
A Study on the Acceleration of
Arrival Curve Construction and

Regular Specification Mining using
GPUs

by

Nirmal Joshi Benann Rajendra

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2018

© Nirmal Joshi Benann Rajendra 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/162585424?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

Chapter 3 of this thesis has been adopted from the work [7] that was accepted for
publication under IEEE Design & Test (Volume: 35, Issue: 4, Aug. 2018). Author of
this thesis is one of the co-authors for the accepted paper along with the first author,
Carvajal, G., Salem, M., and Fischmeister, S. In this chapter, Carvajal, G., Salem, M.
and Fischmeister, S. aided in formalising the idea of the construction of the arrival curves.
Carvajal, G. also aided in the developing the intuition and approach for the construction
of arrival curves.

All the work presented in this thesis were completed under the supervision of Fis-
chmeister, S. in the Electrical and Computer Engineering department at the University of
Waterloo, who contributed with his ideas, reviews,and suggestions.

iii

Abstract

Data analytics is a process of examining datasets using various analytical and statistical
techniques. Several tools have been proposed in the literature to extract hidden patterns,
gather insights and build mathematical models from large datasets. However, these tools
have been known to be computationally demanding as the datasets become larger over time.
Two such recently proposed tools are the construction of arrival curves from execution
traces and mining specifications in the form of regular expressions from execution traces.
Though the architectures in CPUs have extensively improved over the years to execute such
computationally intensive tasks, further enhancements have been impeded due to increased
heat dissipation. This has resulted in enabling parallel computing through GPUs as a vastly
favorable alternative to overcome the computational challenges.

In this thesis, we present an exploratory work on applying GPU computing to the con-
struction of arrival curves and mining specifications in the form of regular expressions as
case studies. The novel approaches taken for each of the case studies are first presented
followed by the algorithmic breakdown to expose the parallelism involved. Lastly, experi-
ments using commodity GPUs are presented to showcase the significant speedups obtained
in comparison to the equivalent non-parallel implementations.

iv

Acknowledgements

I would like to extend my gratitude to everyone who has supported me throughout my
masters.

First and foremost, I would like to express my deepest gratitude towards my supervisor,
Prof. Sebastian Fischmeister for being an approachable supervisor and giving me all the
opportunities to help me grow both on a technical and personal level. Thank you for
making time to meet with me even though you always had a busy schedule.

I am also extremely grateful to Dr. Gonzalo Carvajal. Thank you for always being
there to offer guidance and support ever since I was a URA. Thank you for going the extra
mile to check up on me and making sure I was in the right direction. Also, a special thanks
to his students - Andrew, Hans, Jaime, Mario and Pedro.

I would like to also immensely thank Dr. Apurva Narayan for being my guide and
support since my first day of masters. Thank you for the pleasure of having the experience
to work, research with you and for always being there in person to help me whenever I
needed it the most.

I thank my readers, Prof. Hiren Patel and Prof. Paul Ward for their valuable time in
reviewing my thesis.

I felt incredibly privileged and humbled to have worked with my friends and colleagues
at the Real-time Embedded Software Group especially Adan, Anderson, Anson, Carlos,
Giovani, Jack, Mahmoud, Murray, Oleg, Sean and Waleed. I sincerely thank you all for
your company and for sharing your knowledge. Being a part of the Embedded Soccer
Group was awesome.

Special shoutout and thanks to David YeounJun Park and Tommy Nguyen for always
being there and accompanying me as I transitioned from Bachelors to Masters with them.
I would like to also thank Andrew Alberts for being a friend and that genius classmate
who helped me complete CS 666. To Bharat, Gowtham, George, Hareesh, JJ, Mahesh,
Ranga, Sara, Sathyan and Vicky, thank you for the weekend football memories.

My heartfelt thanks to my family especially my parents for their unconditional love,
guidance, support and always being there. They are the backbone of my success and
achievements.

Last but not least, I would like to thank God for giving me the strength, hope and
making all of this possible.

v

Dedication

This thesis is dedicated to my dad - Mr. Benann Thiruthuvanathan, my mom - Mrs.
Carmel Mercy Benann and my brother - James Benann. I will always be grateful to them
for supporting me, no matter what decision I make.

vi

Table of Contents

List of Tables x

List of Figures xi

Abbreviations xiii

1 Introduction 1

1.1 Contributions . 4

1.2 Organization of Thesis . 4

2 Background 5

2.1 Nvidia GPU . 5

2.1.1 Programming in CUDA . 6

2.1.2 CUDA Memory Model . 9

2.1.3 Example . 10

2.2 AMD GPU . 12

2.2.1 Programming in OpenCL . 13

2.2.2 OpenCL Memory Model . 15

2.2.3 Example . 16

vii

3 Enabling Rapid Construction of Arrival Curves from Execution Traces 18

3.1 Introduction . 18

3.2 Background and Related Work . 19

3.2.1 Analytical Arrival Curves . 19

3.2.2 Empirical Arrival Curves . 20

3.3 Definitions . 20

3.3.1 Traces Model . 20

3.3.2 Empirical Arrival Curves . 21

3.4 Approach . 21

3.4.1 Intuition . 21

3.4.2 Algorithm . 24

3.4.3 Parallel Approach . 27

3.5 Experiments . 28

4 Acceleration of Mining Arbitrary Regular Specifications from Execution
Traces 32

4.1 Introduction . 32

4.2 Related Works . 33

4.3 Background and Definitions . 34

4.3.1 Execution Traces Model . 34

4.3.2 Regular Language . 35

4.3.3 Dominant Properties . 37

4.4 Approach . 37

4.4.1 Inputs . 38

4.4.2 Preprocessing . 38

4.4.3 Mining Stage . 41

4.4.4 Ranker . 46

4.4.5 Parallel Approach . 47

viii

4.5 Experiments . 48

4.5.1 Case Study: Timed Regular Expression (TRE) 48

4.5.2 Case Study: Nested Words (NW) 51

5 Common Abstractions 55

5.1 Grid/Global Size Strided Loops in a Kernel 55

5.2 Memory Coalescence . 56

5.3 Algorithmic Design for Parallelization . 57

5.4 Determining the Number of Threads/Work-Items 59

5.5 Vector Datatypes . 61

6 Conclusion and Future Work 64

6.1 Conclusion . 64

6.2 Future Work . 65

References 66

ix

List of Tables

3.1 Arrival Curve Construction Speedup Results 29

4.1 Mapping of Template < α; β > [x, y] to Alphabet Σ = {A,B,C} 37

4.2 2D Mapping Array M for Instances of Interest 41

4.3 TRE Mining Speedup Results . 50

4.4 Mining ((P |S)∗.(〈P.(P |S)∗.S.(P |S)∗〉[0, 2000]))+ on a QNX Trace 51

4.5 NW Mining Speedup Results . 53

4.6 Mining [〈a]n.[〈c]m.[〉d]m.[〉b]n; m,n > 0 on a Twitter Feed 54

5.1 Time Measurements for Algorithmic Restructuring 59

5.2 Time Measurements for Different OpenCL Kernel Configurations 60

x

List of Figures

1.1 CPU Clock Frequency Trend over Time [17] 2

2.1 Overview of Nvidia’s Fermi Architecture 6

2.2 CUDA Thread Hierarchy . 7

2.3 Overview of the CUDA Memory Model . 9

2.4 Vector Addition Example in CUDA . 11

2.5 Overview of the Graphics Core Next Architecture 12

2.6 Example Organization of OpenCL Work-Items and Work-Groups 14

2.7 Overview of the OpenCL Memory Model 15

2.8 Vector Addition Example in OpenCL . 17

3.1 Processing Flow Example for Computing the Arrival Curves [7] 23

3.2 Illustration of the Algorithm Execution for the First Two Iterations over the
Example Trace [7] . 26

3.3 Arrival Curve Construction Execution Time Evaluation on a Synthesized
Trace . 28

3.4 Arrival Curves Constructed from a Sub-Trace with Different Bucket Widths [7] 30

4.1 High-Level Overview of the Mining Framework 38

4.2 Illustrative DFSM for Template < α; β > [x, y] 39

4.3 DFSM Representation of a TRE Template and Execution Flow for TRE
Mining . 44

xi

4.4 DFSM Representation of a NW Template and Execution Flow for NW Mining 46

4.5 TRE Mining Execution Time Evaluation on Synthesized Traces (Setups 1
and 2) . 48

4.5 TRE Mining Execution Time Evaluation on Synthesized Traces (Setup 3) . 49

4.6 NW Mining Execution Time Evaluation on Synthesized Traces (Setups 1
and 2) . 52

4.6 NW Mining Execution Time Evaluation on Synthesized Traces (Setup 3) . 52

5.1 Work-Group Strided Loop Example in OpenCL 56

5.2 Uncoalesced Memory Access Kernel Example in OpenCL 56

5.3 Time Comparison Between Coalesced and Uncoalesced Memory Access . . 57

5.4 Example Sequential for Loop with Dependencies 57

5.5 OpenCL Kernel v1 for the Sequential update Function 58

5.6 OpenCL Kernel v2 for the Sequential update Function 58

5.7 Vector Addition Kernel Using float Scalar Data Type 62

5.8 Vector Addition Kernel Using float2 Vector Data Type 62

5.9 Vector Addition Kernel Using float4 Vector Data Type 62

5.10 Performance Comparison Between a Scalar Data Type and Vector Data Types 63

xii

Abbreviations

ACE Asynchronous Compute Engine 13

AMD Advanced Micro Devices, Inc. 12–16, 28, 29, 60, 65

API Application Programming Interface 3, 13

CPU Central Processing Unit 1, 2, 6, 7, 10, 12–16, 27, 29, 30, 56, 64

CU Compute Unit 13, 14, 16, 60, 61

DDR Double Data Rate 65

DFSM Deterministic Finite State Machine 34, 35, 37–41, 43, 45, 47

DPP Data-Parallel Processor 12, 13

DRAM Dynamic Random Access Memory 5

FPGA Field Programmable Gate Array 2, 65

GCN Graphics Core Next 12

GCP Graphics Command Processor 13

GDS Global Data Share 15

GPC Graphics Processor Cluster 5

GPGPU General Purpose GPU 3, 12

GPU Graphics Processing Unit 2–8, 10, 12, 14–16, 19, 27–30, 33, 49, 53, 55–57, 59–61,
64, 65

xiii

LDS Local Data Share 13, 16

NC Network Calculus 18

NW Nested Word 33, 36, 39, 43, 45, 47, 48, 52–54

NWA Nested Word Automaton 39, 46

NWAs Nested Word Automata 45

OpenCL Open Computing Language 3–5, 13–16, 27–29, 47, 49, 53, 55, 56, 58–61, 64, 65

OpenMP Open Multi-Processing 65

PE Processing Element 14

PEs Processing Elements 14

RTC Real-Time Calculus 20

sALU scalar Arithmetic Logic Unit 13

sGPR scalar General Purpose Register 13

SIMD Single-Instruction Multiple-Data 3, 6, 8, 10, 13, 14

SIMT Single-Instruction Multiple-Thread 8

SM Streaming Multiprocessor 5, 6, 8–10, 14, 60

SP Streaming Processor 6, 9

TRE Timed Regular Expression 33, 34, 36, 38–40, 43, 45, 47–49, 53, 65

vALU vector Arithmetic Logic Unit 13, 61

vGPR vector General Purpose Register 13

VLIW Very Long Instruction Word 62

xiv

Chapter 1

Introduction

Data generated by numerous information sensing systems such as Internet of Things (IoT)
devices, mobile applications, sensors, websites and social media are primarily large and
unstructured. Applying advanced data analytics techniques based on data mining, machine
learning, abstraction of mathematical models to these large datasets can help analyze
and build structured datasets. These advanced techniques can be used to build a broad
spectrum of reliable tools that can automate the data analysis process for any given set
of data. However, these data analysis tools can be computationally demanding as the
datasets increase in size.

Examples of two such tools are the construction of arrival curves and mining of arbi-
trary regular specifications. Arrival curves are well-known abstractions for mathematically
modelling the temporal executions in real-time systems. There exists substantial literature
that uses arrival curves for the design and analysis of real-time systems [7]. However, a
tool for the construction of arrival curves has been ignored or omitted due to the compu-
tational challenges involved [7]. Similarly, specification mining is the process of examining
execution traces of sophisticated programs to identify patterns of event occurrences. Mined
specifications represent formal properties that characterize a program’s dynamic behaviour,
which can be used for debugging, verification, anomaly detection, among other applica-
tions [30, 29]. Recent literature reports multiple techniques and tools for automatic mining
of temporal properties expressed in the form of regular expressions (hence, the term regular
specification mining), which can be represented using deterministic finite state machines.
However, these mining algorithms suffer from the time complexity arising from the inherent
formulation of the automaton and the size of execution traces as shown in [30, 29].

For the last 40 years, one of the significant ways to boost the Central Processing Unit

1

1970 1980 1990 2000 2010
Year

101

102

103

104

Cl
oc

k
Fr

eq
ue

nc
y

(M
Hz

)

Intel
IBM
AMD
HP

Figure 1.1: CPU Clock Frequency Trend over Time [17]

(CPU) performance for computationally demanding tasks was by achieving gains through
clock frequency [45]. Increasing clock frequency means completing tasks faster. However,
as shown in Figure 1.1, the trend of clock frequency over time was growing steadily but
started to flatten around early 2000. The reason behind the trend is that increasing clock
frequency results in increasing the complexity of the CPU hardware which in turn causes
heat dissipation in large amounts and high power consumption [45]. This limitation on the
CPU clock frequency improvement resulted in turning the spotlight to parallel computing
strategies for computationally intensive tasks. Specifically, applying parallel computing
through heterogeneous systems involving Graphics Processing Unit (GPU)s appear to be a
valuable solution as the commodity parallel hardware are becoming cost-effective [40, 50].

Heterogeneous systems consist of a host and connected device(s). Generally, the host
is a CPU. The host delegates or offloads computationally intensive tasks to the device(s)
and then collects the results of the tasks from the device(s) yielding in an overall better
timing performance relative to a CPU-only execution. The device(s) are generally parallel
computing device(s) that execute the tasks in parallel. Examples of such devices can be
CPU, GPU, Field Programmable Gate Array (FPGA), and Digital Signal Processor (DSP).

