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Preface 
 
This volume contains abstracts that have been accepted for presentation at the Annual Meeting of 
the Lunar Exploration Analysis Group, October 22–24, 2012, Greenbelt, Maryland. 
 
Administration and publications support for this meeting were provided by the staff of the 
Meeting and Publication Services Department at the Lunar and Planetary Institute. 



Technical Guide to Sessions 
 

Monday, October 22, 2012 
8:30 a.m. Conference Room W150 Lunar Missions from the Apollo Program to Artemis and Beyond 

1:30 p.m. Conference Room W150 Exploring the Solar System:  Updates from NASA 

5:30 p.m. Conference Room W120 Poster Session:  Exploration of the Moon 

6:45 p.m. Visitor’s Center NASA Goddard’s Visitors Center Open House for LEAG Attendees 
Featuring a Brand-New Exhibit on the  
Lunar Reconnaissance Orbiter 

Tuesday, October 23, 2012 
8:30 a.m. Conference Room W150 Lunar Missions:  The Next Generation 

1:45 p.m. Conference Room W150 The Cold-Hearted Orb that Rules the Night 

Wednesday, October 24, 2012 
8:30 a.m. Conference Room W150 Human Exploration of the Moon and Gaps in our Strategic Knowledge 
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Program 
 

Monday, October 22, 2012 
LUNAR MISSIONS FROM THE APOLLO PROGRAM TO ARTEMIS AND BEYOND 

8:30 a.m.   Conference Room W150 
 

A celebration of Apollo 17 and the Apollo program: 
The role of missions in shaping our view of the Moon and our place in the solar system 

 
Chairs: Charles Shearer  
  Michael Wargo 
 
8:30 a.m. Shearer C. * 

Welcome to the LEAG Meeting 
 

8:40 a.m. Scolese C. * 
Welcome:  Goddard Space Flight Center and the Moon 
 

8:55 a.m. Schmitt H. * 
Field Geology at Taurus-Littrow:  40 Years and Counting 
 

9:25 a.m. Head J. * 
Apollo Mission Contributions to the Understanding of the Moon as Exemplified by the  
Apollo 17 Mission to Taurus-Littrow 
 

9:55 a.m. Shearer C. K. * 
The Return of Samples by the Apollo Program Shaped our Understanding of the Solar System [#3048] 
 

10:15 a.m. BREAK 
 
10:30 a.m. Vondrak R. R. *   Keller J. W.   Chin G.   Garvin J. B.   Petro N. E. 

The Lunar Reconnaissance Orbiter:  Plans for the Extended Science Mission and Next Steps for  
Lunar Science and Exploration [#3054] 
 

11:00 a.m. Smith D. * 
GRAIL Update 
 

11:30 a.m. Halekas J. * 
ARTEMIS:  Results from the First Year 
 

12:00 p.m. Shearer C. and Neal C. 
Discussion:  Lessons Learned for Future Missions 
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Monday, October 22, 2012 
EXPLORING THE SOLAR SYSTEM:  UPDATES FROM NASA 

1:30 p.m.   Conference Room W150 
 

NASA updates to the lunar and planetary community 
 

Chairs: Charles Shearer  
  Jeff Plescia 
 
1:30 p.m. Garver L. * 

 
2:00 p.m. Gerstenmaier W. * 

Human Exploration and Operations Mission Directorate 
 

2:30 p.m. Green J. * 
Science Mission Directorate/Planetary Science Division 
 

3:00 p.m. Reuther J. * 
Enabling both Precursor Robotic Missions that Could fill Strategic Knowledge Gaps and Human 
Activities Beyond Low Earth Orbit 
 

3:30 p.m. BREAK 
 
3:50 p.m. Laurini K. * 

Overview of the GLEX Meeting, Global Exploration Activities, and  
How the Moon Fits into this Vision 
 

4:20 p.m. Friedensen V. * 
Joint Robotic Precursor Activities 
 

4:40 p.m. Martinez R. * 
International Architecture Working Group 
 

5:00 p.m. Pendleton Y. * 
NASA Lunar Science Institute — Going Forward 
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Is Drygalski Crater Wet?  Joint Analysis of Lunar Epithermal Neutrons from the LRO LEND and Lunar Prospector 
Neutron Spectrometers [#3028] 
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Cosmic Ray Albedo Proton Yield Correlated with Lunar Elemental Abundances [#3014] 
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Toward Understanding the Lunar Electrostatic Environment in the Vicinity of Complex Polar Topography [#3035] 
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Merkowitz S. M.   Preston A. M. 
Next Generation Lunar Laser Ranging [#3022] 
 
Petro N. E.   Votava J. E. 
ArcGIS Digitization of Apollo Surface Activities:  A Spatial Database of Traverses, Samples, and Images [#3036] 
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Modal Evaluation of Fluid Volume in Spacecraft Propellant Tanks [#3005] 
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Farrell W. M.   Killen R. M.   Delory G. T. 
DREAM Center for Lunar Science:  A Three Year Summary Report [#3027] 
 
Mahanti P.   Robinson M. S.   Boyd A.   Speyrer E. 
Informed Line-of-Sight Communications on the Lunar Surface Using LRO NAC DEMs [#3006] 
 
Spence H. E.   Schwadron N. A.   Gorby M.   Joyce C.   Quinn M.   LeVeille M.   Smith S.   Wilson J.   Townsend L.   
Cucinotta F. 
PREDICCs:  A Radiation Prediction Tool for Lunar, Planetary, and Deep Space Exploration [#3032] 
 
Gorby M. J.   Schwadron N. A.   Linker J. A.   Spence H. E.   Townsend L. W.    
Cucinotta F. A.   Wilson J. K. 
From CMEs to Earth/Lunar Radiation Dosages:  A First in Heliospheric End-to-End Coupling [#3043] 
 
Deans M. C.   Smith T.   Lees D. S.   Scharff E. B.   Cohen T. E.   Lim D. S. S. 
Ground Data Systems for Real Time Lunar Science [#3045] 
 
Chi P. J. 
A Revisit to Apollo Magnetic Field Records for Sounding of the Lunar Interior [#3039] 
 
Karachevtseva I.   Zubarev A.   Nadezhdina I.   Kozlova N.   Gusakova E. 
Mapping of Luna-17 Landing Site and Reconstruction of Lunokhod-1 Stereo Panoramas [#3024] 
 
Jin Y.-Q. 
Simulation of Radar Sounder Echoes and Inversion of Lunar Subsurface [#3003] 
 
 

 
Monday, October 22, 2012 

NASA GODDARD VISITOR'S CENTER OPEN HOUSE FOR LEAG ATTENDEES 
FEATURING A BRAND-NEW EXHIBIT ON THE LUNAR RECONNAISSANCE ORBITER 

6:00–8:00 p.m.   NASA Goddard Visitor’s Center 
 
 

Recent renovations to Goddard's Visitors Center include a brand-new exhibit 
featuring the full-scale Structural Verification Unit for LRO,  

which has been upgraded to resemble LRO in its launch configuration.  
During the event, the Science On a Sphere (SOS) will be showcasing lunar content.  

 
We encourage all attendees to come and enjoy good company and hospitality. 
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Tuesday, October 23, 2012 
LUNAR MISSIONS:  THE NEXT GENERATION 

8:30 a.m.   Conference Room W150 
 

Updates on the next generation of lunar missions and innovative approaches to returning to the Moon 
 

Chairs: Ben Bussey  
  Richard Elphic  
 
8:30 a.m. Elphic R. C. *   Delory G. T.   Grayzeck E. J.   Colaprete A.   Horanyi M.   Mahaffy P.   Hine B.   

Salute J.   Boroson D. 
The Lunar Atmosphere and Dust Environment Explorer (LADEE):   
T-Minus One Year and Counting [#3033] 
 

8:45 a.m. Stiles A. * 
Google Lunar X Prize 
 

9:00 a.m. Whittaker R. * 
Astrobiotic 
 

9:15 a.m. Doswell J. * 
JURBAN 
 

9:30 a.m. Bourgeois F. * 
Frednet 
 

9:45 a.m. Richards B. * 
Moon Express 
 

10:00 a.m. Ghafoor N. * 
Recent Preparatory Activities for Future Lunar Exploration:  Towards a Robotic Precursor 
 

10:15 a.m. Rocha G. * 
Angelicum 
 

10:30 a.m. BREAK 
 
10:45 a.m. Neal C. * 

Network Science on the Moon:  Missions that also Inform Exploration 
 

11:00 a.m. Jolliff B. L. *   Shearer C. K.   Cohen B. A. 
Sampling South Pole-Aitken Basin:  The Moonrise Approach [#3047] 
 

11:15 a.m. Mitrofanov I. G. *   Zelenyi L. M.   Tret’yakov V. I. 
Upgraded Program of Russian Lunar Landers:  Studying of Lunar Poles [#3025] 
 

11:30 a.m. Peterson K. M. *   Thornton J. 
Commercial Models for Lunar Landing and Exploration [#3050] 
 

11:45 a.m. Clark P. E. *   MacDowall R.   Cox R.   Vasant A.   Schaire S.   Malphrus B. 
LunarCube:  Payload Development for Enhanced Yet Low Cost Lunar Exploration [#3001] 
 

12:00 p.m. DISCUSSION 
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Tuesday, October 23, 2012 
THE COLD-HEARTED ORB THAT RULES THE NIGHT 

1:45 p.m.   Conference Room W150 
 

Examination of results from previous and ongoing lunar missions 
 

Chairs: Mark Robinson 
  Clive Neal 
 
1:45 p.m. Robinson M. S. *   LROC Team 

LROC Exploration of the Moon [#3051] 
 

2:00 p.m. Klima R. L. *   Cahill J. T. S.   Hagerty J.   Lawrence D. 
Bullialdus Crater:  A Rare Window into Lunar Plutonism and Late-Stage  
Magma Ocean Fluids [#3015] 
 

2:15 p.m. Bussey D. B. J. *   Schulze R.   Wahl D. E.   Patterson G. W.   Nolan M.   Jensen J. R.   Turner F. S.   
Yocky D. A.   Cahill J. T. S.   Jakowatz C. V.   Raney R. K.   Mini-RF Team 
Bistatic Radar Observations of the Moon Using the Arecibo Observatory and  
Mini-RF on LRO [#3010] 
 

2:30 p.m. Greenhagen B. T. *   Paige D. A.   Diviner Science Team 
Thermal, Thermophysical, and Compositional Properties of the Moon Revealed by the  
Diviner Lunar Radiometer [#3049] 
 

2:45 p.m. Retherford K. D. *   Stern S. A.   Gladstone G. R.   Cook J. C.   Egan A. F.   Miles P. F.   Parker J. Wm.   
Kaufmann D. E.   Greathouse T. K.   Tsang C. C. C.   Versteeg M. H.   Mukherjee J.   Davis M. W.   
Bayless A. J.   Feldman P. D.   Hurley D. M.    
Pryor W. R.   Hendrix A. R. 
Scientific Breakthroughs from the LRO-Lyman Alpha Mapping Project (LAMP) [#3026] 
 

3:00 p.m. Sanin A. B. *   Mitrofanov I. G.   Litvak M. L.   Malakhov A.   Boynton W. V.   Chin G.   Droege G.   
Evans L. G.   Garvin J.   Golovin D. V.   Harshman K.   McClanahan T. P.   Milikh G.   
Mokrousov M. I.   Sagdeev R. Z.   Starr R. D. 
Searching for Water Ice Permafrost:  LEND Results for About Three Years of Observations [#3020] 
 

3:15 p.m. BREAK 
 
3:30 p.m. Boynton W. V. *   Droege G. F.   Harshman K.   Schaffner M. A.   Mitrofanov I. G.   McClanahan T. P.   

LEND Team 
Latitudinal Enrichment of Hydrogen in the Lunar Polar Regions:  Constraints on  
Hydrogen Mobility [#3029] 
 

3:45 p.m. Livengood T. A. *   Chin G.   Mitrofanov I. G.   Boynton W. V.   Sagdeev R.   Litvak M.   
McClanahan T. P.   Sanin A. B. 
Hydrogen-Bearing Volatiles at the Lunar Equatorial Terminator [#3040] 
 

4:00 p.m. Glenar D. A. *   Stubbs T. J.   Farrell W. M.   Keller J. W.   Vondrak R. R. 
The Search for a High Altitude Dust Exosphere:  Observational Status and Dust Upper Limits [#3008] 
 

4:15 p.m. Singer S. F. * 
Questions About Lunar Origin [#3004] 
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4:30 p.m. Sasaki S. *   Kikuchi F.   Matsumoto K.   Noda H.   Araki H.   Hanada H.   Yamada R.   Goossens S.   
Kunimori H.   Iwata T.   Kawaguchi N.   Kono Y. 
Exploration of Deep Interior of the Moon from Measurements of Changes of Long-Wavelength  
Gravity and Rotation [#3018] 
 

4:45 p.m. Stubbs T. J. *   Glenar D. A.   Jordan A. P.   Wang Y.   Vondrak R. R.   Collier M. R.   Farrell W. M.   
Zimmerman M. I.   Schwadron N. A.   Spence H. E. 
Interplanetary Conditions During the Apollo Missions:  Implications for the State of the  
Lunar Environment [#3019] 
 

5:00 p.m. DISCUSSION 
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HUMAN EXPLORATION OF THE MOON AND GAPS IN OUR STRATEGIC KNOWLEDGE 

8:30 a.m.   Conference Room W150 
 

Examination of architectures for the human exploration and strategic knowledge gaps for a Moon first scenario 
 

Chairs: Kurt Retherford  
  Rachel Klima  
 
8:30 a.m. Shearer C. K. *   Members of the GAP-SAT Teams I and II 

Results of the Lunar Exploration Analysis Group GAP-SAT (Specific Action Team) I and II 
Examination of Strategic Knowledge Gaps for the Moon First Scenario for Human Exploration  
of the Solar System [#3030] 
 

8:45 a.m. Connelly J. * 
Alternative Lunar Architectures 
 

9:00 a.m. Rask J. C. *   Zeidler-Erdely P. C.   Meighan T.   Barger M. W.   Wallace W. T.   Cooper B.   
Porter D. W.   Tranfield E. M.   Taylor L. A.   McKay D. S.   Castranova V.    
Liu Y.   Loftus D. J. 
The Chemical Reactivity of Lunar Dust Influences Its Biological Effect [#3037] 
 

9:15 a.m. Taylor L. A. * 
Water, Water, Everywhere:  But How to Find and Use It on the Moon! [#3023] 
 

9:30 a.m. Sanders G. B. *   Baird R. S.   Rogers K. N.   Larson W. E.   Quinn J. W.   Smith J. E.   Colaprete A.   
Elphic R. C.   Picard M. 
RESOLVE Lunar Ice/Volatile Payload Development and Field Test Status [#3046] 
 

9:45 a.m. Heldmann J. L. *   Colaprete A.   Elphic R.   Mattes G.   Ennico K.   Fritzler E.   Marinova M.   
McMurray R.   Morse S.   Roush T.   Stoker C. 
RESOLVE:  Real-Time Science Operations to Support a Lunar Polar Volatiles Rover Mission [#3034] 
 

10:00 a.m. Cardiff E. H. * 
Volatile Extraction and In Situ Resource Utilization for the Moon Applied to  
Near Earth Objects [#3041] 
 

10:15 a.m. BREAK 
 
10:30 a.m. Lester D. F.   Valinia A. *   Thronson H.   Schmidt G. 

The First Exploration Telerobotics Symposium — Telepresence:  A New Paradigm for  
Human-Robotic Cooperation [#3012] 
 

10:45 a.m. Klaus K. *   Post K.   Lawrence S. J. 
A Sustainable Architecture for Lunar Resource Prospecting from an EML-Based  
Exploration Platform [#3009] 
 

11:00 a.m. Alkalai L. *   Solish B.   Wlliott J. O.   Mueller J.   McElrath T.   Parker J. 
ORION/MoonRise:  A Human and Robotic Sample Return Mission Concept from the  
South Pole-Aitken Basin [#3053] 
 

11:15 a.m. Cox R. *   Clark P.   Vasant A.   Meinke R. 
Gateways to the Solar System:  Innovative Advanced Magnet Lab Mass Driver Launch Platforms  
at L1 and L2 [#3007] 
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11:30 a.m. Kelso R. M. *   Hamilton J. C.   Andersen C. 
Lunar Concrete — Using Analogue Test Sites on the Big Island of Hawai’i for “Dust-to-Bricks”:   
Demonstration of Technologies Associated with Basalt/Regolith Material 
Processing/Fabrication/Construction [#3011] 
 

11:45 a.m. DISCUSSION 
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Introduction:  A new mission concept is proposed 

for a joint human/robotic mission to return samples 

from the Lunar South Pole-Aitken Basin (SPAB). The 

mission concept combines architectural elements under 

development by NASA’s Human Exploration & Opera-

tions Mission Directorate (HEOMD): the SLS launch 

vehicle, the ORION Muti-Purpose Crew Vehicle 

(MPCV), and a human habitat spacecraft potentially 

located at the Earth Moon Lagrange point-2 (EML-2).  

It also utilizes NASA’s scientific robotic capabilities 

funded by NASA’s Space Mission Directorate (SMD) 

including: the MoonRise lunar robotic sample return 

capabilities [1], [2], the AXEL or ATHLETE mobility 

capabilities [3], [4], [5], and the Atonomus Landing 

and Hazard Avoidance Technology (ALHAT) [6]. We 

present a preliminary mission concept, the trade space 

that was considered during the study, as well as a de-

tailed discussion of the mission design parameters.  

The mission concept envisions separate launches of 

the human crew using the (crewed) SLS launch vehicle 

with the Orion MPCV to take the astronauts to an ex-

isting spacecraft that was previously launched with the 

(cargo) SLS and parked in the Earth-Moon Lagrange 

point-2 (EML-2). Separately from these two lauches, 

the MoonRise robotic lander and sample return system 

is launched on an EELV to a lunar parking orbit (EML-

1). After the astronauts reach EML-2, the robotic 

lander descends from EML-1 to a designated landing 

site within the SPAB. The astronauts in the human-

rated spacecraft and the docked MPCV in EML-2 are 

strategically located to monitor the landing and also to 

provide the essential communication relay service to 

Earth. Upon landing, the robotic lander, tele-operated 

by the astronauts, will collect, sieve and cache samples 

into a canister located on the Lunar Ascent Vehicle 

(LAV). Once the sample acquisition is completed, the 

LAV will lift-off from the lunar surface and deliver the 

sample canister to the vicinity of the human spacecraft 

parked in EML-2. The astronauts will capture and re-

turn the samples to Earth. The capture strategy may 

involve proximity navigation and docking including a 

robotic arm to capture the sample canister. This new 

and innovative sample return mission concept has mul-

tiple features worth noting: 

First, given that the MoonRise system does not 

have to return samples to Earth and does not need a 

communication relay satellite, the mass savings can be 

translated into delivering more samples to astronauts 

located in EML-2 and ultimately for their return to the 

science community on Earth. Preliminary calculations 

indicate that at least an order of magnitude more sam-

ples can be returned, e.g. 10 kg instead of the 1 kg re-

quired by the New Frontiers Program. This has a tre-

mendous value to the science community both in the 

USA and the potential international partners participat-

ing in such a mission. Second, the mission concept that 

demonstrates the capture of samples in lunar orbit has a 

clear path forward to future sample return missions at 

Mars. Third, this mission concept gives a significant 

role to the astronauts to perform in EML-2 including: i) 

providing critical relay coverage for the Lander landing 

in the SPAB; ii) tele-operations of the robotic system 

on the surface of the Moon, and iii) technology demon-

stration of the sample capture in lunar orbit. 

Finally, there is an opportunity to add a mobility 

system to the MoonRise lander that could have at least 

two additional functions: i) Collect samples from be-

yond the immediate vicinity of the lander, and ii) use 

the rover to deploy another science instrument such as 

a low-frequency radio antenna to perform an astro-

physics experiment [7]. 

References:  

[1]  Jolliff, B. L., C. Shearer, D. Papanastassiou, L. 

Alkalai, R. Jaumann, G. Osinski, and the MoonRise 

Science Team (2010), Lunar Exploration Analysis Group 

(LEAG) Annual Meeting, Sep. 14-17, Washington, DC. 

[2] Jolliff, B. L., L. Alkalai, C.M. Pieters, J. W. Head 

III, D. A. Papanastassiou, and E. B. Bierhaus, (2010) 

Sampling the South Pole- Aitken Basin: Objectives & 

site selection criteria. LPS 41, #2450. 

[3] I. A. Nesnas et. al.,  “Axel and DuAxel Rovers for 

the Sustainable Exploration of Extreme Terrains,” 

accepted for the Journal of Field Robotics. 

[4] P. Abad-Manterola, et. al., “Axel: A Minimalist 

Tethered Rover for Exploration of Extreme Planetary 

Terrains,” IEEE Robotics and Automation Magazine, 

Special Issue on Space Robotics, 2009. 

[5] B. Wilcox, ATHLETE: A Limbed Vehicle for Solar 

System Exploration, IEEE Aerospace 2011. 

[6] C. D. Epp et. al., Autonomous Landing and Hazard 

Avoidance Technology (ALHAT), IEEE Aerospace 

2008. 
[7] J. O. Burns, et. al., A Lunar L2-Farside Explora-

tion and Science Misson Concept with the Orion Multi-

Purpose Crew Vehicle and a Teleoperated 

Lander/Rover, GLEX-2012. 
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fanov2, T. P. McClanahan3, and the LEND team. 1The University of Arizona, Tucson, AZ USA, 
wboynton@lpl.arizona.edu, 2Institute for Space Research, 117997 Moscow, Russia, 3NASA Goddard Space Flight 
Center, Greenbelt, MD USA 

 
Introduction: The Clementine mission suggested 

that deposits of water ice might exist in the permanent-
ly shadowed regions (PSRs) near the lunar south pole 
[1]. Subsequent data of the Lunar Prospector Neutron 
Spectrometer (LPNS) showed suppression of epither-
mal neutrons at both poles above 70° latitude, which 
were interpreted to indicate enhancement of hydrogen, 
predominantly within PSR areas [2]. More recently the 
Lunar Exploration Neutron Detector (LEND) onboard 
the NASA Lunar Reconnaissance Orbiter (LRO) 
showed, when viewed with its high spatial resolution, 
that the regions of neutron suppression were not close-
ly related to the PSRs [3]. Two of the PSRs, those as-
sociated with the Cabeus and Shoemaker craters, 
showed significant suppression of neutrons, but others 
did not. In this work we shall focus not on the neutron 
suppressed regions (NSRs); rather we are concerned 
with the hydrogen content of the region between the 
NSRs. 

Methods: A map of the epithermal neutron count-
ing rate was made by binning the LEND counts from 
the four collimated epithermal neutron detectors using 
HEALPix [4] bins of size 1.7 km. We first made a plot 
of epithermal neutron count rate as a function of lati-
tude in one-degree latitude bands between -82° and -
90° after excluding the NSRs. A general decrease in 
count rate (increase in H content) is observed toward 
the poles.  

Discussion: We found that the count rates decrease 
linearly and nearly identically at both poles. The de-
crease in epithermal-neutron flux is due to an increase 
in the H content of the regolith. This distribution of H 
is very different from the much higher H content of the 
strong flux depressions seen in the NSRs. The cause of 
the high H content in the NSRs is not well understood, 
but this work will discuss what the observed increase 
in H with latitude can tell us about H mobility on the 
lunar surface. 

There are two obvious sources of hydrogen found 
on the moon: H2O from impacts of volatile-rich comets 
or meteorites and hydrogen from the sun associated 
with the solar wind or solar particle events (SPEs). By 
a large margin, the solar wind accounts for the bulk of 
the lunar H [5].  

The H implanted by the solar wind, as well as H2O 
deposited from impact sources, can be mobilized by a 
variety of processes, but all them that rely on external 
sources, e.g. solar wind sputtering, solar photons, or 

impacts, are either isotropic or have at most a cosine 
dependence on latitude [5]. What we observe, howev-
er, is that the decrease in count rate at the poles is 
much steeper than that expected based on cosine de-
pendent processes.  

Because the solar-wind deposited H in the grains is 
saturated, we consider the H in the lunar regolith to be 
determined by differences between the rates of steady-
state gain and loss mechanisms. As shown above, co-
sine dependent mechanisms cannot by themselves ac-
count for the steep decrease in count rate observed in 
the polar regions. The rate of loss of species due to 
diffusion of implanted H out of the grains or thermal 
vaporization, however, are expected to show a very 
strong dependence on temperature. We suggest the 
decrease in epithermal-neutron count rate (and in-
crease in H content) is due to much slower vaporiza-
tion of H in the polar regions.  

Before we try to semi-quantitatively model the mi-
gration of H, we must first convert the count-rate data 
into concentrations of H (in all species). To do this we 
calculate an epithermal-neutron suppression value. The 
suppression is defined as the ratio of the background-
adjusted count rate in an area of interest to that of a 
reference flux expected for an area containing no H.  

Following a procedure like that used by [3], we 
find an average background-adjusted count rate of 
1.6938 ± 0.0012 cps. We then take the average H con-
tent in Apollo 16 soils of 45 ppm from [6] as our best 
estimate of the H content in this area. Using Figure S-1 
in the supplementary on-line material of [3], we calcu-
late a reference count rate of 1.79 cps. 

Based on the above model-dependent assumptions 
and the data in Figure 3, we calculate a H content of 
120 ppm at 82° latitude and 200 ppm at 89° latitude. 
The bulk of the excess H above the 45 ppm assumed 
for that typical of lower latitudes must reside on the 
surface of the grains since it is difficult for an H2O 
molecule on a ballistic trajectory to be imbedded into a 
grain. The implications of this conclusion will be dis-
cussed.  

References: [1] P. D. Spudis et al., Solar Syst. Res. 
32, 17 (1998). [2] W. C. Feldman et al., Science 281, 
1496 (1998). [3] I.G. Mitrofanov, et al. Science, 330, 
483–486 (2010). [4] Hierarchical Equal Area isoLati-
tude Pixelization, http://healpix.jpl.nasa.gov. [5] 
Boynton et al., JGR, (under revision, 2012). [6] Bustin 
et al., Proc. Lunar Sci. Conf. (1984) 
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Bistatic Radar Observations Of The Moon Using The Arecibo Observatory & Mini-RF On LRO.  D. B. J. 
Bussey1, R. Schulze1, D. E. Wahl2, G. W. Patterson1, M. Nolan3, J. R. Jensen1, F. S. Turner1, D. A. Yocky2, J. T. S. 
Cahill1, C. V. Jakowatz2, R. K. Raney1, and the Mini-RF Team,   1Applied Physics Laboratory, Laurel MD 20723, 
2Sandia National Laboratory, Albuquerque NM, 3Arecibo Observatory, Arecibo PR. 

