USA, pages 235–244. ACM, 2000.

[CKPR01] Ran Canetti, Joe Kilian, Erez Petrank, and Alon Rosen.
Black-box concurrent zero-knowledge requires omega˜(log
n) rounds. In Proceedings on 33rd Annual ACM Sympo-
sium on Theory of Computing, July 6-8, 2001, Heraklion,
Crete, Greece, pages 570–579, 2001.

[COP+14] Kai-Min Chung, Rafail Ostrovsky, Rafael Pass, Muthura-
makrishnan Venkitasubramaniam, and Ivan Visconti. 4-
round resettably-sound zero knowledge. In Yehuda Lin-
dell, editor, Theory of Cryptography - 11th Theory of
Cryptography Conference, TCC 2014, San Diego, CA,
USA, February 24-26, 2014. Proceedings, volume 8349

BIBLIOGRAPHY 191

of Lecture Notes in Computer Science, pages 192–216.
Springer, 2014.

[COSV12] Chongwon Cho, Rafail Ostrovsky, Alessandra Scafuro,
and Ivan Visconti. Simultaneously resettable arguments
of knowledge. In Theory of Cryptography - 9th Theory of
Cryptography Conference, TCC 2012, Taormina, Sicily,
Italy, March 19-21, 2012. Proceedings, pages 530–547,
2012.

[COSV16] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi,
and Ivan Visconti. Concurrent non-malleable commit-
ments (and more) in 3 rounds. In Matthew Robshaw
and Jonathan Katz, editors, Advances in Cryptology -
CRYPTO 2016 - 36th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 14-18,
2016, Proceedings, Part III, volume 9816 of Lecture Notes
in Computer Science, pages 270–299. Springer, 2016. Full
version https://eprint.iacr.org/2016/566.

[COSV17a] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and
Ivan Visconti. Delayed-input non-malleable zero knowl-
edge and multi-party coin tossing in four rounds. In Yael
Kalai and Leonid Reyzin, editors, Theory of Cryptog-
raphy - 15th International Conference, TCC 2017, Bal-
timore, MD, USA, November 12-15, 2017, Proceedings,
Part I, volume 10677 of Lecture Notes in Computer Sci-
ence, pages 711–742. Springer, 2017. Full version https:

//eprint.iacr.org/2017/931.

[COSV17b] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and
Ivan Visconti. Four-round concurrent non-malleable com-
mitments from one-way functions. In Jonathan Katz
and Hovav Shacham, editors, Advances in Cryptology
- CRYPTO 2017 - 37th Annual International Cryptol-
ogy Conference, Santa Barbara, CA, USA, August 20-24,
2017, Proceedings, Part II, volume 10402 of Lecture Notes
in Computer Science, pages 127–157. Springer, 2017. Full
version https://eprint.iacr.org/2016/621.

https://eprint.iacr.org/2016/566
https://eprint.iacr.org/2017/931
https://eprint.iacr.org/2017/931
https://eprint.iacr.org/2016/621

192 BIBLIOGRAPHY

[COSV17c] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and
Ivan Visconti. Round-optimal secure two-party compu-
tation from trapdoor permutations. In Theory of Cryp-
tography, Fifteenth Theory of Cryptography Conference,
TCC 2017, Baltimore, USA, November 12-15, 2017, Pro-
ceedings, Lecture Notes in Computer Science. Springer,
2017.

[CPS+16a] Michele Ciampi, Giuseppe Persiano, Alessandra Sca-
furo, Luisa Siniscalchi, and Ivan Visconti. Improved or-
composition of sigma-protocols. In Eyal Kushilevitz and
Tal Malkin, editors, Theory of Cryptography - 13th In-
ternational Conference, TCC 2016-A, Tel Aviv, Israel,
January 10-13, 2016, Proceedings, Part II, volume 9563
of Lecture Notes in Computer Science, pages 112–141.
Springer, 2016. Full version http://eprint.iacr.org/

2015/810.

