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Grating based quantitative polychromatic x-ray phase imaging is currently a very active area of
research. It has already been shown that, in such systems, the retrieved differential phase depends
upon the spectral properties of the source, gratings, detector and sample. In this paper, we show
that the retrieved sample absorption also depends upon the spectral properties of the gratings.
Further, we compare the spectral dependence of both retrieved phase and absorption for the grating
interferometer and coded aperture techniques. These results enable us to conclude that in both cases,
quantitative phase imaging systems cannot be described by an effective energy which is independent
of the sample. This has important implications for applications where an absolute measure of phase
is important and in tomography.

INTRODUCTION

There are now a number of groups around the world
developing grating based x-ray phase contrast imaging
(XPCI) systems which employ non micro-focus labora-
tory sources [1–4]. Grating based techniques seek to ob-
tain quantitative phase gradient and absorption images
of a sample. Apart from providing planar images of much
improved detail and clarity, quantitative XPCI is also an
essential step in attaining three dimensional tomographic
images. The development of quantitative XPCI systems
employing non micro-focus laboratory sources has been
driven by the desire to apply the technique away from
synchrotrons and in applications where the long exposure
times imposed by micro-focus sources are not practical.
Quantitative, polychromatic, differential phase imag-

ing using a conventional x-ray source was demonstrated
using a grating interferometer by Pfeiffer et. al [1]. The
authors of this paper deduced the “mean energy of the ef-
fective x-ray spectrum”, using material property data in
order to quantitatively compare measured phase values
with the tabulated values. Subsequent publications em-
ploying a grating interferometer [5] and the coded aper-
ture technique [6] have shown experimentally that the
concept of a mean energy depends upon whether phase
or absorption is considered and that these two are, in
general, different. This has been studied in detail for
the grating interferometry case by Chabior et. al [7]
who showed that the measured phase gradient depends
upon the spectral properties of the gratings, detector,
source and sample. Crucially, it was noted in this timely
work that sample absorption affects the measured value
of phase gradient. In this paper we derive equations con-
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sistent with those of Chabior et. al [7] which, however,
explicitly take into account the spectral dependence of
the apertures. This is done in order to show that both
the measured absorption and phase are influenced by the
spectral properties of the imaging system. Further, the
derived equations show that the spectral dependencies
of the coded aperture and grating systems differ. We
also show experimental results for weakly and strongly
absorbing materials to verify the derived theoretical re-
sults.

THEORETICAL RESULTS

Both Talbot(-Lau) interferometry and coded aperture
XPCI employ periodic structures to generate and sense
periodic x-ray intensity patterns. Phase information is
encoded in perturbations to the position of such pat-
terns and absorption information in the average inten-
sity. The Talbot(-Lau) interferometer [1, 4] employs a
phase grating to form Lohmann fringes at particular dis-
tances downstream of the grating [8], thus eliminating the
deleterious effects of diffraction. The method requires a
source with fractional spectral width not exceeding 10%
[1] and a source grating [1] or a grooved source target
[4] to increase the source spatial coherence, as shown in
Fig. 1. An alternative to Talbot(-Lau) interferometry,
called coded aperture XPCI, employs an absorbing grat-
ing prior to the sample and is also sketched in Fig. 1. The
transmitting regions of this grating are made sufficiently
wide such that the collimated beams are perturbed only
weakly by diffraction, prior to being incident upon the
detector grating. In this configuration, the effects of low
temporal and spatial coherence which arise from using a
laboratory source are actually beneficial in smoothing the
profile of the beam incident upon the detector aperture
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[9]. A sample placed downstream of the sample grating
allows refracted x-rays to be efficiently detected using the
principle of pixel edge illumination [2, 10]. This technique
decouples the system’s sensitivity from the width of the
transmitting region of the grating and also from the pitch
of the gratings [6].
For both the grating and coded aperture techniques,

