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Discovery
Recent advances in sequencing technologies have revealed

extensive intratumour heterogeneity (ITH) both within individual

tumours and between primary and metastatic tumours for

different cancer types. Such genetic diversity may have clinical

implications for both cancer diagnosis and treatment with

increasing evidence linking ITH and therapeutic resistance.

Nonetheless, whilst limiting the activity of targeted agents,

tumour genetic heterogeneity may provide a new therapeutic

opportunity through generation of neo-antigens that could be

recognised and targeted by the patient’s own immune system

in response to immune-modulatory therapies. Longitudinal

genomic studies assessing tumour clonal architecture and its

correlation with the underlying immune response to cancer in

each particular patient are needed to follow tumour

evolutionary dynamics over time and through therapy, in order

to further understand the mechanisms behind drug resistance

and to inform the development of new combinatorial

therapeutic strategies.
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Introduction
The existence of distinct subpopulations of cancer cells

within a tumour harbouring different behavioural pheno-

types, including tumourigenicity, ability to metastasise

and evolve resistance to treatment, has been recognised

for many years [1]. Recent advances in sequencing tech-

nology have given genetic insight into the extent of

intratumour heterogeneity (ITH) (for review see [2]),

and have contributed to the opinion that ITH is not

simply a tumour characteristic, but through the resolution
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of distinct subclones, may also have the potential to

forecast risk of tumour progression and therapeutic out-

come. The pattern of genomic instability, and therefore

ITH, in tumours can be generated by different processes

indicative of clinical outcome. Chromosomal instability

(CIN), an initiator of ITH, is associated with poor prog-

nosis in several tumour types [3–5]. Conversely, micro-

satellite instability (MSI), also a driver of ITH, is

associated with good prognosis in colorectal cancers [6].

Therefore, the relationship between ITH and outcome is

likely to be complex and dependent not only on the

mechanisms generating ITH in individual tumours but

also on tumour extrinsic factors such as the potential

indirect impact that different forms of ITH may have

on the host immune response [7��].

In this article we review the clinical implications of ITH for

the genetic stratification of tumours, the emerging evi-

dence that suggests the need to investigate the changing

nature of tumour subclonal architecture through therapy

and the potential impact of such diversity on anti-tumour

immunity. We argue that an in-depth understanding of

tumour evolution over time, the mechanisms driving

tumour diversity and its impact on immunity may lead

to the improved management of cancer patients (Figure 1).

Intratumour heterogeneity and clonal
evolution
Phenotypic heterogeneity observed in tumours results

from both genetic and non-genetic causes of heterogen-

eity. Spontaneous tumours are known to arise through

Darwinian-like somatic clonal evolution involving the

acquisition of ‘driver’ events, such as genetic mutations

or copy number variations, believed to affect cancer cell

proliferation or survival, along with ‘passenger’ events,

assumed to be phenotypically silent without a selective

fitness advantage [8]. Non-genetic causes of heterogeneity

include epigenetic changes [9], differentiation hierarchies

as a result of cancer stem cells [10], stochastic biochemical

processes within individual cells and heterogeneous

tumour microenvironments [8]. Processes of genetic diver-

sification promote tumour progression through clonal evol-

ution so that tumours appear to be composed of evolving

cell populations. The linear model of somatic tumour

evolution is that of clonal succession, where a series of

clonal expansions are triggered by the acquisition of driver

events conferring fitness gain, outcompeting and outgrow-

ing other clones [11]. This model implies that tumours are

homogenous for functionally significant mutations, and

whilst some tumours are found to evolve through linear
Current Opinion in Pharmacology 2013, 13:497–503
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Figure 1
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(a) Tumour-intrinsic representation of clonal evolution with eventual outgrowth of resistant subclones due to selection pressures, such as cancer

treatment, and the emergence of new subclones with continued tumour progression. (b) Tumour-extrinsic representation of potential immunological

aspects of clonal evolution. With continued clonal evolution, there is the potential for a broader repertoire of tumour-associated neo-antigens

recognised as non-self leading to increased T cell infiltration with higher T cell receptor binding affinity. As a consequence, the expression of immune

inhibitory receptors, such as PD-1, PDL-1 and CTLA-4, may also be higher. Antibody blockade of such receptors may allow therapeutic intervention

that takes advantage of such neo-antigen heterogeneity within a tumour.
steps [12��], there is increasing evidence for the existence

of genetically distinct clonal subpopulations with substan-

tial genetic divergence coexisting within different regions

of the same primary tumour, between primary and sec-

ondary tumours, and within metastases [13��]. An alterna-

tive model of cancer evolution, distinct from the stepwise

accumulation of somatic genetic alterations, is that of

chromothripsis, in which a cataclysmic one-off genomic

event causes massive DNA alterations acting as a driving

force for cancer development and progression [14].