Originally, GPUs were designed to accelerate the graphics processing pipeline. This
involved having a fraction of the graphics processing pipeline stages implemented in hard-
ware that were optimized, task-specific and performed fixed functions [34]. Though some of
these stages were configurable, they lacked programmability. Eventually, programmability

2

was added to the graphics pipelines to enable flexibility of certain features in graphics such
as texture and lighting [34]. Over time, as the graphical applications increased in complex-
ity, GPUs evolved primarily focusing on the programmable stages of graphics pipeline [34].
Modern GPU architectures contain large arrays of programmable processing units. In other
words, older generations of GPUs can be best described as a task-specific pipeline with
additions of programmability whereas modern GPUs can be described as a programmable
engine with task-specific units [34]. The programmable units of modern GPU use Single-
Instruction Multiple-Data (SIMD) programming model [34]. This implies that the GPU
can process different data points or different elements in a dataset in parallel using a sin-
gle instruction. This support of having programmable units with a parallel programming
model in GPUs opened opportunities for exploring the use of GPUs for general purpose
computations.

Efforts were made by researchers to map the general purpose applications to the ex-
isting graphics Application Programming Interface (API) in order to use the GPUs for
general purpose computing [50]. As a result, the GPUs used for such computing purposes
are known as General Purpose GPU (GPGPU). This mapping to graphics API implies each
computation had to be expressed and reduced in terms of pixels even if the computation had
no relation to graphics [34]. This obfuscated the use of GPU for general purpose computing
thereby causing debugging to be very tedious [34]. Eventually, this limitation was over-
come through the development of commercial tools and programming environments such
as Open Computing Language (OpenCL) and CUDA enabling direct and non-graphical
interface with the programmable units. These tools provide programming environments to
exploit an application’s parallel computing opportunities by providing the means to spec-
ify the parallelism through high-level programming. Hence, such tools provide a high-level
programming model that opens avenues to take complete advantage of GPU’s powerful
architecture while enabling productive implementations of compute-intensive applications
such as data analysis tools [34].

To showcase the interest of using heterogeneous systems containing GPUs to improve
the performance of data analysis tools, we propose an exploratory study in this thesis on
applying accelerators such as GPUs (with OpenCL and CUDA) to data analysis tools like
the construction of arrival curves and regular specification mining. The approach taken in
this study uses OpenCL GPUs as primary accelerators followed by exploring the results of
implementing the same algorithm on CUDA GPUs.

3

1.1 Contributions

The main contribution of this thesis are:

� Propose two novel algorithms - construct arrival curves and mine specifications in
the form of regular expressions from execution traces to show the application of
accelerators to tools.

� Discuss the computational approach to formulate both the algorithms. This also
includes the discussing the parallelism involved and the acceleration results of using
parallel hardware for such algorithms.

� Present the abstractions in the form of optimizations that were considered when
applying GPU computing to both case studies. These abstractions can be considered
while applying CUDA and OpenCL GPU accelerators to other tools or algorithms.

1.2 Organization of Thesis

The remainder of this thesis advances as follows: We discuss the background required for
GPU computing in chapter 2 by going over the architecture and programming model of
the GPUs used. Chapters 3 and 4 present the case studies of the construction of the
arrival curves and the regular specification mining respectively along with the results of
the acceleration. Chapter 5 discusses the common abstractions that were considered as a
result of using the two GPU programming models in the case studies. Lastly, Chapter 6
includes concluding remarks along with future work.

4

Chapter 2

Background

This chapter describes the architecture of GPUs along with the programming models of
the tools used for each of them. GPUs used in this study are manufactured by Nvidia and
AMD. Hence, the Nvidia GPUs are programmed using CUDA, and the AMD GPUs are
programmed using OpenCL.

2.1 Nvidia GPU

This section will present a general overview of a Nvidia GPU architecture. The detailed
specifications of a Nvidia GPU depend on the architecture model of the GPU like Pascal
and Fermi. An illustration of one of Nvidia’s earliest GPU architecture, the Fermi ar-
chitecture, is shown in Figure 2.1. In order to get the simplified overview of the Nvidia
GPU architecture and to understand the programming model described later, the key
components in the Nvidia GPU architecture are the following:

� Graphics Processor Clusters (GPCs)

� Streaming Multiprocessors (SMs)

� Streaming processors (SPs) (also known as CUDA cores)

Each Graphics Processor Cluster (GPC) contains a collection of SMs along with the
Dynamic Random Access Memory (DRAM) global memory and it is interconnected to the
other GPCs. Each Streaming Multiprocessor (SM), in turn, consists of many SPs, thread

5

DRAM Memory

GPC

Host Interface

SM

GPC GPC

GPC

SM

SM SM

Result Queue

Dispatch Port

Operand Collector

FP Unit INT Unit

Instruction Cache

Register File

Thread Dispatch Unit

SP LDST
SFU

SP SP SP

SP SP SP SP

SPSPSPSP

SP SP SP SP

LDST

LDST LDST

LDST

LDST

LDST

LDST
SFU

...

Shared Memory

Fermi GPU

Figure 2.1: Overview of Nvidia’s Fermi Architecture

dispatch unit, instruction cache, shared memory, register file, load/store unit (LDST)
and special function units (SFU) which perform special hardware instructions such as
sine/cosine/exponent operations. The thread dispatch unit dispatches the threads to the
Streaming Processor (SP). Usually, the number of threads handled in a SM is 1024. Each
SM further divides the number of threads into wraps. The SPs are responsible for per-
forming various complex computations. To perform such computations, each SP contains
an Integer Unit (INT Unit) and Floating Point Unit (FP Unit). Over time, many archi-
tectures such as the new Turing architecture were developed by improving on the Fermi
architecture and by adding more of the SPs thereby, increasing the throughput.

2.1.1 Programming in CUDA

The CUDA programming model is one of the many tools available for programming a
heterogeneous system. As mentioned before, a heterogeneous system consists of a host
which is the CPU and a device which in this case is a Nvidia GPU. The host and the
device also contain their own memory - host memory and device memory respectively. The
function that gets executed on the GPU is called the kernel. This is the key component
for enabling parallelism through SIMD when using tools like CUDA. The kernel enables
the programmer to focus on the design and logic of the application algorithm instead of

6

worrying about the details on thread allocation or deallocation in GPU. In other words, the
kernel can be written as a sequential program which is then used by CUDA to schedule the
kernel on the GPU threads [9]. The high-level flow of a CUDA program is the following:

1. CPU allocates memory locally for the given data.

2. CPU allocates GPU memory and transfers the data from CPU to GPU.

3. CPU launches the kernels asynchronously on the GPU to execute on the copied data.

4. CPU waits on GPU to finish and then copies the results of the execution to CPU.

Block
(0, 0)

Block
(0, 1)

Block
(0, b

y
)

Block
(1, b

y
)

Block
(b

x
, b

y
)

Block
(1, 1)

Block
(1, 0)

Block
(b

x
, 1)

Block
(b

x
, 0)

GPU

Grid

(gridDim.x = b
x
, gridDim.y = b

y
, gridDim.z = 1)

...

...

...

... Thread
(0, 0)

Thread
(0, 1)

Thread
(0, t

y
)

Thread
(1, t

y
)

Thread
(t

x
, t

y
)

Thread
(1, 1)

Thread
(1, 0)

Thread
(t

x
, 1)

Thread
(t

x
, 0)

Block

(blockIdx.x = b
x
, blockIdx.y = 0)

(blockDim.x = t
x
, blockDim.y = t

y
, blockDim.z = 1)

...

...

...

...

Thread

(threadIdx.x = 1, threadIdx.y = t
y
)

Figure 2.2: CUDA Thread Hierarchy

It is important to note that the control is returned back to the CPU after launching the
kernel(s) thereby, enabling the CPU to perform any other additional tasks. Each line or
instruction in the kernel is executed by a large number of threads in the GPU. CUDA allows
a two-level thread hierarchy that enables the programmer to organize the threads required
to execute a kernel. Organizing the number of threads is a critical part to exploiting the
parallelism within Nvidia GPU. The thread hierarchy is such that the threads are grouped
into blocks and the blocks are further grouped into a grid as shown in Figure 2.2. In other
words, a grid is made up of blocks and each block in a grid is made up of threads. The
threads inside a block can synchronize amongst themselves and also cooperate among each
other using shared memory. However, threads from different blocks cannot interact and
cooperate with each other. CUDA offers built-in variables to uniquely identify a thread as
listed below:

7

� blockIdx - Holds the block index within a grid.

� threadIdx - Holds the thread index within a block.

� blockDim - Holds the block dimension measured in terms of threads.

� gridDim - Holds the grid dimension measured in terms of blocks.

Each of these variables are of type uint3, a built-in CUDA struct containing three
variables - x, y and z. These can be accessed inside a kernel using the following syn-
tax: blockIdx.x, blockIdx.y, blockIdx.z, threadIdx.x, threadIdx.y, threadIdx.z,
blockDim.x, blockDim.y, blockDim.z, gridDim.x, gridDim.y and gridDim.z. This im-
plies that the CUDA organzies the grids and blocks in 3-dimensional. By default, the x, y
and z variables of the variables holding the dimension value is set to 1.

In order to launch a kernel with configurations on the number of threads required, the
following syntax can be used -

kernel name<<<grid dim, block dim>>>(list of arguments)

The variable grid dim can be of type uint3 that indicates the number of blocks per grid
along each of the three dimensions of the grid. Similarly, the variable block dim can be
of type uint3 that indicates the number of threads per block along each of the three di-
mensions of the block. As an example, the following declaration: uint3 grid dim(512);

indicates 1-D grid containing 512 blocks. Similarly, this uint3 block dim(1024, 1024);

declares a 2-D block containing 1024 threads along each of the 2 dimensions. These vari-
ables can then be used to launch the kernels.

After launching a kernel with some grid and block dimensions, the blocks are distributed
and scheduled to the SMs for execution. Multiple thread blocks can be assigned to the
same SM depending on the resources available in the GPU. However, once a thread block
is scheduled in a SM, it remains in that SM until the execution is complete. The scheduling
and the distribution of the thread blocks to the SMs is taken care by CUDA.

CUDA uses a Single-Instruction Multiple-Thread (SIMT) model for thread manage-
ment and execution. The major difference between SIMD and SIMT is that SIMD model
executes a single instruction on multiple data points whereas in a SIMT model, multiple
threads execute the same instruction independently. This group of threads that execute
the same instruction at the same time is called a wrap which is usually made up of 32
threads [9]. Each SM divides the block of threads further into wraps and then, schedules
the execution of threads.

8

Host

Global + Constant + Texture Memory

Shared Memory

Local
Memory

Local
Memory

Local
Memory

Registers

Thread Thread Thread

...

...

...Registers Registers

GPU

Grid

Block

Figure 2.3: Overview of the CUDA Memory Model

2.1.2 CUDA Memory Model

The main types of programmable memory in the CUDA memory model are register file,
shared, local, constant, texture and global memory. Overall view of the memory model is
shown in Figure 2.3. Each SM contains a register file which acts like private memory for
each thread by allowing storage of registers required by the threads. There is effectively
negligible wait time on the register file and hence has the fastest memory access [11].
The lifetime of the register variables is shared with the kernel i.e. the variables cannot
be accessed once the kernel finishes execution [9]. Shared memory is present in each SM
as well and accessible by all the SPs present in the SM. The threads in a thread block
cooperate with each other using the shared memory. This can result in race conditions if
the threads were to be executed in an undefined order. However, CUDA primitives are
available to prevent such race conditions within a thread block [9]. The shared memory is
limited in each SM and has higher latency than that of the register file but the lifetime of
the shared memory is shared with the thread block.

The local memory is a special view of the global memory used for register variables
unable to fit into the allocated register space such as large local structures or arrays and
variables that exceed the register limit [9]. Since local memory is in the same physical
location as that of the global memory, it has the same bandwidth and latency as that of
the global memory. The constant memory is present in the device memory identical to the
global memory and contains only read-only data for the kernels. It is declared in the global
scope and is visible to all the kernels. Another memory that resides in the device like the
global memory is the texture memory which is useful for storing 2D or 3D data. Texture

9

memory can be accessed only through a read-only cache [9] as the cache performs floating-
point interpolation. This facility in Texture memory is advantageous to applications that
are designed around 2D or 3D data.

Lastly, the global memory is the largest memory available on the GPU. It has the highest
latency and is also most commonly used memory due to its size. The global memory is
available to all the SMs at the same time and its lifetime is shared with the application.
This can cause undefined program behaviour due to race conditions arising from threads in
two different thread blocks accessing the same global memory location. Hence, it is advised
to take caution when designing the memory access to the global memory. The CPU in
the heterogeneous system transfers the data to the GPU by first allocating memory in the
global memory and then moving the data from the CPU memory to the GPU memory.

In addition to these, the Nvidia GPU also contains non-programmable caches: L1 cache,
L2 cache, read-only constant and read-only texture [9]. Each SM contains an L1 cache, a
read-only constant cache, a read-only texture cache and the L2 cache is shared among all
the SMs. The L1 and L2 caches are used to store the data in local and global memory
whereas the read-only constant cache and the read-only texture cache is used to store data
in the constant and texture memory respectively.

