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Abstract

In every day life it is usually too expensive or simply not possible to
determine every attribute of an object. So for example, it would not come as
a surprise that hospitals only conduct a CT or MRI in given circumstances.
Hence it is quite a common problem at such classifications, that data is lacking
for both the objects forming the existing classes and the objects needing to
be sorted. There exist different algorithms that try to make up the missing
information and do the calculations for the classification based on these, and
there are also some algorithms that only use the existing data and nothing
else. In this article we compare two algorithms, the well-known kNN and one
based on correlation clustering. Whilst the former only extrapolates based
on accessible data, the latter only uses existing data.
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1. Introduction

Data mining aims to extract important but not yet established information from
databases. For the different types of questions we used a variety of algorithms.
From these the most important two are classification and clustering.
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• Classification, here, we are given a grouping and we need to decide for each
new object which class it would best fit into. For example, a lecturer would
know how to grade students based on their results. In case of a new exam,
they would be able to give fair marks based on their previous experience of
marking exams. There are different way to classify something:

– decision trees, for each leaf there is a matching class, and for every
question asked at a node, the answers direct the path forward. At the
end of the path we are given the class of the object we are classifying
[12].

– Bayes-classification, by creating a model we get a Bayes-network with
corresponding conditional probabilities. From these it is possible to de-
termine the probability distribution of an object’s relation to the classes,
and so it is possible to classify the object accordingly [11]. This is how
spam mail is filtered as well.

– neural networks, through the learning process, the edges of the neural
network are assigned corresponding weights. Then, by entering the ob-
ject parameters as the input variable, the output variables automatically
present the weighting of the different classes [10].

– k nearest neighbour (or kNN) here, using the original classification, we
need to determine the k nearest neighbour for the objects needing to be
classified, and from these the most commonly occurring one gives the
class of the object [6].

– fuzzy classifier, in this case we have membership functions, in the form
of if. . . , then. . . fuzzy rules which generate a fuzzy set for each class
from which, using the attributes of the object given as an input, the
most accurate classification can be made [9].

• In case of clustering, the grouping of objects is not known, hence the classes
do not exists and need to be constructed. A large number of algorithms have
been created and almost all of them uses the distances between objects. Here,
we actually use an algorithm that does not build directly on distances, hence
we avoid presenting the distance based ones.

In the next chapter we present the details and refinement of kNN, so that we
can use this algorithm even when data might be missing. Then we present
correlation clustering and the classification methods that are built on it. Then
using our numerical results we demonstrate the two methods using a concrete
example. Following the discussion, we collect the results and explore possible
further research paths.
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2. Refining the kNN method

2.1. Distances
The k nearest neighbour algorithm is built on distances. Hence we investigate
distances a bit further. The data is usually described by an n-tuple. This sometimes
only contains numbers, which describe quantities instead of any code. In this case
this n numbers can be perceived as a point in the n-dimensional space. To evaluate
the distance between two such points we use the Minkowski-distance:

d(p, q) =
( n∑

i=1

|pi − qi|m
) 1

m

,

which in special cases gives the Manhattan (m = 1), Eucledian (m = 2) or Cheby-
shev (m =∞) distance.

If one of the points from the n-dimensional space is missing a coordinate then
it could be positioned anywhere on a straight line, hence its distance from another
point could be anything from a hyperplane distance in n− 1 dimension to infinity.
Hence it could be considered reckless to replace the missing coordinate with a
concrete value, which has 0 probability to be accurate.

However, when describing humans, we measure height in meters and weight in
kilograms

• if two people have the same weight but one is 1 meter higher than the other,
we consider them to be completely different, whilst

• if two people have the same height and differ in weight by 1 kilogram, then
they can be considered very similar.

Hence it is worth normalising the data. Since the data used in testing comes from
real-life, we assume that the different dimensions have normal distribution and
hence the transformation brought us into an n-dimensional normal distribution.

2.2. Supplementing data
One of the most commonly used method for supplementing data is to replace
the missing term with the average of the other data, and this is directly stored
in the database hence once the replacement is done, the artificially constructed
data cannot be differentiated from the original. If data is missing from a learning
object, then we could simply just take the average of the objects corresponding to
its coordinates. However, if data is missing from an object to be classified, we do
not know which class it would belong to, hence it is best to use the average of all
objects.

Since we wish to compare two algorithms on the same learning objects and
objects to be classified, we need to find a better way to substitute the missing
data. As the Minkowski distance is based on coordinate-wise distances |pi− qi|, we
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will have some missing values. Hence we calculate the the average of the existing
ones: d̄ =

∑
i |pi − qi|/l, where l is the number of existing distances. Therefore we

now work with an estimated distance instead of the concrete ones.

d′(p, q) =
(∑

i

|pi − qi|m + (n− l)d̄m
) 1

m

.

