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Abstract

Elastic instabilities of entangled polymer melts are common in industrial pro-
cesses but the physics responsible is not well understood. We present a numerical
linear stability study of a molecular based constitutive model which grants us
physical insight into the underlying mechanics involved. Two constriction flows
are considered - one shear dominated, the other extension dominated - and two
distinct instabilities are found. The influence of the molecular structure and
the behaviour of the polymer dynamics are investigated and in both cases chain
relaxation and orientation play a crucial role. This suggests a molecular-based
physical interpretation of the underlying mechanisms responsible for flow insta-
bilities.
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1. Introduction

Despite attracting much academic and industrial attention, a thorough and
comprehensive understanding of the physics of bulk instabilities in viscoelastic
flows remains elusive; if progress is to be made, one must consider the material’s
molecular properties. More precisely, knowledge of the connection between the
underlying polymer dynamics and observed flow instabilities in linear polymeric
melts is currently incomplete. This is due, in part, to the difficulties in mod-
elling the molecular physics that result from a complicated underlying polymer
architecture. The most adequate mathematical models for entangled polymer
melts are, in general, extensions of the Doi–Edwards tube model [1] and should
include the physical processes of reptation, convective constraint release (CCR),
chain stretch and retraction. All these processes contribute to the rheology of
the material and therefore it is natural to expect that each may also effect its
stability properties. Moreover, since the rheological response is dependent on
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the dominant flow characteristics (for example, shear or elongational stretch),
it is necessary to consider the influence of polymer dynamics in different flow
geometries if the molecular physics of polymer instabilities is to be understood.
Until recently, a mathematical model that was sufficiently sophisticated yet nu-
merically tractable in inhomogeneous flow domains did not exist. In an attempt
to further our understanding of the physics of elastic instabilities we present here
an investigation of Rolie-Poly fluids [2] flowing through shear- and extension-
dominated constrictions.

The first complete stability analysis of a Newtonian fluid was performed for
two dimensional channel Poiseuille flow by Lin [3]. The onset of instability was
found to occur at a Reynolds number of Re = 5776. Non-Newtonian fluids, on
the other–hand, have a complex microstructure and thus a complex rheological
response which, in turn, effects the stability of the flow in a way considerably
different to the Newtonian case. Ho and Denn [4] studied the stability properties
of an upper convected Maxwell (UCM) fluid and found that the elasticity of the
model had a stabilising effect at high Reynolds numbers. However, in contra-
diction to the numerical results, experimental data for low density polyethylene
(LDPE) implies that elasticity has a destabilising effect. Wilson et al. [5] in-
vestigated the linear stability of UCM and Oldroyd-B fluids and Palmer and
Phillips [6] extended this work to the PTT model, demonstrating the fluid to be
linearly stable to infinitesimal disturbances in Poiseuille flow. Grillet et al. [7]
considered the stability of the exponential PTT model and the Giesekus model
using transient finite element calculations. The exponential PTT model was
confirmed to be unstable in Couette and Poiseuille flow. The Giesekus model,
on the other–hand, was shown to be unstable only in pressure–driven Poiseuille
flow. The authors argue that the instabilities are caused by a coupling between
the base state solution and perturbations to the velocity gradient. The stability
boundaries of the Giesekus model have been numerically calculated by Öztekin
et al. [8]. Like the PPT model, the extended Pom-Pom (XPP) has also been
shown to be stable in both planar Couette and planar Poiseuille flow [9]. This is
due to the XPP’s non–zero second normal stress difference, which was shown to
have a strong stabilising effect. Somasi and Khomami [10] numerically investi-
gated the stability of viscoelastic fluids in plane Couette flow by simulating the
Brownian dynamics of Hookean and FENE dumbbells, showing that stability is
enhanced if the maximum extensibility of the dumbbells is decreased. Baltussen
et al. [11] and Bogaerds et al. [12] numerically investigated viscoelastic instabil-
ities in injection molding flows using the eXtended Pom-Pom (XPP) model. The
authors show that this common industrial flow exhibits interfacial viscoelastic
instabilities and find strain-hardening to have a stabilising effect. These results
were verified by comparisons with experimental evidence. Theoretical studies of
interfacial instabilities of viscoelastic materials can be found in [13, 14, 15, 16].

Theoretical and experimental studies have identified curved streamlines to
be an influential mechanism responsible for instability in viscous and viscoelastic
flows [17, 18, 19]. In particular, streamline curvature can couple with anisotropic
stresses in the fluid, causing motion out of the plane of flow. Taylor–Couette
flow is an example of a flow with curved streamlines that is known to become un-
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stable above some critical value. In Newtonian fluids, this instability is charac-
terised by vorticity in the streamwise direction and the development of Goertler
vortices: it is the inertial motion of material elements along curved stream-
lines that causes instability. Similar behaviour is observed with polymeric fluids
and experiments show that viscoelastic materials demonstrate the existence of
a purely elastic mode, i.e. an instability that occurs with negligible inertia
(Re ≈ 0). If radial perturbations cause the polymer chains to be perturbed
from a streamline then the chain becomes stretched by the shearing motion of
the flow, which in turn amplifies the non-Newtonian hoop stress [19, 20]. By
considering Taylor–Couette and lid-driven cavity flows, Pakdel and McKinley
[19] developed a dimensionless quantity to characterise the critical conditions
which determine the onset of elastic instabilities. Through geometric arguments
and a suitable definition of the characteristic lengthscale of the relaxation of per-
turbations along a streamline, the relevant criterion was shown to be

[

lN1

Rσxy

]
1

2

> M = O(1), (1)

where l = Uτ is the lengthscale along which the stress decays, U is a char-
acteristic velocity, τ is the reptation relaxation time, N1 = σxx − σyy is the
first normal stress difference, σxy is the total shear stress, and R is the radius
of curvature of the streamline. This approach has recently been extended to
find the criteria for instabilities in shear–banding fluids [21]. The dimensionless
grouping defined by Pakdel and McKinley [19] given in equation (1) provides
a general understanding of the curved streamline instability in elastic flows in
terms of the relevant characteristic scales, but a detailed connection with the
underlying physics remains elusive. In particular, although it is understood
that a fluid’s elasticity is crucial, to the best of our knowledge there has been
little attempt to explain elastic instabilities in terms of the underling relaxation
mechanisms - convective–constraint release, reptation and retraction - each of
which contributes to the amount of stretching a polymer chain experiences in
a given flow. Furthermore, it remains unclear whether the curved streamline
mechanism is responsible for the instabilities that are observed in the somewhat
more complicated constriction flows that are utilised in polymer processing.

