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Abstract

Recent results indicate that genome-wide association studies (GWAS) have the potential to explain much of the heritability
of common complex phenotypes, but methods are lacking to reliably identify the remaining associated single nucleotide
polymorphisms (SNPs). We applied stratified False Discovery Rate (sFDR) methods to leverage genic enrichment in GWAS
summary statistics data to uncover new loci likely to replicate in independent samples. Specifically, we use linkage
disequilibrium-weighted annotations for each SNP in combination with nominal p-values to estimate the True Discovery
Rate (TDR = 12FDR) for strata determined by different genic categories. We show a consistent pattern of enrichment of
polygenic effects in specific annotation categories across diverse phenotypes, with the greatest enrichment for SNPs
tagging regulatory and coding genic elements, little enrichment in introns, and negative enrichment for intergenic SNPs.
Stratified enrichment directly leads to increased TDR for a given p-value, mirrored by increased replication rates in
independent samples. We show this in independent Crohn’s disease GWAS, where we find a hundredfold variation in
replication rate across genic categories. Applying a well-established sFDR methodology we demonstrate the utility of
stratification for improving power of GWAS in complex phenotypes, with increased rejection rates from 20% in height to
300% in schizophrenia with traditional FDR and sFDR both fixed at 0.05. Our analyses demonstrate an inherent stratification
among GWAS SNPs with important conceptual implications that can be leveraged by statistical methods to improve the
discovery of loci.
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Introduction

Complex traits are generally influenced by many genes with small

individual effects [1]. This ‘polygenic’ architecture has been difficult

to characterize. While Genome-wide association studies (GWAS)

[2] have successfully identified thousands of trait-associated single

nucleotide polymorphisms (SNPs) [3], even when considered in

aggregate, these SNPs explain small portions of the trait heritability

[4]. Recent results indicate that GWAS have the potential to explain

much of the heritability of common complex phenotypes [5,6], and

more SNPs are likely to be identified in larger samples [7].

However, there are few methods available for identifying more of
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the SNPs likely to be associated with phenotypes without increasing

the sample size, as recognized by recent European and US calls for

new statistical genetics methods. The crucial issue is that for most

complex traits a large number of SNPs have too small an effect to

pass standard GWAS significance thresholds given current sample

sizes. We present results suggesting new analytical approaches for

GWAS will uncover more of the polygenic effects in complex

disorders and traits. We hypothesize that all SNPs in a GWAS are

not exchangeable, but come from pre-determinable categories with

different distributions of effects. This implies that some categories of

SNPs are enriched, i.e. are more likely to be associated with a

phenotype than others. This information can be used to calculate

the category-specific True Discovery Rate (TDR), or the expected

proportion of correctly rejected null hypotheses [8]. SNPs from

enriched SNP categories will have an increased TDR for a given

effect size, or equivalently, for a given nominal p-value. Stratified

False Discovery Rate (sFDR) methods [9] provide an established

framework for demonstrating the utility of using enriched genic

categories to increase power to discover SNPs likely to replicate in

independent samples. Previous work has applied sFDR and related

methods to GWAS data stratified by candidate regions determined

through prior linkage analysis and/or candidate gene studies

[10–12] and specific biological pathways related to disease etiology

[13]. Others have considered stratification by genome annotations

in linkage analysis [14] and Bayesian association analyses [15],

demonstrating the utility of this approach for improving power and

FDR based discovery where reliable, pre-determinable strata exist.

It has been suggested that variation in and around genes

harbors more polygenic effects [6,16]. However, the particular

gene elements (i.e., intron, exon, UTRs) containing these variants

and the distribution of effect sizes in GWAS have been left to

extrapolation and speculation. Further, SNPs in and around genes

have been shown to explain more variation [6] and replicate at

higher rates [16] than intergenic SNPs. These studies, however,

did not parse genic regions down to specific genic elements. We

here hypothesize that SNPs in regulatory and coding elements of

protein coding genes will show an enrichment of polygenic effects

relative to intronic and intergenic SNPs which will be reflected in

an increased estimated TDR and empirically confirmed through

improved replication rate across independent samples.

The association signal of a SNP tested in GWAS is a surrogate

for, or ‘tags,’ the potential effects of many other variants. Thus,

any of a number of ‘tagged’ variants could underlie the observed

association signal. Focusing on the tag SNPs only, without

systematically capturing the underlying causal variants within a

‘tagged’ linkage block, limits the functional inferences that can be

drawn from GWAS. By incorporating the correlation between

SNPs (linkage disequilibrium; LD) we expect a stronger and more

consistent differentiation of enrichment among genic annotation

categories. In the current study, we use an LD-weighted scoring

algorithm that allows quantification of the properties of multi-locus

LD structure implicitly captured by each tag SNP to our

enrichment analysis. These categories can be leveraged to create

strata for established sFDR approaches.

We employ a model free strategy to identify enriched strata

among phenotypes based on GWAS summary statistics. We first

calculate the relative enrichment in different genic elements, using

the category-specific empirical cumulative distribution function

(cdf) of the nominal p-values after controlling for estimated

genomic inflation. For each nominal p-value threshold an estimate

of the category-specific TDR = 12FDR is obtained from these

empirical cdfs. This analysis is implemented on summary p-values

from ten published GWAS meta-analyses studying 14 phenotypes.

We then use the sub-study GWAS in Crohn’s disease to test if the

estimated increased TDR translates to improved replication rates,

showing that for a given replication rate the nominal p-value

threshold is 100 times larger for the most enriched genic category

compared to the intergenic category. Finally, using an established

sFDR framework we demonstrate the utility of leveraging enriched

categories for improving power to detect SNPs likely to replicate,

i.e., to reject more null hypotheses for a fixed FDR.

Results

LD-Based Enrichment of Genic Elements in Height
Under multiple testing paradigms such as GWAS, quantitative

estimates of likely true associations can be estimated from the

distributions of summary statistics [17,18]. A common method for

visualizing the enrichment of statistical association relative to that

expected under the global null hypothesis is through Q-Q plots of

the nominal p-values resulting from GWAS. Under the global null

hypothesis the theoretical distribution is uniform on the interval

[0,1]. Thus, the usual Q-Q curve has as the y-coordinate the

nominal p-value, denoted by ‘‘p’’, and the x-coordinate the value

of the empirical cdf at p, which we denote by ‘‘q’’. As is common

in GWAS, we instead plot 2log10 p against the 2log10 q to

emphasize tail probabilities of the theoretical and empirical

distributions. In such plots, enrichment results in a leftward shift

in the Q-Q curve, corresponding to a larger fraction of SNPs with

nominal 2log10 p-value greater than or equal to a given threshold

(see Material and Methods).

The stratified Q-Q plot for height (Figure 1) shows a clear

variation in enrichment across genic annotation categories. The

separation between the curves for different categories is enhanced

when using LD-weighted genic annotation categories in compar-

ison to non LD-weighted positional categories (Figure S3). The

parallel shape of these curves is likely caused by the significant but

imperfect correlation among categories due to the non-exclusive

nature of the annotation scoring (Figure S2).

An earlier departure from the null line (leftward shift) suggests a

greater proportion of true associations, for a given nominal p-value.