 
Introduction:  The Mini-RF team is acquiring bi-

static radar measurements that will test the hypothesis 
that permanently shadowed areas near the lunar poles 
contain water ice.  Additionally these measurements 
can be used for studies of the composition and struc-
ture of pyroclastic deposits, impact ejecta and melts, 
and the lunar regolith.  These bistatic observations 
(where the Arecibo Observatory Planetary Radar (AO) 
transmits a 12.6 cm wavelength signal, which is re-
flected off of the lunar surface and received by the 
Mini-RF instrument on LRO) have produced the first 
lunar non beta-zero radar images ever collected. 

Rationale:  Typically, orbital radar observations 
use the same antenna to both transmit and receive a 
signal.  The angle between the transmitted and re-
ceived signals (the bistatic, or beta angle) for these 
observations is therefore zero, and they are referred to 
as monostatic observations.  By using the AO radar as 
the transmitter and Mini-RF as the receiver, we have 
the opportunity to collect data for the Moon with beta 
angles other than zero.  These measurements provide a 

new and unique test of the water ice hypothesis for the 
Moon. 

A common science product produced using 
planetary radar is the Circular Polarization Ratio [1] 
(CPR).  CPR is the ratio of the powers of received sig-
nal in the same sense transmitted divided by the oppo-
site sense. Typical dry lunar surface has a CPR value 
less than unity [2].  Higher CPR signals can result from 
multiple-bounce backscatter from rocky surfaces or 
from the combined volume scattering and coherent 
backscatter opposition effects (CBOE) from an 

ice/regolith mixture [2]. The physics of radar scattering 

predict that high CPR caused by a rocky surface will 
be relatively insensitive to the beta angle, whilst high 
CPR caused by ice will be very sensitive to beta, with 
elevated CPR values dropping off abruptly at beta an-
gles greater than about 1-2° (figure 1). 

Mini-RF monostatic data shows many craters with 
high CPR values.  Most of these features are associated 
with fresh, young craters and display elevated CPR 
both inside and outside their rims. Some permanently 
shadowed craters near both poles show elevated CPR 
inside the crater rims but low CPR outside the crater 
rim.  This has been interpreted as being consistent with 
RF backscatter caused by surface roughness in the 
former case and water ice in the latter [2]. 

Planned Observations: We are imaging both po-
lar, and non-polar targets that have high monostatic 
CPR values (figure 2).  By acquiring non beta zero 
data of equatorial high-CPR regions (which we can 
safely assume have high CPR due to the presence of 
surface rocks) we can confirm the hypothesis that high 
CPR caused by rocks is reasonably invariant to the 
beta angle (red curve in Figure 1). We are looking to 
see if monostatic high-CPR polar craters have high or 
low values in the bistatic data.  If we find areas that 
become low only in the bistatic data then this provides 
strong supporting evidence that these are ice deposits.   

Conclusions: Using Arecibo and Mini-RF we are 
acquiring the first ever planetary bistatic radar images 
at non β=0 angles.  These data provide a unique new 
piece of evidence to determine if the Moon’s polar 
craters contain ice.  

References: [1] Campbell B. et al., Nature, 2006 
[2] Spudis P. D. et al., GRL 2010. 

 

 
Figure 1.  Predicted behavior of CPR versus beta angle 
for both rock terrains and an ice/regolith mixture. 

 
Figure2. Bistatic image of a portion of the south polar 
region. Shackleton crater is visible in the top right. 
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Volatile Extraction and In Situ Resource Utilization for the Moon applied to Near Earth Objects.  E. H. Car-
diff, NASA GSFC, Building 11 Room E135, Greenbelt, MD 20771. Eric.H.Cardiff@nasa.gov. 

 
 
Introduction:  Most In Situ Resource Utilization 

(ISRU) development has been done with respect to 
either the Moon or Mars, with relatively little applica-
ble to Near Earth Objects (NEOs).  Since NASA is 
now pursuing a “flexible path” strategy for exploration, 
it behoves the community to look at the application of 
ISRU that can work at either the Moon or NEOs. 

One technique that is applicable for resource ex-
traction at the Moon and on an asteroid is vacuum py-
rolyis.  The thermal extraction of volatiles is the most 
promising technique for volatile extraction and scien-
tific measurement of critical volatile species, and has 
been well demonstrated.  Vacuum pyrolysis has also 
been demonstrated to produce substantial volatiles 
from regolith stimulants, including oxygen [1]. 

Solar Heating:  A mobile platform (shown in Fig-
ure 1) has been developed at NASA GSFC to sinter 
and melt simulated lunar regolith.  It has been demon-
strated (as illustrated in Figure 2 for two samples), and 
the melting rates have been quantified.  The vehicle 
consists of a chassis that supports a 1m2 lens used to 
focus the solar flux.  The position of the vehicle and of 
the lens is determined remotely by radio control.   

 

 
Figure 1:  The NASA GSFC Fresnel lens vehicle [2]. 

 
The melting volumetric rate produced by the Fres-

nel lens vehicle was 2.6 cm3 / min [2] (or 7.5 g/min for 
JSC-1A).  By manipulating the lens, the focal area and 
intensity can be altered – thus allowing the production 
of volatiles with different release patterns.   

Resistive Heating: A  vacuum chamber has been 
used at NASA GSFC to study multiple configurations 
of crucibles to resitively heat regolith stimulants.  A 
custom zirconia crucible with embedded tungsten resis-
tive heating elements is used to pyrolyze the simulant. 
The resistive heating element connects to a power input 
from the bottom, delivering up to 160 DC volts and 
over 2000 W. The crucible and stands are surrounded 
by several layers of tungsten foil shields heat shields.  

The improved crucible and shielding in this confi-
guration required 200 W.hr to take 0.1 g of JSC1A to 
1600 degrees C. 

Near Earth Objects:  The high temperature of 
1600 C is not required to extract volatiles from cometa-
ry material, but cometary material is the least likely to 
be collected as a bulk resource.  It is expected that for 
Near Earth Asteroids (NEAs) that may have undergone 
substantial heating cycles, there will be a multi-modal 
release pattern with low temperature volatiles or solar 
wind volatiles releasing at low temperatures, and resi-
dual volatiles from when the minerals were formed 
being released by high and prolonged temperatures.  
Because the density of NEAs is not well known, poten-
tial exploration targets may vary in mass by factor of 2.  
Typical 7 m diameter asteroids may vary from 300 T to 
600 T of material.[3] 

Scaling:  At current rates, it would take a 1 m2 
Fresnel lens 76 years to process a 300 T asteroid.  
While that might meet current utilization rates on orbit, 
the rate could be accelerated linearly.  Accordingly, a 
100 m2 Fresnel lens (which is within current state of 
the art processing capabilities for etched surfaces) 
could process the entire asteroid in less than a year. 

Scaling the resistive process is merely a matter of 
power.  At the current processing rates, an 83 kW pow-
er system (similar to the International Space Station) 
could process the same 300 T asteroid in a little over 
825 years.   

Scaling:  Direct solar heating is clearly advanta-
geous in terms of processing capability, but also im-
poses significant difficulties.  Resistive heating is much 
easier to contain.  Without significant precautions, di-
rect solar heating can cause condensation of the re-
leased volatiles on cooler processing optics, leading to 
failure of the optics.  However, resistive elements are 
much more susceptible to thermal shock, and thereby 
limit the processing rate. 

It should be noted that the processing capability 
should be driven by the demand for the volatiles.  The 
scaled resistive heating system would supply over 300 
kg of material per year, which is a significant material 
stream, with a relatively high value. 

References: [1] E. Cardiff, B. Pomeroy, I. Banks, 
and A. Benz, Vacuum Pyrolysis and Related ISRU 
Techniques, STAIF, 2007.  [2] 5. E.H. Cardiff, and 
Hall, B. C., A Dust Mitigation Vehicle Utilizing Direct 
Solar Heating, Space Resources Roundtable X, Octo-
ber, 2008. [3] Asteroid Retrieval Feasibility Study, 
April 2012, Keck Institute for Space Studies, JPL. 
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Introduction:  Between 1969 and 1975 three 

Apollo missions collected a unique set of magnetic 

field records measured on the surface of the Moon and 

in orbit at about 100 km above the surface.  One of the 

important uses of these magnetic field records is to 

detect the lunar interior, such as a metallic core, by 

electromagnetic sounding methods.  The popular ap-

proach is the use of an orbiting Apollo sub-satellite and 

a Lunar Surface Magnetometer (LSM) to measure re-

spectively the input to the Moon and the sum of the 

input and the response [1,2].  Studies using this ap-

proach suggest either no evidence of a core with an 

upper limit of about 360 km [3] or a paramagnetic 

Moon [4].  Another approach probes the deep interior 

of the Moon using a low-altitude orbiting sub-satellite 

magnetometer to measure the induced dipole moment 

of the Moon in the magnetictail lobes [5,6].  The Apol-

lo sub-satellite meausrements detected an induced 

magnetic field of 4.20.6×10
22

 Gauss-cm
3
 per Gauss 

of applied field, suggesting an electrically conducting 

core with a radius of slightly more than 400 km [7].  

The two approaches did not necessarily yield the same 

result. 

Revisit to Apollo Magnetic Field Data:  The two-

instrument studies depend crucially on the accurate 

intercalibration of the magnetometers, and some of 

these earlier studies might have suffered from the dif-

ferences in the gain of the magnetometers [8] that 

worth re-analysis with a careful calibration across dif-

ferent instruments.  For over two decades, the format of 

the Apollo magnetic data had become obsolete, and the 

data were difficult to study.  Only until recently are we 

able to restore the Apollo sub-satellite magnetometer 

data and a small portion of the LSM data.  We selected 

a few intervals in 1971 where both Apollo 15 sub-

satellite and LSM were operational, and we compared 

the two measurements in the solar wind, in the magne-

tosheath, and in the magnetotail for the intercalibration 

of the instruments as well as the sounding of the lunar 

interior.  The comparison between the two Apollo in-

struments has not been made in the past, and we will 

assess how the results are compared with those ob-

tained in early studies using Explorer 35 for upstream 

measurements. 

Looking Forward:  The revisit to the Apollo mag-

netic field records reminds us that for more than 37 

years we have not been making magnetic field meas-

urements on the surface of the Moon.  Surface meas-

urements have their unique role that cannot be replaced 

by orbital measurements.  The resolution of Apollo 

magnetic observations may be coarse, and the inter-

calibration of the Apollo measurements made several 

decades ago may be more difficult today.  Neverthe-

less, the lessons learned from revisits to the Apollo 

magnetic observations can provide useful references 

for planning future lunar surface experiments.  

References: [1] Wiskerchen M. J. and Sonnett C. 

P. (1977) PLSC IX, 3113-3124.  [2] Dyal P. et al. 

(1976) JGR, 84, 3313-3326.  [3] Hood L. L. et al., 

(1981) Lunar Science XII, 457-459.  [4] Parkin C. W. 

et al. (1973) PLSC IV, 2947-2961.  [5] Goldstein B. E. 

et al. (1976a) GRL, 3, 289-292.  [6] Goldstein B. E. et 

al. (1976b) PLSC 7, 3321-3341. [7] Russell C. T. et al. 

(1981) PLPS 12B, 831-836. [8] Daily W. D. and Dyal 

P. (1979) PLSC VII, 3313-3326. 
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LunarCube:	
  Payload	
  Development	
  for	
  Enhanced	
  yet	
  Low	
  Cost	
  Lunar	
  Exploration;	
  	
  
P.E.	
  Clark,	
  CUA;	
  R.	
  MacDowall,	
  NASA/GSFC;	
  R.	
  Cox,	
  A.	
  Vasant,	
  Flexure	
  Engineering;	
  
M.L.	
  Rilee,	
  RST;	
  S.	
  	
  Schaire,	
  NASA/WFF;	
  B.	
  Malphrus,	
  Morehead	
  State	
  University	
  
	
  
We	
   are	
   proposing	
   LunarCube,	
   a	
   space	
   architecture	
   that	
   extends	
   the	
   affordable	
   and	
  

successful	
  CubeSat	
  approach,	
  to	
  facilitate	
  access	
  to	
  the	
  Moon.	
  CubeSat	
  provides	
  standards	
  
for	
   bus	
   design	
   and	
   operation	
   for	
   low–cost,	
   focused–objective,	
   Earth	
   orbital	
  missions	
   via	
  
open	
   access	
   documentation	
   and	
   even	
   online	
   purchasable	
   kits,	
   facilitating	
   the	
  
implementation	
   process,	
   and	
   reducing	
   development	
   costs,	
   risks,	
   and	
   time.	
   	
   The	
   bus	
  
provides	
   standardized	
   interfaces	
   and	
   shared	
   access	
   by	
   guest	
   ‘instruments’	
   to	
   all	
  
subsystems	
  using	
  CubeSat	
  protocols.	
   Four	
  key	
  aspects	
  of	
   specified	
  design	
  are:	
  1)	
  profile:	
  
short	
  duration,	
  low	
  earth	
  orbit;	
  2)	
  form	
  factor:	
  multiple	
  10	
  cm	
  cubes	
  (U),	
  typically	
  varying	
  
from	
   0.5	
   to	
   3	
   U;	
   3)	
   technology	
   impact:	
   low,	
   incorporating	
   off	
   the	
   shelf	
   electronics	
   and	
  
software;	
   4)	
   risk:	
   Class	
   D,	
   based	
   on	
   the	
   rationale	
   that	
   CubeSat	
   standards	
   have	
   been	
  
improved	
   and	
   demonstrated	
   with	
   use,	
   and	
   failures	
   have	
   far	
   less	
   impact,	
   in	
   terms	
   of	
  
expenditures	
   and	
   size	
   of	
   groups	
   involved,	
   than	
   conventional	
   government	
   sponsored	
  
‘missions’.	
   Part	
   of	
   its	
   appeal	
   is	
   that	
   CubeSat	
   afforded	
   universities	
   access	
   for	
   hands	
   on	
  
student	
   education.	
   After	
   a	
   decade	
   of	
   development,	
   this	
   approach	
   is	
   beginning	
   to	
   yield	
  
scientifically	
   useful	
   monitoring	
   of	
   Earth’s	
   atmosphere	
   and	
   climate	
   through	
   combined	
  
experiments	
  (e.g.,	
  CINEMA,	
  CubeSat	
  for	
  Ions,	
  Neutrals,	
  Electron,	
  and	
  Magnetic	
  Fields).	
  Most	
  
recently	
  CubeSat	
  has	
  been	
  proposed	
  as	
  a	
  model	
  for	
  a	
  lunar	
  swirl	
  study	
  mission.	
  
LunarCube	
  deals	
  with	
  risk	
  analogously	
  by	
  bus	
  standardization	
  and	
  modularization,	
  still	
  

keeping	
   costs	
   low,	
   while	
   extending	
   the	
   current	
   CubeSat	
   concept	
   in	
   stages	
   to	
   include	
  
additional	
   capability	
   required	
   for	
   deep	
   space	
   operation	
   in	
   five	
   key	
   areas:	
   1)	
   profile:	
  
increase	
  duration	
  from	
  months	
  to	
  years;	
  2)	
  form	
  factor:	
  grow	
  to	
  at	
  least	
  6U	
  as	
  needed;	
  3)	
  
control:	
  active	
  attitude	
  control	
  and	
  propulsion,	
  made	
  sustainable	
  with	
  onboard	
  intelligence	
  
for	
  routine	
  multi-­‐platform	
  operation;	
  4)	
  information	
  transfer:	
  more	
  robust	
  communication	
  
and	
  C&DH	
  to	
  support	
  onboard	
  processing,	
  made	
  sustainable	
  with	
  onboard	
  intelligence	
  for	
  
routine	
  multi-­‐platform	
  operation,	
  and	
  5)	
   thermal/mechanical	
  design:	
  greater	
  hardness	
   to	
  
deep	
   space	
   radiation	
   and	
   ruggedness	
   for	
   extreme	
   thermal	
   variation,	
   potentially	
   using	
  
MilSpec	
   components	
   initially,	
   but	
   ultimately	
   requiring	
   state	
   of	
   the	
   art	
   cold	
   temperature	
  
electronics	
   and	
   power	
   developments	
   for	
   deep	
   cryo	
   operation.	
   Accomplishment	
   of	
   these,	
  
with	
  some	
  degree	
  of	
  onboard	
  intelligence,	
  would	
  allow	
  multiple	
  platform	
  operation	
  in	
  cis-­‐
lunar	
  space,	
  as	
  well	
  as	
  survival	
  and	
  operation	
  for	
  at	
  least	
  a	
  limited	
  duty	
  cycle	
  on,	
  the	
  lunar	
  
surface.	
   More	
   robust	
   and	
   larger	
   6U	
   CubeSat	
   concepts	
   exist.	
   Stage	
   2	
   would	
   require	
   fully	
  
implementing	
  onboard	
   intelligence	
   (3	
  and	
  4)	
   and	
  deep	
   cryo	
  design	
   in	
   electronics,	
  power	
  
systems,	
   mechanisms	
   (moving	
   parts),	
   precision	
   navigation	
   and	
   control,	
   and	
   advanced	
  
payload	
  integration.	
  Full	
  operation	
  on	
  the	
  lunar	
  surface	
  would	
  be	
  possible.	
  At	
  this	
  stage,	
  the	
  
LunarCube	
   could	
   be	
   a	
   virtual	
   ‘smart	
   phone’	
  with	
   a	
   ‘nano–rack’	
   representing	
   a	
   variety	
   of	
  
experiments,	
  as	
  open	
  access	
  software	
  applications.	
  
	
   A	
   critical	
   need	
   for	
   LunarCube	
   development	
   is	
   obtaining	
   inputs	
   on	
   required	
  

resources	
  (Mass,	
  power,	
  bandwidth,	
  volume)	
  for	
  the	
  broad	
  range	
  of	
  instruments	
  required	
  
to	
   do	
   cutting	
   edge	
   science,	
   and	
   continuing	
   the	
   development	
   of	
   onboard	
   intelligence	
   to	
  
support	
   processing	
   for	
   highly	
   selective	
   data	
   return	
   as	
   well	
   as	
   guidance,	
   navigation	
   and	
  
control	
   without	
   ‘ground	
   control’,	
   allowing	
   temporally	
   and	
   spatially	
   distributed	
  
measurements	
  of	
  3D	
  systems	
  from	
  distributed	
  platforms	
  with	
  minimal	
  bandwidth.	
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Frontier: Towards Onboard Intelligence For Next Generation Space Assets; P.E. 
Clark, CUA; M.L. Rilee, Rilee Systems Technologies; S.A. Curtis, Tetrobotics 

We are working toward development of Frontier, a highly adaptable, stably 
reconfigurable, web–accessible intelligent decision engine that will be capable of 
optimizing the design and simulating the operation of, and ultimately operating complex 
systems, ranging from instruments to multi-platform distributed assets, in response to 
evolving needs and environments. The most innovative aspect of Frontier is what makes 
it truly unique, capable of absorbing and utilizing lessons learned and thus evolving from 
a tool to a tool user: an adaptable framework consisting of a decision engine with 
evolving intelligence based on a genetic algorithm–driven evolving neural interface with 
an evolving synthetic neural system consisting of neural basis functions for the human (to 
the Stakeholder GUI) and tool (to the modeling support environment) interfaces and a 
specially designed stability algorithm to balance rule– and choice–driven inputs 
originating from either side facilitate the design evaluation and selection process. The 
adaptable framework will be increasingly capable of dynamic reconfiguration of 
parameters and rules associated with tools and resources, as well as selection of tools 
most optimally matched to stakeholder needs through pattern recognition in response to 
‘lessons learned’. Frontier is built on an open source, web services oriented environment.  
Through web–based interfaces, it will support distributed, multi–user, concurrent access 
to resources and tools, including the human and tool interfaces, modeling and 
development services, databases, simulation, scenario development, analysis, and 
evaluation.  

In our NASA Edison SmartSat proposal, we apply Frontier in the demonstration of 
autonomous close proximity operations critical for deep space operation, including 
knowledge and control of orientation and position to support formation flying, close 
approach, stationkeeping, changing orbital parameters, and active/passive object 
interactions, with progressively greater onboard intelligence drive by Frontier intelligent 
decision engine (IDE). Morehead State University provides the 3 3U standard cubesat 
buses with 1) IDE based on GSFC patented Synthetic Neural System Nervous Net 
Attitude Control and Neural Net Target Discrimination, Tracking, and Prediction 
leveraged from previously supported developments in support of NASA ST-8 choice 
driven system for an autonomous navigation demonstration, and DARPA System F6 
intelligent decision engine; 2) Morehead State University 60GHz RF System with omni-
antennas for distance and direction determination, inter-spacecraft communication, and 
atmospheric sounding (science mode); 3) Honeywell Dependable Multiprocessor (DM), 
with GPS determination capability leveraged from NASA ST-8 and the DOD SMDC 
TechSat; 4) In-Space primary propulsion utilizing Busek resistojet thrusters leveraged 
from developments in support of the Air Force NanoSat Program and demonstrating 
sufficient Delta-V and ISP to support our proximity operations. 

SmartSat has three levels of autonomy, from lowest level health & safety and control 
software baseline flight software (BFS) mainly on the standard C&DH platform, and two 
higher levels associated with the Synthetic Neural System Neural Basis Functions 
running as a DM application and consisting of low-level controllers to drive spacecraft 
behaviors through command sequences and high-level controllers to deal with more 
complex or symbolic tasks, for example, selecting between safing alternatives or collision 
avoidance trajectories. 
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Figure 1.  The RESOLVE Payload on the Artemis Jr. rov-

er: Shown is an augering activity with the NIR lamp illu-

minating the drill spot the view from the Dril Camera. 

Near Real-Time Prospecting for Lunar Volatiles: Demonstrating RESOLVE Science in the Field A. 

Colaprete1, R. Elphic1, J. L. Heldmann1, G. Mattes2, K. Ennico1, E. Fritzler1, M. Marinova1, R. McMurray1, S. 

Morse1, T. Roush1, C. Stoker1, Jerry Sanders2, Jackie Quinn3, Bill Larson3, M. Picard4, 1NASA Ames Research 

Center, Moffett Field, CA, 2NASA Johnson Space Center, Houston, TX, 3NASA Kennedy Space Center, FL, 
4
Candian Space Center, Québec, Canada. 

 

 

Introduction: The Regolith and Environment Sci-

ence and Oxygen & Lunar Volatile Extraction 

(RESOLVE) project aims to demonstrate the utility of 

"in situ resource utilization".   In situ resource utiliza-

tion (ISRU) is a way to rebalance the economics of 

spaceflight by reducing or eliminating materials that 

must be brought up from Earth and placed on the sur-

face of the Moon for human use.  RESOLVE is devel-

oping a rover-borne payload that (1) can locate near 

subsurface volatiles, (2) excavate and analyze samples 

of the volatile-bearing regolith, and (3) demonstrate 

the form, extractability and usefulness of the materi-

als.  Such investigations are important not only for 

ISRU but are also critically important for understand-

ing the scientific nature of these intriguing lunar polar 

volatile deposits. 

Temperature models and orbital data suggest near 

surface volatile concentrations may exist at briefly lit 

lunar polar locations outside persistently shadowed 

regions.  A lunar rover could be remotely operated at 

some of these locations for the 4-7 days of expected 

sunlight at relatively low cost. 

 RESOLVE Field Test:  In July 2012 the 

RESOLVE project conducted a full-scale field demon-

stration.  In particular, the ability to perform the real-

time measurement analysis necessary to search for 

volatiles and the ability to combine the various meas-

urement techniques to meet the mission measurement 

and science goals.  With help from the Pacific Interna-

tional Space Center for Exploration Systems 

(PISCES), a lunar rover prototype (provided by the 

Canadian Space Agency) was equipped with a suite of 

prospecting instruments (neutron spectrometer and 

near-infrared spectrometer), subsurface access and 

sampling tools, including both an auger and coring 

drill (provided by CSA) and subsurface sample analy-

sis instrumentation, including a sample oven system, 

the Oxygen and Volatile Extraction Node (OVEN), 

and Gas Chromatograph / Mass Spectrometer system, 

the Lunar Advanced Volatile Analysis (LAVA) sys-

tem.  This paper will discuss how the RESOLVE sci-

ence was demonstrated during the field campaign. 

Real-time Prospecting and Combined Instru-

ment Science:  Given the relatively short time period 

this lunar mission is being designed to, prospecting 

for sites of interest needs to occur near real-time.  The 

two instruments which are being used for prospecting 

are the neutron and NIR spectrometers (Fig. 1).  In the 

flight mission the neutron spectrometer would sense 

hydrogen down to concentrations as low as 0.5WT% 

to a depth of approximately 80 cm.  This instrument is 

the principle instrument for identifying buried vola-

tiles.  In flight the neutron source is the integration of 

galactic rays with the lunar regolith.  In the field demo 

a small radioactive source provided the neutron flux.  

The NIR spectrometer, which includes its own light 

source, looks at surface reflectance for signatures of 

bound H2O/OH and general mineralogy.  The 

RESOLVE flight instrument will work between 1.7-

3.4 um; however for the field demonstration a 

LCROSS NIR spectrometer engineering unit was used 

which operates between 1.2-2.4 um.  Once an area of 

interest was identified by the neutron and/or NIR 

spectrometer (what was referred to as a “hot spot”) the 

option to drill was considered.  The drill could either 

auger or core.  The auger drill worked to a depth of 50 

cm and is monitored with a drill camera and the NIR 

spectrometer.  As cuttings are brought up the NIR 

spectra is monitored.  If a particular location is con-

sidered of high-interest then the decision to core could 

be made.  The coring drill (a push-tube) allowed a 1-

meter sample to be acquired and then processed by the 

OVEN/LAVA system.  This presentation will provide 

details as to how these instruments worked together 

and how and if the planned measurements and science 

was obtained. 
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Gateways to the Solar System: Innovative Advanced Magnet Lab Mass Driver Launch 
Platforms at L1 and L2 

Cox, Clark, Vasant, Meinke 

Lagrange	
  points	
  1	
  and	
  2,	
  each	
  about	
  1.5	
  million	
  kilometers	
  from	
  the	
  Earth,	
  are	
  
potential	
  gateways	
  to	
  the	
  solar	
  system.	
  From	
  either	
  point,	
  many	
  deep	
  space	
  
destinations,	
  including	
  the	
  Moon,	
  Mars,	
  or	
  asteroids,	
  would	
  be	
  accessible	
  at	
  much	
  
lower	
  Delta-­‐V	
  than	
  a	
  direct	
  transfer	
  would	
  require.	
  	
