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In 2015, the International Society for Clinical Densitometry (ISCD) position statement regarding 

peripheral quantitative computed tomography (pQCT) did not recommend routine use of pQCT, 

in clinical settings until consistency in image acquisition and analysis protocols are reached, 

normative studies conducted, and treatment thresholds identified. To date, the lack of 

consensus-derived recommendations regarding pQCT implementation remains a barrier to 

implementation of pQCT technology. 

Thus, based on description of available evidence and literature synthesis, this review 

recommends the most appropriate pQCT acquisition and analysis protocols for clinical care and 

research purposes, and recommends specific measures for diagnosis of osteoporosis, assigning 

fracture risk and monitoring osteoporosis treatment effectiveness, among patients with 

neurological impairment. A systematic literature search of MEDLINE, EMBASE©, CINAHL and 

PubMed for available pQCT studies assessing bone health was carried out from inception to 

August 8th, 2017. The search was limited to individuals with neurological impairment (spinal 

cord injury, stroke and multiple sclerosis) as these groups have rapid and severe regional 

declines in bone mass. Of 923 references, we identified 69 that met review inclusion criteria. 

The majority of studies (n = 60) used the Stratec XCT 2000/3000 pQCT scanners as reflected in 

our evaluation of acquisition and analysis protocols. Overall congruence with the ISCD Official 

Positions was poor. Only 11% (n = 6) studies met quality reporting criteria for image acquisition 

and 32% (n = 19) reported their data analysis in a format suitable for reproduction. 

Therefore, based on current literature synthesis, ISCD position statements standards and the 

authors’ expertise, we propose acquisition and analysis protocols at the radius, tibia and femur 

sites using Stratec XCT 2000/3000 pQCT scanners among patients with neurological impairment 
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for clinical and research purposes in order to drive practice change, develop normative datasets 

and complete future meta-analysis to inform fracture risk and treatment efficacy evaluation. 

 

Key words: pQCT, image acquisition, neurological impairment, spinal cord injuries, diagnosis, 

systematic review, treatment  
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INTRODUCTION 

Advances in medical imaging (i.e., quantitative computed tomography and magnetic resonance 

imaging) during the last three decades have: enabled more comprehensive in vivo analysis of 

bone macro- and micro-structure;  increased our overall knowledge and understanding of bone 

anatomy and physiology; and, improved diagnostic determination of the presence or absence 

of disease (osteoporosis) (1,2). Nevertheless, in the clinical realm, diagnostic determination of 

the presence of low bone mass (osteoporosis), and the associated risk of non-vertebral and 

vertebral fragility fractures continues to rely predominantly on dual-energy X-ray 

absorptiometry (DXA) measures of areal bone mineral density (aBMD) and associated risk 

prediction tools (e.g., FRAX®, CAROC) as the current clinical “gold standard” (3–6). 

DXA is low cost, widely available, with simple usability - lower aBMD values are associated with 

a  higher likelihood of fragility fracture, and a greater likelihood the patient will benefit from 

medical therapy (7,8). Despite these appealing features, the reliability of aBMD can be 

compromised by inherent inaccuracies and ambiguities in DXA interpretation (9–11). The aBMD 

assessments do not consider bone size and, subsequently, a larger bone may appear more 

dense than a smaller one (2). Furthermore, aBMD is derived from the assumption that the 

region of interest contains only calcified  hard tissue and homogeneous soft tissues (10). Further, 

DXA is currently unable to provide reliable estimations of three-dimensional bone geometry 

and structure, that are necessary for the assessment of bone strength (12) and associated 

fracture risk (13–15). These limitations often lead to spuriously elevated absolute aBMD values 

among patients with bone disorders, such as osteoarthritic spondylosis and/or diffuse 

idiopathic skeletal hyperostosis (16). 
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In contrast to DXA measurements of aBMD, peripheral quantitative computed tomography 

(pQCT) and high resolution pQCT (HRpQCT) allow measurement of volumetric BMD (vBMD) 

independent of bone size. These scanners conduct sequential scanning (translation – rotation 

motion) in acquisition mode and acquire single-slice (pQCT) or multi-slice (HRpQCT) cross-

sectional images. Further, pQCT scanners offer the means to assess bone cross-sectional 

geometry, and to separate bone into its trabecular and cortical compartments (17). However, 

due to the narrow diameter of the scanner gantry, they cannot be applied to vertebral or 

proximal femur sites. Nonetheless, pQCT does provide information on apparent structural traits 

from appendicular bones, similar to data provided by clinical QCT at the lumbar spine and 

proximal femur (18–20). Furthermore, pQCT scanners do not require transfer of patients onto the 

scanner bed, which is particularly appealing among individuals with neurological impairments 

who require gait aids or a manual or power wheelchair to move about their home or 

community  (21). 

Notwithstanding the aforementioned limitations of DXA assessment, the discrepancies in DXA 

and pQCT distribution throughout the world (22), and the volume of pQCT studies (23), the 

current official positions of the International Society for Clinical Densitometry (ISCD) (4,6,24,25), 

does not recommend routine use of pQCT for diagnosis of osteoporosis, fracture risk prediction 

or monitoring of treatment effectiveness. This position is in part due to incompatibility of pQCT 

data with DXA derived T-scores, inconsistency in measurement sites, acquisition and analysis 

protocols,  lack of normative studies, and specific treatment thresholds (4,23,24,26,27). The 

following research questions were specified by ISCD (2007 ISCD Official Positions (4)) to 

determine the generalizability of pQCT modalities in clinical settings: “1) What are the technical 
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limitations of pQCT assessment for specific patient groups? ; 2) Which are the optimum 

anatomical sites to scan? ; and most importantly, 3) Which parameter(s) should be measured 

and for which intervention (diagnosis, fracture risk prediction, or treatment monitoring)”. These 

knowledge gaps constitute barriers to advancement of pQCT practice and routine clinical 

implementation of pQCT technology. 

It is well recognized  that disuse related declines in bone mass (e.g., after sustaining a spinal 

cord injury, SCI) (28–33) are more rapid and severe than age or postmenopausal related bone 

deterioration (34,35). Consequently, monitoring time intervals of changes in bone traits (e.g., size, 

shape, density, structure) as detected by peripheral scanners are shorter in duration, when 

compared to the general aging population. As a result, this impairment group represents a 

unique model for determination of the most appropriate pQCT measures based on their 

clinimetric properties for diagnosis, fracture risk prediction and monitoring of therapy. Finally, 

individuals with SCI tend to fracture at the distal femur and proximal tibia rather than the spine 

or proximal femur, so pQCT scans may be more clinically relevant (36). 

Thus, due to the current lack of consensus derived recommendations/guidelines for 

clinicians/researchers regarding pQCT implementation, we conducted a systematic literature 

search. Based on synthesis of the literature identified and the authors’ expertise, we evaluated 

the quality reporting of pQCT methods according to the ISCD Official Positions’ and available 

evidence to recommend the most appropriate pQCT acquisition and analysis protocols, 

measures for diagnosis of osteoporosis, assigning fracture risk and monitoring the effectiveness 

of osteoporosis therapy among individuals with neurological impairment. Considering the 
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variety of pQCT-based studies, in-vivo human studies among individuals with neurological 

impairment, including SCI, stroke and multiple sclerosis (MS), were the focus of this review.  

METHODS 

Methodology 

A systematic literature search for peer-reviewed articles was conducted in four databases 

MEDLINE (OVID interface), EMBASE©, CINAHL and PubMed. The search included all published 

reports from 1946 (MEDLINE and PubMed), 1947 (EMBASE©) and 1937 (CINAHL) until August 

8th, 2017. The search strategy used the following terms to capture the key concepts: SCI, 

Stroke, Multiple Sclerosis, pQCT, HR-pQCT, long bones, bone loss and bone traits. The search 

strategy employed an algorithm for each term, which was refined for each database, 

maximizing the use of available filters and qualifiers in order to maximize manuscript capture 

and minimize inclusion of irrelevant records (Appendix 1).   

A total of 923 references were identified; 156 (MEDLINE), 358 (EMBASE), 40 (CINAHL) and 369 

(PubMed). However, the search failed to identify some articles (37–40) on related topics known to 

the authors; these articles were also included in the review process.  