Author Summary

Modern genome-wide association studies (GWAS) have
failed to identify large portions of the genetic basis of
common, complex traits. Recent work suggested this
could be because many genetic variants, each with
individually small effects, compose their genetic architec-
ture, limiting the power of GWAS. Moreover, these variants
appear more abundantly in and near genes. Using genome
annotations, summary statistics from several of the largest
GWAS, and established statistical methods for quantifying
distributions of test statistics, we show a consistency
across studies. Namely, we show that, across all assessed
traits, the test statistics resulting from SNPs that are related
to the 59 UTR of genes show the largest abundance of
associations, while SNPs related to exons and the 39UTR
are also enriched. SNPs related to introns are only
moderately enriched, and intergenic SNPs show a deple-
tion of associations relative to the average SNP. This
enrichment corresponds directly to increased replication
across independent samples and can be incorporated a
priori into statistical methods to improve discovery and
prediction. Our results contribute to on-going debates
about the functional nature of the genetic architecture of
complex traits and point to avenues for leveraging existing
GWAS data for discovery in future GWA and sequencing
studies.

Differential Enrichment among SNP Categories
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The divergence of the curves for different categories implies that the

proportion of non-null effects varies considerably among annotation

categories of genic elements. For example, the proportion of SNPs in

the 59UTR category reaching a significance level of 2log10(p).10 is

roughly 10 times greater than for all SNPs and 50–100 times greater

than for intergenic SNPs.

Polygenic Enrichment across Diverse Phenotypes
Recently Yang et al [19] demonstrated that an abundance of

low p-values beyond what is expected under null hypotheses in

GWAS, but not necessarily reaching stringent multiple compar-

ison thresholds, often attributed to ‘spurious inflation,’ is also

consistent with an enrichment of true ‘polygenic’ effects [19]. The

prevalence of enrichment below the established genome-wide

significance threshold of p,561028 (2log10(p).7.3;) in height

(Figure 2A) is consistent with their hypotheses and strongly

suggests that current GWAS do not capture all of the additive

‘tagged variance’ in this phenotype. Importantly, this enrichment

varies across genic annotation categories.

The enrichment patterns among annotation categories are

consistent across phenotypes, including schizophrenia (SCZ) and

tobacco smoking (cigarettes per day, CPD; Figure 2B–2C). The

stratified Q-Q plots for height, SCZ and CPD each demonstrate

the largest enrichment for tag SNPs in LD with 59UTR, and

exonic variation, showing nearly tenfold increases in terms of the

proportion of p-values expected below a given threshold under the

null hypothesis. SNPs that tag intergenic regions show nearly

tenfold depletions in comparison to all tag SNPs, although not

when compared to the expected null. SNPs tagging intronic

variation show minimal enrichment over all tag SNPs, despite

making up the largest proportion of genic SNPs (Table S3). The

pattern is consistent for all phenotypes considered (data not

shown). Given the log scale of the Q-Q plots, 90% of SNPs fall

between 0 and 1 and 99% fall between 0 and 2 on the horizontal

axis, and thus it is clear that a majority of enriched SNPs have p-

values that do not reach genome-wide significance.

We computed significance values for the curves for each

annotation category relative to those for intergenic SNPs, using a

two-sample Kolmogorov-Smirnov Test. The enrichment for

height was highly significant for all categories when compared

with the intergenic category, with all p-values less than 2.2610216.

Nearly every genic category was also significantly enriched for

each other phenotype (Table S5).

While the pattern of enrichment is consistent, the shape of the

curves varies across phenotypes. In particular, the point at which

the curves deviate from the expected null line occurs earliest for

height, followed by SCZ, and finally CPD (Figure 2A–2C),

consistent with different proportions of SNPs that are likely

associated with each trait (i.e., different levels of ‘polygenicity’).

These findings are consistent with results obtained using an

established mixture-modeling framework [17] (Text S1 and

Figures S8, S9, S10, S17, S18, S19).

Intergenic Genomic Control
The relative absence of enrichment in intergenic SNPs as we

have defined them, suggests minimal inflation due to polygenic

effects and a more robust estimate of the global null. This fact can

be exploited for better estimation of variance inflation due to

stratification [20] that is minimally confounded by true polygenic

effects [19]. We confined the estimation of the genomic inflation

factor [20], lGC, to only intergenic SNPs (Table S4) and adjusted

summary statistics for all phenotypes according to this ‘‘intergenic

inflation control’’ procedure. The stratified Q-Q plots for height

with and without intergenic inflation control are shown in Figure

S4.

Category-Specific True Discovery Rate
Since specific tag SNP categories are significantly more likely to

be associated with common phenotypes, while intergenic ones are

less likely, all tag SNPs should not be treated as exchangeable.

Variation in enrichment across diverse genic categories is expected

to be associated with corresponding variation in TDR for a given

nominal p-value threshold. A conservative estimate of the TDR

for each nominal p-value is equivalent to 12(p/q) as plotted on the

Q-Q plots (see Online Methods). This relationship is shown for

height, SCZ and CPD (Figure 2D–2E). Similar category-specific

TDR plots were calculated for each of the 14 phenotypes (data not

shown). For a given TDR the corresponding estimated nominal

p-value threshold varies with a factor of 100 from the most

enriched genic category to the intergenic category, and the pattern

is consistent across phenotypes. Since TDR is theoretically related

to predicted replication rate, it is expected that for a given p-value

threshold the replication rate will be higher for SNPs in genic

categories with high TDR. The high estimates of TDR at

significance levels below genome-wide significance is consistent

with recent work in Schizophrenia that demonstrates a high

proportion of likely true associations at reduced thresholds, but

without the needed power to reach genome-wide significance [21].

Quantification of Enrichment
While the TDR provides a quantification of enrichment for a

given nominal p-value threshold (equivalently, SNP z-score

threshold), we also provide a single number quantification of

enrichment for each LD-weighted annotation category within

each phenotype, computed as the sample mean (z2)21. The

Figure 1. Stratified Q-Q plot for height shows enrichment by
annotation categories using Linkage-Disequilibrium (LD)-
weighted scores. Genic annotation categories were: 1) 10,000 to
1,001 base pairs upstream (10 k Up); 2) 1,000 to 1 base pair upstream
(1 k Up); 3) 59 untranslated region (59UTR); 4) Exon; 5) Intron; 6) 39
untranslated region (39UTR); 7) 1 to 1,000 base pairs downstream (1 k
Down); 8) 1,001 to 10,000 base pairs downstream (10 k Down). Q-Q plot
of height with non-LD weighted category scores are shown in Figure
S3.
doi:10.1371/journal.pgen.1003449.g001

Differential Enrichment among SNP Categories
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sample mean, taken over all SNPs in a given category, provides an

estimate of the variance due to null and non-null SNPs; by

subtracting one we obtain a conservative estimate of the variance

in effect sizes attributable to non-null SNPs alone. Both TDR and

mean (z2)21 are justified based on a standard mixture model

formulation (see Text S1). These enrichment scores, normalized

by the maximum value across categories within each phenotype,

are presented in Figure 3. The 59UTR annotation category was

the most enriched category across all fourteen phenotypes (Table

S6). Additionally, the exon category is consistently more enriched

than the intron category.