2.1.3 Example

Figure 2.4 shows an example CUDA program that does vector addition in parallel. This
program can be stored with the .cu file extension. The CUDA compiler driver, nvcc that
is part of the CUDA toolkit, follows the CUDA compilation trajectory as listed below:

� Separating the device functions (like kernels) from the host code

� Compile the device functions using the Nvidia compiler

� Compile the host code using a C++ compiler

� Link CUDA runtime libraries to support SIMD steps along with GPU memory allo-
cation and data transfer between CPU and GPU

This example starts with the initialization of two vectors of size 1024 each and each
containing consecutive numbers starting from 1. After initializing, the necessary GPU
memory is allocated using cudaMalloc and data is transferred from CPU to GPU using
cudaMemcpy. The kernel in this example is the doSum function and gets executed on the

10

1 #include <cuda_runtime.h>

2
3 #define SIZE 1024

4 #define START 1

5 using namespace std;

6
7 __global__ void doSum(int *a, int *b, int *sum) {

8 unsigned int i = threadIdx.x ;

9 sum[i] = a[i] + b[i];

10 }

11
12 void initVector(vector <int > &v) {

13 int x = START;

14 for (int i = 1; i <= SIZE; ++i) {

15 v.push_back(x++);

16 }

17 }

18
19 int main(int argc , char *argv []) {

20 vector <int > h_a , h_b;

21 vector <int > h_sum(SIZE , 0);

22 int *d_a , *d_b , *d_sum;

23
24 initVector(h_a);

25 initVector(h_b);

26 cudaMalloc ((void **)&d_a , sizeof(int)*SIZE);

27 cudaMalloc ((void **)&d_b , sizeof(int)*SIZE);

28 cudaMalloc ((void **)&d_sum , sizeof(int)*SIZE);

29 cudaMemcpy(d_a , h_a.data(), SIZE*sizeof(int),

cudaMemcpyHostToDevice);

30 cudaMemcpy(d_b , h_b.data(), SIZE*sizeof(int),

cudaMemcpyHostToDevice);

31
32 doSum <<<1, 1024>>>(d_a , d_b , d_sum);

33
34 cudaMemcpy(h_sum.data(), d_sum , SIZE*sizeof(int),

cudaMemcpyDeviceToHost);

35 cudaFree(d_a);

36 cudaFree(d_b);

37 cudaFree(d_sum);

38
39 return 0;

40 }

Figure 2.4: Vector Addition Example in CUDA

11

GPU. This kernel is launched with a 1-D grid containing a single 1-D thread block made
up of 1024 threads. Each thread runs the kernel by first obtaining its thread index in the
block using threadIdx.x followed by the addition operation at the vector index equal to
the thread index. While the addition is done in parallel, CPU is waiting on the cudaMemcpy
call to copy the results from the GPU to CPU. The results will be copied into the CPU
memory once all the threads complete the kernel execution.

2.2 AMD GPU

An alternative to using a Nvidia GPU in a heterogeneous system is an Advanced Micro
Devices, Inc. (AMD) GPU. The codename for the microarchitecture used in AMD GPUs
launched from 2011 is Graphics Core Next (GCN). This microarchitecture was launched to
improve the architecture of its predecessor, TeraScale, especially for GPGPU computations.
This section discusses the components of the GCN in a AMD GPU used in a GPGPU
setting. Figure 2.5 shows an overview of the GCN architecture.

Host Interface

Memory Controller

L2 R/W Cache

L1 R/W Cache

Global Data Share

C
o

m
m

an
d

 P
ro

cesso
rs

T
h

read
 D

isp
atch

 P
ro

cesso
rC

o
n

st
an

t
C

ac
h

e

Instruction Cache

DPP

Device

CUCUCU CU

Compute Unit

Local Data
Share

Program Counter

vGPR

vALU

vGPR

vALU

vGPR

vALU

vGPR

vALU

sGPR

sALU

From/To Global Data Share

F
ro

m
 C

o
n

st
an

t
C

ac
h

e

L1 Vector Data Cache

Figure 2.5: Overview of the Graphics Core Next Architecture

The main component that forms the heart of the GCN is the Data-Parallel Processor

12

(DPP) array [5]. The DPP contains a collection of compute units that operate independent
of each other and in a parallel manner on data streams of floating-point or integer type [5].
Each Compute Unit (CU) is the basic computational block in the architecture. A CU is
made up of 4 SIMD vector units (stream processors), a program counter, scalar General
Purpose Register (sGPR), scalar Arithmetic Logic Unit (sALU) and Local Data Share
(LDS) and a L1 vector data cache [3]. Each SIMD vector unit contains a vector General
Purpose Register (vGPR) and vector Arithmetic Logic Unit (vALU) capable of execut-
ing single or double precision floating point operations simultaneously using 16 threads
(work-items) [3]. Hence, 4 SIMD vector units results in total of 64 threads to execute
simultaneously which is called a wavefront and this term is analogous to a wrap in CUDA.
The LDS within each compute unit is used as a register file to synchronize among the
different SIMD units and is designed to have low-latency bandwidth [3].

The command processors are responsible for receiving high-level API commands from
the driver and mapping them onto the two processing pipelines - Asynchronous Compute
Engine (ACE) and Graphics Command Processor (GCP) [3]. The ACE is responsible for
parallel compute operations and the GCP is responsible for graphics operations and fixed
hardware functions [3]. The memory controller brings together all the components and the
caches together to provide data to every part of the system [3].

2.2.1 Programming in OpenCL

OpenCL is an industrial standard framework developed by the Khronos Group and used
for writing programs that can be executed in heterogeneous systems containing OpenCL-
compliant hardware as the device. OpenCL was built on the notion, “Write once, run on
anything” which is similar to Java’s “Write once, run everywhere” [39]. In other words,
OpenCL enables portability across multiple OpenCL-compliant devices. The relevant tools
to compile and run OpenCL code is provided by the vendor of OpenCL-compliant devices.
Examples of such tools are AMD APP SDK and Xilinx SDAccel Development Environment.

OpenCL provides two compilation options - the traditional offline compilation and the
runtime compilation [43]. Through runtime compilation, OpenCL allows execution on new
hardware not available to the developer of the OpenCL program without the need to re-
compile the main application [43]. Through runtime compilation, OpenCL provides an
interface to enumerate the available devices connected to the host i.e. CPU. On enumerat-
ing and selecting the required set of devices, OpenCL encapsulates the devices’ details into
a container called context. Device management is done through the context object [43].

Identical to CUDA, the functions that are executed in the devices are called kernels.

13

local_work_size = 5, dim = 0

l
o
c
a
l
_
w
o
r
k
_
s
i
z
e

 =
 5

, d
i
m

=

1

global_work_size = 10, dim = 0

g
l
o
b
a
l
_
w
o
r
k
_
s
i
z
e

 =
 1

0
, d
i
m

=

1

work_dims = 2
global_work_offset = 0

One Work-Group

One Work-Item
get_global_id(0) = 9
get_global_id(1) = 5
get_local_id(0) = 4
get_local_id(1) = 0

Figure 2.6: Example Organization of OpenCL Work-Items and Work-Groups

The given kernels are compiled runtime in a container called program [43]. After selecting
the kernel in the program container, the appropriate arguments are associated to the kernels
and dispatched to a queue data structure called the command queue [43]. The CPU offloads
tasks to the device using the command queue. The device executes the functions in the
command queue in the same order as they were queued.

The devices used for OpenCL contain at least one processor cores known as Compute
Units which in turn contain one or more Processing Elements (PEs). The PEs are designed
to execute SIMD instructions which thereby enables data-level parallelism [43]. From an
AMD GPU perspective, OpenCL Compute Units are the same as the Compute Units (CUs)
inside the GPU and each Processing Element (PE) is the SIMD engine inside the CU of the
GPU. OpenCL also uses the concept of work-groups and work-items which are analogous to
thread blocks and threads respectively in CUDA. The compute unit in an OpenCL device
executes a work-group at a time [39] similar to a thread block executed by a SM in CUDA.
Each work-item in a work group is assigned a global ID that uniquely identifies a work-
item [39]. This can be obtained using get global id(dim) function call inside a kernel.
The dim argument indicates the dimensionality of the data being processed [39]. The
dimensionality is specified when queueing the kernel to the command queue. The minimum
dimensionality is 1 and the maximum dimensionality is device dependent. Specifically, the
following arguments are used to specify the work-item and work-groups while queueing the
kernel:

� work dims: The number of dimensions.

14

Host

Global + Constant Memory

Local Memory

Private
Memory

Private
Memory

Private
Memory

Work-Item Work-Item Work-Item

...

...

OpenCL Device

Work-Group

Figure 2.7: Overview of the OpenCL Memory Model

� global work offset: Offset to the global ID in each dimension.

� global work size: Total work-items in each dimension across all work-groups.

� local work size: Number of work-items in a work-group in each dimension.

Figure 2.6 shows an example organization of work-items and work-groups in a two-
dimensional setting. Since a work-group can contain multiple work-items, get local id(dim)

to get the local ID of a work-item to distinguishes it from the other work-items in the same
work-group. After these arguments are specified, OpenCL determines the number of work-
groups required before executing the kernel. If local work size is set to NULL, OpenCL
will determine the best way to distribute the work-items based on the device architec-
ture [39].

2.2.2 OpenCL Memory Model

OpenCL offers four types of memory - global memory, constant memory, local memory
and private memory as shown in Figure 2.7. The global memory allows storage of data to
be read or written by the entire device. This memory is designed to be large with high
latency and may be shared with the host to transfer data to and from the host (CPU) [43].
This can be the Global Data Share (GDS) in a AMD GPU. Constant memory is similar
to the global memory except that it is only read-only by the device. The location of the
constant memory depends on the device architecture. Some devices may have a specific

15

memory location for Constant memory and the others may assign a part of the memory
region in global memory to be constant memory [39]. The local memory is available to
all the work-items in each work-group mainly for synchronization. This memory can be
accessed by the work-items in a work-group faster than the global or constant memory but
its size can be limited [39]. The LDS in each CU of a AMD GPU is the local memory.
Lastly, private memory is a memory region for each work-item. Though it is limited in
size, the private memory has the lowest latency access in the OpenCL memory model.

In order to use this memory model, the following address space qualifiers are available:
global, constant, local and private. These address space qualifiers are used to

define the address space of kernel arguments or other variables in the device code. global

is for global memory, constant is for constant memory, local is for local memory and
private is for private memory [39]. If a kernel argument or variable does not have an

address space qualifier, then private memory is used for storage [39].

2.2.3 Example

Figure 2.8 shows an OpenCL with C++ bindings example to do vector addition in parallel.
This file can be stored as a .cpp file and compiled using a C++ compiler such as g++ with
compiler options linking to the OpenCL library provided by the device vendor. To avoid
redundancy, the function definition of initvector() function and the definition of SIZE

and START have been ignored and are same as that of the CUDA example in section 2.1.3.

Before executing the actual computation, a preprocessing step is involved as OpenCL
runtime compilation is used. First, the array of platforms available on the host is obtained,
and the platform at index 0 is used in this example. Using this platform, a Context

object is built which is in turn used to build the Device object. The device code that
is hardcoded as a string is used to define a Program object. This Program object is
compiled using the Device object to create a Kernel object. A CommandQueue object
is declared using the Context and Device objects. After allocating the necessary GPU
memory, the CommandQueue object is used to enqueue the transfer of input data using
enqueueWriteBuffer() and the kernel as well. The kernel in this example is the doSum

function and is launched with a 1-D data containing a global size of 1024 work-items. Each
work-item runs the kernel by first obtaining its work-item ID using get global id(0)

followed by the addition operation at the vector index equal to the work-item ID. While
the addition is done in parallel, CPU is waiting on the response of the enqueue operation of
enqueueReadBuffer() that copies the results from the GPU to the CPU. The results will
be copied into the CPU memory once all the work-items complete the kernel execution.

16

1 #include "cl.hpp"

2 using namespace std;

3 using namespace cl;

4
5 const char *src =

6 "__kernel void doSum(__global int *a, __global int *b, __global int *

sum) {" \

7 " int i = get_global_id (0); " \

8 " sum[i] = a[i] + b[i]; "\

9 "}";

10
11 int main(int argc , char *argv []) {

12 cl_int err;

13 vector <int > h_a , h_b;

14 vector <int > h_sum(SIZE , 0);

15 Buffer d_a , d_b , d_sum;

16 initVector(h_a);

17 initVector(h_b);

18 vector <Platform > pl;

19 Platform ::get(&pl);

20 cl_context_properties properties [] = { CL_CONTEXT_PLATFORM , (

cl_context_properties)(pl[0])(), 0};

21 Context context(CL_DEVICE_TYPE_GPU , properties);

22 vector <Device > d = context.getInfo <CL_CONTEXT_DEVICES >();

23 Program :: Sources source(1, make_pair(src , strlen(src)));

24 Program p = Program(context , source);

25 p.build(d);

26 Kernel k(p, "doSum", &err);

27 CommandQueue queue(context , d[0], 0, &err);

28 size_t bytes = sizeof(int)*SIZE;

29 d_a = Buffer(context , CL_MEM_READ_ONLY , bytes);

30 d_b = Buffer(context , CL_MEM_READ_ONLY , bytes);

31 d_sum = Buffer(context , CL_MEM_READ_WRITE , bytes);

32 queue.enqueueWriteBuffer(d_a , CL_TRUE , 0, bytes , h_a.data());

33 queue.enqueueWriteBuffer(d_b , CL_TRUE , 0, bytes , h_b.data());

34 k.setArg(0, d_a);

35 k.setArg(1, d_b);

36 k.setArg(2, d_c);

37 queue.enqueueNDRangeKernel(k, NullRange , 1024, NullRange);

38 queue.enqueueReadBuffer(d_sum , CL_TRUE , 0, bytes , h_sum.data());

39 return 0;

40 }

Figure 2.8: Vector Addition Example in OpenCL

17

Chapter 3

Enabling Rapid Construction of
Arrival Curves from Execution
Traces

3.1 Introduction

Verification of functional and non-functional properties in contemporary embedded systems
are becoming more challenging and computationally intensive due to the inherent complex-
ity and interconnectivity of such systems. Mathematical models and formal methods have
been used in the past to derive performance metrics during the design phases [48, 37, 23].
Traditional formal methods have proved to effective on mapping worst-case behaviour for
closed systems with trivial complexity to generalized mathematical representations. How-
ever, these approaches have failed to be useful and reliable for complex systems that have
a high number of unpredictable interactions between the different components [7]. These
limitations have turned the spotlight to processing execution traces in runtime analysis.
The execution traces record the unpredictable behaviour in complex systems specifically
the ones not considered during design time.