Selection process 

The primary author (TC) eliminated duplicate records (n = 301). Following a first level review of 

the abstract title and body of the remaining studies, the primary author eliminated animal 

studies not excluded by the search strategy (n = 26), ex vivo studies (n = 13), and studies 

unrelated to the imaging modalities of interest (i.e., modalities that cannot be directly used for 

densitometric measurements) and/or to the desired sites of assessment including the radius, 

tibia or femur anatomic sites (n = 480). 
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Following a second level review of the method sections of all remaining studies (n = 103), the 

primary author excluded study protocols (n = 1), studies irrelevant to the populations of 

interest (n = 8) and modality of interest (n = 21), and review papers (n = 4). Of the remaining 69 

studies, 67 used pQCT and 2 HRpQCT for bone health assessment. The article screening process 

is illustrated in Figure 1. 

[PREFERRED LOCATION OF FIGURE 1]  

Appraisal of evidence 

The following data were abstracted from the selected manuscripts: (i) the material and 

methods sections were searched for references regarding study design (observational/ 

interventional, cross-sectional/ longitudinal), patient population, scanner type, reference lines 

used, imaging site(s) selection, voxel size, slice thickness, method used for data analysis; and, 

(ii) the results and discussion sections were hand searched for references  regarding  bone traits 

that showed significant changes over the study duration or significant between group 

differences (p<0.05) and their clinimetric properties (i.e. the precision and least significant 

change), or traits used for bone strength estimation and/or fracture risk prediction.  These bone 

traits were then deemed meaningful for bone assessment by peripheral scanners and recorded. 

Traits that were reported as significant by at least 20% of studies (with similar study design), 

were recommended for inclusion in future minimum data sets (research and clinical), required 

to inform the development of normative datasets. 

To guarantee study reproducibility and comparability, the 2015  ISCD Official Positions state 

that quality reporting of pQCT methods should specify details regarding the pQCT acquisition 

and analysis (4,24). Specifically, all image acquisition protocols should include: scanner 
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make/model, bone length measurement methods; reference line selection, voxel size, and slice 

thickness settings; scanner translation speed, and specification of the imaging sites. Analysis 

protocols should clearly describe: the software version; analysis modes, and software 

thresholds used. The following sections describe the available abstracted data regarding pQCT 

scan acquisition parameters (anatomic site selection, reference line selection, voxel size, etc.), 

and scan analysis methods (i.e., used contour and peel modes, and specific thresholds) among 

individuals with SCI, Stroke and MS.   

RESULTS 

Imaging modalities 

The majority of reviewed studies (n = 60) used single-slice scanners, either XCT 2000 or XCT 

3000 (Stratec Medizintechnik GmbH, Pforzheim, Germany), with two exceptions, two studies 

which used the multi-slice XtremeCT (Scanco Medical AG, Bassersdorf, Switzerland) (41,42). A few 

studies (n = 6) used predecessors of these scanners e.g., XCT 960, Densiscan 1000/2000 

(29,32,38,43–45), and one study used the specially designed OsteoQuant© peripheral scanner (46) 

(Table 1).  

[PREFERRED LOCATION OF TABLE 1]  

As the search strategy identified only two HRpQCT-based studies (41,42), the evidence abstracted 

from these studies was considered insufficient for drawing specific conclusions, and therefore 

was omitted from further  synthesis and the article recommendations. Further, the XCT 960 and 

Densiscan scanners are obsolete and are now sparsely available [Personal communication with 

Stratec Medizintechnik GmbH and Scanco Medical], and the OsteoQuant© scanner is a unique 

laboratory product. As newer clinical scanners (XCT 2000/3000 and XtremeCT I/II) are routinely 
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used for current clinical studies, the further description of these aforementioned outdated 

scanners was deemed irrelevant for the purpose of this manuscript; thus, no further discussion 

regarding the XtremeCT (n = 2), XCT 960 (n = 2), Densiscan (n = 4) and OsteoQuant© (n = 1) 

scanner is included. Of note, technical details of both XCT 2000 and 3000 scanners were 

abstracted from the manufacturers’ websites and supplemental materials, and are presented in 

Table 2.  

[PREFERRED LOCATION OF TABLE 2]  

Image acquisition 

Anatomic site selection 

Of the sixty pQCT studies selected for inclusion in this review, 21 (35%) studies did not report 

the methodology used for determining bone length and identifying reference lines for each 

region of interest (37–39,47–65); further, an additional 25 (42%) studies reported the distal endplate 

or joint gap as a reference line, without any specific details regarding how these were 

identified, or the reference lines assigned (28,63,66–88). 

In the remaining fourteen studies (25%) (30,31,89–100), the radius bone length was measured from 

the humero-radial joint cleft to the medial aspect of the styloid process, the tibia bone length 

from the most distal palpable end of the medial malleolus to the most proximal edge of the 

medial tibial plateau (the medial joint cleft), and the femoral length was either approximated to 

be equal to tibial length as suggested by Eser et al. (93), or measured from the most proximal 

palpable limit of the greater trochanter, to the most distal limit of the lateral femoral condyle. 

For the radius and tibia, reference lines were placed at the flattest portion of the plateau of the 

tibial or radial endplate, respectively. For the proximal tibia imaging, the reference line was 
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placed on the proximal end of the more distal of the two condyles of the tibia (medial condyle 

of the tibia). For the femur, the reference line was placed at the distal limit of the lateral 

femoral condyle. 

Imaging sites reported in the selected literature and the rationale for their inclusion is briefly 

outlined in Table 3. The majority of studies used the manufacturer’s recommended imaging 

sites for trabecular bone assessment (4% of radius, tibia and femur length), cortical bone 

assessment (38% of tibia and 25% of femur length) and muscle assessment (66% of radius and 

tibia length, Table 4, Figure 2).   

[PREFERRED LOCATION OF FIGURE 1]  

Voxel size selection 

Despite the importance of reporting voxel sizes (24) in pQCT study methods, 14/60 studies (23%) 

did not report this important detail (47,49,50,53,55,59,60,65,68–70,72,77,85). From the remaining studies, 

the majority used either 0.4 x 0.4 mm (epiphysis) or 0.5 x 0.5 mm (diaphysis) voxel sizes for 

radial and tibial assessments, and a reduced 0.3 x 0.3 mm voxel sizes for femoral assessment 

due to a very thin cortical shell at the distal femur sites. The slice thickness varied between 2 – 

2.5 mm (Table 4).   

Of note, only 6 (10%) studies (30,31,89,93,94,99) met quality reporting criteria for image acquisition 

based on ISCD Official Positions. 

[PREFERRED LOCATION OF TABLE 3 AND 4]  

Scan Analysis 

Twenty of the selected studies (33%) in this review, did not report details regarding image 

analysis (28,32,37–39,47,49–51,53,55,56,59,60,62,65,69,70,76,77). Further, 21 (35%) studies provided incomplete 
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descriptions (Table 5). Nevertheless, based on the authors’ knowledge of the Stratec analysis 

software, we were able to abstract or infer the following patterns for assessment of epiphyseal 

sites: 

 For the periosteal border (total bone cross-section) detection, all available contour 

modes were used, with specific research groups selecting their own threshold levels; the 

following thresholds were used in an almost equal number of studies: 130, 150, 169, 

180, and 200 mg/cm3; 

 The cortical compartments were not analyzed, with the exception of two studies (66,80), 

presumably due to the thin cortex in these locations and poor endosteal border 

detection of cortical bone (101,102); 

 Approximately half of the studies used threshold driven selection of the trabecular 

compartment (Peel mode 2), mostly set to a threshold value of 400 mg/cm3. The 

remaining studies appear to have used Peel mode 1 with trabecular compartment 

detection set to 45% of total bone area. 

For diaphyseal sites, almost all research groups used similar analysis settings: 

 For assessment of total bone cross-section, the vast majority of studies used unspecified 

contour mode (presumably mode 1) with the threshold set to 280 mg/cm3; 

 For assessment of cortical bone cross-section, the vast majority of studies used 

unspecified separation mode (presumably 1 or 2) with the threshold set to 710 mg/cm3; 

 If the stress strain index (SSI) analysis was reported separately (8 studies 

(31,48,54,68,72,93,94,103)), the most frequently used threshold was 280 mg/cm3. 
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Of particular note, only 19 (32%) studies met quality reporting criteria for image analysis based 

on the ISCD Official Positions. 

[PREFERRED LOCATION OF TABLE 5]  

Reported bone traits with significant responses 

The most frequently reported bone traits showing significant changes or between-group 

differences over all reviewed studies are summarized in Table 6. The precision and least 

significant changes for particular bone traits (Table 6) at each of the manufacturer’s suggested 

imaging sites are shown in Table 7, which displays the mean values derived from data provided 

in the following studies (17,31,73,81,83,95,104–108). 