Categories where each SNP tags more reference SNPs on

average or represents a larger total amount of LD could spuriously

appear enriched. We do note categorical differences in the number

of SNPs and total summed LD captured by each SNP (Tables S7

and S8) but multiple regression analyses show the effect of these

variables is negligible and independent categorical effects persist

(Table S10) despite the significant correlation among categories

(Figure S2). Likewise, systematic deviations in minor allele

frequency (MAF) across categories could bias annotation category

effects as MAF acts multiplicatively with effect size to explain

variance. We found minimal categorical stratification for MAF

that is inconsistent with this effect driving our enrichment findings

(Table S9 and Figure S6). To further address the possibility that

some of the differential enrichment of categories could be due to

category-specific genomic inflation from the above factors, we

performed null-GWAS simulations based on genotypes from the

1000 Genome Project. The results suggest that such effects are

non-existent or negligible (Table S11).

Replication Rate
To further address the possibility that the observed pattern of

differential enrichment results from spurious (i.e., non-generaliz-

able) associations due to category-specific confounding effects or

statistical modeling errors, we also studied the empirical replica-

tion rate across independent sub-studies for one phenotype (CD)

where the required sub-study summary statistics were available.

Figure 4A shows the estimated TDR curves for different

annotation categories in CD, with a similar pattern as that

described for in height, SCZ and CPD, above. TDR is an estimate

of the expected replication rate for a sufficiently large replication

sample. We hypothesized that strata with higher TDR for a given

nominal p-value would also show higher empirical replication rate.

Figure 4B shows the empirical cumulative replication rate plots as

Figure 2. Stratified Q-Q plots and true discovery rates show consistency of enrichment. Upper panel: Stratified Q-Q plots illustrating
consistent enrichment of genic annotation categories across diverse phenotypes: (A) Height, (B) Schizophrenia (SCZ), and (C) Cigarettes per Day
(CPD). All figures are corrected for inflation using intergenic inflation control. Only nominal p-values below the standard genome-wide significance
threshold (p,561028) are shown. Lower panel: Stratified True Discovery Rate (TDR) plots illustrating the increase in TDR associated with increased
enrichment in (D) Height, (E) SCZ and (F) CPD. Genic annotation categories were: 59 untranslated region (59UTR), Exon, Intron, 39 untranslated region
(39UTR), All SNPs, in addition to Intergenic.
doi:10.1371/journal.pgen.1003449.g002

Differential Enrichment among SNP Categories
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a function of nominal p-value for the same categories as for the

stratified TDR plot in Figure 4A. Consistent with the category-

specific TDR pattern, we found that the nominal p-value

corresponding to a wide range of replication rates was 100 times

higher for intergenic relative to the most enriched genic category

(59UTR). Similarly, SNPs from genic annotation categories

showing the greatest enrichments replicated at higher rates, up

to five times higher than intergenic for 59UTR SNPs, independent

of p-value thresholds. The increase in replication rate was found to

be greatest for SNPs that do not meet genome-wide significance,

suggesting that adjusting p-value thresholds according to the

estimated category-specific TDR could greatly improve the

discovery of replicating SNP associations.

Increased Power Using Stratified False Discovery Rate
In order to demonstrate the utility of the enriched category

information for improved discovery, we leveraged an established

method for computing stratified False Discovery Rates [9]. The

sFDR method improves the power of traditional methods for FDR

control [22] by taking advantage of pre-defined, differentially

enriched strata among multiple hypothesis testing p-values. Here,

we define an increase in power from using stratified (vs.

unstratified) methods as a decreased Non-Discovery Rate (NDR)

for a given level of FDR control a, where NDR is the proportion

of false negatives among all non-null tests [23]. Specifically, the

ratio of 1-NDR from stratified FDR control to 1-NDR from

unstratified FDR control captures the relative power of the two

approaches. This ratio can be shown to be equivalent to the ratio

of the number of SNPs rejected by sFDR to the number rejected

by unstratified FDR for a common level a.

For each phenotype we divided the SNPs into independent

strata according to its predicted tagged variance (z2). Tagged

variance was predicted using on a linear model with regression

weights for each annotation category trained using the height

GWAS summary statistics. The enrichment of these strata is

presented in Figure S11. In Figure 5 (and Table S12) we show an

increase in the number of discovered SNPs. For example, for

a= .05 the increased proportion of declared non-null SNPs using

sFDR ranges from 20% in height to 300% in schizophrenia.

Leveraging our genic annotation categories in the sFDR

framework provides one possible avenue for improving the output

of likely non-null SNPs in GWAS by taking advantage of the non-

exchangeability of SNPs demonstrated by our enrichment

analyses. Other formulations of strata and continued investigations

Figure 4. Independent study replication confirms enrichment
in Crohn’s disease. (A). Stratified True Discovery Rate (TDR) plots
illustrating the increase in TDR associated with increased enrichment.
(B) Cumulative replication plot showing the average rate of replication
(p,.05) within sub-studies for a given p-value threshold shows
enriched categories replicate at a higher rate in independent samples.
The vertical intercept is the overall replication rate per category.
doi:10.1371/journal.pgen.1003449.g004

Figure 3. Categorical enrichment for seven diverse phenotypes. The relative pattern of enrichment, as measured by the mean (z-score221)
after intergenic inflation control, of LD-weighted genic annotation categories remain consistent. Results for all phenotypes are shown in Figure S5,
Table S6.
doi:10.1371/journal.pgen.1003449.g003

Differential Enrichment among SNP Categories
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into enrichment are likely to further improve the power of this

approach.

Discussion

Our results show a significant and consistent pattern of

enrichment among genic elements, particularly the 59UTR, exon

and 39UTR categories, for association with diverse complex traits

and disorders. Intergenic SNPs were depleted more than tenfold.

This has important analytical and conceptual implications. The

results suggest that all tag SNPs should not be treated as

exchangeable, but rather functional annotations of the underlying

tagged SNPs can be leveraged in SNP discovery. Moreover, the

results point to a common functional nature of the polygenetic

architecture across diverse complex phenotypes.

GWAS have traditionally treated all SNPs as exchangeable,

implicitly assigning all SNPs equal a priori probability of

association. The current findings suggest that this assumption of

exchangeability is not valid, and that the traditional statistical

approaches to GWAS are highly suboptimal. Sun et al [13] have

laid the groundwork for incorporating this non-exchangeability

into Hypothesis Driven Genome-Wide Association Studies (HD-

GWAS), and further applications and development of such

methods is likely to prove fruitful. To illustrate the utility of these

approaches we used our LD-weighted tag SNP annotations,

combined with an established method for computing stratified

False Discovery Rates, to demonstrate improved discovery of

SNPs in GWAS under this testing framework. Annotation

categories were chosen based on previous literature suggesting

that SNPs in and near genes are likely to harbor many true

polygenic effects. We provide a proof of principle, using intuitive

categories, that a priori information about SNPs, irrespective of

phenotype, can improve discovery of likely non-null SNPs. Given

the wealth of information available for SNP variants, it is likely

that other annotation schemes will potentially yield even greater

enrichment and further increase the gains of our basic approach.