Arrival Curves offers a way to model the temporal behaviour of real-time systems.
Coarsely grained approximations of arrival curves have been used by multiple frameworks
to model worst-case behaviours and determine performance metrics by applying Network
Calculus (NC) theory operations on these arrival curves [48, 37, 23]. Over time, various
literature that focuses on the potential uses of fine-grained construction of arrival curves
from execution traces in advanced techniques were published [20, 38, 24, 32]. However,

18

the caveat in the construction of such fine-grained arrival curves from large datasets of
execution traces is that the process is computationally demanding which thereby results
in the incomplete utilization of these curves in a real-world setting.

This chapter presents the algorithmic formulation for the construction of arbitrarily
detailed arrival curves as a toolset by iterating over registered events in time-stamped
execution traces. The algorithm also provides opportunities for data-level parallelism and
experiments in this chapter show significant speedups when applying such parallelism to
commodity parallel hardware such as GPUs.

The rest of the chapter is organized as follows: Section 3.2 overviews background of
arrival curves and related work around the construction of arrival curve. Section 3.3
introduces some definitions to formalize the approach involved. Section 3.4 describes the
core of the proposed algorithm for the construction of fine-grained arrival curves from
execution traces including a discussion on the parallel approach involved. Section 3.5
shows the results of applying stress tests based on synthesized traces to the proposed
algorithm with GPUs followed by an illustration of the constructed arrival curves using a
QNX trace.

3.2 Background and Related Work

3.2.1 Analytical Arrival Curves

Arrival curves are represented as a function of interval time domain by providing the
upper and lower limits on the number of registered events that occur in a system within a
given time interval of length ∆t [37]. Theoretically, arrival curves can be constructed from
execution traces containing timestamps and events by sliding a time interval window of
arbitrary length along the time axis while keeping track of the maximum and the minimum
number of events occurring within each window. However, instead of using the execution
traces, traditional approaches constructed the arrival curves by bounding any possible
curve after analyzing generic behavioural patterns [7]. As a result, various scenarios were
approximated using event pattern models that observe the period, jitter and delay of events
(PJD models) [48, 37, 42]. Let the arrival curves constructed as a result be called analytical
arrival curves.

19

3.2.2 Empirical Arrival Curves

However, the caveat behind using analytical arrival curves is that it will produce loose
conservative approximations for unpredictable behavioural patterns that deviate from the
general PJD pattern models [7]. This unpredictable behaviour arises due to the increasing
complexity of embedded systems which has in turn increased the interest in alternative
runtime analysis techniques that uses execution traces. Specifically, these techniques fo-
cus on producing fine-grained models that record the unpredictable workloads due to the
unforeseen interactions between the various components in an embedded system.

Let the arrival curves constructed from execution traces of an embedded system be
called empirical arrival curves. Though techniques to construct empirical arrival curves
have potential uses in resource management [24, 32] and anomaly detection [38], it is a
computationally intensive task as highlighted by the authors of [38] and therefore, remains
overlooked in literature [7]. The only existing work that is designed to construct such
curves from execution traces is the Real-Time Calculus (RTC) Toolbox [47]. However, this
toolbox fails to process arbitrarily large execution traces [7]. This chapter will show the
computational approach to construct the empirical arrival curves and also demonstrate the
use of parallelism to overcome the computational intensive barrier.

3.3 Definitions

3.3.1 Traces Model

A trace is a chronological sequence of events occurring during the execution of a program.
The trace may register multiple details about an event, such as an index, timestamp, and
additional information pertaining to the functionality of the system. In this context, the
index and the timestamp are the only parameters of interest.

Definition 1 (Event source) An event source generates elements tsk, k ≥ 0, represent-
ing the timestamp of an event measured in an absolute time domain t. Timestamps are
multiples of an atomic time unit (tsk ∈ N), and events are generated as time progresses
(tsk < tsk+1). [7]

Definition 2 (Trace) A trace TS = [ts0, ts1, . . . , tsN−1] is a finite sequence of N times-
tamps collected from an event source. [7]

20

3.3.2 Empirical Arrival Curves

Definition 3 (Empirical arrival curve) The pair of curves (αl(TS,∆t);αu(TS,∆t))
provide a lower and upper bound on the number of events seen in any time interval of
length ∆t in a trace TS. [7]

To formulate an algorithm to construct empirical arrival curve, the term quantized
arrival curves is used. Quantized arrival curves are approximations of empirical arrival
curves calculated based on discrete buckets (i.e. windows of some time interval) of width
r atomic time units.

Definition 4 (Quantized arrival curves) Given a set of discrete buckets ∆tBi of width
r atomic time units (r > 1), with bucket ∆tBi enclosing all intervals ∆t in the range
ir ≤ ∆t < (i + 1)r, with i ∈ N0. Quantized lower α̂l(TS,∆t, r) and upper α̂u(TS,∆t, r)
arrival curves will provide a unique representative value for all intervals ∆t enclosed in a
bucket [7]. Quantized curves must comply with the following property:

∀r > 1 : α̂l(TS,∆t, r) ≤ αl(TS,∆t) ∧ α̂u(TS,∆t, r) ≥ αu(TS,∆t) (3.1)

Equation 3.1 states that upper arrival curves and lower arrival curve need to be approx-
imated from above and from below respectively [23]. The definition of quantized arrival
curves also indicates a way to express a sequence of events occurring in a range of time
intervals as a single bucket.

It is important to note that this definition considers the equivalence relations α̂l(∆t, r =
1) ≡ αl(∆t) and α̂u(∆t, r = 1) ≡ αu(∆t) as there is no quantization involved for r = 1.
The remaining sections will be using the notations α̂l(∆tBi , r) and α̂u(∆tBi , r) to represent
the quantized value of the lower curve and upper curve respectively for all intervals ∆t in
the bucket i.

3.4 Approach

3.4.1 Intuition

To construct the arrival curves, it is only required to check for intervals aligned to the events
in the execution trace instead of checking all possible time intervals in the trace [32, 37].

21

This is general intuition behind the algorithmic formulation. Using this intuition, an
iterative approach can be taken to construct the curves by iterating over the timestamps
in the trace accumulating results obtained at each timestamp (pivot).

Figure 3.1 shows the processing flow of computing the arrival curves for a sample trace
TS = [3, 5, 6, 12, 16, 18] where each element denotes the timestamp of an event. This
sample trace is represented illustratively on the top of the figure using absolute time axis
t horizontally with red arrows representing the timestamps. This processing flow involves
mapping each timestamp tsk in the absolute time domain t to the interval time domain ∆t
using a reference timestamp tsp, with p ∈ [0, N − 1]. This mapping is in accordance with
a function M : t→ ∆t:

M(tsk, tsp) = tsk − tsp,with p ≤ k ≤ N − 1 (3.2)

During each iteration, a new distribution of events, p, is generated in the ∆t domain
and the local lower curve α̂lp(∆t

B
i , r) and local upper curve α̂pp(∆t

B
i , r) is computed for each

pivot. These local curves are obtained by computing the minimum (lower bound) and
maximum (upper bound) on the number of events occurring in time intervals measured
from the pivot, which is the origin in the interval time domain ∆t, to the limits of each
interval bucket ∆tBi . This process of computing local curves is repeated for the next
succeeding timestamp which will be the new pivot.

In the case of r = 1 (no quantization), the following rules are used to compute the local
curves [37]:

� The local lower value αlp(∆t) is the number of events in the interval (0,∆t] in the
current iteration.

� The local upper value αup(∆t) is the number of events in the interval [0,∆t) in the
current iteration.

According to the definition of quantized arrival curves, a unique value must be assigned
to every time interval lengths within a bucket for r > 1 to ensure that quantized lower and
upper curves computed, as a result, approximates the curves computed using r = 1 from
below and above respectively. This condition is fulfilled using the following rules [7]:

� The local lower value α̂lp(∆t
B
i , r > 1) is the number of events in the interval (0, ir) in

the current iteration.

22

0

(0,3) Δt

t

0
Original trace in absolute time domain

Analysis in interval time domain

Δt

Δt

Δt

Δt

Δt

Δt0=0 Δt1 Δt2 Δt3 = Δtmax
Δt

αu (Δti
B

 , r=4)

Iteration 0

2

4

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

Aggregated
Global curve

k=

3 6 9 12 15 18 21

αl (Δti
B

 , r=4)

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

2 3 4 5

3 4 5

4 5

5

(2,3) (2,4) (3,6)

(0,2) (1,3) (2,4) (3,5)

(0,1) (0,2) (1,3)

(0,1) (0,3)

(0,2)

(0,1)

6 αu (Δt)

αl (Δt)

(α0
l(Δti

B,4);α0
u(Δti

B,4))

(2,3)

^

^

^ ^

(α5
l(Δti

B,4);α5
u(Δti

B,4))^ ^

Figure 3.1: Processing Flow Example for Computing the Arrival Curves [7]

23

� The local upper value α̂up(∆tBi , r > 1) is the number of events in the interval [0, (i+
1)r) in the current iteration.

The above rules will be used to compute the arrival curves. The example in Figure 3.1
has r set to 4 time units and another parameter, ∆tmax set to 3r. ∆tmax is the maximum
timespan of interest [7] and is, by default, less than or equal to tsN−1 − ts0. The grey
dashed vertical lines in the interval time domain shown in the figure separate each interval
within a single bucket. The tuple shown below the ∆t axis and right of the dashed vertical
lines contains the lower and upper bound on the number of events for each bucket. For
example, during iteration 0, the pivot is at timestamp t = 3 and hence, in the interval time
domain, it is at the origin. Using the rules above for r > 1 , the α̂l0(∆tB0 , 4) and α̂u0(∆tB0 , 4)
values in the first time interval ∆t0 (i = 0) are 0 and 3 as shown in the appropriate tuple
in the figure. Similarly, for the second time interval ∆t1 (i = 1), (α̂l0(∆tB0 , 4), α̂u0(∆tB0 , 4))
is (2, 3) and so on until ∆ti = ∆tmax. These are the local values during iteration 0. This
computation is repeated for each timestamp as the pivot and the global lower and upper
curves are obtained by taking the maximum and the minimum number of events over all
the local curves. This is illustrated using the last plot at the bottom of Figure 3.1. The
grayed areas in the figure denote that these areas are ignored when computing the global
curves as no event occurs in those buckets. Also, it is important to know that the value of
the curves at ∆t = 0 is zero [37].

3.4.2 Algorithm

Algorithm 1 shows the pseudo-code of the formulated algorithm to construct quantized
arrival curves with given arguments TS, r > 1, ∆tmax and W where W is the length
of the array IntervalToBucket which stores the number of events that occur within the
maximum timespan ∆tmax. If the minimum delay dmin between consecutive events in
TS is known, then W ≥ (∆tmax/dmin). The results of local curves during each iteration
are stored in LowLoc and UppLoc and the aggregated results are stored in LowGlob and
UppGlob. INT MAX in the pseudo-code is any arbitrarly large positive integer.

The outermost loop in the algorithm is used iterate over the timestamps in TS and
perform the computations for each timestamp. Initially the local lower and upper arrays
are initialized to INT MAX and −1 respectively during each iteration of this loop. Loop
1 deals with populating IntervalToBucket by mapping each timestamp tsk ≥ tsp to a
bucket computed using its distance from the pivot timestamp tsp. This means that at
the end of Loop 1, IntervalToBucket will be populated with value i for all timestamps

24

Algorithm 1: Construct Quantized Arrival Curves from a Trace [7]

Input: TS, ∆tmax, r, W

1 nBuckets← b∆tmax/rc
2 LowGlob[1:nBuckets] ← INT MAX

3 UppGlob[1:nBuckets] ← 0
4 LowLoc[nBuckets], UppLoc[nBuckets], IntervalToBucket[W]

5 for p← 0 to N − 1 do
6 h← 0, LowLoc[1 : nBuckets] ← −1, UppLoc[0 : nBuckets] ← −1

7 // Loop 1: Compute quantized values of intervals
8 for k ← p to N − 1 do
9 IntervalToBucket[h] ← b(TS[k]− TS[p])/rc

10 h = h+ 1
11 if (h ≥W or IntervalToBucket[h] > nBuckets) then
12 break
13 end

14 end

15 // Loop 2: Find local upper and lower value for each bucket ∆tBi
16 for i← 1 to nBuckets do
17 if i ∈ IntervalToBucket then
18 UppLoc[i] = (index of last element equal to i)
19 LowLoc[i] = (index of first element equal to i) - 1

20 end

21 end

22 // Loop 3: Fill gaps in local upper curve and similarly for local lower curve
23 for i← 1 to nBuckets do
24 if UppLoc[i] < 0 then
25 UppLoc[i] = UppLoc[i− 1]
26 end

27 end

28 // Loop 4: Update global curves
29 for i← 1 to nBuckets do
30 UppGlob[i] = max(UppLoc[i], UppGlob[i])
31 LowGlob[i] = min(LowLoc[i], LowGlob[i])

32 end

33 end

25

considered such that ir ≤ ∆t < (i+1)r in the interval time domain. Loop 2 extracts lower
and upper values for the bucket ∆tBi by looking at the the value i in IntervalToBucket

and then updating UppLoc and LowLoc array appropriately at index i [7]. The last in-
dex of IntervalToBucket with bucket i is the local upper value and the first index of
IntervalToBucket with bucket i minus 1 is the local lower value [7]. The subtraction of
1 when getting the local lower value is done to adhere to the rules of the intervals stated
in the previous section.

However, values in IntervalToBucket may not contain all the buckets in the range
from 1 to nBuckets if the timestamps in TS are separated by more than r time units
thereby, not updating all the indices of UppLoc and LowLoc. This is taken care of by Loop
3 which extrapolates the values to fill the gaps where the indices have not been updated [7].
Loop 3 only shows the operation on UppLoc where the missing values are filled with the
previous maximum value. Similarly, another loop can be added to fill the gaps for LowLoc
by iterating backwards from nBuckets to 1 and updating the gaps with the next minimum
value [7]. Lastly, Loop 4 takes care of updating the global curves index-wise by comparing
the current global value with the local value and updating appropriately.

