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ABSTRACT  

Over the past decade and a half, improvements in micro-

electro-mechanical sensors (MEMS) technology and 

multisensor integration has enabled inertial sensors to be 

deployed over a much wider range of navigation 

applications [1]. However, factory calibration of these 

devices currently increases their cost by around $1000 per 

unit, this means that adding additional sensor triads is 

economically viable if it means that this expensive 

calibration can be avoided.  

 

This paper presents three advanced array-based techniques 

that could be applied to improve the performance of low-

cost MEMS IMUs. These use knowledge of the sensor 

characteristics to obtain a more accurate estimate of 

specific force and/or angular rate than a simple average of 

the array’s constituent sensors, which is the technique 

commonly used in the existing literature. 

 

The three techniques presented are: 

1. Arranging the sensors so that their sensitive axes are 

in opposing directions, so as to significantly reduce 

the effect systematic errors that are correlated across 

sensors of the same design. 

2. Exploiting the performance differences between the 

in-plane and out-of-plane sensors on a sensor triad. 

3. Combining the output of sensors with different 

operating ranges to increase the accuracy of the 

measurement during periods of relatively low 

dynamics without clipping and distorting under high 

dynamics. 

 

In order to test the feasibility of these ideas we 

constructed a hardware platform that can record the output 

of an array containing multiple MEMS inertial sensors. 

Several experiments were conducted with this hardware to 

make characterisations of the systematic and stochastic 

errors of these sensors. The results are used to determine 

the feasibility of each technique for each sensor.  

 

We find that for each technique proposed at least one of 

the models of inertial sensor tested could potentially 

benefit. 
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1. INTRODUCTION 

Over the past 15 years, rapid advances have been made in 

micro-electro-mechanical sensors (MEMS) technology, 

which allows cheaper, smaller and lower power 

consumption inertial measurement units (IMUs) and 

inertial navigation systems (INSs). This has opened up 

new applications for IMUs across a range of navigation 

technologies [1]. Examples include pedestrian dead-

reckoning using step detection technology [2, 3], aiding of 

GNSS signal tracking during jamming [4, 5], and 

simultaneous localisation and mapping (SLAM) using 

radio signals [6]. Inertial sensors can also be used for 

context detection enabling a navigation system to adapt to 

changes in the surrounding environment and host 

behaviour [7]. 

 

However, to achieve optimal performance, a MEMS IMU 

must be calibrated in the factory [15], which increases the 

cost from a few tens of dollars to more than $1,000. In this 

paper, we present and investigate several techniques for 

using consumer-grade (i.e. low-cost) MEMS IMUs 

without prior factory calibration. The viability and 

effectiveness of the techniques will be assessed.  

 

The process by which an INS-based navigation system 

works is illustrated in Figure 1. It shows how the various 

techniques used to improve navigation performance fit 

into the chain. For example, the integration of other 

sensors (such as GNSS) fits in between the IMU derived 

estimates of (changes in) user position and, by way of an 

integration algorithm, the information from the other 

sensors is used to come up with a combined estimate of 

position [1]. In this paper we are focussing on sensor level 

techniques, that is, techniques which use the output 

signals of the accelerometers and gyroscopes and improve 

the estimates of specific force and angular rate available 

from them.  

 

This research is applicable to many different low-cost 

navigation and attitude determination applications. For 

micro air vehicles (MAVs), it can be used to improve the 

performance of both the attitude and heading reference 

system (AHRS) critical to flight control and the 

INS/GNSS integrated navigation system. It can improve 

the performance of foot-mounted inertial navigation for 

sports, dismounted soldier navigation and indoor 

positioning database generation. It can enhance robot and 

land vehicle navigation, where inertial sensors are often 

integrated with odometry (wheel-based or visual). Finally, 

IMUs are increasingly being deployed in medicine to 

enable surgical instruments to be positioned more 

precisely. 

 

The rest of this paper proceeds as follows. In Section 2 

three advanced sensor array techniques will be proposed 

which could be used to improve navigation performance. 

In Section 3 the development of a hardware test-bed 

required to examine the feasibility of the techniques 

proposed is detailed. Section 4 outlines a series of 

experiments which were conducted with this hardware, to 

characterise various sensor errors. The results of these 

experiments are presented in Section 5 with both 

stochastic (Section 5.1) and systematic (Section 5.2) errors 

being examined. In Section 6 the implications of these 

results for the sensor level ideas proposed in Section 2 are 

examined. The conclusions are presented in Section 7 and 

future work in Section 8. 

 

2. ADVANCED SENSOR ARRAY TECHNIQUES 

In order to improve the performance of an inertial 

navigation system additional information is required. This 

additional information might be a characterisation of the 

motion profile or it might be information from another 

kind of sensor (e.g. GNSS). Here, we consider using extra 

inertial sensors to provide this additional information. 

Thus, we propose new ways of using arrays of two or 

more similar IMUs all measuring the same specific force 

and angular rate. 

 

As discussed in Section 1, the cost of the laboratory 

calibration process is much higher than the hardware cost, 

so using multiple inertial sensors is economic. This has 

been tried before, although in almost all previous cases the 

approach has been simply to take an average specific 

force/angular rate signal from the array [8], or to track of 

the position solutions from two INSs separately and use 

these for fault detection and integrity monitoring [9]. In 

this paper we investigate more sophisticated techniques by 

examining: common-mode errors in sensors of the same 

design (Section 2.1); differences between the in-plane and 

out-of-plane sensors on an accelerometer or gyroscope 

triad (Section 2.2); and the complementary properties of 

sensors with different measurement ranges (Section 2.3). 

These techniques have the potential to give significantly 

better performance than simple averaging. 
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Figure 1: The Navigation system processing chain. The positions in which different techniques to improve navigation 

performance fit are underneath. 



2.1 The common-mode errors of different sensors of 

the same design 

There are many types of errors that an inertial sensor can 

be subject to, both systematic and stochastic. These 

include noise (stochastic), bias, scale factor errors, 

temperature sensitivity (systematic) and many others [1, 

10]. The specifications of most inertial sensors state that 

particular types of error may be positive or negative by the 

same amount. One may naively assume that the error of a 

device is drawn randomly from this range, although a 

correlation between devices can be shown. Yuksel et al. 

[11] showed that for two ADIXRS150 gyroscopes the 

‘zero-rate level change vs. temperature’ of one axis was in 

the same direction and similar magnitude for both sensors. 

Thus if the 3-axis sensors were arranged so their sensitive 

axes were facing in opposite directions when the output 

was combined their ‘bias drift with temperature’ would at 

least partially cancel out. This arrangement is shown in 

Figure 2. 

 

In this paper we test the idea proposed by Yuksel et al. for 

temperature drift compensation and gyroscope g-

dependent error for different MEMS sensors. We also aim 

to extend this idea to compensate other errors, which 

depend on an even power of the sensors input and are 

correlated between sensors of the same design. This 

includes all bias-like errors (0
th

 power) and components of 

non-linearity which depend on the output squared but it 

will not work for odd-order errors, such as scale factor 

errors, or errors which are not correlated between two 

sensors of the same model. Therefore one should expect 

this concept to work for some errors on some sensors, and 

it certainly will not work for every error on all sensors.  

 

However, even when this idea does not help it does not 

produce any negative effects. For example, the noise 

averaged from two anti-parallel sensors will be no 

different to the noise from two sensors in the same 

orientation, similarly first order errors or uncorrelated 

errors will be unaffected. This means that there is no 

particular downside to using this technique. 

 

Figure 2: An illustration of sensors with aligned and 

opposing x and y sensitive axes. 

2.2 The different characteristics of in-plane and out-of-

plane sensors 

MEMS inertial sensor fabrication is often conducted using 

technology developed for silicon micro-processors. This is 

based on building up layers of thin silicon wafers and thus 

there is not full freedom to create 3-D structures [10]. For 

3-axis inertial sensors, usually all three sensors are 

constructed as a unit, so they must share the same 

construction plane. As a result, while the two sensors 

sensitive to motion along or about the in-plane axes 

(typically x and y) may be of an identical design rotated 

by 90 degrees, the out-of-plane sensor (typically z) must 

be of a different design.  

 

In some cases the manufacturer specifies that the 

performance of the out-of-plane sensor is different e.g. for 

the ADXL345 [13]. In other cases the specifications are 

the same for in- and out-of-plane sensors, such as the 

BMA180 [14]. If the properties are significantly different 

the navigation performance of the system will become 

non-isotropic, perhaps with larger drift in one direction 

than the others. An array could be constructed, that 

combined in-plane and out-of-plane sensors in the same 

direction by having the MEMS sensors mounted on two 

perpendicular circuit boards. This would enable a sensor 

of the better performing design to be used for every axis.  

 

2.3 The complementary properties of MEMS sensors 

with different measurement ranges. 

The final idea we shall be examining in this paper 

concerns arrays of MEMS inertial sensors with different 

measurement ranges. 

 

We define the measurement range or full scale of a 

MEMS sensor as the maximum specific force, or angular 

rate, that it can measure; this might be for example +/- 4g 

or +/- 500 degrees per second (dps), respectively. The 

fundamental assumption of this idea is that if one has two 

sensors of the same quality but different measurement 

range the lower-range sensor will measure small inertial 

forces more accurately.  

