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Abstract

The classic model-based paradigm in time series analysis is rooted in the Wold decomposition

of the data-generating process into an uncorrelated “white noise” process. By design, this uni-

versal decomposition is indifferent to particular features of a specific prediction problem (e.g.,

forecasting or signal extraction) – or features driven by the priorities of the data-users. A single

optimization principle (one-step ahead forecast error minimization) is proposed by this classical

paradigm to address a plethora of prediction problems. In contrast, this paper proposes to rec-

oncile prediction problem structures, user priorities, and optimization principles into a general

framework whose scope encompasses the classic approach. We introduce the linear prediction

problem (LPP), which in turn yields an LPP objective function. Then one can fit models via

LPP minimization, or one can directly optimize the linear filter corresponding to the LPP,

yielding the Direct Filter Approach. We provide theoretical results and practical algorithms for

both applications of the LPP, and discuss the merits and limitations of each. Our empirical

illustrations focus on trend estimation (low-pass filtering) and seasonal adjustment in real-time,

i.e., constructing filters that depend only on present and past data.

Keywords. Frequency Domain, Seasonality, Time Series, Trends.

Disclaimer This report is released to inform interested parties of research and to encourage

discussion. The views expressed on statistical issues are those of the authors and not necessarily

those of the U.S. Census Bureau.

1 Introduction

Two applications of great interest in time series analysis are forecasting and signal extraction

(cf. Brockwell and Davis (1991, p.8)). A key aspect of forecasting is that no future data can be

used, and the same feature holds for concurrent signal extraction problems. When it is required
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to compute such projections quickly, without the guidance of cross-validating data, the task is

referred to as real-time forecasting/signal extraction. This real-time perspective is in contrast to

historical estimators, which take a retrospective view on signal extraction, and may utilize data

that is future with respect to the time point under consideration. Considerable applied interest is

focused on the real-time analysis of economic time series, as the identification of trends, cycles, and

turning points has a tremendous impact on public policy and private investment (Harvey (1989,

p.3)). Also, concurrent seasonal adjustment has vast implications on public policy. For a recent

discussion of seasonal adjustment in the Great Recession, see Maravall and Pérez (2012). Also

see Bell and Hillmer (1984), Findley et al. (1998), Dagum and Luati (2012), and Tiller (2012)

for further discussion of seasonal adjustment, and Alexandrov et al. (2012) for a review of trend

extraction methods.

It has long been recognized that a trade-off exists between accuracy (or reliability) of real-

time methods, and their timeliness (see the discussion in Wildi (2005, 2008)). This tension is

best illustrated by the task of finding long-term turning points in economic time series, such as

the Industrial Production Index or the Gross Domestic Product. One wishes to accurately find

turning points before they occur; the production of forecasted turning points antecedent to their

manifestation is highly desirable. Although such estimated turning points are timely, some of them

may be spurious, or false, which causes confusion and incorrect decisions. Hence, turning points

may be timely but inaccurate. Conversely, it is relatively simple to produce highly accurate real-

time turning points that manifest well after the phenomenon has been observed – such estimates are

not timely. By expanding the class of real-time filters, and directly minimizing signal extraction

mean squared error (as opposed to one-step ahead forecasting error), it is possible to improve

performance; this is the main thesis of the paper.

First, in Section 2 we introduce a fairly broad class of linear prediction problems, and dis-

cuss classically optimal solutions, where optimality means minimization of the Mean Square Error

(MSE) of the real-time estimator. This collection of problems is called the set of Linear Prediction

Problems (LPPs). Our results demonstrate that the optimal solution of a LPP depends upon in-

nate characteristics of the time series (through its Wold decomposition), and these might typically

be approximated by postulated models. Of course, it is natural to fit these models such that the

resulting real-time prediction MSE is minimized, which may very well produce non-classical param-

eter estimates, i.e., estimates other than Maximum Likelihood Estimates (MLEs) or other efficient

estimators, such as Whittle estimates. These alternative methods of fitting are discussed in Section

3, offering a novel generalization of the multi-step ahead forecasting criterion of McElroy and Wildi

(2013).

Secondly, we describe in Section 4 a non model-based approach to these prediction problems,

which attempts to minimize real-time MSE with respect to some chosen class of concurrent filters

– this is called the Direct Filter Approach (DFA), described fully in Wildi (2005, 2008) – with
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a resulting methodology that typically differs from classical model-based approaches. Our results

connect DFA to the classical approaches, allowing for contrasts to be made. Although the DFA has

existed for over a decade, the connections to general time series prediction problems made herein

are novel. Moreover, the application of the DFA from a completely model-based orientation is a

fresh development.

Section 5 applies these concepts on a few worked examples, demonstrating explicitly the power

of accounting for prediction problem structure and user priorities directly in the objective function.

User priorities may focus on long-term forecasting, or trend extraction, or seasonal adjustment,

or business cycle turning points, for example; these can be encapsulated by an particular LPP, so

that the objective function matches the application. We focus on the important U.S. automobile

retail sector for an example involving trend estimation in the presence of strong seasonality. We

illustrate how the DFA can replicate, or reproduce, classical model-based methods of real-time signal

extraction. We then successively change the inputs to the DFA objective function, including the

target signal and the spectral estimate. We compare the resulting filter with a widely used model-

based design. For a seasonal adjustment exmaple we study U.S. housing starts for the MidWest

region. The seasonality of this series has the common feature (among economic data) that its

seasonal peaks differ in width and height. We first show how this salient feature of the series can be

accounted for, and then compare real-time DFA seasonal adjustment performances with a classical

model-based approach. Section 6 concludes, and both code and mathematical proofs are in the

Appendix.

In summary, this paper offers three novel contributions: (1) we define and solve LPPs, which

generalize simple forecasting and signal extraction problems; (2) we treat model fitting via min-

imization of LPP MSE, describing the asymptotic properties of parameter estimates and their

pseudo-true values; (3) we connect these two previous concepts to the DFA, showing that the DFA

is broader, while deriving asymptotic properties of parameter estimates. These three contributions

are tied together through two extensive empirical illustrations.

2 MSE Optimal Prediction Problems

We focus in this paper on univariate difference stationary time series, defined below. Throughout,

B is the backshift operator and F = B−1 is the forward shift operator. The autocovariance function

(acf) of a weakly stationary time series with bounded spectral density f (and bounded away from

zero, so that long memory and negative memory is excluded) is denoted γh(f) at lag h, and is

defined as the inverse Fourier Transform of the spectrum, i.e.,

γh(f) =
1

2π

∫ π

−π
eiλhf(λ) dλ.
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The autocovariance matrix of dimension n is then denoted Σ(f), and its jkth entry is γj−k(f). We

also use z = e−iλ for λ ∈ [−π, π]. In this section we discuss real-time signal extraction and the

solution to the Linear Prediction Problem (LPP).

2.1 The Linear Prediction Problem

We begin by defining the class of real-time estimation problems considered in this paper, which are

developed through several examples.

Definition 1 : A target is defined to be the output of any known linear filter acting on the data

process, i.e., {Yt} is a target time series corresponding to a given filter Ψ(B) acting on a given

observed time series {Xt} if and only if we can write for all integers t

Yt = Ψ(B)Xt.

Throughout this paper we will write the frequency response function (frf) of a linear filter

Ψ(B) =
∑∞

j=−∞ ψjB
j via Ψ(z), where z = e−iλ. Thus the frf is a function with domain λ ∈ [−π, π].

Example 1: One-step Ahead Forecasting. Here the target is Xt+1, so that Ψ(B) = B−1.

Example 2: Multi-step Ahead Forecasting. Instead we want to project h steps ahead with

h ≥ 1, so Yt = Xt+h = F hXt, and Ψ(B) = B−h.

Example 3: HP Low-pass. The Hodrick-Prescott (HP) filter (Hodrick and Prescott, 1997) is a

low-pass filter appropriate for producing trends. The output of the filter is our target in this case,

and

Ψ(z) =
q

q + (1− z)2(1− z)2

is the frf, where q > 0 is the signal-to-noise ratio.

Example 4: HP High-pass. The HP filter is also used to define cycles in the econometric

literature, by taking the identity minus the HP low-pass filter. So the target is a cycle and the filter

frf is

Ψ(z) =
(1− z)2(1− z)2

q + (1− z)2(1− z)2 .

See McElroy (2008) for formulas for the filter coefficients.
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Example 5: Näıve Seasonal Adjustment. The removal of seasonal patterns most simply

involves an annual summation of past values. Symmetrizing and normalizing to ensure preservation

of levels yields the simplistic filter

Ψ(B) = s−2U(B)U(F ),

where s is the number of seasons in the year (e.g., s = 4 for quarterly data and s = 12 for monthly

data) and U(B) = 1 +B +B2 + · · ·+Bs−1. As shown in McElroy and Wildi (2010), the seasonal

estimation filter 1−Ψ(B) can be expressed as (1−B)(1− F ) times a symmetric MA filter, which

indicates that the seasonal adjustment filter preserves quadratic trends.