[CPS+16b] Michele Ciampi, Giuseppe Persiano, Alessandra Scafuro,
Luisa Siniscalchi, and Ivan Visconti. Online/offline OR
composition of sigma protocols. In Marc Fischlin and
Jean-Sébastien Coron, editors, Advances in Cryptology
- EUROCRYPT 2016 - 35th Annual International Con-
ference on the Theory and Applications of Cryptographic
Techniques, Vienna, Austria, May 8-12, 2016, Proceed-
ings, Part II, volume 9666 of Lecture Notes in Com-
puter Science, pages 63–92. Springer, 2016. Full version
https://eprint.iacr.org/2016/175.

[Cra96] Ronald Cramer. Modular design of secure yet practical
cryptographic protocols. PhD thesis, University of Ams-
terdam, 1996.

[CVZ11] Zhenfu Cao, Ivan Visconti, and Zongyang Zhang. On
constant-round concurrent non-malleable proof systems.
Inf. Process. Lett., 111(18):883–890, 2011.

[Dam10] Ivan Damg̊ard. On Σ-protocol. http://www.cs.au.dk/

~ivan/Sigma.pdf, 2010.

http://eprint.iacr.org/2015/810
http://eprint.iacr.org/2015/810
https://eprint.iacr.org/2016/175
http://www.cs.au.dk/~ivan/Sigma.pdf
http://www.cs.au.dk/~ivan/Sigma.pdf

BIBLIOGRAPHY 193

[DDN91] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-
malleable cryptography (extended abstract). In Proceed-
ings of the 23rd Annual ACM Symposium on Theory
of Computing, May 5-8, 1991, New Orleans, Louisiana,
USA, pages 542–552, 1991.

[DDO+01] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostro-
vsky, Giuseppe Persiano, and Amit Sahai. Robust non-
interactive zero knowledge. In Joe Kilian, editor, Ad-
vances in Cryptology - CRYPTO 2001, 21st Annual In-
ternational Cryptology Conference, Santa Barbara, Cal-
ifornia, USA, August 19-23, 2001, Proceedings, volume
2139 of Lecture Notes in Computer Science, pages 566–
598. Springer, 2001.

[DG03] Ivan Damg̊ard and Jens Groth. Non-interactive and
reusable non-malleable commitment schemes. In Proceed-
ings of the 35th Annual ACM Symposium on Theory of
Computing, June 9-11, 2003, San Diego, CA, USA, pages
426–437, 2003.

[DN00] Cynthia Dwork and Moni Naor. Zaps and their appli-
cations. In 41st Annual Symposium on Foundations of
Computer Science, FOCS 2000, 12-14 November 2000,
Redondo Beach, California, USA, pages 283–293, 2000.

[DPV04] Giovanni Di Crescenzo, Giuseppe Persiano, and Ivan Vis-
conti. Improved setup assumptions for 3-round reset-
table zero knowledge. In Advances in Cryptology - ASI-
ACRYPT 2004, 10th International Conference on the
Theory and Application of Cryptology and Information
Security, Jeju Island, Korea, December 5-9, 2004, Pro-
ceedings, volume 3329 of Lecture Notes in Computer Sci-
ence, pages 530–544. Springer, 2004.

[FFS87] Uriel Feige, Amos Fiat, and Adi Shamir. Zero knowledge
proofs of identity. In Proceedings of the 19th Annual ACM
Symposium on Theory of Computing, 1987, New York,
New York, USA, pages 210–217, 1987.

194 BIBLIOGRAPHY

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple
non-interactive zero knowledge proofs based on a single
random string (extended abstract). In 31st Annual Sym-
posium on Foundations of Computer Science, St. Louis,
Missouri, USA, October 22-24, 1990, Volume I, pages
308–317. IEEE Computer Society, 1990.