3 5 6 12 16 18

0 0 0 2 3 3

0 1 2 3 4 5

TS

0 -1 2 3

index

3 -1 4 6

INIT: r=4, Δtmax = 3r, W=6, nBuckets=4

0 2 2 3

3 3 4 6

Loop 1

Loop 2

Loop 3

0 0 1 2 3 X

0 1 2 3

2 3 4 5

0 1 2 3

2 3 4 5

X X X XLowLoc

X X X XUppLoc

X X X X X X

0 2 2 3

3 3 4 6

Iteration 0: pivot = TS[0]

7 7 7 7LowGlob

0 0 0 0UppGlob

LowLoc

UppLoc

IntervalToBucket

LowLoc

UppLoc

LowGlob

UppGlob

Iteration 1: pivot = TS[1]

0 1 2 3

3 3 4 6

LowLoc[all] = -1;
UppLoc[all] = -1;
IntervalToBucket[all] = X;

Loop 4

IntervalToBucket

LowLoc[all] = -1;
UppLoc[all] = -1;
IntervalToBucket[all] = X;

Figure 3.2: Illustration of the Algorithm Execution for the First Two Iterations over the Example Trace [7]

Figure 3.2 shows the execution of this algorithm for the first two iterations in the
example trace TS = [3, 5, 6, 12, 16, 18]. The array values shown in the figure are the
results after completing the execution of each loop. As discussed above, Loop 1 populates
IntervalToBucket which is then used by Loop 2 to populate UppLoc and LowLoc. As
mentioned earlier, not all the indices will be updated by Loop 2, and hence, Loop 3 fills
the gaps. Lastly, Loop 4 updates the UppGlob and LowGlob. To ensure that the algorithm

26

follows the intuition discussed under Section 3.4.1, the values in UppGlob and LowGlob for
iterations 0 and 1 in this figure are the same as that of the tuples in iterations 0 and 1 of
the processing flow example in Figure 3.1.

3.4.3 Parallel Approach

This algorithm was formulated with the idea to transform the computations into embar-
rassingly parallel workloads. Such workloads are usually independent and need little or no
communication between them.

Redesign: Loop 3 can be modified to perform the filling of gaps on the global curves
instead of the local curves. However, this adds extra computation to Loop 2 as Loop 4
will be merged with Loop 2 to update global curves and also, add “markers” in the global
curves to indicate the beginning and the end of gaps. These “markers” can then be used
by Loop 3 to fill the gaps appropriately. This redesign allows Loop 3 to be moved outside
the outermost loop thereby, adding potentially more parallel code, and the CPU can wait
on the GPU to complete all parallel computations before copying the results from the GPU
and then execute Loop 3.

Loop 1: From the pseudo-code in Algorithm 1 and the illustration of the arrival curve
construction shown in Figure 3.2, each iteration of Loop 1 operate independently of one
another for a given timestamp pivot. Using loop-based parallel pattern [11], Loop 1 can
be transformed into a CUDA or OpenCL kernel.

Outermost Loop: As the update to the global curves for an event in a trace depends
on the results of processing the previous events, the outermost loop in this algorithmic
formulation cannot be parallelized. Hence, for each iteration of the outermost loop, kernels
can be launched or enqueued into the command queue.

Loop 2: Loop 2 involves data dependencies between iterations. The operation can be
described as a form of stream compaction i.e. given a vector, utilize a subset of this vector
and output into another vector. This can also be parallelized in a kernel but not all threads
or work-items will be active or executing the same instructions as only a subset of the input
vector is used. Hence, the acceleration obtained from Loop 2 kernel will depend on the size
of this subset which in turn depends on the distribution of the timestamps in TS and r.
However, this drawback can be nullified as long as the overall parallelism achieved in the
algorithm for a given set of parameters is large enough to overcome the overall sequential
iterations .

Parallelism Factor: The loops that can be parallelized as discussed above involve par-
allelism over L and the number of buckets which depends on r. The number of buckets

27

increases as r decreases. Hence, the key factors to obtain acceleration via parallelism are L
and r. Intuitively, a higher value of L, a lower value of r or a combination of both results
in a higher number of iterations to operate on, thereby providing more opportunities for
parallel computing.

3.5 Experiments

This section presents the execution time evaluation of sequential and parallel versions of
the algorithm with GPUs on traces synthesized using a set of assigned values for L followed
by the illustration of the arrival construction results on a QNX trace.

0 200000 400000 600000 800000 1000000
L

10 4

10 2

100

102

104

lo
g(

Ti
m

e)
 [s

]

CPU
1080-Ti
2080-Ti
R9-390X
W9100

(a) Arrival Curve Construction Setup 1

0 2000 4000 6000 8000
r

102

103

104

lo
g(

Ti
m

e)
 [s

]
CPU
1080-Ti
2080-Ti
R9-390X
W9100

(b) Arrival Curve Construction Setup 2

Figure 3.3: Arrival Curve Construction Execution Time Evaluation on a Synthesized Trace

Using Synthesized Traces on GPUs

The sequential version of the algorithm was implemented in C++ and executed on an 8-core
Intel i7-3820 CPU 32GB of RAM. To demonstrate that the speedup obtained also depends
on device specifications, two GPUs are used for each programming model. The CUDA
implementation was executed on a Nvidia GeForce GTX 1080 Ti GPU and the recently
released, Nvidia GeForce RTX 2080 Ti GPU which has relatively higher number of CUDA
cores and better memory bandwidth. The OpenCL implementation was executed on an
AMD R9-390X GPU and an AMD FirePro W9100 GPU. Though both GPUs have the

28

same number of stream processors, the AMD R9-390X GPU has better memory bandwidth.
The speedup is calculated as the ratio between the sequential CPU execution time to the
GPU execution time. The setups used in this case are the following:

Table 3.1: Arrival Curve Construction Speedup Results

Constant Variable Variable 1080 Ti 2080 Ti R9-390X W9100

Parameters Parameter Values Speedup Speedup Speedup Speedup

10 0.015 0.016 0.002 0.002

100 0.052 0.061 0.032 0.032

1000 0.389 0.669 0.810 0.747

5000 1.793 3.956 5.798 3.564

r = 2 L 10000 3.913 7.874 9.387 6.193

50000 10.612 32.769 21.325 17.455

100000 14.076 39.708 28.308 23.269

500000 19.921 54.087 37.346 30.380

1000000 19.798 53.174 36.423 29.528

2 19.000 51.594 35.564 29.217

4 15.914 53.225 38.133 32.268

8 13.294 56.761 43.051 36.045

16 11.546 67.128 51.552 42.058

32 10.440 75.649 55.981 48.238

64 9.650 74.924 57.015 50.638

L = 500000 r 128 9.312 76.090 57.855 51.921

256 8.967 73.457 57.662 52.367

512 8.679 71.525 56.458 51.300

1024 8.614 71.267 57.144 52.003

2048 8.583 70.904 58.090 52.725

4096 8.550 71.224 58.001 53.133

8192 8.636 71.313 58.672 53.805

� Setup 1 has varying L with r = 2 and the results are shown in Figure 3.3a.

� Setup 2 has varying r with L = 500000 and the results are shown in Figure 3.3b.

Each setup is iterated 10 times to obtain error bounds on the timing measurements.
However, the error bounds of each curve in the plots are small and do not overlap with
the other curves. Hence, in order to make the plots presentable, the error bounds are not
included. Instead, the worst-case (maximum) timing values are used to plot the curves.
The plots show that using the parallel versions provide a significant improvement in the
execution time of the arrival curve construction for both setups with GeForce RTX 2080 Ti
giving the best relative performance. Among the OpenCL devices, the R9-390X provides

29

∆t [ns] ×1010

0 1 2 3 4 5 6 7 8 9

N
u
m

b
e
r

o
f
e
v
e
n
ts

×104

0

1

2

3

4

5

6

UppGlob (r=17E8, 48 buckets)

LowGlob (r=17E8, 48 buckets)

UppGlob (r=10E6, 8075 buckets)

LowGlob (r=10E6, 8075 buckets)

Figure 3.4: Arrival Curves Constructed from a Sub-Trace with Different Bucket Widths [7]

the best performance. Table 3.1 tabulates the speedups offered by each GPU. For L < 5000,
GPUs do not offer speedup as the data transfer between the GPU and the CPU consume
more time than the actual computation. Hence, the sequential execution can be preferred
for these cases. However, as L increases, the computation becomes more intensive thereby
making the data transfer less significant when compared to the overall execution thereby,
offering more speedups. On the other hand, the number of buckets to operate on decreases
as r increases resulting in a more coarser construction of arrival curves. This results in lower
time consumption for higher values of r as shown in Figure 3.3b. However, acceleration
can be obtained even for large values of r as long as the value of L is large enough to
provide parallelism opportunities as shown in the table.

Using a QNX Trace

The QNX Real-Time Operating System (RTOS) is used in many safety-critical systems
and is equipped with an advanced logging facility, tracelogger that enables detailed tracing
of the various QNX activities on any system along with timestamps and identifiers for the
type of event [7]. For this evaluation, we used a trace containing 19 types of events from an
ARM Cortex-A8 processor running QNX RTOS and executing a sequential sense-process-
send (SSPS) application, which mimics a data collection system sending data from sensors
to a central hub [7]. This trace was then split into 19 sub-traces, one per each event type.
Ideally, each sub-trace should map to arrival curves that are in accordance with the model
of recurrent behaviour for the corresponding event type [7].

30

The arrival curves constructed from one such sub-trace using two different bucket widths
r (measured in time units of the timestamps) is illustrated in Figure 3.4 and the curves are
plotted in the same way as that of the arrival curves’ illustrations in existing literature [37].
From the figure, we can see that the curves obtained using the larger bucket width (r =
17 × 108) bounds the curves with lower bucket width (r = 10 × 106) correctly. Though
small values of r enable construction of fine-grained arrival models from the trace, it is not
always preferable as it can result in over-fitting of the data in some cases. For example,
if the bucket width is smaller than the minimum distance in time units between events
then, the global curve may contain unnecessary buckets [7]. Hence, the bucket width
r can be a tunable parameter to find the best trade-off among resource utilization and
performance [7].

31

Chapter 4

Acceleration of Mining Arbitrary
Regular Specifications from
Execution Traces

4.1 Introduction

Characterizing and evaluating the temporal behaviour of complex programs has become
an important task in many modern computer systems. Temporal properties specify the
chronological occurrence of events while the program executes. However, in many practical
applications, the programs are subject to continuous updates and are becoming increasingly
complex, which leads to poor documentation and a general lack of formal specifications
for their temporal properties. In this context, methods for dynamic specification mining,
i.e., inferring temporal properties from execution traces, are gaining significant attention
from multiple application domains [25]. Dynamically mined specifications are useful for
software testing [13], automatic verification [14], anomaly detection [10], debugging [16],
among other applications. In particular, in the embedded systems domain, programs
that violate a predefined temporal behaviour during execution (out-of-order execution or
delayed responses) can lead to major system failures. Moreover, if the program is part of
a safety-critical application, then the timing violation can have catastrophic consequences
for the environment and the user.

Dynamic temporal property miners identify a set of specifications that are satisfied by
traces with respect to certain criteria. In general, miners receive an abstract description of
critical and commonly occurring behavioural patterns, and then they look for specifications

32

of that form occurring in an input trace. Most literature on mining temporal specifications
focuses on the qualitative notion of time; that is, the provided specifications only describe
a chronological order of events without considering the actual time that passes between
events. Recent work presents a framework tailored for real-time systems capable of mining
properties with a quantitative notion of time, i.e., explicitly considering the length of the
time interval between events. Independent of the particular scope, many approaches for
mining temporal properties infer properties described in regular expression using some
regular language class of automaton [30, 29].

This chapter presents a general framework that uses regular languages to mine speci-
fications dynamically from execution traces and program logs. The core of the algorithm
consists of mapping a generic regular expression template to multiple state machines that
can be executed in parallel to mine concrete patterns while traversing the events registered
in a trace. As presented, the core is general enough to be used as a miner for arbitrary
patterns based in regular expressions, such as Timed Regular Expression (TRE) [30] and
Nested Word (NW) [29]. We evaluate the utility of our approach using two case stud-
ies - mining TREs and NWs on synthesized traces to show that higher speed-ups can
be achieved when mining arbitrary TRE and NW patterns from large traces. The algo-
rithm is platform-independent and can be used to support other regular language class of
automaton.

The rest of the chapter is organized as follows: Section 4.2 overviews related work
around the development of computational frameworks for mining regular specifications.
Section 4.3 introduces definitions and background to formalize our approach. Section 4.4
describes the core of the proposed algorithm for dynamic mining of specifications, including
illustrations of the processing flow when mining TREs and NWs. Section 4.5 shows the
results of applying our framework to TRE and NW mining case-studies, including stress
tests based on synthesized traces using GPUs and illustration of the mining results using
real-world datasets.

4.2 Related Works

The approach proposed in this paper involves dealing with a variety of challenging prob-
lems. Two of the major problems include scalable specification mining and using parallel
pattern mining on datasets. Works that propose scalable approaches to mine specifications
from execution traces are [26, 27, 15, 6, 41, 35, 22].

The work in [41] presents scalable specification mining using automata based abstrac-
tions limited to static analysis. [26] proposes a scalable technique to mine only tempo-

33

ral patterns for digital circuits using Linear Temporal Logic (LTL). The work under [15]
presents scalable temporal specification miners evaluated on open-source Java programs.
Similarly, specification mining with a focus on object-oriented programs is presented in [35].
A novel API specification mining architecture proposed by Lo et al. [27] presents an ap-
proach to learn probabilistic Finite State Automata after filtering erroneous traces to form
specifications. A scalable Finite State Machine (FSM) inference technique to mine spec-
ifications using traces from the interaction of software libraries with the real software is
proposed in [22]. A similar FSM inference technique discussed in [28] builds a guarded
finite state machine from execution traces of object-oriented programs.