 

The validity of this assumption is tested for three 

particular models of MEMS inertial sensor later in this 

paper. However one error that certainly will scale with 

measurement range is quantisation error. This is created 

when a continuous quantity is converted to a discrete 

number of levels by an analogue-to-digital converter 

(ADC). If two sensors both have the same resolution 

ADCs, the number of discrete levels they can measure 

will be the same. So the smallest increment that can be 

measured will scale with the measurement range, and thus 

the quantisation error will increase for higher 

measurement range sensors. Additionally we hypothesise 

that the magnitude of other errors such as noise might 

scale with dynamic range, as it is might be equally 

difficult to make a +/-16g accelerometer accurate to +/-

160 milli-g as to make a +/-4g accelerometer accurate to 

+/- 40 milli-g. 

 



The technique proposed here to exploit this property is to 

combine the outputs of an array of inertial sensors 

according to the magnitude of the inertial forces sensed. 

While the system is experiencing low-dynamics the lower-

range (assumed to be higher accuracy) sensor is used, but 

when the forces exceed the range of this sensor the high-

range sensor is used, thus avoiding the signal being 

‘clipped’. This is where any signal where the magnitude is 

outside of the measurement range is read as the maximum 

signal that can be sensed. 

 

The simplest implementation of such a system would be a 

switch between two (or more) sensors, where at some 

threshold (close to the maximum measurement range of 

the low-range sensor) the array’s output switches from 

100% low-range sensor to 100% high range. However for 

a number of reasons this is not optimal. For example, as a 

sensor gets close to the extremes of its measurement range 

one might assume that its reliability and accuracy become 

lower as it gets close to ‘maxing out’, as for instance the 

effect of nonlinearity increases [21]. This makes an abrupt 

switch undesirable. Also as there is considerable random 

noise on both sensors signals, the high-range sensor could 

still potentially provide useful information in the low-

dynamics domain, this could be used to ‘average-out’ 

some of the noise (or other errors). However a weighted 

combination of the two outputs could be designed that is 

unaffected by these potential issues. The weighting system 

at very low dynamics would favour the low-range sensor, 

and its relative contribution would decrease as the 

dynamics increase reaching 0% at the end of its range. 

However, the precise weighting factor used should depend 

on the relative improvement in performance given by the 

decrease in measurement range, and its optimal 

composition will be the subject of future work 

 

For all the three ideas proposed here, the key question is 

whether the performance improvement justifies the 

increased size, cost and power consumption of adding the 

additional sensors.  

 

3. EXPERIMENTAL HARDWARE 

DEVELOPMENT 

In order to assess the feasibility of the ideas presented in 

Section 2 it is necessary to have a hardware test-bed that 

can be used to record the output from an array of MEMS 

inertial sensors. In this section, the hardware and firmware 

used are described: the requirements for the design in 

Section 3.1 and the features selected to fulfil those 

requirements in Section 3.2.  

 

3.1 Requirements 

The main requirement for the hardware test-bed is that it 

should be able to log the output data of an array of MEMS 

inertial sensors, without a limit on the number of sensors 

of a particular type that could be connected. The second 

requirement is that sensors must be able to be turned on 

and off and re-configured in the on-board firmware 

without requiring any physical re-arrangement (or re-

soldering) of the system. 

It is also desirable that the test-bed be able to operate and 

log data free of a wired connection for several hours at a 

time. To perform some of the tests required the test-bed 

must be mounted in an orthogonal sided (precisely 

cuboid) frame. A frame, shown in Figure 3, was rapid-

prototyped from nylon and the orthogonality of its sides 

checked.  

 
Figure 3: The Hardware test-bed. The box reference frame 

is visible.  

 

3.2 Selection of features 

The hardware built for this paper is based around the 

Arduino hardware and software platform 

[http://www.arduino.cc/]. This platform was primarily 

selected for ease of use and the simplicity of re-

programming. The model used is an Arduino Pro Micro 

3.3V. The Arduino both supplies all the sensors with a 

regulated power supply and acts as the master for 

communication with the sensors.  

 

In this paper we test 3 models of MEMS inertial sensors. 

They are all ‘digital sensors’, i.e. sensors with analogue-

to-digital converters (ADCs) built into the sensor chip. 

They are Bosch BMA180 accelerometers, Analogue 

Devices ADXL345 accelerometers and ST Microtronics 

L3G4200D gyroscopes [12, 13, 14]. The test-bed contains 

4 BMA180s, 2 ADXL345s and 3 L3G4200Ds. These will 

be referred to in the results and figures as BMA1, BMA2, 

BMA3, BMA4, ADXL1, ADXL2, Gyro1, Gyro2, and 

Gyro3. The sensors are (deliberately) positioned on the 

circuit board so that their sensitive axes are in different 

directions. Their nominal orientations are given in Table 

1. The array reference frame is defined relative to the 

sides of the box. 

 

All the inertial sensors chosen have selectable 

measurement ranges, that is, they can be run at different 

operating ranges selectable through firmware. This was 

done because in order to test this assumption in Section 

2.3, we need to pick sensors which are 'of the same 

quality' but have different measurement ranges. MEMS 

inertial technology has been increasing in performance 

rapidly [1, 10]. So, even if we took two sensor models 

from the same manufacturer, it is possible that one would 

use a design and/or a construction technique that is older 

and lower performance, despite similar prices.  

http://www.arduino.cc/


However, using sensors that have a programmable 

measurement range enables us to test the factor of 

measurement range setting in isolation. We chose the 

three sensors used in the test-bed with this in mind. 

However, the ADXL345 accelerometer has a fixed 

conversion from LSB to milli-g (4mg/LSB) for all 

measurement ranges. This means that while it is a 13-bit 

sensor at 16g (although it is not really, see Section 5.1.2) 

it is only a 10-bit sensor at 2g, so we are not comparing 

like with like, as such we did not test it at multiple 

measurement ranges. 

 

Sensor 

Name 

Sensitive axis corresponding to box frame 

+X +Y +Z 

ADXL1 -X -Y +Z 

ADXL2 -X -Y +Z 

BMA1 +Y -X +Z 

BMA2 -Y +X -Z 

BMA3 +Y -X -Z 

BMA4 -Y +X +Z 

Gyro1 +X +Y +Z 

Gyro2 +X -Y -Z 

Gyro3 -X -Y +Z 

Table 1: Approximate sensor sensitive axis orientation 

with respect to the body frame (also see Figure 4). 

 

Additionally the hardware test-bed includes a Bosch 

BMP180 temperature and pressure sensor [16], which acts 

as an independent temperature sensor. Two Honeywell 

HMC5883 magnetometers [17] are also incorporated but 

are not used for this paper. The test-bed is shown in 

Figure 4. 

 

The sensors communicate with the microcontroller by the 

inter-integrated-circuit (I2C, or I
2
C) protocol, which 

allows a large number of devices to communicate with a 

master device using only two wires as each slave device is 

assigned a fixed ‘address’ [18]. However, as each of the 

MEMS inertial sensors used here can only be set to 

communicate on one of two hardwired addresses, 

communicating with more than two of a particular type 

requires a ‘bus-splitter’. In this case we use a 

dsscircuits.com I2C multiplexer board, containing an NXP 

Semiconductors PCA9544A 4-channel I2C-bus 

multiplexer. 

 

The power, which is regulated by the Arduino, is supplied 

from an 850mAh lithium polymer battery. This gives a 

running time of in excess of 18 hours on a single charge.  

 

The firmware running on the Arduino board is written in 

the Arduino language (similar to C++), using code 

adapted from the manufacturer supplied libraries. The 

firmware works in two parts. First, on start-up, the 

microcontroller configures each sensor, including setting 

programmable registers such as measurement range and 

output data rate. Second, the firmware continuously loops 

through recording a timestamp, reading all the sensors 

(unless only a subset of them are required) and then 

writing all the data to the Micro SD card 

 

Figure 4: The hardware test bed, major components are 

labelled. The frame axes included in the bottom left hand 

corner.  

 

4. EXPERIMENTS 

Using the test-bed described in Section 3, several different 

types of experiment were conducted in order to analyse 

the characteristics of the sensors and thus determine the 

feasibility of the ideas presented in Section 2. 

 

To conduct these experiments we did not have access to a 

sophisticated calibration rig or high performance reference 

IMU. However this is not a problem as we do not intend 

to replicate factory calibration, rather to see what is 

possible with only equipment that would be available to 

the end-user.  

 

The main classes of experiments conducted were:  

 static one-sensor experiments to maximise logging-

rate;  

 experiments where all the sensors were run and data 

was recorded for a specific time period on each of the 

faces of the “calibration cube”;  

 static experiments where the test bed started at room 

temperature and was heated and then allowed to cool; 

and 

 a final set of static experiments to compare the turn-

on and in-run bias variation.  

 

All of the experiments were conducted on a Newport RP 

reliance optical table, which is both damped and flat to 

eliminate contamination of the measurements from 

external vibration and improve repeatability. 