[PREFERRED LOCATION OF TABLE 6 AND 7]  

Observational studies: The most frequently reported bone traits showing significant changes in 

observational studies at epiphyseal sites of radius, tibia and femur were total bone mineral 

content (BMCto), total vBMD (BMDto) and trabecular vBMD (BMDt). At diaphyseal sites, traits 

demonstrating consistent clinically significant changes within the reviewed studies were 

BMCto, cortical BMC (BMCc), cortical cross-sectional area (CSAc) and cortical thickness (CoTh). 

Interventional studies: Interventions featured either a form of exercise (e.g., functional 

electrical stimulation, partial body-weight supported treadmill training, robotic exoskeleton 

walking, standing or variety of weight-bearing activities to enhance lower extremities bone 

strength in stroke survivors) (37,39,40,45,47,51,55,57,62,65,71,72,78,86,89,91,92,109) or use of oral or 

intravenous bisphosphonate therapy (52,77).  
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Similar to observational studies, the traits that showed the largest responses to interventions 

were BMCto, trabecular BMC (BMCt) and BMDt, and BMCto, BMCc and CoTh at epiphyseal and 

diaphyseal sites of the radius, tibia and femur, respectively. 

Bone strength and fracture discrimination: The bone strength traits often showing significant 

between group differences in the currently reviewed pQCT-based studies were the bone 

strength index (BSI) and stress-strain index (SSI) at epiphyseal and diaphyseal sites, respectively. 

The bone traits that were able to distinguish between individuals with, and without, a history of 

fracture were BMDt and polar moment of inertia (PMI). 

DISCUSSION 

Imaging modalities 

All pQCT scanners selected for inclusion in this review, have distinct advantages and 

disadvantages, which limit their usability for particular patient groups, measurement sites, and 

purposes. The XCT peripheral scanners use the single-slice technology. In contrast to the multi-

slice high-resolution technology scanners (HRpQCT), they do not acquire high resolution 

images, isotropic voxel sizes (the same voxel size in plane and axial direction) and full 3D 

imaging of the field of view. Nevertheless, these XCT scanners have the advantage of somewhat 

faster image acquisition times, and consequently a lower frequency of movement artifacts, 

lower radiation dose (x-ray beam is shaped according to detector size), and calibration prior to 

projection (the X-ray source and detector move off the field of view, while measurements of 

the empty field and the dark bias signal are performed). 

The XCT 2000 is the lightest and the most portable of these scanners; it can be placed on a 

moving and height adjustable platform which makes it an ideal device for studies of individuals 
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with neurological impairment where restricted patient mobility necessitates greater scanner 

mobility. Operators or technologists can adjust the scanner position according to scan or 

patient specific needs (21). This scanner can acquire images of the humerus, radius, distal femur 

and tibia. The reach is, however, limited by the maximal distance of travel (40 cm) and the 

gantry opening (14 cm). Due to these limitations in the gantry movement, the device does not 

allow measurements of the entire lower limb in adults. Thus, the patient has to be repositioned 

for scans of the distal femur and proximal tibia. In addition, the limited gantry opening restricts 

the use of this scanner to individuals with a smaller limb circumference. Consequently, this 

reduces the usability of this scanner for muscular or obese patients with a wide calf 

circumference, or measurement of more proximal femur sites. 

The XCT 3000 scanner is larger and heavier than the XCT 2000, necessitating that it remain in 

place. However, it’s larger gantry opening (30 cm), allows screening of the limbs with larger 

circumferences and more proximal sites of the femur. Bone traits yielded by both scanners 

have excellent agreement and are highly correlated; r = 0.90–0.99 for cortical vBMD (BMDc), 

with r = 0.97–0.99 for all other traits across measured sites (110,111). Therefore, these scanners 

could be used interchangeably particularly during multi-centre clinical trials. 

Image acquisition 

The image acquisition time for one anatomical site (single-slice) for both pQCT scanners is ~ 90s 

(depending on limb diameter and scan speed). Short time periods for pQCT data acquisition 

reduces the appearance of movement artifacts in the resulting image. To avoid negative density 

values within images, Stratec pQCT scanners are calibrated so that fat tissue is equal to 0 and 

water ~55 mg/cm3 of bone equivalent (112) 
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Anatomic site selection 

The large variability in Stratec scanner settings allows users 

(researchers/clinicians/technologists) the potential to assess any bone location or region of 

interest provided that the desired region fits within the scanner gantry. This is especially 

beneficial when evaluating interventions where anatomically-localized intervention-specific 

responses are expected. However, the lack of standardized scanning protocols and the freedom 

to select a variety of anatomical sites restricts  inter-study comparison (4) and limits our ability 

to establish recommendations for routine use of pQCT sites to measure vBMD in clinical 

practice, or to recommend minimal data elements for inclusion in research settings such as a 

clinical trial. 

A recent study by Rittweger et al. (85), investigated the tibia of individuals with SCI (n = 9) by 

conducting a series of evenly distributed scans (in steps of 5% of the tibia length) and compared 

with results acquired from body height, weight and age matched able bodied individuals (n = 9). 

They found that bone (BMCto) is primarily lost at epiphyseal sites (the largest absolute bone 

lost being at proximal epiphysis), and the largest reduction (expansion) of periosteal (endosteal) 

circumference occurs between 30% and 40%, and between 65% and 75% of tibia length. These 

results suggest that the measurement sites with optimal prognostic capability for clinical 

practice may be located at these sites. Nevertheless, larger-scale studies are needed to confirm 

this assumption. 

In addition to variability in the region of interest or anatomic site selection, there is variability in 

the methodology for determining bone length, and identifying reference lines, for each region 

of interest. This variability in procedures combines to produce additional sources of variability 
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in scan acquisition. Accurate and precise measurements of bone length and reference line 

selection are crucial. In the worst case scenario, as investigated by Shields at al. (99), the scan 

location error can be up to ±3 mm. This slice misplacement at the ultra-distal tibia (4% site) can 

account for mean BMDt differences up to 2.3% and 4.6% in able-bodied individuals and 

individuals with SCI, respectively (99). Within the distal femur region of interest, the mean BMDt 

differences were 2.6% and 2.4% for able-bodied individuals  and individuals with  SCI, 

respectively (90). 

In other studies, authors evaluated the influence of a misplaced slice in a follow-up scan (113,114). 

Marjanovic et al. reported that slice misplacement at the ultra-distal radius by 1.2 mm can 

result in mean BMDt and BMDto differences 3.8% and 4.8%, respectively. Further, in a study by 

Sun et al., the authors conducted an exhaustive investigation of changes in total cross-sectional 

area and BMDt at the ultra-distal sites of the radius and tibia with changes of slice position up 

to ±1 mm in 0.1 mm steps. They reported that the cross-sectional area changes by ~20 mm2 for 

each 0.5 mm slice misplacement in both the radius and tibia. Further, the BMDt, with the same 

misplacement, changes by 3.3% and 0.8% in the radius and tibia, respectively. In addition, in the 

radius, slice misplacement by 1 mm proximally (distally) leads to a ~31 mm2 (40 mm2) change in 

bone cross-section and 5.8% increase (2.6% decrease) in BMDt. They also investigated changes 

in the precision of BMDt measurement, and suggest that the follow-up location can be 

considered to be the same location as the baseline measurement, if the total bone cross-

section (CSAto) remains within ±10 mm2 and ±20 mm2 at the radius and tibia, respectively. 

Thus, site selection and potential errors in slice placement may have a profound impact on the 

interpretation of the therapeutic effectiveness of interventions. Therefore, to yield clinically 
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reliable results, uncompromised by the aforementioned issues, it is essential to set rigorous 

protocols for measurement of bone length and slice assignment particularly for longitudinal 

evaluation, that do not deviate throughout the study. For Stratec operating software version 

5.5 and up, use of an automatic procedure of reference line placement by matching the 

baseline scan scout view and follow-up measurements for longitudinal studies is 

recommended. Ideally, the same acquisition protocols should be used in all pQCT studies. Of 

note, in longitudinal evaluations, bone length measurement should not be repeated after the 

baseline measurement in adults with a mature skeleton, to avoid further measurement errors.  

Voxel size selection 

The main disadvantage of Stratec pQCT scanners is low image resolution. Spatial resolution of 

the scanner is determined by the size of the smallest possible feature that can be detected. 