To summarize, unlike the works mentioned above, this paper presents an accelerated
generalized framework to mine specifications in the form of regular expressions from execu-
tion traces relevant to the regular language used. Works about performing pattern match-
ing using multiple regular expression in a parallelized manner are discussed in [8, 51, 33, 36].
The core of these works focuses on building one Deterministic Finite State Machine (DFSM)
efficiently for a large number of regular expressions and use it for string matching in parallel.
The main application for these papers is Network Intrusion Detection System. Similarly,
pattern matching using TRE for runtime monitoring has been discussed in [46]. However,
these works present pattern matching over a given dataset which is different from pattern
mining. Pattern mining is the process of applying techniques on large amounts of data to
extract patterns [18], and pattern matching is the process of comparing a detected pat-
tern with a predetermined set of stored patterns [49]. This implies that pattern mining
uses pattern matching to extract patterns [44]. Hence, the works presented in the papers
mentioned above talk about efficiently detecting patterns in a data stream using regular
expression matching engines with predetermined concrete instances. On the other hand,
this chapter uses regular expression templates that contain variables to mine or extract
patterns in parallel from large datasets.

4.3 Background and Definitions

4.3.1 Execution Traces Model

Definition 5 (Event) An event corresponds to the occurrence of a certain functionality
during the execution of a program. Each event has an event value that identifies its type.

Definition 6 (Trace) A trace T = [e1, e2, . . . , eN−1] is a chronological sequence of events
ei occurring during the execution of a program. The trace may register multiple details

34

about an event, such as the event type, timestamp, and additional information pertaining
to the functionality of the system.

Definition 7 (Alphabet) Assuming that a trace T will contain information about a finite
set of event types, the alphabet Σ is the finite set of unique event types registered in the
trace.

Definition 8 (Alphabet size) For a given trace T with alphabet Σ, the alphabet size |Σ|
is the number of event types registered in the trace.

Consider the example trace TS = {A, B, B, C, B, A}, registering a sequence of
events that occurred in chronological order during the execution of a program. The first
registered event corresponds to an event of type A, the second to an event of type B, and
so on. The events as represented here just indicate the order and type of event but there
can be traces with additional details about registered events according to the application
context (e.g., timestamp, source, functionality, etc.).

For the example trace TS, the alphabet is Σ = {σ1, σ2, σ3} = {A,B,C}, and the
alphabet size is |Σ| = 3. In general, we will assume that the alphabet remains the same
for multiple traces if the source of those traces (i.e., the program executed) is the same.

4.3.2 Regular Language

The regular language class of automaton provides a technique to specify patterns in the
form of regular expressions [19]. Regular expressions provide a way to express the patterns
for any system specification, and they can be converted to a DFSM. We can thus use DFSM
representations to specify interesting patterns to be mined from an execution trace [30].

The proposed mining framework takes a template of a regular expression to generate
a DFSM that can be used to mine temporal properties of interest. The following defini-
tions introduce necessary terminology that we will use to formalize the proposed mining
algorithm.

Definition 9 (Event variables) An event variable is an atomic proposition in a regular
expression that can take any event value from the trace alphabet Σ.

Definition 10 (Template) A template Π is a regular expression where all atomic propo-
sitions are either event variables and/or time intervals.

35

A template is a generic representation of the patterns to be mined in a trace. Event
variables in a template are essentially placeholders for specific event types that appear in
a trace. For example, considering the event variables α and β, the template < α; β >
represents the target pattern of α followed by β. Here, α and β can take any value from
the alphabet Σ. Templates can also specify regular expressions with arbitrary complexity,
including patterns that occur within defined time intervals. Two particularly interesting
forms of regular expressions that have gathered interest recently are TRE [30, 46] and
NW [29, 1]:

� TRE example: < α; β > [x, y], where x and y specify a time interval of length
y − x time units. The template represents the pattern α followed by β such that
tβ − tα ≤ y− x, where tα and tβ represents the time of occurrence of events α and β
with respect to a reference clock.

� NW example: (〈αn.〉βn) where α represents recursive call events occurring n times
followed by n recursive return events β.

Definition 11 (Variable Set) The variable set P is the set of event variables in the given
regular expression template.

Definition 12 (Dimension) The dimension d = |P | is the number of event variables in
the given regular expression template.

Definition 13 (Instance) For a given template Π, πk is an instance of Π for a trace T
if πk is a pattern expressed by Π with the event variables substituted with the corresponding
constants or literals from the alphabet of T. Subindex k specifies a unique identifier for the
instance for a given permutation of the alphabet in the event variables.

Definition 14 (Mapping) A mapping is a function f : P → Σ, where P is the finite set
of event variables in the regular expression template and Σ is the alphabet of the trace.

It is important to note that |Σ| ≥ d. If |Σ| < d, then there are more variables in
the template than |Σ| and not all variables can be mapped to the events in Σ to form
an instance. To illustrate the previous definitions, let us consider the earlier example
trace TS and the TRE template Π =< α; β > [x, y]. In this case, the variable set is
P = {p1, p2} = {α, β}, and thus d = |P | = 2. The mapping function f maps each
event variable in P to each event type in the alphabet Σ = {A, B, C}, resulting in the
instances shown in Table 4.1. The use of templates and the mapping function highlights
the difference between pattern mining and pattern matching.

36

Table 4.1: Mapping of Template < α;β > [x, y] to Alphabet Σ = {A,B,C}

Instance α β Instance π

π1 A A < A;A >

π2 A B < A;B >

π3 A C < A;C >

π4 B A < B;A >

π5 B B < B;B >

π6 B C < B;C >

π7 C A < C;A >

π8 C B < C;B >

π9 C C < C;C >

4.3.3 Dominant Properties

The set of instances generated by mapping the template with Σ contains all possible
|Σ|p permutations of event types. These generated instances are used as patterns to mine
concrete specifications from the trace. However, these instances can contain both frequently
occurring patterns and some patterns that may be present only a few times. The intuition
behind specification mining is that frequent patterns occurring in the traces are most likely
to be true [26]. Hence, we use a ranking component that filters the set of mined patterns to
consider only the dominant instances or specifications of a given template. The concepts
of support and confidence are defined based on [25].

The ranking component used in this framework makes use of four parameters - Support
ωπk - total number of times the pattern of an instance πk was successfully mined in a trace,
Support Potential Ωπk - total number of times the pattern of an instance πk was starting to
be mined in a trace, Confidence δπk - ratio of ωπk to Ωπk and ε - an user-defined threshold
on δπk values. Ideally, the ranking component should be designed with these parameters
such that it would evaluate and mine mainly the dominant patterns or properties that can
help in determining specifications.

4.4 Approach

Figure 4.1 shows a high-level overview of the proposed framework for mining specifications
using regular languages. The first stage involves the preprocessing of the input trace(s)
and the template to generate a DFSM representation and then perform the mapping to

37

ΣΣ

Figure 4.1: High-Level Overview of the Mining Framework

generate multiple instances associated with the alphabet values. During the mining stage,
the mapping and the events from the input traces are passed to the mining algorithm which
runs through the template instances using the generated DFSM to perform matching of
specific patterns with concrete alphabet values. The mining generates counter values for
each instance, which the ranker uses to filter dominant properties.

4.4.1 Inputs

The inputs to the framework are a trace or a set of traces and the template in the form of
a regular expression. Apart from the event type that is necessary to obtain the alphabet
of the trace, each registered event can be represented as a structure containing multiple
fields of information about the event. For example, when mining TREs, each registered
event must contain at least a field for its type and timestamp based on a reference system
clock. The template can be given in the form of a string.

4.4.2 Preprocessing

The preprocessing stage consists of extracting information from the input traces and the
template to generate the DFSM and the mapping function.

Figure 4.2 shows an example DFSM representation for the template < α; β > [x, y]
introduced previously. A DFSM uses a transition function that takes as argument a current
state and a transition symbol to return the next state [12]. In the case of mining TREs,
the transition function for a DFSM should also keep track of the timing constraint in
addition to the transition symbols. We use TRE for this example because it represents a

38

s1 s2 s3
Start

Otherwise

Otherwise

α at tα β for (tβ − tα) <= (y − x)

Figure 4.2: Illustrative DFSM for Template < α;β > [x, y]

more general model that includes a quantitative notion of time [30]. A traditional regular
expression can only provide a qualitative notion of time (i.e., the order of events) and could
be directly obtained by removing the timing conditions from the transitions in a TRE. In
the case of NWs, the transition functions should keep track of the number of calls and
returns as defined for a Nested Word Automaton (NWA) [29].

Algorithm 2: A Transition Function for DFSM in Fig. 4.2

1 start time← NULL

2 Function transition(current state, symbol, new time):
3 if current state = s1 then
4 if symbol = α then
5 start time = new time
6 return s2

7 end
8 else
9 return s1

10 end

11 end
12 if current state = s2 then
13 if symbol = β & (new time− start time) <= (y − x) then
14 return s3

15 end
16 else
17 return s1

18 end

19 end

20 end

From a programming context, the transition function of a DFSM for a given template

39

can be represented using either conditional branches (if-then-else) or table-driven formats
in the form of a transition table. Algorithm 2 shows an example transition function for the
TRE template DFSM in Figure 4.2 in the form of conditional statements. The argument
symbol represents the given transition symbol from the current state which is represented
by the current state argument. The argument new time represents the timestamp for the
occurrence of symbol. In the example DFSM shown in Figure 4.2, if the current state is
s1 and the DFSM receives α at time tα, then symbol = α and new time = tα. In this
case, the transition function shown in Algorithm 2 would set start time to tα and return
s2 as the new state. The start time variable is used to check whether the timing constraint
specified in the template is satisfied when transitioning from s2 to s3.

Algorithm 3: Pseudo-code for TRE update instance()

1 Function update instance(current state, symbol, new time, Si, Ri):
2 current state← transition(current state, symbol, new time)
3 if is accepting state(current state) then
4 // Success
5 Si = Si + 1
6 current state← get start state()

7 end
8 if current state = get start state() then
9 // Failure

10 Ri = Ri + 1

11 end

12 end

There exist third-party compiler libraries that can generate such DFSMs. For example,
the Ragel State Machine Compiler [31] can generate DFSMs with the minimum number
of states. Also, Ragel provides the option to generate code in various formats such as
binary search table-driven, flat table-driven, and branch-driven along with the feature to
have customized transition functions. In our framework, the function update instance()

(shown in Algorithm 3) uses the transition function in Algorithm 2 to update the state
and to increment the Si and Ri counters that keep track of the number of successes and
failures of an instance. The arguments symbol, new time, current state have the same
representation as that of the transition function.

The mapping for the example trace TS shown in Table 4.1 shows all possible instances.
Since the example template explicitly utilizes two different variables - α and β, we are only
interested in instances with α 6= β. This means that instances π1, π5 and π9, are not of

40

interest for the template and thus we can ignore them. In general, we can determine the
number of useful instances for each event type as [30]:

Nπ = d ∗
d−1∏
i=1

(|Σ| − i) (4.1)

In the example used for Table 4.1, the set of instances that contain event type A are
{π2, π4, π6, π8}, and the size of this set is equal to Nπ = 4.

Table 4.2: 2D Mapping Array M for Instances of Interest

A (π2, α) (π3, α) (π4, β) (π7, β)

B (π2, β) (π4, α) (π6, α) (π8, β)

C (π3, β) (π6, β) (π7, α) (π8, α)

Table 4.2 shows a convenient reorganization of the information in Table 4.1. Each row
in the new 2D mapping array M contains the information related to a particular event
type from the alphabet Σ, listing all useful instances on which the corresponding event
type appears. Each column in a row of M contains a pair (πj, pk), where πj (j < |Σ|d)
corresponds to an useful instance where the event type for that row appears, and pk
corresponds to the k-th event variable in the template for which the event type appears
for that instance. In general, M will have |Σ| rows and Nπ columns.

4.4.3 Mining Stage

The mining algorithm serves as the core part of the framework. The pseudo-code for the
mining algorithm is shown in Algorithm 4. The algorithm receives the trace, the mapping
array M , the alphabet Σ and the dimension d. s is a 1D array containing the current
state of the DFSM for an instance. The size of this array equals the number of instances
NI , and each index of this array corresponds to a unique instance number. The success
array S and the reset array R store the number of successes and the number of failures of
a pattern identified by the unique instance number. R is called the reset array as a failure
of an instance indicates “resetting” the current state of the instance to the start state to
possibly mine same instances during the future processing of the trace. In the case of
successful instances, the corresponding instance is set to start state after reaching the final
accepting state. This is demonstrated in the example pseudo-code for update instance()

in Algorithm 3.

41

Algorithm 4: Pseudo-code for Mining Algorithm
Input: T , M , Σ, d

1 NI ← |Σ|d
2 s[1:NI] ← get start state()
3 S[1:NI] ← 0
4 R[1:NI] ← 0

5 // Loop 1 over all the events in T
6 foreach e in T do
7 IC[1 : NI]← FALSE

8 // Loop 2 over instances that considers event type e
9 foreach column in M [e] do

10 // Extract information from each element in M
11 v ←M [e][column].first // Get instance
12 i←M [e][column].second // Get template variable

13 update instance(i, s[v], S[v], R[v])

14 IC[v]← TRUE

15 end

16 // Loop 3 over instances that does not consider event type e
17 for v ← 0 to NI do
18 if IC[v] = FALSE then
19 update instance(NULL, s[v], S[v], R[v])
20 end

21 end

22 end

42

The mining process is implemented using nested loops. Loop 1 goes through all the
events in the same order as provided by the trace T . Loop 2 goes through all instances
associated with the type of event e. The reasoning behind is that, for an event type e, we
need to substitute the type of e into each of the d event variables of the template. We
achieve this by accessing the row in M corresponding to the type of event, represented as
M [e] in Algorithm 4. The data structures as shown in the pseudo-code are passed on to
update instance() which updates the corresponding instance and stores the new state
in s. Based on the computation results, the corresponding entry in S or R is incremented.
At the end of the mining process, S and R are passed to the ranker component to extract
dominant properties.

Loop 3 is necessary to cover transitions when the current event type is not explicitly
considered in an instance. For example, π2 in Table 4.1 does not consider events of type
C. Thus, when evaluating an event of type C, π2 should reset to the initial state, and this
is done by Loop 3. This processing flow is explained in detail using examples for a TRE
and a NW below.