 

The static one-sensor experiments were conducted 

separately for each of the sensors in order to maximise the 

logging rate allowing more detailed analysis of the 

sensor’s noise profile. For these tests the test bed was 

positioned on its side (with the face “+x” uppermost), this 

was done in order to apply the majority of the specific 

force from to the reaction to gravity to one of the in-plane 

sensors. This is intended to isolate any difference in the 

stochastic noise which might occur between the in- and 

out-of-plane sensors from that occurring when the sensor 



is reading a specific force (~1g rather than ~0g) or g-

dependent gyroscope behaviour. The results of these high 

rate individual samples are presented in Section 5.1.  

 

The other classes of experiments conducted all used the 

entire sensor set and thus the logging rate was reduced by 

approximately a factor of 12 (as there were twelve sensor 

triads). There were two basic kinds of multi-sensor 

experiment conducted, the ‘tumbling cube’ and the 

heating experiment. Both of these experiments were 

mostly used for determining systematic errors that vary 

slowly with time and thus the low logging rate can be 

offset by taking longer samples.  

 

In the ‘tumbling-cube’ experiment, static readings were 

taken on each of the six faces of the ‘calibration-cube’ in a 

particular order before returning to the first face to check 

that there had not been significant bias drift during the 

experiment. The analysis presented in this paper is based 

on a 15-minute sample on each side, although experiments 

were also conducted with two-minute samples. This type 

of experiment can be used to determine accelerometer 

biases, misalignments, cross-coupling and scale factors 

and to determine gyroscope biases and g-dependence.  

 

In order to determine the sensitivity of the sensor’s biases 

to temperature, a static experiment was run where the 

sensors were heated with a hairdryer. The test bed was 

static on the optical table with the face ‘+Z’ uppermost, 

the hairdryer was a distance of approximately 40cm from 

the test-bed, from where its flow was sufficiently 

dispersed that it heated the area around the test-bed 

evenly. This is depicted in Figure 5. 

 

The sensors were left to run at room-temperature for 5 

minutes, they were then heated by the hairdryer at 

medium-heat for 5 minutes, then left to cool for a further 5 

minutes then heated on high heat for 5 minutes followed 

by being left to cool for approximately 90 minutes.  

 

 
Figure 5: Heating experiment set-up. The hairdryer is in 

the top left corner of the picture.  

 

The final type of experiment conducted for this study was 

to determine the turn-on-bias. For this experiment the 

hardware was in a single position and orientation. The 

test-bed was switched on, recorded 5 minutes of data, then 

switched off for at least 2 minutes before the process was 

repeated, collecting a total of 15 5 minute samples over a 

2 hour period. This is then compared with 15 5 minute 

samples taken in post-processing from a single 100 minute 

collection. These experiments allow the switch-on and in-

run bias variations to be determined and compared. 

 

5. CHARACTERISATION OF SENSORS 

In this section we present the properties of the sensors that 

were determined from the experiments detailed in Section 

4. As different techniques are used to examine stochastic 

and systematic (approximately noise-like and bias-like) 

errors we examine each of these separately in sections 5.1 

and 5.2, respectively.  

 

5.1 Stochastic errors 

When examining the stochastic errors of a sensor we are 

essentially asking the question “how white is the noise?”. 

This is because white noise is uncorrelated (in time) and 

so unpredictable, which means that its effect cannot be 

removed from a signal by modelling, so we are mostly 

interested in non-white components of the noise, which 

we could model. Despite this accurately knowing the 

magnitude of the white noise is needed for optimal sensor 

integration [1]. 

 

To examine the stochastic errors we primarily use the data 

from the single-sensor high-rate experiments described in 

Section 4. A standard investigation using Allan deviation 

revealed the sensors’ measurement noises to be white for 

the range 0.003 to 1400 seconds (~350Hz data). Except in 

the case of the L3G4200D gyroscope which showed some 

correlation at the shortest sample intervals, suggesting the 

true bandwidth is lower than specified in [12], and some 

small periodic components in the Y-sensor. A more 

detailed analysis of the stochastic errors is included in 

Appendix A. 

 

A brief summary of the gyroscope high rate experiment is 

presented in Table 2. Note that the standard deviation of 

the output does not change (in physical units) with 

measurement range. The bias does not appear to be 

correlated between the two range settings despite both 

being experiments with the same sensor. 
Output Range Mean 

(Bias) 

Mean 

(Bias) 

Standard Deviation 

of the data 

LSB dps* LSB dps* 

Gyro1 x 250dps 14.174 0.1240 36.816 0.3221 

Gyro1 y 250dps -17.607 -0.1541 35.512 0.3107 

Gyro1 z 250dps -7.644 -0.0669 35.193 0.3079 

Gyro1 x 2k dps 6.386 0.4470 4.654 0.3258 

Gyro1 y 2k dps -6.789 -0.4752 4.530 0.3171 

Gyro1 z 2k dps 12.695 0.8887 4.683 0.3278 

Table 2: Summary Statistics for the gyroscope static high-

rate experiments. * The conversion to dps indicates using 

the “typical” scale factor from the data sheet [12]. 

 

5.2 Systematic errors 

In this section we will examine the systematic errors, that 

is, the errors which are either fixed or depend on an 

environmental factor, such as temperature. Examples 

include fixed bias, scale factor error and bias variation 

with temperature. This type of error will vary significantly 

between sensors of the same model, due primarily to 



random manufacturing differences, and thus the sensors 

will have their performance for these errors specified in 

terms of the distribution covering the whole population. 

However, for a particular sensor these errors will vary 

over time by a much smaller amount. Determining and 

compensating for these errors is the purpose of a 

laboratory calibration and the performance increase 

inferred in mostly because of it.  

 

In order to remove the stochastic part of the signal so that 

the systematic errors can be determined, we need to take 

many data samples under a particular set of conditions and 

then take the mean of this output. This mean is still 

affected by the noise, however the standard error of the 

mean is reduced by a factor of root(n), where n is the 

number of samples which it is averaged over. Thus the 1-

sigma uncertainty of this estimate of the mean output for a 

sample of length n is (standard deviation of sample set) / 

root (n). This figure is included in several tables so the 

reader can compare the quantity measured with the 

accuracy of the estimate of the mean.  

 

The analyses of most of the systematic errors in this 

section are derived from a tumbling cube experiment. The 

output of this experiment is presented in Table 10, 

attached in the appendix. As this experiment takes more 

than 90 minutes and the sensors are very sensitive to 

changes in temperature the first orientation was repeated 

at the end of the experiment. The order in which the 

readings appear in Table 10 is that in which they were 

carried out, thus it is possible to observe a slight upward 

trend in temperature through the experiment. This seems 

to particularly affect the final ‘check’ reading, so it is 

likely that the apparent drift calculated using this might be 

overestimated.  

 

The mean (across the six samples) of the 1-sigma 

uncertainty of the estimate of the mean (SD/root(n)), as 

mentioned above, is presented in Table 10 and also the 

mean of each sample’s standard deviation. These figures 

vary very little for each of the six samples as the standard 

deviation does not vary significantly with the sensor 

orientation relative to gravity and the samples are all the 

same length to within a few seconds, and as the 15 

minutes represents more than 40,000 epochs this 1-sigma 

uncertainty is very small.  

 

The rest of this section is structured as follows. In 

Sections 5.2.1 and 5.2.2 the systematic errors calculated 

using this six-sided experiment for the accelerometers and 

gyroscopes, respectively, are presented. In Sections 5.2.3 

and 5.2.4 the in-run-stability and run-to-run stability are 

examined using a series of static experiments. In Section 

5.2.5 the bias variation with temperature is examined 

using an experiment where the sensors were heated and 

then cooled.  

 

5.2.1 Accelerometer Systematic Errors 

It is possible to estimate several of the systematic errors of 

the output of the six-side experiment. Estimates of each 

sensor’s bias, scale factor and attitude of its ‘apparent’ 

sensitive axis with respect to the can be calculated. The 

final two of which depend on the bias and also on each 

other. The method used for this in presented in Appendix 

B. 

 

The systematic errors calculated from the ‘tumbling cube’ 

experiment are presented in Table 3. The ADXL345 

datasheet [13] specifies that the bias should be +/-150mg 

for X and Y axes and +/-250mg for z, so the sensors are 

clearly well within specification. The scale factor is 

specified as 230 to 282 (256 ‘typical’) LSB/g, so this is 

also clearly within specification, although +/-10% is a 

very loose specification.  

 

The BMA180 datasheet [14] specifies the zero-offset as 

+/- 60mg, so both BMA1 and BMA2 (the two at 16g 

range) are apparently out-of-specification, although 

strictly the specification is for 2g measurement range. The 

specified scale factors for the two range settings tested are 

5460 +- 2% (5351 to 5569) and 512 +/- 3% (496.6 to 

527.4) for 1.5g and 16g respectively. Thus, all 4 triads are 

within specification.  