the displacement and average intensity of fringes and/or
x-ray beams is sensed by using a grating immediately
before the detector, represented by G2 in Fig. 1. The
detector grating can be parallel to the fringes or rotated
about the optical axis by a slight angle, resulting in the
Moiré configuration [11]. In the parallel case a technique
called phase stepping is employed whereby the intensity
of each pixel in the detector is recorded for a sequence
of lateral positions of the detector grating. Becaus phase
stepping is employed, the pixel dimension, P , and p2 need
not be equal, and in general, P > p2 [1, 3, 4]. Phase
stepping is not employed in the case of coded aperture
XPCI, instead images for two equal and opposite values
of ∆P are acquired, from which the phase is extracted
[6]. In contrast to the Talbot(-Lau) setup, coded aperture
XPCI requires p2 to be equal to an integer multiple of
P , most commonly having p2 = P . Furthermore, each
transmitting region of G2 must be contained within a
pixel.
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FIG. 1. Arrangements for the coded aperture (top) and grat-
ing interferometry (lower) systems with samples included. For
clarity, these diagrams are not scaled in accordance with the
prevailing practical implementations, for example, the pitches
of G1 and G2 in the lower system are typically of the order
of 5 to 20 times smaller than those of the upper system.

Irrespective of which system in Fig. 1 is employed, in
the absence of a sample, a periodic intensity pattern is
projected by grating G1 onto G2 which may be described

by an energy density function as [11]:

I(x, λ) ≈ exp (−2µ(x/M, λ))

(

af
0(λ)

+
∑

n

bfn(λ) cos (2πn(x+ zodφx(x/M, λ))/p2)

)

(1)

where the superscript f denotes fringe, φx(x, λ) =
(∂/∂x)

∫

O
δ(x, z, λ)dz, µ(x, λ) = k

∫

O
β(x, z, λ)dz, δ is

the refractive index decrement, β the imaginary part of
the refractive index, k = 2π/λ is the wave number, λ
is the wavelength and integration taken is over the ob-
ject along the direction of wave propagation. Note that
φx is strictly the refraction angle but since this is pro-
portional to phase gradient we still refer hereafter to it
as phase gradient. Note also that µ is different to the
attenuation coefficient usually employed in x-ray radiog-
raphy. We note that despite the depicted locations of the
samples in the systems of Fig. 4, Eq. (1) is only strictly
valid when the sample is in the plane of G1. This ap-
proximation has however been shown to be reasonable
in practice [7, 12, 13] and does not affect the conclu-
sions of this paper. Furthermore, in arriving at Eq. (1)
we have assumed that the sample satisfies the projection
approximation, meaning that the sample is sufficiently
thin and that inhomogeneities are large compared with
the wavelength [14]. In this context, one criterion for be-
ing sufficiently thin is that the thickness is much less than
zso [15] although Paganin [16] presents a thorough discus-
sion of this subject. Furthermore, whilst the unperturbed
fringe pattern may be calculated using any means, prior
to decomposing onto a sinusoidal basis, we have assumed
that the first order stationary phase approximation may
be employed in modelling how the sample perturbs the
fringe pattern, as is made by nearly all researchers in the
field that we are aware of. Next we introduce the detec-
tor grating with an energy transmission function which
is also described by a function of period p2 and can thus
be described as:

T (x,∆P, λ) = aa
0(λ) +

∑

n

ban(λ) cos(2πn(x−∆P )/p2) (2)

where ∆P represents the position of the grating. Note

that the dependence of a
f/a
0

and b
f/a
n upon wavelength

embodies the spectral properties of the gratings which
lead to partial transmission by absorption gratings and
non-ideal phase modulation by phase gratings. Neglect-
ing diffraction between the detector grating and the de-
tector, the signal in pixel j is then obtained as:

Ij(∆P ) =
1

p2

∫ ∫ (j+1/2)p2

(j−1/2)p2

T (x,∆P, λ)I(x, λ)σ(λ)dxdλ (3)

where σ(λ) is an effective source spectrum combining
the source spectrum, detector response and attenuation
by air and the grating substrate, normalised such that
∫

σ(λ)dλ = 1. Note that for simplicity we have chosen
P = p2 for Talbot(-Lau) case which is not necessarily the
case in practice, however, the expressions which we derive
later to elucidate the spectral dependence of the system
remain general with respect to the choice of pixel size.
Note also that integration with respect to λ is taken over
the source spectrum, as is the case in all remaining inte-
grations over λ. Substituting Eqs. (1) and (2) into Eq.
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(3) and assuming that µ and φx remain approximately
constant within one period of the sample grating gives

Ij(∆P ) ≈ a0
j + a1

j cos(2π∆P/p2)− a2
j sin (2π∆P/p2) (4)

where

a0
j =

∫

exp (−2µ(jp2/M, λ)) aa
0(λ)a

f
0(λ)σ(λ)dλ (5)

a1
j =

1

2

∫

exp (−2µ(jp2/M, λ)) ba1(λ)b
f
1(λ)