We expect this approach will be of particular importance in

polygenic complex phenotypes. Only a small fraction of the

heritability is explained by currently discovered variants but

converging evidence suggests much more remains buried in

GWAS (i.e., traits with a large ‘‘missing heritability’’) [4] for these

traits.

Moreover, the non-exchangeability of SNPs based on LD-

weighted genic categories has important implications for the

generalizability of estimated SNP effect sizes. In particular, SNPs

in highly enriched categories will have effect size estimates that

replicate strongly in independent samples, whereas SNPs in

impoverished categories will have effect sizes that replicate weakly

in independent samples [17] (Figure S10). Identifying SNPs with

generalizable effects is crucial to improving the predictive power of

polygenic risk scores that combine SNP effects to predict variation

in complex traits and diseases in new samples [24]. Properly

assessing the generalization performance of SNP effect sizes will be

of high importance for personalized medicine based on polygenic

risk scores.

While knowing which SNP categories are enriched for true

associations can guide gene discovery, knowing which SNPs are

unlikely to have an effect is also important and can guide control

of spurious inflation through improved genomic inflation correc-

tion [19,20]. We show how the genic enrichment pattern can be

used for genomic inflation control in GWAS. By estimating

genomic control from intergenic tag SNPs, we can minimize the

contamination of inflation estimates from true polygenic associa-

tions. While emerging studies have suggested that polygenic effects

are detectable in GWAS data [5,6], particularly in and around

genes [6,16], and the presence of these effects is consistent with a

skewed distribution of p-values [17,25] that resembles spurious

inflation [19], differential confounds among our categories could

persist. We provided a null GWAS (Table S11) and found no

indications of spurious enrichment due to differential MAF and

LD structure among our categories. Further, if our findings were

due to spurious category-specific inflation, including differential

population stratification, one would not expect a mirroring

increase in replication across independent samples (Figure 4),

except under the extreme condition where the population

structure of the discovery sample was mirrored in the replication

sample. In addition, the variable shape of the enrichment,

deviating at different points along the expected line for different

phenotypes, is inconsistent with spurious variance inflation. It is

also of importance to note that the presence of spurious category-

specific inflation would imply that any GWAS association within

an enriched category (i.e., tagging an exonic or UTR SNP) should

be considered less reliable. Our findings are consistent with the

presence of true polygenic effects, however, we cannot entirely rule

out contributions of potential confounding effects or alternate

hypotheses. It is highly implausible, however, that they would

explain away both the described enrichment and increased

replication.

Conceptually, our results support findings that aspects of the

genetic architecture are consistent across phenotypes [26], and

previous suggestions from both model organisms [27] and humans

[6,16] that polygenic contributions are greater from variants in

and around genes. Our findings agree with emerging trends in

Figure 5. Enrichment improves discovery using established methods. Among three phenotypes, (A) Height, (B) Crohn’s Disease, (C) and
Schizophrenia, we demonstrate an increased discovery of SNPs at a given FDR when incorporating the enriched genic annotation information into an
established stratified false discovery rate (sFDR; red) framework. SNPs declared significant by sFDR also replicate at a higher rate (Figure S12).
doi:10.1371/journal.pgen.1003449.g005

Differential Enrichment among SNP Categories
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model organisms [26] and post-hoc GWAS analyses [28–30]

suggesting that quantitative traits are affected by a large but

quantifiable number of polymorphisms, inconsistent with ‘infini-

tesimal’ models [31], but notably polygenic. We also show

evidence that tagged variance is proportional to genotypic

variance (Figures S6 and S7), which supports the notion that

common variation explains an important part of the variability in

common diseases and traits [32].

Our findings also suggest that regulatory genic elements may

be particularly enriched for polygenic effects. This is in line with

the most strongly associated SNPs from GWAS, which mainly tag

regulatory genic elements [3]. The 59UTR, specifically, is

important for the regulation of gene expression [33] making it

a compelling candidate for playing a causal role in complex trait

variation [1]. Also, 59UTRs are less conserved evolutionarily than

coding regions [34], despite their noted functionality, pointing to

a potential source for regulatory variation thought to drive

evolutionary differences among primates [35] and other species.

We also found a stronger enrichment of SNPs tagging exons

compared to introns. However, because we are considering tag

SNPs we can only speculate about the functional consequences of

the underlying causal variants.

Exome sequencing studies have identified causal variants for

Mendelian disorders by leveraging hypotheses about the genetic

architecture of these traits and thus focusing on protein changing

variants [36]. While methods are continually improving for

predicting the functional consequences of coding changes, predicting

regulatory function has remained a challenge. Future target capture

methods, deep sequencing efforts and custom SNP array designs, as

well as functional prediction efforts in complex traits may improve

power and utility by adding focus to regulatory elements, in

particular 59UTRs. As other potential annotation categories, such as

transcription factor binding sites, methylation targets, conservation/

selection, and gene expression patterns, become better characterized

the current analyses could be extended to include these.

Materials and Methods

Genome-Wide Association Study (GWAS) Data
Fourteen phenotypes, body mass index (BMI) [37], height, waist

to hip ratio [38] (WHR), Crohn’s disease [39] (CD), ulcerative colitis

[40] (UC), schizophrenia [41] (SCZ), bipolar disorder [42] (BD),

smoking behavior as measured by cigarettes per day [43] (CPD),

systolic and diastolic blood pressure [44] (SBP, DBP), and plasma

lipids [45] (triglycerides, TG, total cholesterol, TC, high density

lipoprotein, HDL, low density lipoprotein, LDL), were considered.

Genome-wide association study (GWAS) results were obtained as

summary statistics (p-values or z-scores) from public access websites

(BMI, Height, WHR, TC, TG, HDL, LDL), published supple-

mentary material (SBP, DBP), or through collaborations with

investigators (CD, UC, SCZ, BD). For CD, pre-meta-analysis, sub-

study specific p-values and effect sizes (z-scores) were obtained from

the study principal investigators. In total these studies considered

more than 1.3 million phenotypic observations, but considerable

sample overlap makes the number of unique individuals much less.

For details, see Text S1 and Table S1.

GWAS Summary Statistics Processing
The summary statistics from the respective GWAS meta-

analyses, derived according to best practices, were used as-is. No

further processing was performed, with the exception of intergenic

inflation control (described below). Results from SNPs with

reference SNP (rs) numbers that did not map to our 1000

genomes project (1KGP) reference panel were excluded.

Positional Annotation Categories
Bi-allelic SNP genotypes from the European reference sample

provided by the November 2010 release of Phase 1 of the 1KGP

were obtained in pre-processed form from http://www.sph.umich.

edu/csg/abecasis/MACH/download/. Using Plink version 1.07

[46,47] 1KGP SNPs with a minor allele frequency less than 1%,

missing in more than 5% of individuals and/or violating Hardy-

Weinberg equilibrium (p,161026) were excluded from the

reference panel. Individuals missing more than 10% of genotypes

were excluded.

Each remaining 1KGP SNP was assigned a single, mutually

exclusive genic annotation category based on its genomic

position (hg19). Genic annotation categories were: 1) 10,000 to

1,001 base pairs upstream (10 k Up); 2) 1,000 to 1 base pair

upstream (1 k Up); 3) 59 untranslated region (59UTR); 4) exon; 5)

intron; 6) 39 untranslated region (39UTR); 7) 1 to 1,000 base

pairs downstream (1 k Down); 8) 1,001 to 10,000 base pairs

downstream (10 k Down), all with reference to protein coding

genes only. Annotations were assigned based on the first gene

transcript listed in the UCSC known genes database [48]. In

total 9,078,405 1KGP SNPs were assigned positional categories.