 

The differences between the sensors’ sensitive axes are 

noteworthy. Observe that the ADXL345 in-plane (x and y) 

sensors all have a positive bias and the scale factors are in 

the range of 261-264 LSB/g whereas the out-of-plane (z) 

sensors have a negative bias and both have scale factors of 

255 LSB/g. There does not appear to be a pattern in the 

biases of the BMA180 sensors but for all four sensors the 

z-axis is the least sensitive (greatest LSB/g) 

  

Only one measurement range of ADXL345 was tested as a 

reading of the datasheet and previous experiments led the 

authors to believe that the other measurement ranges were 

just created by cropping the MSB (see Section 6.3). 
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ADXL1 x 16g -0.001 0.0280 7.734 30.2 -261.38 

ADXL1 y 16g 0.175 0.0316 7.805 30.5 264.09 

ADXL1 z 16g 0.206 0.0592 -8.260 -32.3 255.29 

ADXL2 x 16g 0.035 0.0264 9.374 36.6 -263.42 

ADXL2 y 16g 0.141 0.0309 12.366 48.3 263.45 

ADXL2 z 16g -0.006 0.0579 -19.170 -74.9 -255.21 

BMA1 x 16g -0.048 0.0392 -92.466 -180.6 511.44 

BMA1 y 16g 0.143 0.0443 -127.755 -249.5 520.34 

BMA1 z 16g -0.280 0.0420 11.542 22.5 526.21 

BMA2 x 16g -0.385 0.0380 27.528 53.8 -521.86 

BMA2 y 16g 0.219 0.0485 -94.598 -184.8 520.67 

BMA2 z 16g 0.057 0.0400 68.060 132.9 522.03 

BMA3 x 1.5g 6.066 0.1929 55.081 10.1 5427.45 

BMA3 y 1.5g 1.134 0.2458 -11.481 -2.1 -5414.31 

BMA3 z 1.5g -0.852 0.2406 -52.891 -9.7 5497.69 

BMA4 x 1.5g 0.850 0.2221 54.229 9.9 -5369.79 

BMA4 y 1.5g -0.365 0.3313 -42.010 -7.7 -5401.06 

BMA4 z 1.5g -3.673 0.2712 148.693 27.2 5481.16 

Table 3: Accelerometer summary statistics. *Conversion 

of bias into milli-g is approximate based on the ‘typical’ 

scale factors in [13, 14].  



Sensor Average Bias Difference in bias between plus and minus (box frame) Drift from first (+z) to 
final (also +z) run Name Range 

Setting 

X Y Z 

LSB dps* LSB dps* LSB dps* LSB dps* LSB dps* 

Gyro1 x 2k dps 8.389 0.587 0.006 0.000 -0.545 -0.038 -0.073 -0.005 0.0331 0.002 

Gyro1 y 2k dps -7.026 -0.492 -0.160 -0.011 -0.146 -0.010 -0.023 -0.002 -0.0682 -0.005 

Gyro1 z 2k dps 12.888 0.902 -0.094 -0.007 -0.009 -0.001 -0.202 -0.014 -0.1195 -0.008 

Gyro2 x 2k dps 18.930 1.325 0.007 0.000 0.385 0.027 -0.501 -0.035 -0.3706 -0.026 

Gyro2 y 2k dps -4.050 -0.284 0.236 0.017 0.209 0.015 -0.260 -0.018 0.0229 0.002 

Gyro2 z 2k dps 7.526 0.527 -0.221 -0.015 0.097 0.007 0.007 0.000 -0.2091 -0.015 

Gyro3 x 250dps -10.822 -0.095 -0.508 -0.004 -3.315 -0.029 0.133 0.001 0.0796 0.001 

Gyro3 y 250dps 80.196 0.702 1.109 0.010 0.701 0.006 0.694 0.006 2.4205 0.021 

Gyro3 z 250dps -6.116 -0.054 -0.674 -0.006 -1.410 -0.012 -0.206 -0.002 -0.3297 -0.003 

Table 4: Gyroscope summary statistics, those entries where the apparent g-dependent bias is smaller than the bias drift are 

greyed out, because they may be due to in-run bias variation. *The conversion to dps is based on the ‘typical’ scale factor. 

 

For the two ranges of BMA180 tested the bias, in terms of 

LSB is of similar magnitude. This means in terms of 

physical quantities (ms
-2 

or g) the magnitude of the bias is 

very significantly lower. 

 

As the sensors are mounted on breakout boards which are 

not mounted completely flat on the main PCB and the 

main PCB is rotated slightly (< 5 degrees) relative to the 

frame, we shall not present the azimuth and elevation 

angles of the sensitive axes.  

 

5.2.2 Gyroscope Bias and G-dependence 

Using the methodology implemented here the scale factors 

and axis orientations of the gyroscopes cannot be 

determined. As such the only systematic errors we 

measure here are gyroscope bias and g-dependence.  

 

G-dependence is the angular rate error created by an 

applied specific force. Nearly all consumer-grade MEMS 

gyroscopes are vibratory and thus work by measuring the 

Coriolis force as such they are inherently sensitive to 

specific force, and this sensitivity must compensated for in 

the design [1]. Often this is achieved by having a pair of 

vibrating masses and measuring the difference in force 

between them [10]. As a result of this, one might expect 

any g-dependencies to be due to manufacturing errors, and 

so not exhibit any obvious pattern.  

 

The L3G4200D datasheet [12] specifies that the bias 

(“digital zero-rate level”) should be +/- 10dps for 250dps 

range and +/- 70dps for 2000dps. The systematic errors 

calculated are presented in Table 4. They use the 

experimental results presented in Table 10. The bias, 

which is calculated by taking the mean of the results of 

each of the six orientations, is clearly is well within 

specifications.  

 

To calculate the g-dependence the differences between the 

biases with the ‘+x’ and ‘-x’ faces are presented, noting 

that this represents a difference on the x-axis of 2g 

(19.6ms
-2

). Similarly, the differences along the ‘y’ and ‘z’ 

axes are presented.  

 

In order to check that the observed g-dependence is real 

and not an error resulting from the temperature variation 

of the bias, the difference between the first measurement 

and last measurement is presented in Table 4 as ‘drift’, 

because the sensor orientation is the same. As it happens 

these are the two measurements with the largest difference 

in temperature (see Table 10 in the Appendix), thus they 

are the two that might be expected to show the greatest 

difference. For this reason one might assume that any 

observed difference greater than the ‘drift’ is a real g-

dependent error.  

 

Unlike some of the other sensors the Gyros are mounted 

so that their sensitive axes are roughly on the same named 

axis of the box reference frame (See Table 1), although 

the signs differ. For all three triads the ‘x’ angular rate is 

most affected by specific force in the ‘Y’ direction, the ‘y’ 

angular rate is most affected by the ‘X’ direction specific 

force and the ‘z’ angular rate has no apparent pattern, 

although it has the lowest magnitude of g-dependence. 

  

5.2.3 Bias stability 

To examine the bias stability, a 90 minute static 

experiment was conducted and then the data was split 

afterwards into 5 minute sections. The full results of this 

are presented in Table 11 in the appendix, on the right 

hand side. A summary is presented in Table 5. There was 

more variation in the z-axis sensors than the x and y for 

the two ADXL345s and the BMA180s that were at +/-

1.5g setting, but not the other BMA180s or the 

gyroscopes. 
 Sensor name and axis 

(range) 
Mean over the sensors and axes of the standard 

deviation of the 15 5-minute sample means (LSB) 

ADXL X&Y 0.04125 

ADXL Z 0.0945 

BMA (16g) X&Y 0.1045 

BMA (16g) Z 0.1065 

BMA (1.5g) X&Y 0.9645 

BMA (1.5g) Z 1.505 

Gyro (2kdps) X&Y 0.098 

Gyro (2kdps) Z 0.077 

Gyro (250dps) X&Y 0.3745 

Gyro (250dps) Z 0.442 

Table 5: Summary results of the in-run bias variation  

 

In comparing the high- and low-range BMA180s and 

gyroscopes the bias variation scales approximately as 

would be expected given the scale factor. An illustration 

of the in-run variation is in Figure 6.  

These results make it clear that there is no point 

calibrating the units’ biases with a higher precision than 

1LSB for the 1.5g accelerometers or 250dps gyroscopes or 

0.1-0.2 LSB for all the other sensors. 



 

 

 
Figure 6: Static output minus mean value of the three 

types of sensors ADXL1&2 (top), BMA3&4 (middle), 

Gyro1&2&3 (bottom) smoothed over 1400 samples (5 

minutes) to show the in-run bias variation. 

 

5.2.4 Turn-on-bias variation 

An experiment was run to determine the magnitude of the 

variation of the bias between runs. In this experiment 15 

5-minute data samples were collected with a 2-4 minute 

gap between each sample, during which the test-bed was 

switched off. These tests were run sequentially over about 

2 hours. This represents a situation when the run-to-run 

variation should be the lowest as the temperature is nearly 

the same and the actual time between samples is low, run-

to-run variation might be higher if the readings were on 

separate days.  

 

Table 11 in the appendix presents the results of the turn-

on-bias determination experiments. BMA1 and Gyro3 are 

greyed out and, for reasons given below, are not 

considered further in this analysis. Also presented are the 

in-run variations discussed in the previous section and the 

ratio between the in-run and between run “standard 

deviation of the 15 means”. 

 

Each of the sensor designs will be considered separately. 

The ADXL accelerometers only show an inter-run 

variation (standard deviation) of approximately the same 

magnitude as the uncertainty in estimates of the means, so 

we could conclude that there is not a significant turn-on-

bias, because it is also only 1.2 to 1.8 times the in-run 

variation. The BMA180 accelerometers show run-to-run 

standard deviation that is significant, often several LSB. 