Evidence for intratumour heterogeneity
Recent advances in massively parallel sequencing tech-

nologies have enabled the analysis of the complex
Current Opinion in Pharmacology 2013, 13:497–503 
clonal architecture of both primary and metastatic

tumours [15]. Patterns of clonal composition indicate

tumour evolutionary paths that underlie tumour pro-

gression. An understanding of such evolutionary

dynamics is essential in deciphering the clonal origins

of metastases and therefore the metastatic process in

general, as well as eliciting the mechanisms underlying

therapeutic resistance. Several studies have demon-

strated genetic diversity within tumours and inferred

tumour progression by comparing the mutations and

clonal composition between primary and metastatic

tumours in different cancer types, including breast,

renal, pancreatic, brain and ovarian (for a review see

[2,16,17�]).
www.sciencedirect.com
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Intratumour heterogeneity and clinical
diagnosis
The validation of predictive biomarkers may be simpler

and less subject to tumour sampling bias when present in

all regions of a tumour and sustained during disease

progression. However, ITH for the expression of genetic

and phenotypic biomarkers has been shown in several

tumour types. In breast cancer, the amplification of HER2
predicts response to trastuzumab but its distribution can

be heterogeneous in primary tumours and associated with

shorter disease-free survival times compared to patients

with homogenous HER2 amplification [18,19]. Yoon et al.
[20] showed that heterogeneous HER2 amplification in

oesophageal adenocarcinoma independently predicted

worse disease-specific survival and overall survival com-

pared to non-heterogeneous HER2 amplified tumours.

Primary and metastatic tumours can evolve indepen-

dently and acquire different phenotypes leading to sig-

nificant genetic divergence, and therefore discordance,

between primary and metastatic tumours in terms of

biomarkers detected in the diagnostic biopsy [21]. In

non-small cell lung cancer (NSCLC), activating

mutations in EGFR predict response to gefitinib, but

discordance for the EGFR mutation has been shown

between primary and metastatic tumours [22,23]. In

primary gastric cancers, heterogeneity of HER2 amplifi-

cation and HER2 protein overexpression has been shown

within the same tumour, and between diagnostic biopsies

and resected tumours [24]. Discordance in HER2 ampli-

fication between primary and metastatic tumours has also

been shown in breast cancer [25,26]. In colorectal cancer,

Vakiani et al. [27] found mutational concordance between

primary and metastatic tumours for KRAS, NRAS, BRAF,
PIK3CA and TP53 genes. However, in patients with a

history of more than one colorectal primary tumour and

interval treatment, there was evidence for discordance in

TP53. These examples demonstrate that relying on a

single tumour biopsy may lead to sampling bias in some

cases and risk missing potentially therapeutically relevant

lesions or contribute to the allocation of a mutation as

actionable without establishing clonal dominance [28].

Furthermore, distinct subclonal populations appear to be

unequally distributed over space and time, indicating that

existing biomarkers are subject to change during disease

progression [29]. This may pose a challenge for thera-

peutic strategies if chosen based on an archival primary

tumour biopsy.