2.3. Considering reliability

The original kNN algorithm aims to determine such an environment for every
learning object where there are exactly k classified objects. Then for every class it
determines the prevalence and chooses the class that occurs the most. Note, that
it does not make any difference based on which classified object is the closest (i.e.
is the most similar) to the learning object.

Suggestions have been made to create a weighting system [8], which punishes
the neighbours that are further away. However this does not consider the fact that
neighbouring could have followed directly from the original, or equivalently, the
made up data.

In our implementation we combine these two viewpoints and multiply the dis-
tance of two points by n/l(1 + d′), where d′ is the estimated distance, and l out of
n is the number of dimensions where two objects can be compared. As this number
gets smaller, the weight grows, the weighed distance grows and so the value will be
considered less and less.

The weighed distances were ordered and the k smallest ones were summarised
based on their classes. It is possible that the learning and classified objects both
have some available data, but not in the same dimensions, so the average distance
d̄ cannot be calculated. We omit these cases.

3. Correlation clustering

3.1. Basic concepts

The aim of clustering is to partition the set of objects in such a way that the similar
objects are in the same subset, and dissimilar objects are in different subsets.

Even if given a similarity relation it may not be possible to create such a par-
tition where this holds for every pair of elements. For example, consider the set
of whole numbers, where two numbers are dissimilar is they are coprime. Here
4 and 6 are similar, as well as 6 and 9, however 4 and 9 are dissimilar. Such a sim-
ilarity relation, that is reflexive, symmetric but not necessarily transitive is called
a tolerance relation.

The aim of correlation clustering is to provide the closest equivalence relation
to a given tolerance relation [13]. The distance of the two relations is given by the
number of pairs that are similar but in different subsets, or dissimilar and in the
same subset.
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Solving a correlation clustering is NP-hard, hence typically we can only use
approximating algorithms to find a near optimal solution [5].

3.2. Method of contractions

The aim of correlation clustering can also be considered as an optimisation prob-
lem. Hence we can accordingly use optimisation methods on it. However our
measurements show that these do not yield satisfying results [1, 4]. Hence we have
implemented the method of contractions, which models the behaviour of charged
particles or magnetic materials. We start with a partition of the base set containing
only singletons, and we merge the clusters that attract each other. Attraction of
a cluster is the superposition of attraction of its elements. We obviously need to
check whether any of the clusters rejects any of its elements, since if it does then we
need to create a new singleton containing that element. We continue this until the
whole system becomes stable. In case of stability, these clusters form the partition.

3.3. Generating a tolerance relation

Correlation clustering itself requires a tolerance relation, however this is available
only for a few clustering problems. From the raw data we can only hope to gain
information about the distances. Therefore if we wish to use our method in more
cases then we need to construct a tolerance relation out of these distances.

For constructing a clustering based on distance, if two points are close enough
to each other then we treat them as similar and if they far away from each other we
treat them as dissimilar. Therefore we introduce two constants (δ and ∆), which
represent similarity and dissimilarity, respectively. Two objects not being similar
does not necessarily mean dissimilarity, since in that case it would be enough to
introduce a single constant. This may be simple in some cases, like at our previous
example based on coprimes. However, in real life there are numerous cases where
two objects are not or simply cannot be compared. Then we are met with partiality,
that is, neither of the relations hold.

It would be easy to assume that if the distance of two objects is below the
given smaller limit then they are similar, if above the other then dissimilar, and
otherwise neither.

Whilst this would be a plausible interpretation, we chose a more general method,
we use two distance functions (f and F ). One defines similarity and the other the
difference. So then if F (p, q) > ∆ then two objects are considered dissimilar.
Similarly, if f(p, q) < δ then two objects are similar. If none of these hold then
there is no relation between them. Hence from here on it is possible to generate a
tolerance relation using 〈δ,∆, f, F 〉. Now we need to determine which will be the
most useful for our requirements.
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3.4. Classification using correlation clustering
Quite often with correlation clustering there are more than one (near) optimal
solutions. We could create an intersection out of the different partitions, however
it is impossible to tell apart the elements of the resulting P partition. Therefore
using rough set theory terminology, we consider these elements indistinguishable.
So P defines a Pawlakian base set system.

This gives us the option to create a rought set theory approximation for the
classification of the set of those objects. The subsets of P are associated with
classes based on which class’ elements are the most popular inside of them [2].

This concludes the learning needed for the classification, and we can start allo-
cating the elements that need to be classified into classes. Now we are interested in
how much the elements of the base set (i.e. the elements of the partition) attracts
or rejects the new object. We add the new object to the most favourable cluster.
We could use soft-classification, and we could classify the new object based on the
proportion of the classes of elements in the cluster, but we chose a more clear-cut
approach instead. Hence if there is a tie within a cluster (two classes have the same
number of objects) then we do not classify the object.