Resolution is typically represented by a point spread function (PSF). The PSF describes the 

response of an imaging system to a small point object (e.g., small bead), with the spread of the 

point object in the image characterizing the PSF. However, voxel size is commonly used to 

indicate differences in spatial resolution between different imaging modalities, given that the 

voxel size is greater than the PSF, not equivalent to the PSF. While standard XCT scanners have 

adjustable voxel size in range 0.2 – 1.0 mm and fixed slice thickness in range of 2.0 – 2.5 mm, 

the XCT Research+ scanners can theoretically reach voxel sizes down to 0.1 mm, with a slice 

thickness of 0.5 mm. This setting improves scanner spatial resolution and decreases partial 

volume effects, however, at the cost of a higher noise level, due to a finite number of X-rays 

quanta produced by the X-ray source. With smaller voxel size – less X-ray quanta are detected 

to create an image. Therefore, longer imaging (exposure) time, or increased X-ray quanta 
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energy, both increasing radiation dose, are key considerations when optimizing image quality. 

Of note, reducing slice thickness by a factor 5, assuming the radiation dose remains unchanged, 

will increase the noise by a factor of 5  (115). Obviously, increasing the radiation dose is not a 

desired option in any setting and longer exposure times increase the potential for movement 

artifacts. This is especially important during radius measurements where even a subtle 

movement can radically decrease the reliability (116) and measurements among patients with 

neurological impairment who may have spasticity, tremor, clonus or other involuntary 

movements difficult to inhibit for prolonged periods of time. 

Nevertheless, reducing the slice thickness from 2.2 mm to 0.6 mm while reducing scanning 

speed (~increasing radiation dose) to keep the same noise level, did not improve accuracy of 

assessed bone traits in a cadaver study conducted by Lala and colleagues (117). 

These voxel size settings (0.4 x 0.4 mm or 0.5 x 0.5 mm for assessment of the radius and tibia, 

and 0.3 x 0.3 mm for assessment of the femur allow sufficiently accurate determination of bone 

densities of both bone compartments (108,118) and detection of cortical bone thicker than 2.0 – 

2.5 mm (101,119). With voxel size reduced to 0.2 x 0.2 mm for epiphyseal sites; with use of a 

dedicated software, bone micro-architecture (bone volume fraction, trabecular number, 

trabecular separation and trabecular thickness) can be roughly estimated (73,74,117,120). 

Nevertheless, these apparent micro-architecture traits differ substantially from traits obtained 

via  high-resolution pQCT (117), and at this time there seems to be no additional diagnostic value, 

or clinical utility over standard pQCT-measured vBMD (121). 

Data Analysis 
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Since introduction of the Stratec pQCT scanner, almost three decades ago, researchers have 

tried to determine the optimal means of analyzing the acquired images. The common approach 

is based on manufacturer-provided simple density threshold contour detection and peeling 

procedures (122,123). This practice comes not only from its technical simplicity, but also from the 

need for reproducible results in clinical and research settings. However, these clinical needs are 

not always met by threshold based analyses (101,118,124,125), mainly due to partial volume effects, 

a relatively low signal to noise ratio, or the presence of movement artefacts.  

Therefore, proper reporting of analysis modes and the threshold levels used, are the key 

reporting criteria to ensure reproducibility of future studies and assure inter-study 

comparability (24). 

We found substantial variability in analysis parameters. It has been suggested that thresholds 

169 mg/cm3 and 130 mg/cm3 are the optimal settings for assessment of able-bodied individuals 

(108,125) and individuals with SCI (21), respectively, yet a variety of thresholds are in use for 

periosteal border detection. However, the main discrepancy between studies stems from the 

selection of the peel mode. Dudley-Javoroski and Shields (90) found that the peel mode 1 (set to 

45%) reduces mean BMDt by an average of 17.3% and 8% in comparison with threshold driven 

peel mode for subjects with SCI and able-bodied subjects, respectively. Further, for subjects 

with low BMDt, peel mode 1 yielded differences up to 30% from the value obtained with the 

threshold driven peel method. For subjects with higher density BMDt, differences between the 

two modes were smaller (~10%). Sievanen et al. [17] compared BMDt data obtained from both 

peel mode 1 and contour detection algorithm (peel mode 2, contour mode 2) and found large 

discrepancies (up to ±36 mg/cm3) between the analysis methods. This data suggests results 
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from studies using different peel modes cannot be combined or directly compared. The peel 

mode 1 can be used in scenarios where investigators desire to compare similar bone regions 

between study cohorts, assuming that the trabecular deterioration occurs mainly in the center 

of the bone cross-section. This latter assumption, however, may not be true, as the trabecular 

bone adaptations to interventions vary across anatomical regions of the bone cross-section 

(71,92,126). 

Although the threshold for cortical bone assessment was set to 710 mg/cm3 (manufacturer’s 

recommended value) in the majority of reviewed studies, it has been recognized that this 

threshold should be set to a lower value (~600-661 mg/cm3) to correctly determine cortical 

bone geometry (e.g., CSAc) (101,108,118,124,125,127). The manufacturer’s recommended threshold 

also underestimates the BMDc value by ~10-15% (101) and a higher value (~1200 mg/cm3) should 

be used to accurately determine BMDc (101,127). Therefore, two distinct thresholds should be 

used to correctly assess CSAc and BMDc. The lower threshold value (661 mg/cm3), however, 

provides BMDc values similar to those yielded by HRpQCT (mean error = -0.6%) (128), despite 

different density calibrations of the two modalities (112,129).  

To date, two more sophisticated and reliable, threshold-free approaches have been developed 

to reduce dependence on threshold based analysis for pQCT data assessment, OsteoQ (130) and 

OBS (131,132). Nevertheless, these methods are not routinely available for clinical use. The former 

is proprietary software developed by Gordon et al. and customers are charged an hourly rate 

for data analysis, and the latter was developed by Cervinka et al., available on request, for 

cortical bone detection at epiphyseal sites. In addition, the current evidence supporting their 

use in clinical studies is limited (126,133,134). 
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Reported bone traits with significant responses 

Observational studies 

Although only a limited number of reported bone traits showed clinically significant changes or 

important between group differences across the reviewed articles, these findings are not 

unexpected (Table 6). First, all of the reviewed studies used the manufacturer’s threshold-

based protocols that preclude  accurate detection of cortical bone at epiphyseal sites (101,131). 

Second, as the trabecular compartment accounts for the majority of bone cross-section at the 

epiphyseal site, all traits are likely to be directly affected by changes in trabecular structure. 

Third, at diaphyseal sites, where the bone is composed predominantly of thicker cortical bone, 

bone traits related to cortical bone cross-section or amount of bone mineral (BMCc), not 

density (BMDc), are the key parameters to monitor.   

Obviously, one can speculate whether the assessment of BMDc at diaphyseal sites would 

provide any additional information as suggested by radial and polar BMDc assessment in young 

men (135) or postmenopausal athletes (136). Nevertheless, to date, there is no evidence requiring 

bone anatomical sector analysis in individuals with neurological impairments and current 

evidence shows that BMDc only slightly decreases (2-4%) during the first 2-5 years post SCI or 

stroke (31,32,54,81), and recovers thereafter (31,54,95). This decrease may be caused by intra-cortical 

remodeling (increased cortical porosity) as reported in HRpQCT-based study by Kazakia et al. 

(137) where cortical porosity was found to have the largest and most persistent response to 6 

weeks of immobilization. Cortical porosity, however, cannot be detected by low resolution 

pQCT. Therefore, it seems that after sufficient cortical bone deterioration at the endocortical 

surface – bone adaptation to the new loading conditions, only reduced (more compact) cortical 
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bone cross-section is detected. Perhaps, including a total vBMD trait at diaphyseal sites in 

future studies may provide an explanation; if total bone cross-section remains stable, bone loss 

across the whole cross-section, would likely infer bone deterioration at the endocortical 

surface. 