All positional categories were scored 0 or 1. For further details

see Text S1.

Linkage Disequilibrium (LD)-Weighted Scoring
For each GWAS tag SNP a pairwise correlation coefficient

approximation to LD (r2) was calculated for all 1KGP SNPs

within 1,000,000 base pairs (1 Mb) of the tag SNP using Plink

version 1.07 [46,47]. LD scores were thresholded providing

continuous valued estimates from 0.2 to 1.0; r2 values ,0.2 were

set to 0 and each SNP was assigned an r2 value of 1.0 with itself.

LD-weighted annotation scores were computed as the sum of r2

LD between the tag SNP and all 1KGP SNPs positioned in a

particular category. Each tag SNP was assigned to every LD-

weighted annotation category for which its annotation score

was greater than or equal to 1.0. The resulting LD-weighted

annotation categories were not mutually exclusive such that each

GWAS tag SNP could be annotated with multiple categories.

Summary statistics describing the distribution of scores in each

category for the 2,558,411 SNPs, representing the union of all

GWAS considered, are provided in Tables S2 and S3. Figure S1

provides a schematic of our scoring algorithm. All analyses were

repeated using a second set of LD thresholding parameters and

found to be robust (Text S1 and Figures S13, S14, S15, S16).

Intergenic SNPs
Intergenic SNPs were determined after LD-weighted scoring

and defined as having LD-weighted annotations scores for each

of the eight categories equal to zero. In addition they were

defined to not be in LD with any SNPs in the 1KGP reference

panel located within 100,000 base pairs of a protein coding gene,

within a noncoding RNA, within a transcription factor binding

site nor within a microRNA binding site. SNPs labeled intergenic

were defined to be a specific collection of non-genic SNPs chosen

to not represent any functional elements within the genome

(including through LD). Because of how they are defined these

SNPs are hypothesized to represent a collection of null

associations. Other non-genic categories (1 k up, 10 k up, 1 k

down and 10 k down) were included in our analyses to ensure

SNPs not too far away from genes, but not within protein coding

genes, were represented by non-genic categories and enrichment

due to these SNPs was not solely attributed to LD with genic

categories.

Differential Enrichment among SNP Categories

PLOS Genetics | www.plosgenetics.org 7 April 2013 | Volume 9 | Issue 4 | e1003449



Stratified Q-Q Plots and Enrichment
Q-Q plots compare two probability distributions. For each

phenotype, for all SNPs and for each categorical subset, 2log10

nominal p-values were plotted against 2log10 empirical p-values.

Leftward deflections of the observed distribution from the

projected null line reflect increased tail probabilities in the

distribution of test statistics (z-scores) and consequently an over-

abundance of low p-values compared to that expected by chance.

We qualitatively refer to this deflection as ‘‘enrichment’’ (Figure 1

and Figure 2, Figure S3).

We estimated the significance of the annotation enrichment

using two sample Kolmogorov-Smirnov (KS) Tests to compare the

distribution of test statistics in each genic annotation category to

the distribution of the intergenic category, for each phenotype.

SNPs were pruned randomly to approximate independence

(r2,0.2) ten times and Table S5 reports the p-value corresponding

to the median KS statistics from the ten comparisons.

Intergenic Inflation Control
The empirical null distribution in GWAS is affected by global

variance inflation due to factors including population stratification

and cryptic relatedness [20] and deflation due to over-correction

of test statistics for polygenic traits by standard genomic control

methods [19]. We applied a control method leveraging only

intergenic SNPs that are likely depleted for true associations. All p-

values were converted into z-scores and, for each phenotype, the

genomic inflation factor [20], lGC, was estimated for intergenic

SNPs. All test statistics were divided by l GC.

The inflation factor lGC was computed as the median z-score

squared divided by the expected median of a chi-square

distribution with one degree of freedom or all phenotypes except

CPD, where the .95 quantile was used in place of the median. For

correction statistics see Table S4.

Quantification of Categorical Enrichment
For each phenotype, enrichment was measured as the mean(z-

score221) for each category and normalized by the largest value

per phenotype. The mean(z-score221) is a conservative estimate of

the variance attributable to non-null SNPs, given a standard

normal null distribution and a non-null distribution symmetric

around zero (see Text S1).

Q-Q Plots and False Discovery Rate (FDR)
Enrichment seen in the conditional Q-Q plots can be directly

interpreted in terms of the FDR. Specifically, for a given p-value

cutoff, the Bayes FDR [17] is defined as

FDR pð Þ~p0F0 pð Þ=F pð Þ, ð1Þ

where p0 is the proportion of null SNPs, F0 is the null cdf, and F is

the cdf of all SNPs, both null and non-null. Under the null

hypothesis, F0 is the cdf of the uniform distribution on the unit

interval [0,1], so that Eq. [1] reduces to

FDR pð Þ~p0p=F pð Þ: ð2Þ

The cdf F can be estimated by the empirical cdf q = Np/N/cdf F p

is the number of SNPs with p-values less than or equal to p, and N

is the total number of SNPs. Replacing F by q and replacing p0

with unity in Eq. [2], we get

FDR pð Þ&p=q, ð3Þ

This is upwardly biased, and hence p/q is conservative estimate of

the FDR, and 12p/q is a conservative estimate of the Bayes TDR

[17]. If p0 is close to one, as is likely true for most GWAS, the

increase in bias from setting p0 to one in Eq. [3] is minimal.

Referring to the formulation of the Q-Q plots, we see that FDR(p)

is equivalent to the nominal p-value under the null hypothesis

divided by the empirical quantile of the p-values. Given the 2log10

transformation applied to the Q-Q plots, we can easily read off

{log10 FDR pð Þð Þ&log10 qð Þ{log10 pð Þ ð4Þ

demonstrating that the (conservatively) estimated FDR is directly

related to the horizontal shift of the curves in the stratified Q-Q

plots from the expected line x = y, with a larger shift corresponding

to a smaller FDR. For the TDR plots in Figure 2, we estimated the

TDR for each genic category according to Eq. [4].

Eq. [3] is the Empirical Bayes point estimate of the Bayes FDR

given in Efron (2010). Using Eq. [3] to control FDR (i.e., the

expected proportion of falsely rejected null hypotheses) [22] is

closely related to the ‘‘fixed rejection region’’ approach of Storey

[49,50]. Specifically, Storey [49] showed, for a given FDR a,

rejecting all null hypotheses such that p/q,a is equivalent to the

Benjamini-Hochberg procedure and provides asymptotic control

of the FDR to a if the true null p-values are independent and

uniformly distributed. Storey [49] also noted that asymptotic

control is preserved under positive blockwise dependence, whereas

Schwartzman and Lin [51] showed that Eq. [3] is a consistent

estimator of FDR for asymptotically sparse dependence (i.e. the

proportion of correlated pairs of p-values goes to zero as the

number of hypothesis tests becomes large). Sparse dependence is a

good description of the dependence present in GWAS data; for

example, based on a threshold of r2..05 within 1,000,000

basepairs, we estimate the ratio of correlated pairs (r2..05) to

total pairs of p-values at 0.000128.