[GK15] Jens Groth and Markulf Kohlweiss. One-out-of-many
proofs: Or how to leak a secret and spend a coin. In
Elisabeth Oswald and Marc Fischlin, editors, Advances
in Cryptology - EUROCRYPT 2015 - 34th Annual Inter-
national Conference on the Theory and Applications of
Cryptographic Techniques, Sofia, Bulgaria, April 26-30,
2015, Proceedings, Part II, volume 9057 of Lecture Notes
in Computer Science, pages 253–280. Springer, 2015.

[GKP+17] Vipul Goyal, Ashutosh Kumar, Sunoo Park, Silas Richel-
son, and Akshayaram Srinivasan. New constructions
of non-malleable commitments and applications. Private
communication, 2017.

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predi-
cate for all one-way functions. In Proceedings of the 21st
Annual ACM Symposium on Theory of Computing, May
14-17, 1989, Seattle, Washigton, USA, pages 25–32, 1989.

[GLOV12] Vipul Goyal, Chen-Kuei Lee, Rafail Ostrovsky, and Ivan
Visconti. Constructing non-malleable commitments: A
black-box approach. In 53rd Annual IEEE Symposium
on Foundations of Computer Science, FOCS 2012, New
Brunswick, NJ, USA, October 20-23, 2012, pages 51–60,
2012.

[GMPP16] Sanjam Garg, Pratyay Mukherjee, Omkant Pandey, and
Antigoni Polychroniadou. The exact round complexity of
secure computation. In Marc Fischlin and Jean-Sébastien
Coron, editors, Advances in Cryptology - EUROCRYPT
2016 - 35th Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, Vi-
enna, Austria, May 8-12, 2016, Proceedings, Part II, vol-

BIBLIOGRAPHY 195

ume 9666 of Lecture Notes in Computer Science, pages
448–476. Springer, 2016.

[GMY06] Juan A. Garay, Philip MacKenzie, and Ke Yang.
Strengthening zero-knowledge protocols using signatures.
Journal of Cryptology, 19(2):169–209, 2006.

[Gol09] Oded Goldreich. Foundations of cryptography: volume 2,
basic applications. Cambridge university press, 2009.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect
non-interactive zero knowledge for NP. In Serge Vau-
denay, editor, Advances in Cryptology - EUROCRYPT
2006, 25th Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, St. Pe-
tersburg, Russia, May 28 - June 1, 2006, Proceedings,
volume 4004 of Lecture Notes in Computer Science, pages
339–358. Springer, 2006.

[Goy11] Vipul Goyal. Constant round non-malleable protocols us-
ing one way functions. In Proceedings of the 43rd ACM
Symposium on Theory of Computing, STOC 2011, San
Jose, CA, USA, 6-8 June 2011, pages 695–704, 2011.

[GPR16] Vipul Goyal, Omkant Pandey, and Silas Richelson. Text-
book non-malleable commitments. In Proceedings of the
48th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2016, Cambridge, MA, USA, June 18-
21, 2016, pages 1128–1141, 2016. Full version: Cryptology
ePrint Archive, Report 2015/1178.

[GQ88] Louis C. Guillou and Jean-Jacques Quisquater. A practi-
cal zero-knowledge protocol fitted to security micropro-
cessor minimizing both transmission and memory. In
Christoph G. Günther, editor, Advances in Cryptology -
EUROCRYPT ’88, Workshop on the Theory and Appli-
cation of of Cryptographic Techniques, Davos, Switzer-
land, May 25-27, 1988, Proceedings, volume 330 of Lec-
ture Notes in Computer Science, pages 123–128. Springer,
1988.

196 BIBLIOGRAPHY

[GRRV14] Vipul Goyal, Silas Richelson, Alon Rosen, and Margarita
Vald. An algebraic approach to non-malleability. In 55th
IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2014, Philadelphia, PA, USA, October 18-
21, 2014, pages 41–50, 2014. An updated full version is
available at http://eprint.iacr.org/2014/586.