Example 6: Henderson Trend. Introduced in actuarial science, the Henderson filter – see

Ladiray and Quenneville (2001) for more background – is typically used to produce trends. The

coefficients depend on an (odd integer) order q, but all Henderson filters have the form

Ψ(B) = 1− (1−B)2(1− F )2Φq(B),

where Φq is a symmetric function of B and F of maximum order (q− 5)/2. For example, Φ9(B) =

.33 + .17(B + F ) + .04(B2 + F 2). Other cases are given in McElroy (2011).

Example 7: X-11 Filters. The trend, seasonal, nonseasonal, and irregular components are

defined as the output of an iterative nonlinear procedure in the software program X-11 (Ladiray

and Quenneville (2001) describe the procedure). When linearized, the filters can be expressed as

symmetric MA filters described in McElroy (2011).

Example 8: Ideal Low-Pass. The concept of the ideal low-pass filter involves a steep cutoff

of noise frequencies, described by an indicator function for the frf; see Baxter and King (1999).

Thus Ψ(z) = 1[−µ,µ](λ) for some cutoff µ ∈ (0, π) that separates the pass-band from the stop-band.

There are infinitely many nonzero coefficients, given by ψj = sin(jµ)/(πj) for j 6= 0 and ψ0 = µ/π.

(The ideal band-pass filter arises as the difference of two ideal low-pass filters.)

The targets of real-time signal extraction can be forecasts or other features of the process. In

general, they represent features of the data process that are of interest to the user. The real-

time estimation problem is concerned with projecting the target Yt onto the available data Xt: =

{Xt, Xt−1, · · · }, i.e., the semi-infinite past. We seek a solution that expresses the estimate as a

linear combination of the data, or in other words a linear (time-invariant) concurrent filter applied

to {Xt}. We desire that the error in approximating the target with the available data be small.

Although in practice only a finite past is actually available, most real-time filters have coefficients
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that decay at geometric rate1, such that there is little difference between a filter of length 200 and

an infinite length filter. That is, if we have at least 200 or so data points, there is generally no loss

in simply truncating the semi-infinite real-time filter at the 200th coefficient.

More formally, our estimate of the target Yt is denoted Ŷt, and can be expressed via Ψ̂(B)Xt

with Ψ̂(B) =
∑

k≥0 ψ̂kB
k, a causal (or concurrent) filter. We refer to this as the “linear time-

invariant real-time estimation problem.” Note that if the data process were Gaussian, we could

view our estimate as the conditional expectation Ŷt = E[Yt|Xt:]. Then the coefficients {ψ̂k} would

be selected to minimize the Mean Squared Error (MSE) of the approximation error Yt − Ŷt, using

the second order properties of the data process {Xt} (summarized through its spectral density

function f̃). More generally, our data process might not be Gaussian, but we still seek a causal

linear solution because it is convenient for applications; MSE may still be a useful error metric

for non-Gaussian processes. See Bell (1984) for further discussion of MSE in signal extraction

problems, and McElroy (2010) for alternative measures.

Definition 2 : The Linear Prediction Problem (LPP) seeks the minimal MSE linear estimate

that solves the real-time estimation problem. That is, the LPP involves determining causal Ψ̂(B)

such that the prediction error

Yt − Ŷt =
[
Ψ(B)− Ψ̂(B)

]
Xt

has mean zero and minimal MSE.

Example 1: One-step Ahead Forecasting. The LPP in this case refers to determination of

optimal forecasts, and

Yt − Ŷt = Xt+1 − Ψ̂(B)Xt =
[
F − Ψ̂(B)

]
Xt.

Example 2: Multi-step Ahead Forecasting. The LPP is optimal h-step forecasting, and the

forecast error is (F h − Ψ̂)Xt.

Example 5: Näıve Seasonal Adjustment. The LPP involves optimal real-time estimation of

the simplistic seasonal adjustment. Thus

Yt − Ŷt =
[
s−2U(B)U(F )− Ψ̂(B)

]
Xt.

1Filters that are derived from models inherit the properties of these models, so that short memory models induce

filters with coefficients of geometric decay (like the autocovariances), whereas long memory models can produce

filter coefficients with hyperbolic decay – e.g., see Holan and McElroy (2012). We focus on processes with bounded

spectrum, and short memory models, so that filter coefficients decay rapidly. Whereas the methodology of this paper

does not preclude long memory, the mathematical results (and neither the empirical results) have not been established

by us for a long memory framework.
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We note here that although our forecasting LPPs are conventional, signal extraction is often

(see Bell and Hillmer (1984)) formulated in terms of unobserved stochastic processes, where the

target is not expressible as a linear filter of the data. The perspective on signal extraction in this

paper is different, and is equivalent to revision minimization (of the semi-infinite to the bi-infinite

filters) in the classical paradigm.

2.2 Solution to the Linear Predction Problem

When the data process is itself causal and linear, it is possible to give an explicit solution to the LPP

in terms of the Wold decomposition. We suppose that there exists a differencing polynomial δ(B)

such that Wt = δ(B)Xt is a covariance stationary time series. Here δ is a degree d polynomial with

all its roots on the unit circle of the complex plane. All purely nondeterministic stationary (mean

zero) processes have a Wold decomposition Wt = Π(B)εt, where {εt} is white noise (uncorrelated

serially, but possibly dependent over time) of variance σ2 and Π(B) =
∑∞

j=−∞ πjB
j (Brockwell

and Davis, 1991). When πj = 0 for all j < 0, the process is called causal. For any Laurent series

Υ(B) =
∑

j υjB
j , let the notation [Υ]sr(B) denote

∑s
j=r υjB

j .

We begin our treatment with some preliminary results from Bell (1984) on nonstationary

stochastic processes. Let δ(z) = 1 −
∑d

j=1 δjz
j , and its reciprocal power series is ξ(z) = 1/δ(z) =∑

j≥0 ξjz
j . One can recursively solve for the {ξj} via ξ0 = 1 and ξj =

∑min(d,j)
k=1 δkξj−k for j ≥ 1.

Moreover, certain time-dependent coefficient functions Aj,t lying in the null space of δ(B) are de-

fined via

Aj,t = ξt−j −
d−j∑
k=1

δkξt−j−k

for j = 1, 2, · · · , d and t ≥ 1. Then the process {Xt} can be represented via

Xt =
d∑
j=1

Aj,d+tXj−d +
t−1∑
j=0

ξjWt−j . (1)

It also follows from results in Bell (1984) that

1−
d∑
j=1

Aj,d+tB
d+t−j =

t−1∑
k=0

ξkB
k δ(B), (2)

which is an algebraic identity. Assuming the spectral representation for {Wt} exists (see Brockwell

and Davis (1991) for additional details), namely Wt =
∫ π
−π e

iλt dZ(λ) for an orthogonal increments

process Z(λ), we obtain the following spectral representation for {Xt}:

Xt =
d∑
j=1

Aj,d+tXj−d +

∫ π

−π

eiλt −
∑d

j=1Aj,d+te
−iλ(d−j)

δ(z)
dZ(λ). (3)

This expresses the dynamics of the process in terms of a predictable portion – determined by the

functions Aj,d+t and the variables X1−d, · · · , X−1, X0 – and a non-predictable portion involving a
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time-varying filter of the {Wt} series. Then a target signal, given the application of a linear filter

Ψ(B), takes the form

Yt = Ψ(B)Xt =
d∑
j=1

ΨAj,d+tXj−d +

∫ π

−π

eiλtΨ(z)−
∑d

j=1 ΨAj,d+te
−iλ(d−j)

δ(z)
dZ(λ),

where ΨAj,d+t =
∑

k ψkAj,d+t−k describes the action of the filter on the coefficient functions. The

LPP requires that the filter error process Yt − Ŷt be mean zero, in addition to having minimal

variance. The mean zero condition is automatic for stationary data (when d = 0, the empty sums

collapse and the mathematics is much simpler).

We first describe a broad set of conditions that any real-time signal extraction filter must satisfy

to even qualify as a solution to the LPP. Essentially, the filter error Ψ(B)− Ψ̂(B) must be divisible

by δ(B), as shown below. First, if we write down Yt− Ŷt = [Ψ(B)− Ψ̂(B)]Xt, we have a potentially

nonzero mean arising from terms of the form ΨAj,d+t − Ψ̂Aj,d+t. We require that these quantities

be identically zero, i.e., the real-time filter exactly replicates the behavior of Ψ(B) on underlying

predictable components of the data process. Since the functions {Aj,·}dj=1 constitute a basis for

the Null Space of the operator δ(B), it suffices to determine some linear filter τ(B) such that

Ψ(B)− Ψ̂(B) = τ(B)δ(B).

Suppose that δ(B) = Π`(1−Bζ−1
` )

r` , which factors the differencing operator in terms of roots

ζ` occurring with multiplicity r`. Then we impose

Ψ̂(r`−1)(ζ`) = Ψ(r`−1)(ζ`) (4)

for each `. This notation says that the derivative of order r`− 1 of the Laurent series, evaluated at

the corresponding root ζ` with that multiplicity r` − 1, is the same for both Ψ and Ψ̂ by fiat. Let

∆(B) = Ψ(B) − Ψ̂(B), and observe that (4) ensures that ∆(r`−1)(ζ`) = 0 for all `. By the unique

factorization of polynomials over the complex plane, it follows that (4) guarantees that ∆(B) is

divisible by δ(B); we denote the quotient by τ(B). As a result, the real-time error process is

Yt − Ŷt = ∆(B)Xt = τ(B)Wt

when Ψ̂ is selected to satisfy (4). This ensures that the error process is mean zero (and covariance

stationary). With these preliminaries, we can state the solution to the LPP.