This reinforces the idea presented in the last section that 

this should be viewed as a limit on the accuracy of any 

pre-run calibration.  

 

The gyroscopes’ run-to-run variation is even more 

significant at 2.4 to 7.7 times the in-run variation. This is 

enough that it may be worth having an extra modelling 

term for this.  

 

Two sensors exhibited unusual behaviour. The Bosch 

accelerometer known as “BMA1” had very consistent bias 

values except in a one of the samples (run 10), when both 

the specific force and temperature reading were markedly 

different, after which the values returned to the previous 

values. This is illustrated in Table 6. Additionally the third 

gyroscope, known as “Gyro3” appears to flip between two 

different sets of fixed biases (0, 69, 2) and (-13, 75, 0) for 

x, y and z (units are LSB). This is presented in Table 7, 

with one group highlighted in blue and the other in red. 

This behaviour might be due to communications errors in 

the start-up process, perhaps leading to the incorrect value 

being set for the measurement range. This would explain 

the unusual output for run 10 with BMA1 as this z-output 

would be expected if the measurement range was the 

default +/- 2g rather the +/- 16g that the firmware was 

meant to set.  

 

These two sensors suggest that it might be worth having 

an algorithm that could store two possible values for the 

fixed bias and switch between the two of them depending 

on sensed output, or alternatively search for booting errors 

and re-initialise the sensors in that case. 
 

Run x-output (LSB) y- output (LSB) z- output (LSB) temp int 

1 -100.491 -134.406 536.7756 -4.43686 

2 -100.437 -134.349 536.8192 -4.80532 

3 -100.125 -134.394 536.5554 -5.18888 

4 -100.058 -134.185 536.5377 -5.2798 

5 -100.037 -134.197 536.525 -5.21758 

6 -100.115 -134.337 536.405 -5.2359 

7 -99.8368 -134.134 536.5055 -5.248 

8 -100.026 -134.119 536.3266 -5.12513 

9 -99.9712 -134.064 536.5216 -5.09975 

10 31.79535 -124.464 4308.719 -3.14497 

11 -100.104 -134.096 536.4102 -5.01496 

12 -100.131 -134.173 536.2859 -4.9306 

13 -100.076 -134.415 536.2423 -4.90121 

14 -99.9396 -134.165 536.1224 -4.93264 

15 -99.8322 -134.406 536.3374 -4.7673 

Table 6: Mean 3-axis outputs of “BMA1” over each of the 

15 runs. Contrast run 10 (in red) with the others.  



Run x- output (LSB) y- output (LSB) z- output (LSB) temp int 

1 0.088086 71.83647 0.259345 21.19651 

2 0.247328 71.01841 1.897628 21.42149 

3 -12.9493 77.17322 0.23046 21.91818 

4 -13.1201 76.19548 0.591934 21.97628 

5 -12.1075 74.64321 0.741931 21.87275 

6 -0.33707 69.68126 2.61271 21.90305 

7 -13.0202 75.05754 1.725069 21.99339 

8 -0.34012 69.09461 2.625957 21.89698 

9 0.07932 69.01431 3.153997 21.92783 

10 -12.2896 73.89692 0.454047 21.88836 

11 -12.2955 74.03204 0.621792 21.8028 

12 0.04686 69.56259 2.379449 21.71733 

13 -12.0067 74.54049 0.117055 21.82495 

14 -0.39189 69.6091 2.201399 21.82179 

15 -13.0925 75.8296 1.496677 21.77527 

Table 7: Mean outputs of “Gyro3” over each of 15 5-

minute runs. Note the two groups of output biases, 

coloured blue and red.  

 

5.2.5 Temperature variation of bias 

In order to determine the effect of temperature on the 

sensors’ biases, an experiment was conducted to 

determine the effect of heating on the various MEMS 

inertial sensors tested. The temperature profile of the 

experiment is presented in Figure 7.  

 
Figure 7: The temperature profile provided by the 

BMP180 sensor for the experiment.  

 

As discussed in Section 4, the sensors were left to run at 

room-temperature for 5 minutes (around 24°C), they were 

then heated by the hairdryer at medium-heat for 5 minutes 

(reaching around 42-43°C), then left to cool for a further 5 

minutes then heated on high heat for 5 minutes (reaching 

around 52°C) followed by being left to cool for 

approximately 90 minutes, not quite returning to the 

original temperature possibly due to a change in the 

ambient temperature.  

 

Several of the sensors have their own internal temperature 

sensors (the BMA180s and the L3G4200D gyroscopes, 

but not the ADXL345s). However, for this experiment we 

have used the temperature output of the independent 

temperature/pressure sensor (BMP180). This is to keep a 

consistent reference between all the sensors, and allow the 

higher precision and accuracy reading of temperature to 

be used.  

 

The results of a linear fit between the sensor output and 

temperature are presented in Table 8. Higher order (e.g. 

quadratic) fits were also tried however this did not 

significantly improve the fit, and so there would be little 

justification modelling the higher order temperature 

component of the biases. Examples of how these 

coefficients fit to the data are presented in Figures 8 and 9, 

as can be seen there is a significant bias variation with 

temperature particularly for the gyroscopes.  

 
Name Range Slope 

(LSB/°C) 

Intercept  

(at 0 °C) (LSB) 

ADXL1 x 16g -0.024 12.99 

ADXL1 y 16g 0.019 21.90 

ADXL1 z 16g -0.352 256.53 

ADXL2 x 16g -0.011 7.42 

ADXL2 y 16g -0.067 16.21 

ADXL2 z 16g -0.194 241.49 

BMA1 x 16g -0.034 -99.87 

BMA1 y 16g -0.199 -129.67 

BMA1 z  16g 0.192 532.54 

BMA2 x 16g 0.205 47.07 

BMA2 y 16g -0.258 -79.90 

BMA2 z  16g 0.496 -463.79 

BMA3 x 1.5g -0.548 530.01 

BMA3 y 1.5g -0.121 -4.28 

BMA3 z  1.5g 4.516 -5635.33 

BMA4 x 1.5g 0.946 289.72 

BMA4 y 1.5g -1.714 -12.27 

BMA4 z  1.5g -2.235 5656.97 

Gyro1 x 2k dps 0.235 1.79 

Gyro1 y 2k dps 0.265 -13.71 

Gyro1 z 2k dps 0.221 7.30 

Gyro2 x 2k dps 0.521 5.67 

Gyro2 y 2k dps 0.261 -11.83 

Gyro2 z 2k dps 0.187 2.50 

Gyro3 x 250dps 0.904 -23.05 

Gyro3 y 250dps 2.133 14.69 

Gyro3 z 250dps -2.782 69.02 

Table 8: The results of a linear best fit between sensor 

output and temperature (derived from BMP180).  

 

The ADXL345 accelerometers show only a very small 

temperature drift for the in-plane sensors (with three out 

of four being slightly negative) and a much more 

significant (5-10 times greater) negative temperature drift 

for the out-of-plane sensor.  

 

The BMA180 accelerometers do not show an obvious 

pattern in their temperature-drift behaviour. In general, the 

z-axis sensor shows the greatest variation (and 3 of 4 

times this is positive), but as the reaction to gravity is 

acting on this sensor, this may be also influenced by a 

change of sensitivity with temperature. The slope of the 

temperature variation in LSB/°C is around 10x steeper for 

the 1.5g sensors than the 16g sensors so the range setting 

does not seem to affect the magnitude of the temperature 

drift in physical units significantly.  

 

In 8 out of 9 cases, the gyroscope bias temperature drift is 

positive. This means that the opposite-direction sensitive 

axis combination (Section 2.1) may be feasible. For both 

2000dps gyroscopes (Gyro1 and Gyro2) the drift is always 

positive and in every case but one 1.9-2.6 LSB/°C. If we 

were to pick the two y-axis sensors which are in opposing 

directions already (See Table 1) we would have a 

combined bias drift of 0.004 LSB/°C . This is illustrated in 

Figure 10.  



 
Figure 8: Scatter plot of ADXL1 Z-axis output versus 

temperature. Best fit line in red.  

 

Figure 9: Scatter plot of Gyro2 X-axis output versus 

temperature. Best fit line in red.  

 
Figure 10: Comparison of y-output of Gyro1, Gyro2 and 

half of the difference between the outputs. 

 

6. FEASIBILITY OF ADVANCED SENSOR ARRAY 

TECHNIQUES 
In Section 2 we proposed three techniques to improve the 

navigation performance of a low-cost IMU using an array 

of multiple triads of MEMS inertial sensors. We 

performed characterisation tests on three specific models 

of low-cost MEMS inertial sensors namely Analogue 

Devices ADXL345 accelerometers, Bosch BMA180 

accelerometers and ST Microtronics L3G4200D 

gyroscopes, the results of which were presented in Section 

5. The tests were intended to determine which of the ideas 

presented in Section 2 would work for those three sensors. 

The rest of this section is presented idea-by-idea. 