We need to consider whether the other clusters could be helpful, i.e. whether we
could superposition the attraction of all the clusters corresponding to a given class.
Whilst this should be technically doable, it usually ends in questionable results as
seen later in the discussion.

3.5. Handling imperfect data
Given two object, both possibly missing some data. We could not fully call them
similar since the missing data may be hiding critical dissimilarity. So the missing
data may suggest a bigger distance. If two objects are considered dissimilar even
the missing data would not change that.

Traditionally for partial tolerance relations we symbolise the three different
possibilities with the numbers {−1, 0, 1}, which represent that two object are dis-
similar, not comparable and similar, respectively.

In case of missing data, similarity and certainty are symbolised with a number
between [−1, 1]. The closer it is to either endpoint the more certain the decision
becomes [3]. Following the above, the value of the tolerance relation (t(p, q)) for
objects p and q is:

• if the two objects are definitely dissimilar (F (p, q) > ∆), then t(p, q) = −1,

• if the two object are different when we extrapolate their distance (F (p, q) >
∆ · l/n, but F (p, q) < ∆), then t(p, q) = −l/n, where l is the number of
comparable dimensions.

• if the two objects are similar when extrapolate their distance (f(p, q) < δ · l/n
and F (p, q) < ∆ · l/n), then t(p, q) = l/n

• and in every other case t(p, q) = 0.
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Interestingly, the method of contraction for generalised tolerance relation wor-
ked without any changes. Due to the nature of the algorithm, first it merges the
objects without any missing data and only when these are all done can the objects
with missing data be processed. Then the creation of the intersection of partitions
of P is done exactly as above.

4. Discussing our results

From the UCI Machine Learning Repository we chose the Wine Data Set for test-
ing [7]. This contains 178 italian wines, which can be described by 13 chemi-
cal/physical traits. The wines can be sorted into 3 categories. For the learning set
we obviously use this information, whilst for the other wines we check whether the
classification put them into the right classes.

For our experiments we randomly selected 25 wines into each learning sets.
Since we would like to inspect the effect of the missing data for both methods, in
7 steps we managed to randomly delete 5% of data. Hence we lose information for
both the original sample and the wines to be classified. The different stages of the
learning sets are marked with dashed lines.

Additionally, for every wine to be classified we deleted 1 piece of information
11 times. This is represented on the horizontal axis. The vertical axis represents
the rate at which we managed to correctly guess the category of the wine.

We generated a 100 learning sets and step by step we deleted data from them
similarly to the elements awaiting classification.

We conducted these experiments for each of distance types we have introduced
above, and in case of correlation clustering for all pairs of distances as well.

Figure 1: Using Manhattan distance

On Figures 1–3 we can see that the Chebyshev distance yielded the worst result.
Interestingly, sometimes it is better to have less data. This is likely related to the
fact that in a uniform sphere in this case (due to maximal distance) a cube, the
objects placed at the nodes may seem to be different and may be considered to be
part of this class by mistake. Looking at the graphs on the left, and considering
Euclidian and Manhattan distances, the recognition rate of objects to be classified
decreases evenly until about half the amount of data is deleted and then the slope
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Figure 2: Using Euclidian distance

Figure 3: Using Chebishev approximation

Figure 4: Using attraction of lower approximations
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changes. Looking at the graphs on the right, where we used kNN, the recognition
rate does not change much until about half the amount of data is deleted, however
afterwards the deletion makes a big difference.

On Figures 1–3 we can see a variant where the object to be classified is added to
the most attractive cluster. On Figure 4, we focused on the attraction of the lower
approximation of classes. From these graphs we can see that this approximation
is not the most rewarding. The original classification of the learning elements
is an artificial creation, and it does not show the potential sub-classes. Since
correlation clustering aims for optimisation and finding the minimal distance from
an equivalence relation, which may happen in multiple different way, it finds a
refinement of the original classification. This is facilitated by favouring the base
set system, which is the closest to the original classification - that is, the least
number of base sets belong to more than one class of the learning set.

We can also inspect the effect of k on the efficiency of kNN.

5. Conclusion and future research direction

We have presented a classification method alongside the well known kNN that
determines its own parameters adaptively, and creates a partition based on these
that enables clustering. Determining the parameters and the construction the
system of the base set is calculation heavy, and so it scales badly. However it only
uses the existing data and so it cannot manipulate them arbitrarily. We use these
two methods for the Wine database.

It has been proved again that the widely taught kNN method deserves its fame.
It has given great results even in cases where there was almost no data available
for classification purposes.

The method based on correlation clustering could not overpower kNN in any
way. However we have only used it for normally distributed data. Hence it would
be worth trying out databases where discrete or categorical data are more present
to see whether the generated distances would be more useful than the tolerance
relations based on the data.
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