Proposition 1 Suppose that {Xt} is nonstationary with representation (3), and that {Wt} is

causal, expressed as Wt = Π(B)εt. Moreover, assume that the initial values X0, · · · , X1−d are

uncorrelated with the innovations {εt}. Then the solution to the LPP posed by a given Ψ(B) is

given by

Ψ̂(B) =
∑
h≥0

ψhB
h +

∑
h<0

ψh

 d∑
j=1

Aj,d−hB
d−j +

−h∑
k=1

ξ−h−k[Π]∞k (B)F kδ(B)Π−1(B)

 . (5)
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Moreover, the minimal MSE is given by

σ2

2π

∫ π

−π

∣∣∣∣∣∑
h>0

ψ−hz
−h[Π/δ]h−1

0 (z)

∣∣∣∣∣
2

dλ. (6)

Remark 1 Implicit in the proof is the fact that the error filter Ψ(B)− Ψ̂(B) is divisible by δ(B).

In general, the causal moving average Π(B) is unknown to us, and we may attempt various guesses

at its structure, typically via utilizing fitted models. The formula (6) gives us a lower bound on

the MSE when we use sub-optimal proxies for Ψ̂(B).

As indicated by Remark 1, the result of Proposition 1 is only useful if we know Π(B), or have

some decent approximation. A classical approach would be to formulate a model for Π(B), compute

the LPP MSE as a function of model parameters, and minimize this function to determine the best

possible Π(B) for that model class. Or we might determine model parameters some other way (e.g.,

through MLEs) and plug into the formula. We pursue these ideas further in the next Section.

3 Model Fitting via LPP MSE Minimization

In this section we use the variance of the LPP to fit models, making connections to the Whittle

likelihood and Kullback-Leibler discrepancy; see Taniguchi and Kakizawa (2000). Let us suppose

that a model is postulated for the data process, which can be visualized by considering a particular

class of Πω(B) parameterized by a vector ω ∈ Ω, a model parameter manifold. (Note that the

innovation variance σ2 is not considered part of the parameter vector ω, as we focus on separable

models, i.e., the innovation variance is separately parametrized.) We presume that the unit roots –

encapsulated in δ – have been correctly identified. The model spectral density (for the differenced

data process) is then |Πω(z)|2σ2, denoted by fω(λ). The “innovation-free” spectrum is defined as

fω(λ) = |Πω(z)|2 = fω(λ)/σ2. The modeler hopes that fω forms a suitable approximation to f̃

(the true spectrum of the differenced data process) once the parameter ω is appropriately fitted. In

practice, this involves finding ω̃ ∈ Ω such that fω̃ and f̃ are close according to some distance metric.

The empirical version then chooses ω̂ ∈ Ω such that fω̂ and I (the periodogram) are close according

to the same metric. The periodogram is computed from a sample of size n from the (stationary

differenced) process, namely W = (W1,W2, · · · ,Wn)′, and is defined by I(λ) = n−1|
∑n

t=1Wtz
t|2.

Observe that n−1W ′Σ(g)W = γ0(gI) for any function g defined on the domain [−π, π]; see McElroy

and Holan (2009) for derivations.

For further exposition of this basic approach, see Taniguchi and Kakizawa (2000) and McElroy

and Wildi (2013). The latter paper considers the multi-step ahead LPP (Example 2 above). In the

case of the one-step ahead LPP, the MSE of the LPP error corresponds to the Whittle likelihood (up

to a term involving the log innovation variance) and is related to Kullback-Leibler (KL) discrepancy

(Dahlhaus and Wefelmeyer, 1996). We provide a general, and novel, treatment of this topic below.

9



When using a potentially misspecified model to solve a LPP, the real MSE is the variance of

ηt =
∑
h>0

ψ−hF
h[Πω/δ]

h−1
0 (B)Π−1

ω (B)Wt

so long as the unit roots are correctly identified (see the proof of Proposition 1). Since Πω(B) is now

potentially misspecified, we cannot conclude that Π−1
ω (B)Wt = εt as in the proof of Proposition 1.

Elementary calculations then yield

V ar(ηt) =
1

2π

∫ π

−π

∣∣∣∣∣∑
h>0

ψ−hz
−h[Πω/δ]

h−1
0 (z)

∣∣∣∣∣
2
f̃(λ)

fω(λ)
dλ. (7)

Note that (7) then becomes a function of the model parameter ω, as well as the data spectrum f̃ .

Clearly, one comes as close as possible to the optimal MSE target by finding ω to minimize this

criterion. Let ω(f̃) denote a minimizer of (7), which of course depends on the true spectrum f̃ .

Then using the LPP filter Ψ̂(B) corresponding to this particular ω(f̃) provides the best possible

concurrent approximation to Ψ(B) within the given model. It will be convenient to generalize (7)

to a function JΨ(ω, g):

JΨ(ω, g) =
1

2π

∫ π

−π

∣∣∣∣∣∑
h>0

ψ−hz
−h[Πω/δ]

h−1
0 (z)

∣∣∣∣∣
2
g(λ)

fω(λ)
dλ.

Here g is a generic real-valued non-negative function with domain [−π, π]. This JΨ provides a

distance measure between the functions g and fω as a function of ω (through Πω), depending on

the given Ψ. Its minimizer (with respect to ω ∈ Ω) is denoted ω(g). When g = f̃ , then ω(f̃)

provides the lowest possible LPP MSE for that particular data process. But if g = I, then ω(I)

provides an empirical estimate of the ω(f̃), as shown below. We refer to ω(f̃) as a pseudo-true value

(PTV), in analogy with the terminology used for the Whittle likelihood and the KL discrepancy.

(See Cox (1961, 1962) for further background on PTVs.)

Now when the model is correctly specified, there must exist some “true” parameter ω̃ ∈ Ω such

that f̃ ∝ fω̃ because f̃ , once divided by its innovation variance σ̃2 = exp{(2π)−1 ∫ π
−π log f̃(λ) dλ},

is in {fω : ω ∈ Ω}. (There may be multiple such true parameters ω̃ if there is an identifiability

problem.) Then the identity f̃ = f ω̃ σ̃
2 holds, and it follows that

JΨ(ω, f̃) =
σ̃2

2π

∫ π

−π

∣∣∣∣∣∑
h>0

ψ−hz
−h[Πω̃/δ]

h−1
0 (z)

∣∣∣∣∣
2

dλ.

By Remark 1, this quantity achieves the minimal MSE lower bound of the LPP. But because by

definition JΨ(ω(f̃), f̃) ≤ JΨ(ω, f̃) for all ω ∈ Ω, we must have JΨ(ω(f̃), f̃) = JΨ(ω̃, f̃). Then if

the function JΨ(·, f̃) has a unique minimizer, we conclude that ω(f̃) = ω̃, i.e., the minimizer of the

LPP criterion is identical with the true parameter.
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More generally, the model may be incorrectly specified (i.e., f̃ 6∈ {fω : ω ∈ Ω}), and ω(f̃)

no longer equals the “true” parameter – and in fact, the concept of “true” parameter becomes an

absurd concept. But ω(f̃) comes as close as possible to truth, according to the given metric, and

this justifies the nomenclature of “pseudo-true value” (PTV). We now formulate a general result

about inference for model parameters ω based on the LPP MSE.

We must assume that our PTVs are not on the boundary of the parameter set, because the limit

theory is non-standard in this case (cf. Self and Liang (1987)). If the PTV is unique, the Hessian of

the criterion function should be positive definite at that value, and hence invertible. The so-called

Hosoya-Taniguchi (HT) conditions (Hosoya and Taniguchi (1982) and Taniguchi and Kakizawa

(2000)) impose sufficient regularity on the process {Wt} to ensure a central limit theorem; these

conditions require that the process is a causal filter of a higher-order martingale difference. Finally,

we suppose that the fourth order cumulant function of the process is identically zero, which says

that in terms of second and fourth order structure the process looks Gaussian. This condition is not

strictly necessary, but facilitates a simple expression for the asymptotic variance of the parameter

estimates. Let the Hessian of JΨ(ω, f̃) be denoted H(ω) = ∇ω∇′ωJΨ(ω, f̃).

Theorem 1 Suppose that ω(f̃) exists uniquely in the interior of Ω and that H(ω(f̃)) is invertible.

Suppose that the process {Wt} has finite fourth moments, conditions (HT1)-(HT6) of Taniguchi

and Kakizawa (2000, pp.55-56) hold, and that the fourth order cumulant function of {Wt} is zero.

Then as n→∞

ω(I)
P−→ ω(f̃)

√
n
(
ω(I)− ω(f̃)

)
L

=⇒ N
(

0, H−1(ω(f̃))V (ω(f̃))H−1(ω(f̃))
)
.

Here V is a matrix given by

V (ω) =
2

2π

∫ π

−π
∇rω(λ) · ∇′rω(λ) dλ

rω(λ) =
|
∑

h>0 ψ−hz
−h[Πω/δ]

h−1
0 (z)|2

fω(λ)
.