[HHPV17] Shai Halevi, Carmit Hazay, Antigoni Polychroniadou,
and Muthuramakrishnan Venkitasubramaniam. Round-
optimal secure multi-party computation. Cryptology
ePrint Archive, Report 2017/1056, 2017. https://

eprint.iacr.org/2017/1056.

[HKR+14] Feng Hao, Matthew Nicolas Kreeger, Brian Randell,
Dylan Clarke, Siamak Fayyaz Shahandashti, and Pe-
ter Hyun-Jeen Lee. Every vote counts: Ensuring in-
tegrity in large-scale electronic voting. In 2014 Electronic
Voting Technology Workshop/Workshop on Trustworthy
Elections, EVT/WOTE ’14, San Diego, CA, USA, Au-
gust 18-19, 2014. USENIX Association, 2014.

[HM96] Shai Halevi and Silvio Micali. Practical and provably-
secure commitment schemes from collision-free hashing.
In Advances in Cryptology - CRYPTO ’96, 16th Annual
International Cryptology Conference, Santa Barbara, Cal-
ifornia, USA, August 18-22, 1996, Proceedings, pages
201–215, 1996.

[Kat02] Jonathan Katz. Efficient Cryptographic Protocols Pre-
venting “Man-in-the-Middle” Attacks. PhD thesis,
Columbia University, 2002.

[Khu17] Dakshita Khurana. Round optimal concurrent non-
malleability from polynomial hardness. In Yael Kalai and
Leonid Reyzin, editors, Theory of Cryptography - 15th
International Conference, TCC 2017, Baltimore, MD,
USA, November 12-15, 2017, Proceedings, Part II, vol-
ume 10678 of Lecture Notes in Computer Science, pages
139–171. Springer, 2017.

http://eprint.iacr.org/2014/586
https://eprint.iacr.org/2017/1056
https://eprint.iacr.org/2017/1056

BIBLIOGRAPHY 197

[KO04] Jonathan Katz and Rafail Ostrovsky. Round-optimal se-
cure two-party computation. In Advances in Cryptology
- CRYPTO 2004, 24th Annual International Cryptology-
Conference, Santa Barbara, California, USA, August 15-
19, 2004, Proceedings, pages 335–354, 2004.

[KOS03] Jonathan Katz, Rafail Ostrovsky, and Adam D. Smith.
Round efficiency of multi-party computation with a dis-
honest majority. In Eli Biham, editor, Advances in Cryp-
tology - EUROCRYPT 2003, International Conference on
the Theory and Applications of Cryptographic Techniques,
Warsaw, Poland, May 4-8, 2003, Proceedings, volume
2656 of Lecture Notes in Computer Science, pages 578–
595. Springer, 2003.

[KS17] Dakshita Khurana and Amit Sahai. How to achieve non-
malleability in one or two rounds. In Chris Umans, editor,
58th IEEE Annual Symposium on Foundations of Com-
puter Science, FOCS 2017, Berkeley, CA, USA, Octo-
ber 15-17, 2017, pages 564–575. IEEE Computer Society,
2017.

[Lin15] Yehuda Lindell. An efficient transform from Sigma proto-
cols to NIZK with a CRS and non-programmable random
oracle. In Theory of Cryptography - 12th Theory of Cryp-
tography Conference, TCC 2015, Warsaw, Poland, March
23-25, 2015, Proceedings, Part I, pages 93–109, 2015.

[LP11a] Huijia Lin and Rafael Pass. Concurrent non-malleable
zero knowledge with adaptive inputs. In Yuval Ishai, edi-
tor, Theory of Cryptography - 8th Theory of Cryptography
Conference, TCC 2011, Providence, RI, USA, March 28-
30, 2011. Proceedings, volume 6597 of Lecture Notes in
Computer Science, pages 274–292. Springer, 2011.

[LP11b] Huijia Lin and Rafael Pass. Constant-round non-
malleable commitments from any one-way function. In
Lance Fortnow and Salil P. Vadhan, editors, Proceedings
of the 43rd ACM Symposium on Theory of Computing,
STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages
705–714. ACM, 2011.