 

6.1 Common mode errors of sensors of the same design 
In Section 2.1 we presented the idea of using a pair of 

oppositely orientated sensors of the same type to mitigate 

an error coming from the environment. This builds on the 

idea, presented by Yuksel et al. [11] to mitigate the effect 

of temperature on gyroscope bias  

 

In this paper we investigate the feasibility of this 

technique for different sensors and for other errors. This 

technique would theoretically work for other correlated 

even-order errors. For example if the fixed bias tended to 

always be positive then this technique would reduce the 

total bias relative to the alternative of combining sensors 

with their sensitive axes in the same direction, see Figure 

2.  

 

The experiments we carried out were able to show that 

this idea would work for some of the errors on some of the 

sensors, as we expected.  

 

The gyroscopes' temperature drifts, despite the fact that 

they are specified as being +/-0.04 dps/°C was in 8 out of 

9 cases positive, meaning that this idea would likely apply 

to this model of gyroscope. Additionally both the 

ADXL345 z-axis sensors showed significant negative 

temperature drift. The other axes of the ADXL345 showed 

much less significant temperature drift. The BMA180 

showed significant temperature drift but there was no 

apparent pattern to whether it was positive or negative, so 

this idea would not help. 

 

6.2 Different characteristics of in-plane and out-of-

plane sensors of the same triad 
In Section 2.2, we observed that as on many inertial 

sensor triads the in-plane and out-of-plane sensors were of 

a different design, this could lead to differences in 

behaviour that might impact navigation performance.  

 

The gyroscope’s z sensor apparently has very slightly 

better performance, but not significantly. Each BMA180 

has a turn on bias is about twice as high for the z-axis 

sensors (see Table 11). 

 

The ADXL345 sensor has the most significant difference 

between the in- and out-of-plane sensors. The standard 

deviation of the noise is approximately double that of the 

x- and y-sensors (about 12 LSB rather than about 6 LSB). 

The z-sensor also has much larger temperature drift and 

significantly lower bias stability.  

 



We recommend mounting the BMA180s with the z-axis 

vertical because the vertical accelerometer biases are 

easier to observe using integration, alignment and zero 

update algorithms than the horizontal biases [1]. 

 

In the case of the ADXL345s the best performance might 

be achieved by not using the z-axis sensors at all. This 

might be by putting a triad on each of two perpendicular 

PCBs or arranging three triads on three faces of a cube so 

that there are two in-plane sensors facing in each 

direction. The z-axis sensors could perhaps still be used 

for fault detection and integrity monitoring.  

 

6.3 Multiple sensors with different measurement 

ranges 

In Section 2.3, we presented the idea of combining sensors 

with different measurement ranges to increase navigation 

performance by weighting the outputs of the two different 

range sensors according to the sensed dynamics. We 

proposed using mostly a low-range sensor when the 

dynamics of the system are low, and when the dynamics 

are higher using mostly the higher range sensor.  

 

However the one major assumption that we had to make 

was that if we had two sensors of the same quality but 

different measurement ranges the one with the lower 

range would be more accurate. We sought to test this 

assumption through the experiments described in Section 

4 and analysed in Section 5.  

 

We did not test the ADXL345 at different dynamic ranges 

as it does not appear to be an equivalent sensor at all the 

dynamic ranges as it has a fixed conversion from LSB to 

milli-g (4mg/LSB) for all measurement ranges.  

 

We tested the L3G4200D gyroscope at 250 and 2000 

degrees sec
-1

 (dps) measurement ranges. The noise level, 

was not affected by the measurement range setting at all. 

Of the systematic errors measured only the fixed bias 

showed any significant improvement. However this is 

only helpful in the case that no calibration is carried out at 

all, which is unusual as gyroscope bias calibration is very 

simple to do, simply placing the IMU still on a table. Thus 

we do not expect any significant performance 

improvements from combining L3G4200D gyroscopes of 

different measurement ranges. However, this approach 

may still be viable for other types of gyroscope. 

 

We tested the BMA180 accelerometer at 1.5g and 16g. 

The temperature drift was slightly lower in physical units, 

similarly the biases were slightly more stable. However 

the fixed bias was significantly lower in physical units. 

Most importantly the noise was much lower, the standard 

deviation being an average of around 50 LSB rather than 

around 10 LSB (see Table 10), which means that the 

standard deviation of the low-range sensors was half as 

much as the high range sensor. Thus, significant 

performance benefit could be achieved through the 

weighted combination of low-range and high-range 

sensors. The optimal pair of ranges for a specific 

application would depend on how much the noise 

performance varies between the 7 possible settings  

 

7. CONCLUSIONS 
This paper has presented three advanced array-based 

techniques that could be applied to improve the 

performance of low-cost MEMS IMUs. They are expected 

to provide a more accurate estimate of specific force 

and/or angular rate than a simple average of the array’s 

constituent sensors. They are: 

1. Arranging the sensors so that their sensitive axes are 

in opposing directions, so as to significantly reduce 

the effect of systematic errors that are correlated 

across sensors of the same design. 

2. Exploiting the performance differences between the 

in-plane and out-of-plane sensors on a sensor triad. 

3. Combining the output of sensors with different 

operating ranges to increase the accuracy of the 

measurement during periods of relatively low 

dynamics without clipping and distorting under high 

dynamics. 

 

In order to examine the feasibility of these ideas we 

constructed a hardware platform to characterise the 

performance of three models of MEMS inertial sensors: 

Bosch BMA180 accelerometers, Analogue Devices 

ADXL345 accelerometers and ST Microtronics 

L3G4200D gyroscopes, examining both the systematic 

and random errors.  

 

The sensors’ characteristics led to the conclusion that for 

all three sensor level ideas proposed at least one of the 

three sensors tested could potentially benefit. The 

L3G4200D gyroscopes could benefit from the opposing 

direction sensitive axis arrangement. The ADXL345 could 

benefit from a proper consideration of the differences 

between its in-plane and out-of-plane sensors. The 

BMA180 could show considerable performance benefit 

from a weighted combination of low- and high-range 

sensors. 

 

8. FUTURE WORK 

The next stage of this research is to implement each of the 

proposed sensor array techniques with the appropriate 

sensor type and quantify their performance impacts. In 

addition, testing will be extended to dynamic conditions, 

using a manufacturer-calibrated IMU to provide a 

reference. 

 

Another way of improving the navigation performance of 

an integrated navigation system which includes low-cost 

inertial sensors is to have the end-user conduct a 

calibration routine, similar to that conducted by the 

manufacturer for more expensive sensors. As low-cost 

MEMS sensors are supplied essentially without any 

calibration, even an approximate calibration would be a 

big improvement and allow more precise estimation to be 

made by an integrated navigation system much more 

quickly. 

 



There are two main requirements for a user-conducted 

calibration-on-purchase. First, it is essential that the 

physical movements required of the sensor are very 

simple and easily understood and completed, even if the 

underlying method is complex. Second no sophisticated or 

expensive equipment should be required, for instance a 

reference IMU is out of the question. 

 

We have shown that by simply mounting the IMU in a 

cuboid box and then taking readings on each face, we can 

make an estimate of the many of the systematic errors of 

the accelerometers and the gyroscope biases and g-

dependant errors. However it is desirable to use a 

technique that offers both greater flexibility in terms of 

IMU manoeuvring and calibrates additional errors such as 

gyroscope scale factor and cross-coupling errors. Kalman-

filter based alignment, sensor integration and zero-update 

algorithms [1] already offer these capabilities. However 

they are designed to estimate the turn-on and in-run 

contributions to systematic errors that have already been 

calibrated by the manufacturer. Applying these algorithms 

to raw sensors could lead to large linearization errors. 

Therefore further research will be conducted to determine 

the best approach.  

 

In the long term, the sensor array techniques proposed 

here could form part of a new generation of multi-sensor 

integrated navigation system alongside techniques such as 

GNSS shadow matching [22], environmental feature 

matching [23], opportunistic radio navigation [6] and 

context adaptivity [7]. 
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APPENDIX A 

In this appendix more detailed analysis of the sensors 

stochastic errors are presented. The stochastic analysis of 

each sensor model examined in separate sub-sections.  

 

A.1 L3G4200D Gyroscope 

The data from two long (~1400 sec) high rate (~350Hz) 

static experiments was used to make a first assessment of 

the Gyroscope’s noise performance. The registry settings 

were set for an output data rate (ODR) of 400Hz and cut-

off of 110Hz. For one of these experiments the 

measurement range was set to 2000 degrees per second 

(dps) and the other to 250dps. After converting the raw 

output from LSB to dps (according to the typical 

specification, i.e. not calibrated), the six outputs (3 axes 2 

experiments) were plotted as Allan deviation curves [19, 

20], presented in Figure 11.  

 
Figure 11: Allan Deviation curves for the 3 axes of output 

for two static experiments with “Gyro1” one with 250dps 

measurement range and one with 2000dps.  

 

In Figure 11, it can be seen that the output of the sensor is 

close to white across most of time interval sampled as it 

resembles a straight line of slope -1, and that the noise has 

approximately the same order of magnitude in dps for all 

axes and both measurement ranges, and examining Table 

9 one can see that there is no significant difference in the 

standard deviations of the output so the noise level is the 

same for 250dps and 2000dps measurement range. 