· cos (2πzodφx(jp2/M, λ)/p2)σ(λ)dλ (6)

a2
j =

1

2

∫

exp (−2µ(jp2/M, λ)) ba1(λ)b
f
1(λ))

· sin (2πzodφx(jp2/M, λ)/p2)σ(λ)dλ (7)

When phase stepping is employed, a least squares solu-
tion for a0j , a

1
j and a2j may be found by taking measure-

ments for N different values of ∆P forming the vector
∆P = (∆P1,∆P2, . . . ,∆PN ) [17]. In particular, a0j , a

1
j

and a2j may be found from experimental measurements
as the result of a matrix equation:

[

a0
j a1

j a2
j

]T
= A

−1(∆P)B(Ij(∆P),∆P) (8)

where A is a 3×3 matrix which is a function of ∆P only
and B is a 3 × 1 vector which is a function of Ij(∆P)
and ∆P only [17]. This shows that the resulting values
of a0j , a

1
j and a2j have no explicit dependence upon λ. The

mean sample absorption, µ(jp2/M), can be found from
a0j as

exp(−2µ(jp2/M)) =
a0j

∫

aa
0
(λ)af

0
(λ)σ(λ)dλ

(9)

where the denominator in Eq. (9) may be found by ac-
quiring an image in the absence of a sample. This result
holds for both grating and coded aperture XPCI and
shows that the absorption image retrieved using both
methods differs from that obtained using conventional
absorption radiography. Coded aperture XPCI, however,
reduces this discrepancy by using apertures G1 and G2

with opaque regions which are approximately fully ab-
sorbing throughout the spectrum. This is possible be-
cause the larger scale gratings are able to be made with
thicker absorbing material.
Extraction of the phase gradient is slightly more com-

plicated. In the monochromatic case, φx is extracted
according to tan(2πzodφx(jp2/M)/p2) = −a2j/a

1
j . In the

polychromatic case, assuming small φx such as is encoun-
tered in the experimental results in this paper, this pro-
cedure will extract an average phase gradient given by:

φx(jp2/M) ≈

∫

Wj(λ)φx(jp2/M, λ)dλ (10)

where

Wj(λ) = W ps
j (λ) =

exp (−2µ(jp2/M, λ)) ba1(λ)b
f
1(λ)σ(λ)

∫

exp (−2µ(jp2/M, λ)) ba1(λ)b
f
1(λ)σ(λ)dλ

(11)

This result is in agreement with Chabior et. al [7] who,
however, do not make the assumption of small phase

gradients and use a visibility function in the place of
the product ba1(λ)b

f
1(λ). The coded aperture technique

doesn’t employ phase stepping as only two images are
acquired. In the formalism of this paper, two images are
acquired corresponding to Ij(±p2/4) which gives

Ij(p2/4) = a0j − a2j and Ij(−p2/4) = a0j + a2j (12)

The mean absorption may then be found using Eq. (9)
since a0j = (Ij(p2/4)+ Ij(−p2/4))/2. The phase gradient
is extracted by forming

Ij(−p2/4)− Ij(p2/4)

Ij(−p2/4) + Ij(p2/4)
=

a2j
a0j

(13)

which reveals that in the case of coded aperture XPCI,
the mean phase gradient is described by Eq. (10) but
with Wj defined by

Wj(λ) = W ca
j (λ) =

âa
0 â

f
0

b̂a1 b̂
f
1

exp (−2µ(jp2/M, λ)) ba1(λ)b
f
1(λ)σ(λ)

∫

exp (−2µ(jp2/M, λ)) aa
0(λ)a

f
0(λ)σ(λ)dλ

(14)

where â
a/f
0

and b̂
a/f
1

are the Fourier coefficients in the
case that the apertures are completely absorbing and
thus have no spectral dependence. The weighted aver-
age expression in Eq. (10) in conjunction with Eqs. (11)
and (14) formalises an intuitive result and has some im-
portant implications for the interpretation of measure-
ments made by such a system. Firstly, dispersive anal-
yser and/or sample gratings will strongly influence the
measured differential phase. Secondly, the absorption
properties of a sample directly affect the measurement of
differential phase. Finally, the effective source spectrum
and detector characteristics strongly affect measurement
of differential phase.
The concept of effective energy or mean energy is fre-