Intratumour heterogeneity and therapeutic
outcome
Most advanced cancers still remain incurable despite

significant progress in the fields of cancer research and

therapy. Response to therapy is generally of limited

duration. This may be due to the inevitable evolution

and proliferation of resistant subclonal populations, which

may exist before the onset of treatment, under the
www.sciencedirect.com 
selective pressure of therapies [30,31��]. In NSCLC,

resistance to the EGFR TKI gefitinib is associated with

the positive selection of cells harbouring the gatekeeper

T790M mutation known to confer insensitivity to gefitinib

[32��]. Su et al. [33] demonstrated that in patients with

EGFR mutations treated with EGFR TKIs, the presence

of low frequency subclones harbouring T790M mutations

before the onset of treatment was associated with shorter

progression-free survival, and Turke et al. [34�] showed

that the presence of subclones with MET amplification

was associated with EGFR TKI resistance. In colorectal

cancer, wild-type KRAS predicts sensitivity to anti-EGFR

antibody therapies such as panitumumab. Diaz et al.
[31��] showed that by monitoring circulating tumour

DNA in patients treated with panitumumab for initially

KRAS wild-type tumours, the emergence of mutations in

KRAS could be detected during the course of therapy

resulting in acquired resistance. They concluded that

subclonal populations harbouring KRAS mutations

existed before commencing treatment, and that under

the selective pressure of anti-EGFR blockade, resistant

subclones rapidly expand and repopulate the tumour. In

chronic myeloid leukaemia and gastrointestinal tumours,

resistance to imatinib due to mutations in the BCR-ABL

fusion protein [35] and KIT [36] respectively, has also

been demonstrated in the context of clonal evolution. It

should be noted that not all cases of therapeutic resistance

are necessarily the result of genetic heterogeneity and

that non-genetic causes, such as stochastic epigenetic

heterogeneity, may also allow the emergence of resistant

clones under selection [37]. These examples demonstrate

that relapsed clones in metastatic tumours can often be

traced back to low frequency subclones before the start of

treatment, hence indicating that the extent of ITH is a

likely important determinant of therapeutic outcome.

In light of increasing evidence in support of ITH and its

role in treatment resistance, there is a need for alternative

therapeutic approaches. Gillies et al. [38] argue that sub-

clonal populations that respond to initial therapy pass

through an evolutionary bottleneck rendering them

highly susceptible to a second therapy [39��], and that

drug resistance in this instance, and the choice of this

second therapy, could be anticipated. For example, com-

bined therapy in EGFR mutant NSCLC with an EGFR

TKI and EGFR-specific antibody could prevent resist-

ance associated with the expansion of a subclone harbour-

ing a T790M mutation. Approaches like this would require

the development of biomarkers predicting likely resist-

ance mechanisms in different patients, and such mech-

anisms could be targeted either in combination, or

alternating, with standard treatment regimens [40].

Treatment dosing schedules could be adapted to prolong

the suppression of resistant subpopulations, for example,

drug holidays in androgen-dependent prostate cancer [41]

and melanoma [42]. Other adaptive approaches could

involve combining standard treatment regimens with
Current Opinion in Pharmacology 2013, 13:497–503
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drugs targeting phenotypes known to contribute to

tumour heterogeneity, such as altered tumour vasculature

and altered glucose metabolism [38].

Intratumour heterogeneity and anti-tumour
immunity
Whilst emerging evidence supports the notion that ITH

limits the efficacy of conventional and targeted thera-

peutics, its overall effect on the immune response to

cancer may still be of potential benefit for the patient

since intratumoural mutational diversity can provide neo-

antigens that may be perceived by the immune system as

non-self, producing unique opportunities for the gener-

ation of anti-tumour immunity. The wealth of data now

being generated through whole genome sequencing of

tumour samples provides further support for this concept.

In silico-based computer algorithms combined with high-

throughput post hoc analyses of data originally generated

by Sjoblom et al. [43] revealed that a significant number of

candidate tumour neo-antigens arise as a consequence of

the multiple gene mutations occurring in breast and

colorectal cancers [44]. Furthermore, previous studies

in colorectal cancers have shown an association between

MSI and good clinical outcomes [6]. MSI is caused by

defects in the DNA mismatch-repair system leading to

progressive accumulation of mutations, in particular

frame-shift mutations that could positively impact immu-

nity. In keeping with this, colorectal tumours with MSI

have distinct pathological features, including increased

tumour-infiltrating lymphocytes, which have also been

associated with better prognosis [45]. One potential

explanation is the greater mutational load in tumours

with MSI in comparison to CIN tumours, which could

result in a higher load of mutated self-peptides or neo-

antigens seen as non-self by the immune system, increas-

ing tumour immunogenicity and promoting enhanced T-

cell activation and tumour infiltration [46]. Based on this,

conventional or targeted agents capable of inducing sub-

stantial tumour cell death might produce an in vivo
‘vaccine’ or priming effect which could be further

enhanced by interference with immune-modulatory path-

ways. Whilst the neo-antigenic repertoire generated by

ITH could be seen as non-self by the immune system, the

type of tumour cell death and inflammatory environment

within the tumour will define their immunogenicity and

the final outcome of the immune response (i.e. tumour

progression versus regression). Importantly, immunity to

tumour-associated antigens can be potentiated given

proper identification and manipulation of immune-regu-

latory checkpoints restricting T cell function [47,48].