An understanding of the physics behind viscoelastic flow instabilities is not
only of pure scientific interest; it is also particularly relevant to the polymer
processing industry since avoidance of instabilities could potentially save much
wasted product and increase efficiency. The flow geometries that occur in in-
dustrial practice are generally complex and yield a rich display of rheologi-
cal behaviour. Contraction−expansion flows, which contain elements of strong
extension, encourage the non–Newtonian phenomena often observed in manu-
facturing. Futhermore, constriction flows of polymeric materials have recently
been used to help determine the mechanisms that cause instabilities in the
manufacturing of plastics. Collis et al. [22] compared numerical and experi-
mental predictions for the complex flow behaviour of monodispersed polymer
melts and argued that a very narrow polydispersity will amplify the flow in-
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stabilities that break lateral symmetry. However, no stability calculations were
performed. Hassell et al. [23] present an experimental study of the formation of
a polymer flow instability seen in a range of polystyrene melts flowing through
contraction−expansion slit geometries and found that the underlying instability
mechanism - an oscillating flow perpendicular to the bulk flow - is the same for
both polydispersed and monodispersed materials. Although no single critical
Weissenberg number was found, stability maps of Weissenberg numbers against
material molecular weight in relation to both orientation and chain stretch were
obtained. Su and Khomami [24] study instabilities in slit and converging chan-
nel die geometries using both asymptotic and numerical techniques. Their re-
sults suggest that material parameters (elasticity and viscosity), as well as the
geometric design of the die, affect the interfacial instability. Hassell et al. [25]
present stability measurements for polystyrene in a contraction-expansion geom-
etry using both experimental and computational methods . The experimentally
observed instability is confirmed using a numerical tool based on the Rolie-Poly
constitutive equation [2] and the authors argue that chain stretch plays an im-
portant role. However, a detailed understanding of the relationship between
polymer physics and engineering instabilities has still not been accomplished.

The numerical simulation of instabilities in viscoelastic flows has proved to
be a major challenge in non–Newtonian fluid mechanics. Smith et al. [26] were
arguably the first to present a robust numerical scheme that could accurately
predict the onset of instability at the correct (experimentally verified) critical
Weissenberg number for the flow of an Oldroyd–B fluid over a periodic array of
confined cylinders. The only noticeable discrepancy between the numerical and
experimental results is in the leading eigenfunction: the experiments show a pe-
riodic asymmetry [27] while the numerics predicted a steady symmetric state.
Using a high resolution finite volume method in non–orthogonal block struc-
tured meshes, Alves, Pinho and Oliveira [28] also studied the flow of Maxwell
and Oldroyd–B type fluids over confined cylinders and were able to obtain ac-
curate predications for the drag coefficient. The method has yet to be extended
to stability calculations. Poole et al. [29] numerically investigated polymer
solutions flowing in sudden expansions using the PTT model and conclusively
showed that the affect of elasticity is to reduce both the length and intensity
of the recirculation region downstream of the expansion. More recently, Sahin
and Wilson [30] presented an analysis of the stability of steady two dimensional
Oldroyd–B flow over a periodic array of cylinders using a stylised finite volume
method [31]. The implementation of the MUMPS library [32] together with
the shift-invert Arnoldi method [33], as used by Sahin and Wilson [30], allows
for efficient computations for very large eigenvalue systems on modern parallel
architectures, and is utilsed here.

This article numerically investigates the polymer physics of flow instabilities.
More precisely, the computational method first presented in [30] is applied to the
Rolie-Poly constitutive model of Likhtman and Graham [2] to obtain a detailed
understanding of the physical (molecular) mechanisms and critical parameters
responsible for the onset of instabilities in the flow of monodispersed linear
polymers. Since the rheological response of a fluid is dependent on the domi-
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nant flow characteristics, we study two flows through constrictions: the shear
dominated periodic array of half–cylinders placed on channel walls (hereafter
referred to the bumpy wall flow); and the extension dominated 8:1:8 contrac-
tion expansion slit geometry flow. Both domains are relevant to a general class
of polymer-processing flows and demonstrates distinct instability mechanisms.
The remainder of this article is organised as follows: in Section 2 we explain
the equations of motion and the numerical procedure for hunting instabilities;
in Section 3 we present our obtained results and identify the mechanism for
instability in flows of monodispersed linear polymers; and concluding remarks
are given in Section 4.

2. Methodology

The vast majority of previous work concerning the prediction of instabilities
that occur in non–Newtonian flow has been limited to relatively conventional,
well–known models, such as the UCM [4, 34, 35] and Oldroyd-B [26, 30] mod-
els. Such constitutive models for the polymeric contribution to the stress tensor
exhibit many viscoelastic properties but their relative simplicity often renders
them inadequate for realistic engineering applications. Moreover, it is not pos-
sible to obtain a comprehensive theoretical understanding of the mechanism for
instabilities in viscoelastic flows without fully considering the underlying molec-
ular physics. A powerful, kinetically–derived, constitutive equation for the extra
stress is given by the Rolie–Poly model [2], currently the most advanced differ-
ential formulation of the Doi–Edwards tube model for linear polymer melts that
is also compact enough to be computable in numerical calculations of spatially
inhomogeneous flows. It incorporates the physics of reptation, convective con-
straint release (CCR), chain stretch, and retraction.