Replication Rate
For each of eight sub-studies contributing to the final meta-

analysis in the CD report we independently adjusted z-scores using

intergenic inflation control. For each of 70 (8 choose 4) possible

combinations of four-study discovery and four-study replication

sets, we calculated the four-study combined discovery z-score and

four-study combined replication z-score for each SNP as the

average z-score across the four studies, multiplied by two (the

square root of the number of studies). For discovery samples the z-

scores were converted to two-tailed p-values, while replication

samples were converted to one-tailed p-values preserving the

direction of effect in the discovery sample. For each of the 70

discovery-replication pairs cumulative rates of replication were

calculated over 1000 equally-spaced bins spanning the range of

negative log10(p-values) observed in the discovery samples. The

cumulative replication rate for any bin was calculated as the

proportion of SNPs with a 2log10(discovery p-value) greater than

the lower bound of the bin with a replication p-value,.05.

Cumulative replication rates were calculated independently for

each of the eight genic annotation categories as well as intergenic

SNPs and all SNPs. For each category, the cumulative replication

rate for each bin was averaged across the 70 discovery-replication

pairs and the results are reported in Figure 4. The vertical

intercept is the overall replication rate.

Stratified False Discovery Rates
A multiple linear regression was used to predict the tagged

variance (z2) for each SNP in the height GWAS from the

Differential Enrichment among SNP Categories
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unthresholded LD-weighted annotation scores. Using the category

weights determined from this ‘training’ regression on the height

GWAS, the tagged variance for each SNP was predicted from its

annotation vector for each other phenotype. For each phenotype,

SNPs were grouped into strata according to the rank of this

predicted tagged variance. Enrichment for each stratum was

demonstrated using Q-Q plots as described above (Figure S11).

We note that for Figure 5A the height data serves as both our ‘test’

(for creating strata) and ‘training’ (for detecting enrichment) data,

but for each other GWAS the training and test data is

independent. Sun et al [9] described a stratified False Discovery

Rate (sFDR) procedure which can result in improved statistical

power over traditional FDR methods [22] when a collection of

statistical tests can be grouped into disjoint strata with different

levels of enrichment. In order to demonstrate the utility of using

genic annotation categories in combination with sFDR for

increasing power, we computed the number of SNPs deemed

significant at a given FDR threshold using both traditional [22]

and stratified FDR, where the strata were determined by the

predicted tagged variance for each SNP based on regression

weights determined from the height GWAS summary statistics

(Figure 5). The increase in rejections for a common threshold a
when using sFDR is equivalent to increased power demonstrated

by a ratio of one minus Non-Discovery Rates (1-NDRs) for sFDR

to FDR greater than 1 [23].

We also computed the average proportion of SNPs above a

given rank (i.e. top 1000) that replicated based on unadjusted and

strata adjusted ranks (determined from the sFDR procedure)

across the 70 permutations of four study discovery and four study

replication samples possible in the eight study CD meta-analysis

GWAS (Figure S12). These results demonstrate that for a given

threshold, SNPs ranked via genic category-informed sFDR

replicate in higher numbers than SNPs ranked via traditional

FDR.

Supporting Information

Figure S1 Annotation Category Scoring Schematic. For each

GWAS tag SNP in the 1KGP we estimated r2 LD with all SNPs

within 1 megabase. LD scores were thresholded at r2.0.2. For

each SNP the sum of LD with each genic annotation category was

recorded. SNPs were assigned to categories by thresholding

continuous scores with an inclusive lower bound of 1.0. Positional

(non LD-weighted) scores were recorded as the annotation for the

GWAS tag SNP’s location only.

(TIF)

Figure S2 Correlations among annotation categories and scores.

(A) Heat map displaying the Spearman’s correlation coefficients

among continuous valued LD-weighted annotation scores. (B)

Heat map displaying the Spearman’s correlation coefficients

among thresholded and binarized annotation categories presented

in Q-Q plots. Correlations are reported using the annotations for

the union of SNPs across all GWAS (2,558,411 SNPs).

(TIF)

Figure S3 Enrichment in Height without LD weighted annota-

tion. Q-Q plot showing enrichment of genic annotation categories

using positional scores (non LD-weighted). Enrichment patterns

are present, but less apparent than using LD-weighted annotation

scores (Figure 1). No inflation correction was performed by our

group.

(TIF)

Figure S4 Height before and after Intergenic Inflation Control.

(A) Q-Q plot of height without correction for genomic inflation. (B)

Q-Q plot of height after correction for genomic inflation using the

‘intergenic inflation control’. Note the overcorrection (grey line

below null-hypothesis line, marked by red arrows) in the un-

corrected Q-Q plot in Panel A is resolved in Panel B. Although

slight, because of the log scaling of these plots, this slight deflation

(left of 1.5 on the x-axis of Panel A) occurs over a much greater

proportion of the distribution and thus has a stronger effect on the

mean and median of the distribution than the more visually

apparent inflation in the extreme tails (right of 2 on the x-axis of

Panel A). For lambda values, see Table S4. Only nominal p-values

below the standard genome-wide significance threshold

(p,561028) are shown.

(TIF)

Figure S5 Categorical enrichment for all phenotypes. The

mean(z-score221) for each category of SNPs per phenotype

reveals consistent enrichment across fourteen phenotypes. BD,

Bipolar Disorder; BMI, Body Mass Index; CD, Crohn’s disease;

CPD, Cigarettes per Day; DBP, Diastolic blood pressure; HDL,

High density lipoprotein; LDL, Low density lipoprotein; SBP,

systolic blood pressure; SCZ, Schizophrenia; TC, total Cholester-

ol; TG, triglycerides; UC, Ulcerative Colitis; WHR, Waist-hip-

ratio.

(TIF)

Figure S6 Mean Z2 per decile of genetic variance by category.

The figure shows the relationship between genetic variance

defined as a function of minor allele frequnecy (MAF) by

MAF6(1-MAF) and effect size (mean z-score2) per genic

annotation category for height. The mean is taken at each decile

of genetic variance. The red lines are fits from generalized additive

models to the mean mean observed squared z-scores. Note the

clear increase in effect size with increasing MAF, which shows

similar effect of MAF across categories. The exception is for the

intergenic category which shows little multiplicative effect further

suggesting it harbors a majority of true null SNPs.

(TIF)

Figure S7 Enrichment by MAF category for height and

schizophrenia. The effect of minor allele frequency (MAF) is not

consistent across phenotypes. (A) For height more common SNPs

show a continually larger enrichment than less common SNPs. (B)

For Schizophrenia common SNPs show more enrichment at

moderate to small z-scores, but for larger z-scores less common

SNPs are more enriched.

(TIF)

Figure S8 locfdr plot for all SNPs in Crohn’s disease. Mixture

model fits for all SNPs for Crohn’s disease. Black: empirical z-score

distribution, Purple: estimated non-null distribution, Green line:

smooth estimate of mixture distribution (full distribution), Blue

line: smooth estimate of the null distribution. Diamonds: local false

discovery rate (LFDR) of 0.2. The estimated proportion of non-

null SNPs varies by category, as does the variance in the estimated

non-null effect size.