However, it differs in two important ways, at the two 

points where an enlarged view of the graph is presented in 

Figure 12. First for the shortest time intervals the slope 

slackens off suggesting some memory in the process, and 

also there is some periodic behaviour visible on both Y-

axis signals.  

 

In order to further investigate the possible memory in the 

process we compute an autocorrelation, presented in 

Figure 13, for the 250dps measurement range. The 

2000dps range is very similar, but not shown. It can be 

seen that there is a positive correlation of around 0.4 for 

all three axes between one sample and the following 

sample (lag=1), this implies that the actual bandwidth of 

the sensor is lower than the ~200Hz Nyquist rate. Also the 

periodic component in the Y-axis can be clearly seen, at 

around 6 samples.  

 

 
Figure 12: Zoomed in view of two parts of Figure 11.  

 
Output Range Mean 

(Bias) 

Standard 

error of 

the 

mean) 

Mean 

(Bias) 

Standard 

error of 

the mean 

Standard Deviation 

of the data 

  Output integers/LSB Approx* conv. to DPS Output 

LSB 

DPS* 

Gyro1 x 250dps 14.174 0.0530 0.1240 0.00046 36.816 0.3221 

Gyro1 y 250dps -17.607 0.0511 -0.1541 0.00045 35.512 0.3107 

Gyro1 z 250dps -7.644 0.0507 -0.0669 0.00044 35.193 0.3079 

Gyro1 t int 24.008 0.0006   0.398  

Gyro1 x 2k dps 6.386 0.0079 0.4470 0.00055 4.654 0.3258 

Gyro1 y 2k dps -6.789 0.0077 -0.4752 0.00054 4.530 0.3171 

Gyro1 z 2k dps 12.695 0.0080 0.8887 0.00056 4.683 0.3278 

Gyro1 t int 24.083 0.0006   0.347  

Table 9: Summary Statistics for the static high-rate gyro 

experiments. The approximate conversion to dps (denoted 

by *) indicates using the “typical” conversion from the 

data sheet. 

 
Figure 13: the autocorrelation of a L3G4200D gyroscope 

at 250dps measurement range.  



To show the periodic behaviour a spectral density plot was 

calculated for the 3 axes of the gyroscope’s output. This is 

presented in Figure 14, for the 250dps measurement 

range. The 2000dps range is again very similar, but not 

shown. Both ranges show a distinct peak at ~50Hz for the 

y-axis only. The experiment will be repeated to determine 

whether this is a genuine artefact of the sensor or mains 

hum picked up from elsewhere in the room. 

 

 
Figure 14: A fast Fourier transform of the output of a 

L3G4200D Gyroscope at 250dps. 

 

 
Figure 15: Histogram of Gyro1 X-output showing the 

approximately Gaussian distribution of the sensor noise. 

Bin size is 1 LSB. The 250dps range is above and 

2000dps range below 

In Figure 15 a histogram of the gyroscopes output is 

shown, one can observe two significant things from this. 

One, the noise is distributed approximately normally. 

Two, the quantisation level is fairly insignificant 

compared to the noise, which explains why the more 

sensitive range setting does not have any noticeable 

impact on the noise level.  

 

A.2 ADXL345 Accelerometer 

To characterise the stochastic errors of the ADXL345 

accelerometer we took a long high-rate data sample from 

the sensor. The Allan variance of this is plotted in Figure 

16. It can be observed that the lines for each axis straight 

throughout the sample, implying white noise. Additionally 

the z-axis noise can be observed to be of a considerably 

higher magnitude than the other axes. These inferences are 

supported by the sample’s spectral density, in Figure 17. 

The specification for noise density is 1.1 LSB rms (for z) 

and 0.75 LSB rms (x and y) [13]. So the sensor appears to 

be out of specification for z, but strictly the specification 

is for 100Hz output data rate, not the 400Hz used here. 

 

As the sensor noise is essentially white it is reasonable to 

characterise it by standard deviation. The standard 

deviation has been shown in multiple experiments (see 

Table 10 and 11) to be approximately 6 LSB for the X and 

Y sensors and 12 LSB for the Z.  

 

According to [13], the ADXL345 accelerometer, at the 

‘full resolution’ setting, has a fixed scale factor of 

4mg/LSB for all measurement ranges. This means that 

while it is a 13-bit sensor at 16g it is only a 10-bit sensor 

at 2g. As we are not comparing like with like, we did not 

test it at multiple measurement ranges. It is, apparently, 

just cropping the MSB to achieve programmable dynamic 

ranges. Additionally the sensor, throughout this and all the 

other tests only outputs even numbers. This suggests that 

the sensor actually has a 12-bit ADC rather than the 13-bit 

ADC specified. 

 
Figure 16: Allan deviation of ADXL345 accelerometer. 

The higher noise on the z-axis sensor is clearly visible. 

 



 
Figure 17: Spectral Density of ADXL345 accelerometer. 
   

 

 

A.3 BMA180 Accelerometer 

A long static experiment was also conducted for a 

BMA180 accelerometer to characterise its stochastic 

noise. 

 
Figure 18: Allan deviation of BMA180 accelerometer.  

 

The Allan deviation of the 3 axes of BMA180 output is 

shown in Figure 18. This shows that the noise is 

approximately white for the whole time scale examined. 

No significant resonances (see Figure 19) or significant 

autocorrelation are present. 

 

The standard deviations for the x, y and z-axes, in LSB, 

are 8.0201, 9.8857 and 9.3002, respectively (15.6642, 

19.3081 and 18.1645 milli-g). 

 
Figure 19: Spectral density of a BMA180 Accelerometer. 

 

APPENDIX B 

 

An outline of the method used to calculate the 

accelerometers’ systematic errors is presented below. 

Consider average specific force readings taken statically 

from opposite faces of the cube where   
   

 refers to the 

specific force reading of the x-axis sensor taken with the 

‘+y’ face uppermost, in each the specific force due to 

gravity is applying on the sensor in opposite directions. 

Thus an estimate of the bias can be calculated as: 

       
 

 
(  

      
     ) 

Or considering all the six readings a more accurate 

estimate is,  

       
 

 
(  

      
        

      
        

   

   
     ) 

Then remove this bias estimate from the six readings, e.g.,  

    

       
          

To improve accuracy average the ‘up’ and ‘down’ for 

each axis, e.g.,  

  
    

 

 
     

        

       

Then the azimuth of x,   . This is the angle between the 

x-axis and the projection the sensitive axis onto the XY-

plane in the direction so that the Y-axis is 90 degrees. This 

is calculated by 

          (
  

  

  
  ) 

And, the elevation of x,   , defined as the angle between 

the XY plane and the sensitive axis, positive so that the z-

axis is 90 degrees. 

          (
   

  

  
              

  
          

) 

Then the scale factor could be calculated 6 ways, and thus 

the average of these six is used, so,  
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Alternatively, the bias-free estimates could be used to 

calculate an 3x3 cross-coupling and scale factor matrix, 

see [1, p160].  

 

In a working system the transformation matrix would be 

preferred for computational simplicity. However, in order 

to compare to the specification the “scale factor and 

sensitive axis” realisation is required. 

 

APPENDIX C 

This appendix contains the full results of the six-position 

cube experiment (Table 10) and the turn-on-bias 

experiment (Table 11). 

 
Sensor Mean Outputs for each cube face (LSB) SD/root(n) – 

average 

uncertainty in 

estimate of 

mean outputs 

Average 

Standard 

Deviation 

of data 

Name Range 

Setting  

Z up  X up Y up X down Y down Z down Z up (check) 

Indep. Temp °C 26.23803 26.45391 26.47834 26.42805 26.49729 26.49944 26.68422 0.001211 0.251412 

ADXL1 x 16g 12.33293 -253.497 2.469027 269.075 13.12513 2.899611 12.33366 0.027971 5.811277 

ADXL1 y 16g 22.35989 13.01353 -256.075 2.25853 271.2409 -5.9701 22.18462 0.031592 6.560084 

ADXL1 z 16g 247.2157 -3.95661 4.159566 -11.9417 -22.4309 -262.606 247.0093 0.059165 12.28892 

ADXL2 x 16g 7.175946 -253.973 5.220675 272.7924 13.62696 11.40376 7.141308 0.026397 5.481664 

ADXL2 y 16g 14.30768 17.24602 -251.402 8.269124 275.401 10.37481 14.16685 0.030856 6.40681 

ADXL2 z 16g 236.3945 -22.7733 -18.1663 -15.774 -20.7224 -273.978 236.4002 0.057945 12.03305 

BMA1 x 16g -100.816 -81.7408 -604.112 -102.087 418.4423 -84.4824 -100.769 0.039215 8.14338 

BMA1 y 16g -134.907 391.6477 -115.322 -648.648 -139.155 -120.145 -135.05 0.044294 9.199038 

BMA1 z  16g 537.0402 13.09122 7.244381 10.84351 16.37739 -515.345 537.3207 0.042002 8.723506 

BMA1 t int -1.652 -0.8761 -0.83958 -0.69925 -0.72451 -0.87959 -0.90098 0.005439 1.130422 

BMA2 x 16g 52.25275 21.47985 549.6836 31.50906 -492.828 3.071563 52.63792 0.038041 7.901824 