Interventional studies 

In interventional studies, the observed changes have been presumed to be related to bone 

adaptation processes in the trabecular compartment and cortical bone cross-section at 

epiphyseal and diaphyseal sites, respectively. However, the mean numbers yielded from the 

whole bone cross-section may not provide the full picture, regarding the adaptation processes; 

specifically, in cortical and trabecular compartments or in anatomical directions. The actual 

benefit(s) resulted from a specific treatment may be lost in the analysis of the whole bone 

cross-section; whereas, anatomical sector analysis might improve sensitivity to longitudinal 

changes as reported by Dudley-Javoroski and Shields (71,92) and also suggested by Rantalainen et 

al. (138), Cervinka et al. (126) and Evans et al. (139) in able-bodied individuals. Consequently, 

treatments imposing a positive effect in a specific anatomical bone sector could result in a type 

two error (false negative results) based on whole cross-section assessment, although a simple 

regional or sector treatment modification may reveal positive effects on whole bone structure.  

Bone strength and fracture risk prediction 

The key role BSI and SSI traits play in estimation of long bone strength could be presumed as 

these traits reflect the strength of bone structure against compressive forces at the distal ends 

of long bones (140) and the torsional rigidity of the long bone shaft, respectively (124,141). 

Nevertheless, only a limited number of studies presented thresholds for selected bone traits 
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(BMDt and PMI) intended to distinguish patients who are at high risk of fracture according to 

vBMD values (48,75,94). 

In a retrospective study, Eser et al. (94) suggested using BMDt with thresholds set to 70 mg/cm3 

and 110 mg/cm3 for distal tibia and femur, respectively. These thresholds were able to correctly 

determine, in one sample, 79% and 67% of patients with history of fracture in tibia and femur, 

respectively. Biggin et al. (48) evaluated distal tibia in pediatric patients and reported that 

patients did not sustain a fracture when their BMDt was higher than 100 mg/cm3. However, a 

later study by Lala et al. (75) introduced data suggesting that this threshold may be placed even 

higher as patients with previous fracture(s) had mean (standard deviation - SD) BMDt equal to 

84.4 (33.3) mg/cm3. They also suggested that PMI was able to distinguish the patients with 

history of fracture from those without fracture. The mean PMI was equal to 32000 mm4 and 

47000 mm4 in patients with fractures and without fractures, respectively, and the adjusted 

odds ratio (3.2)  was significant (p = 0.038) (75). 

Recommendations 

The following recommendations stem from the described review, currently available data, and 

the authors’ opinions/expertise.  

Length measurement 

Based on the abstracted evidence, we suggest that future studies should strictly measure bone 

length between following landmarks: 

(i) the medial aspect of the styloid process and the humero-radial joint cleft for the 

radius; 
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(ii) the most distal palpable end of the medial malleolus and the most proximal edge of 

the medial tibial plateau (the medial join cleft) for the tibia; and, 

(iii) the most distal limit of the lateral femoral condyle and the most proximal palpable 

limit of the greater trochanter. 

Data acquisition – clinical studies 

For measurement alignment, we suggest using the following reference lines (see Figure 2):  

(i) the superior aspect of the cortical shell at the most distal and flattest portion of the 

plateau of the tibial or radial endplate;  

(ii) the proximal end of the medial condyle of the tibia for proximal tibia imaging; and, 

(iii) the distal limit of the lateral femoral condyle for imaging of femur.  

To date, there are no available sensitivity studies, describing optimal imaging site/sites for 

assessment of bone responsiveness to interventions. Therefore, based on currently available 

knowledge, we propose that the following imaging sites be included in future clinical studies, as 

a part of minimum image acquisition protocol allowing interstudy comparability, should 

comprise:  

(i) 4% and 66% for radius;  

(ii) 4%, 38% and 66% for the tibia; and, 

(iii) 4% and 25% for the femur.  

In the event of interest in knee region imaging, imaging of the proximal tibia (96%) site may be 

used, keeping repeatability limits of this site in mind (Table 7).  
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Prior to completion of longitudinal analyses, clinicians and scientists should ensure that the 

CSAto in follow up scans does not differ by more than ±10 mm2 (radius) and ±20 mm2 (tibia) 

from the baseline scan, prior to conducting the analysis.  

The 0.5 x 0.5 mm voxel size is sufficient for assessment of key bone traits (see Table 6) in radial, 

tibial and femoral diaphysis. A smaller voxel size of 0.4 x 0.4 mm should be used for assessment 

of the distal radius and tibia, and an even smaller voxel size 0.3 x 0.3 mm for measurements of 

femoral epiphysis as cortical bone is thinnest at this site.  

The slice thickness, if applicable (all XCT Research+ scanners), should be selected within the 

range of 2 – 2.5 mm. The standard XCT scanners cannot reach thinner image slices 

(manufacturer pre-set slice thickness lies between 2 – 2.5mm) and therefore this range allows 

comparability between XCT scanners. 

Data acquisition – clinical practice 

In terms of screening patients for the presence or absence of osteoporosis, although their 

prognostic capability requires further validation, we recommend that the minimal image 

acquisition protocol should comprise the tibia 4%, 38% and 66% sites. The reference line should 

be placed at the superior aspect of the cortical shell at the most distal and flattest portion of 

the plateau of the tibial endplate (see Figure 2). The voxel size of 0.4 x 0.4 mm and 0.5 x 0.5 

should be used for bone traits assessment in tibial epiphysis and diaphysis, respectively. The 

slice thickness should be selected within the range of 2 – 2.5 mm.  

Summary of recommendations for pQCT image acquisition in clinical and research setting is 

appended in Table 8. 

[PREFERRED LOCATION OF TABLE 8]  
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Data analysis selection 

For bone detection at epiphyseal sites, locations mainly used for trabecular bone assessment, 

we recommend the use of contour mode 3 with thresholds set to 169 mg/cm3 (able bodied 

subjects) and 130 mg/cm3 (subjects with neurological impairment), and peel mode 2 set to 400 

mg/cm3. These settings will guarantee proper bone periosteal contour detection and clear 

separation of trabecular from subcortical bone, and assure comparability across studies. 

At diaphyseal sites, we suggest the use of separation mode 4 with outer threshold set to 200 

mg/cm3 and inner threshold 650 mg/cm3 to yield accurate cortical cross-sectional bone area. 

Diagnosis 

Clearly, large normative datasets are needed for diagnosis of osteoporosis based on Z-scores; a 

robust reference data set of this nature does not currently exist (4,24), partially due to the large 

variability in presented bone traits and measurement sites (23). Therefore, based on the 

reviewed studies, we suggest reporting the following traits for radius, tibia and femur at the 

above suggested sites, as a future minimum data set to inform the development of normative 

datasets.  

Epiphyseal sites: 

 BMCto and BMDt 

Diaphyseal sites: 

 BMCto, BMCc, CSAc and CoTh 

Although, BMDc, assessed at diaphyseal sites, was also reported as a trait consistently showing 

significant changes or between group differences in a large portion of reviewed studies (n = 21), 

we do not recommend use of this trait because of limitations provided in Discussion. 
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Monitoring therapies 

For future longitudinal studies, we suggest monitoring the following bone traits that showed 

significant responses to intervention in reviewed studies.  

Epiphyseal sites: 

 BMCto and BMDt,  

Diaphyseal sites: 

 BMCto, BMCc and CoTh 

Nevertheless, if feasible, future studies should also include anatomic regional analysis of 

cortical and trabecular compartments to improve sensitivity of bone assessment to longitudinal 

changes. Such a regional analysis is freely available as part of BoneJ for diaphyseal sites (135). 

Bone strength and fracture risk prediction 

Although some pQCT-based studies suggested use of a “hole” size in trabecular compartment 

(130,142) or cortical traits (143) as the optimal measures for fracture discrimination in the able-

bodied population, the current review suggests that future pQCT-based studies should focus on 

establishing cut-off or threshold values to estimate risk of future fracture for BMDt and BSI, and 

PMI and SSI at epiphyseal and diaphyseal sites, respectively. Of note, based on current evidence 

(75), individuals with SCI with BMDt (measured at 4% site of tibia) above 120 mg/cm3 are unlikely 

to sustain a fragility fracture.  

Limitations 

Some limitations warrant further discussion. When evaluating quality reporting of included 

studies, we used the recommendations imbedded in the 2015 ISCD Official Position Statement. 

However, there may be circumstances (e.g., word count restrictions imposed by journal editors) 
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in which authors reduce explicit details of their methodology (i.e., acquisition and data analysis 

protocols) by referring to their prior work or the standard methods used in their setting or 

laboratory. As source references were not considered in current review, these studies may have 

been evaluated as not fulfilling the quality reporting criteria because of the review criteria.  

Further, the recommendations for land marking and measurement of bone length may be 

difficult or infeasible in some patients with neurological impairment due to body habitus, 

contracture, restricted range of motion, prior surgical intervention or fragility fracture in a 

region of interest, or changes in bone shape due to absence of muscle contraction or inability to 

weight bear.  