(TIF)

Figure S9 locfdr plots for genic annotation categories in Crohn’s

disease. Mixture model fits for each annotation category for

Crohn’s disease. Black: empirical z-score distribution, Purple:

estimated non-null distribution, Green line: smooth estimate of

mixture distribution (full distribution), Blue line: smooth estimate

of the null distribution. Diamonds: local false discovery rate

(LFDR) of 0.2. The estimated proportion of non-null SNPs varies

by category, as does the variance in the estimated non-null effect

size.

(TIF)

Differential Enrichment among SNP Categories
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Figure S10 Z-score–z-score plots confirm mixture model

predictions. (A) Expected a posteriori estimates of effect size for a

given observed z-score. (B) Z-score-z-score plot demonstrates the

empirical replication z-scores closely match the expected a posteriori

effect sizes and are strongly dependent upon genic annotation

category.

(TIF)

Figure S11 Regression based strata enrichment. Q-Q plot

enrichment for the regression based strata for (A) Height, (B)

Crohn’s Disease (CD), and (C) Schizophrenia (SCZ). SNPs

predicted to have a higher tagged variance (z2) show greater

levels of enrichment. Enrichment is consistent across these three

phenotypes, despite being determined from a regression model

only using the summary statistics from the height GWAS.

(TIF)

Figure S12 Replication Rates of sFDR versus FDR. For a given

SNP rank threshold (i.e., top 500 SNPs), those ranked by the genic

annotation category-informed stratified FDR show a greater

absolute number of replications, and thus a greater rate of

replication, when compared to the annotation un-informed

standard FDR. When incorporated into an FDR framework, the

enriched genic annotation categories lead to an increased rate of

true discovery among SNPs at a given cut off.

(TIF)

Figure S13 Stratified QQ-plots with different scoring parame-

ters. The original stratified QQ-plots for height (A), Schizophrenia

(B), and Cigarettes per day (C) using LD-weighted annotation

categories created from an LD matrix describing the pairwise

correlation between each GWAS SNP and all 1000 genomes SNPs

(described above) including r2 values greater than 0.2 and within 1

megabase of the target GWAS SNP show a qualitatively similar

pattern of enrichment when the scoring parameters are changed to

include all pairwise r2 values greater than 0.05 and within 2

megabases (Height, D; Schizophrenia, E; Cigarettes per day, F).

(TIF)

Figure S14 Mean(z-score221) plot with alternate scoring

parameters. The patterns among the mean(z-score221) for each

category of SNPs per phenotype is robust to LD-weighted

annotation scoring parameters as the patterns match those shown

in Figure S6. Here we show results when pairwise LD is

thresholded at r2.0.05 and within 2 megabases (original scoring:

r2.0.2 and within 1 megabase). BD, Bipolar Disorder; BMI, Body

Mass Index; CD, Crohn’s disease; CPD, Cigarettes per Day; DBP,

Diastolic blood pressure; HDL, High density lipoprotein; LDL,

Low density lipoprotein; SBP, systolic blood pressure; SCZ,

Schizophrenia; TC, total Cholesterol; TG, triglycerides; UC,

Ulcerative Colitis; WHR, Waist-hip-ratio.

(TIF)

Figure S15 Replication rate among categories with alternate

scoring parameters. A regenerated cumulative replication plot

(Figure 4B) showing the average rate of replication (p,.05) within

independent sub-studies for a given p-value. The enrichment

produced by the alternate LD weighted annotation scoring

parameters (including r2.0.05 and all SNPs within 2 megabases)

results in a similar pattern of increased replication as with the

original parameters (including r2.0.2 and all SNPs within 1

megabases), with the exception of the intergenic category, which

shows a noticeable decrease in the replication rate.

(TIF)

Figure S16 Relationship between total categorical total LD and

z-score2. The mean (z2) of each category, using the height GWAS,

as we change the threshold for inclusion for both the original (A;

including r2.0.2 and within 1 megabases), and alternate (B;

r2.0.05 and within 2 megabases) parameters for LD weighted

scoring. The mean(z2) increases approximately monotonically

each category, but with noticeably different slopes. The 59UTR

category in figure A becomes unstable at high thresholds because

there are very few SNPs remaining. Changing to a more inclusive

LD weighted scoring increases the number of SNPs with high

scores and improves the relationship. This suggests that even

greater enrichment could be achieved by tuning the categorical

inclusion threshold upwards.

(TIF)

Figure S17 Parametric mixture model fits to Q-Q plots. Q-Q Plot

for Height (A) and Crohn’s Disease (B). Solid black lines are actual

data. Dotted black lines are Q-Q curves under the global null

hypothesis. Solid red lines are fitted Q-Q curves from Weibull mixture

model for transformed p-values. Note, upper limit in Q-Q plot y-axes

is 7.3, corresponding to GWAS-significance threshold of p = 561028.

(TIF)

Figure S18 Effect of non-null proportion on Q-Q plots.

Predicted Q-Q Plot for Crohn’s Disease (CD; solid black line)

from parametric Weibull mixture model fit (model given by

Equation [S9]). The blue line is the predicted Q-Q curve of the

CD data if the non-null proportion p1 were 0.001 instead of the

value 0.026 estimated from the CD data. The red line is the

predicted Q-Q curve if the non-null proportion p1 were 0.10.

(TIF)

Figure S19 Effect of sample size on Q-Q plots. Predicted Q-Q

Plot for Crohn’s Disease (CD; solid black line) from parametric

Weibull mixture model fit (model given by Equation [S9]). The

blue line is the predicted Q-Q curve of the CD data if the sample

size were half as large as the true sample size (n = 51,109). The red

line is the predicted Q-Q curve of the CD data if the sample size

were five times as large as the true sample size.

(TIF)

Table S1 Descriptive statistics for each GWAS study. All traits

are highly heritable and summary statistics are from well-powered

studies. All Studies were imputed with using the HapMap phase II

as a reference, with the exception of CD, UC and SCZ that used

HapMap phase III as a reference. These statistics describe the

results of the study in the form they were obtained by our group.

(XLSX)

Table S2 LD-weighted score distribution for the union of SNPs

across all studies. The average score for different categories varies

widely and reflects the relative abundance of the different elements

within the genome. *Note intergenic scores are binary, with a

score of 1 denoting an intergenic SNP.

(XLSX)

Table S3 The number of SNPs per annotation category. The

table shows the number of tag SNPs in each annotation category

from each GWAS without LD based annotation (using only

positional information (No LD) and after LD based annotation

(LD). Note the increased number of SNPs in all annotation

categories, especially in annotation categories such as 39UTR and

59UTR when using LD-weighted categories. BD, Bipolar

Disorder; BMI, Body Mass Index; CD, Crohn’s disease; CPD,

Cigarettes per Day; DBP, Diastolic blood pressure; HDL, High

density lipoprotein; LDL, Low density lipoprotein; SBP, systolic

blood pressure; SCZ, Schizophrenia; TC, total Cholesterol; TG,

triglycerides; UC, Ulcerative Colitis; WHR, Waist-hip-ratio.