quently used when testing polychromatic XPCI systems.
In absorption radiography it is routinely said that a com-
bination of system, σ(λ), and sample, µ(x, λ), has an
effective wavelength λµ

eff
satisfying exp(−2µ(x, λµ

eff
)) =

∫

exp(−2µ(x, λ))σ(λ)dλ [18]. Since µ(x, λ) depends
upon the thickness of the sample, in general, the ef-
fective wavelength also depends upon the thickness of
the sample. In the case of a sample with low absorp-
tion this reduces to the more convenient expression:
µ(x, λµ

eff
) =

∫

µ(x, λ)σ(λ)dλ.
We can use a similar argument for differential phase

imaging. In particular, we define an effective wavelength
λφ
eff

satisfying φx(x, λ
φ
eff
) = φx(x) which, from inspection

of Eq. (10), will, in general, not equal λµ
eff
. Furthermore,

a sample will, in general, have a range of effective energies
due to variable absorption throughout a sample. In the
special case of negligible absorption in the sample and
non-dispersive gratings, we find λφ

eff
satisfies the intuitive

relationship: φx(x, λ
φ
eff
) =

∫

φx(x, λ)σ(λ)dλ. Note that
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even in the case of low absorption, the effective wave-
lengths λφ

eff
and λµ

eff
will differ since β(λ) and δ(λ) de-

pend differently on λ. This has been observed previously
[1, 5, 6] but was not explained in those publications.

EXPERIMENTAL AND SIMULATED RESULTS

We now verify the theoretical results by comparing
simulated and experimental data. The experiment is de-
scribed in detail elsewhere [6] however, we give a brief
description of it here. We employed a coded aperture sys-
tem as depicted in Fig. 1 with zso = 1.6m, zod = 0.4m,
p2 = 85µm, a source focal spot FWHM of 60µm and
masks composed of 20µm thick gold. A Rigaku 007HF
source operated at 35kV/25mA (mean energy approxi-
mately 18keV) with a rotating Mo target was used. A
titanium wire of radius 130µm was employed for the com-
parison between theory and experiment. We simulated
the polychromatic phase and absorption images of a ti-
tanium wire using a calculated effective source spectrum
including the effect of the aperture’s graphite substrate
and propagation in air [19], and tabulated values for δ(λ)
and β(λ) [20]. The simulation proceeded by first calcu-

lating a
f/a
0

and b
f/a
n , using only geometrical optics, tak-

ing into account the source FWHM and spectrum and
tabulated refractive index data for gold [20]. Then the
W ca

j (λ) were calculated using Eq. (14), for each discrete
point, and therefore thickness, along the cross-section of
the titanium wire and for each wavelength in the sampled
spectrum. This enabled µ(x) and φx(x) to be calculate
using Eqs. (9) and (10) respectively. Fig. 2 demonstrates
a close match between the experimentally obtained, poly-
chromatic, φx and that obtained by Eq. (10). Note also
that these two differ appreciably from φx obtained by
using δ at the mean energy of the spectrum. This plot
illustrates an important result of Eq. (10), that polychro-
matic phase imaging can result in a differential phase
gradient with an incorrect shape. The plot of φx at the
spectrum mean energy possesses the correct shape, how-
ever, φx obtained by Eq. (10) differs by more than a
constant scaling factor due to varying sample thickness
as discussed in detail below.
Having calculated µ(x) and φx(x), the mean values of

β(x) and δ(x) were found since the shape of the sam-
ple was known. The effective energies, at each point
along the wire cross section, were found by interpolat-
ing the tabulated refractive index values [20] such that

β(x, λµ
eff
) = β(x) and δ(x, λφ

eff
) = δ(x). Fig. 3 shows

plots of the calculated effective energies for phase and
absorption across the titanium sample, as a function of
sample thickness, as well as the mean energy of the spec-
trum. The plots demonstrate how the effective energies
for phase and absorption are, in general, not equal and
actually vary with sample thickness. Both effective en-
ergies tend to increase with increasing sample thickness.
In both cases this is due to beam hardening as the higher
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FIG. 2. Theoretical and experimental plots of φx for the ti-
tanium wire. The “weighted average” curve was calculated
using Eq. (10) whilst the “mean energy” curve was obtained
using titanium’s value of δ at the mean energy of the spec-
trum.

energy spectral components obtain a higher weighting for
the thicker parts of the sample. These results are con-
sistent with those of Fig. 4 however they do not match
completely as both effective energies are slightly underes-
timated. We believe that this is due to an underestima-
tion of the high energy content of the source spectrum.
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FIG. 3. Plots of how the effective energies (phase and absorp-
tion) and spectrum mean energy vary across a titanium wire
of radius 130µm, plotted against the thickness of the wire.