Furthermore, prior to generalizing the aforementioned recommendations, there are several 

issues that require further consideration. First, despite efforts to identify all available literature 

concerning pQCT imaging used among populations with neurological impairment, the number 

of identified studies was relatively low, leaving the potential for biased evaluation of image 

acquisition and analysis protocols as well as bone traits that showed consistently significant 

changes or between group differences over all reviewed studies. Second, although all studies 

including SCI, stroke and MS populations were used for the abstraction of pQCT image 

acquisition and analysis protocols, the majority of evidence appraisal discussing issues relate to 

improper setting of these protocols are based on data derived from the SCI population; 

predominantly, from published literature regarding men with motor complete paraplegia. 

Therefore, following recommendations concerning image acquisition and analysis protocols 

may only be valid for this population. Nevertheless, we believe, the same standards can also be 

employed among individuals with other forms of neurological impairment such as MS, Stroke, 
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Parkinson’s disease, Spina Bifida or Cerebral Palsy. The authors trust that data to validate, 

refine or revise our recommendations from others in the field, will follow publication of the 

enclosed recommendations. 

CONCLUSIONS 

The lack of consensus regarding scan acquisition and analysis protocols has been recognized by 

many authors (4,17,23,24,144) and remains a primary barrier to routine clinical implementation of 

pQCT technology. However, to our knowledge, no study evaluated what would be the most 

appropriate anatomic site and outcomes for determining the diagnosis of osteoporosis, 

predicting regional fracture, and monitoring of therapy efficacy/effectiveness for patients with 

neurological impairment. This lack of consensus limits implementation; creation of a robust 

age, sex, race and body size specific reference database is required to advance pQCT practice 

(23,24,26).  Despite the small number of selected studies for review inclusion, and the potential for 

biased recommendations, we have proposed minimum standard acquisition protocols, for use 

in both clinical practice and research settings, and analysis protocols for pQCT scanners among 

patients with neurological impairment for specific clinical indications including diagnosis of low 

bone mass, assigning fracture risk and determining therapy effectiveness. We anticipate that 

adherence to these recommendations would substantially advance the field and allow for 

future data synthesis (meta-analysis).  

 

APPENDIX 1: Search strategies 

MEDLINE search strategy 

((exp Spinal Cord Injuries OR exp Paraplegia OR exp Quadriplegia OR hemiplegia OR exp paresis OR 

Spinal Cord Compresion OR (spinal cord injur* OR SCI).tw,kw OR (spinal cord adj3 (contusion* OR 
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trauma* OR transection* OR laceration* OR compression*)).tw,kw OR (paraplegia* OR quadriplegia* OR 

quadriparesis OR locked-in syndrome OR tetraplegia* OR hemiplegia* OR hemiparesis OR paresis).tw,kw 

OR exp Multiple Sclerosis OR exp Stroke OR (multiple sclerosis OR stroke*).tw,kw OR (cerebrovascular 

adj3 (accident* OR apoplexy)).tw,kw) AND (exp Tomography, X-Ray Computed OR peripheral 

quantitative computed tomography.tw,kw OR (peripheral adj2 computed tomography).tw,kw OR 

(pQCT* or HR-pQCT*).tw,kw) AND (radius OR femur OR tibia OR Bone Density OR ((bone* OR radius OR 

tibia* OR femur*) adj3 (health* OR quality OR density OR loss OR morphology OR strength OR recovery 

OR disease* OR status OR adapt* OR respon* OR geometr* OR  structur* OR properties)).tw,kw OR 

(long adj2 bone*).af NOT (animals NOT (humans AND animals)).sh) limit to English language 

 

EMBASE© search strategy 

(exp Spinal Cord Injury OR Paraplegia OR Quadriplegia OR hemiplegia OR paresis OR (spinal cord injur* 

or SCI).tw,kw OR (spinal cord sdj3 contusion* OR trauma* OR transection* OR laceration* OR 

compression*)).tw,kw OR (paraplegia* OR quadriplegia* OR quadriparesis OR locked-in syndrome OR 

tetraplegia* OR hemiplegia* OR hemiparesis OR paresis).tw,kw OR exp Multiple Sclerosis OR exp 

cerebrovascular accident OR (multiple sclerosis OR stroke*).tw,kw OR (cerebrovascular adj3 (accident* 

OR apoplexy)).tw,kw) AND (exp computer assisted tomography OR peripheral quantitative computed 

tomography.tw,kw OR (peripheral adj2 computed tomography).tw,kw OR (pQCT* or HR-pQCT*).tw,kw) 

AND (exp long bone OR radius OR femur OR tibia OR Bone Density OR ((bone* OR radius OR tibia* OR 

femur*) adj3 (health* OR quality OR density OR loss OR morphology OR strength OR recovery OR 

disease* OR status OR adapt* OR respon* OR geometr* OR  structur* OR properties)).tw,kw OR (long 

adj2 bone*).af NOT (animals NOT (humans AND animals)).sh) NOT (Conference Review.pt OR 

Conference Abstract.pt OR Short Survey.pt OR editorial.pt OR letter.pt OR note.pt) limit to English 

language 

 

CINAHL search strategy 

((MH “Spinal Cord Injuries+”) OR (MH “Paraplegia+”) OR (MH “Quadriplegia”) OR (MH “Hemiplegia”) OR 

(MH “Spinal Cord Compression”) OR TI (spinal cord injur* OR SCI) OR AB (spinal cord injur* OR SCI) OR TI 

(spinal cord N3 (contusion* OR trauma* OR transection* OR laceration* OR compression*)) OR AB 

(spinal cord N3 (contusion* OR trauma* OR transection* OR laceration* OR compression*)) OR TI 

(paraplegia* OR quadriplegia* OR quadriparesis OR locked-in syndrome OR tetraplegia* OR hemiplegia* 

OR hemiparesis OR paresis) OR AB (paraplegia* OR quadriplegia* OR quadriparesis OR locked-in 

syndrome OR tetraplegia* OR hemiplegia* OR hemiparesis OR paresis) OR (MH “Multiple Sclerosis”) OR 

(MH “Stroke+”) OR (TI (multiple sclerosis OR stroke*) OR AB (multiple sclerosis OR stroke*)) OR (TI 

(cerebrovascular N3 (accident* OR apoplexy)) OR AB (cerebrovascular N3 (accident* OR apoplexy)))) 

AND ((MH “Tomography, X-Ray Computed+”) OR (TI peripheral quantitative computed tomography OR 

AB peripheral quantitative computed tomography) OR (TI (peripheral N2 computed tomography) OR AB 

(peripheral N2 computed tomography)) OR (TI (pQCT* OR HR-pQCT*) OR AB (pQCT* OR HR-pQCT*))) 
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AND ((MH “Radius”) OR (MH “Femur+”) OR (MH “Tibia”) OR (MH “Bone Density”) OR (TI ((bone* OR 

radius OR tibia* OR femur*) N3 (health* OR quality OR density OR loss OR morphology OR strength OR 

recovery OR disease* OR status OR adapt* OR respon* OR geometr* OR structur* OR properties)) OR 

AB ((bone* OR radius OR tibia* OR femur*) N3 (health* OR quality OR density OR loss OR morphology 

OR strength OR recovery OR disease* OR status OR adapt* OR respon* OR geometr* OR structur* OR 

properties)) OR TX (long N2 bone*)) 

 

PubMed search strategy 

(spinal cord injury [MeSH Terms] OR paraplegia [MeSH Terms] OR quadriplegia [MeSH Terms] OR paresis 

[MeSH Terms] OR spinal cord compression [MeSH Terms] OR (spinal cord injur* [Title/Abstract] OR SCI 

[Title/Abstract]) OR (spinal cord [Title/Abstract] AND (contusion* [Title/Abstract] OR trauma* 

[Title/Abstract] OR transection* [Title/Abstract] OR laceration* [Title/Abstract] OR compression* 

[Title/Abstract])) OR (paraplegia* [Title/Abstract] OR quadriplegia* [Title/Abstract] OR quadriparesis 

[Title/Abstract] OR locked-in syndrome [Title/Abstract] OR tetraplegia* [Title/Abstract] OR hemiplegia* 

[Title/Abstract] OR hemiparesis [Title/Abstract] OR paresis [Title/Abstract]) OR multiple sclerosis [MeSH 