  At	
  either	
  gateway,	
  an	
  efficient,	
  
reusable	
  launch	
  platform,	
  such	
  as	
  the	
  Advanced	
  Magnetics	
  Lab	
  mass	
  driver	
  
discussed	
  here,	
  would	
  provide	
  further	
  reduction	
  in	
  resources	
  required	
  to	
  reach	
  
these	
  destinations.	
  The	
  advanced	
  magnet	
  lab	
  offers	
  unique	
  technology	
  solution	
  for	
  a	
  
low	
  mass	
  launch	
  tube	
  driven	
  by	
  magnetic	
  levitation,	
  through	
  the	
  use	
  of	
  
superconducting	
  materials,	
  3D	
  simulation	
  and	
  control	
  of	
  conductor	
  placement	
  and	
  
coil	
  geometry,	
  and	
  automated	
  manufacturing	
  of	
  multi-­‐layered	
  coils.	
  	
  This	
  
combination	
  generates	
  the	
  highly	
  stable	
  double	
  helix	
  field	
  with	
  unprecedented	
  
robustness,	
  reliability,	
  and	
  radiation	
  tolerance,	
  all	
  of	
  which	
  lower	
  production	
  costs.	
  
L1	
  or	
  L2	
  Gateways	
  are	
  reachable	
  from	
  a	
  Geosynchronous	
  Transfer	
  Orbits	
  (GTO)	
  
through	
  a	
  small	
  hop.	
  Although	
  such	
  weak	
  stability	
  transfers	
  require	
  more	
  time,	
  they	
  
require	
  much	
  less	
  energy.	
  Many	
  Geosynchronous	
  communications	
  satellite	
  
insertions	
  have	
  unused	
  "Launch	
  Performance"	
  such	
  that	
  as	
  much	
  as	
  5,000	
  pounds	
  
could	
  ride	
  along	
  and	
  be	
  placed	
  in	
  a	
  GTO	
  at	
  very	
  low	
  cost.	
  Thus,	
  from	
  those	
  gateways,	
  
many	
  smallsats,	
  including	
  Interplanetary	
  CubeSats	
  or	
  LunarCube-­‐based	
  missions	
  
could	
  be	
  sent	
  to	
  many	
  destinations	
  throughout	
  the	
  solar	
  system.	
  As	
  an	
  example,	
  let’s	
  
assume,	
  conservatively,	
  we	
  have	
  placed	
  a	
  2,000	
  kg	
  ‘ride	
  along’	
  payload	
  into	
  a	
  GTO	
  as	
  
a	
  ride	
  along	
  payload,	
  where,	
  conservatively,	
  1,000	
  kg	
  represents	
  the	
  vehicle	
  needed	
  
to	
  get	
  to	
  the	
  gateway,	
  and	
  1,000	
  kg	
  the	
  remainder,	
  including	
  a	
  500	
  kg	
  payload	
  
consisting	
  of	
  tens	
  of	
  10	
  to	
  15	
  kg	
  2x2x2	
  or	
  2x2x3	
  U	
  cubesats	
  bound	
  for	
  another	
  
destination,	
  and	
  a	
  reusable	
  launch	
  platform.	
  The	
  launch	
  platform	
  would	
  be	
  
comprised	
  of	
  the	
  spacecraft	
  bus	
  mass,	
  solar	
  arrays,	
  long	
  duration	
  power	
  storage,	
  a	
  
rapid	
  discharge	
  power	
  system	
  and	
  launch	
  control	
  electronics,	
  all	
  of	
  which	
  will	
  
support	
  an	
  Advanced	
  Magnetics	
  Lab	
  Mass	
  Driver	
  launch	
  tube	
  with	
  conventional	
  or	
  
superconducting	
  coils.	
  	
  Once the chemical or other conventional propulsion system has 
placed	
  the Launch Platform near the L1 or L2 Gateway	
  the approximately 50 free flying 
spacecraft would be transferred to the AML Mass Driver and launched, one at a time, to 
their final	
  destinations throughout the solar system.	
  To calculate the efficiency of this 
launch sequence you would divide the total mass at the gateway by	
  the number of 
launches. The kinetic energy is being provided by the "massless "	
  solar flux at 1 AU.	
  This 
architecture could offer a very low cost, flexible, and thus effective mechanism for solar 
system exploration.	
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Modal Evaluation of Fluid Volume in Spacecraft Propellant Tanks Kevin
M. Crosby1, Rudy Werlink2, Steven Mathe1, Kevin Lubick1, 1Carthage College, Kenosha, WI, USA
(kcrosby@carthage.edu), 2NASA Kennedy Space Center, Florida, USA (rudy.werlink-1@nasa.gov)
Introduction: Low gravity propellant mass gauging is
identified in NASA’s Exploratory Systems Architecture
Study as a primary research challenge. The future of
manned spaceflight beyond LEO relies in part on the de-
velopment of accurate and robust methods of mass gaug-
ing in both settled and unsettled propellant states.

In the present study, we describe the use of exper-
imental modal analysis (EMA) to infer fluid levels in
model spacecraft propellant tanks in a microgravity en-
vironment provided by parabolic flights.

Modal Analysis Technique: EMA involves the appli-
cation of acoustic forces to test structures. Natural res-
onances of the test structure are excited by the applied
force, and sensors affixed to the structure record the am-
plitude of the acoustic response across the range of res-
onating frequencies.

Typically, EMA involves the computation of fre-
quency response functions (FRF) to determine the res-
onant frequencies present at each sensor location. The
FRF shows peaks at the frequencies where a sensor
records a strong resonance that is not present in the spec-
trum of the input signal. Modal techniques can therefore
be used as real-time diagnostics of structural properties.
Fluid loading increases the effective mass of the loaded
structure, resulting in a decrease in the structure’s reso-
nant frequencies.

Experimental Design: Our experimental rig consists
of cylindrical steel tanks of diameter 15.3 cm, and total
length including two spherical end caps of 48.3 cm. The
tanks each have a capacity of two gallons. PZT sensors
affixed to the surface of each tank record the vibrational
response to the white noise signal presented to the tank
surface via a PZT actuator. Fluid fill levels are indepen-
dently calculated by means of both a flow totalizer and
PVT methods. Water is used as the propellant simulant
in all tests.

Results: The fundamental resonance at representative
fill fractions with a settled fluid under 1-g lab testing is
illustrated in Fig. 1. The structure’s effective mass in-
creases with fluid load, resulting in a continuous decrease
in the frequencies of tank resonances.

In the reduced gravity of parabolic flight, fluid insta-
bilities cause the fluid to slosh resulting in continual vari-
ation of the contact area between fluid and tank wall. As
a result, the frequencies of resonant modes drift around
their means with periods on the order of the average slosh
period of 1-2 seconds. To compensate for this effect, we

average over multiple 1.0 second FRF data windows. A
set of sample averaged FRFs is shown in Fig. 2.
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Figure 1: 1-g Frequency Response Functions recorded for settled fluid with

tank in vertical position. Inset shows blow-up of fundamental mode and demon-

strates the decrease of mode frequency with increasing fill-fraction.
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Figure 2: 0-g Frequency Response Functions. Inset shows blow-up of funda-

mental mode and demonstrates the decrease of mode frequency with increasing

fill-fraction.

The resolution of the EMA technique in discriminat-
ing between fill fraction can be estimated from the sum-
mary data presented in Fig. 3.
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Figure 3: Variation of representative mode frequencies with fill fraction for

both 1-g settled fluid configurations and 0-g slosh-averaged fluid. Error bars on

the flight data represent standard error in the data, while error bars for the 1-g

data are not depicted, but would be smaller than the data symbol.

The flight data in Fig. 3 have a typical frequency
resolution that is better than 5% across fill fractions be-
tween 10% and 70%. Nodes in the tank structure near
tank weld seams correlate well with a loss of resolution
between fill-fractions.
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GROUND DATA SYSTEMS FOR REAL TIME LUNAR SCIENCE.  M. C. Deans1, T. Smith2, D. S. Lees2, E. 
B. Scharff3, T. E. Cohen3, D. S. S. Lim4, 1NASA Ames Research Center, Moffett Field, CA, USA, mat-
thew.deans@nasa.gov, 2Carnegie Mellon Silicon Valley, Moffett Field, CA, USA, 3Stinger-Ghaffarian Technolo-
gies, Moffett Field, CA, USA, 4SETI Institute, Mountain View, CA, USA. 
 

Introduction:  We designed, developed, and tested 
science operations support software using our Explora-
tion Ground Data System (xGDS) framework[1] for 
the Regolith and Environmental Science, Oxygen and 
Lunar Volatiles Exploration (RESOLVE)[2] field test, 
culminating in the test on Mauna Kea in July of 2012.  

Background: xGDS has been developed under the 
Human Robotic Systems (HRS) project[3].  The archi-
tecture and core system are designed to be flexible to 
scientific field work and mission operations, covering 
planning, operations, and post-mission data analysis.  
Instances of xGDS have been tailored to the K10 rover 
[4], piloted submersibles [5,6] and surface vehicles[7], 
and now RESOLVE.  These represent analogs to hu-
man and robotic planetary missions, with different 
constraints on objectives, operations concepts, comms, 
a priori knowledge, goals, etc. 

System Architecture: xGDS core systems include 
a map content management system, a traverse planner, 
plots, a data product archive, a console log and search 
tools.  Our system is designed to be flexible, modular 
and based on open standards.  Supporting multiple 
different field tests has helped our team to keep the 
software modular since any one deployment may use a 
distinct subset of the core capabilities. 

We built xGDS using Python and the Django web 
framework backed by a MySQL database. xGDS was 
designed to be accessed primarily through web brows-
ers and Google Earth, so that we could focus on data 
management and dynamic content while leveraging 
familiar user interfaces.  This minimizes our develop-
ment time and users’ training time. 

The RESOLVE project included 5 operations cen-
ters and about 100 simultaneous users.  Rover and pay-
load telemetry used two different protocols and infor-
mation was integrated in xGDS on the ground. xGDS 
was required to produce real time plots and maps of 
data that would be immediately visible to any users. 

xGDS Tools for RESOLVE: We deployed several 
xGDS tools for the RESOLVE mission. 

Planning: The xGDS traverse planner uses the 
Google Earth web plug-in embedded in a web page to 
enable map-based editing of traverse plans with other 
plan parameters, such as distances, time estimates, 
range and bearing reflected in the same page.   

Monitoring: We added real-time 2D plotting and 
grid-based mapping to xGDS specifically for 
RESOLVE.  These tools generate plots of 1-D quanti-
ties to show temporal variations and correlations in 

measurements vs. time, and 2-D heatmaps of meas-
urements vs. vehicle location (Fig. 1) to aid in localiz-
ing geographic points of interest for prospecting.  

Console Log: Every console operator kept their 
own time-tagged log by entering free-form text and 
twitter-style hashtags. All consoles could browse en-
tries chronologically or search by text or hashtag to 
find entries related to events, observations, etc. 

Archive: xGDS supported browsing or search of 
discrete data products, such as images, in a paginated 
chronological list and in a map containing georefer-
enced links in context with satellite images, plans, 
rover tracks, and any other map content available. 

Assessment: We also established a means of as-
sessing the utility of our software for the operations 
team, primarily in the Ames science back room.  The 
approach leveraged the metrics developed and used at 
PLRP[4] over several field seasons. 

Results: Field testing showed that real time science 
is feasible with fast diagnostics (esp. band depth plots) 
and visualizations, that xGDS tools and capabilities are 
valuable assets for a science team to make decisions 
quickly, and revealed improvements we can make to 
the system for a flight mission. 

References: [1] M. Deans, et al. (2011) LPSC 
XLII #2765 [2] B. Larson et al. (2012) GLEX-
2012.11.1.8 [3] R. O. Ambrose (2012) ICAPS [4] T. 
Fong et al. (2009) IAC-09.A5.2.-B3.6.7 [5] D. Lim, et 
al. (2011) GSA Special Papers 2011, v.483, p.85-115 
[6] A. Abercromby, et al. (2012) Acta Astronautica [7] 
S. Lee, et al. (2012) Acta Astronautica  
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Fig 2. xGDS raster map of Neutron Spectrometer data. 
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THE LUNAR ATMOSPHERE AND DUST ENVIRONMENT EXPLORER (LADEE):  T-MINUS ONE 
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Introduction: 40 years have passed since the last 

Apollo missions investigated the mysteries of the lunar 
atmosphere and the question of levitated lunar dust. 
The most important questions remain: what is the 
composition, structure and variability of the tenuous 
lunar exosphere?  What are its origins, transport 
mechanisms, and loss processes? Is lofted lunar dust 
the cause of the Surveyor and astronaut horizon glow 
observations?  How does such levitated dust arise and 
move, what is its density, and what is its ultimate fate?   

Past National Research Council decadal surveys, 
and the “Scientific Context for Exploration of the 
Moon” (SCEM) report have identified studies of the 
pristine state of the lunar atmosphere and dust envi-
ronment as among the leading priorities for future lu-
nar science missions. These measurements have be-
come particularly important since recent observations 
by the Lunar Crater Observation and Sensing Satellite 
(LCROSS) mission point to significant water and other 
volatiles sequestered within polar lunar cold traps.  
Moreover, Chandrayaan M3/EPOXI/Cassini VIMS 
identifications of H2O and OH on surface regolith 
grains hint at variability in time and space; these spe-
cies are likely present in the exosphere, and thus con-
stitute a source for the cold traps. 

The LADEE Mission: The Lunar Atmosphere and 
Dust Environment Explorer (LADEE) is currently in 
integration and test, aiming for launch in August of 
2013. LADEE will determine the composition of the 
lunar atmosphere and investigate the processes that 
control its distribution and variability, including 
sources, sinks, and surface interactions. LADEE will 
also determine whether dust is present in the lunar exo-
sphere, and reveal its sources and variability. These 
investigations are relevant to our understanding of sur-
face boundary exospheres and dust processes occurring 
at many objects throughout the solar system, address 
questions regarding the origin and evolution of lunar 
volatiles, and have potential implications for future 
exploration activities.  

The LADEE Payload: LADEE employs a high 
heritage instrument payload: a Neutral Mass Spec-
trometer (NMS) from Goddard Space Flight Center, an 
Ultraviolet/Visible Spectrometer (UVS) from Ames 
Rsearch Center, and a dust detection experiment 

(LDEX) from the University of Colorado/LASP.  It 
will also carry the Lunar Laser Communications Dem-
onstration (LLCD) as a technology demonstration. The 
LLCD is funded by the Space Operations Mission Di-
rectorate (SOMD), managed by GSFC, and built by the 
MIT Lincoln Labs. 

The LADEE NMS instrument for LADEE draws 
its design from the MSL/SAM, CONTOUR and 
MAVEN projects, and covers the 2-150 Dalton mass 
range.  The UVS instrument is a next-generation, high-
reliability redesign of the LCROSS UV-Vis spec-
trometer, spanning 250-800 nm wavelength, with high 
(<1 nm) spectral resolution. UVS will also perform 
dust occultation measurements via a solar viewer optic.  
LDEX senses dust impacts in situ, at LADEE orbital 
altitudes, with a particle size range of between 100 nm 
and 5 µm. Dust particle impacts on a large spherical 
target surface create electron and ion pairs. The latter 
are focused and accelerated in an electric field and 
detected at a microchannel plate.  The overall LADEE 
payload configuration is shown below. 

Status of LADEE Mission:  LADEE is currently 
in I&T, with the immiment integration of the first two 
payload instruments, UVS and LDEX.  Integrated ob-
servatory testing will continue until LADEE is shipped 
to Wallops for launch processing in June 2013.  The 
first launch opportunity is currently August 10, 2013. 
 

 
Fig. 1.  LADEE in integration and test within its clean tent. 
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DREAM CENTER FOR LUNAR SCIENCE: A THREE YEAR SUMMARY REPORT. W. M. Farrell1,3, R. M. 
Killen1,3, and G. T. Delory2,3, 1Solar System Exploration Division, NASA/Goddard Space Flight Center, Greenbelt, 
MD, 2Space Science Laboratory, University of California, Berkeley, CA, 3NASA’s Lunar Science Institute, 
NASA/Ames Research Center, Moffett Field, CA.  

 
 

 Abstract. In early 2009, the Dynamic Response 
of the Environment At the Moon (DREAM) lunar sci-
ence center became a supporting team of  NASA's Lu-
nar Science Institute specifically to study the solar-
lunar connection and understand the response of the 
lunar plasma, exosphere, dust,  and near-surface envi-
ronments to solar variations. DREAM especially em-
phasizes the effect extreme events like solar storms and 
impacts have on the plasma-surface-gas dynamical 
system.  
 One of the center's hallmark contribution is the 
solar storm/lunar atmosphere modeling (SSLAM) 
study that cross-integrated a large number of the cen-
ter's models to determine the effect a strong solar storm 
has at the Moon. The results from this intramural event 
will be described herein.  
 A number of other key studies were performed, 
including a unique ground-based observation of the 
LCROSS impact-generated sodium plume, exo-
atmosphere modeling studies, and focused studies on 
the formation and distribution of lunar water. The team 
is supporting ARTEMIS lunar plasma interaction stud-
ies via modeling/data validation efforts, especially ex-
amining ion reflection from magnetic anomalies and 
pick-up ions from the Moon.  
 Special emphasis has been on simulating the 
ambipolar-driven inflow of solar wind into polar cra-
ters, and the sputtering effect on any near-surface vola-
tiles. DREAM models predict that this sputtering and 
impact vaporization may effectively ‘dry out’ the upper 
surface – not by submlimation but by the more-violent 
space weathering process.  
 The team has also produced a set of works in 
support of the 2013 LADEE mission. Light scattering 
models have been developed for predicting the horizon 
glow expected from high altitude dust in support of the 
UVS and LDEX instruments. Exospheric models have 
been developed to estimate the atomic and molecular 
gas UV florescence values and to bound expected UVS 
measurements.  
 DREAM successfully advanced the understand-
ing of the solar-driven lunar environment from the 
Apollo era to the Altair era and has direct applications 
to other exposed rocky bodies in our new target-
independent, flexible era of exploration.       

 

 
The Solar-Lunar Connection studies by DREAM. Solar ener-
gy and matter stimulate the lunar surface, resulting in an exo-
sphere, exo-ionosphere, lifted dust, and plasma flow layers.  

 
A model of the enhancment expected of the sodium exo-
sphere during the passage of a dense cool CME driver gas. 
Models like this were key output from the SSLAM study.  

 
DREAM supports E/PO objective, including Maryland Day 
activities shown here.  
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Introduction:  Strong evidence for a lunar dust ex-

osphere appeared during Apollo-era optical observa-

tions (see below). Additional confirmation has been 

much anticipated as a baseline for the upcoming 

LADEE mission
[1]

, but so far,  no confident detection 

of a dust exosphere has been made since that time. 

Dust is detected optically via single-scattering of sun-

light, and would appear from orbit as faint horizon 

glow (HG) near the limb, a consequence of its small 

expected scale height (5-10 km). At near-UV/VIS wa-

velengths, HG would also be superimposed on the co-

ronal-zodiacal light (CZL) background, which brigh-

tens rapidly at small solar elongation angle
[2]

 and com-

plicates the measurements. Line-of-sight (LOS) dust 

optical depth is expected to be very small (< 10
-5

) with 

dust concentration < 0.01 cm
-3

 at a few km altitude, 

although these numbers are sensitive to grain size and 

illumination altitude. We summarize the search results 

that have so far been reported, and use these to esti-

mate dust concentration and upper limits. 

Searches for High Altitude Horizon Glow: 

  Apollo Era.  Excess limb brightness was observed 

in Apollo 15 coronal photographs, and analyzed in 

terms of dust at altitudes of a few km or higher
[3],[4]

.  

The notion of a measurable dust exosphere was further 

supported by Apollo 17 astronaut observations
[5]

 of 

horizon glow with apparent radial crepuscular rays, 

dubbed “streamers”, as well as measurements of sky 

brightness by uplooking photometers on the Lunokhod-

2 lander, acquired shortly after surface sunset
[6]

. 

Clementine Star Trackers.  Portions of 25 orbits 

were allocated to limb searches for horizon glow using 

the Clementine navigational star trackers
[7]

. Four of the 

image sequences were made at small solar elongation 

angles and free of earthshine at the limb, which lessens 

the chance of stray light contamination. No obvious 

HG appears in these data sets above the detection limit 

of 2-3 x 10
-12

 BSun (with BSun the mean solar disk 

brightness), although this analysis is still in progress. 

Limb Searches by LRO Instruments. Dust searches 

are being carried out at far-UV wavelengths by the 

LRO Lyman Alpha Mapping Project, LAMP
[8]

 and 

also at VIS wavelengths by the LROC Narrow Angle 

Camera (NAC)
[9]

. Dust scattering has not yet been de-

tected, although LAMP established firm upper limits at 

the times and locations of the measurements. Because 

the NAC was designed for imaging of the sunlit sur-

face, it is rather insensitive to low brightness scenes
[10]

.  

Dust Estimates:  The figure compares the resulting 

LOS dust estimates and observational upper limits for a 

tangential viewing geometry. Brightness was converted 

to LOS concentration using Mie scattering theory and a 

broadband model for lunar dust optical constants
[11]

, 

assuming a narrow size distribution of dust grains, with 

rpeak= 0.10 m. Tangent height is 5-10 km, but that is 

not tightly constrained in this comparison. The uplook-

ing Lunokhod measurements are converted to limb 

viewing geometry using a dust distribution model with 

scale height of 5 km. Predicted LADEE UVS detection 

limits (at 400 nm) are shown for comparison. 

Were the Apollo-era observations in error? Upcom-

ing measurements should provide needed aswers.  
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From CMEs to Earth/Lunar Radiation Dosages: a First in Heliospheric End-to-End Coupling.  M. J. Gorby1, 
N. A. Schwadron1, J. A. Linker2, H. E. Spence1, L. W. Townsend3, F. A. Cucinotta4, and J. K. Wilson1, 1University 
of New Hampshire, 2Predictive Science, Inc., 3University of Tennessee, 4National Aeronautics and Space Admin-
istration 
 
    We have taken fundamental, new steps in coupling 
MHD simulations to our fully 3D Lagrangian code 
allowing us to accurately model CMEs and SEP 
events, and to attain flux and dosage rates out to 1AU.  
The Earth-Moon-Mars Radiation Environment Module 
(EMMREM) is a collection of tools based on the out-
put of the Energetic Particle Radiation Environment 
Model (EPREM) [1]. We feed resulting flux from 
EPREM into the Baryon Transport (BRYNTRYN) 
code developed at NASA to calculate dose rates and 
accumulated dosages. 
    Recently we have coupled EPREM to Magnetohy-
drodynamics Around a Sphere (MAS) developed at 
Predictive Science Inc..  The MAS / EPREM couplings 
allow us to move past a constant solar wind solution 
and to realistically model the impact of evolving 
CMEs on the acceleration of SEPs.  Results from both 
a weak and severe SEP event will be presented, along 
with a comparison of the results with CraTer and Goes 
data. Validation of the coupling and the implications 
for predicting dose rates at 1AU will also be discussed. 
    Predicting radiation dosages for humans and instru-
ments is vitally important for both current and any 
future Lunar missions.  This critical step in the evolu-
tion of code coupling enables us to explore, discover, 
and ultimately predict connections between SEP events 
and their effects on the space environment through the 
inner heliosphere. 
 
    [1] Schwadron, N. A. and A. L. Townsend, et al. 
(2010) Space Weather Journal, Vol. 8, S00E02 
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Introduction:  The Diviner Lunar Radiometer is 

the first multispectral thermal instrument to globally 

map the surface of the Moon.  After over three years in 

operation, this unprecedented dataset has revealed the 

extreme nature of the Moon’s thermal environment, 

thermophysical properties, and surface composition.   

Diviner Lunar Radiometer:  The Diviner Lunar 

Radiometer is a nine-channel, pushbroom mapping 

radiometer that was launched onboard the Lunar Re-

connaissance Orbiter in June 2009.  Diviner measures 

broadband reflected solar radiation with two channels, 

and emitted thermal infrared radiation with seven infra-

red channels [1].  The two solar channels, which both 

span 0.3 to 3 µm, are used to characterize the photo-

metric properties of the lunar surface.  The three short-

est wavelength thermal infrared channels near 8 µm 

were specifically designed to characterize the mid-

infrared “Christiansen Feature” emissivity maximum, 

which is sensitive to silicate composition [2].  Divin-

er’s longer wavelength thermal infrared channels span 

the mid- to far-infrared between 13 and 400 µm and are 

used to characterize the lunar thermal environment and 

thermophysical properties [3,4]. 

In more than three years of operations, Diviner has 

now acquired observations over six complete diurnal 

cycles and three complete seasonal cycles.  Diviner 

daytime and nighttime observations (12 hour time bins) 

have essentially global coverage, and more than 75% 

of the surface has been measured with at least 6 differ-

ent local times. The spatial resolution during the map-

ping orbit was ~200 m and now ranges from 150 m to 

1300 m in the current elliptical orbit. Calibrated Divin-

er data and global maps of visible brightness tempera-

ture, bolometric temperature, rock abundance, 

nighttime soil temperature, and silicate mineralogy are 

available through the PDS Geosciences Node [5,6]. 

Thermal Environment: The lunar thermal envi-

ronment is complex and extreme.  Surface temperatures 

in equatorial regions such as the Apollo landing sites 

are close to 400K at noon and less than 100K at night, 

with annual average temperatures at depth of approxi-

mately 250K [7].  Diviner has mapped the poles at 

diurnal and seasonal temperature extremes and the data 

show that large areas within permanently shadowed 

craters have annual average temperature less than 50K 

[3].  The coldest multiply-shadowed polar craters have 

temperatures low enough to put constraints on lunar 

heat flow [8].  Diviner data have also been used to es-

timate the thermal properties of non-polar permanently 

shadowed regions [9]. 