The Rolie-Poly constitutive equation for the extra–stress T may be written
as

∂T

∂t
+ (u · ∇)T− (∇u)T−T(∇u)† (2)

= −1

τ
(T− I)− 2(1−

√

3/trT)

τR

(

T+ β⋆

(

trT

3

)δ

T− I

)

,

where τ is the reptation relaxation time, τR is the Rouse relaxation time, β⋆

is the convective-constraint release (CCR) parameter, I is the identity matrix,
† denotes the matrix transpose, and tr denotes the trace of a tensor. The
parameter δ is taken to be −1/2 but may be fitted to experimental data [2].
The ratio of the two relaxation times defines the entanglement number, Z [36]:

Z =
τ

3τR
. (3)

We note that the Rolie–Poly module reduces to the Oldroyd–B model when
2(1−

√

3/trT)/τR → 0.
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2.1. Rheology of the Rolie–Poly model

Before embarking on a stability analysis of the Rolie–Poly model in constric-
tion flows, we first discuss its rheological properties in steady shear and planar
extensional flow. This will help us understand the numerical results presented
in Section 3 and to connect the stability mechanisms to the underlying polymer
architecture.

We solve the Rolie–Poly equation (2) in simple shear flow for different en-
tanglement ratios, Z, (equivalently, different relaxation–time ratios) and values
of the CCR parameter, β⋆. Figures 1 shows the shear stress, Txy, and the first
normal stress difference, N1 = Txx − Tyy, when Z = 5/3 (that is, τ/τR = 5).
The case when Z = 20/3 is shown in Figure 2. We clearly see that the constitu-
tive curve depends on both the relaxation–time ratio and the CCR parameter;
the larger ratios resulting in smaller stresses. The Rolie–Poly model can predict
non–monotonic behaviour, depending on the values of these quantities. Figure
2 shows that, for 3Z = 20, monotonicity is lost for large shear–rates if β⋆ . 0.1.
This is a characteristic of steady shear–banding, which can be a source of in-
terfacial instability [16]. The first normal stress difference, N1 monotonically
increases with shear rate in all cases.

We solve equation (2) in planar extensional flow for different relaxation–time
ratios and values of the CCR parameter β⋆. Figure 3 shows the extensional
viscosity, ηE , and the second normal stress difference, N2 = Tzz − Tyy, as
a function of the strain rate, ǫ̇, when Z = 5/3. The case when Z = 20/3
is shown in Figure 4. After an initial plateau the fluid strain–softens before
very rapidly hardening and diverging. Higher Weissenberg number ratios and
more convective–constraint–release permit greater variation in the extensional
viscosity, although the influence of CCR is considerably weaker. The second
normal stress difference, N2, undergoes a large variation in the range 0 < ǫ̇τR <
1; initially growing before a rapid decrease with increasing strain–rate, tending
to its minimum value as the extensional viscosity diverges. It should be noted
that, similar to the Oldroyd–B model, this singular behaviour occurs at ǫ̇τR = 1
(ηE → ∞ when ǫ̇τR → 1). We also notice the very steep gradient in the second
normal stress difference for high strain–rates when β⋆ is large. The significance
of these properties will be discussed further in Sections 3 and 4. We note in
passing that there exists a real solution as we approach the singularity from the
right, although it is deemed unphysical.

2.2. Non–dimensional governing equations

The governing equations are the mathematical statements of the conserva-
tion of mass and momentum:

∇ · u = 0; (4)

Re

[

∂u

∂t
+ (u · ∇)u

]

+∇p = β∇2u+∇ ·T, (5)

where Re is the Reynolds number, u is the velocity, P is the pressure, and
β = ηs/(ηs + ηp) is the viscosity ratio of the solvent viscosity (ηs) to the total
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Figure 1: Plots of Txy and N1 as a function of shear–rate when 3Z = 5.
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Figure 2: Plots of Txy and N1 as a function of shear–rate when 3Z = 20.
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Figure 3: Plots of extensional viscosity, ηE , and N2 as a function of strain–rate when 3Z = 5.
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Figure 4: Plots of extensional viscosity, ηE , and N2 as a function of strain–rate when 3Z = 20.
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the viscosity (ηp being the polymer viscosity). We non–dimesnionalise the Rolie-
Poly constitutive equation (2) for the extra stress:

We

[

∂T

∂t
+ (u · ∇)T− (∇u)T−T(∇u)†

]

= (1− β)(∇u+ (∇u)†)−T

(

1 +
2We

WeR

)

− 2(1− β)

WeR
I
(

1−
√

3/σ
)

+
2We

√

3/σ

WeR
T (1− β⋆) +

6Weβ⋆/σ

WeR
T, (6)

where We and WeR are the Weissenberg numbers based on the reptation time
(τ) and Rouse time (τR), respectively, and

σ =
We

1− β
trT+ trI. (7)

Equation (6) incorporates three relaxation mechanisms on each segment of the
imagined polymer-constraining tube: the curvilinear diffusion of the chain along
its center (reptation); the release of entanglement constraints due to the flow
of the surrounding chains (CCR); and also the retraction of the chain back
into the tube, which acts along the tube contour while holding the total length
fixed at its equilibrium value. Convective constraint release is a more influential
relaxation mechanism at higher shear rates.