(XLSX)
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Table S4 Estimated genomic inflation factors before and after

intergenic inflation control (IIC). We present the estimates from

either all SNPs or intergenic SNPs. The lGC values calculated

before IIC were calculated from the summary statistics as they

were made available to us, either by collaborators or public data

repositories. Many of these studies already had performed a

standard genomic control procedure, adjusting the test statistics

down, to correct for inflation. For these studies our procedure may

correct statistics upwards, increasing the computed lGC values.

We leveraged the intergenic SNPs to estimate inflation because

their relative depletion of associations suggests they provide a

robust estimate of true null SNPs that is less contaminated by

polygenic effects. Using annotation categories in this fashion is

important given concerns posed by recent GWAS [8] about the

over-correction of test statistics using standard genomic control

[15]. Values greater than 1 indicate inflation and values less than 1

indicate an over correction, relative to the theoretical empirical

null distribution. lGC was calculated as the ratio of the median z-

score2 to the expected median of a Chi-square distribution with 1

degree of freedom, for all SNPs and intergenic SNPs indepen-

dently. IIC, Intergenic Inflation Control; BD, Bipolar Disorder;

BMI, Body Mass Index; CD, Crohn’s disease; CPD, Cigarettes per

Day; DBP, Diastolic blood pressure; HDL, High density

lipoprotein; LDL, Low density lipoprotein; SBP, systolic blood

pressure; SCZ, Schizophrenia; TC, total Cholesterol; TG,

triglycerides; UC, Ulcerative Colitis; WHR, Waist-hip-ratio.

(XLSX)

Table S5 Significance of QQ-plot enrichment. The p-values of

the enrichment of the Q-Q plots for all phenotypes compare

intergenic annotation category with each other annotation

category. Each p-value corresponds to the median Kolmogorov-

Smirnov (KS) statistic from 10 iterations of each comparison for 10

different random prunings of SNPs to approximate independence

(r2,0.2). We note that the KS test used is known to be overly

conservative when distributions differ only in the extreme tails.

The results from all categories for CPD, although consistent in

direction with each other phenotype, do not reach significance

likely because the differences are most strongly confined to the

extreme tails. BD, Bipolar Disorder; BMI, Body Mass Index; CD,

Crohn’s disease; CPD, Cigarettes per Day; DBP, Diastolic blood

pressure; HDL, High density lipoprotein; LDL, Low density

lipoprotein; SBP, systolic blood pressure; SCZ, Schizophrenia;

TC, total Cholesterol; TG, triglycerides; UC, Ulcerative Colitis;

WHR, Waist-hip-ratio.

(XLSX)

Table S6 Enrichment Scores. Here we present in a table the

enrichment values used to create Figure 2 and Figure S6, the

normalize mean(z-score2–1). All values are expressed in relative

proportions of the highest category for each phenotype. BD,

Bipolar Disorder; BMI, Body Mass Index; CD, Crohn’s disease;

CPD, Cigarettes per Day; DBP, Diastolic blood pressure; HDL,

High density lipoprotein; LDL, Low density lipoprotein; SBP,

systolic blood pressure; SCZ, Schizophrenia; TC, total Cholester-

ol; TG, triglycerides; UC, Ulcerative Colitis; WHR, Waist-hip-

ratio.

(XLSX)

Table S7 Per category average per SNP total tagged LD. The

average total LD score for GWAS tag SNPs per LD-weighted

genic annotation category for each phenotype is shown. Total LD

is measured as the sum of pairwise LD scores (r2..2) relating each

GWAS tag SNP to all 1KGP SNPs within 1,000,000 base pairs.

Note the consistent pattern across phenotypes, with large variation

between annotaion categories, with highest LD score in 59UTR.

BD, Bipolar Disorder; BMI, Body Mass Index; CD, Crohn’s

disease; CPD, Cigarettes per Day; DBP, Diastolic blood pressure;

HDL, High density lipoprotein; LDL, Low density lipoprotein;

SBP, systolic blood pressure; SCZ, Schizophrenia; TC, total

Cholesterol; TG, triglycerides; UC, Ulcerative Colitis; WHR,

Waist-hip-ratio.

(XLSX)

Table S8 Per category average per SNP number of tagged

SNPs. The average total number of SNP tagged (r2.0.2) by a tag

SNP per genic annotation category for each phenotype is shown.

Note the consistent pattern across phenotypes, with variation

between categories, and highest number in 59UTR. The

distribution of block sizes does match the ordering of enrichment

by category. BD, Bipolar Disorder; BMI, Body Mass Index; CD,

Crohn’s disease; CPD, Cigarettes per Day; DBP, Diastolic blood

pressure; HDL, High density lipoprotein; LDL, Low density

lipoprotein; SBP, systolic blood pressure; SCZ, Schizophrenia;

TC, total Cholesterol; TG, triglycerides; UC, Ulcerative Colitis;

WHR, Waist-hip-ratio.

(XLSX)

Table S9 Per category average MAF. The average minor allele

frequency of GWAS tag SNPs in each genic annotation category

for every phenotype is not consistent with this effect driving our

enrichment patterns. Note the similarities across phenotypes and

annotation categories. BD, Bipolar Disorder; BMI, Body Mass

Index; CD, Crohn’s disease; CPD, Cigarettes per Day; DBP,

Diastolic blood pressure; HDL, High density lipoprotein; LDL,

Low density lipoprotein; SBP, systolic blood pressure; SCZ,

Schizophrenia; TC, total Cholesterol; TG, triglycerides; UC,

Ulcerative Colitis; WHR, Waist-hip-ratio.

(XLSX)

Table S10 Multiple regression analysis predicting log(Z2) in

height. A multiple regression analysis reveals a minimal, but

significant, effect of total LD on the log z2 for height. This

represents a minimal, but significant, effect of overall LD block

size on enrichment. Categorical effects remain independently

strong in this analysis with an effect size order that mirrors

enrichment.

(DOCX)

Table S11 Null GWAS Simulations. We present simulations of

categorical enrichment based on multiple independent null

GWAS simulations using subjects with European ancestry from

the 1000 Genomes Project. Random phenotypes were generated

unrelated to genotypes for each subject, association z-scores were

computed for each tag SNP, and mean(z2) was computed for each

annotation category, using the same procedure as applied to the

actual GWAS data. The means and standard deviations were

computed from 20 independent simulation runs. The results

demonstrate that the observed differential enrichment of annota-

tion categories cannot be explained by category-specific spurious

sources of genomic inflation due to differential LD or MAF.

(DOCX)

Table S12 FDR versus sFDR Discovery. Leveraging the

enriched genic annotation categories to create strata among the

SNPs we show that the stratified false discovery rate (sFDR)

method improves the discovery of SNPs for a given FDR

threshold, across all phenotypes. The numbers reported are after

pruning SNPs for LD at a threshold of r2#0.2.

(XLSX)

Text S1 Supplementary text extending Materials and Methods

and presenting supporting analyses. More details are provided
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with respect to the acquisition, processing and annotating of the

GWAS data used for the main results. The relationship between

QQ-plots and False Discovery Rate is extended and related to our

measures of enrichment. Also, the main results are described

within the context of a mixture-modeling framework. Finally, a

series of control experiments are described and supplementary

references are enumerated.

(DOCX)
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