This result illustrates a form of consistency of the estimates, as well as illustrating when and

how efficiency fails. The asymptotic normality result can be used to build models, since we can

compute the asymptotic variances and use these quantities to test whether estimated parameters

are significantly different from zero. Of course, this depends on our ability to compute V and H.

Example 1: One-step Ahead Forecasting. With g equal either to the periodogram I or

the spectrum f̃ , JΨ(ω, g) = (2π)−1 ∫ π
−π g(λ)/fω(λ) dλ is the MSE for one-step ahead forecasting

(the differencing operator δ plays no role). Modulo the contribution of the innovation variance,

this is the Whittle likelihood, and is also the KL discrepancy between g and fω (Taniguchi and
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Kakizawa, 2000). The estimate ωI is called the quasi-maximum likelihood estimate (QMLE), or

Whittle estimate; in the case of an AR(p) model, it is the solution to the empirical Yule-Walker

equations (see McElroy and Findley (2010) for more discussion). More explicitly,

fω(λ) = |1− ω1z − · · · − ωpzp|−2

and ω = [ω1, ω2, · · · , ωp]′. The MSE function is then explictly written

JΨ(ω, g) = γ0(g)− 2[γ1(g), γ2(g), · · · , γp(g)]ω + ω′Σ(g)ω,

so that the optimum is ωg = Σ−1(g)[γ1(g), γ2(g), · · · , γp(g)]′. This is the familiar solution to the

Yule-Walker equations.

Example 2: Multi-step Ahead Forecasting. Now the LPP criterion is

JΨ(ω, g) =
1

2π

∫ π

−π

|[Πω/δ]
h−1
0 (z)|2

|Πω(z)|2
g(λ) dλ,

which is the h-step ahead prediction MSE discussed in McElroy and Findley (2010) and McElroy and

Wildi (2013). The latter paper provides an explicit expression in the case of a fitted ARIMA(1,1,0)

model. In this case the model is written (1−B)(1− ωB)Xt is a white noise process. Then

JΨ(ω, g) = γ0(g) [h+ ζ2(ω)] + 2
h∑
k=1

γk(g) [h− k + ζ(ω)]

ζ(ω) = −ω 1− ωh

1− ω
,

where g = I or f̃ as the case may be. An optimizer ω(g) is any root of ω+ω2+· · ·+ωh =
∑h

k=1 ρk(g).

Example 8: Ideal Low-Pass. The best model-based real-time filter approximation to the low-

pass filter has MSE

JΨ(ω, g) =
1

2π

∫ π

−π

|
∑

h≥1
sin(hµ)
πh z−h[Πω/δ]

h−1
0 (z)|

2

|Πω(z)|2
g(λ) dλ.

These examples show the connection between the LPP objective functions for model-fitting and

the classical objective functions, such as the Whittle likelihood. The next section dispenses with

models, and attempts to directly obtain Ψ̂ from a suite of filters.

4 The Direct Filter Approach

In this section we provide a more generic solution to the LPP by generalizing the class of concurrent

filters. One view of Proposition 1 is that it provides a certain class of concurrent filters, namely

12



those that arise from specified models. But there is no requirement to restrict to such classes of

filters – it may be possible to improve performance by utilizing other classes of concurrent filters.

Perhaps we do not believe that {Wt} has a causal representation, or perhaps we entertain little

hope of obtaining a viable model for Π(B). Instead, we can choose a class of concurrent filters for

Ψ̂(B) in the LPP and optimize the resulting MSE. We proceed to develop this novel approach to

the problem.

Suppose that a class of concurrent filters G is considered, and is parametrized by a filter pa-

rameter θ ∈ Θ, a parameter manifold. So G = {Ψ̂θ : θ ∈ Θ}. Whereas the model-based approach

to the LPP involves minimizing JΨ(ω, g) – here g equals I for the empirical problem, and g equals

f̃ for the theoretical problem – instead the filter-based approach to the LPP involves minimizing

the MSE of Yt − Ŷt with respect to filters in G; in order for this filter error to have mean zero, we

require that these filters satisfy (4). Obviously, this requires firstly a knowledge of the unit roots

present in the data, and secondly the ability to compute the appropriate derivatives of Ψ(B). Then

the resulting Direct Filter Approach (DFA) MSE can be written as GΨ(θ, f̃), where GΨ is defined

as

GΨ(θ, g) =
1

2π

∫ π

−π

|Ψ(z)− Ψ̂(z)|
2

|δ(z)|2
g(λ)dλ. (8)

The integrand in this expression is well-defined due to the imposed conditions (4). Note that if let

g = f̃ and we associate the denominator |δ(z)|2 with the spectral density f̃ , the DFA MSE involves

the magnitude squared of the filter error Ψ(z) − Ψ̂(z) multiplied by the pseudo-spectral density

f̃(λ)|δ(z)|−2.

Now the minimizer θ(g) of the DFA MSE provides the optimal concurrent filter Ψ̂θ(g) within the

class G (subject to (4)). In the classical case (previous section) we optimize over model parameters,

while in the DFA case we optimize over filter parameters. Moreover, we can view the first case as

included in the second case, where the class of filters G considered consists of those of the form (5),

where we identify θ directly with ω.

However, we are free to take less restrictive classes for G in the hope of obtaining a richer class

of filters, and thereby to diminish the LPP MSE. For example, for stationary time series G could

consist of all MA filters of a certain order, with θ denoting the coefficients (we will refer to this as

Mq, where the MA filters have order q). Alternatively, G might consist of all ARMA filters of a

particular AR and MA order, or might consist of all Zero-Pole Combination (ZPC) filters of a given

specification (Wildi, 2008). The DFA of Wildi (2008) approached the minimization of GΨ(θ, g) over

a class G of appropriately restricted ZPC filters. But here we use the term DFA more broadly to

refer to the minimization of GΨ(θ, g) with respect to any desired filter class G.

In the case of one-step ahead forecasting of stationary time series and G = Mq, the DFA is

identical with the model-based LPP solution utilizing an AR(q+1), as we demonstrate next. Recall

that Ψ(B) = B−1. For any Ψ̂θ ∈Mq, write the parametrization as Ψ̂θ(B) = θ0 + θ1B+ · · ·+ θqB
q.

13



Then the DFA MSE is

GΨ(θ, g) =
1

2π

∫ π

−π
|z−1 − Ψ̂(z)|

2
g(λ) dλ

=
1

2π

∫ π

−π
|1− θ0z − θ1z

2 − · · · − θqzq+1|2g(λ) dλ

= γ0(g)− 2 [γ1(g), · · · , γq+1(g)] θ + θ′Σ(g)θ,

where θ = [θ0, θ1, · · · , θq]′. The optimizer is θ(g) = Σ−1(g) [γ1(g), · · · , γq+1(g)]′, which is identical

to the solution ω(g) of the AR(q+1) case of Example 1. Hence the filter-based and model-based

criteria are mathematically identical, and the optima are the same. This is a very special case,

which works essentially because Ψ(z) has unit magnitude at all frequencies (a similar result holds

for the multi-step forecasting LPP, although a constrained AR(h+ q) is the result).

Analogously to the use of LPP to fit models, we can also develop an inference theory for the

DFA. The following concepts are similarly treated in Wildi (2008). Given a filter class G, the best

possible concurrent filter is some Ψ̂
θ(f̃)

where θ(f̃) minimizes GΨ(θ, f̃). We will call this θ
f̃

the

PTV for the filter parameter, in analogy with the terminology for model parameters, although there

is no real “true” filter parameter conceptually in place. Likewise, a natural empirical estimate of

this optimal filter parameter is θ(I), obtained by minimizing GΨ(θ, I). Then we have the following

result.

Theorem 2 Suppose that θ(f̃) exists uniquely in the interior of Θ and that the Hessian of GΨ,

denoted H(θ) = ∇∇′GΨ(θ, f̃), is invertible. Suppose that the process {Wt} has finite fourth mo-

ments, conditions (HT1)-(HT6) of Taniguchi and Kakizawa (2000, pp.55-56) hold, and that the

fourth order cumulant function of {Wt} is zero. Then as n→∞

θ(I)
P−→ θ(f̃)

√
n
(
θ(I)− θ(f̃)

)
L

=⇒ N
(

0, H−1(θ(f̃))V (θ(f̃))H−1(θ(f̃))
)
.

Here V is a matrix given by

V (θ) =
2

2π

∫ π

−π
∇rθ(λ) · ∇′rθ(λ) dλ

rθ(λ) = |Ψ(z)− Ψ̂θ(z)|
2
|δ(z)|−2.

The approach utilizing θI to determine our empirical filter is motivated by the fact that we can

re-express GΨ(θ, I) as follows:

GΨ(θ, I) = n−1W ′Σ
(
|Ψ(z)− Ψ̂θ(z)|

2
|δ(z)|−2

)
W.