Thermophysical Properties:  Diviner is directly 

sensitive to the thermophysical properties of the lunar 

surface including nighttime soil temperature, rock 

abundance, and surface roughness.  Although much of 

the Moon has uniform regolith thermal properties, 

some fresh impact craters cool to lower than normal 

temperatures.  Hundreds of these “cold spots” have 

been observed distributed across all lunar terrain types 

and may indicate a fluffier surface layer [4].  By mod-

eling the higher thermal inertia of rocks, which stay 

warmer than lunar soil at night we have demonstrated 

the ability to quantify the areal rock fraction [4].  Di-

viner is also sensitive to surface roughness on the mm 

scale and the multispectral nature of the dataset has 

been used to model RMS surface slopes and show that 

on these scales the maria are generally rougher than the 

highlands (Figure 4). 

Compositional Properties:  Diviner was designed 

to characterize the Christiansen Feature (CF) and con-

strain lunar silicate mineralogy [2].  The CF is tied to 

the fundamental SiO2 vibrational band and shifts to 

shorter wavelengths with increasing silicate polymeri-

zation.  Leveraging the relatively restricted geochemis-

try of the lunar surface, we have used Diviner observa-

tions of Apollo sites, and laboratory measurements of 

Apollo soils to infer some geochemical abundances 

(e.g. FeO) [10].  Diviner is sensitive to the presence of 

high silica minerals such as quartz or alkali feldspar 

and has been used to localize these minerals on the 

lunar surface [11,2].  Diviner data also provided an 

important constraint on plagioclase abundance that can 

be used to infer the amount of country rock mixing [2] 

and when combined with near-infrared datasets can 

reveal more than either dataset individually. 
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Introduction:  The  Regolith and Environment 

Science and Oxygen & Lunar Volatile Extraction 
(RESOLVE) project aims to demonstrate the utility of 
in situ resource utilization (ISRU).   ISRU is a way to 
rebalance the economics of spaceflight by reducing or 
eliminating materials that must be brought up from 
Earth and placed on the surface of the Moon (or Mars) 
for human use.  RESOLVE is developing a rover-
borne payload that (1) can locate near subsurface vola-
tiles, (2) excavate and analyze samples of the volatile-
bearing regolith, and (3) demonstrate the form, extrac-
tability and usefulness of the materials.  Such investi-
gations are important not only for ISRU but are also 
critically relevant for understanding the scientific na-
ture of these intriguing lunar polar volatile deposits. 

Temperature models and orbital data suggest near 
surface volatile concentrations may exist at briefly lit 
lunar polar locations outside persistently shadowed 
regions.  A lunar rover could be remotely operated at 
some of these locations for the 7-10 days of expected 
sunlight at relatively low cost.  Such a mission is 
unique and requires a new concept of operations.  Due 
to the limited operational time available, both science 
and rover operations decisions must be made in real 
time, requiring immediate situational awareness, data 
analysis, and decision support tools. 

 RESOLVE Field Test: In July 2012 the 
RESOLVE project conducted a full-scale field demon-
stration for testing of both technologies required to 
enable this mission and concepts of operations. With 
help from the Pacific International Space Center for 
Exploration Systems (PISCES), a lunar rover prototype 
(provided by the Canadian Space Agency) was 
equipped with a suite of prospecting instruments (neu-
tron spectrometer and near-infrared spectrometer) and 
volatile characterization instruments (drill and auger 
for subsurface sample collection plus the ISRU-
specific instruments LAVA (Lunar Advanced Volatile 
Analysis) and OVEN (Oxygen and Volatile Extraction 
Node)).  The rover was operated at a lunar analog site 
on the upper slopes of Mauna Kea, Hawaii with a mis-
sion operations center co-located in Hawaii, rover 
navigation center in Canada, and a Science Backroom 
at NASA Ames Research Center in California. 

Real-time Science Operations:  In Hawaii, several 
console positions within the flight mission operations 
hierarchy reflected the need for timely science deci-
sion-making including an overall Science Lead, a 

Real-Time Science Lead, and Neutron and Near-
infrared Spectrometer Leads.  Supporting these console 
positions was the Science Backroom that was tasked 
with monitoring the data, conducting in-depth data 
analysis to support mission decision-making, and con-
ducting any rover traverse replanning as required (Fig-
ure 1).   

Strict communications protocols were invoked to 
ensure efficient and effective communication in real-
time.  For example, the Science Backroom at NASA 
Ames conversed with the two Spectrometer Leads (lo-
cated in the flight control center in Hawaii) on a dedi-
cated voice loop, Spectrometer Leads and the Real-
Time Science position conversed with the overall Sci-
ence Lead, and the Science Lead relayed all science-
related operational information to the Flight Director 
responsible for the overall mission.  RESOLVE also 
utilized customized exploration ground data system 
software (xGDS) to monitor navigation telemetry, 
spectrometer data feeds, etc. in real-time to support 
mission decision-making. 

Conclusions:  The envisoned lunar mission re-
quires highly efficient, real time, remotely operated 
rover operations to enable low cost, scientifically rele-
vant exploration of the distribution and nature of lunar 
polar volatiles.  The RESOLVE field demonstration 
illustrated the need for science operations personnel in 
constant communictions with the flight mission opera-
tors and the Science Backroom to provide immediate 
and continual science support and validation through-
out the mission.  The RESOLVE field campaign dem-
onstrated that this novel methodology of real-time sci-
ence operations is possible and applicable to providing 
important new insights regarding lunar polar volatiles 
for both science and exploration.  

 
Figure 1.  RESOLVE Science Backroom at NASA 
Ames Research Center during the July 2012 campaign. 
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Introduction: Numerical simulation of radar 

sounder echoes from Moon cratered surface and sub-

surface, and inversion of the lunar subsurface, e.g. lay-

ering thickness and dielectric properties, are developed. 

Subsurface detection is utilized based on the nadir ech-

oes time delay and intensity difference from the media 

interfaces. According to Moon surface feature, the cra-

tered topography is numerically generated, and the 

triangulated network is employed to make digital ele-

vations of the whole surface. Based on the Kirchhoff 

approximation of rough surface scattering and the ray 

tracing of geometric optics, radar range echoes at 5~50 

MHz from lunar layering structure is numerically simu-

lated. Then, inversions of the regolith layer thickness 

and dielectric permittivities are designed.  

Scattering from Layered Media: Scattering from 

layering media is derived using the Stratton-Chu inte-

gral formula in the KA method [1-4].  

In  numerical calculation, the surface is divided into 

discrete meshes. The surface topography at each node 

of the grid with given mesh dimension (resolution of 

original DEM) are created. 

Summing up all scattering fields from those meshes, 

whose ranges fall in the range bin 
nr  (the n-th range 

bin), the total scattered field received from the lunar 

surface (sur) sur ( )nrE  and subsurface (sub) sub ( )nrE  

received by a radar sounder is then   

sur sub( ) ( ) ( )n n nr r r E E E                       (1) 

To make enough range resolution and transmitted 

energy, linear frequency modulation (LFM) pulse is 

usually employed as the transmission signal [4,5]. 

Simulations of Radar Range Echoes: Based on statis-

tics of Moon craters, a DEM of a Moon cratered sur-

face is simulated using a Monte-Carlo method.  

We selected a bandwidth of 5~50 MHz to design the 

most feasible frequency for probing lunar subsurface 

with good resolution and penetration depth.   

In simulation of 5, 20 and 50 MHz, the whole scene 

is 3525 km
2
. Due to computation limitation, the illu-

mination area for the 50 MHz case is reduced. A flat 

subsurface is assumed to be at 200 m depth. 

Simulations of radar range echoes at 5, 20 and 50 

MHz are presented for two cases of basalt 

1=7.1(1+i0.015) and water-ice 1=3.15(1+i0.005). It 

can be seen from comparison between the cases of bas-

alt and water-ice that due to the complex dielectric 

constant of basalt being larger than that of water-ice, 

attenuation through the basalt layer is larger. 

  Also, due to the different dielectric constants of basalt 

and water-ice in the layer 1, radar ranges for the cases 

of basalt and water-ice look different because of range 

change with 1/1  . 

    As frequency increases from 5 MHz to 50 MHz, the 

echoes from the top surface become stronger and those 

from the subsurface become much weaker through at-

tenuation. At 50MHz, scattering and reflection from 

ranges larger than the subsurface almost cannot be seen. 

As a real example, a lunar area of the crater taking 

from the DTM (digital topography model) data is given.  

Suppose that the radar at the altitude 100 km is fly-

ing across  a flat subsurface located at -1850 m. Thus, 

along the flight, a cross profile shows the layer thick-

ness from 26 m to 486 m. The images of radar range 

echoes at 5, 20 and 50MHz are simulated  for basalt 1 

and  water-ice 1, respectively.  

This simulation program provides a tool for analysis 

of radar echoes, and inversions of the layer structures, 

such as the layer thickness and dielectric properties of 

the media [6,7]. 

Inversion of Layer Thickness: The layer thickness d1, 

and dielectric properties of two media, 1, 2, from ra-

dar range echoes image are inverted.  

Let the radar power I0 be incident upon the top sur-

face. Then, the radar range echo from top surface can 

be measured. Comparing this echo with the reflected 

echo from plat surface based on scattering theory of 

rough surface, the real part of ε1 can be first determined. 

Then, the radar range can be used to determine the 

layer depth d1. In radar ecoes, two neighboring loca-

tions, S and S, are specifically chosen, and the height 

difference between these two locations has been  the 

known . The subsurface underlying below these loca-

tions is assumed as flat. Comparing these two echoes, 

the imaginary part of 1  and 2 can be inverted.  

References:  [1] Phillips R J, et al. (1973), Apollo 

Technical Report, NASA.[2] Porcello L J et al. (1974), 

Proceeding of the IEEE, 62: 769788. [3] Ono T, Oya H. 

(2000), Earth Planets Space, 52: 629637. [4]  Kobayashi T 

et al. (2002), Earth Planets Space, 54: 983991. [5] Nouvel 

J F et al. (2004), Radio Science 39: RS1013. [6] Jiang J S 

and Jin Y Q (2011). Selected Papers on Microwave Lunar 

Exploration in Chinese Cheng E-1 Project, Beijing: Science 

Press 2011. [7] Fa W and Jin Y Q (2009). Science in China 

(F), 52: 559574. 

  

18 LPI Contribution No. 1685
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Introduction:  In the Lunar Reconnaissance Orbiter 
(LRO) extended science mission (ESM), the LRO 
Cameras (LROC) will continue exploring the Moon 
using targeted Narrow Angle Camera (NAC) observa-
tions that optimize opportunities afforded by the ESM 
orbit and Wide Angle Camera (WAC) coverage that 
will continue to improve knowledge of lunar photome-
try, surface composition, and mineralogy. 

LROC ESM Themes: During the ESM, LROC will 
continue to fill in gaps in NAC coverage from the pri-
mary mission, and will focus on observations that im-
prove coverage of (1) south polar targets, (2) tectonic 
features such as lobate scarps, graben, etc., (3) impact-
related features, including impact melt deposits and 
processes, uplift structures, and degradation processes, 
and (4) volcanic features, including the identification 
and characterization of small, previously undetected 
structures. The 30×200 km elliptical orbit with south 
polar periselene will enable the NACs to obtain high 
spatial resolution observations of southern hemisphere 
and south polar targets while obtaining broad areal cov-
erage of northern hemisphere targets.  

Polar Illumination. Using LROC images, regions at 
the poles have been identified that are illuminated for 
nearly 95% of the year [1]. Lighting conditions vary 
from year to year as the lunar orbit precesses with an 
18.6 year period. Further LROC WAC observations 
will improve illumination maps and the ability to pre-
dict lighting conditions for future polar missions. In-
creased NAC coverage will enable meter scale mapping 
of illuminated terrain, which will support planning and 
operations of future polar landers and rovers. Targeting 
LROC imaging of permanently shadowed regions 
(PSR) use Diviner models and LOLA topography to 
determine when secondary lighting is optimal in re-
gions that receive no direct sunlight. The PSR images 
provide data on albedo and regolith properties. 

Tectonic Features. The discovery of young, widely 
distributed tectonic features during from LROC images 
changed the existing view of the Moon as a geological-
ly inactive body [2]. Our understanding of the current 
stress state of the crust and the age of the tectonic fea-
tures, however, is incomplete because the total popula-
tion of young structures is not yet known. A goal of the 
ESM is to determine the global distribution of the con-
tractional lobate scarps and the extensional small-scale 
graben. Topographic data is critical in analyzing the 
tectonic landforms, characterizing morphometry in de-
tail to constrain the geometry of faults, and modeling 
the kinematics and mechanics of faulting. Another goal 

of the ESM is to compare Apollo Pan photos and 
LROC images from throughout the mission to deter-
mine if any faults are currently active. The goal of these 
efforts is to better understand: (1) the spatial distribu-
tion, distribution of orientations, and morphometry of 
tectonic landforms; (2) the evolution of tectonic stresses 
with time; and (3) the origin of tectonic stresses and 
their relationship to the origin and thermal evolution of 
the Moon, and comparison to other terrestrial planets. 

Impact craters and phenomena. New NAC stereo 
images, derived DEMs and the improved WAC-derived 
GLD100 [3] calibrate models for impact melt volume 
that is produced, ejected, and retained in crater for-
mation, and test theoretical calculations against crater 
size, terrain, impact angle, and impactor properties. 
Properly calibrated cratering models are important to 
cratering studies on other planetary bodies, such as 
Vesta, Mercury, and Mars. The photometry and compo-
sition of impact products currently are not well charac-
terized. Impact products may include flat-lying ponds 
and dark stringers that extend over the crater rim, but it 
is not clear if these materials were emplaced as melt or 
granular deposits. Impact products have a wide range in 
reflectance that may represent different degrees of melt-
ing and glass content. New photometric analysis using 
repeat NAC imaging in various lighting conditions will 
provide the needed phase function for high-priority 
targets. Repeat imaging will also be used to investigate 
the recent impact flux. 

Volcanic Features. LROC images will be used to 
investigate emplacement mechanisms by characterizing 
composition, morphology, slope, flow features, and 
volumes. These data provide the basis for new investi-
gations and discoveries of volcanic centers [e.g., 4], 
including unusual features such as the enigmatic vol-
canic caldera known as “Ina-D” [5], which is among the 
youngest volcanic features on the Moon. In the ESM, 
LROC will continue to search for and image similar 
young volcanic features, with NAC image resolution to 
better understand the distribution of the Moon’s most 
recent volcanic activity. NAC observations of volcanic 
features, especially imaging to obtain geometric stereo 
pairs, will address the conditions of formation. Young 
volcanic features will be located and characterized to 
better understand the nature and distribution of the 
Moon’s most recent volcanic activity. 

References: [1] Speyerer & Robinson (2011) LPSC 42, 
#2540. [2] Watters, et al. (2012) Nat. Geosci. [3] Scholten et 
al. (2012) JGR Papers in Press. [4] Spudis et al. (2011) JGR 
116. [5] Robinson et al. (2010) LPSC 41, #2592. 
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Introduction:  The South Pole-Aitken basin (SPA)  

is the largest of the giant impact basins in the inner So-
lar System, and its location on Earth’s Moon makes it 
the most accessible. Exploration of SPA through direct 
collection and analysis of representative materials ad-
dresses issues as fundamental as the characteristics of 
the chemical reservoir from which the Moon originated, 
early differentiation and production of crust and devel-
opment of global asymmetry, relationships between 
magmatic activity and internal thermal evolution, and 
effects of giant impact events on the terrestrial planets.  

Owing to its great size and superposition relation-
ships with other lunar impact basins, SPA is the oldest 
and as such anchors the lunar chronology. Moreover, 
numerous large impact craters and basins are contained 
within it such that materials (rocks) of the SPA basin 
contain a record of the early impact chronology, one 
less likely to have been affected by the large, late near-
side basins (e.g., Imbrium). Understanding the early 
basin chronology is key to deciphering the sequence 
and effects of early giant impact bombardment of the 
inner Solar System. That record exists on the Moon, 
and materials of the SPA basin will allow us to read 
that record. Knowledge of the early bombardment his-
tory will test – and may reshape – a key paradigm relat-
ing to early Solar System evolution. Did the planets 
form with the alignment of today, or was there a major 
reorientation of the giant planets that led to destabiliza-
tion of asteroid orbits, and a cataclysmic bombardment 
of the inner Solar System hundreds of millions of years 
after accretion of the planets? Implications include un-
derstanding environments for early life-supporting 
habitats on Earth and Mars, and relationships to new 
observations of extra-solar planetary systems. 

Scientific Priority:  The 2003 NRC Decadal Sur-
vey listed sample return from SPA as among the high-
est priorities for Solar System science. This priority was 
reaffirmed in 2007 by the NRC (SCEM Rpt.) and again 
in the 2012 Decadal Survey. The high priority stems 
largely from the idea that the ‘cataclysm’ can be tested 
by determining ages of impact-melt from an SPA sam-
ple that would include rock materials produced or af-
fected by the impact event. SPA is far distant from the 
nearside Apollo and Luna landing sites where all of the 
samples of known origin were collected. Materials ex-
cavated and reset by late nearside basin impacts, espe-
cially Imbrium, dominate those samples. A sample 
from the interior of SPA will be dominated by materials 
formed in the SPA event, with contributions from 

smaller basins and large craters that occur within it, 
thus providing a fresh and independent record of ages 
associated with the early parts of the lunar heavy bom-
bardment record.    

Sample return and investigation of the diversity and 
distribution of materials within SPA will address other 
issues of high science priority as well. Analysis of ma-
terials derived from the deep crust and upper mantle 
will enable new tests of models for lunar differentia-
tion, especially as linked to GRAIL results. Knowing 
the age and characteristics of the impact that produced 
SPA basin will help illuminate the basin-impact form-
ing process and the role it played in modifying early 
planetary crusts. Volcanic rocks also occur within SPA, 
some of which are ancient volcanics covered by later 
crater deposits. Knowing their age and composition is 
key to the thermal history of the Moon, the composition 
of the deep interior, and relationships between basin 
formation and later volcanism. Because of impact-
ejecta redistribution, fragments of these rocks will be 
found mixed in the regolith at most locations within the 
SPA interior. 

MoonRise Approach: Determining the age of the 
SPA Basin is a primary goal, but selecting an area that 
will allow determination of the ages of other large im-
pact events (i.e., more recent basins or craters within 
SPA) will provide additional dates to anchor the chro-
nology. The MoonRise sampling strategy leverages the 
“natural” sampling mechanism afforded by the impact 
cratering process, which delivers diverse rock samples 
from the surroundings to the regolith where they can be 
accessed from a surface lander at a single point. Rego-
lith samples from Apollo missions provide ample statis-
tics on the rock content, diversity, and representative-
ness relative to local and regional geology that can be 
expected in a given location. Recent remote sensing 
missions provide sufficient geologic and topographic 
information to enable a sound site geology determina-
tion as well as landing-site safety assessment. 

The MoonRise approach leverages the small rock 
content of lunar regolith by scooping and sieving a suf-
ficient volume of regolith to collect >1 kg of rock 
fragments, which are needed for age determinations. 
Using modern, state-of-the-art analytical techniques, 
capabilities exist now to analyze very small quantities 
of rock samples and determine not only their chemical 
and mineral compositions, but also their ages and petro-
logic history. Larger fragments can even be split, and 
portions of the samples retained for future analyses. 
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Introduction: Unmanned interplanetary probe Lu-

na 17 was launched from the Earth towards the Moon 

on 10 November 1970 and entered the lunar orbit on 

15 November 1970. The spacecraft successfully landed 

on the Moon 17 November 1970 and Lunokhod-1 de-

scended to the lunar surface. During the operation 

Lunokhod-1 sent to the Earth 211 lunar panoramas and 

25 thousands images [1, 2].  

Sources: Based on results of LRO image data pro-

cessing we have carried out mapping of the Luna-17 

landing site area [3]. We have reconstructed the 

Lunokhod-1 traverse and identified coordinates of sur-

veying points from which panoramic images were ob-

tained. New DEM, based on LRO NAC images was 

generated using PHOTOMOD software [4]. Bundle 

block adjustment was performed using tie-points, de-

termined by automatic correlation of LRO NAC stereo 

pairs. Afterwards 2-pixels (1.1 meters) step detailed 

DEM was derived. Ground sample distance (GSD) is 

0.55 m. Results of GIS-mapping and new DEM will be 

used for 3D reconstruction of the Lunokhod-1 stereo 

panoramas. 

 
Figure 1. Large-scale map № 5, derived from 

Lunokhod-1 panoramas stereo-processing [1, 2] and 

integrated into GIS with traverse and crater data (back-

ground  LRO NAC orthomosaic) 

Methodology: We have done GIS-analyses of the 

Lunokhod-1 traverse area using high resolution DEM, 

LRO NAC orthomosaics and large-scale maps (Fig. 1), 

derived from Lunokhod-1 panoramas [2]. We identi-

fied Lunokhod-1 wheel tracks and coordinates of sur-

veying points from where stereo panoramas (Fig. 2) 

were acquired by Lunokhod-1 cameras.  

Lunokhod-1 panoramic images were obtained from 

the Moscow State Archive. We have selected some 

stereo panoramas of Lunokhod-1 from which the pre-

vious large-scale maps were derived. While final re-

sults of Lunokhod-1 mission mapping were published 

in the form of 7 individual maps [2], other data and 

descriptive camera information probably have been 

lost, unfortunately. So Lunokhod-1 panoramas were 

reconstructed as 3D free model without referencing 

(Fig.3). We expected that the model will be reference 

to new LRO NAC DEM and the high detailed DEM 

will be derived with panoramas which were obtained 

by Lunokhod-1 camera from the lunar surface. 

 
Figure 2. Example the original stereo panorama image 

We presuppose  that the crater indicated with red circle 

and the part of track  indicated with blue arrow are the 

same on the map № 5 (see Fig. 1) 

F

Figure 3. Example of Lunokhod-1 stereo panoramas 

processed without referencing. 3D reconstruction for 

map № 5 (anaglyph image)  

References: [1] Vinogradov A.P. ed. Mobile laborato-

ry on the Moon Lunokhod-1, Volume 1 (Peredvijnaya 

laboratoriya na Lune Lunokhod-1, I) – Moscow, Nau-

ka, 1971 (in Russian). [2] Barsukov V.L. et. al. (1978) 

Peredvijnaya laboratoriya na Lune Lunokhod-1, Vol. 2. 

Nauka (in Russian). [3] Gusakova E. et al. (2012) 

Mapping and GIS-Analyses of the Lunokhod-1 Land-
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Introduction:  The Big Island of Hawai’i is per-

haps the premier site in theworld to test Lunar and 

Martian surface systems (robot rovers, human transport 

and habitation). 

The Big Island’s volcanic terrain and basaltic geol-

ogy are nearly identical in many aspects to the Moon 

and Mars. The Pacific International Space Center for 

Exploration Systems (PISCES) facility will allow on-

site development of multiple technologies (many not 

traditionally associated with space…such as construc-

tion, clean energy, recyling).  These advancements can 

then be rapidly tested in the field at many of the analog 

sites around the island.  

PISCES and the State of Hawai'i are in the process 

of establishing a new analogue research park for col-

laborative/partnership work in analogue testing of ro-

botic systems and resource utilization technologies that 

have both 'beyond-LEO' and earth-based applications. 

A key piece of this effort is toward the investigation 

and demonstration of technologies associated with bas-

alt / regolith material processing, fabrication, and con-

struction. We intend to demonstrate these technologies 

for both lunar surface stabilization and preparation of 

landing pad surfaces by first testing these technologies 

on the volcano of the Big Island of Hawai'i. Further, 

the State of Hawai'i has parallel interest in using simi-

lar processes for basalt construction materials (ala 

'lunar bricks') from the volcanic basalt located on the 

Big Island for bricks, slabs/foundations, roads and 

houses. 

This paper/presentation will brief the latest updates 

in Hawaii’s efforts to revamp PISCES and establish 

these world class analogue test sites for lunar testing. 

Further, this presentation will outline upcoming efforts 

within PISCES in the area of “lunar concrete”on the 

Big Island through technology demonstration and the 

establishment of a pilot plan for industrial construction 

using basalt materials from the volcanoes. 
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Introduction: We present a point of departure ar-

chitecture for prospecting for Lunar Resources from an 

Exploration Platform at the Earth – Moon Lagrange 

points.  Included in our study are launch vehicle, cis-

lunar transportation architecture, habitat requirements 

and utilization, lander/rover concepts and sample re-

turn. 

In our current point of departure architecture, we 

envision the use of the NASA Space Launch System to 

launch large elements of the system directly to an EML 

camp once it has been deployed.   

Transport to L2: The benefits derived by integrat-

ing high and low energy transfers range from system 

design and support to overall mission design mass sav-

ings and re-supply strategies. Different transfer design 

techniques can be explored by mission designers, test-

ing various propulsive systems, maneuvers, rendez-

vous, and other in-space and surface operations. Un-

derstanding the availability of high and low energy 

trajectory transfer options opens up the possibility of 

exploring the human and logistics support mission de-

sign space and deriving solutions never before contem-

plated. For sample return missions from the lunar sur-

face, low-energy transfers could be utilized between 

EML platform and the surface as well as return of sam-

ples to EML-based spacecraft. 

Human Habitation at the Exploration Platform: 

Telerobotic and telepresence capabilities are consid-

ered by the agency to be “grand challenges” for space 

technology. We invite the lunar science community to 

consider the priority scientific tasks that such on-orbit 

operations might enable. While human visits to the 

lunar surface provide optimal opportunities for field 

geologic exploration, on-orbit telerobotics may provide 

attractive early opportunities for geologic exploration, 

resource prospecting, and other precursor activities in 

advance of human exploration campaigns and ISRU 

processing.  