Terms] OR stroke [MeSH Terms] OR (multiple sclerosis [Title/Abstract] OR stroke* [Title/Abstract]) OR 

(cerebrovascular [Title/Abstract] AND (accident* [Title/Abstract] OR apoplexy [Title/Abstract]))) AND 

(Tomography, X-Ray Computed [MeSH Terms] OR peripheral quantitative computed tomography 

[Title/Abstract] OR (peripheral [Title/Abstract] AND computed tomography [Title/Abstract]) OR (pQCT* 

[Title/Abstract] OR HR-pQCT*[Title/Abstract])) AND (radius [MeSH Terms] OR femur [MeSH Terms] OR 

tibia [MeSH Terms] OR bone density [MeSH Terms] OR ((bone* [Title/Abstract] OR radius* 

[Title/Abstract] OR tibia* [Title/Abstract] OR femur* [Title/Abstract]) AND (health* [Title/Abstract] OR 

quality [Title/Abstract] OR density [Title/Abstract] OR loss [Title/Abstract] OR morphology 

[Title/Abstract] OR strength [Title/Abstract] OR recovery [Title/Abstract] OR disease* [Title/Abstract] OR 

status [Title/Abstract] OR adapt* [Title/Abstract] OR respon* [Title/Abstract] OR geometr* 

[Title/Abstract] OR struct* [Title/Abstract] OR properties [Title/Abstract])) OR long bone* 

[Title/Abstract]) AND (humans [MeSH Terms] AND English [Lang]) 
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Figure captions: 

 

Figure 1: PRISMA flow chart for article inclusion process. 
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Figure 2: Imaging site recommended by Stratec for various long bones. Blue lines depict 

locations of the reference lines, red lines depict location of particular imaging sites. Detailed 

images and scout scans are on the right. 

 

Table 1: Imaging modalities included in the literature review 

Technology Scanner 
Number of 

publications 
Study 

Single-slice 

XCT 2000 20 
(26,47,48,57,58,60,64,66,71,73–

75,77,78,80,85,86,88,90,98–100) 

XCT 3000 34 (28,30,31,39,40,49–56,61,63,65,67–72,76,81–84,87,89–96) 

XCT 960 2 (32,38) 

OsteoQuant© 1 (46) 

Multi-slice 

XtremeCT 2 (41,42) 

Densiscan 2000 2 (29,45) 

Densiscan 1000 2 (43,44) 
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Note: In studies Sherk et al. (59), Gibbons et al. (62) and Dudley-Javoroski and Shields (37), the 

authors did not report which type of XCT scanner they used and in study Dudley-Javoroski and 

Shields (71) the authors used both XCT 2000 and 3000 scanners. 

Table 2: Technical specifications of the Stratec 2000/3000 peripheral QCT scanners  

Scanner 
Dimensions 

(l/w/h) 
[cm] 

Weight 
[kg] 

Distance 
of travel 

[cm] 

Gantry 
opening 

[cm] 

Scanning 
time* [s] 

Voxel 
size 

[mm] 

Slice 
thickness 

[mm] 

Radiation 
dose 
[mSv] 

XCT 2000 
128 x 55 x 

62 
45 40 14 90 0.1 - 1.0 0.5 - 2.0 < 0.001 

XCT 3000 
128 x74 

x91 
90 40 30 90 0.2 - 1.0 2.0 - 2.5 < 0.001 

*actual scanning times depend on scan parameters (e.g., size of imaged object and scanning speed) and 

whether or not a scout scan is done 

Table 3: Imaging sites reported and the clinical rationale for their inclusion 

Bone Site Rationale 

R
ad

iu
s 

4% 
Predominantly trabecular bone, this compartment has higher metabolic activity 
per unit mass, in contrast to the cortical compartment located at shafts of long 
bones (145) 

20% Standard imaging location to assess cortical bone for older XCT 960 scanner (32,38) 

30/33% 

Anatomical proximity to the origin/insertion of many muscle groups (e.g., 
Abductor pollicis longus, extensor pollicis brevis and pronator teres) and a 
presumption  of larger effects of muscles on cortical bone cross-sectional area at 
this site  (66,98) 

65/66% Largest muscle circumferences and muscle cross-sectional area (146) 

Ti
b

ia
 

4/5% 
Predominantly trabecular bone, this compartment has higher metabolic activity 
per unit mass, in contrast to the cortical compartment located at shafts of long 
bones (145) 

14% 
vBMD and bending strength are the lowest in general population (85,147,148) 
suggesting a potential important correlation with fracture risk 

30/38% 
Anatomical proximity to the origin/insertion of lower limb muscle groups (e.g., 
tibialis anterior, extensor hallucis longus, and soleus) and a presumption of larger 
effects of these muscles on cortical bone cross-sectional area at this site 

50% Middle of the tibia shaft 

66% Largest muscle circumferences and muscle cross-sectional area (146,147) 

85/86% Presumably the most susceptible site to changes in the muscle-bone unit (30) 

95/96/98% Predominantly trabecular bone, this compartment has higher metabolic activity 
per unit mass, in contrast to the cortical compartment located at shafts of long 
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bones (145) 

Fe
m

u
r 

4% 
Predominantly trabecular bone, this compartment has higher metabolic activity 
per unit mass, in contrast to the cortical compartment located at shafts of long 
bones (145) 

12/15% Common fracture site (149,150) 

25% 
Most proximal scan site due to insufficient hip abduction in patients with 
neurological impairments, absent or impaired lower extremity voluntary 
movement (31), and somewhat poorer image quality of more proximal sites (17). 

Note, images from 25% site of the femur cannot typically be acquired by XCT 2000 in a majority of 

individuals due to small gantry opening; although it can often accommodate the limbs of individuals 

with neurologic impairment and significant atrophy. For healthy individuals with thigh circumferences 

(diameter > 14 cm) and long limbs, the XCT 3000 is required due to its larger gantry. 

Table 4: Voxel sizes and slice thicknesses at various imaging sites reported in studies 

included in this review. 

 

Bone Site N 

Voxel size [mm] Slice Thickness [mm] 

Study 0.5 
x 

0.5 

0.4 
x 

0.4 

0.3 
x 

0.3 

0.2 
x 

0.2 

2.5 2.4 2.3 2.2 2.1 2.0 1.0 

R
ad

iu
s 

4% 12 x x   x x x   x x 
(32,38,48,57,66–

68,77,81–83,100) 

20% 2 x    x       (32,38) 

30% 2 x  x  x       (66,98) 

33% 3 x x     x     (81,83,84) 

65/66% 4 x x    x    x  (48,68,77,100) 

Ti
b

ia
 

4/5% 34 x x x x x x x x x x  

(28,30,31,47–49,53–

55,59,60,63,67,68,70–

74,76–

78,80,86,87,89,91,93–

96,99,100,117) 

14% 6 x         x  (28,49,63,69,70,89) 

30% 1   x  x       (79) 

38% 26 x x      x  x  

(28,31,49,53–

55,59,63,68–

70,72,86,89,93,94) 

50% 2 x  x  x       (47,78) 

66% 24 x x x  x x x x  x x 

(28,30,40,48,50,59,60,63–

65,73–77,86,87,89,93,95–

97,100) 
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85/86% 3 x x      x  x  (30,58,91) 

95/96/98% 8 x x x   x    x  (58,61,63,67,68,72,76,89) 

Fe
m

u
r 

4% 12  x x   x  x  x  
(28,31,51,53–

55,61,67,68,72,89,93,94) 

12/15% 6 x       x  x  (30,51,52,58,90–92) 

25% 10   x       x  
(28,31,53–

55,72,89,93,94) 

 

Table 5: Analysis protocols used in reviewed studies at the radius, tibia and femur 

 Radius  Tibia  
Site Protocol N Study Protocol N Study  

4% CSAto/CSAt: C3P2 (130-400) 1 (66) CSAto/CSAt: CxPx (200-400) 5 (30,71,86,91,99) 

 CSAto/CSAt: C2P2 (169-400) 3 (81–83) CSAto/CSAt: C3P2 (130-400) 2 (73,75) 

 CSAto: C1P1 (280-45%) 1 (48) CSAto/CSAt: C2P2 (169-400) 5 (78,80,87,95,96) 

 CSAto: CxP1 (150-45%) 2 (67,68) CSAto: C1P1 (169-45%) 1 (48) 

 CSAto: CxP1 (180-45%) 1 (100) CSAto: CxP1 (180-45%) 9 (31,54,67,68,72,89,93,94,100) 