We now present some experimental results to further
verify the theory which we have developed. We imaged a
phantom of wires made of different materials using both
a synchrotron source and a conventional source using the
coded aperture technique. These experiments have been
described in detail in recent publications [6, 13]. The
synchrotron results were obtained using the SYRMEP
bending magnet beamline [21] at the Elettra synchrotron
radiation facility in Trieste, Italy. The edge illumination
set-up was realised by partially covering the Edge-On sil-
icon microstrip single photon counting ”PICASSO” de-
tector with a fully absorbing edge [22]. Phase and ab-
sorption images were obtained for two photon energies,
20keV and 25keV and the slit used to create the single
x-ray beam were sufficiently thick so as not to exhibit
any partial transmission. The experiments using a con-
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ventional source were performed using a Rigaku 007HF
source operated at 35kV/25mA (mean energy approxi-
mately 18keV) with a rotating Mo target. In all cases, the
fibres were imaged along their length such that several
profiles similar to those shown in Figs. (4) and (5) were
obtained. The plots in Figs. (4) and (5) were, however,
obtained by averaging profiles from the images. This in-
troduced an error since the wires were neither straight
nor aligned with the detector pixels. Thus, each pro-
file was shifted to match up the pixels having the most
positive and most negative value of φx. Re-sampling or
sub-pixel shifting was not performed and this is the prime
reason why the error in the vicinity of the peaks in φx is
large.
The first sample considered is a titanium wire of radius

130µm. Comparing the plot of µ for the three source con-
ditions in Fig. 4 shows that, in the polychromatic case,
the effective energy across the sample as predicted by
absorption is between 20 and 25keV. Yet, the effective
energy as predicted by the measurement of φx is greater
than 25keV. A polyetheretherketone (PEEK) wire of ra-
dius 240µm was also imaged which has much lower ab-
sorption than titanium as shown in Fig. 5. Note that
µ has some artefacts at the edges of the sample due to
the low absorption of PEEK. The main thing to note
from these plots is that for the polychromatic case, the
effective energy predicted by the measurement of φx is
very close to 25keV, lower than that predicted by the
titanium sample. The effective energy predicted by the
measurement of µ is closer to 20keV than 25keV, which
too is different from that predicted by the titanium sam-
ple. These results demonstrate that an effective energy
must be defined for phase and absorption measurements
independently and that these are sample specific.
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FIG. 4. Plots of φx and µ for a titanium wire of radius 130µm
acquired using a synchrotron source at 20keV and 25keV re-
spectively and using a polychromatic source. The error bars
represent one standard deviation.

As a final step we present some simulated results which
demonstrate how the spectrum mean energy, absorption
effective energy and phase gradient effective energies dif-
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FIG. 5. Plots of φx and µ for a PEEK wire of radius 240µm
acquired using a synchrotron source at 20keV and 25keV re-
spectively and using a polychromatic source. The error bars
represent one standard deviation.

fer for a material possessing low absorption. The simu-
lation was performed using a wave optical model of the
coded aperture system in a manner similar to previously
reported simulations [6, 23, 24]. We have considered two
cases, one with a source with low spectral width and one
which employs a spectrum similar to that of the labo-
ratory source used to generate the previously presented
experimental results. In this first case we are interested
in how the spectral width of a source affects the effective
energies and so we have employed a spectrum having a
photon fluence, Φ(E), given by

Φ(E) =
1

σE
√
π
exp

[

−
(

E − E0

σE

)2
]