This has been recently illustrated by several high profile

clinical trials in which antibody blockade of the immune

inhibitory receptors PD-1, PD-L1 or CTLA-4 produced

significant clinical benefits against a variety of cancers,

including metastatic melanoma [49–52]. In addition to

CTLA-4 and PD-1, a large number of trials are currently

investigating the anti-tumour activity of monoclonal
Current Opinion in Pharmacology 2013, 13:497–503 
antibodies against related inhibitory receptors (Lag-3

and B7-H3), as well as of agonistic antibodies against

immune-stimulatory receptors. In this particular group,

antibodies against different members of the tumour

necrosis receptor (TNFR) family (such as OX40, GITR,

CD40, CD27 and 4-1BB) are under active investigation

either as single agents or in combination with

chemotherapies and targeted-therapies (for a review

see [53�]).

Future directions and conclusion
Although ITH may complicate diagnostic and treatment

decisions, it can be clinically useful in predicting clinical

outcome. In Barrett’s oesophagus [54�] and breast cancer

[55,56], ITH has been shown to predict invasive pro-

gression. Conversely, extreme CIN, an initiator of ITH,

has been shown to be associated with improved long-term

survival in oestrogen receptor (ER)-negative breast can-

cer [57�,58]. Extensive ITH in tumours provides greater

opportunity for adaptive responses to selective pressures

such as hypoxia, chemotherapy and radiotherapy [39��]
and therefore, measurements of genetic and phenotypic

heterogeneity may be of significant value in patient risk

stratification [59]. Reliable methods to interrogate

tumours and elicit their underlying clonal architecture

need to be developed in order to test the association

between distinct mechanisms of ITH and clinical out-

come. ITH poses a challenge for effective cancer therapy,

and the resulting heterogeneous expression of biomarkers

may have implications in terms of accurate diagnosis and

treatment outcome [17�]. Longitudinal genomic analysis

of tumours at diagnosis, during treatment and at relapse

may inform new approaches and shine a light upon

tumour adaptive mechanisms through therapy. Clinical

trials and biomarker studies should consider such designs

to demonstrate the potential benefit of adaptive therapy

in response to tumour evolution through the disease

course. Obtaining multiple tumour biopsies to study

tumour clonal architecture in such trials may be clinically

challenging but should at least be considered. Potential

non-invasive alternatives to re-biopsy in patients with

multiple or inaccessible metastases may include molecu-

lar imaging and circulating tumour DNA [60].

With the development of improved technologies allowing

the interrogation of ITH, our understanding of tumours

and their evolutionary trajectories may lead to better

design of clinical trials in search of improved therapeutic

interventions to anticipate the emergence of drug resist-

ance mechanisms and generate improved predictive and

prognostic biomarkers [61,62]. Whilst cancer cells cannot

anticipate future evolutionary events or the selective

pressures they may encounter, we should prepare for,

and proactively manage, such changes and use our

acquired knowledge of tumour evolutionary dynamics

to predict and guide treatment strategies in order

to attempt to improve patient outcomes. Underlying
www.sciencedirect.com
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mechanisms of ITH that result in increased mutational

diversity may in theory result in the generation of neo-

antigens recognised by the immune system as non-self.

The pipeline of new immunotherapeutic drugs offers a

newer and larger window of opportunity through which

tumour sensitivity could be enhanced via the rational

combination of targeted and immune-therapies where

targeted therapies will promote tumour destruction and

neo-antigen exposure (generated through ITH) to the

immune system, whilst manipulation of immune-regulat-

ory pathways will potentially enable a powerful, diverse

and durable response against the tumour.
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