2.3. Perturbed Equations

To analyse the linear stability of a system, theoretically or numerically, a base
state which is independent of time is sought. This steady solution is then given
a “kick”; that is, a small perturbation is added to the variables and decomposed
into Fourier modes. The evolving system can be linearised about the base state
with the resulting system having exponential behaviour in time. In other words,
we consider three dimensional arbitrary infinitesimal disturbances to the two
dimensional base flow, which can be written mathematically as follows:

T = TB + T̂eikz+ωt, u = uB + ûeikz+ωt, p = pB + p̂eikz+ωt, (8)

where k is the wave number, ω is the growth rate and i =
√
−1. The subscripts

B denote the steady base flow. The components of T̂, û and p̂ are eigenvectors
which are complex functions of x and y and have infinitesimal magnitude such
that non linear terms can be neglected. The perturbed equations for mass and
momentum are then

∂ûx

∂x
+

∂ûy

∂y
+ kûz = 0, (9)

Re

[

ωûx + uBx

∂ûx

∂x
+ uBy

∂ûx

∂y
+ ûx

∂uBx

∂x
+ ûy

∂uBx

∂y

]

+
∂p̂

∂x
(10)
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= β

[

∂2ûx

∂x2
+

∂2ûx

∂y2
− k2ûx

]

+
∂T̂xx

∂x
+

∂T̂xy

∂y
+ kT̂xx,

Re

[

ωûy + uBy

∂ûy

∂x
+ uBy

∂ûy

∂y
+ ûx

∂uBy

∂x
+ ûy

∂uBy

∂y

]

+
∂p̂

∂y
(11)

= β

[

∂2ûy

∂x2
+

∂2ûy

∂y2
− k2ûy

]

+
∂T̂xy

∂x
+

∂T̂yy

∂y
+ kT̂yx,

Re

[

ωûz + uBx

∂ûz

∂x
+ uBy

∂ûz

∂y

]

− kp̂ (12)

= β

[

∂2ûz

∂x2
+

∂2ûz

∂y2
− k2ûz

]

+
∂T̂xz

∂x
+

∂T̂yz

∂y
+ kT̂zz,

while those for the Rolie-Poly constitutive equation are

We

[

ωT̂xx + uBx

∂T̂xx

∂x
+ uBy

∂T̂xx

∂y
+ ûx

∂TBxx

∂x
+ ûy

∂TBxx

∂y

]

−

2We

[

∂ûx

∂x
TBxx +

∂ûx

∂y
TBxy +

∂uBx

∂x
T̂xx +

∂uBx

∂y
T̂xy

]

= 2 (1− β)
∂ûx

∂x
− 2

We

WeR
T̂xx

(

σ + 3β⋆

σ
−

√
3(1− β⋆)√

σ

)

− TBxxWe2trT̂

σWeR(1− β)

(√
3(1− β⋆)√

σ
+

6β⋆

σ

)

− We
√

3/σtrT̂

WeRσ
− T̂xx, (13)

We

[

ωT̂yy + uBx

∂T̂yy

∂x
+ uBy

∂T̂yy

∂y
+ ûx

∂TByy

∂x
+ ûy

∂TByy

∂y

]

−

2We

[

∂ûy

∂x
TBxy +

∂ûy

∂y
TByy +

∂uBy

∂x
T̂xy +

∂uBy

∂y
T̂yy

]

= 2 (1− β)
∂ûy

∂y
− 2

We

WeR
T̂yy

(

σ + 3β⋆

σ
−

√
3(1− β⋆)√

σ

)

− TByyWe2trT̂

σWeR(1− β)

(√
3(1− β⋆)√

σ
+

6β⋆

σ

)

− We
√

3/σtrT̂

WeRσ
− T̂yy, (14)

We

[

ωT̂zz + uBx

∂T̂zz

∂x
+ uBy

∂T̂zz

∂y
+ ûx

∂TBzz

∂x
+ ûy

∂TBzz

∂y

]

− 2kWeûzTBzz

= 2 (1− β) kûz − 2
We

WeR
T̂zz

(

σ + 3β⋆

σ
−

√
3(1− β⋆)√

σ

)

− TBzzWe2trT̂

σWeR(1− β)

(√
3(1− β⋆)√

σ
+

6β⋆

σ

)

− We
√

3/σtrT̂

WeRσ
− T̂xx, (15)
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We

[

ωT̂xy + uBx

∂T̂xy

∂x
+ uBy

∂T̂xy

∂y
+ ûx

∂TBxy

∂x
+ ûy

∂TBxy

∂y

]

−

We

[

∂ûx

∂x
TBxy +

∂ûx

∂y
TByy +

∂uBx

∂x
T̂xy +

∂uBx

∂y
T̂yy

]

−We

[

∂ûy

∂x
TBxx +

∂ûy

∂y
TBxy +

∂uBy

∂x
T̂xx +

∂uBy

∂y
T̂xy

]

= (1− β)

(

∂ûx

∂y
+

∂ûy

∂x

)

− 2
We

WeR
T̂xy

(

σ + 3β⋆

σ
−

√
3(1− β⋆)√

σ

)

− TBxyWe2trT̂

σWeR(1− β)

(√
3(1− β⋆)√

σ
+

6β⋆

σ

)

− We
√

3/σtrT̂

WeRσ
− T̂xy, (16)

We

[

ωT̂xz + uBx

∂T̂xz

∂x
+ uBy

∂T̂xz

∂y

]

−We

[

∂ûz

∂x
TBxx +

∂ûz

∂y
TBxy − kûxTzz

]

−We

[

∂ux

∂x
T̂xz +

∂ux

∂y
T̂yz

]

= (1− β)

(

−kûx +
∂ûz

∂x

)

−2
We

WeR
T̂xz

(

σ + 3β⋆

σ
−

√
3(1− β⋆)√

σ

)

− T̂xz, (17)

We

[

ωT̂yz + uBx

∂T̂yz

∂x
+ uBy

∂T̂yz

∂y

]

−We

[

∂ûz

∂x
TBxy +

∂ûz

∂y
TByy − kûyTzz

]

−We

[

∂uy

∂x
T̂xz +

∂uy

∂y
T̂yz

]

= (1− β)

(

−kûy +
∂ûz

∂y

)

−2
We

WeR
T̂yz

(

σ + 3β⋆

σ
−

√
3(1− β⋆)√

σ

)

− T̂yz. (18)

The existence of a non-trivial solution to the resulting equations is an eigenvalue
problem for ω, which defines the stability spectrum. If the leading (complex)
eigenvalue has negative real part then the disturbances decay, the variables
return to their base state and the flow is said to be stable. If, on the other-
hand, the real part of ω is greater than zero the disturbances grow in time
and the flow is unstable. We are interested in examining purely elastic flow
instabilities, that is those occurring in the absence of inertial forces. Thus all
predictions which follow were obtained with Re = 0.