Processing Flow for TRE Mining

Let us consider the sample trace for mining TREs:

TTRE = {[0, A]; [2, B]; [3, C]; [5, B]; [7, C]; [8, A]}

where each registered event has the form [ts, type], with ts as timestamp in time units
related to a global clock and type is the type of event. For this trace, |Σ| = 3, d = 2, and
the mapping array M is the same as in Table 4.2.

Let us also consider the TRE template:

< α; (∧α); β > [0, 3]

representing the pattern α followed by something different than α and then followed by β,
within an interval of three time units. The template uses the negation operator ˆ as stated
in [30].

Figure 4.3a shows a representation of the template as a DFSM, and Figure 4.3b shows
the execution flow of Algorithm 4 when mining using the given TRE template. Columns
represent one iteration of Loop 1, and rows represent the execution of Loops 2 and 3 for
each instance from the mapping table. Horizontal thick lines separate the processing flow
and results obtained for each instance. For each iteration of Loop 1, the example execution

43

s1

s2

s3

s4

Start

Otherwise

∧ α

α
at
t α

β
fo

r
(t
β
−
t α

)
≤

(y
−
x

)

O
th

er
w

is
e

Otherwise

(a) DFSM for TRE < α; (∧α);β > [x, y]

α
β

α
β

α
β

α
β

α
β

α
β

(b) Example Execution Flow for TRE Mining

Figure 4.3: DFSM Representation of a TRE Template and Execution Flow for TRE Mining

flow shows the state of each instance at the end of Loop 2 and Loop 3. The initial state
for each instance is s1 as shown in Algorithm 4.

Let us describe the processing for instance π2 while traversing the trace. Intuitively,
instance π2 performs pattern matching looking for an event of type A followed by any event
of not type A and then, followed by an event of type B. Starting with the first event of
type A and ts = 0, instance π2 proceeds to s2 at the end of Loop 2, because event type
A corresponds to α for that instance (see Table 4.1). In the next iteration of Loop 1,
the event type is B, which makes instance π2 to go to s3. The next event is of type C,
which is not considered explicitly in instance π2. This causes Loop 2 to end without any
effect, and Loop 3 resets the instance taking it back to s1. The next event is of type B,
which resets the instance to s1. In the processing flow for instance π2, resets shown in blue
are due to failed matching of event types considered in that instance, and resets shown in
red represent patterns that are interrupted by the occurrence of event types that are not
considered in the pattern of that instance. All types of reset increment the corresponding
counter in R by 1. This processing and intuition applies to all instances.

In the execution flow for instance π3, green fields indicate a path that leads to a success
in the pattern matching for that instance. For the first event with ts = 0 and type A,
instance π3 proceeds to s2 at the end of Loop 2, because type A corresponds to α for that

44

instance. The next event is of type B, which is not considered in instance π3. This makes
loop 2 to end without any effect. Unlike instance π2, Loop 3 will cause instance π3 to go to
s3 as the event type satisfies the transition from s2 to s3, i.e., (∧α). This highlights the use
of the negation operation. In the next iteration of Loop 1, the event type is C and ts = 3
which makes instance π3 to go to s4 as type C corresponds to β for this instance, and the
pattern occurred within three time units. Since s4 is the accepting state, the corresponding
counter in S is incremented by 1, and the instance goes back to s1.

In the processing flow of instance π4 at ts = 5, the instance is reset and then proceeded
to s2. This is because of event type B in that iteration being the first transition value for
the DFSM, i.e., α of instance π4. The reason for resetting an instance is to possibly mine
future instances. In this particular case, the reset happens at an event that can start the
mining of the instance. Hence, after reset, instance proceeds with e = B and thereby, set
to s2. Eventually, this instance succeeds at ts = 8.

Processing Flow for NW Mining

Let us consider the sample trace:

TNW = {A,B,A,C,A,B}

and the template
[〈α]n.[〉β]n;n > 0

to illustrate the processing flow of NW mining. The template used here can be interpreted
as: n calls of α followed by n returns of β. Since Σ = 3 and d = 2, the mapping array
is the same as in Table 4.2. Similar to the processing flow for TRE, Figure 4.4a shows a
representation of the template as a DFSM, and Figure 4.4b shows the execution flow of
Algorithm 4 when mining using the given NW template.

As mentioned earlier, the goal of Loop 3 is to cover transitions when the current event
type is not considered in an instance. This is applied to mining using NW to reset hanging
Nested Word Automata (NWAs). Let us describe the processing for instance π2 while
traversing the trace. Intuitively, instance π2 performs pattern matching looking for n
occurrences of an event of type A followed by n occurrences of an event of type B. For the
first event type A, π2 proceeds to s2 as A is considered to be α in π2. For the next event
type B, π2 proceeds to s4 and succeeds as B is considered to be the β in π2. Similarly,
π2 proceeds to s2 for the next event of type A. However, since the next event of type C
is not considered by π2, Loop 2 does not have any effect on π2. This causes Loop 3 to
reset π2 (shown in red). In other words, π2 was “hanging” and Loop 3 resets it. Suppose

45

s1 s2

s3 s4

Start

Otherwise α for n > 1

β for m < n

β
fo

r
m

=
1

A
N
D
m
<
nα for n = 1

β for m = n

β
fo

r
m

=
n

=
1

Otherwise

O
th

er
w

is
e

(a) DFSM for NW ([〈α]n.[〉β]n); n > 0

e = A e = B e = A e = C e = A e = B

2

α = A
β = B

Loop 2 s2 S s2 s2 S

Loop 3 R

3

α = A
β = C

Loop 2 s2 s2 S s2

Loop 3 R R

4

α = B
β = A

Loop 2 R s2 S R s2

Loop 3 R

6

α = B
β = C

Loop 2 s2 R s2

Loop 3 R R R

7

α = C
β = A

Loop 2 R R s2 S

Loop 3 R R

8

α = C
β = B

Loop 2 R s2 R

Loop 3 R R R

Instance
Loop 1

Time

(b) Example Execution Flow for NW Mining

Figure 4.4: DFSM Representation of a NW Template and Execution Flow for NW Mining

Loop 3 does not exist, then π2 would be “hanging” at s2 after type C has been processed
and would take the third occurrence of event type A as another call for the nested word
and increment n in its NWA. However, this is not a valid structure of the Nested Word as
defined in [29]. The processing flow continues, and π2 succeeds again after the reset. This
processing flow applies to all instances.

4.4.4 Ranker

The ranker filters the dominant patterns or properties from the set of all mined pat-
terns. The intuition behind this is that frequently occurring patterns are most likely to be
true [26]. An index k in S and R are used to get ωπk and (Ωπk −ωπk) values respectively for
an instance πk. Using these values, we obtain the support potential Ωπk and then calculate
the confidence δπk . Using a user-defined filter threshold ε, the mined patterns or properties
can be ranked and filtered to yield the dominant properties.

46

4.4.5 Parallel Approach

The mining algorithm was formulated with the notion to transform the computations into
embarrassingly parallel workloads. Such workloads are usually independent and need little
or no communication between them.

Loops 2 and 3 as Kernels: From the processing flow of TRE mining and NW mining
shown in Figure 4.3b and Figure 4.4b respectively, we can see that instances operate
independently of one another for a given event. This is also highlighted in the figures
by the thick horizontal lines separating the instances. This means that each iteration of
Loop 2 and Loop 3 in Algorithm 4 is independent of the other iterations, and each iteration
perform the same function on different instances. This means that using loop-based parallel
pattern [11], Loop 2 and Loop 3 can be transformed into two separate CUDA or OpenCL
kernels.

Loop 1: As DFSMs are used and the current state of a DFSM when processing an event in
a trace depends on the results of processing the previous events, Loop 1 in this algorithmic
formulation cannot be parallelized. Hence, for each iteration of Loop 1, these two kernels
can be launched or enqueued into the command queue.

Using DFSM Inside Kernels: These kernels will also involve using the transition func-
tion of a DFSM. However as branching affects the performance of work-items in a wavefront
or threads in a wrap, it would be a good design decision to generate the DFSM code as
a table-driven format thereby, keeping the instructions same. Minor experimental eval-
uations in OpenCL among the various DFSM formats offered by Ragel showed that the
table-driven DFSM format with certain Ragel optimizations provided the best relative per-
formance. Also, assuming the DFSM of a given template has small memory requirement,
another good option would be to store the variables related to the DFSM in constant
memory as these variables are written to the device memory by the host only once and
read many times by the mining algorithm.

Parallelism Factor: Given that the iterations of Loop 2 and Loop 3 are parallelized, the
acceleration obtained would depend on the number of instances processed independently.
The number of instances as seen in Section 4.3 is |Σ|d. Hence, the key factors to obtain
acceleration via parallelism are |Σ| and d. Intuitively, a higher value of |Σ|, d or both results
in a higher number of instances to operate on, thereby providing more opportunities for
parallel computing. This behaviour is demonstrated in the experiments section below.

47

4.5 Experiments

Experiments were conducted on TRE mining and NW mining to observe the acceleration
obtained via parallelism. For each mining technique, two experiments are presented. The
first experiment presents the evaluation of mining execution time on synthetic traces for
three different setups. The second experiment showcases the results of the mining on a real-
world dataset. The calculation of speedup and the device setups used for the synthesized
traces are same as that of the arrival curve construction experiments.

4.5.1 Case Study: Timed Regular Expression (TRE)

Using Synthesized Traces on GPUs

The setups used for this case study are the following:

0 200000 400000 600000 800000 1000000
L

10 1

100

101

102

lo
g(

Ti
m

e)
 [s

]

CPU
1080-Ti
2080-Ti
R9-390X
W9100

(a) TRE Mining Setup 1

1.0 1.5 2.0 2.5 3.0 3.5 4.0
d

10 2

10 1

100

101

102

103

104

lo
g(

Ti
m

e)
 [s

]

CPU
1080-Ti
2080-Ti
R9-390X
W9100

(b) TRE Mining Setup 2

Figure 4.5: TRE Mining Execution Time Evaluation on Synthesized Traces (Setups 1 and 2)

� Setup 1 has varying L with |Σ| = 152, d = 2 and the results are shown in Figure 4.5a.

� Setup 2 has varying d with L = 10000, |Σ| = 98 and the results are shown in
Figure 4.5b.

� Setup 3 has varying |Σ| with L = 500000, d = 2 and the results are shown in
Figure 4.5c.

48

0 50 100 150 200 250 300 350 400
| |

100

101

102

103

lo
g(

Ti
m

e)
 [s

]

CPU
1080-Ti
2080-Ti
R9-390X
W9100

(c) TRE Mining Setup 3

Figure 4.5: TRE Mining Execution Time Evaluation on Synthesized Traces (Setup 3)

The TRE template

tTRE A = (ˆ(P |S)∗.(〈P.ˆ(P |S)∗.S.ˆ(P |S)∗〉[0, 2000]))+

known as the Alternating template [30] is used for experiments where d (set to 2 in this
case) is kept constant. This template is modified by adding or removing variables to
evaluate for experiments where d is varied.

The plots show that using the parallel versions provide a significant improvement in the
execution time of the mining for large values with Nvidia GeForce RTX 2080 Ti performing
relatively and significantly better than the other devices. R9-390X provides the best per-
formance among the OpenCL devices. |Σ| and d are the key scaling factors in this parallel
computation. More the alphabet size and/or the number of template variables more is the
number of instances which thereby, enables significant improvement in execution time via
parallelism as shown in Figures 4.5b and 4.5c. This allows mining on traces with large
alphabet size using templates with several variables within a reasonable amount of time.
On the other hand, the behaviour of L is linear over time, and the parallelized imple-
mentation provides an improvement in execution time for all values as seen in Figure 4.5a
as the number of permutations is fixed and large enough for significant parallelism. This
behaviour is also tabulated in Table 4.3 which shows the speedups obtained from each
GPU. For setup 1, the speedups are almost consistent across all GPUs as L increases due
to L being large enough with a large constant |Σ|. However, the speedups increase as
the variable values in setups 2 and 3 increases. No speedup is obtained for low variable
values as the data transfer dominates the time consumption. As shown in the table, the

49

Table 4.3: TRE Mining Speedup Results

Constant Variable Variable 1080 Ti 2080 Ti R9-390X W9100

Parameters Parameter Values Speedup Speedup Speedup Speedup

1000 7.453 13.489 3.704 3.954

5000 7.670 14.323 6.450 5.859

10000 8.531 14.622 7.063 6.463

d = 2 L 50000 9.487 20.709 7.820 7.061

|Σ| = 152 100000 9.460 20.610 7.984 7.221

500000 9.683 22.239 8.547 7.627

1000000 9.670 22.642 8.576 7.639

1 0.033 0.044 0.063 0.057

L = 10000 d 2 4.565 6.183 4.410 4.194

|Σ| = 98 3 16.158 45.875 16.866 14.368

4 18.981 32.131 21.710 18.964

5 0.010 0.017 0.022 0.020

10 0.041 0.067 0.091 0.080

20 0.143 0.236 0.307 0.275

40 0.769 1.351 1.129 1.014

d = 2 |Σ| 80 3.249 5.462 3.547 3.062

L = 500000 150 9.598 22.027 8.467 8.322

160 13.710 26.142 11.556 11.416

320 27.760 86.253 26.605 29.720

350 30.109 91.650 39.572 37.068

400 33.601 107.156 46.658 38.929

differences in speedups among GeForce GTX 1080 Ti, R9-390X and W9100 are small for
a given variable value in these setups. On the other hand, GeForce RTX 2080 Ti stands
out with significant jumps in speedup as the variable values increases.

Using a QNX Trace

The tracelogger in QNX enables detailed tracing of the kernel and user process activity of
QNX on any system. Thus, the logs or traces obtained from the tracelogger allows for a
detailed inspection of the behaviour of the system. However, the developers and designers
of a system running QNX have found it difficult to efficiently use such traces due to the
fine-grained logging of events and the large length of the traces [30]. On the other hand,
this drawback allows such traces to be an adequate resource for dynamic mining of system
properties and patterns using TRE [30].