198 BIBLIOGRAPHY

[LP15] Huijia Lin and Rafael Pass. Constant-round nonmal-
leable commitments from any one-way function. J. ACM,
62(1):5:1–5:30, 2015.

[LPS17] Huijia Lin, Rafael Pass, and Pratik Soni. Two-round and
non-interactive concurrent non-malleable commitments
from time-lock puzzles. In Chris Umans, editor, 58th
IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2017, Berkeley, CA, USA, October 15-17,
2017, pages 576–587. IEEE Computer Society, 2017.

[LPV08] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venki-
tasubramaniam. Concurrent non-malleable commitments
from any one-way function. In Ran Canetti, editor, The-
ory of Cryptography, Fifth Theory of Cryptography Con-
ference, TCC 2008, New York, USA, March 19-21, 2008.,
volume 4948 of Lecture Notes in Computer Science, pages
571–588. Springer, 2008.

[LPV09] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venki-
tasubramaniam. A unified framework for concurrent se-
curity: universal composability from stand-alone non-
malleability. In Proceedings of the 41st Annual ACM Sym-
posium on Theory of Computing,STOC 2009, Bethesda,
MD, USA, May 31 - June 2, 2009, pages 179–188, 2009.

[LS90] Dror Lapidot and Adi Shamir. Publicly verifiable non-
interactive zero-knowledge proofs. In Advances in Cryp-
tology - CRYPTO, 1990.

[Mau09] Ueli M. Maurer. Unifying zero-knowledge proofs of knowl-
edge. In Bart Preneel, editor, Progress in Cryptology -
AFRICACRYPT 2009, Second International Conference
on Cryptology in Africa, Gammarth, Tunisia, June 21-
25, 2009. Proceedings, volume 5580 of Lecture Notes in
Computer Science, pages 272–286. Springer, 2009.

[Mau15] Ueli Maurer. Zero-knowledge proofs of knowledge for
group homomorphisms. Designs, Codes and Cryptogra-
phy, pages 1–14, 2015.

BIBLIOGRAPHY 199

[MR01] Silvio Micali and Leonid Reyzin. Soundness in the public-
key model. In Advances in Cryptology - CRYPTO 2001,
21st Annual International Cryptology Conference, Santa
Barbara, California, USA, August 19-23, 2001, Proceed-
ings, pages 542–565, 2001.

[MV16] Arno Mittelbach and Daniele Venturi. Fiat-shamir for
highly sound protocols is instantiable. In Vassilis Zikas
and Roberto De Prisco, editors, Security and Cryptogra-
phy for Networks - 10th International Conference, SCN
2016, Amalfi, Italy, August 31 - September 2, 2016, Pro-
ceedings, volume 9841 of Lecture Notes in Computer Sci-
ence, pages 198–215. Springer, 2016.

[Nao91] Moni Naor. Bit commitment using pseudorandomness. J.
Cryptology, 4(2):151–158, 1991.

[NY89] Moni Naor and Moti Yung. Universal one-way hash func-
tions and their cryptographic applications. In Proceedings
of the 21st Annual ACM Symposium on Theory of Com-
puting, May 14-17, 1989, Seattle, Washigton, USA, pages
33–43, 1989.

[OPV08] Rafail Ostrovsky, Giuseppe Persiano, and Ivan Visconti.
Constant-round concurrent non-malleable zero knowl-
edge in the bare public-key model. In Automata, Lan-
guages and Programming, 35th International Colloquium,
ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Pro-
ceedings, Part II - Track B: Logic, Semantics, and Theory
of Programming & Track C: Security and Cryptography
Foundations, pages 548–559, 2008.

[ORSV13] Rafail Ostrovsky, Vanishree Rao, Alessandra Scafuro, and
Ivan Visconti. Revisiting lower and upper bounds for se-
lective decommitments. In TCC, pages 559–578, 2013.