Up to stochastic errors tending to zero in probability – the analysis follows from results in Brockwell

and Davis (1991), as discussed in Wildi (2008) – this is equal to the average sum of squares of the

real-time filter errors Yt − Ŷt. Minimizing such a quantity with respect to θ is very natural.
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However, it may be felt that a model-based estimate of the spectral density is superior to the

periodogram in terms of capturing frequency domain characteristics. Suppose we have a model-

based (innovation-free) spectral density f ξ arising from a separable model parametrized by ξ ∈ Ξ.

This model class may have no relationship whatsoever to the models considered for generating a

class of concurrent filters, as in the previous subsection, and so we use ξ rather than ω to distinguish.

We suppose that the spectrum has already been fitted, perhaps via MLE or QMLE, so that f
ξ̂

is

available (where ξ̂ is the parameter estimate). Then our empirical DFA criterion is GΨ(θ, f
ξ̂
), and

our corresponding DFA empirical optimum is denoted θ(f
ξ̂
).

Now the estimate ξ̂ will converge, under suitable conditions and assumptions, to the pseudo-true

value ξ̃ pertaining to the particular model class and fitting function (e.g., the Whittle likelihood).

By continuity, the DFA estimate θ(f
ξ̂
) should converge to θ(f

ξ̃
), though naturally we desire con-

vergence to θ
f̃
. These two quantities differ when the model is misspecified, and there will be

under-performance of the DFA. Nevertheless, the actual bias that arises may be low, arguing in

favor of using a model-based spectrum instead of the periodogram. We formalize these ideas in the

following theorem.

Theorem 3 Suppose that ξ̂ is a parameter estimate such that
√
n(ξ̂− ξ̃) L

=⇒ N (0,W (ξ̃)) for some

positive definite matrix W . Also suppose that the function ξ 7→ θ(f ξ) is continuously differentiable,

with value denoted by L(ξ). Then

θ(f
ξ̂
)

P−→ θ(f
ξ̃
)

√
n
(
θ(f

ξ̂
)− θ(f

ξ̃
)
)
L

=⇒ N
(

0,∇′L(ξ̃)W (ξ̃)∇L(ξ̃)
)

as n → ∞. Here ∇L is a matrix with jkth entry given by ∂ξjLk(ξ), the jth derivative of the kth

component function in L.

Remark 2 We are really interested in θ(f
ξ̂
)− θ(f̃), and so using the above central limit theorem,

we have an asymptotic bias of θ(f
ξ̃
) − θ(f̃). This is clearly zero when the model fξ is correctly

specified, and may even be zero when the model is misspecified – this is contingent on how the

optimum θ(g) depends upon a given g.

We call the resulting (linear) prediction function Ψ̂
θ̂

– where θ̂ is either θ(I) or θ(f
ξ̂
), depending

on the approach of either Theorem 2 or 3, respectively – a Linear Prediction Filter (LPF). We

distinguish the cases, calling Ψ̂θ(I) the empirical LPF, whereas Ψ̂θ(f
ξ̂
) is the model-based LPF. We

next provide some discussion of these two types of DFA.

In the case of the empirical LPF, we have a broad form of consistency, in that the limiting

MSE has the formula GΨ(θ(f̃), f̃), which is as close as possible to the theoretical lower bound (6)

given the class of filters G. Recall that the model-based approach of the previous section provides

JΨ(ω(f̃), f̃) as the minimal MSE, which ultimately is a special case of the DFA where a particular
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(model-based) class of filters G is utilized. In the case that the true optimal filter given by (5) is

included in G, then θ(f̃) is such that Ψ̂
θ(f̃)

is identically equal to the optimal filter, and our MSE

is minimal. More generally, we cannot know whether the optimal real-time filter is in G, but we

can hope that its distance from G (with the metric determined with respect to GΨ) is small if G is

sufficiently rich.

On the other hand, the model-based LPF can go wrong in an additional way: even if G includes

the optimal real-time filter, so that in a sense θ(f̃) corresponds to “truth”, we may yet have θ(f
ξ̃
) 6=

θ(f̃) if the model f ξ is mis-specified. This is a drawback to this method. Moreover, identification

of the mapping L seems to be analytically intractable, so that the uncertainty in θ(f
ξ̂
) cannot be

measured in many practical applications. However, the model-based LPF holds a certain appeal:

if Ψ corresponds to a LPP derived from the fitted model f
ξ̂
, then θ(f

ξ̂
) necessarily corresponds

to the optimal filter in equation (5) – under the assumption that f ξ is correctly specified – with ξ̂

plugged in to all appropriate quantities. So if one believes the specified model f ξ is correct, then

the model-based DFA at once produces the optimal filter (if we pretend that ξ̂ is non-random for

the purpose of computing MSEs). Moreover, as sample size increases our DFA filter will converge

automatically to Ψθ(f
ξ̃
) = Ψ

θ(f̃)
. In this sense, the DFA can be made to reproduce the same results

as equation (5) in Proposition 1, merely by setting g ∝ f ξ. We therefore say that this version of

the DFA, i.e., the model-based LPF, can replicate purely model-based (classical) results. Beyond

demonstrating the scope of the DFA, the principal appeal of replicating model-based approaches

resides in the possibility of modifying optimization criteria to particular user priorities.

5 Applications: Real-Time Trend Extraction and Seasonal Ad-

justment

5.1 Real-Time Trend Extraction

For an illustration of the methodology proposed in Section 4, we consider an application to the“Auto

and Other Motor Vehicles”series2 (“auto-sales” for short). As claimed by some economists, this time

series is a“key cyclical indicator and early barometer for the economic effects of higher oil prices”; see

Econbrowser 2012 at http://www.econbrowser.com/archives/2012/02/economic_condit.html

Accordingly, we organize the empirical analysis with the goal of extracting relevant economic signals,

possibly anticipating economic downturns in real-time. We emphasize that our intention here

is to illustrate the flexible features of the LPP at the analyst’s disposal; we intentionally omit

discussions of the business cycle and the design of indicators, as this would take us too far away

from the main topic of the article. Our procedure starts with a replication of a pure model-

2 Total sales, based on data from the Monthly Retail Trade Survey,the Annual Retail Trade Survey, and adminis-

trative records. The industry group comprises establishments primarily engaged in retailing new and used vehicles.
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based approach (MBA) – such as is implemented in TRAMO/SEATS3 – by DFA methodology,

as presented in Section 4. (Demetra+ is a program for seasonal adjustments that was developed

and published by Eurostat European Commission; see https://joinup.ec.europa.eu/software/

demetraplus/description. The package provides a user-friendly interface to TRAMO-SEATS and

X-12-ARIMA.) We then successively refine the target signal, the spectral estimate and the MSE

criterion by relying on methodology proposed in Section 4. Filter performances will be quantified

in terms of MSE.

5.1.1 Replication of the Model-Based Approach by DFA

We propose results for data in levels (denoted Xlevel
t ) as well as in first differences (denoted Xdiff

t ),

but our emphasis on economic growth (or contraction) makes the use of differenced data natural.

For sake of comparison all filter designs rely on linearized time series4; see Figure 1. The shaded

regions in the figure highlight recessions as declared by the NBER.

Models identified by TRAMO for data in levels and in first differences are

(1−B)(1−B12)Xlevel
t = (1− 0.20136B)(1− 0.61129B12)εlevel

t

(1−B12)Xdiff
t = (1− 0.63903B12)εdiff

t ,

with {εt} denoting white noise. The first model (an airline model) selected by TRAMO reflects

trend as well as seasonal features of auto-sales, in levels. As expected, the double unit root at

frequency zero of the airline model reduces to a single root after differencing. Both models are

deemed adequate according to the relevant diagnostics. Because the series are noisy, we decide to

smooth them in our analysis, and therefore consider trend signals. Figure 2 plots (log-transformed)

pseudo spectral densities and amplitude functions of canonical trends – symmetric and concurrent

filters – for data in levels (top panel) and in first differences (bottom panel). That is, we set Ψ(B)

equal to the WK trend filter arising from the canonical decomposition (cf. Hillmer and Tiao (1982))

of each fitted model; this is the so-called canonical trend, and forms our target signal.

All spectral functions are generated by SEATS (based on the above time series model) and

imported into the graphs. Note that SEATS generates squared gain functions (thus amplitude func-

tions are obtained by the square root transformation). Log-transformed spectra can be negative-

valued; singularities at the unit-root frequencies are truncated in the graphs.

Having specified (bi-infinite) signals, we now analyze real-time filters. Specifically, we demon-

strate that DFA is able to replicate concurrent SEATS filters. For this purpose we insert the

canonical trend Ψ(z) (the target) and the differenced series’ estimated spectral density f
ξ̂

for g in

(8), and obtain the transfer function Ψ̂(z) by DFA. That is, we determine Ψ̂θ(f
ξ̂
), the model-based

3All results in this article are based on version 1.0.2.2228 of Demetra+, downloaded on Feb.15, 2012.
4We check for logarithmic transformation, trading day effects, and outliers.
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LPF described in Section 4. Here the class G of concurrent filters is taken to be appropriate re-

strictions of the large classMn−1, where n is the sample size. The necessary restrictions arise from

the unit roots in the data process, and are given by equation (4); we write Mn−1 to denote this

restricted class of filters.