2.4. Numerical Method

The semi–staggered dilation–free finite volume method of Sahin [30, 31, 37] is
adopted for the Rolie-Poly constitutive equation for the extra stress and applied
to the constriction flows discussed in Sections 1 and 3. This method offers the
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advantage of better pressure coupling than a collocated approach while remain-
ing geometrically flexible and relatively simple. Moreover, the discretisation of
the continuity equation is reduced to the domain boundary, which is important
for global mass conservation. Further details about the numerical method can
be found in Sahin [31, 37].

The governing equations (4), (5) and (6) are discretised in time using the
(first–order) implicit Euler method and in space using a semi–staggered finite
volume mesh [31, 37]; an example of the (quadrilateral) element used to con-
struct the computational domain is shown in Figure 5. The time–dependent
finite volume discretisation leads to a linear system where the extra stresses are
coupled with the velocity and pressure field. A time–splitting technique with a
combination of upper–triangular and Krylov subspace preconditioners are used
to decouple and efficiently solve the system [31, 37, 38]. The continuity (4) and
constitutive (6) equations are integrated over a quadrilateral element Ωe and
the momentum equation is integrated over an arbitrary irregular dual control
volume Ωd. In this formulation the pressure and stress are defined at element
centroids while the velocity is defined at the nodal points.

Once the steady base flow has been determined, we proceed to the analysis
of its stability using equations (9)-(18). The discrete system for the perturbed
equations take the form of a generalised eigenvalue problem which is solved using
the shift-invert Arnoldi method [30, 33]. The MUMPS library [32], which is a
direct method based on LU decomposition for the solution of sparse systems, is
utilised to solve all the discrete algebraic equations.

Figure 5: Two-dimensional, unstructured, mesh with a dual control volume surrounding a
node P. The centroids of the elements are denoted by ci.
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3. Numerical Experiments

In this section we present the critical conditions for the instability of a
Rolie–Poly fluid in two different forms of constriction flows that are relevant
to the polymer-processing industry: the bumpy wall geometry, which is a shear-
dominated flow; and the 8:1:8 contraction-expansion geometry, which is extension-
dominated. To assess the mechanisms responsible, we also compute the most
unstable wavenumber, kcrit, and the Pakdel and McKinley non–dimensional
grouping, M , [19] given by equation (1) using the reptation relaxation time, τ .
In a recent article [25], an experimental and numerical study of the stability of
a polystyrene in 8:1:8 contraction-expansion flow was documented. For consis-
tency and comparison, unless otherwise stated we take β⋆ = 0.283, 3Z = 20
and β = 0.1.

3.1. Bumpy Wall

Our first geometry is a channel with a periodic array of half cylinders placed
on the horizontal wall. The cylinder spacing is L = 2.5R and the height of the
channel is H = 4R, where R = 1 is the radius of the cylinder. The dimensionless
numbers that characterise the flow are the Weissenberg numbers based on the
reptation and Rouse relaxation times, We = τ〈u〉/R and WeR = τR〈u〉/R,
respectively, where 〈u〉 is the average velocity. The viscosity ratio is β = ηs/(ηp+
ηs), where ηs and ηp are the solvent and polymer viscosities. In the stability
calculation, the wavenumber is nondimensionilized with the cylinder radius, R.
To check the dependency of the results on the discrete domain a series of mesh
refinements were conducted by multiplying the mesh sizes by 1/

√
2 in each

direction. All results shown in this section were obtained using 36201 nodes
and 35644 elements.

Table 1 shows the dependence of the critical Weissenberg number on the
solvent viscosity β and gives the most unstable wavenumber, kcrit. Clearly,
viscosity acts to damp oscillations and the flow has weaker stability properties
for smaller β. Figure 6 plots the computed U - and V -velocity contours, with
streamlines, of the typical base flow of a Rolie-Poly fluid in the bumpy wall
geometry at the critical Weissenberg number of WeRcrit

= 22.47. The Txx

component of the stress is shown in Figure 7. We notice a separation region
between the cylinders, as expected, with large stress coming off the cylinder
walls.

The dependency of the numerical solutions on the grid size has been investi-
gated with a series of mesh refinements. Table 2 shows the critical Weissenberg
number on four successive meshes. The parameters for this study were 3Z = 20,
β⋆ = 0.283 and β = 0.1.

More revealing is the role of the underlying polymeric structure on the flow.
Table 3 shows the influence of the CCR parameter β⋆ on the stability of the ma-
terial which has an entanglement number of Z = 20/3 (or τ/τR = We/WeR =
20) and also gives the most unstable wavenumber, kcrit along with the critical
Pakdel and McKinley number, Mcrit = max{M(x, y)}. The data suggests that
convective constraint release does indeed affect the flow but it is considerably
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β WeRcrit
kcrit

0.05 11.87 12
0.1 22.47 14
0.2 44.98 14
0.3 57.34 16
0.5 / /

Table 1: Influence of the viscosity β on stability in a bumpy wall geometry using a Rolie–Poly
model with β⋆ = 0.283 and 3Z = 20. The ‘/’ denotes no instability found.