[OV12] Rafail Ostrovsky and Ivan Visconti. Simultaneous reset-
tability from collision resistance. Electronic Colloquium
on Computational Complexity (ECCC), 19:164, 2012.

[Pas03] Rafael Pass. Simulation in quasi-polynomial time, and
its application to protocol composition. In Eli Biham,

200 BIBLIOGRAPHY

editor, Advances in Cryptology - EUROCRYPT 2003, In-
ternational Conference on the Theory and Applications
of Cryptographic Techniques, Warsaw, Poland, May 4-8,
2003, Proceedings, volume 2656 of Lecture Notes in Com-
puter Science, pages 160–176. Springer, 2003.

[Pas04a] Rafael Pass. Alternative variants of zero-knowledge
proofs. Master’s thesis, Kungliga Tekniska Högskolan,
2004. Licentiate Thesis Stockholm, Sweden.

[Pas04b] Rafael Pass. Bounded-concurrent secure multi-party com-
putation with a dishonest majority. In László Babai, ed-
itor, Proceedings of the 36th Annual ACM Symposium
on Theory of Computing, Chicago, IL, USA, June 13-16,
2004, pages 232–241. ACM, 2004.

[Pas13] Rafael Pass. Unprovable security of perfect NIZK and
non-interactive non-malleable commitments. In TCC,
pages 334–354, 2013.

[Ped91] Torben P. Pedersen. Non-interactive and information-
theoretic secure verifiable secret sharing. In Advances
in Cryptology - CRYPTO ’91, 11th Annual International
Cryptology Conference, Santa Barbara, California, USA,
August 11-15, 1991, Proceedings, pages 129–140, 1991.

[Pol16] Antigoni Polychroniadou. On the Communication and
Round Complexity of Secure Computation. PhD thesis,
Aarhus University, December 2016.

[PPV08] Omkant Pandey, Rafael Pass, and Vinod Vaikuntanathan.
Adaptive one-way functions and applications. In Advances
in Cryptology - CRYPTO 2008, 28th Annual Interna-
tional Cryptology Conference, Santa Barbara, CA, USA,
August 17-21, 2008. Proceedings, pages 57–74, 2008.

[PR05a] Rafael Pass and Alon Rosen. Concurrent non-malleable
commitments. In 46th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS 2005), 23-25 October
2005, Pittsburgh, PA, USA, Proceedings, pages 563–572,
2005.

BIBLIOGRAPHY 201

[PR05b] Rafael Pass and Alon Rosen. New and improved construc-
tions of non-malleable cryptographic protocols. In Pro-
ceedings of the 37th Annual ACM Symposium on Theory
of Computing, Baltimore, MD, USA, May 22-24, 2005,
pages 533–542, 2005.

[PR08a] Rafael Pass and Alon Rosen. Concurrent nonmalleable
commitments. SIAM J. Comput., 37(6):1891–1925, 2008.

[PR08b] Rafael Pass and Alon Rosen. New and improved construc-
tions of nonmalleable cryptographic protocols. SIAM J.
Comput., 38(2):702–752, 2008.

[PS96] David Pointcheval and Jacques Stern. Security proofs for
signature schemes. In Ueli M. Maurer, editor, Advances
in Cryptology - EUROCRYPT ’96, International Con-
ference on the Theory and Application of Cryptographic
Techniques, Saragossa, Spain, May 12-16, 1996, Proceed-
ing, volume 1070 of Lecture Notes in Computer Science,
pages 387–398. Springer, 1996.

[PW10] Rafael Pass and Hoeteck Wee. Constant-round non-
malleable commitments from sub-exponential one-way
functions. In Advances in Cryptology - EUROCRYPT
2010, 29th Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, French
Riviera, May 30 - June 3, 2010. Proceedings, pages 638–
655, 2010.