This LPF can be compared to the semi-infinite concurrent filter based on the canonical decom-

position – formulas for such can be found in Bell and Martin (2004). A comparison of SEATS and

DFA in Figure 2 confirms that both curves are virtually indistinguishable, up to negligible finite-

sample deviations due to the Gibbs phenomenon (Findley and Martin, 2006). This discrepancy is

essentially due to our use of Mn−1 in lieu of M∞ (the maximal possible set of concurrent filters)

in our computation of the model-based LPF.

5.1.2 MSE Performances for the Ideal Trend: MBA versus DFA

As we also want to emphasize economic growth, we now focus on the differenced series. Figure 3

compares the canonical trend of SEATS to the ideal low-pass trend (cf. Example 8) with µ = π/20

(this particular specification in business-cycle analysis is further described at http://www.idp.

zhaw.ch/usri.). The SEATS trend is very smooth, as expected from its transfer function (Figure

2, bottom panel). Note that all series are standardized for ease of visual inspection (otherwise, the

output of the canonical trend would appear compressed). The finite sample symmetric ideal trend

is a truncated version of the bi-infinite sample target; it cannot be computed towards the sample

boundaries. Visual inspection suggests that the ideal trend is able to extract pertinent signals from

the data. In particular, recessions are anticipated by steep downturns of the smoothed log-returns.

In contrast, the canonical trend of SEATS seems to smooth out economic downturns. Because

we are interested in tracking recession signals, our results suggest replacement of the model-based

signal by the ideal trend in our LPP. This particular choice better reflects the purpose of our

research, namely to identify economic expansion and contraction.

In this subsection we continue to focus upon the differenced auto-sales series. Having specified

our new target signal Ψ(z) = 1[−π/20,π/20](λ), we now compare the performances of two real-time

LPFs: the model-based LPF (the MBA filter) relies upon the pseudo-spectral density derived from

TRAMO, whereas the empirical LPF (called the DFA filter) uses the periodogram to address the

estimation problem. In this context the MBA filter reflects a model-based estimate (using f ξ for

g) of a non-model-based target (the ideal low-pass). Note that our class of filters is still Mn−1, as

in the previous subsection. The key difference is in the target, which itself is not a moving average

filter (actually, Ψ(B) ∈M∞), and can never arise as a Wiener-Kolmogorov signal extraction filter

when using component ARIMA models. Both the empirical LPF and the model-based LPF utilize

the DFA, but we will here refer to the former as the DFA filter and the latter as the MBA filter,

to emphasize that models are being utilized to obtain the model-based LPF.
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So estimates are obtained by inserting the common target, the ideal trend Ψ(z), and the design-

specific spectral estimates (either the SEATS spectrum f
ξ̂

or the periodogram I) in equation (8)

to obtain the LPFs Ψ̂θ(f
ξ̂
)(z) and Ψ̂θ(I)(z), respectively the MBA and DFA filters. Because the

TRAMO-SEATS model has (single) unit roots at frequency zero and at all seasonal frequencies,

the MBA filter will be subject to first-order constraints at these frequencies5 – see equation (4). In

contrast, the DFA filter does not assume any unit-roots, which illustrates that we do not expect

log-returns of sales of a physical good (autos) to be subject to asymptotically unbounded trends or

unbounded seasonal fluctuations. These design decisions reflect different plausible interpretations

of the same real-time estimation problem, and we expect the performance measures to reflect the

marked idiosyncrasies of both designs. Figure 4 compares both real-time estimates (all filter outputs

are similar in scale and in level, and therefore we omit unnecessary standardization, i.e., scales reflect

original log-returns). Figure 5 provides evidence of the aforementioned design idiosyncrasies: the

amplitude function of the MBA filter is equal to one at frequency zero and vanishes at the seasonal

frequencies, whereas the DFA filter is unconstrained. We next analyze the performances of the

proposed designs in order to get a better understanding of their potential.

Given the model-based LPF Ψ̂θ(f
ξ̂
)(B) and the empirical LPF Ψ̂θ(I)(B), it is of interest to gauge

their performance in terms of both the model-based estimate of the spectrum, and the empirical

estimate. In the case of the model-based LPF, we assume the presence of unit roots, as discussed

in the preceding paragraphs, and hence we utilize f
ξ̂

for g in equation (8), where δ(z) = 1 − z12.

But for the empirical LPF we substitute I for g and have no unit roots, so that δ(z) = 1. The

integrand of (8) in the case of the minimal MSE model-based LPF is∣∣∣Ψ(z)− Ψ̂θ(f
ξ̂
)(z)

∣∣∣2
|δ(z)|2

f
ξ̂
(λ). (9)

That is, any other choice of Ψ̂(B) ∈ Mn−1 must yield a higher MSE than the integral of (9).

However, if we are to assess the performance of this model-based LPF on the actual auto-sales data

(assuming the presence of unit roots δ(B) = 1−B12), the LPP MSE is approximately given by the

integral of ∣∣∣Ψ(z)− Ψ̂θ(f
ξ̂
)(z)

∣∣∣2 I(λ). (10)

Here the periodogram I is for the log-return (not seasonally adjusted) data; recall from Section 2

that the LPP MSE for nonstationary processes will have a unit root factor |δ(z)|2 in the denomi-

nator.

On the other hand, the empirical LPF (which again, assumes no unit roots are present) yields

the minimal MSE of (8), which will have integrand∣∣∣Ψ(z)− Ψ̂θ(I)(z)
∣∣∣2 I(λ). (11)

5The amplitude equals one in frequency zero and it vanishes in seasonal frequencies.
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Any other choice of Ψ̂(B) ∈ Mn−1 must yield a higher MSE than the integral of (11). Note that

Ψ̂(B) need not be in Mn−1, and Mn−1 ⊃ Mn−1. The periodogram in (11) used to obtain the

DFA filter is the same as in (10). It may also be of interest to examine the empirical LPF when a

model-based estimate of the spectrum is substituted for the periodogram. Because f
ξ̂

is determined

from seasonally differenced log-returns, the pseudo-spectral density f
ξ̂
(λ)/|1− z12|2 should be used

as our model-based estimate; this plays the role of g in (8) with δ(z) = 1. This yields∣∣∣Ψ(z)− Ψ̂θ(I)(z)
∣∣∣2 f

ξ̂
(λ)

|1− z12|2
(12)

for the integrand. Note that because (4) need not be satisfied for the unit roots of 1 − z12, it is

possible that (12) is unbounded and non-integrable. In our particular implementation this was the

case, with the result that the integral of (12) is infinite.

The four quantities described above are reported in the first column of table 1, with equations

(9), (10), (11), and (12) describing each of the four rows. In contrast, the Time-Domain MSEs

reported in the second column of the table are obtained by computing the time-domain empirical

MSE between the target (utilizing a finite sample approximation to the ideal trend) and the real-

time estimates: note that these numbers depend on the filter design (MBA vs. DFA) only. Because

of its symmetry, the target filter cannot be computed towards the ends of the sample. Moreover, the

finite sample reference signal is a truncated version of the true bi-infinite target signal. In contrast,

the frequency domain measures in the first column do not rely on filter outputs; they are full-sample

estimates with respect to the true (bi-infinite) ideal trend. One has to keep these distinctions

in mind when interpreting reported numbers, because the Great Recession affects performance

measures differently in accordance with the sample period under scrutiny.

In order to gauge the importance of the Great Recession on performance, we also report adjusted

Time-Domain MSEs (in parentheses) in the second column of table 1 for a period prior to the start

of the recession; as can be seen, adjusted numbers from this truncated sample are one third to

one quarter of the unadjusted MSEs. Given the striking impact of the Great Recession, we tend

to interpret absolute numbers with caution6. Nonetheless much useful information regarding the

virtues of MBA or DFA can be extracted from the table. We first fix attention on the Frequency-

Domain MSEs in the first column of table 1: estimates for MBA (2.02e−05) and DFA (1.63e−05)

based on the periodogram (rows 2 and 4) suggest that DFA outperforms MBA by a reduction

of MSE by approximately 24.5%. As noted above, inserting the SEATS spectrum in the case of

DFA (row 3) is not meaningful because DFA ignores unit-roots of the model. Interestingly, the

model-based MSE in row 1 (4.72e − 06) is markedly smaller than the periodogram based MSE

(2.02e− 05).

6If the Great Recession is a rare event, then we would be better advised to report adjusted numbers only (those

in parentheses); otherwise, combining pre-recession figures with recession numbers would be legitimate. Because this

decision is to some extent a matter of taste, we publish both numbers.
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A comparison with the Time-Domain MSEs in the second column may help to alleviate this

conflict: periodogram-based MSEs emphasize unadjusted MSEs, whereas the model-based estimate

seems to comply with recession adjusted numbers (in parentheses). It is as if the model ignored the

singular event of the Great Recession (possibly because the innovation variance has been adjusted

for recession outliers). Adjusted Time-Domain MSEs (7.04e−06 for MBA and 5.17e−06 for DFA)

confirm and exceed the previous efficiency gain by DFA (36.1%). Finally, unadjusted Time-Domain

MSEs (2.21e − 05 for MBA and 2.06e − 05 for DFA) confirm the dominance of DFA, once again,

but to a lesser extent7. In the latter case, the mean square aggregate is unable to distinguish the

marked design peculiarities over the available (truncated) history due to a singular event, which

balances out pros and cons in a more or less fortuitous way.