Number of nodes WeRcrit
kcrit

10210 22.02 16
19027 22.36 14
36201 22.47 14
72587 22.53 14

Table 2: Convergence of the critical Weissenberg number for flow in the bumpy wall geometry
when 3Z = 20, β⋆ = 0.283 and β = 0.1.

weaker than that of the solvent viscosity. For the bumpy wall geometry with a
molecular weight determined by 3Z = 20 it appears that convective constraint
release, which is a stretch-dependent relaxation, has a stabilising effect. That is,
increasing the amount of convective–constraint release permits modestly larger
flow rates. The most unstable wavenumber is reasonably large and the criti-
cal Pakdel and McKinley number is close to unity, suggesting the curvature of
streamlines instability mechanism. Moreover, Figures 8 and 9 indicates that
when 3Z = 20, M is largest along the streamline coming off the bumps where
the instability originates, indicating again that we are seeing the classic curved
streamline mechanism.

The molecular weight of a fluid is of significant interest and importance when
addressing the stability of a polymeric material and in our non-dimensional for-
mulation of the Rolie-Poly fluid this quantity is expressed by the entanglement
number, Z, or the ratio of the Rouse and reptation Weissenberg numbers. Ta-

β⋆ WeRcrit
kcrit Mcrit

0.1 22.02 14 0.96
0.3 22.46 13 0.94
0.5 22.57 12 0.97
0.7 23.70 12 0.98
0.9 23.93 12 0.98

Table 3: Influence of the CCR parameter β⋆ on stability in a bumpy wall geometry using a
Rolie–Poly model with β = 0.1 and 3Z = 20.
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1.3130
1.2254
1.1378
1.0502
0.9626
0.8750
0.7873
0.6997
0.6121
0.5245
0.4369
0.3493
0.2617
0.1741
0.0865

0.1404
0.1203
0.1002
0.0802
0.0601
0.0401
0.0200

-0.0000
-0.0201
-0.0401
-0.0602
-0.0802
-0.1003
-0.1203
-0.1404

Figure 6: The computed contours and streamlines for the steamwise (ux, top) and spanwise
(uy) components of the velocity for a Rolie-Poly fluid in a bumpy wall flow at the critical
Weissenberg number of WeRcrit

= 22.47. The parameters for the flow are: β⋆ = 0.283,
β = 0.1 and 3Z=20. 17



0.2789
0.2598
0.2407
0.1834
0.1643
0.1452
0.1069
0.0687
0.0496
0.0305
0.0081

Figure 7: The computed contours for the Txx component of the stress of a Rolie-Poly fluid in
a bumpy wall flow at the critical Weissenberg number of WeRcrit

= 22.47. The parameters
for the flow are: β⋆ = 0.283, β = 0.1 and 3Z=20.

18



3Z WeRcrit
kcrit Mcrit

20 22.47 13 0.94
30 21.74 10 0.93
40 21.02 9 0.94

Table 4: Influence of the number of entanglements on stability in a bumpy wall geometry
using a Rolie-Poly model with β⋆ = 0.283 and β = 0.1.

ble 4 contains WeRcrit
as a function of Z and clarifies its influence. The flow is

more stable when the the number of entanglements of the polymeric material
decreases. This suggests that materials with this architecture are able to main-
tain stability at greater flow rates in such a shear–dominated flow. The flows
are qualitatively similar to those above, so the curved–streamline instability is
once again suspected. We did not find any instabilities in the bumpy wall flow
when 1 < 3Z < 20 on the tested meshes. However, we were able to predict in-
stabilities when the entanglement number is very small (3Z ≪ 1). Although the
fluid could still be subjected to shear–banding at sufficiently large Weissenberg
numbers, the instability manifests itself at much smaller shear rates, before
the constitutive curve loses monotonicity. As an example, we found a critical
Weisenberg number of Wecrit = 2.3 and a critical wavenumber of kcrit = 2
when β⋆ = 0.283, β = 0.67 and 3Z = 0.01. This is of the same order as the
critical Weissenburg number reported in [30] for an Oldroyd–B fluid. This is no
coincidence: we can see from equation (6) that the Rolie–Poly equation appears
to be similar to the Oldroyd–B model when We/WeR → 0. We must stress,
however, that this is not the “Oldroyd–B limit” of the Rolie–Poly constitutive
equation; this is instead 2(1−

√

3/trT)/τR → 0. The limit τR → ∞ is thus not

sufficient; one also requires τR ≫ 1/
√
trT, which is not guaranteed for small

extra stresses.

3.2. 8:1:8 Contraction-Expansion

To further our understanding of the cause of instability in linear polymers.
we simulate the benchmark 8:1:8 contraction–expansion flow using a Rolie–
Poly model and again probe the parameter space. The dimensionless numbers
that characterise the flow are the Weissenberg numbers based on the reptation
and Rouse relaxation times, We = τ〈u〉/R and WeR = τ〈u〉/R, respectively,
where 〈u〉 is the average velocity and R = 1 is the radius of the contraction.
In the stability calculation, the wavenumber is nondimensionilized with the
contraction radius, R. Since we are concerned with the influence of the polymer
physics on the stability of flow we only present results for variations in the CCR
parameter and the molecular weight (number of entanglements, Z) but note
that the effect of solvent viscosity in this flow is similar to that in the bumpy
wall case. To help understand the mechanism responsible, we also show the
computed Pakdel and Mckinley number (1) for all flows that become unstable.
The values of M were found to be an order of magnitude lower than what is
expected for curvature-driven instability (Tables 5, 6, 7), and we thus conclude
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0.0010
0.0009
0.0007
0.0006

-0.0007
-0.0009
-0.0010

1.148E-05
9.763E-06
8.048E-06
6.333E-06
4.618E-06
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-7.387E-06
-9.102E-06
-1.082E-05
-1.253E-05