 CSAto: C1 (169) 1 (57) CSAc: M4 (169-400) 1 (80) 

 CSAc: M4 (169-710) 1 (66) 
Osteo-Q architectural 
analysis 

1 (73) 

       

14%    CSAto: Cx (280) 1 (89) 

       

30/33% CSAto: C3P2() 1 (98) CSAto: C3P2 (710-710) 1 (78) 

 CSAc: M4 (710-710) 2 (66,98) CSAc: M4 (710-710) 1 (78) 

 CSAc: M1 (710) 3 (81,83,84)    

       

38%    CSAto: Mx (280) 7 (31,54,68,72,89,93,94) 

    CSAc: Mx (710) 6 (31,54,68,72,93,94) 

    CSAc: M1 (711) 1 (86) 

       

50%    CSAto: C3P2 (710-710) 1 (78) 

    CSAc: M4 (710-710) 1 (78) 

       

65/66% CSAto: Cx (280) 3 (67,68,100) CSAto: M1 (280) 1 (48) 

 CSAc: M1 (710) 1 (48) CSAto: M1 (280) 1 (40) 

 CSAc: Mx (710) 2 (67,68,100) CSAto: Mx (280) 4 (30,68,93,100) 

    CSAc: Mx (710) 4 (30,68,93,100) 

    CSAc: M1 (710) 8 (48,64,73,75,86,87,95,96) 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 
 

Page 57 of 50 
 

    CSAc: M4 (600-650) 1 (97) 

       

85/86%    CSAto/CSAt: CxPx (200-400) 2 (30,91) 

    CSAto/CSAt: CxP1 (120-650) 1 (58) 

       

95/96%    CSAto: CxP1 (180-45%) 2 (61,72) 

    CSAto: CxP1 (150-45%) 2 (67,89) 

    CSAto: CxP1 (130-45%) 1 (68) 

    CSAto/CSAt: CxP1 (120-650) 1 (58) 

 

Table 5: Analysis protocols used in reviewed studies in various imaging sites of radius, tibia and femur 

(continued) 

 Femur   
Site Protocol N Study 

4% CSAto/CSAt: CxP1 (120-650) 1 (58) 

 CSAto: CxP1 (130-45%) 2 (67,89) 

 CSAto: CxP1 (150-45%) 7 (31,54,61,68,72,93,94) 

    

12% CSAto/CSAt: CxPx (200-400) 4 (30,90–92) 

 CSAto: CxP1 (200-45%) 1 (90) 

    

15% CSAto/CSAt: CxP1 (120-650) 1 (58) 

    

25% CSAto: Mx (280) 7 (31,54,68,72,89,93,94) 

 CSAc: Mx (710) 7 (31,54,68,72,89,93,94) 

x denotes unknown number of contour (C) or peel (P) mode (M), CSAto – total cross-sectiona area, CSAc 

– cortical cross-sectional area, CSAt – trabecular cross-sectional area, N – number of studies  

Table 6: Key bone traits.  

Scanner Imaging site 
Observational 

studies 
 

Intervention 
studies 

 
Fracture risk prediction 
and bone strength traits 

pQCT Epiphysis BMCto  BMCto  BMDt 

  BMDt  BMDt  BSI 
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 Diaphysis BMCto  BMCto  PMI 

  BMCc  BMCc  SSI 

  CSAc  CoTh   

  CoTh     

BMCto – total bone mineral content, BMCc – cortical bone mineral content, BMDt – trabecular 

bone mineral density, CSAc – cortical cross-sectional area, CoTh – cortical thickness, BSI – bone 

strength index (resistivity in compression), PMI – polar moment of inertia (resistivity in torsion), 

SSI – stress strain index (resistivity in bending). 

Table 7: Precision and least significant changes of key traits for particular bones and sites as 

measured by Stratec pQCT (17,31,73,81,83,95,104–108) 

Radius  Tibia  Femur 

Site Trait 
CV%RMS 

[%] 
LSC 
[%] 

 
Site Trait 

CV%RMS 
[%] 

LSC 
[%] 

 
Site Trait 

CV%RMS 
[%] 

LSC 
[%] 

4% BMCto 3.0 8.3  4% BMCto 1.0 2.7  4% BMCto 1.1 3.0 
 BMDto 3.9 10.8   BMDto 1.3 3.5   BMDto 2.0 5.7 
 BMCt 4.7 13.0   BMCt 2.1 5.8   BMCt - - 
 BMDt 2.1 5.8   BMDt 1.1 3.2   BMDt 2.3 6.2 
 BSI 5.4 15.0   BSI 2.0 5.5   BSI 6.0 16.6 
              
33% BMCto 2.5 6.9  38% BMCto 0.6 1.6  25% BMCto 2.0 5.6 
 BMCc 0.8 2.2   BMCc 0.9 2.5   BMCc 2.6 7.2 
 CSAc 1.8 4.9   CSAc 1.1 3.1   CSAc 2.9 8.0 
 CoTh 1.6 4.3   CoTh 1.2 3.3   CoTh 3.6 10.0 
 PMI 2.2 6.1   PMI 2.0 5.4   PMI 1.7 4.7 
 SSI 2.1 5.8   SSI 1.6 4.5   SSI 4.1 11.2 
              
66% BMCto - -  66% BMCto 0.8 2.1      
 BMCc 3.4 9.5   BMCc 0.9 2.5      
 CSAc 3.1 8.6   CSAc 1.1 3.0      
 CoTh - -   CoTh 1.4 3.8      
 PMI - -   PMI 1.4 3.8      
 SSI 4.0 11.1   SSI 1.8 4.9      
              
     96% BMCto 3.5 9.7      
      BMDto 3.1 8.6      
      BMCt - -      
      BMDt 2.1 5.8      
      BSI - -      
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BMCto – total bone mineral content, BMCc – cortical bone mineral content, BMCt – trabecular 

bone mineral content, BMDto – total bone mineral density, BMDt – trabecular bone mineral 

density, CSAc – cortical cross-sectional area, CoTh – cortical thickness, BSI – bone strength index 

(resistivity in compression), PMI – polar moment of inertia (resistivity in bending), SSI – stress 

strain index (resistivity in bending), CV%RMS – relative coefficient of variation (short-term 

precision), LSC – least significant change. The clinimetric properties (the precision and least 

significant changes) for selected bone were abstracted from the available literature known to 

authors using the same imaging sites described in this review. Where feasible, the CV%RMS and 

LSC were calculated from the available published data as CV%RMS = LSC/2.77 and LSC = 

2.77*CV%RMS, respectively. 

Table 8: Recommendations for minimal image acquisition protocols for clinical and research 

settings using Stratec pQCT scanners. 

Setting 
Region 

of 
interest 

Length measurement 
Reference line 

placement 
Imaging 

sites 

Voxel 
size 

[mm] 

Slice 
thickness 

[mm] 
       

Research 
Settings 
(Humans) 

Radius 

Measure from the 
medial aspect of the 
styloid process to the 
humero-radial joint 
cleft  

Place at the 
superior aspect of 
the cortical shell at 
the most distal and 
flattest portion of 
the plateau of the 
endplate 

4% 
0.4 x 
0.4 

2 – 2.5 

66% 
0.5 x 
0.5 

Tibia 

Measure from the 
most distal palpable 
end of the medial 
malleolus to the most 
proximal edge of the 
medial tibial plateau 
(the medial join cleft) 

Place at the 
superior aspect of 
the cortical shell at 
the most distal and 
flattest portion of 
the plateau of the 
endplate 

4% 
0.4 x 
0.4 

38% 
0.5 x 
0.5 

66% 
0.5 x 
0.5 

Femur 

Measure from the 
most distal limit of the 
lateral femoral 
condyle to the most 
proximal palpable 
limit of the greater 
trochanter  

Place at the distal 
limit of the lateral 
femoral condyle 

4% 
0.3 x 
0.3 

25% 
0.5 x 
0.5 
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Clinical  
Practice 
Settings 

Tibia 

Measure from the 
most distal palpable 
end of the medial 
malleolus to the most 
proximal edge of the 
medial tibial plateau 
(the medial join cleft) 

Place at the 
superior aspect of 
the cortical shell at 
the most distal and 
flattest portion of 
the plateau of the 
endplate 

4% 
0.4 x 
0.4 

2 – 2.5 
38% 

0.5 x 
0.5 

66% 
0.5 x 
0.5 

 

 

 