BMA2 y 16g -86.6883 425.7175 -91.8819 -615.501 -97.1331 -102.099 -86.9078 0.048531 10.07948 

BMA2 z  16g -451.826 69.95953 90.44258 64.45256 44.14392 591.1872 -451.883 0.040044 8.315939 

BMA2 t int 5.789189 5.91244 6.021608 6.343173 6.156546 5.796374 6.463376 0.006815 1.414752 

BMA3 x 1.5g 515.6351 144.0243 -5351.68 -24.0278 5461.916 -415.383 509.5691 0.192855 40.04875 

BMA3 y 1.5g -9.89211 -5422.59 -77.3823 5405.179 57.58821 -21.7895 -11.0259 0.245779 51.06081 

BMA3 z  1.5g -5522.18 20.71929 -451.205 -138.035 329.0204 5444.336 -5521.33 0.240589 49.97539 

BMA3 t int 3.311734 3.746916 3.574619 3.288311 3.498656 3.695056 3.938489 0.003748 0.778485 

BMA4 x 1.5g 312.1222 -39.5078 5419.983 136.5785 -5306.03 -197.77 311.2725 0.222086 46.12221 

BMA4 y 1.5g -66.5468 -5438.93 -120.47 5361.847 47.06203 -35.0201 -66.1819 0.331269 68.80461 

BMA4 z  1.5g 5603.323 183.5848 -161.923 129.4264 477.9277 -5340.18 5606.997 0.271194 56.33199 

BMA4 t int 4.636847 4.929013 4.64173 5.160408 5.017566 4.923241 5.331828 0.006028 1.252147 

Gyro1 x 2k dps 8.320732 8.428642 8.161185 8.422897 8.705721 8.394012 8.287603 0.012642 2.626539 

Gyro1 y 2k dps -7.01099 -7.1224 -7.14924 -6.9622 -7.00326 -6.98778 -6.94282 0.012121 2.517964 

Gyro1 z 2k dps 12.79765 12.80977 12.88774 12.90363 12.8971 13.00009 12.91716 0.013115 2.72343 

Gyro1 t int 21.08948 20.99158 21.0095 20.53514 20.72901 20.72739 20.60719 0.001901 0.393757 

Gyro2 x 2k dps 18.61264 18.9369 19.16082 18.92977 18.77578 19.11366 18.98328 0.011828 2.456826 

Gyro2 y 2k dps -4.21055 -3.83984 -3.91548 -4.0759 -4.12492 -3.95023 -4.2334 0.011711 2.432673 

Gyro2 z 2k dps 7.491982 7.383834 7.554506 7.604883 7.457798 7.485404 7.701132 0.014489 3.008718 

Gyro2 t int 26.40961 26 26 26 26 26 26 0.000479 0.100982 

Gyro3 x 250dps -10.8525 -10.8913 -12.5124 -10.3831 -9.19768 -10.9854 -10.9321 0.095807 19.90578 

Gyro3 y 250dps 80.72398 81.41718 80.64504 80.30853 79.94402 80.03002 78.30344 0.0975 20.25934 

Gyro3 z 250dps -5.92837 -6.55747 -7.26471 -5.88309 -5.85468 -5.72226 -5.59863 0.09484 19.69882 

Gyro3 t int 19.29718 19.1129 18.78583 18.93536 18.96216 19.02831 18.88469 0.001698 0.353635 

Table 10: Summary results of the six-position cube experiment. The coloured columns group pairs of outputs.  



Sensor Mean Properties of the 15 separate samples Properties of turn-on-bias 

variation 

Mean Properties of the 15 consecutive 5-

min samples 

Properties of in-run-bias 

variation 

ratio 

Name and 

axis 

Range 

setting 

Sample 

Mean 

Output 

sample Std 

Dev. / sqrt 

(sample 

size) 

sample 

Std Dev.  

std dev. 

of the 

15 

sample 

means 

range of the 

15 sample 

means 

Sample 

Mean 

Output 

sample Std 

Dev. / sqrt 

(sample 

size) 

sample 

Std Dev.  

std dev. of 

the 15 

sample 

means 

range of 

the 15 

sample 

means 

Indep. 

Temp 

°C 24.505 0.000 0.030 0.131 0.473 23.817 0.000 0.019 0.056 0.193 2.33 

ADXL1 x 16g 12.453 0.047 5.652 0.060 0.206 12.226 0.046 5.559 0.044 0.162 1.36 

ADXL1 y 16g 22.372 0.056 6.770 0.058 0.198 22.478 0.054 6.495 0.043 0.162 1.34 

ADXL1 z 16g 247.324 0.100 12.180 0.126 0.436 247.227 0.099 11.905 0.105 0.349 1.20 

ADXL2 x 16g 7.425 0.046 5.531 0.059 0.220 7.112 0.045 5.404 0.040 0.152 1.50 

ADXL2 y 16g 14.637 0.052 6.338 0.063 0.249 14.435 0.052 6.208 0.038 0.115 1.65 

ADXL2 z 16g 235.952 0.099 11.986 0.163 0.497 236.311 0.099 11.875 0.084 0.257 1.95 

BMA1 x 16g -91.292 0.068 8.246 34.052 132.287 -99.405 0.067 8.077 0.117 0.391 290.41 

BMA1 y 16g -133.593 0.077 9.292 2.529 9.951 -133.935 0.075 9.047 0.146 0.464 17.34 

BMA1 z  16g 787.939 0.073 8.891 973.994 3772.596 537.047 0.072 8.618 0.095 0.363 10285.99 

BMA1 t int -4.889 0.008 0.924 0.534 2.135 -6.527 0.008 0.970 0.030 0.108 17.86 

BMA2 x 16g 53.256 0.065 7.934 0.148 0.555 53.596 0.065 7.777 0.074 0.247 2.00 

BMA2 y 16g -86.178 0.084 10.174 0.167 0.510 -85.792 0.084 10.080 0.081 0.299 2.07 

BMA2 z  16g -453.149 0.068 8.308 0.293 1.102 -451.918 0.068 8.198 0.118 0.367 2.48 

BMA2 t int 2.570 0.011 1.347 0.275 1.034 0.953 0.010 1.233 0.046 0.163 6.03 

BMA3 x 1.5g 527.875 0.322 39.076 1.058 3.519 499.246 0.346 41.688 1.446 5.435 0.73 

BMA3 y 1.5g -8.390 0.397 48.161 0.650 2.441 -14.840 0.429 51.630 1.000 2.978 0.65 

BMA3 z  1.5g -5539.339 0.386 46.853 4.008 13.852 -5527.056 0.408 49.151 2.178 6.894 1.84 

BMA3 t int 0.156 0.006 0.687 0.206 0.641 -1.685 0.006 0.768 0.062 0.217 3.32 

BMA4 x 1.5g 326.603 0.364 44.117 1.111 3.623 325.311 0.374 45.023 0.695 2.301 1.60 

BMA4 y 1.5g -61.749 0.508 61.681 1.573 5.070 -56.896 0.518 62.432 0.717 1.945 2.19 

BMA4 z  1.5g 5616.692 0.465 56.380 3.678 12.983 5617.841 0.466 56.120 0.832 3.103 4.42 

BMA4 t int 1.460 0.010 1.154 0.232 0.758 -0.259 0.009 1.134 0.073 0.234 3.18 

Gyro1 x 2k dps 6.853 0.021 2.602 0.513 1.341 6.225 0.020 2.424 0.067 0.217 7.71 

Gyro1 y 2k dps -7.097 0.020 2.418 0.520 1.429 -6.558 0.018 2.114 0.083 0.285 6.27 

Gyro1 z 2k dps 12.446 0.023 2.794 0.186 0.606 12.503 0.023 2.774 0.067 0.241 2.79 

Gyro1 t int 24.060 0.003 0.408 0.123 0.513 24.150 0.003 0.330 0.171 0.699 0.72 

Gyro2 x 2k dps 17.925 0.021 2.489 0.410 1.147 17.913 0.020 2.360 0.170 0.493 2.41 

Gyro2 y 2k dps -5.057 0.019 2.352 0.301 1.051 -5.730 0.018 2.137 0.072 0.248 4.16 

Gyro2 z 2k dps 7.238 0.025 3.024 0.213 0.681 7.015 0.025 2.965 0.087 0.309 2.46 

Gyro2 t int 28.998 0.004 0.535 0.152 0.596 29.109 0.003 0.343 0.168 0.704 0.90 

Gyro3 x 250dps -6.766 0.166 20.157 6.478 13.367 -1.270 0.151 18.168 0.246 0.981 26.35 

Gyro3 y 250dps 72.746 0.168 20.388 2.886 8.159 68.448 0.152 18.361 0.503 1.673 5.74 

Gyro3 z 250dps 1.407 0.162 19.627 1.032 3.037 3.184 0.157 18.920 0.442 1.468 2.33 

Gyro3 t int 21.796 0.004 0.467 0.215 0.797 22.083 0.002 0.255 0.111 0.461 1.95 

Table 11: Summary statistics for the turn-on-bias experiments. BMA1 and Gyro3 are greyed out for reasons discussed in 

Section 5.2.4. All outputs are raw LSBs, temperature outputs are in blue. 

 