Figure 8: The computed contours of the T̂xx component of stress (top) and ûz for a Rolie–
Poly fluid in a bumpy wall flow at the critical Weissenberg number of WeRcrit

= 23.93. The
parameters for the flow are β⋆ = 0.9, β = 0.1 and 3Z = 20.
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1.0000
0.8571
0.7143
0.5714
0.4286
0.2857
0.1429
0.0000

-0.1429
-0.2857
-0.4286
-0.5714
-0.7143
-0.8571
-1.0000

Figure 9: The computed contours of M for a Rolie–Poly fluid in a bumpy wall flow at the
critical Weissenberg number of WeRcrit

= 23.93. The parameters for the flow are β⋆ = 0.9,
β = 0.1 and 3Z = 20.
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β⋆ WeRcrit
kcrit Mcrit

0.1 7.23 3.5 0.202
0.3 7.60 0.4 0.220
0.5 8.25 0.8 0.257
0.7 8.96 0.3 0.260
0.9 9.14 0.3 0.261

Table 5: Influence of the CCR parameter β⋆ on stability in a 8:1:8 contraction-expansion
geometry using a Rolie-Poly model with β = 0.1 and 3Z = 5.

β⋆ WeRcrit
kcrit Mcrit

0.1 5.97 1.1 0.049
0.3 6.89 0.2 0.053
0.5 7.57 0.2 0.057
0.7 7.80 0.1 0.058
0.9 7.87 0.2 0.061

Table 6: Influence of the CCR parameter β⋆ on stability in a 8:1:8 contraction-expansion
geometry using a Rolie-Poly model with β = 0.1 and 3Z = 20.

that streamline curvature is not the dominant cause here. All results shown in
this section were obtained using 47614 elements and 45968 node.

Tables 5 and 6 show the influence of the CCR parameter β⋆ on the stability of
the material when the entanglement number is given by 3Z = 5 and 3Z = 20,
respectively. The results show that convective constraint release does indeed
effect the stability of flow in the 8:1:8 contraction-expansion geometry. We
reiterate our belief that this is due to polymer chain stretch and argue that the
relationship between convective constraint release and chain stretch is governed
by the dominating flow dynamics; our reasoning will be discussed further in
Section 4. The computed contours of T̂xx and ûz when β⋆ = 0.5 and 3Z = 20
are plotted in Figure 10. We notice a fluctuation along the centerline upstream
of the contraction and two perturbations on the inside wall downstream of the
contraction, which is the source of the instability. The upstream activity is
affected by the downstream instability.

The influence of the entanglement number on the stability of this 8:1:8
contraction–expansion flow is given in Table 7. We see that materials with
a smaller entanglement number, and therefore less stretch, are able to maintain
stability at greater flow rates (we note again that we discuss stability in terms
of the smallest Weissenberg number, WeR). The computed contours of T̂xx and
ûz when 3Z = 5 are plotted in Figure 11. We notice a qualitative difference
compared to the plots of Figure 10. In particular, we now see two asymmetric
negative streaks running through the contraction and a single, stronger, per-
turbation off the inside wall downstream of the contraction. This suggests that
chain stretch may not only influence the critical Wessenberg number but also
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Figure 10: The computed contours for T̂xx component of stress (top) and ûz of a Rolie-Poly
fluid in a 8:1:8 contraction-expansion flow at the critical Weissenberg number of WeRcrit

=
7.57. The parameters for the flow are: β⋆ = 0.5, β = 0.1 and 3Z = 20.
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3Z WeRcrit
kcrit M

2 10.20 0.7 0.527
5 8.01 0.4 0.200
10 7.13 0.3 0.091
20 6.94 0.2 0.051
40 6.90 0.1 0.038

Table 7: Influence of the entanglement number on the stability in a 8:1:8 contraction-expansion
geometry using a Rolie-Poly model with β⋆ = 0.283 and β = 0.1.

effects the nature of instability in polymeric materials. Note also the smallness
of the critical wavenumber kcrit compared with the bumpy wall experiments.

4. Discussion

The connection between a polymeric fluid’s molecular dynamics and its sta-
bility properties has been investigated using the Rolie–Poly constitutive model
for two varieties of contraction–expansion flow - one shear dominated, the other
extension dominated. At least two distinct instabilities which can be understood
with reference to the underlying polymer physics were found.

The instabilities in the 8:1:8 contraction–expansion flow geometry are essen-
tially in-plane (small out-of-plane wavenumber, kR/2π) and are triggered in the
extension-dominated regions. This claim is further supported by the calcula-
tion of the Pakdel and McKinley number of equation (1), which naturally leads
to the conclusion that streamline curvature is not (solely) responsible for the
observed instabilities. We interpret our data in terms of the the smallest of the
two Weissenberg numbers, that is the Rouse Weissengerg number, WeR. Table
7 shows that a material with a reduced number of entanglements (equivalently,
decreasing We/WeR in the non–dimensional formulation) inhibits instability
(in terms of WeR), in agreement with the work of Hassell et al. [25] and Su
and Khomami [24]. This corresponds to a low molecular weight fluid with
a smaller entanglement number. Although polymeric materials with a lower
molecular weight are associated with a smaller entanglement number (and thus
less chain stretch), all the Rolie–Poly fluids studied here must be considered to
be highly elastic. Note that even when 3Z = 5, the critical Weissenberg number
WeRcrit

∼ O(10), as shown in Table 5. However, we can infer from the figures
in Section 2.1 that at high shear rates the shear viscosity decreases. The flow
progressively disentangles the polymers, causing the fluid to shear–thin. This
results in a reduction of the base flow stresses and thus a more stable flow.
Conversely, fluids with a higher molecular weight are yet more entangled, so ex-
perience less shear thinning at the same shear rate, and therefore have a higher
effective Weissenberg number. The base flow stresses are thus larger and hence
the greater the prospect of elastic instability.