The Exploration Platform provides a perfect port 

for a small lander which could be refueled and used for 

multiple missions including sample return. This reuse 

of expensive spaceflight hardware is an essential ele-

ment of a sustainable space program.  The EVA and 

robotic capabilities of the EML Exploration Platform 

allow the lander to be serviced both internally and ex-

ternally, based on operational requirements. The 

placement of the platform at an EML point allows the 

lander to access any site on the lunar surface, thus 

providing the global lunar surface access that is com-

monly understood to be required in order to enable a 

robust lunar exploration program. Designing the sam-

ple return lander for low-energy trajectories would 

reduce the overall mass and potentially increase the 

sample return mass.  Of course, following the com-

mencement of ISRU production, locally-derived re-

sources could be leveraged to refuel the lander, further 

reducing the fuel supply chain from Earth. 

The Initial Lunar Mission: Building upon Apollo 

sample investigations, the recent results of the 

LRO/LCROSS, international missions such as 

Chandrayaan-1, and legacy missions including Lunar 

Prospector, and Clementine, among the most important 

science and exploration goals is surface prospecting for 

lunar resources and to provide ground truth for orbital 

observations. Being able to constrain resource produc-

tion potential will allow us to estimate the prospect for 

reducing the size of payloads launched from Earth re-

quired for Solar System exploration.  Flight opportuni-

ties for something like the NASA RESOLVE instru-

ment suite to areas of high science and exploration 

interest could be used to refine and improve future Ex-

ploration architectures, reducing the outlays required 

for cis-lunar operations.  Mobile explorers are the re-

quired next missions to explore polar regions (vola-

tiles) and non-polar regions (e.g., mature Ti-rich soil 

for solar wind implanted H, pyroclastic deposits for 

indigenous volatiles, etc.). These prospectors will in-

crementally address science, exploration, technology, 

commercial and public outreach objectives by: 

‐ Defining the composition, form, and extent of lu-

nar resources; 

‐ Characterizing the environment in which the re-

sources are found; 

‐ Defining the accessibility/extractability of the re-

sources; 

‐ Quantifying the geotechnical properties of the lu-

nar regolith in the areas where resources are found; 

‐ Identifying resource-rich sites for targeting future 

missions, 

-Offering immersive and unparalleled opportunities 

for public engagement and citizen science. 

Summary: EML points are excellent for placement 

of a semi-permanent human-tended Exploration Plat-

form both in the near term, while providing important 

infrastructure and deep-space experience that will be 

built upon to gradually increase long-term operational 

capabilities for deep space exploration. 
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BULLIALDUS CRATER: A RARE WINDOW INTO LUNAR PLUTONISM AND LATE-STAGE MAGMA 
OCEAN FLUIDS. Rachel L. Klima (Rachel.Klima@jhuapl.edu)1, Joshua T. S. Cahill1, Justin Hagerty2 and David 
Lawrence1,  1Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA; 2USGS Astrogeology 
Science Center, Flagstaff, AZ, USA. 

 
Introduction: The central peak of Bullialdus Crater has 
long been recognized as having a reflectance spectrum 
dominated by a strong noritic signature (e.g., 1-4). Re-
sults of spectral fits to the central peak of Bullialdus 
suggest a relatively high Mg# (>Mg75) in the low-Ca 
pyroxenes (5), within the range of values observed for 
Mg-suite lunar samples (e.g., 5). Centered at -20.7°, 
337.5° in Mare Nubium, Bullialdus Crater lies within 
the high-thorium Procellarum KREEP Terrane (e.g., 6). 
In fact, based on orbital gamma-ray data, Bullialdus is 
the location of a clear thorium (Th) enhancement, which 
is important because Th commonly serves as a proxy for 
detecting KREEP-rich materials on the lunar surface 
(e.g., 6-8).  We examine the mineralogy of Bullialdus 
crater and the spatial distribution of the Th signature 
associated with it to investigate the character and com-
position of the excavated pluton. 

 
Fig. 1. Mineral diversity in Bullialdus crater. (A) 0.75 
µm albedo map. (B) Mafic mineralogy depicted using 
an RGB composite where R=integrated 1 µm band 
depth; G=integrated 2 µm band depth, and 
B=reflectance at 1.5 µm. In this color scheme, fresh 
material appears bright, with deep blue generally indi-
cating feldspathic material, red indicating an enhance-
ment in olivine, and orange and yellow indicating py-
roxenes.  Low-Ca pyroxene often appears as cyan, due 
to the overall brightness and narrow 1 µm band.  (C) 
Pyroxene diversity map depicted using an RGB compo-
site where R = 1.9 µm band depth, G = integrated 2 µm 
band depth, and B = integrated 1µm band depth. This 
color scheme highlights low-Ca pyroxene as yellow, 
and fresh high-Ca pyroxene as cyan. Anorthositic mate-
rial and highly space-weathered material appear as 
black. 

Bullialdus Region Mineralogy: Bullialdus crater and 
the local mineralogy are shown in Fig. 1.  Strong pyrox-
ene bands indicative of a noritic composition dominate 

the central peak. Anorthositic material, excavated by 
Bullialdus, is exposed in the crater rim and proximal 
ejecta (Fig. 1).  Portions of the walls exhibit a gabbroic 
signature, potentially olivine-bearing.  Fresh craters in 
Mare Nubium exhibit a typical basaltic spectral signa-
ture, while both mare and highland soils in the region 
are generally spectrally featureless.  

There is a clear Th enhancement (~6-7 ppm Th) 
centered on Bullialdus crater and its northern wall outer 
flanks (9).  However, if the source of the Th is only the 
material excavated in the central peak, the Th content is 
higher, and closer to the range of Alkali suite norites 
(10). Observations of the central peak of Bullialdus 
crater indicate that the pyroxenes exhibit a distinctive 
2.8 µm band absorption that is significantly stronger 
than the immediate surroundings,  indicating the pres-
ence of a hydroxyl component.  The hydroxyl signature 
persists through multiple viewing geometries and illu-
mination conditions, suggesting that it is not transient, 
like the lunar surface water previously observed (11-
13). The correspondence between KREEP and hydroxyl 
within Bullialdus suggests that hydroxyl might have 
been concentrated in late stage magma ocean fluids.  
However, KREEP-rich Apollo samples exhibit lower 
hydroxyl contents than mare basalts (14-16), suggesting 
that Bullialdus crater may sample materials not repre-
sented in our sample collection. 
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THE FIRST EXPLORATION TELEROBOTICS SYMPOSIUM – TELEPRESENCE: A NEW PARADIGM 
FOR HUMAN-ROBOTIC COOPERATION.  D. F. Lester1, A. Valinia2, H. Thronson2, and G. Schmidt3, 1Dept. 
of Astronomy, University of Texas, Austin TX 78712, 2NASA Goddard Space Flight Center, Greenbelt, MD 20771, 
3NASA Glenn Research Center, Cleveland OH 77573. 
 

 
Introduction: We present findings and observa-

tions from the Exploration Telerobotics Symposium 
held at Goddard Space Flight Center, on May 2-3, 
2012. This symposium was devoted to opportunities 
and challenges of telepresence for exploration. A hun-
dred participants from science, robotics, and human 
space flight stakeholder communities attended, repre-
senting space agencies, industry, and academia.  

Telepresence as an Exploration Strategy: 
Telepresence is the placing of human cognition telero-
botically at an exploration site, which may be hazard-
ous to humans. This strategy is now being used rou-
tinely for undersea science, oil and cable maintenance, 
high-dexterity surgery, the mining industry, and for 
surveillance and munitions in airborne drones. An im-
portant goal of the symposium was to bring representa-
tives of these applications to share their perspectives.  

The Exploration Telerobotics Symposium consid-
ered a strategy whereby human operators could be sent 
close enough to their telerobotic surrogates that high 
bandwidth and low-latency communication could be 
assured. In the case of the Moon, this could be from 
low lunar orbit, or Earth-Moon L1 or L2 [1]. For Mars, 
this could be done from martian orbit [2] possibly from 
martian moons. For asteroids, work could be done 
from a convenient stand-off site, in orbit, or formation 
flying. For a gravity well, EDL (as well as safe return) 
is an expensive and risky part of the trip, perhaps the 
hardest part of the journey. This strategy is enabling 
for contamination control (forward, for planetary pro-
tection, and backward, for human safety).  

The L1 and L2 locations, about 50000 km over the 
near- and far-sides of the Moon respectively, offer 
two-way control latencies to the lunar surface of order 
400 ms, six times smaller than the control latency from 
the Earth. This allows for a high degree of cognitive 
coupling and likely enables complex tasks that would 
otherwise require in situ humans [3].  

Symposium Organization: The two-day sympo-
sium included plenary talks and panel discussions on 
the first day. These are available at the symposium 
website -- http://telerobotics.gsfc.nasa.gov. Four ple-
nary sessions addressed several key themes; (1) The 
historical context of telepresence; human cognition, 
performance, and human factors; and the relationship 
of telepresence to exploration; (2) Field science: what 
it is, and how it differs fundamentally from remote 
sensing science; the value of "being there" at least 

cognitively; (3) State-of-art space telerobotics, and 
directions for expansion of capability; future expecta-
tions; (4) terrestrial telerobotics, and feed-forward to 
space exploration; sensory extension and dexterity for 
surgery, mining, undersea operations.  

The second day was devoted to breakout sessions 
to produce actionable findings to be delivered to an 
integration panel, which would distill these findings 
and observations. These three breakout groups were 
(1) identification of priority goals in science enabled or 
enhanced by telepresence, (2) assessment of the rela-
tionship of telepresence and human exploration, and 
(3) identification of priority capabilities to enable 
telepresence: technologies and operations.  

Breakout Session Findings: The science breakout 
group recognized strong potential for this strategy. 
New science is enabled at distant locations where  very 
long communication latency is a serious handicap to 
efficient operations from Earth. For the Moon, science 
activities in permanently shadowed regions (in particu-
lar for access of volatiles) can be particularly en-
hanced. In addition, construction of far-side facilities 
by on-orbit control at EM L2 is of interest. Robotic 
telepresence could be an especially useful strategy in 
areas that might be hazardous to humans such as mare 
pits, escarpments, and fresh craters. Telepresence 
should provide improved access to better samples, per-
haps in the South Pole Aitken basin. It was pointed out 
that the impact of communication latency on planetary 
field geology [4] is poorly understood, and analog ef-
forts to understand natural breakpoints in communica-
tion latency for science task completion should be car-
ried out.  

Advantages for Mars are much more significant, 
because of the vastly longer two-way latency to Earth, 
but science advantages on the Moon have parallels on 
Mars. In this respect, telepresence control of science 
experiments on the Moon exercises capabilities that 
will be needed for Mars. Symposium results have been 
briefed at GLEX2012 and NASA HQ, and a report is 
in production. Follow-on activity is being planned. 
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Introduction: We detect suppression of epithermal 

neutron detection rates at the Lunar Reconnaissance 
Orbiter (LRO) using the Lunar Exploration Neutron 
Detector (LEND) collimated detectors when the LRO 
spacecraft is near the dawn and dusk terminators at 
near-equatorial latitude (30°S to 30°N). The greatest 
neutron count rate (least flux suppression) is found at 
post-meridian local time, at about 14:30. Suppression 
of epithermal neutrons is consistent with the presence 
of hydrogen in the regolith near the terminator. Since 
the terminator moves across the surface as the Moon 
rotates, this implies a mobile population of hydrogen-
ated volatiles that dwells near the terminator but re-
sides only transiently in the regolith. The observed 
pattern of neutron flux suppression is consistent with 
the distribution of mineral hydration observed by Sun-
shine et al. (2009) in reflected light, if the inferred 
layer of transiently hydrated minerals extends to a 
depth of order 15 cm or greater into the regolith to 
accommodate the observed degree of neutron flux sup-
pression.  

 
Cylindrical projection of water-equivalent hydrogen map 
transformed from a smoothed map of CSETN (epither-
mal+fast) neutron count rate, in units of local time (hortizon-
tal) and latitude (vertical), north at the top. Local maxima in 
hydrogen content are found at dawn and at dusk over nearly 
the full range of latitude. 
 

 Modulated Neutron Flux: The CSETN detectors 
exhibit minima at dawn and dusk terminators, consis-
tent with local enhancement of hydrogen/H2O; count 
rate peaks in the afternoon sector, consistent with des-
iccated regolith with a phase lag for dehydration. Con-
trast between the maximum and minimum count rates 
implies ~0.075 wt% H2O centered on dawn terminator, 
about 0.05 wt% H2O at dusk. Comparison to the Sun-

shine et al. [1] extreme upper limit of ~0.5 wt% hydra-
tion, suggests relevant depth of hydrated surface layer 
is of order 15 cm or more. 

Conclusions: Water group ions migrate from the 
warmest region to the terminator and pile up at the 
cold surface at the terminator. The dawn and dusk ter-
minators are not identical: hydrated regolith at the 
dawn terminator rotates into sunlight and 
ions/molecules migrate back to the terminator along 
with fresh molecules migrating from the subsolar re-
gion. Dusk-side molecules always rotate and transport 
in the same direction, thus with less cumulative build-
up. The diurnal hydration cycle appears to persist even 
at polar latitudes. Lawrence et al. [5] argue for a slight 
increase in epithermal flux from a thin hydrated layer 
on top of dry regolith. Different energy sensitivity be-
tween SETN and CSETN in presence of this effect is 
possible explanation for observed discrepancy, since 
SETN and CSETN sense somewhat different popula-
tions. 

References: Use the brief numbered style common 
in many abstracts, e.g., [1], [2], etc. References should 
then appear in numerical order in the reference list, 
and should use the following abbreviated style: 
[1] Sunshine, J. M. et al. (2009) Science 326, 565–
568. [2] Lawrence, D. J. et al. (2010) Astrobiology 10, 
183–200. [3] Mitrofanov, I. G.  et al. (2010) Space 
Sci. Rev. 150, 183–207. [4] Mitrofanov, I. G. et al. 
(2012) JGR-Planets, 10.1029/2011JE003956. 
[5] Lawrence, D. J. et al. (2011) JGR-Planets 116, 
E01002. 

26 LPI Contribution No. 1685



INFORMED LINE-OF-SIGHT COMMUNICATIONS ON THE LUNAR SURFACE USING LRO NAC 

DEMs.  Prasun Mahanti
1
 , Mark S. Robinson

1
, Aaron Boyd

1
, Emerson Speyrer

1
 ,

1
Lunar Reconnaissance Orbiter 

Camera Science Operations Center, Arizona State University, Tempe, AZ. (pmahanti@asu.edu)  
 

 

Introduction:  Short and long range line-of-sight 

communication on the lunar surface is of vital im-

portance for both robotic and human extra-vehicular 

activity (EVA) [1,2,3]. While line-of-sight based data 

acquisition and transmission techniques remain the 

most potent form of communication between assets on 

the lunar surface, it also presents operational limita-

tions [2]. Astronauts or robotic landers must have ei-

ther the main lunar module (LM) or another rover in 

their line-of-sight to maintain com-munication for im-

aging or any other form of data acquisition. A-priori 

information mitigate this limitation, e.g. for the effi-

cient placement of transmission modules or knowing 

the elevation required by an imaging device to be able 

to see required targets. Shadow maps can be used to 

acquire this information [2] to estimate LM/EVA line-

of-sight for pre-mission planning and real-time EVA. 

Detailed elevation information can be used to form 

even better  information maps and possible decision 

strategies well in advance before the actual mission as 

well as for real-time decision making. For example, in 

the NASA Mars Exploration Rover project [4] visibil-

ity analysis was done prior to landing to find how far 

the rover actually might see from the surface. Digital 

terrain models (DEMs) made from the Lunar Recon-

naissance Orbiter Narrow Angle Camera (LRO NAC) 

stereo images offer high resolution elevation infor-

mation with pixel scales down 2 meters. In this work 

we show some examples of how NAC DEMs can be 

utilized for exploration planning. 

 

Viewsheds and maximum visibility analysis: A 

viewshed is a location (geographic/cell/pixel) specific 

visible area. Viewshed analysis uses the elevation 

 
Figure 1:  Viewshed at maximum elevation 

information to determine interlocation visual connec-

tivity based on observer and target positions. From the 

NAC DEMs, a rigorous viewshed analysis can be done; 

an example of such an analysis was performed for a 

DEM obtained at the Marius Hills (NAC images 

M111958993 and M111965782) showing (Figure1) the 

terrain area visible from the highest elevation point 

with the observer height set for 2 meters. A key result 

is that only a small percentage of the total surface area 

was ‘visible’ from this highest point. Similar analysis 

was done for all the cells for the DEM, and for each 

cell the corresponding viewshed area was recorded as a 

percentage of the total DEM area. We call the resulting 

matrix the maximum visibility map (Figure 2). Regions 

of high visibility are immediately evident from the 

map, with about 30% of the total terrain visible specific 

points. Also, smoother parts of the terrain show higher 

average levels of percentage visibility. 

 

 
Figure 2 : DEM & maximum visibily map 

 

Conclusions:  The resolution of the NAC DEMs is 

highly adventagious for lunar viewshed analysis. Line-

of-sight visibility conditions can be readily assessed 

with high accuracy. Multiple viewshed analysis results 

can be combined to generate more informative results, 

providing the basis for future lunar exploration plan-

ning. 
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Introduction:   The extraction and identification of volatile re-

sources that could be utilized by humans including water, oxygen, 
noble gases, and hydrocarbons on the Moon, Mars, and small plane-
tary bodies will be critical for future long-term human exploration of 
these objects. Vacuum pyrolysis at elevated temperatures has been 
shown to be an efficient way to release volatiles trapped inside solid 
samples. In order to maximize the extraction of volatiles, including 
oxygen and noble gases from the breakdown of minerals, a pyrolysis 
temperature of 1300° C or higher is required, which greatly exceeds 
the maximum temperatures of current state-of-the-art flight pyrolysis 
instruments. Here we report on the recent optimization and field 
testing results of a high temperature pyrolysis oven and sample ma-
nipulation system coupled to a mass spectrometer instrument called 
Volatile Analysis by Pyrolysis of Regolith(VAPoR).VAPoR is capa-
ble of heating solid samples under vacuum to temperatures above 
1300° C and determining the composition of volatiles released as a 
function of temperature. [1] 

Instrument Description: The preliminary VAPoR flight in-
strument concept (Fig. 1) combines a sample carousel of up to six 
individually heated pyrolysis ovens with a reflectron time of flight 
mass spectrometer. [2]   

 
Figure 1. Cross sectional view of preliminary  VAPoR flight in-

strument concept 
 
The VAPoR gas processing system includes two gas manifolds, 

heated transfer lines, and two separate gas reservoirs containing 
calibration gas for the mass spectrometer and oxygen for combustion 
experiments. Powdered rock or soil samples collected from a rover 
or lander drill or scoop and delivered through the solid sample tube 
to one of the VAPoR ovens can then be heated by a controlled ramp 
from ambient to temperatures up to 1300° C to release the volatile 
constituents for direct measurement by the mass spectrometer.  

Two independent units have been built and tested to understand 
the performance of the different instrument components. A laborato-
ry breadboard was developed to test, optimize, and calibrate the 
reflectron time of flight mass spectrometer (TOF-MS) component of 

VAPoR inside a separate vacuum chamber. A separate portable field 
unit (Fig 2) consisting of a custom made pyrolysis oven coupled to a 
commercial RGA quadrupole mass spectrometer, vacuum manifold 
and turbomolecular pumping station, was built to demonstrate the 
feasibility of conducting vacuum pyrolysis evolved gas measure-
ments in the field and has been discussed previously 
[3]

 
 
Figure 2.  The VAPoR field instrument uses a new sample ma-

nipulation system and high temperature pyrolysis oven for evolved 
gas analysis of powdered solid samples. 

 
Summary:  Using the VAPoR instrument during NASA's 2011 

Desert RATS field campaign at Black Lava Point, AZ and the 2012 
MMAMA test in Apollo Valley, HI, we successfully demonstrated 
that high temperature vacuum pyrolysis of solid samples to tempera-
tures exceeding 1300°C coupled with detection of volatiles by mass 
spectrometry can be used for the identification of resources including 
water and oxygen in surface samples. The inclusion of evolved gas 
analysis capability in the field and continued testing of instruments 
such as VAPoR in future field tests will be critical to the success of 
future robotic and human planetary resource exploration missions. 
The development of sample collection protocols designed to mini-
mize or eliminate contamination from analyses such as those con-
ducted by VAPoR are critical considerations for future space explo-
ration architecture planning. 
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Introduction: One of the most important objec-

tives of lunar remote sensing remains the investigation 
of the abundance and distribution of the major miner-
als across the Moon’s surface. Reflectance spectrosco-
py makes use of the fact that absorption bands in the 
reflectance spectra of planetary surfaces contain in-
formation on the mineralogy and petrology of the re-
motely sensed surface areas.The most prominent spec-
tral variations that characterize lunar soils occur in the 
VIS-NIR part of the spectrum, and in particular, in the 
near-infrared. The strength and shape of measured 
infrared absorption bands of an irradiated mineral 
compound are  a function of several variables, among 
them the abundance of the absorbing minerals. The 
precise measurements of the spectra allow an estima-
tion of the quantitative mineralogical composition of 
the observed material. 

Mineralogical Maps: Among the lunar minerals, 
pyroxenes’ prominent spectral absorption features at 
one and two microns in the near-infrared (NIR) spec-
tral region make them ideal targets for remote sensing 
investigations (i.e. [1], [2]). A variety of quantitative 
lunar pyroxenes maps have been produced in the past 
(among them, maps by [3], or more recently, by 
[4]).However, until recently, all those maps resulted 
from the measurements of absorption bands at very 
few selected wavelengths, always assuming a flat lunar 
surface. 

Data Sets: By combining data measured within-
struments on more recent missions like Chandrayaan-1 
and LRO, a more precise analysis of absorption spectra 
and the reflecting topography is becoming a reali-
ty.Within this paper, we use hyperspectral data from 
the SIR-2 and M3 instruments on Chandrayaan-1 to 
analyze and interpret the mineralogical composition of 
selected lunar areas with unprecedented high spectral 
and spatial resolution. The SIR-2 Near InfraRed (NIR) 
point spectrometer that orbited the Moon on board the 
Chandrayaan-1 mission in 2008 and 2009 [5], deliv-
ered spectra in the 0.9-2.4 µm spectral range with 
approx. 6 nm spectral resolution at an absolute con-
stant temperature of ±0.1 degree K with a single detec-
tor, thus providing NIR reflectance measurements of 
slightly elliptical footprints of approximately 220 m 
diameter. The topographic information is obtained by 
the fusion of the GLD 100, which is derived from 
LROC WAC imagery and the photometric information 
from the analysis of M3 images. The GLD 100 is accu-
rate at scales of about 1.5 km/px and lacks topographic 
features with extents less than 1.5 km[6] while the M3 
data features a resolution of 140 m/px. The fusion 

results in topographic maps of the same lateral resolu-
tion as the M3 imagery and, more important, topo-
graphic maps which share the same pixel coordinates 
as the M3 images and are aligned to SIR-2 spectra 
taken simultaneously, thus allowing one to reference 
the spectra with absolute precision. 

Methods: In order to improve the lateral resolution 
of the GLD 100, an extended photoclinometry and 
shape from shading algorithm is applied as proposed 
in [7]. The method can be described as the search for 
the surface that best matches the observed images if 
illuminated using the same light source and viewer 
positions and is still close to the original shape model. 
Furthermore, the shape reconstruction method is used 
to register M3 images from different orbits as proposed 
in [7]. The aligned images contain different photomet-
ric information and thus allow a better estimation of 
the reflectance behavior, such as the single-scattering 
albedo and single-scattering phase functions. Since the 
spectral range of the M3 reaches up to 3 µm the ther-
mal emission is important. We estimate the surface 
temperature by the superposition of a linear extrapola-
tion to the norm reflectance spectrum R62231 and a 
black body emission spectrum, as presented in [8]. 
Radiance values of the SIR-2 and M3 data are used to 
align the two data sets. Finally, the information derived 
from the M3 images, such as surface temperature and 
continuum slope of the absorption at 2 microns, can be 
applied to the SIR-2 spectra, resulting in high precision 
NIR reflectance measurements. 

We report on the identification and abundance meas-
urements of lunar minerals through the combined anal-
ysis and interpretation of NIR and image-based 3D 
shape reconstructed topographic data. 
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10883-10892. [4] Shkuratov, Yu. G., Kaydash, V. G. and  
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Introduction: We investigate the epithermal neu-

tron fluxes observed over the near south-polar Drygal-
ski crater using the Lunar Reconnaissance Orbiter’s 
(LRO), Lunar Exploration Neutron Detector (LEND) 
detector systems and the Lunar Prospector Neutron 
Spectrometer (LPNS) [1-3].  We correlate these obser-
vations with the Lunar Orbiting Laser Altimeter 
(LOLA) [4].  These observations indicate the epither-
mal neutron fluences observed over Drygalksi are sig-
nificantly low and the LEND results suggest the region 
may contain the highest-hydrogen concentrations in 
the Moon’s southern hemisphere.  These observations 
have important implications for lunar volatile research 
as Drygalksi’s large-scale, geomorphology and lower 
latitude -78° may provide clues to the physics of the 
lunar hydrogen budget.  

Initial Results:  Recent studies of the Moon’s 
south pole indicate little correlation between low-
epithermal rates (high-hydrogen) and regions of per-
manent shadow [5,6].  Our initial results performed 
during July 2009 to May 2011 are depicted in the 
LEND south-polar epithermal count rate map in Figure 
1.  This map illustrates low-epithermals as purple to 
black patches.  Permanent shadow regions are outlined 
in white delineating Cabeus (A) and Shoemaker (B), 
which suggest higher-hydrogen.  Other permanent 
shadow regions are inferred to contain lower Hydrogen 
abundances.  The green-boxes in Figure 1 and 2 en-
compass the 150km diameter and 5km deep Drygalski 
crater.  The neutron suppression region overlies Dry-
galski’s poleward-facing inner slopes and north of the 
permanent shadow region near daughter crater Dry-
galksi V (C).  This region reflects minimal epithermal 
rates: 4.80±0.05 cps vs. 4.82±0.02 for Shoemaker and 
4.83±0.03 for Cabeus.   Also, of interest in this result is 
the symmetric crescent shape and position of the sup-
pression region which is consistent with the high inner-
slopes and concave side of the suppression region fac-
ing the pole.  This result is consistent with  illumina-
tion predictions for cratered geomorphology [7, 8].  
This observation may suggest a correlation of epither-
mal neutron fluences to illumination condition.  