(15)

where in our case we chose the center energy, E0 to be
22.5keV. The spectral width of the source was thus de-
termined by σE . We modelled a coded aperture system
with the same properties as described at the beginning of
this section, with the exception that the thickness of the
apertures G1 and G2, assumed to be equal, was varied
and source photon fluence was described by Eq. (15). It
is also important to point out that we have assumed that
the detector is energy integrating. In order to simplify
the analysis, a wedge object was modelled with its thick-
ness changing along the direction of phase sensitivity of
the coded aperture imaging system. In particular, the
thickness of the wedge was described by T (x) = x + b
where x is the spatial coordinate in the plane of G1 and
in the direction of phase sensitivity and x = 0 was as-
sumed to be in the center of the transmitting region of
the aperture. The value of b thus determines the av-
erage thickness of the wedge and was varied to change
the amount of absorption in the sample. We modelled a
PEEK sample which has a distribution of δ and β as plot-
ted in Fig. 6. The simulation was performed for spectral
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widths up to 15keV (full width at half maximum) and
aperture thicknesses up to 160µm. Since the slope of the
wedge was known, the value of δ could be determined
from the measured value of φx. Knowledge of the aver-
age wedge thickness allowed µ to be calculated. From
both of these quantities the effective energies Eφx

eff and

Eµ
eff could be found.

Fig. 7 shows plots of Eφx

eff , E
µ
eff and spectrum mean

energy for two wedge thicknesses and apertures of thick-
ness 160µm, chosen so as to result in perfectly absorb-
ing apertures. These plots reveal the degree to which
the effective energies diverge even for a relatively nar-
row spectrum. Consider first the thin wedge (b=0.5mm).

We observe that Eφx

eff decreases as the spectral width
increases. This is as expected since the mean phase
gradient may be found according to φx = φx(E

φx

eff ) ≈
∫

δ(E)Φ(E)EdE/
∫

Φ(E)EdE which decreases with in-
creasing spectral width due to the 1/E2 dependence of
δ. As the sample thickness increases, Eq. (14) must be
used to evaluate φx which weights higher energies more
heavily due to sample absorption. The behaviour of Eµ

eff

can be explained in a similar manner to Eφx

eff , differing

because µ has a 1/E3 dependence. We can see from these
plots that even for low absorbing materials, even modest
spectral widths are sufficient to see significant variation
between the respective equivalent energies.
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FIG. 6. The refractive index decrement and imaginary part
of refractive index for PEEK [20].

In our final simulated result we consider a simulated
spectrum for our laboratory source, employing a Molyb-
denum target, for a variety of tube voltages between
20keV and 42keV. The spectra, calculated using the
method of Boone et. al [19], included the effects of propa-
gation through air and the graphite substrate upon which
the apertures are mounted, although these have no effect
on the observed trends. The simulated effective energies

and spectrum mean energy are plotted in Fig. 8 for two
different aperture thicknesses: 160µm and 20µm. In the
former case the apertures remain fully absorbing over
the entire spectrum whilst in the latter case they are
only partially absorbing at high energies. The spectrum
in this case is fundamentally different to that considered
previously, since the spectrum extends asymmetrically as
the tube voltage increases, rather than symmetrically in
the case of the Gaussian spectrum. As a result we observe
all effective energies increasing with tube voltage. The
lower plot which shows the example of apertures which
are partially absorbing demonstrates how Eφx

eff is affected
by partially transmitting apertures. In particular, we see
that the weights W ca

j (λ) will no longer integrate to unity
and in fact result in a spurious, generally lower, value of
φx being measured thus leading to higher values of Eφx

eff .
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FIG. 7. Plots of Eφx

eff , Eµ
eff and spectrum mean versus the full

width at half maximum of the source spectrum defined by
Eq. (15). Two different thicknesses of the PEEK wedge are
considered as indicated by the legend. The apertures were
assumed to be 160µm thick.

CONCLUSIONS

We conclude from this work that quantitative results
obtained from polychromatic grating based XPCI sys-
tems should be interpreted with caution. In particular,
it is only a special case in which effective energies relat-
ing to absorption and phase measurement and spectrum
mean energy coincide, even for narrow spectra. Further-
more, it is impossible to, for example, make an absolute
measurement of phase in the general case as the measured
phase gradient depends on a number of factors including
the optical properties of the gratings, the source spec-
trum and sample absorption. This also has implications
for the use of the polychromatic grating XPCI technique
for tomography. One possible solution to this could be
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FIG. 8. Plots of Eφx

eff , Eµ
eff and spectrum mean versus tube

voltage, assuming a Molybdenum target, for two different
thicknesses of the PEEK wedge sample and 160µm thick aper-
tures (top) and 20 µm apertures (bottom).

to try to more accurately invert Eqs. (5) to (7) by char-
acterising the imaging system and parameterising δ(λ)
and β(λ) as done by Gureyev and Wilkins [25] and more
recently Mukaide et al. [26].
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