A discussion of the shear behavior of Rolie–Poly fluids in the contraction–
expansion geometry is necessary but not sufficient to understand its stability
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Figure 11: The computed contours for T̂xx component of stress (top) and ûz of a Rolie-Poly
fluid in a 8:1:8 contraction-expansion flow at a the critical Weissenberg number of WeRcrit

=
8.25. The parameters for the flow are: β⋆ = 0.5, β = 0.1 and 3Z = 5.
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properties in terms of the molecular structure since the flow is dominated by
its extensional components. Referring to the rheological response of the Rolie–
Poly model in planar extensional flow, Figures 3 and 4 show that increasing the
strain–rate increases the the extensional viscosity, which in turn produces large
tensile stresses that break the flow symmetry, thus causing instabilities. We can
also infer from the plots that there is a smaller region of negative gradient in the
extensional viscosity for 3Z = 5 than for 3Z = 20. Together with the numerical
simulations, this leads to the colclusion that any strain softening experienced
by the fluid will be detrimental to its stability. Tables 5 and 6 show that
the CCR parameter has a stabilising effect in the 8:1:8 contraction-expansion
flow. This can be interpreted as follows: In an extension-dominated flow, as
more constraints are released (corresponding to a larger CCR parameter) the
diameter of the constraining tube increases and thus the polymer experiences
less tube “squeezing”. Therefore, the amount of chain stretch is reduced and
the stability of the flow in enhanced.

The form of the instability in the shear–dominated bumpy wall flow, on the
other-hand, leads us to believe that the curvature of the streamlines (elastic
Taylor rolls) does indeed trigger instability. Here the Pakdel and Mckinley
number is of unit order and the critical wavenumber, kR/2π, is comparable to
the characteristic lengthscale of the flow. Table 4 shows that, when β⋆ = 0.283,
polymer melts with more entanglements are more stable. We again attribute
this to the shear–thinning behavior, as discussed above. By comparing Table 4
and Table 7 we notice that WeRcrit

drops by over 6% when we increase 3Z from
20 to 40 in the bumpy wall geometry but by less than 0.6% in the contraction–
expansion flow. This is becuase the bumpy wall is shear–dominated, as opposed
to extension–dominated, causing greater disentanglement of polymers, in turn
more shear–thinning, and thus a greater dependence of the critical Weissenburg
number on Z.

The dependence of the critical Weissenberg number on the CCR parameter,
as shown by Table 3, is of interest and gives us further physical insight. We
have found that CCR has a stabilising effect. This property may be understood
with the aid of Figure 2 which shows that increasing CCR in steady shear flow
ensures a positive gradient of the constitutive curve (monotonicity), a smaller
plateau region, and hence more stable behaviour. The calculations suggest that
the effect of CCR on the stability of the flow is rather weak. This is also in
agreement with Figure 2 which shows that that convective constraint release
has only a slight influence on the first normal stress different in steady shear
flow. The flow of Rolie–Poly fluid in constrictions with 3Z ≫ 1 is far more
stable than that of an Oldroyd–B fluid. The Oldroyd–B fluid predicts a zero
second normal stress difference, while Figures 3 and 4 show that the Roly–Poly
model has N2 > 0. Moreover, we see that N2 is greater when 3Z = 5 than when
3Z = 20. This supports the observations of previous research [9] which states
that an appreciable second normal stress difference has a stabilising effect.

The numerical experiments confirm that chain stretch and the degree of en-
tanglement have an influence on the stability of entangled polymeric materials.
We remark that Somasi and Khomami [10] found, via stochastic simulations of
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Hookean and FENE dumbbells, that chain stretch (that is, the extensibility of
the dumbbells) has a destabilising effect in Couette flow of unentangled polymer
solutions; also reasoning with reference to the relationship between molecular
properties and shear–thinning behaviour. Although the physics of dilute poly-
mer solutions is different to entangled polymer melts, it is interesting to note
this common characteristic. As a direction for further research we suggest that
an investigation of the effect of the geometry on the flow stability would be in-
sightful and could increase our understanding of the relationship between elastic
instabilities and the molecular structure of the material. In particular, we specu-
late that the role of convective–constraint release in the shear dominated bumpy
wall flow is likely to be different for different distances between the cylinders
and different entanglement number. Consider a polymer chain confined to a
“tube” formed by the surrounding polymers. Shear-dominated flows cause such
chains to become highly stretched and aligned with the flow. Therefore, the
dynamics of the polymer is altered very little by the surrounding flow. How-
ever, if some of the tube constraints are released then segments of the polymer
could, in principle, escape from the tube and fall out of line with the flow. It will
then be caught by the external shearing motion and thus stretched even further.
In other words, in a highly shear-dominated flow (one which does not trigger
an appreciable extensional flow) greater convective constraint release could in-
creases chain stretch and, as a result, induce instability. Indeed, the spacing
between the half–cylinders will influence the amount of shear and stretch the
fluid experiences. This agrees with the conclusions drawn by previous authors
when studying Taylor-Couette flow [19, 20]: when polymers are displaced from
a streamline the chain becomes stretched by the shearing motion of the flow,
which in turn amplifies the non-Newtonian hoop stress and the perturbation.

We note briefly that the single–mode Rolie–Poly model shows a disagreement
with the full linear theory [39] for large shear rates due to the assumption of
uniform stretch, as discussed in [2]. Although one could use a multi–mode Rolie–
Poly equation (at a greater computational cost), it would still not be the most
general model. It is, however, the most sophisticated formulation of the Doi-
Edwards tube model that is also computationally viable. Broadly speaking, the
use of this molecular constitutive model together with a sophisticated numerical
algorithm has enabled us to understand the physics of elastic instabilities in
viscoelastic materials in terms of their underlying polymer dynamics.
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