Frequency-Domain MSE’s Time-Domain MSE’s

MBA/SEATS 4.72e-06 2.21e-05 (7.04e-06)

MBA/Periodogram 2.02e-05 2.21e-05 (7.04e-06)

DFA/SEATS Inf 2.06e-05 (5.17e-06)

DFA/Periodogram 1.63e-05 2.06e-05 (5.17e-06)

Table 1: Frequency-Domain and Time-Domain MSEs for MBA and DFA concurrent filters targeting

the ideal low-pass trend, when applied to log-returns of auto-sales.

To conclude, we gauge both filters with respect to amplitude and time-shift functions as plotted

in Figure 5. The time-shift is defined by Φ̂DFA/MBA(ω)/ω, where Φ̂DFA/MBA(ω) is the phase

function of either design, and ω ∈ [0, π]. Positive numbers indicate that trigonometric signals would

be shifted by a corresponding number of months to the future by the filter (i.e., this corresponds

to a delay). A smaller time-shift of the DFA filter in the pass-band (around frequency zero) is a

desirable property, because turning-points of the series could be detected earlier. As an example,

the expansion following the trough of the Great Recession is affirmed earlier by the DFA, and

similarly for the onset of the dotcom recession, whose peak is timed earlier by DFA – see Figure 4.

The stronger noise rejection of DFA (the amplitude function of the DFA filter is closer to zero in the

stop-band) is also an advantage, as compared to MBA, because log-returns are noisy. In contrast,

MBA outperforms DFA with respect to amplitude characteristics in the pass-band, since the unit-

root constraint imposes a perfect match at frequency zero. Based on this contrast, we may infer that

MBA is likely to outperform DFA if the transformed series is subject to a permanent and slowly

varying level-shift; preferences for either filter design may be adopted, depending on whether log-

7As previously noted, the Great Recession affects performances differently according to the sample period:

Frequency-Domain MSEs emphasize the full sample, while adjusted Time-Domain MSEs (in parentheses) empha-

size a period prior to the Great Recession and unadjusted MSEs are in-between (because of truncation of the target

signal – see Figure 4).
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returns of the data are deemed to follow such a non-stationary pattern8. A comprehensive treatment

of frequency-domain characteristics is provided in Wildi and McElroy (2014), where the authors

derive a generic optimization criterion addressing noise-suppression, timeliness, and accuracy of

real-time designs.

5.2 Seasonal Adjustment: MBA vs. DFA

To illustrate the scope of the proposed DFA we here propose to study real-time seasonal adjustment

of MidWest housing starts. We study “New Residential Construction, 1964-2012, Housing Units

Started, Single Family Units” from the Survey of Construction of the U.S. Census Bureau, available

at http://www.census.gov/construction/nrc/how_the_data_are_collected/soc.html. This

series, along with the three other major regional starts series for the U.S., have great importance

for understanding the U.S. economy – both retail and housing are key facets of consumption and

production activity in advanced economies. The MidWest series is impacted by winter weather

more heavily than the South and West regional series, but is similar to the NorthEast regional

series in this aspect; this data feature makes modeling the seasonal pattern more challenging, and

some authors have even advocated seasonally heteroscedastic models (Trimbur and Bell, 2012).

Original and log-transformed data are shown in Figure 6. In either case, that is with or without

log-transformation, the seasonality appears to have changing amplitude (other Box-Cox transforms

could have been selected). This type of behavior is frequently encountered in the practice of

seasonal adjustment – more interesting, and potentially challenging, is the variable strength of

seasonal frequencies exhibited in the periodogram, as described below.

5.2.1 Model-Based Filter

TRAMO selects a logarithmic transformation for the MidWest starts (MW henceforth). The fol-

lowing airline model was identified for the transformed series {Xt}:

(1−B)(1−B12)Xt = (1− 0.440B)(1− 0.845B12)εt.

Diagnostic statistics detect seasonal instability, as was to be expected, but otherwise model residuals

pass the usual checks. The model-based (pseudo-) spectral density as well as the periodogram of

{Xt} are compared in Figure 7: we use logarithmic transforms in order to highlight the salient

features in the data. The original and log transformed periodograms suggests that the seasonal

pattern is more complex than the model can possibly capture: the first two or three seasonal peaks

(at frequencies π/6, 2π/6, and 3π/6) clearly dominate. In particular, these first peaks appear to

be wider than those generated by the model. In contrast, the last three peaks (at frequencies 4π/6,

5π/6, and 6π/6) are either non-existent or negligible. In this particular situation, characterized

8We find this assumption rather implausible since, mean-reversion seems to apply to both recession episodes.
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by an inhomogeneous seasonal pattern, the model seems to adopt a compromise, whereby the

importance of the first three peaks is understated and the presence of the last three peaks is

exaggerated. In fact, the airline model relies on a single parameter, the seasonal MA coefficient

(of value .845), to fit the nuanced seasonal pattern; the entanglement of the various spectral peaks

impedes the model’s flexibility. More nuanced models are possible, such as the stochastic cycle

representation of seasonality (this provides a parameter for each of the six seasonal frequencies)

described in Harvey (1989) and Proietti and Grassi (2012), or the generalized Airline model (Aston

et al., 2007). Our objective in this illustration is not to defeat a “straw man” MBA competitor of

the DFA, but rather to highlight the distinctive features of both approaches.

The model-based gain functions of the SA filters are shown in Figure 8: the symmetric bi-infinite

target (solid line), the concurrent semi-infinite SEATS filter (small dots), and the concurrent finite-

length DFA-replication (dotted) are compared. Both infinite-length filters are generated by SEATS9

whereas the finite-length filter (length 120, or 10 years) is generated by the DFA. The latter filter

replicates the one-sided infinite filter of SEATS, up to well-known finite-sample approximation

errors. Increasing the length of the finite DFA-filter further would improve the approximation up

to arbitrarily small deviations, but signal extraction performances would not improve; therefore we

may restrict attention to finite filters of length 120 (10 years). As expected, the seasonal dips of

the filters follow a uniform pattern with nearly constant width (cf. the upper panels of Figure 7).

5.2.2 DFA: new Target and Periodogram

We next modify the target by substituting an ideal (bi-infinite) SA target to the model-based bi-

infinite SA filter. We first keep the SEATS-spectrum fixed and then we also modify the spectrum,

replacing the model-based estimate by the periodogram in the DFA criterion (8). Figure 9 plots

the new target specification and the resulting real-time DFA filters based on the SEATS-spectrum

(dotted) and on the periodogram (dashed) together with the periodogram of {Xt}. The target SA

filter is deliberately simple: it is almost an identity, except for three seasonal dips at the dominant

peaks π/6, 2π/6, and 3π/6, where the function vanishes exactly. Note that the dips are slightly

wider than is true of the model-based target of the previous section, because the actual dominant

peaks are wider than allowed for by the model10. Obviously, this generic target specification could

account for undesirable spectral peaks of arbitrary width and of arbitrary location in a time series;

for example, non-seasonal calendar effects could be accounted for in the same vein. The amplitude

functions of the real-time filters show evidence of finite-sample ripples in the vicinity of the dips,

9We applied the square-root transformation to the original output, since SEATS generates squared gain functions

by default.
10The signal-specification can be automated, depending only on the periodogram to specify the width of potential

seasonal peaks.
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as is to be expected (due to the Gibbs phenomenon11), but potentially undesirable effects are

negligible; on the contrary, (real-time) seasonal adjustment performances tend to improve on the

original model-based approach, as shown in the next section.

5.2.3 Comparison of Real-Time SA-Filters

We apply the finite MBA-filter of section 5.2.1 and the finite DFA-filters of the previous subsection

(both of length 10 years) to {Xt}, and analyze the resulting outputs. Specifically, Figure 10

compares the periodograms of the filtered series. In order to highlight the relevant characteristics of

the filters, we have split the frequency band, omitting the dominant trend frequencies, emphasizing

either the first dominant seasonal peaks (upper panel) or the remaining negligible seasonal peaks

(bottom panel). The DFA filter based on the periodogram (shaded) damps the dominant peaks in

π/6 and 2π/6 the most effectively, followed by the DFA filter based on SEATS’ spectrum (dotted),

and lastly the original model-based approach (solid). This ranking was to be expected, since the

spectral peaks in SEATS’ spectrum are narrower at the dominant frequencies. By design the last

three peaks 4π/6, 5π/6 and 6π/6 remain unaffected, since our target function does not dip in these

frequencies. Note that we could have specified spectral dips of arbitrary width at any seasonal or

non-seasonal frequency in the DFA target of the previous subsection. We refrained from doing so,

partly because the magnitude of the last three peaks is negligible, and partly because we wanted

to illustrate the scope and the flexibility of our procedure. Indeed, a particular actualization of

the real-time filter can be obtained very easily in the DFA by specifying a corresponding target

in equation (8). The resulting facility and flexibility are obtained by addressing filter-coefficients

directly in the generalized DFA criterion.