However, During LRO station keeping LEND is 
turned off yielding lower observation time and count-

ing statistics over the Drygalski region.   We revisit 
this research and include an additional 1.3 years of 
LEND collimated data up to September 2012. 
     References: [1] Chin et al. (2007) Sp. Sci. Rev. #150 [2] 
Mitrofanov et al. (2007) Sp. Sci. Rev. #150  [3] Feldman et al. 
(1998) Science, #281 [4] Smith et al. (2007) Sp. Sci. Rev. #150 [5] 
Mitrofanov et al. (2011) Science [6] Boynton et al. (2012) JGR. [7] 
McClanahan et al. (2010) LPSC [8] Carruba et al. (1999) Icarus 
#142 

 
Figure 1:  Initial Results:  LEND South Polar Stereographic Epi-
thermal Map with white permanent shadow regions A) Cabeus B) 
Shoemaker, green-box delineates C) Drygalski.  Coverage from July 
2009 to May 2011. 

 
Figure 2:  LOLA South Polar Stereographic DEM with white per-
manent shadow regions A) Cabeus B) Shoemaker, green-box deline-
ates C) Drygalski region. 
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Next Generation Lunar Laser Ranging.  S. M. Merkowitz and A. M. Preston, NASA Goddard Space Flight Cen-
ter, Greenbelt MD 20771, Stephen.M.Merkowitz@nasa.gov 

 
 
Lunar laser ranging (LLR) has been a workhorse 

for testing general relativity over the past four decades 
as well as dramatically increasing our understanding of 
Earth and Moon geophysics, geodesy, and dynamics 
[1].  The three retroreflector arrays put on the Moon by 
the Apollo astronauts and the French built arrays on 
the Soviet Lunokhod rovers continue to be useful tar-
gets, and have provided the most stringent tests of the 
Strong Equivalence Principle and the time variation of 
Newton's gravitational constant.  The relatively new 
ranging system at the Apache Point 3.5 meter telescope 
now routinely makes millimeter level range measure-
ments to these reflectors [2].   

The precision of the range measurements has his-
torically been limited by the ground station capabili-
ties. With now routine millimeter level precision at 
Apache Point, future measurements are likely to be 
limited by errors associated with the Apollo retrore-
flectors. In addition, the clustering of the lunar arrays 
and similar latitudes of the available lunar ranging sta-
tions weakens our ability to precisely measure the lu-
nar librations [3].  

New retroreflectors placed at locations far from the 
Apollo sites (such as a pole or limb) would enable the 
study of additional effects, particularly those that rely 
on the measurement of the lunar librations. In addition, 
more advanced retroreflectors are now available that 
will reduce some of the systematic errors associated 
with using the current arrays, resulting in more precise 
range measurements. Retroreflectors are extremely 
robust, do not require power, and last for decades.  
This longevity is important for studying long-term 
effects such as a possible time variation in the gravita-
tional constant.  New retroreflectors with higher cross-
sections would also enable more laser ranging stations 
to be used for lunar measurements. 

We report here on the ongoing laser ranging devel-
opment efforts at Goddard Space Flight Center as part 
of the NASA Lunar Science Institute’s LUNAR team.  
At the heart of this effort is the development of next 
generation lunar retroreflectors.  The recently complet-
ed LUNAR open cube assembly and testing facility is 
currently being used to design, assemble, and test 
large-scale open cube corners. Investigations into vari-
ous bonding techniques, including the hydroxide bond-
ing technique developed for Gravity Probe B, are un-
derway and producing promising results.  We are also 
investigating mirror coatings for the cubes that have 
dust mitigation properties. 

 

[1] S. M. Merkowitz, “Tests of Gravity Using Lu-
nar Laser Ranging,” Living Rev. Relativity 13,  
(2010). 

[2] T. W. Murphy et al., Publ. Astron. Soc. Pac. 
120, 20 (2008). 

[3] S. M. Merkowitz et al., Int. J. Mod. Phys. D 16, 
2151 (2007). 
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Introduction: NASA’s Constellation Program Of-
fice (CxPO) has identified 50 Regions of Interest 
(ROIs) that represent scientifically high-value loca-
tions in preparation for our eventual return to the Moon 
[1] either by astronauts or robots. These ROIs are geo-
logically diverse and spatially distributed, thus allow-
ing each site to address a variety of scientific goals and 
objectives, such as those described by LEAG [2]. 
While the value of these ROIs relative to one another 
is a critical component, such as for landing site selec-
tion, detailed analyses of these sites have not been 
conducted in a comprehensive way that utilizes all 
available data or at the landing site scale. 

In order to select an "ideal" landing site, prelimi-
nary detailed characterization of the surface properties 
of potential sites must be conducted. Analyses at this 
scale that incorporate geologic mapping, traverses, and 
evaluation of each ROI's scientific "value" (e.g., their 
potential for scientific return) have not been conducted 
since Apollo, and are necessary to accurately assess 
any potential landing site for the next series of human 
or robotic missions to the Moon. Here we present new 
LASER-funded work to evaluate the 50 ROIs. 

Methodology: We have begun evaluating 7 of the 
50 ROIs (Table 1) using a variety of LRO, 
Chandrayaan-1, Kaguya, Clementine, Apollo and Lu-
nar Orbiter data to (1) characterize the geology, topog-
raphy and surface morphology of each ROI and exam-
ine the spatial and temporal variability of geologic 
processes within a 40x40 km area around each ROI, 
and (2) assess the relative scientific "value" of each 
ROI with respect to their ability to address key scien-
tific objectives identified by the lunar science and ex-
ploration community [2,3]. The relative scientific 
value of each ROI is be evaluated by constructing hy-
pothetical traverses within the area defined by CxPO 
up to distances of 5, 10 and 20 km from the ROI loca-
tion, and estimating the scientific return using the re-
sults from mapping. ESRI ArcMap Geographical In-
formation System (GIS) software is being used to 
compile the datasets, and generate maps 
Table 1. Five ROIs currently being studied. 

Region of Interest LAT LON 
Apollo 15 26.1 3.7 
Aristarchus 1 24.6 -49.0 
Copernicus 9.5 -18.9 
Mare Moscoviense 26.2 150.5 
North Pole 89.6 76.2 
Orientale 1 -26.2 -95.4 
South Pole -89.3 -130.0 

ROI Characterization: 
Morphologic: Each ROI is being characterized us-

ing images and topography to identify and map struc-
tures (crater rims, ridges, faults, etc.), analyze surface 
morphologies and characterize geologic units, identify 
geologic contacts, and determine stratigraphic relation-
ships. Geologic mapping and surface analyses are 
based primarily on LRO LROC (~50 cm/pixel), 
Kaguya Multi-band Imager (~20 m/pixel), Clementine 
UVVIS 750 nm (100-325 m/pixel) and HIRES (7-20 
m/pixel) images, Lunar Orbiter IV and V images (~100 
m/pixel), and Apollo MappingCam, Pancam, and Has-
selblad images. In addition, we are using the most up-
to-date lunar topographic data – LRO LOLA DEM 
(128 pixels/degree) and individual tracks – to charac-
terize the topographic expression of the surface. 

Spectral: We are utilizing currently released M3 
data, as well as Clementine UVVIS and NIR global 
mosaics (~100 m/pixel; 70ºN and 70ºS) to characterize 
surface materials at most of the 50 ROIs. 

Digital Geologic Mapping: Geologic mapping of 
the lunar surface at the ROI-scale is important because 
it allows complex surfaces to be characterized based 
upon physical attributes, thereby allowing discrete 
material units to be defined. The distributions of these 
units are then mapped in order to identify the relative 
roles of impact cratering, volcanic, tectonic and grada-
tional processes in shaping their surfaces. 

ROI Traverse Development: For this research, hy-
pothetical traverses from each ROI are being devel-
oped. Plotting the traverses is based primarily on the 
geologic assessment, that is, a traverse will be devel-
oped so that it maximizes its ability to observe and/or 
sample as many of the geologically significant fea-
tures, units, etc. within an ROI area as possible. We are 
limiting our area of exploration to the maximum 40x40 
km area identified by Cx [1], which is ultimately lim-
ited by current lunar exploration architecture. 
 
References: [1] Gruener, J.E. and B.K. Joosten (2009) 
LRO Science Targeting Meeting, Abs. #6036. [2] 
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32 LPI Contribution No. 1685



UPGRADED PROGRAM OF RUSSIAN LUNAR LANDERS: STUDYING OF LUNAR POLES.  I. G. Mitro-

fanov
1
 , L. M. Zelenyi

1
 and V. I. Tret’yakov

1
, 

1
Institute for Space Research, Profsojuznaja 84/32, 117997 Moscow, 

Russia, imitrofa@space.ru. 

 

 

The new program will be described of future Rus-

sian lunar landers. The main scientific goal of the pro-

gram is studying of lunar South pole: volatiles in the 

regolith and polar exosphere. The main engineering 

goal is to develop the new space technology for lunar 

polar landing and surface operations.  

The first lunar landing is scheduled on 2015, as part 

of the Luna-Glob project.  The limited set of scientific 

instruments will be delivered to the Moon by this mis-

sion, which the primer goal is the testing of landing 

technology and surface operations. The next mission 

Luna-Resource will land on the Moon in 2017 with 

much larger payload. This mission will perform studies 

of lunar polar volatiles from the shallow subsurface.  

Depending of results of these two landing missions, 

the third one of this sequence will be scheduled on 

2019 or later for Lunar Polar Sample Return (LPSR).  
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Introduction:  Impact cratering is the dominant 

weathering process on the surface of the Moon and is 
largely the determining factor of material distribution 
on the lunar surface [1] Radar data provide unique 
information on both the horizontal and vertical distri-
bution of impact deposits [2]. We introduce a new 
technique for analysis of polarimetric radar astronomi-
cal data, m-chi, derived from the classical Stokes pa-
rameters. Analysis of the crater Byrgius A demon-
strates how m-chi can more easily differentiate materi-
als within ejecta deposits and their relative thicknesses. 

Background:  The Miniature Radio Frequency 
(Mini-RF) instrument flown on the Lunar Reconnais-
sance Orbiter (LRO) is a Synthetic Aperture Radar 
(SAR) with an innovative hybrid dual-polarimetric 
architecture, transmitting (quasi-) circular polarization, 
and receiving orthogonal linear polarizations and their 
relative phase [3]. The four Stokes parameters that 
characterize the observed backscattered EM field are 
calculated from the received data. These parameters 
can be used to derive a variety of child products that 
include the circular polarization ratio (CPR) and the m-
chi decomposition. The former provides an indication 
of surface roughness and the latter provides an indica-
tion of the scattering properties of the surface [4]. 

Analysis:  Byrgius A is a 19 km diameter Coperni-
can located in the lunar highlands east of the Orientale 
Basin and west of Mare Humorum. Visible image data 
of the region obtained by the Lunar Reconnaissance 
Orbiter Camera Wide Angle Camera (LROC WAC) 
[5] at a resolution of 100 m/pixel show optically bright 
ejecta deposits associated with the crater that extend to 
radial distances of 100s of km, with near continuous 
deposits observed to an average radial distance of 70 
km (Fig. 1). 

Mini-RF CPR information derived from S-band 
(12.6 cm) data of the region show an increased rough-
ness for Byrgius A and its ejecta deposits relative to 
the surrounding terrain. This is a commonly observed 
characteristic of young, fresh craters and indicates that 
the crater and its ejecta have a higher fraction of cm- to 
m-scale scatterers at the surface and/or buried to 
depths of up to ~1 m. As observed with visible image 
data, the increased roughness associated with the ejecta 
of Byrgius A appears nearly continuous to a radial 
distance of ~70 km. 

An m-chi decomposition of Mini-RF S-band data 
for Byrgius A suggests that the portion of ejecta that 
extends radially from ~10 to 70 km appears far less co- 

 
Figure 1. An m-chi decomposition showing the crater 
Byrgius A (19 km dia.; 24.5°S, 63.7°W) overlain on 
LROC WAC data (100 m/pixel). The color wheel high-
lights the m-chi scattering regimes (double bounce, db; 
single bounce, bs; volume scattering, vs). 

ntinuous than is suggested in both optical data and 
CPR information (Fig. 1). The implication is that we 
are observing properties of the ejecta and lunar back-
ground terrain in the top meter of the surface. In other 
words the thickness of the ejecta in this distance range 
is on the order of meters or less. 

Conclusions: The Mini-RF instrument on LRO is 
among the first polarimetric imaging radars outside of 
Earth orbit. Stokes information returned from the in-
strument can be used to create derived products such as 
CPR and m-chi decompositions. Using these products, 
we examine the crater Byrgius A and demonstrate the 
ability to differentiate materials within ejecta deposits 
and their relative thicknesses. This result suggests that 
the thickness of ejecta at radial distances > a crater 
radius differ significantly from estimates of ejecta 
thickness derived from models of ejecta emplacement 
[6,7]. 

References: [1] Melosh, H. J. (1989), Oxford 
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Geology, 36(5), 343-346; [3] Raney, R. K. et al. 
(2011), Proc. of the IEEE, 99(5), 808-823; [4] Raney, 
R.K. et al. (2012), JGR, 117, E00H21; [5] Robinson, 
M. S. et al. (2010), Space Sci. Rev., 150, 81-124; [6] 
McGetchin et al. (1973), EPSL, 20, 226-236; [7] Pike 
(1974), EPSL, 23, 265-274. 
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Introduction: Space agency costs for exploration 

and science missions can be reduced by combining 
fixed-price contracts with methods that enable 
commercial bidders to earn supplementary revenue.  
This non-agency revenue in many cases will feature 
novel methods of public involvement, transforming 
“public outreach and education” from a cost to the 
space agency into a revenue source for the commercial 
bidder. The space agency will get services at a fixed 
price that is lower than traditional cost-plus methods. 
Lower cost stems from several factors including 
commercial culture, where every dollar saved is profit 
so long as it doesn't materially impact mission success.


In the long term, select space endeavors will come 
to fruition solely with private funding. These 
endeavors will span prospecting, resource extraction, 
site preparation for human missions, and science goals 
from far-side radio astronomy to understanding the 
bombardment history of the early solar system. Many 
of these missions will be repetitive such as multiple 
prospectors to survey large areas, scrapers and dozers 
for resource extraction and site preparation and mobile 
rovers providing basic utilities like power, thermal 
control and communication for science payloads. 
Many of the same systems are common to each class 
of rover including power systems, drive-trains, 
communication systems, camera and antenna pointing 
mechanisms, navigation sensors and software. These 
factors argue for having the bulk of lunar robotic 
activity based in the cost effective private sector with 
governments as customers, rather than being carried 
out directly by government agencies.


However, further exploration is necessary to spur 
commercial activity on the moon. Financial models 
rely on presence of volatiles, precious metals, or 
sustained human activity. The uncertainty in these 
markets poses a significant barrier to investment. A 
public-private partnership to evaluate unknowns in 
these financial models is called for. The proposed 
partnership exploits commercial cost savings to 
advance lunar science and resolve financial 
uncertainty.


Astrobotic Technology, a spin-off from Carnegie 
Mellon University's Robotics Institute, has developed a 
lander and a prospecting rover for initial surface 
activities. A first expedition, Icebreaker, will launch 
from Florida in October 2015 to explore Polar regions 
in search of water. A SpaceX Falcon 9 will carry the 
lander and rover to trans-lunar injection. The lander 

will cruise for three days, capture into orbit, descend 
and precisely land near the pole.


The rover is a self-sustaining lunar exploration 
platform designed for long-distance traverse. Freeze 
tolerant design enables unprecedented non-isotope 
operation through multiple day-night cycles. It features 
a U-shaped composite chassis allowing for large 
payloads up to 100-kg. Its navigation system provides 
better than two-meter global registration to terrain.


Subsequent missions will scout skylights - holes 
providing access to volcanic caves - and routes that 
circumnavigate the poles to stay perpetually in 
sunlight. Reuse of the chassis and lander designs will 
provide significant reduction in mission development 
cost.
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Introduction:  The Apollo surface activities are 

well documented [1-4] and an abundance of 
information associated with surface activities exists in 
multiple locations, both on paper and online [5-8]. 
With high-resolution data from LRO much of the 
routes taken by the Apollo crews can be digitized [9] 
along with corresponding sample and photograph 
locations. A centralized database of surface activities is 
being created in ArcGIS that places the traverses, 
sample sites, and other surface activities into a 
centralized spatial context [10]. The value of such a 
centralized database is that any feature (e.g., a traverse, 
a sample, or image) can have corresponding metadata 
(e.g., distance, time, compositions, web links) 
associated with it. The ArcGIS projects will be made 
available to the community and updated/revised as 
needed. 

Thus far all of the J-Missions have been digitized, 
with Apollo 15 being the most mature of the group. 
We have digitized the published traverse maps [11], 
the planned traverse and contingency walking routes 
[12], traced paths visible in LROC NAC images, added 
the locations of each station, sample site, and 
panorama location (Figures 1,2). Accompanying each 
sample site are metadata containing sample 
description, mass, age information, compositional data 
(major elements and REE compositions), and a link to 
the corresponding descriptive curation document  [7]. 

 
Figure 1. Apollo 15 EVA 3 planned traverse [12] 
versus actual traverse. Base image is LROC NAC 
frame M170538271. 

 
Figure 2. View of Station 9 from Apollo 15 EVA 3, 
showing sample locations [11]. Base image is LROC 
NAC frame M170538271. 

Strengths of Digital Apollo Traverse Data: There 
are many benefits of creating a spatial database of 
Apollo surface activities. Of particular interest is the 
ability to easily display compositional or age data 
associated with samples [3, 13, 14], calculate derived 
values (times, distances, relative speeds) [4], and easily 
place Apollo samples in their proper sampled context. 
Additionally, this database can be easily mined for 
information to assist in planning of future surface 
activities (differences between planned and actual 
traverses in a variety of terrains). 

We would appreciate suggestions for data and or 
products to include in the database or ways to make the 
digital product useable to the broader community. 
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Introduction We have investigated the relationship 
between the chemical reactivity of lunar dust and its 
biological effect in the lungs. Using authentic Apollo 
14 lunar dust, we evaluated the responsiveness of rat 
lung macrophages after intratracheal instillation [1], 
using the zymosan-stimulated macrophage chemilumi-
nescence assay.  Three preparations of respirable-sized 
lunar dust were studied: ball-milled lunar dust, jet-
milled lunar dust, and unground lunar dust.  At 30 days 
post-exposure to lunar dust, macrophages from rats 
that received the most chemically reactive lunar dust 
exhibited greater responsiveness than macrophages 
from animals exposed to less chemically reactive 
forms of the same lunar dust.  These results are analo-
gous to the increased toxic effect of highly chemically-
reactive mechanically-activated quartz dust [2]. Our 
results also show that Apollo 14 lunar dust is interme-
diate in toxicity, between TiO2 and quartz, and that 
lunar dust chemical reactivity may be a useful, meas-
urable parameter in assessing in situ toxicity.  
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Abstract. The Lunar Reconnaissance Orbiter 

(LRO) Lyman Alpha Mapping Project (LAMP)’s in-
novative nightside observing technique allows us to 
peer into the permanently shaded regions (PSRs) near 
the poles, and determine their UV albedos.  LAMP 
measurements indicate ~1-2% surface water frost 
abundances in a few PSRs based on spectral color 
comparisons [1]. A strong water ice absorption edge 
near 160 nm within LAMP's bandpass presents itself as 
a relative reddening at the longest far-UV  wave-
lengths.  LAMP generally measures darker albedos 
within PSRs at Lyman-α and other far-UV wavelengths 
that are consistent with ~30% higher porosity, and con-
sistent with "fairy-castle" structures previously sug-
gested to exist there [1].  Nightside maps of far-UV 
albedo show relative brightnings associated with the 
peaks of crater rims and other features indicative of 
enhanced spaceweathering effects [2].  Dayside far-UV 
maps and spectra are also being produced using more 
traditional photometry techniques.  Spectral analysis of 
dayside regions indicate far-UV signatures of surface 
hydration; this result complements the detections of 
OH/H2O hydration at infrared wavelengths by the 
Chandryaan-1/M3 team [3].   Lunar helium atmospheric 
emissions have been detected remotely for the first 
time, which enables new global investigations of its 
distribution and variability [4].  Initial variability stud-
ies show the lunar helium abundance to vary with solar 
wind conditions, as expected - including stoppages of 
helium in-flux during times of Earth magnetotail trans-
its [5].  LCROSS impact plume observations with 
LAMP detected H2, CO, Hg, Mg, and Ca constituents, 
which together with LCROSS shepherding satellite 
observations revealed a much richer mix of volatiles 
trapped within the PSRs than previously understood 
[6,7,8]. A lab study of the UV reflectance properties of 
lunar simulants and water ice samples is underway [9], 
and Apollo sample measurements are being planned to 
help us pioneer these new techniques in UV spectros-
copy for investigating lunar volatiles. 

Instrument. The LAMP UV spectrograph (Figure 
1) covers the 57-196 nm bandpass [10].  Its 6°×0.3° 
slit, nominally pointed nadir, scans the surface in push-
broom style, similar to other LRO instruments. LAMP 
routinely observes the Lunar nightside via reflected 
starlight and interplanetary medium illumination [11], 

and its mapping resolution of ~240 m x 240 m per pix-
el is similar to that for LROC/WAC and Diviner on 
LRO. The lunar dayside is also observed by switching 
to a pinhole mode after terminator crossings each orbit.  

 

 
Figure 1: LAMP instrument prior to LRO integration. 
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Since entering orbit in 2009 the Lunar Reconnais-

sance Orbiter Camera (LROC) has acquired over 
700,000 Wide Angle Camera (WAC) and Narrow An-
gle Camera (NAC) images of the Moon. This new im-
age collection is fueling research into the origin and 
evolution of the Moon (i.e. tectonism, volcanism, im-
pact processes, photometry and space environment-
surface interactions), unique advances in cartography, 
and provides the basis for stereo topography and mosa-
ics. This abstract highlights a subset of LROC-based 
advances to date. 

NAC images revealed an elevated silicic, nonmare 
volcanic complex 35 x 25 km (60˚N and 100˚E), be-
tween Compton and Belkovich craters (CB). The CB 
terrain sports numerous volcanic domes and irregular 
depressed areas interpreted to be caldera-like collapses. 
The volcanic complex corresponds to an area of high-
silica content (Diviner) and high Th (Lunar Prospec-
tor). Volcanic constructs diameters range from 1 to 6 
km in diameter with up to 800 m elevation and slopes 
>20˚. A low density of impact craters indicates that 
this volcanic complex is relatively young. 

The LROC team mapped over 150 Marius Hills 
(MH) volcanic domes and 90 volcanic cones, many of 
which were not previously identified. Morphology and 
compositional estimates (Diviner) indicate that MH 
domes are not silica-rich, unlike most other lunar 
domes. These results indicate that the Marius Hills are 
a unique form of lunar volcanism and support the hy-
pothesis that these landforms are products of low-
effusion rate mare lavas. 

Impact melt deposits are observed in most large 
Copernican impact craters (with diameters >10 km) in 
ponds and flows on exterior ejecta, the rim, inner wall, 
and crater floors. Preserved impact melt flow deposits 
are observed around craters as small as 2.4 km diame-
ter, and the estimated melt volume is substantially 
higher than models predict. At small diameters (<5 
km), the amount of melt predicted from modeling stud-
ies is small, and melt that is produced is expected to be 
ejected from the crater interior. However, we observe 
well-defined impact melt deposits on the floor of some 
highland impact craters as small as 200 m diameter. 
NAC digital elevation models (DEM) allow for a 
quantitative analysis of impact melt forms, from which 
properties such as viscosity, temperature, and clast 
content can be assessed. Observations show that melt 
deposits were highly fluid and superheated during em-
placement. 

A globally distributed population of previously un-
detected contractional and extensional structures were 

discovered in LROC images. Their crisp appearance, 
lack of superposed large-diameter impact craters, and 
crosscutting relations with small-diameter impact cra-
ters show that lobate scarps are relatively young land-
forms (<< 1 Ga). Because of their young age and wide 
distribution, the population of lobate scarps is inter-
preted as an expression of recent global radial contrac-
tion due to cooling of the lunar interior. NAC images 
also revealed small-scale extensional troughs or graben 
both in nearside mare and in the farside highlands. 
Crosscutting relations with small-diameter impact cra-
ters along with depths as shallow as 1 m indicate these 
pristine graben are <50 Ma old. The young, small-scale 
graben and lobate scarps place bounds on the amount 
of global radial contraction and the level of compres-
sional stress in the lunar crust. 

The polar orbit of LRO and the broad field of view 
of the WAC enable multi-temporal coverage of regions 
near the poles. From over 4000 WAC images several 
highly illuminated regions were discovered, including 
one site that remains	
   illuminated	
   for	
  nearly	
  94%	
  of	
  
the	
  year,	
  with	
  its	
  longest	
  eclipse	
  period	
  lasting	
  only	
  
43	
  hours.	
  Targeted	
  NAC	
  images	
  provide	
  higher	
  res-­‐
olution	
   characterization	
   of	
   specific	
   key	
   sites	
   with	
  
permanent	
  shadowing	
  and	
  extended	
  illumination.	
  

Repeat	
  imaging	
  over	
  a	
  range	
  of	
  viewing	
  and	
  Sun	
  
angles	
  revealed	
  the	
  presence	
  of	
  collapse	
  pits	
  both	
  in	
  
the	
  mare	
  and	
   impact	
  melt	
  deposits.	
  For	
   two	
  of	
   the	
  
mare	
  pits	
  LROC	
  imaged	
  into	
  sublunarean	
  voids	
  with	
  
unknown	
  extents.	
   

The repeat WAC coverage provides an unparelled 
photometric dataset that allows spatially resolved solu-
tions (currently 1°) to Hapke’s photometric equation (7 
bands, 300 to 700 nm) – data invaluable for photomet-
ric normalization and interpreting physical properties 
of the regolith. The WAC color also provides the 
means to better solve for titanium abundance within 
the mare, and distinguish subtle age differences within 
Copernican aged materials. 