[Rom90] John Rompel. One-way functions are necessary and suf-
ficient for secure signatures. In Proceedings of the 22nd
Annual ACM Symposium on Theory of Computing, May
13-17, 1990, Baltimore, Maryland, USA, pages 387–394,
1990.

[Sch89] C.P. Schnorr. Efficient identification and signatures for
smart cards. In Gilles Brassard, editor, Advances in Cryp-
tology — CRYPTO’ 89 Proceedings, volume 435 of Lecture
Notes in Computer Science, pages 239–252. Springer New
York, 1989.

202 BIBLIOGRAPHY

[SV12] Alessandra Scafuro and Ivan Visconti. On round-optimal
zero knowledge in the bare public-key model. In David
Pointcheval and Thomas Johansson, editors, Advances in
Cryptology - EUROCRYPT 2012 - 31st Annual Inter-
national Conference on the Theory and Applications of
Cryptographic Techniques, Cambridge, UK, April 15-19,
2012. Proceedings, volume 7237 of Lecture Notes in Com-
puter Science, pages 153–171. Springer, 2012.

[YZ07] Moti Yung and Yunlei Zhao. Generic and practical re-
settable zero-knowledge in the bare public-key model.
In Moni Naor, editor, Advances in Cryptology - EURO-
CRYPT 2007, 26th Annual International Conference on
the Theory and Applications of Cryptographic Techniques,
Barcelona, Spain, May 20-24, 2007, Proceedings, volume
4515 of Lecture Notes in Computer Science, pages 129–
147. Springer, 2007.

	Introduction
	Definitions
	Notation, Definitions and Tools
	Standard Definitions
	Number-Theoretic Assumptions
	-Protocols

	Commitment Schemes
	t-Instance-Dependent Trapdoor Commitment Schemes
	Non-Malleable Commitment Schemes

	Delayed-Input Non-Malleable Zero Knowledge.
	Two-Party Computation

	Improved OR Composition
	Overview of the Chapter
	Our Contribution
	Our Techniques
	Discussion
	Applications

	OR Composition of -protocols: the CDS-OR Transform
	Constructing t-IDTC Scheme
	Constructing a 2-IDTC Scheme from a Chameleon -protocol.
	Constructing a 3-IDTC Scheme.

	A New OR-Composition Technique
	Witness Indistinguishability of Our Transform

	Applications
	A 3-Round Efficient Perfectly Simulatable Argument System
	Preliminary Definitions
	The Protocol

	Efficient Resettable WI Argument System
	Efficient 4-Round Resettable Zero Knowledge in the BPK model
	Proof of Work of Knowledge

	More About OR-Composition
	More About Chameleon -Protocols
	Classification of -Protocols
	Efficiency

	More About -Protocols
	Challenge Length of -Protocols
	-protocol for the 1DDH Relation.

	Non-Malleable Commitment Schemes
	Overview of the Chapter
	Towards 3-Round (Concurrent) NM Commitments
	Other 3-Round Challenges
	Our Contribution

	3-Round Concurrent Non-Malleable Commitments
	Informal Description
	Our Compiler

	More 3-Round Protocols Against Concurrent MiM Attacks
	NMWI Argument Systems
	Non-Malleable WI Arguments of Knowledge
	Identification Schemes

	3-Round One-One NM Commitments
	Our 3-Round One-One NM Commitment

	Delayed-Input Non-Malleable Zero Knowledge
	Overview of the Chapter
	Our Contribution
	Technical Overview of Our NMZK
	4-Round Secure Multi-Party Coin Tossing

	4-Round Delayed-Input NMZK from OWFs
	Our Protocol: NMZK.
	Formal Description of Our Delayed-Input NMZK and Security Proof

	Multi-Party Coin-Tossing Protocol
	4-Round Secure Multi-Party Coin Tossing: MPCT
	MPCT: Informal Description and Security Intuition
	MPCT: Formal Description

	Special WIPoK
	Improving the Soundness of LS

	Conclusion
	Bibliography