6 Conclusion

Real-time signal extraction is a topic of considerable applied interest in macroeconomics and fi-

nance. Whether the application is forecasting, seasonal adjustment, business cycle analysis, trend

estimation, or turning point identification, there is a market-driven need to obtain real-time extrac-

tions that are both timely and accurate. This paper focuses on matching the particular real-time

filter to the objectives of the practitioner through the formalism of a Linear Prediction Problem

(LPP). Real-time filters can then be designed as analytic solutions that solve a given LPP, and

further can be approximated either through a class of time series models or through a suitable class

of concurrent filters. The latter approach, which uses the periodogram to “fit” a parametrized filter

to the data, is called the Direct Filter Approach (DFA), and can be contrasted with the former

11Use of the periodogram alleviates the Gibbs phenomenon to some extent, because the spectral peaks are “less

sharp” than with SEATS’ spectrum.
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Model Based Approach (MBA), which relies upon a specified model being an accurate portrait of

the process’ dynamics.

The three main contributions of the paper, which we believe to be novel and useful, are: (1)

we define and solve LPPs, providing several key examples; (2) we treat model-fitting via LPP

minimization, and describe the resulting model-based real-time filters; (3) we connect LPPs to the

DFA, and describe the resulting real-time filters. We show that DFA is broader than model-based

approaches, and can yield improved performance in cases where a good model is hard to identify.

Our treatment is illustrated through two main examples: trend estimation from a retail series, and

seasonal adjustment of a construction series. Other work – the subject of the companion paper

Wildi and McElroy (2014) – further explores the design of filters, taking into account their frequency

domain properties (described via the gain and phase delay functions) directly in the DFA criterion.

Other extensions, such as multivariate filtering, are also under investigation.

In order to encourage other scientists to understand and utilize our work, this paper has been

generated via SWEAVE, and can be recomputed by following instructions on the Internet – see

the Appendix. The first author’s blog contains links to code and frequent updates to the ongoing

process of discovery. The DFA paradigm is currently being utilized, in various incarnations, to

address real-time signal extraction problems in economics and finance, in Switzerland and other

countries. Whereas some other methodologies also offer tuning parameters to adjust real-time

filters, we believe that our formulation is the most direct and intuitive, and moreover can be

made model-free. This feature can be an advantage, when a scientist is concerned that forecasts

or extractions may be unduly restricted via their generation through the modeling “prism”; yet

for data that truly warrants a particular model, the LPP can be fitted so as to yield the most

appropriate parameter choices for the given time series. We believe this flexibility and power to be

compelling facets of this paper’s methodology, and it is our hope that the readers will utilize the

code to analyze new and diverse applications.
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Appendix

A.1 Proofs of Results

Proof of Proposition 1. In order for a solution to be optimal, it is sufficient that the resulting

error process be uncorrelated with the data Xt:, because this guarantees that the solution is the

Gaussian conditional expectation. (For non-Gaussian processes, optimality refers to minimum MSE
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among linear estimates, and the same criteria are in force – see Bell (1984) for background.) If

we can show that the real-time signal extraction error process depends only on future innovations,

then using (1) it must be uncorrelated with Xt:, establishing optimality. This logic utilizes the

assumption that the initial values are uncorrelated with the innovations. The filter error of the

putative solution is ∆(z) = Ψ(z)− Ψ̂(z), which is given by

∆(z) =
∑
h<0

ψh

zh − d∑
j=1

Aj,d−hz
d−j −

−h∑
k=1

ξ−h−k[Π]∞k (z)z−kδ(z)Π−1(z)


=
∑
h<0

ψh

(−h−1∑
k=0

ξkz
k+h −

−h−1∑
k=0

ξk[Π]∞−h−k(z)z
k+hΠ−1(z)

)
δ(z)

=
∑
h<0

ψh

−h−1∑
k=0

ξkz
k[Π]−h−k−1

0 (z)zhΠ−1(z)δ(z)

=
∑
h<0

ψh[Π/δ]−h−1
0 (z)zhΠ−1(z)δ(z).

The second equality uses (2) and a change of index variable. The fourth equality uses another alge-

braic relation, first established in McElroy and Findley (2010), that
∑−h−1

k=0 ξkB
k[Ψ]−h−k−1

0 (B) =

[Ψ/δ]−h−1
0 (B). Now this algebra yields τ(B) explicitly (i.e., δ(B) divides ∆(B)), namely

τ(B) =
∑
h>0

ψ−h[Π/δ]h−1
0 (B)F hΠ−1(B).

Hence the real-time error process is τ(B)Wt =
∑

h>0 ψ−h[Π/δ]h−1
0 (B)εt+h, which is clearly a linear

function of future innovations εt+1, εt+2, · · · . This completes the proof. 2

Proof of Theorem 1. Note that ω(g) is a minimizer of JΨ(ω, g), so we can do a Taylor series

expansion of the gradient at ω(I) and ω(f̃). This yields the asymptotic expression (cf. Taniguchi

and Kakizawa (2000))

√
n
(
ω(I)− ω(f̃)

)
= oP (1)−H−1(ω

f̃
)

√
n

2π

∫ π

−π
∇r

ω(f̃)
(λ)
(
I(λ)− f̃(λ)

)
dλ,

where rω is defined in the theorem. Our assumptions allow us to apply Lemma 3.1.1 of Taniguchi

and Kakizawa (2000) to the right hand expression above, and the stated central limit theorem is

obtained. 2

Proof of Theorem 2. This is proved in the same exact manner as Theorem 1.

Proof of Theorem 3. First, convergence in probability follows from the continuity of L. The

Central Limit Theorem follows from the delta method:

√
n
(
θ(f

ξ̂
)− θ(f

ξ̃
)
)

= ∇L(ξ̃)
√
n
(
ξ̂ − ξ̃

)
+ oP (1)

by Taylor series expansion of L; then use the known CLT for ξ̂. 2
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A.2 R-Code

DFA and its multivariate version MDFA are extensively discussed on the Signal-Extraction and

Forecasting (SEF) blog http://blog.zhaw.ch/idp/sefblog. The following entries are potentially

relevant in the context of this article:

• The Sweaved version of this paper is available under http://blog.zhaw.ch/idp/sefblog/

index.php?/archives/380-Optimal-Real-Time-Filters-for-Linear-Prediction-Problems.

html: Interested users can download the R-code and replicate results in this paper.

• Trilemma paper: http://blog.zhaw.ch/idp/sefblog/index.php?/archives/381-The-Trilemma-Between-Accuracy,

-Timeliness-and-Smoothness-in-Real-Time-Signal-Extraction.html

• Replication and customization of the Hodrick-Prescott filter: http://blog.zhaw.ch/idp/

sefblog/index.php?/archives/261-Replication-of-the-Hodrick-Prescott-Filter-by-I-MDFA.

html

• Replication and customization of the Christiano-Fitzgerald filter: http://blog.zhaw.ch/

idp/sefblog/index.php?/archives/264-Replication-of-the-Christiano-Fitzgerald-CF-Filter-by-I-MDFA.

html
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Log auto−sales
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Figure 1: Linearized auto-sales series: levels (top) and first differences (bottom). Dotcom- and

great-recession appear shaded.
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Replication of canonical trend: data in levels
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Figure 2: Model-based (log-transformed) pseudo-spectral densities (dot-shaded) and canonical

trends: symmetric target filters (solid) and concurrent model-based filters (dotted), as well as DFA

replications (shaded) are displayed, for the auto-sales in levels (top panel) and in first differences

(bottom panel).
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Standardized canonical and ideal trends (cutoff 20 months)
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Figure 3: Ideal low-pass trend (solid) and canonical trend (dotted), both standardized, for auto-

sales series in first differences.
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Mean−square approximation of ideal trend: MBA vs. DFA
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Figure 4: Real-time approximations of the ideal trend: MBA filter shaded (model-based GPF

Ψ̂θ(f
ξ̂
)(B)) versus DFA filter dotted (empirical GPF Ψ̂θ(I)(B)) applied to auto-sales; ideal trend

solid.
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Amplitude Functions and  Periodogram
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Figure 5: Periodogram of auto-sales log-returns (dot-shaded) and amplitude functions (top-graph)

as well as time-shifts (bottom graph): MBA filter shaded (model-based GPF Ψ̂θ(f
ξ̂
)(z)) versus DFA

filter dotted (empirical GPF Ψ̂θ(I)(z)); ideal trend solid.
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Original MW series
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Figure 6: Original and log-transformed MW series.
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Model−based Spectrum
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Figure 7: Spectral density estimates for the MW series. Original and log-transformed model-based

spectrum (top) and periodogram (bottom).
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Replication of canonical Seasonal Adjustment
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Figure 8: Gain functions of bi-infinite symmetric target (solid), semi-infinite concurrent (dotted),

and finite concurrent (shaded) SA filters for the MW series.
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Ideal bi−infinite (solid) and real−time DFA (shaded or dotted)
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Figure 9: Amplitude functions of ideal bi-infinite target (solid) and finite one-sided DFA SA-filter

based on the SEATS-spectrum (dotted) and on the periodogram (shaded).
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Periodogram of low frequencies
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Figure 10: Periodograms of real-time MBA (solid), DFA based on the periodogram (shaded) and

DFA based on the SEATS-spectrum (dotted) filter outputs splitted into dominant (top) and negli-

gible (bottom) bands of seasonal frequencies.
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