The longevity of the LRO mission allows follow up 
NAC and WAC observations of previously known and 
newly discovered science targets over a range of illu-
mination and viewing geometries. Of particular merit 
is the continued acquisition of NAC stereo pairs and 
oblique sequences that provide amazing tools to unrav-
el the complex and relatively unknown geologic histo-
ry of the Moon. With the extended SMD phase, the 
LROC team is working towards the ultimate goal of 
imaging the whole Moon with pixel scales of 50 to 200 
cm.  

39Annual Meeting of the Lunar Exploration Analysis Group



RESOLVE LUNAR ICE/VOLATILE PAYLOAD DEVELOPMENT AND FIELD TEST STATUS.              

G. B. Sanders
1
, R.S. Baird

1
, K. N. Rogers

1
, W. E. Larson

2
, J. W. Quinn

2
, J. E. Smith

2
, A. Colaprete

3
, R. C. Elphic

3
, 

and M. Picard
4
, 

1
NASA-JSC, 2101 NASA Parkway, Houston, TX, gerald.b.sanders@nasa.gov, 

2
NASA-KSC, Ken-

nedy Space Center, FL, 
3
NASA-ARC, Moffet Field, CA, 

4
Candian Space Center, Québec, Canada. 

 

 

Introduction:  Understanding the form, distribu-

tion, and content of water/ice and other volatiles at the 

lunar poles can have a profound effect on the scientific 

understanding of the Moon and solar system evolution, 

and on plans for utilizing the resources on the Moon 

for sustained human exploration and the commercial 

development of space.  While orbital remote sensing 

and surface impact data has been obtained from lunar 

scientific spacecraft on the potential presence and dis-

tribution of water/ice on the Moon, the data collected 

provides only an initial understanding of its form and 

distribution which must be further refined.  Since 

2005, the National Aeronautics and Space Administra-

tion (NASA) and the Canadian Space Agency (CSA) 

have cooperated in developing an experiment package 

that could provide ‘ground truth’ measurements of 

water/ice and other volatiles at the lunar poles as well 

as demonstrate the feasibility of extracting oxygen 

from lunar regolith.   

RESOLVE Overview:  The Regolith & Environ-

ment Science and Oxygen & Lunar Volatile Extraction 

(RESOLVE) is a rover-based experiment that includes 

neutron and near infrared spectrometers to locate hy-

drogen-sources and water, a drilling system to collect 

samples down to one meter below the surface, and a 

sample analysis oven with a gas chromatograph/mass 

spectrometer to heat and analyze water and other vola-

tiles released from subsurface samples.  The same oven 

can be heated to 900 ºC with hydrogen gas to extract 

oxygen from iron-oxide minerals in the regolith.  From 

2005 to 2010, two generations of RESOLVE proto-

types were built and tested, along with performing tests 

of RESOLVE on a rover at an analogue site in Hawaii 

in Nov. 2008 and Feb. 2010.   

RESOLVE Design Reference Mission (DRM):  

In order to design the 3
rd

 generation RESOLVE, a de-

sign reference mission (DRM) study was performed.  

Sites for the DRM had to meet four selection criteria:  

1) high hydrogen concentrations, 2) good ice stability, 

3) visibility from Earth so a relay satellite is not re-

quired to perform the mission, and 4) brief periods of 

sunlight to allow solar power to be utilized.  Data from 

four instruments on LRO (LEND, DIVINER, LOLA, 

and LROC) were used in the study. Design require-

ments for RESOLVE are based on a 5-7 day sunlit 

mission near Cabeus crater. 

RESOLVE 3
rd

 Generation Flight Prototype:  To 

meet mission DRM requirements, the 3
rd

 Generation of 

the RESOLVE is being designed to operate both in 

sunlight as well as brief periods of shadowing (<100 

K) and to perform 3 to 5 one-meter drill core sample 

collection and analyses operations in a 5 to 7 day pe-

riod over a 1 to 3 km traverse.  The 3
rd

 Gen RESOLVE 

unit is being designed and built in two Phases.  Phase I 

is a flight mass/power unit for lunar polar mission si-

mulation analogue testing in July 2012, and Phase II is 

a flight mass/power unit for lunar environment testing 

in 2014.   

Lunar Polar Mission Simulation:  To validate 

both the design of the 3
rd

 generation RESOLVE unit as 

well as the lunar polar RESOLVE DRM, an analogue 

field test mission simulation was performed in July 

2012.  The purpose was to demonstrate: i) integration 

of all the hardware necessary for flight on a single 

rover, ii) integrated operations of the RESOLVE and 

rover including roving/scanning, drilling/sample trans-

fer, and sample processing/volatile measurement, iii) 

all mission operations and timelines to validate a short 

duration lunar mission, and iv) mission command and 

control with lunar time delays and bandwidth limita-

tions.   

To make the mission simulation as realistic as pos-

sible, polyethylene sheets were used to simulate 

ice/water concentrations and a mockup lander was 

utilized to ‘deliver’ the RESOLVE/rover to the mission 

start location and provide communication, situational 

awareness, and relative navigation to the 

RESOLVE/rover mission team.  All operations were 

performed remotely with either the main 

RESOLVE/rover mission team near the test site, or by 

personnel at control centers at NASA Johnson and 

Kennedy Space Centers, CSA, or science support from 

NASA Ames Research Center using only data pro-

vided by the rover or mockup lander.   

Before the field test, Category 1 (mandatory) to 4 

(goals) objectives based on the RESOLVE lunar DRM 

were established.  At the completion of the analogue 

mission simulation, almost all of the Category 1, 2, and 

3 objectives were accomplished and 2 of 5 Category 4 

objectives were accomplished.   

Next Step in RESOLVE Development:  With the 

completion of the Phase I RESOLVE buildup and mis-

sion simulation in Hawaii, the RESOLVE team is now 

focusing on Phase II development of the lunar vac-

uum/environment compatible flight prototype.  Further 

testing of the Phase I RESOLVE unit will also be per-

formed to provide more lessons learned going into 

Phase II.  Lunar environment testing is planned for 

August, 2014. 
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Introduction: More than 50 years ago, it was sug-

gested that some areas near the lunar poles are suffi-

ciently cold to trap and preserve for a very long time 

(~Gy) hydrogen bearing volatiles, either primordial or 

produced at the Moon via solar wind interactions or 

brought to the Moon as water ice by comets and mete-

oroids [1,2]. The results of observations made by radar 

onboard the Clementine spacecraft and by neutron 

(LPNS) and gamma-ray (LPGRS) spectrometers 

onboard the Lunar Prospector mission have been inter-

preted as an enhancement of hydrogen abundance in 

permanently shadowed regions (PSRs) [3]. Unfortu-

nately, the spatial resolution of the LPNS was much 

broader than the size of any largest PSRs [4] requiring 

model dependent data deconvolution to reslve signal 

from PSRs itself. 

Data Analysis: We would like to present updated 

results of analysis of Lunar Exploration Neutron Detec-

tor (LEND) data for about three years of lunar map-

ping. Data measured by collimated LEND detectors 

allows one to look at neutron flux distribution at Moon 

poles with much better spatial resolution then was 

achieved at previous space missions. 

Using the LEND data we had tested the hypothesis 

that all PSRs are contain a large amount of water ice 

permafrost and test for hydrogen presents in regolith of 

regions outside of PSRs. 

Discussion: Both analyses of individual PSRs and 

studies of groups of PSRs have shown that these spots 

of extreme cold at lunar poles are not associated with a 

strong effect of epithermal neutron flux suppression 

[5]. We found only three large PSRs, Shoemaker and 

Cabeus in the South and Rozhdestvensky U in the 

North, which manifest significant neutron suppression, 

from -5.5% to -14.9%. All other PSRs have much 

smaller suppression, no more than few percentages, if 

at all. Some PSRs even display excess of neutron emis-

sion in respect to sunlit vicinity around them. Testing 

PSRs collectively, we have not found any average sup-

pression for them. Only group of 18 large PSRs, with 

area >200 km
2
, show a marginal effect of small average 

suppression, ~2%, with low statistical confidence. A 

~2% suppression corresponds to ~125 ppm of hydro-

gen taking into account the global neutron suppression 

near the lunar poles and assuming a homogeneous Hy-

drogen distribution in depth in the regolith [6].  

Testing for hyfrogen presents in regolith of regions 

outside of PSRs has been done by detection of local 

spots of suppression and excess of epithermal neutron 

emission at the lunar poles. Found areas there named as 

Neutron Suppression Regions (NSRs) and Neutron 

Excess Regions (NERs). These NSRs may be identi-

fied with spots of water-ice rich permafrost on the 

Moon. It is shown that detected NSRs are include in 

both permanently shadowed and illuminated areas, and 

they are not coincident with Permanently Shadowed 

Regions (PSRs) at the bottom of polar craters, as has 

been commonly expected before LEND presented neu-

tron data with high spatial resolution [7]. 
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Introduction:  Precise measurements of gravity 

and rotation of planets as well as seismic measurement 
are important for the discussion on their deep interior. 
The Moon revolves around the Earth once in a month 
synchronously with its rotation.  It is tidally deformed 
by the Earth, which would excite irregular motion of 
the lunar rotation with small amplitude, which is called 
forced librations.  Additionally, free libration is excited 
by impacts, liquid core, and orbital resonance.  Dissi-
pation of the libration terms of lunar rotation may de-
pend on the interior structure of the Moon, especially 
the state of the core and lower mantle [1, 2].  Effect of 
tidal deformation can be detected by low-degree gravi-
ty change, although surface height change is as small 
as 10cm.    Long-term (> a few months) gravity meas-
urements can provide information of the lunar tidal 
deformation. One important scale of tidal deformation 
is degree 2 potential Love number k2, which could 
constrain the state of the core (solid or liquid) and vis-
cosity of the lower mantle of the Moon [3].   
 
    VLBI gravity measurement:   In KAGUYA 
(SELENE) mission, multi-frequency differential VLBI 
observations (S/X bands) are used for the precise de-
termination of orbits of satellites leading to increase in 
the accuracy of lunar gravity field [4].  However, the 
accuracy of low-order gravity and its change are lim-
ited.  The same-beam VLBI observation is only possi-
ble when the separation angle between the two radio 
sources is smaller than the beamwidth of the ground 
antennas. The relatively large shape of Rstar’s orbit 
(100 km x 2400 km) did not allow the same-beam ob-
servation all the time. 
   SELENE-2 is planed as a follow-on mission of 
KAGUYA. The spacecraft is to be launched in 2010's. 
SELENE-2 lands on the nearside of the Moon and in-
vestigates the surface and the interior of the moon.  In 
SELENE-2 mission, we will have VLBI radio (VRAD) 
sources both in the lander and the orbiter.  Vstar-like 
orbit (100 km x 800 km) will almost always keep the 
separation angle smaller than the S-band beamwidth of 
domestic VERA stations since one of the radio sources 
is fixed on the near-side lunar surface.   Also, for con-
tinuous tracking of the orbiter both by S and X bands, 
we started development of two-beam S/X receivers 
which will allow larger separation angle between radi-
osources. 

  The k2 is sensitive to the state of deep interior.  When 
the core radius is 350 km, k2 changes by about 5% be-
tween liquid and solid cores.  Using same-beam (or 
two-beam) multi-frequency VLBI observation of , we 
will determine orbits of the orbiter precisely, measure 
low-order gravity changes, and estimate k2 with uncer-
tainty below 1%.  If the core size is constrained by 
SELENE-2 seismometer, contributions of lower man-
tle and core on k2 would separated. 
 
    LLR:  We also propose a Lunar Laser Ranging 
(LLR) reflector on SELENE-2 lander.  Instead of con-
ventional corner cube reflector (CCR) array, we plan a 
larger single reflector in SELENE-2.  The new reflec-
tor should be somewhere in the southern hemisphere 
on the nearside Moon. With pre-existed reflectors, 
latitudinal component of lunar libration and its dissipa-
tion can be measured precisely.  The dissipation be-
tween the solid mantle and a fluid core was discussed.  
LLR observation has also provided information of 
moment of inertia and tidal Love number of the Moon.  
However, among LLR parameters, k2 and core oblate-
ness is coupled.  Once k2 is fixed, we can determine 
core oblateness, which would also constrain the core 
and lower mantle states. 
 
   ILOM (In-situ Lunar Orientation Measurement) 
 The ILOM is an experiment to measure the lunar 
physical librations on the Moon with a star-tracking 
small telescope [2].  Since observation of ILOM is 
independent of the distance between the Earth and the 
Moon, the effect of orbital motion is clearly separated 
from the observed data of lunar rotation.  This is the 
advantage of ILOM over the ground-based methods 
such as LLR and VLBI.  The crucial issue that should 
be overcome is the survival of lunar night and thermal 
effect of solar illumination on the zenith tube. 

 
References:  [1] J. G. Williams et al. (2001) JGR 

106 27933-27968. [2] H. Hanada et al. (2005) Proc. Int. 
Ass. Geod. Springer, pp.163-168. [3] K. Matsumoto et 
al., (2011) Geophysical Research Abstracts 13, 
EGU2011-2032-1.  [4] S. Goossens, et al. (2011) J. 
Geodesy, 85, 205-228. 
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The Return of Samples by the Apollo Program Shaped Our Understanding of the Solar System. C.K. Shearer, 

Institute of Meteoritics, Department of Earth and Planetary Science, University of New Mexico, Albuquerque, NM 

98122. (cshearer@unm.edu) 

 

 

Introduction: The Apollo Program remains the only 

set of missions that enabled humans to land and ex-

plore the surface of a planetary body. Apollo 17 illus-

trated the powerful combination of mobility, science 

driven, sample site selection, human boots-on-the-

ground geological observations, and sample collection 

that makes it a prototype for future human missions to 

planetary surfaces. One of the crowning achievements 

of the Apollo program was to collect and return ap-

proximately 381.7 kg of rock and soil from six landing 

sites located in the central part of the Moon’s nearside. 

It is nearly impossible to decouple sample observations 

from observations made on the lunar surface and from 

orbit in examining the fundamental lunar science ac-

complished by the Apollo Program. Each type of ob-

servation provides a variety of perspectives that enrich 

all observations. For example, whereas samples pro-

vide ground truth for remotely sensed data, remotely 

sensed data provide a regional and planetary context to 

place returned samples.  Here, I attempt to decouple 

these observations in order to illustrate the important 

role of samples in redefining how the solar system 

works and the scientific limitations of an Apollo Pro-

gram if it did not return samples. 

New Concepts of the Solar System derived from 

Apollo Program Sample: There were numerous con-

cepts derived from the samples returned by the Apollo 

Program. Many of these concepts were initially pro-

posed during the Apollo Program and continued to 

evolve over 40 plus years of sample analysis. This 

presentation explores the role of samples in defining 

mechanisms for early planetary differentiation, the 

origin of the Earth-Moon system, and the late, heavy 

bombardment of the inner Solar System. 

Mechanisms for the differentiation of the terrestrial 

planets: Following the return of Apollo 11 samples, 

the concept of a lunar magma ocean (LMO) was first 

introduced based on the recognition that the lunar high-

lands are composed primarily of Ca-rich plagioclase. 

This concept was further tested and refined with other 

sample observations such as:  (1) antiquity and geo-

chemical uniqueness of the ferroan anorthosites, (2) 

complementary europium anomalies of ferroan anor-

thosites (primordial lunar crust) and mare basalts (de-

rived from LMO cumulates), (3) ancient and variable 

mantle sources for mare basalts and (4) uniformity of 

incompatible trace-element ratios that may represent  

the last dregs of a LMO (i.e. KREEP). The early dif-

ferentiation of the Moon via a lunar magma ocean has 

been viewed as an end-member differentiation process 

that has been extended to other terrestrial planets 

(Earth, Mars, asteroids). 

Late, heavy bombardment of the inner Solar Sys-

tem. In the early-1970s, it was recognized that most 

highland samples exhibit a Pb-U fractionation that was 

essentially due to Pb volatilization during metamorphic 

events in the interval 3.85-4.00 Ga. It was proposed 

that highland samples from widely separated areas bear 

the imprint of a series of events in a narrow time inter-

val which were identified with a cataclysmic impacting 

rate of the moon at ∼ 3.9 Ga. This concept was further 

tested with chronological studies of impact derived 

lunar lithologies returned by the Apollo Program. This 

concept is further being tested and modeled to decipher 

the impact history of the inner solar system and link it 

to the alignment and potential reorientation of the giant 

planet hundreds of millions of years after accretion of 

the planets. 

A giant impact origin for the Earth-Moon system: 

Numerous models had been proposed for the origin of 

the Earth-Moon system prior to the Apollo Program. 

However, dynamical constraints and celestrial mechan-

ics were not sufficient to pin down the origin of this 

two planet system. Geochemical measurements of lunar 

samples provided some contrasts with materials from 

the Earth with regards to differences in Mg#, oxygen 

isotopes, refractory elements, and volatile elements. In 

the mid-1970s, combining the geochemical characteris-

tics of lunar samples, and arguments for a LMO with 

other constraints led to the concept of the Giant impact 

model. The recent sample observation that the Moon is 

more H-rich than concluded after the Apollo Program 

is not inconsistent with this model. Current missions 

LRO and GRAIL and potential future missions such as 

a lunar geophysical network and a sample return from 

the South Pole-Aitken basin will shed additional light 

on the bulk composition of the Moon. This will provide 

additional tests for the Giant impact concept. 

 

43Annual Meeting of the Lunar Exploration Analysis Group



Results of the Lunar Exploration Analysis Group GAP-SAT (Specific Action Team) I and II examination of 

Strategic Knowledge Gaps for the Moon First Scenario for Human Exploration of the Solar System.  Mem-

bers of the GAP-SAT Teams I and II. Reported by C.K. Shearer, Institute of Meteoritics, Department of Earth and 

Planetary Science, University of New Mexico, Albuquerque, NM 98122. (cshearer@unm.edu) 

 

 

The Lunar Exploration Analysis Group (LEAG) 

was tasked by the Human Exploration Operations Mis-

sion Directorate (HEOMD) to establish a Specific Ac-

tion Team (SAT) to evaluate and provide findings that 

define existing Strategic Knowledge Gaps (SKGs) in 

the context of implementing the “Moon first” option, 

which is one of the destinations being considered by 

NASA’s Human Space Flight Architecture Team and 

the International Space Exploration Coordination 

Group’s Global Exploration Roadmap (GER). The 

“GAP-SAT” analysis consisted of two teams (GAP-

SAT I and II). 

The LEAG “GAP-SAT” team I identified important 

SKG and placed them within the context of (1) ena-

bling or enhancing components in the “Moon First” 

scenario, (2) the Planetary Science Decadal Survey, (3) 

the LEAG Lunar Exploration Roadmap, and (4) 

NASA’s Human Space Flight Architecture Team’s 

(HAT) mission scenario development. The SAT con-

cluded that following the completion of Lunar Recon-

naissance Orbiter mission (LRO) there are no SKGs 

that would inhibit the flight of an early Apollo-style 

mission (Apollo 11, 12, 14). However, in the context of 

a “Moon First Scenario” which develops assets and 

capabilities for human activity within the Earth-Moon 

system (EMS) and beyond EMS to Near Earth Aster-

oids and Mars, there are numerous SKGs that enable 

and enhance a more mature human exploration of the 

Moon. Specific SKGs are dependent upon the architec-

ture of the “Moon First Scenario”. We concluded that 

resource exploration and utilization (ISRU) is a “game 

changer” in how humans explore the Solar System by 

creating an infrastructure that enables a sustainable 

human presence. Prior to robotic missions, SKGs can 

be filled with on-going missions, ISS, Earth-based 

technology development, and lunar samples studies. 

SKGs that can be partially or totally retired in this 

manner include: solar resources, regolith resources, 

lunar ISRU production efficiency, predicting solar 

activity, geodetic grid & navigation, maintaining peak 

human health, effect of dust on human and instrument 

performance, modeling blast ejecta, and lunar mass 

concentrations and distribution that influence the accu-

racy of navigation predictions, the ability to do preci-

sion landing and the stability of spacecraft left in orbit 

for long periods. A systematic robotic precursor cam-

paign can be used to fill additional SKGs to enable and 

enhance a “Moon First Scenario”. Although these ro-

botic missions emphasize SKGs tied to investigating 

unexplored lunar terrains, prospecting for potential 

resources, and resource utilization, they are apt for 

filling SKGs relevant to plasma environment and elec-

trical charging, radiation on the lunar surface, effect of 

dust on technology and biology, surface trafficability, 

and propulsion-induced ejecta. In addition to filling 

SKGs, robotic and early human missions both enable 

and enhance important lunar and solar system science 

that has been identified in the NRC Planetary Science 

Decadal Survey, other NRC studies, and the LEAG 

Exploration Roadmap. There are numerous SKG tied 

to the “Moon First” Scenario that cross-cut other desti-

nations.  

The LEAG GAP-SAT I analysis was the first step 

in exploring SKG for lunar exploration. A second 

LEAG SAT (GAP-SAT II) is currently involved in 

providing a quantitative description of measurements 

that are required to fill knowledge gaps, identifying the 

fidelity of the measurements needed, and if relevant, 

providing examples of existing instruments capable of 

making the measurements. The results of this analysis 

will be completed prior to the LEAG annual meeting 

taking place at the Goddard Space Flight Center on 

October 22-24, 2012. We will report the conclusions of 

the analysis conducted by both LEAG GAP-SAT 

Teams I and II. 
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Questions about Lunar Origin  S. Fred Singer  <singer@sepp.org> 

 

 

Introduction:  In 1975 William K. Hart-

mann and Donald R. Davis suggested that, 

at the end of the planet formation period, 

several satellite-sized bodies had formed 

that could collide with the planets or be 

captured. They proposed that one of these 

objects may have collided with the Earth, 

ejecting refractory, volatile-poor dust that 

could coalesce to form the Moon. This 

collision could help explain the unique 

geological properties of the Moon. 

 

The impact hypothesis was devised mainly 

to circumvent what was thought to be a 

low probability of lunar capture (Singer 

1968, 1986).  (Yet, strangely, capture ap-

pears to be the preferred hypothesis for the 

origin of the outer moons of Jupiter and 

some other planetary satellites.)  But the 

impact hypothesis has similar probability 

problems that are hardly ever mentioned -- 

in addition to more fundamental problems, 

all of which can be overcome only with 

various ad hoc assumptions. 

 

Another advantage of ‘impact’ over ‘cap-

ture’ was thought to be the chemical com-

position of the Moon, which resembles 

that of the Earth’ mantle.  But recent find-

ings show substantial and unexplained 

differences. 

 

12 Questions:  The impact hypothesis 

(Hartmann; Benz, Cameron, Melosh; 

Canup, Asphaug) of lunar origin seems to 

have found general acceptance – in spite 

of the fact that its probability is low and 

the physics of the lunar formation is not 

readily transparent, being obscured by a 

complicated computer program.  Never-

theless, one can raise certain questions that 

an impact process should answer: 

 

1.  For what range of impact parameters a 

is there an appreciable chance of forming 

the Moon?  If a is close to the Earth radius 

R, then the impact is only glancing and the 

process becomes operationally indistin-

guishable from "capture"; if a<<R, then 

the probability of forming a Moon from 

Earth material appears low (as evident 

from arguments of angular momentum 

conservation). 

 

2.  Therefore how many Mars-like bodies 

must impact in order to have a reasonable 

chance to produce the present Moon?  

And why is impact origin more probable 

than capture?  Also: If there are so many 

bodies available, why didn't it happen on 

Venus or Mars? 

 

3.  In the calculation, what is the assumed 

pre-impact spin of the Earth?  The initial 

papers on impact formation of the Moon 

did not consider a pre-impact rotation of 

the Earth.  What restraints are there on the 

pre-impact angular momentum?  E.g., 

could a retrograde impact produce the 

Moon?  Or: How to be sure that the total 

angular momentum matches the present 

value of the Earth-Moon system?  How 

does the Earth spin angular momentum 

vector change during and following the 

impact?  What fraction of the total angular 

momentum is taken up by the debris ema-

nating from the impact?  What fraction is 

carried away by the escaping debris? 

 

4.  What happens to the splashed-out ma-

terial from the impact; how many particles 

escape and how many return on ballistic 

orbits?  Whence comes the angular mo-

mentum for a bound lunar orbit?  How and 

where does "captured" material assemble 

and what exactly is the initial lunar orbit? 

 Plus 8 more qestions 

 

Conclusion: We will discuss how to de-

cide on which lunar origin hypothesis is 

more probable.  Capture or Impact. 

 

References:  Singer, S.F. Geophys. J.   

Royal Astron. Soc. 15, 205-226, 1968;  

”Origin of the Moon by Capture” in The 

Moon (W. Hartmann et al., ed.) LPI, Hou-

ston, 1986. pp, 471-485.   

Canup, R.M. and E. Asphaug 2001. Na-

ture, 412, 708-712  

Canup, R. M. 2004. Icarus 168 (2): 433 

Borg, L. et al.  2011. Nature 477, 70–72 

Saal, A. E. 2008. Nature 454, 192-195 
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Introduction:  We describe the PREDICCs space 

radiation prediction and forecasting tool and provide 

early results from recent and historic lunar, planetary, 

and deep space applications.  While robotic missions 

routinely explore beyond near-Earth space, where the 

dual cocoons of Earth’s strong magnetic field and thick 

atmosphere protect us from galactic cosmic rays (GCR) 

and solar energetic particles (SEP), only a scant few 

manned Apollo missions ever ventured further outward 

and faced the risks to astronauts of space radiation om-

nipresent in deep space.  At geostationary orbit dis-

tances and beyond (i.e., all locations greater than a 

tenth of the distance to the Moon), GCRs pose a rela-

tively weak but incessant source of energetic ionizing 

radiation.   The GCR component varies slowly with the 

solar cycle (in anti-phase) and presents a radiation dose 

risk for all long-duration missions, with higher risk at 

solar minimum when GCR intensity maximize.  In deep 

space, SEPs ride on top of this slowly varying radiation 

dose, delivering episodic intervals of powerfully in-

tense radiation from somewhat lower energy particles 

accelerated during solar explosive events.  Though 

short in duration (typically hours to days), SEPs can 

deliver as much equivalent dose as GCR does in 

months to a year.  Risks of GCR and SEPs exist for 

both robotic and manned missions.  For instance, dur-

ing the Apollo era, the March 1972 SEP event deliv-

ered a powerful dose of ionizing radiation at the Moon, 

but which fortunately occurred between two Apollo 

missions.  A similar event during the Mars Odyssey 

mission crippled the MARIE instrument.  . 

PREDICCS:  Motivated by this radiation risk, en-

abled by advanced scientific understanding of the un-

derlying physics of SEPs and GCR variability, and 

supported by NASA’s ESMD and SMD funds, we have 

developed the PREDDICs space radiation prediction 

and forecasting tool.  We leverage the Earth-Moon-

Mars Radiation Environment-Module (EMM-REM) 

developed under the NASA Living With a Star (LWS) 

program and extend it to predict the dose, dose rate, 

and equivalent dose owing to GCR and SEPs through-

out the inner heliosphere.  The PREDDICs model has 

been validated through incorporation of and compari-

son with radiation measurements near Earth and also at 

the Moon with the Cosmic Ray Telescope for the Ef-

fects of Radiation (CRaTER)  instrument on NASA’s 

Lunar Reconnaissance Orbiter (LRO) mission.  In this 

presentation, we provide a summary of the PREDICCs 

model, and then show how the model can be and is 

being used to predict and forecast the radiation envi-

ronment throughout the inner solar system.  We will 

show comparisons between predictions and CRaTER 

observations not only at the Moon, but also predica-

tions for other exploration destinations, such as Mars, 

where with the successful landing of Mars Science La-

boratory, we will be able to further validate the model 

through comparison with such radiation detection in-

struments as RAD and DAN. 

46 LPI Contribution No. 1685



TRAVERSE PLANNING USING LUNAR RECONNAISSANCE ORBITER NARROW ANGLE CAMERA 
DIGITAL ELEVATION MODELS. E. J. Speyerer1, S. J. Lawrence1, J. D. Stopar1, K. N. Burns1, and M. S. Rob-
inson1, 1School of Earth and Space Exploration, Arizona State University, Tempe, AZ (espeyerer@ser.asu.edu). 

 
Introduction: Recent lunar missions provide im-

portant new geologic and topographic datasets for the 
Moon. To supply precise measurements, execute pre-
paratory investigations, and collect ground-truth sam-
ples for these remotely sensed datasets, future precur-
sor landers and rovers are required. One of the primary 
goals of the Lunar Reconnaissance Orbiter (LRO) is to 
deliver datasets that can be used to plan future mis-
sions to the lunar surface including landers and rovers. 
Digital elevations models (DEMs) derived from select 
LRO Narrow Angle Camera (NAC) stereo image pairs 
provide surface topography, slopes, and roughness at 
down to the 2 m scale (depending on the resolution of 
the input images) [1,2]. By considering multiple da-
tasets, including those derived from the NAC DEMs, 
we determine least energy traverse maps of key explo-
ration sites that can aid planning future rover mission. 

Traverse Planning Tool: To plan traverses inves-
tigating key exploration sites, the raster DEM is con-
verted into a network of equally spaced nodes. The 
spacing between nodes can be as fine as the original 
raster DEM, or several times larger depending on the 
size of the region, required accuracy of the traverse, 
and computational constraints. Each node connects to 
its six neighboring nodes to form a graph structure. 
The energy required, or cost, to traverse from one node 
to a neighboring node is dependent on an array of vari-
ables derived from the NAC DEM, the model rover, 
and other data sources: 
• Down track slope (NAC DEM) 
• Cross track slope (NAC DEM) 
• Terrain ruggedness (NAC DEM) 
• Solar panel orientation (NAC DEM, model rover) 
• Rolling resistance (a model rover) 
• Turning capabilities (a model rover) 

Using Dijkstra’s algorithm [3], the lowest energy trav-
erse paths from an initial node to all the nodes in the 
network are calculated. This framework is flexible 
over a broad scale of terrain types and scalable from 
localized regions to large exploration sites.  

Energy and Traverse Maps: Maps derived from 
these calculations show the energy needed to traverse 
from the initial node to all the other nodes in the net-
work (Figure 1). In addition to identifying relative en-
ergy to traverse from one site to another, these maps 
also identify areas that are not accessible to the model 
rover given a pre-defined set of constraints such as the 
maximum traversable slope.  

When using Dijkstra’s algorithm, the lowest cost 
path to travel to each node in the network is also 

stored. By selecting any traversable point on the map, 
the lowest cost path from the initial node is identified.   

Tool for Future Exploration: A traverse planning 
tool such as the one employed here is key for any fu-
ture lunar mission planning activities. These maps 
identify least energy traverse paths, as well as delimit 
traversable and inaccessible areas around each explora-
tion site. We can also use this tool to identify the re-
quired capabilities and operational characteristics a 
future prospecting rover would need in order to reach 
key targets of scientific interest at a specific site. Fu-
ture development will focus on adding other datasets 
and cost parameters such as boulder populations de-
rived from Diviner measurements and LOLA-derived 
surface roughness.  

References: [1] Robinson et al. (2010) Space. Sci. 
Rev. [2] Burns et al. (2012) ISPRS [3] Dijkstra (1959) 
Numerische Mathematik. 

 
Figure 1- NAC image (M111965782L/R) with poten-
tial low energy rover traverses in the Marius Hills re-
gion with corresponding shaded relief, slope, and ener-
gy map derived from a NAC DEM.  
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INTERPLANETARY CONDITIONS DURING THE APOLLO MISSIONS: IMPLICATIONS FOR THE 
STATE OF THE LUNAR ENVIRONMENT.  T. J. Stubbs1,2,3, D. A. Glenar4,3, A. P. Jordan5,3, Y. Wang1,2,3,       
R. R. Vondrak2,3, M. R. Collier2,3, W. M. Farrell2,3, M. I. Zimmerman6,2,3, N. A. Schwadron5, and H. E. Spence5,3, 
1University of Maryland, Baltimore County, 2NASA Goddard Space Flight Center, 3NASA Lunar Science Institute, 
4New Mexico State University, 5University of New Hampshire, 6ORAU/NPP. (Timothy.J.Stubbs@nasa.gov). 

 
 

Introduction:  The interplanetary conditions coin-
ciding with the Apollo missions had important impli-
cations for the state of the lunar environment experi-
enced by the astronauts, and measured by the many 
scientific investigations carried aboard the command 
modules and deployed on the Moon’s surface. The 
first comprehensive overview is presented of the space 
plasma, solar ultraviolet, energetic particle, geomag-
netic, and meteoroid stream conditions encountered by 
the Moon during Apollo. This includes an investiga-
tion of the location of the Moon with respect to the 
Earth’s bow shock and magnetopause boundaries in 
order to assess whether it encountered either the mag-
netosheath or the hot tenuous plasmas of the magneto-
sphere, respectively, during these missions. The inter-
planetary conditions during the Apollo missions are 
placed into the context of the last four solar cycles, and 
subsequent lunar missions, as well as extreme events, 
such as occurred during August 1972.  

Data Sources: We use the OMNIWeb dataset of 
interplanetary conditions at 1 AU. The parameters ex-

amined are: F10.7 (solar UV proxy); interplanetary 
magnetic field |B|; the concentration n, proton tempera-
ture Tproton, and flow speed |V| of the solar wind; the 
flux of energetic protons FMeV protons; and the KP index 
(as a proxy for solar wind conditions). The FMeV protons 
used here are good for characterizing the high fluxes 
during episodic solar energetic particle events, as op-
posed to the galactic cosmic ray background.  

Space Age Overview: The figure shows parame-
ters averaged over a 27-day solar rotation period. In 
the panels showing |B|, n, Tproton, and |V|, the blue lines 
indicate the average and the green lines the standard 
deviation. FMeV protons for energies >1 MeV and >10 
MeV are shown by gray and red lines, respectively. 
The solar cycle modulation is seen in all parameters to 
some extent, but especially F10.7. Indicated at the top 
are important intervals for lunar science and explora-
tion: the Apollo era (1968–1972), Apollo Lunar Sur-
face Experiments Package (ALSEP) switch off, and 
the Clemetine, Lunar Prospector and Kaguya missions. 
The Apollo missions were the only ones to fly during a 
solar maximum (from the peak through the declining 
phase). However, Cycle 20 was typically less active 
than later solar cycles. 

Radiation Hazards: The Apollo missions were 
fortunate to fly during relatively benign conditions, 
which is reflected in the average radiation measured by 
passive dosimeters flown on each mission. A maxi-
mum skin dose of 1.14 rads (rem) was measured dur-
ing Apollo 14 – this is very low when compared to the 
maximum operational dose, which was set at 400 rads. 
If an Apollo mission had flown during the August 
1972 solar flares and coronal mass ejections, then the 
crew could have experienced moderate acute radiation 
sickness without effective counter-measures. 

Meteoroid Streams: All missions, except Apollo 
13, coincided with established IAU meteoroid streams. 
In particular, Apollo 12 flew during the peak of the 
1969 Leonids, which had an exceptionally high zenith-
al hourly rate of 400. Similarly, Apollo 15 and 17 flew 
during the Persieds and Geminids, respectively, both 
of which are strong annual streams. This may be relat-
ed to observations of lunar horizon glow reported dur-
ing those missions, whether related to resonant scatter-
ing by exospheric neutrals or sunlight scattered from 
exospheric dust. 
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MONTE CARLO SIMULATIONS IN SUPPORT OF ORBITAL NEUTRON DETECTIOND BY THE 
LEND INSTRUMENT ON BOARD OF LRO SPACECRAFT. Jao-Jang Su1, Robert Khachatryan2, Roald 
Sagdeev1, Daniel Usikov1,  Gennady Milikh1, Gordon Chin3 

1Department of Physics, University of Maryland, College Park, MD 20742 
2Department of Physics, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95060 
3NASA Goddard Space Flight Center, Greenbelt, MD 20771 
 

     Introduction:  The early detection of lunar neu-
trons produced by precipitation of galactic cosmic ray 
(GCR) particles in the upper layer of lunar soil goes 
back to Apollo Moon landing (Apollo 17) epoch. Since 
then it has been developed into its own type of remote 
sensing (Lunar Prospector/1998-1999; LRO/2009-till 
now), which is especially sensitive for singling out the 
information on presence of hydrogen (e.g. frozen water 
inside permanently shadowed craters) from neutron 
based cosmo-chemistry data. The final interpretation 
technique relies on comprehensive Monte Carlo simu-
lation of neutron production by GCR and subsequent 
leakage from the Moon. Until now such extensive sim-
ulation was carried mostly with the use of MCNPX 
code [1], [2].  
     Model Description:  Here we report on the use of 
alternative MC code GEANT4, developed at CERN 
and offered as the open source software [3]. We be-
lieve that cross-comparison and inter-calibration of 
both codes will add more weight to the importance, 
versatility and reliability of Monte Carlo approach for 
neutron detection based planetary remote sensing. As a 
first step we compare basic results for neutron leakage 
from lunar soil (for several modeled elemental compo-
sitions). Then GEANT4 code was used to study the 
modification of neutron leakage in presence of top lay-
er of dry and wet regolith. These data were applied to 
analysis of physical nature of SNRs (Suppressed Neu-
tron Regions) found by LEND in polar areas of the 
Moon [4].   

References: [1] Lawrence D.J. et al., (2006) JGR, 
111, doi:10.1029/2005JE002637. [2] Mitrofanov I.G. 
et al. (2008) Astrobiology, 8, 
doi:10.1089/ast.207.0158. [3] Agostinelli S. et al., 
(2003) Nuclear Instr. Method in Phys. Res., 506A, 
250-303. [4] Mitrofanov I.G. et al. (2010) Science, 
330, doi:10.1126/science.1185696.  
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Water, Water, Everywhere:  But How to Find and Use It on the Moon! 

Lawrence A. Taylor, lataylor@utk.edu, Planetary Geosciences Institute, 

Earth & Planetary Sciences, University of Tennessee, Knoxville, TN 37996 

The last few years has seen the Moon go from “bone-dry” all the way to almost hosting the “Winter 

Olympics”.  The paradigm from 1973 for the production of nanophase metallic iron (np-Fe) in the lunar soil 

was the reduction of FeO in the micrometeorite melts by solar-wind hydrogen.  This should produce water as 

a product from the combination of the hydrogen and the oxygen from the FeO.  Yet, Larry Taylor in 1995 

could find nil by FTIR examination of  agglutinitic glass.   

Fast forward to the persistent search for OH in apatite by electron microprobe analysis, led by Francis 

McCubbin that spurred on several other endeavors.  In 2008, Alberta Saal’s team determined minor, but 

real, hydrogen in pyroclastic beads.  This was followed in 2010 by teams led by Jim Greenwood, Yang Liu 

(and later by Jeremy Boyce), and Francis McCubbin, aided by Eric Hauri, culminating in pubs by these 

teams in 2011-2012.  The annual Lunar and Planetary Science Conference continues to be the exciting venue 

for such discoveries. Onward to Hauri’s ‘water’ in lunar olivine melt inclusions. accompanied by Yang Liu’s 

proof of the presence of OH by FTIR.  Next, back to the agglutinates 

More recently in 2012, Yang’s team demonstrated a “hidden reservoir” of H, OH, and HOH in lunar soil 

agglutinitic glasses, up to >500 ppm.  These impact-produced glasses consist of upwards of 80 % of the fine 

soil. Thus, the agglutinates are a very real reservoir for lunar water, from several sources.  But the remote 

sensing community has been active with lunar orbiters. 

Enter Carle Pieters’s Moon Mineralogy Mapper team, who first observed OH in reflectance spectra of the 

Moon, to be subsequently verified by Roger Clark with re-examined Cassini data and Jessica Sunshine, with 

the EPOXY flyby data, which also hinted at a “dew” like quality for this OH.  They all reported together in 

9/2009.  Then came the LCROSS impactor, with its trailing spectrometers sensing water, water-ice, and many 

volatile components indicative of cometary water.  This was proof for the presence of water-ice in the 

permanently shadowed craters at the poles, following strong hints by various neutron-spectrometer signals on 

Pathfinder and LEND/LRO.    

Let us take count of the possible sources of OH, HOH, water, and water-ice as seen In and On the Moon:  1) 

indigenous water from the lunar magmas; 2) water in agglutinates from Solar-wind hydrogen reduction; 3) 

meteorite and micro-meteorite contamination, accounting for up to 2 wt% (e.g., carbonaceous chondrites); 4) 

cometary water, particularly collected at the poles; 5) solar-wind proton-induced OH-HOH.  All this water, 

BUT how much? 

Paul Spudis and his Mini-SAR team came up with a modest estimate of only 600 million tonnes of water-ice, 

and only surveying the North Pole.  The MMM team came up with something like a liter of water.  LCROSS 

found lots more.  But, the major unknown for lunar OH-HOH around the Moon is in the agglutinates, which 

in general comprise ~50 wt% of lunar regolith. 

Any settlement to the Moon will require In-Situ Resource Utilization (ISRU) of lunar materials.  And water 

for human and plant consumption is required, with the use of hydrogen and oxygen for rocket fuels as a 

major and substantial need.  Where the landing is located will require different sources of water, even with 

the possible need for oxygen production from lunar soil directly as reviewed by Taylor and Carrier (1973) 

(e.g., hydrogen reduction of soil).  The nature of lunar water, its quantities, its capture, and needs form the 

basis for this presentation. 
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The omnidirectional channel of LEND for epither-

mal neutrons (SETN) since the start of operations in 

2009 have accumulated more than 10
9
 neutron events. 

This data was used to generate the neutron suppression 

maps of the Moon with nominal resolution (~60 km). 

The volume of statistical database (still storing at the 

pace of about 10 cps) now is sufficient to go beyond 

nominal resolution of SETN by introducing the set of 

multiply overlapping pixels. 

We applied such approach in the framework of 

several alternative computational techniques of decon-

volution such as Conjugate Gradient, Iterative Gaussi-

an Smoothing, Weiner and Regularized Deconvolution 

[1] to construct “super-resolution ” maps (up to 20 km) 

for a few selected areas with most pronounced pres-

ence of hydrogen (Shoemaker PSR, NSRs, and others). 

References: [1] McClanahan T.P. et al. (2010),   

Computers & Geosciences, 36, 1484-1493. 
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The Lunar Reconnaissance Orbiter: Plans for the Extended Science Mission and Next Steps for Lunar Sci-
ence and Exploration,  R. R. Vondrak1,  J. W. Keller1, G. Chin1, J. B. Garvin1, N. E. Petro1, 1Goddard Space Flight 
Center, Greenbelt MD 20771. 

 
Introduction:  The Lunar Reconnaissance Orbiter 

spacecraft (LRO), launched on June 18, 2009, began 
with the goal of seeking safe landing sites for future 
robotic missions or the return of humans to the Moon 
as part of NASA’s Exploration Systems Mission Direc-
torate (ESMD). In addition, LRO’s objectives included 
the search for surface resources and the measurement 
of the lunar radiation environment. After spacecraft 
commissioning, the ESMD phase of the mission began 
on September 15, 2009 and was completed on Septem-
ber 15, 2010 when operational responsibility for LRO 
was transferred to NASA’s Science Mission Direc-
torate (SMD).  The SMD mission was scheduled for 2 
years and completed in September of 2012.    Under 
SMD, the Science Mission focused on a new set of 
goals related to understanding the geologic history of 
the Moon, its current state, and what it can tell us about 
the evolution of the Solar System.  

Having recently marked the completion of the two-
year Science Mission, we will review here the major 
results from the LRO for both exploration and science 
and discuss plans and objectives going forward includ-
ing plans for an Extended Science Mission that will last 
until September, 2014.  We will also discuss the LRO 
legacy data set and suggest future directions beyond 
LRO for science and exploration objectives.  Some 
results from the LRO mission are: the developent of 
comprehensive high resolution maps and digital terrain 
models of the lunar surface; discoveries on the nature 
of hydrogen distribution, and by extension water, at the 
lunar poles; measurement of the daytime and nighttime 
temperature of the lunar surface including temperature 
below 30 K in permanently shadowed regions (PSRs); 
direct measurement of Hg, H2, and CO deposits in the 
PSRs; evidence for recent tectonic activity on the 
Moon; and high resolution maps of the illumination 
conditions at the poles. 

The objectives for the Extended Science Mission 
under SMD address four themes: 1) The nature of polar 
volatiles, 2) Lunar differentiation and early evolution, 
3) The lunar impact record, 4) The Moon’s interaction 
with its external environment. 

The instruments, which were describe in detail pre-
viously[1], include Lunar Orbiter Laser Altimeter 
(LOLA), PI, David Smith, NASA Goddard Space 
Flight Center, Greenbelt, MD, Lunar Reconnaissance 
Orbiter Camera (LROC), PI, Mark Robinson, Arizona 
State University, Tempe, Arizona, Lunar Exploration 
Neutron Detector (LEND), PI, Igor Mitrofanov, Insti-
tute for Space Research, and Federal Space Agency, 

Moscow, Diviner Lunar Radiometer Experiment 
(DLRE), PI, David Paige, University of California, Los 
Angeles, Lyman-Alpha Mapping Project (LAMP), PI, 
Alan Stern, Southwest Research Institute, Boulder, 
Colorado, Cosmic Ray Telescope for the Effects of 
Radiation (CRaTER), PI, Harlan Spence, University 
of New Hampshire, New Hampshire, and Mini Radio-
Frequency Technology Demonstration (Mini-RF), 
P.I. Ben Bussey, Applied Physics Laboratory, Mary-
land. 

 
Figure 1 The fully assembled and thermal blanketed 
spacecraft. 

Data Access:  All of the LRO data  are added to 
the Planetary Data System on three month intervals, 
with a latency of no more than 6 months.  As of June 
15, 2012 more than 325 TBytes of data have been 
made available for science and exploration. 

References: [1] Vondrak, R.R., Keller, J.W., and 
Russell, C.T., (Ed.s), 2010, Lunar Reconnaissance Or-
biter Mission, New York, Springer. 
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Introduction:  High energy cosmic rays constantly 

bombard the lunar regolith, producing secondary “al-

bedo” or “splash” particles like protons and neutrons, 

some of which escape back to space.  Two lunar mis-

sions, Lunar Prospector and the Lunar Reconnaissance 

Orbiter (LRO), have shown that the energy distribution 

of albedo neutrons is modulated by the elemental com-

position of the lunar regolith[1-4], with reduced neu-

tron fluxes near the lunar poles being the result of col-

lisions with hydrogen nuclei in ice deposits[5] in per-

manently shadowed craters. Here we investigate an 

analogous phenomenon with high energy (~100 MeV) 

lunar albedo protons. 

CRaTER Instrument:  LRO has been observing 

the surface and environment of the Moon since June of 

2009. The CRaTER instrument (Cosmic Ray Tele-

scope for the Effects of Radiation) on LRO is designed 

to characterize the lunar radiation environment and its 

effects on simulated human tissue. CRaTER's multiple 

solid-state detectors can discriminate the different ele-

ments in the galactic cosmic ray (GCR) population 

above ~10 MeV/nucleon, and can also distinguish be-

tween primary GCR protons arriving from deep space 

and albedo particles propagating up from the lunar 

surface. 

Summary of Results:  We use albedo protons with 

energies greater than 60 MeV to construct a cosmic ray 

albedo proton map of the Moon.  The yield of albedo 

protons is proportional to the rate of lunar proton de-

tections divided by the rate of incoming GCR detec-

tions.  The map accounts for time variation in the albe-

do particles driven by time variations in the primary 

GCR population, thus revealing any true spatial varia-

tion of the albedo proton yield. 

Our current map is a significant improvement over 

the proof-of-concept map of Wilson et al.[6].  In addi-

tion to including twelve more months of CRaTER data 

here, we use more numerous minimum ionizing GCR 

protons for normalization, and we make use of all six 

of CRaTER’s detectors to reduce contamination from 

spurious non-proton events in the data stream. 

We find find that the flux of lunar albedo protons is 

indeed correlated with elemental abundances at the 

lunar surface.  In general the yield of albedo protons 

from the maria is 1.1% ± 0.4% higher than the yield 

from the highlands.  In addition there appear to be lo-

calized peaks in the albedo proton yield that are co-

located with peaks in trace elemental abundances as 

measured by the Lunar Prospector Gamma Ray Spec-

trometer. 

 
Figure 1. Grayscale (Top) and color-coded (Bottom) 

lunar albedo proton maps. Middle: Clementine white-

light mosaic of lunar surface.  

 

References: [1] Feldman W. C. et al. (1998) Sci-

ence, 281, 1496-1500. [2] Gasnault, O. et al. (2001) 

GRL, 28, 3797-3800. [3] Maurice, S. et al. (2004) 

JGR, 109, E07S04. [4] Mitrofanov I. G. et al. (2010) 

Science, 330, 483-486. [5] Feldman W. C. et al. (1997) 

JGR, 102, 25565-25574. [6] Wilson, J. K. et al. (2012) 

JGR, 117, E00H23. 
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Toward understanding the lunar electrostatic environment in the vicinity of complex polar topography.  M. I. 
Zimmerman1,2 (michael.i.zimmerman@nasa.gov), W. M. Farrell1,2, T. L. Jackson1,2, and T. J. Stubbs1,2,3 Goddard 
Space Flight Center, Greenbelt, MD, 2NASA Lunar Science Institute, Ames Research Center, Moffett Field, CA, 
3Center for Research and Exploration in Science and Technology, University of MD, Baltimore County. 

 
 
Introduction: Permanently shadowed regions 

(PSRs) are rich in complexity, due to the solar wind’s 
interaction with the surface [1-3 and references 
therein]. For instance, mini plasma wakes are thought 
to form downstream of topographic obstructions, giv-
ing rise to electric fields that divert solar wind protons 
toward the surface [1-3]; diverted keV protons may 
sputter volatiles from the surface or implant to drive 
surface chemistry. In addition, the charge state of an 
astronaut suit or other exploration infrastructure is 
governed by the interplay between incident plasma 
currents (as modulated by wake formation) and tribo-
charging from frictional contact with the surface [1]. 
Results from ongoing computational plasma physics 
research at Goddard Space Flight Center are presented 
investigating the effects of complex topography on 
downstream wake formation, which feeds forward into 
quantifying exploration charging hazards and efforts 
related to prospecting for natural lunar resources. 

Simulations: A combination of codes – one is 
open-source [4] and another has been developed solely 
at Goddard Space Flight Center – is used to simulate 
the solar wind flowing past various representative lu-
nar topographic geometries. The solar wind is repre-
sented as a flowing collection of bunches of electrons 
and protons continuously resupplied upstream, and any 
particles incident on the surface contribute to the local 
surface charge as well as emitting secondary particles 
in some cases.  The system evolves self-consistently 
according to the local electrostatic fields over many 
simulation timesteps, allowing detailed wake forma-
tion and quasisteady structure to be simulated in two 
spatial dimensions. 

Results: Fig. 1 shows simulated proton fluxes 
downstream of step-like and inclined crater walls. In 
the former case, the primary contribution to the electric 
field is the ambipolar field at the wake flank (not 
shown).  However, the inclined surface collects a sig-
nificant number of electrons due to its proximity to the 
bulk solar wind, and a strong surface electric field de-
velops which draw ions more swiftly toward the sur-
face.  Other geometries have been simulated, including 
arcing surfaces across a variety of spatial scales, as 
well as multi-step craters.  First steps toward under-
standing and predicting the electrostatic environment 
within PSRs will be demonstrated through a compari-
son with simulation and theory, and implications for 

exploration hazards as well as volatile sequestration 
will be presented. 

References: [1] Zimmerman, M. I. et al. (2012), 
JGR, in press, [2] Zimmerman, M. I. et al. (2011), 
GRL, 38, L19202, [3] Farrell et al. (2010), JGR, 115, 
E03004, [4] Verboncoeur et al. (1995), Comp. Phys. 
Comm., 87, 199. 

Acknowledgements:  This research was supported 
by an appointment to the NASA Postdoctoral Program 
at the Goddard Space Flight Center, administered by 
Oak Ridge Associated Universities through a contract 
with NASA. The support of LPROPS grant 
NNX08AN76G and the NASA Lunar Science Institute 
and DREAM virtual institute through grant 
NNX09AG78A are gratefully acknowledged, as well 
as the generous allocation of computing resources by 
Dr. Timothy McClanahan at Goddard Space Flight 
Center. 

 
 

 
Fig. 1: Simulated proton flux downstream of (top) a 
step-like and (bottom) an inclined polar crater wall.  
The light gray inclined line in the top panel is the loca-
tion of the surface from the bottom panel, provided for 
comparison. 
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