For this evaluation, we use an operational hexacopter running the QNX operating
system to collect a trace containing 1.6 million events with 149 event types. We use the

50

Table 4.4: Mining (ˆ(P |S)∗.(〈P.ˆ(P |S)∗.S.ˆ(P |S)∗〉[0, 2000]))+ on a QNX Trace

πk P S δπk ωπk

π1 KER EXIT-SIGNAL ACTION/29 KER CALL-SIGNAL ACTION/29 0.883 4473

π2 KER CALL-SIGNAL ACTION/29 KER EXIT-SIGNAL ACTION/29 0.458 2325

π3 KER CALL-SYS CPUPAGE GET/07 KER EXIT-SYS CPUPAGE GET/07 0.388 104

π4 INT HANDLER EXIT-0x00000044 INT HANDLER ENTR-0x00000044 0.373 13900

π5 THREAD-THRUNNING COMM-REC MESSAGE 0.314 79327

π6 KER EXIT-SYNC CREATE/78 KER CALL-SYNC CREATE/78 0.251 91

π7 USREVENT-EVENT-2 KER CALL-MSG RECEIVEV/14 0.208 27300

alternating TRE template tTRE A to mine properties from the QNX trace. Table 4.4 shows
the mining results with δπk ≥ 0.2 along with the corresponding ωπk values sorted by δπk .

From Table 4.4, alternating pattern represented by π1 was mined successfully 4473
times, giving a confidence of around 0.88. However, the pattern with the values of P and
S in π1 swapped and represented by π2 was mined successfully only 2325 times with a
confidence of around 0.46. This can imply that the event types represented by P and Q in
π1 alternate relatively more often within the time interval of 2000 nanoseconds than π2.We
can also use a template of the form

(〈P.(ˆ(P |S|Q))+.S.(ˆ(P |S|Q))+.Q〉[0, 3000])+

to mine patterns indicating the execution of any three event types with some interleaving
between them within a time interval of 3000 nanoseconds. We noticed that the mining took
around 2.5 hours on GeForce GTX 1080 Ti and the sequential version of this experiment
was aborted as it exceeded the limit of 24 hours.

4.5.2 Case Study: Nested Words (NW)

Using Synthesized Traces on GPUs

The setups used for this case study are the following:

� Setup 1 has varying L with |Σ| = 152, d = 3 and the results are shown in Figure 4.6a.

� Setup 2 has varying d with L = 10000, |Σ| = 98 and the results are shown in
Figure 4.6b.

� Setup 3 has varying |Σ| with L = 500000, d = 3 and the results are shown in
Figure 4.6c.

51

0 200000 400000 600000 800000 1000000
L

100

101

102

103

104

lo
g(

Ti
m

e)
 [s

]

CPU
1080-Ti
2080-Ti
R9-390X
W9100

(a) NW Mining Setup 1

1.0 1.5 2.0 2.5 3.0 3.5 4.0
d

10 2

10 1

100

101

102

103

lo
g(

Ti
m

e)
 [s

]

CPU
1080-Ti
2080-Ti
R9-390X
W9100

(b) NW Mining Setup 2

Figure 4.6: NW Mining Execution Time Evaluation on Synthesized Traces (Setups 1 and 2)

The NW template
[〈a]n.c+ .[〉b]n;n > 0

known as Nested-Call-Processes-Response pattern [29] is used to evaluate cases where d is
constant (set to 3 in this case). This template is modified by adding or removing variables
to evaluate for experiments where d is varied.

0 50 100 150 200 250 300 350
| |

100

101

102

103

104

105

lo
g(

Ti
m

e)
 [s

]

CPU
1080-Ti
2080-Ti
R9-390X
W9100

(c) NW Mining Setup 3

Figure 4.6: NW Mining Execution Time Evaluation on Synthesized Traces (Setup 3)

52

Table 4.5: NW Mining Speedup Results

Constant Variable Variable 1080 Ti 2080 Ti R9-390X W9100

Parameters Parameter Values Speedup Speedup Speedup Speedup

1000 21.569 48.329 35.443 26.736

5000 21.880 63.719 40.325 34.614

10000 22.525 66.432 41.936 36.386

d = 3 L 50000 22.488 68.075 42.480 37.807

|Σ| = 152 100000 22.371 68.056 43.069 38.093

500000 22.416 68.051 43.623 38.826

1000000 22.428 67.843 44.061 38.896

1 0.019 0.019 0.019 0.021

L = 10000 d 2 1.006 2.050 1.236 1.205

Σ = 98 3 22.625 63.646 39.730 33.416

4 24.570 81.793 44.748 38.716

5 0.028 0.043 0.050 0.045

10 0.167 0.363 0.289 0.261

20 1.362 4.213 2.497 2.238

40 6.837 26.352 13.299 11.036

d = 3 |Σ| 80 19.917 63.383 34.868 31.194

L = 500000 150 22.294 67.559 43.736 38.522

160 22.931 69.073 51.285 45.838

320 22.354 65.710 49.600 44.426

350 22.879 67.003 51.351 45.585

The behaviour observed here is similar to that of the TRE mining experiments on syn-
thesized traces. The plots demonstrate significant improvement in execution through the
parallel implementations with Nvidia GeForce RTX 2080 Ti performing relatively better
than the other devices and R9-390X providing the best performance among the OpenCL
devices. d is set to 3 as the templates in NW mining are more expressive at d ≥ 3. More
the alphabet size and/or the number of template variables, more are the number of pat-
terns to be mined which thereby, shows the significance of parallelism. Table 4.5 tabulates
the speedup obtained from each GPU. Similar to TRE mining, consistent speedups are
observed for setup 1 for each GPU. For setups 2 and 3, speedups increases as d and |Σ|
increases.

Using Twitter Feed

Nested words (NWs) are a model for the representation of data with both linear ordering
and a hierarchical structure [2]. Examples of such data are XML documents and recursive
program traces [2]. Nowadays, JavaScript code can be embedded freely inside HTML
documents, and this feature can cause code injection attack called Cross-Site Scripting

53

Table 4.6: Mining [〈a]n.[〈c]m.[〉d]m.[〉b]n; m,n > 0 on a Twitter Feed

πk a c d b δπ ωπ

π1 <svg> <style> </style> <circle> 0.318 28

π2 <style> </style> <svg> <circle> 0.280 28

π3 </button> <button> 0.233 5766

π4 <hr> <fieldset> <legend> </legend> 0.167 1

π5 <button> </button> 0.135 4124

π6 <button> </button> 0.115 3302

(XSS) on web applications [21]. Such injections can transform the code into a vulnerable
computer program, violate the nesting structure and change the course of execution. The
specification mining technique with NW can mine properties with a specific pattern and
these properties can then be used as HTML filters to verify secure web applications [29].

To demonstrate the results of mining NW using this framework, an HTML document
representing a Twitter feed is used. This HTML document contains 241131 tags (events)
in total with 76 unique tags (event types). Suppose, to mine properties that can showcase
an equal number of opening and closing tags nested in between another equal number of
opening and closing tags, the template

[〈a]m.[〈c]n.[〉d]n.[〉b]m;m,n > 0

known as the Nested-Chained-Call-Response pattern [29] can be used. The results of the
mining are tabulated in Table 4.6. The table shows the mined patterns with δπk ≥ 0.1
along with the corresponding ωπk values sorted by δπk .

The mined results also contain singleton HTML tags (i.e. tags that don’t require a
closing HTML tag) as shown in the table. An example of such a pattern can be the
pattern represented by π1 where the singleton HTML tags are <svg> and <circle>. This
pattern was mined successfully 28 times with a confidence of 0.318 with m,n > 0. A
pattern with no singleton tags is π5. This pattern was mined successfully 4124 times with
a confidence of 0.135 with m,n > 0.

54

Chapter 5

Common Abstractions

This chapter discusses the common abstractions that were considered when programming
the above algorithmic formulations for GPU computing. These abstractions are techniques
that are common to both CUDA and OpenCL programming model and can be applied to
explore improvements in GPU computing.

5.1 Grid/Global Size Strided Loops in a Kernel

Examples shown in Figure 2.4 and Figure 2.8 performs vector addition in parallel. However,
these examples assume that the data array has size equal to the number of threads in the
block or number of work-items in the work-group, i.e. 1024. This example does not apply
when the size of the data array is less than or greater than the number of threads and
work-items. For the case where the data array size is less, an if condition can be inserted
before the addition operator. On the other hand, when the data array size is larger than
the threads or work-items launched, a grid or global size strided for loop as shown in
Figure 5.1 can be used to ensure all elements in a data array is covered.

By using such a loop on a large data array, the threads or work-items are reused to
cover all the elements in the array. It also ensures the memory is accessed using memory
coalescing pattern that is discussed in the next section. In addition to this, a device has a
maximum number of threads or work-items and there can be cases where the sizes of data
arrays in consideration can be larger than this maximum limit. These cases can be covered
by using these loops in a kernel. This maximum number of threads or work-items also
changes from device to device. Therefore, these strided loops enable portability between

55

1 __kernel void doSumStrided(global int *a, global int *b, global int *

sum , int N) {

2 for (int index = get_global_id (0); index < N; index +=

get_global_size (0)) {

3 sum[index] = a[index] + b[index];

4 }

5 }

Figure 5.1: Work-Group Strided Loop Example in OpenCL

different OpenCL-compliant devices or among the CUDA GPUs. Lastly, it also improves
the readability of kernels when sequential for loops are parallelized using kernels.

5.2 Memory Coalescence

1 __kernel void doSumUncoalesced(global int *a, global int *b, global

int *sum , int offset , int N) {

2 int i = get_global_id (0);

3 for (int index = i*offset; (index < ((i*offset) + offset)) &&

index < N; ++index) {

4 sum[index] = a[index] + b[index];

5 }

6 }

Figure 5.2: Uncoalesced Memory Access Kernel Example in OpenCL

As mentioned in the discussion of the memory models, the global memory in the GPU
is the largest memory available with high latency and is used when transferring large data
from the CPU to the GPU. Memory coalescing is a memory access pattern to provide a way
to access global memory efficiently. The load and store operations on global memory are
done by coalescing threads or work-items together into wraps or wavefronts respectively.
The highly recommended global memory access is when all the consecutive threads in a
wrap or work-items in a wavefront access contiguous memory locations as the GPU accesses
global memory data by retrieving a large chunk of the memory even if a subset of the chunk
is to be used [9]. Hence, if consecutive threads or work-items access memory locations that
are far apart, multiple chunks would have to be retrieved thereby impacting performance.
This can be demonstrated using the vector addition example in OpenCL.

The kernel in Figure 5.2 shows uncoalesced memory access with each thread accessing a

56

set of contiguous memory locations. The offset parameter in this kernel is equal to the size
of the data array (N) divided by the number of threads which in this case is 1024. A plot on
the performance of this kernel against the coalesced memory access kernel in Figure 5.1 on
an AMD FirePro W9100 GPU is shown in Figure 5.3. As expected, kernel with coalesced
memory access, doSumStrided performs better than the kernel with uncoalesced memory
access, doSumUncoalesced.

0 1 2 3 4 5
N 1e8

10 2

10 1

100

101

102

103

104

lo
g(

Ti
m

e)
 [m

s]

doSumUncoalesced
doSumStrided

Figure 5.3: Time Comparison Between Coalesced and Uncoalesced Memory Access

5.3 Algorithmic Design for Parallelization

1 void update(vector <int > &in , vector <int > &out , int &n, int &a, int &b

) {

2 for (int i = 0; i < n; ++i) {

3 int temp = ((in[i] - b)/a);

4 out[temp] = max(out[temp], i);

5 }

6 }

Figure 5.4: Example Sequential for Loop with Dependencies

Identification of parallelism in a sequential algorithm is a key aspect of GPU comput-
ing. There can be cases where the efficient parallelism may not be evident for a given
algorithmic formulation due to dependencies among other things. Hence, there is a need

57

1 __kernel void update(global int *in, global int *out , int n, int a,

int b) {

2 for (int i = get_global_id (0); i < n; i+= get_global_size (0)) {

3 int temp = ((in[i] - b)/a);

4 atomic_max (&(out[temp]), i);

5 }

6 }

Figure 5.5: OpenCL Kernel v1 for the Sequential update Function

to restructure the algorithm to identify the parallelism involved without affecting the cor-
rectness effectively. Usually, the restructuring comes with an extra cost such as atomic
operations or increasing space complexity. This can be demonstrated using a simple for
loop example with dependencies. Figure 5.4 shows an example function with a for loop
that calculates the index of the output array out and then stores the maximum index of
the input array in. The assumptions in this example are that the input array in is sorted
in ascending order and b is always less than any element in in.

1 __kernel void update1(global int *in, global int *temp , int n, int a,

int b) {

2 for (int i = get_global_id (0); i < n; i += get_global_size (0)) {

3 temp[i] = ((in[i] - b)/a);

4 }

5 }

6
7 __kernel void update2(global int *temp , global int *out , int n) {

8 for (int i = get_global_id (0); i < n - 1; i+= get_global_size (0))

{

9 if(temp[i] != temp[i+1]) {

10 out[temp[i]] = i;

11 }

12 }

13 }

Figure 5.6: OpenCL Kernel v2 for the Sequential update Function

Since the index to the output array is calculated inside the loop, there can be cases
where that index happens to be the same for two or more iterations. This can result
in a race condition if the loop is directly parallelized. Given this data dependency, one
way to parallelize this loop is by applying the atomic operation on the max function using
the atomic max primitive in OpenCL as shown in Figure 5.5. Atomic operations can
be executed by only one thread or work-item at a time thereby overcoming the data

58

dependency.

Another way to parallelize to increase the space complexity by splitting the function
into two kernels such that the first kernel, update1 executes line 3 of the update function
and stores the results in a temporary array, temp. A second kernel, update2 uses temp to
finish the computation as shown in Figure 5.6. However, the second kernel is a bit different
for parallelism purposes. Given that in is in increasing order, the values stored in temp

will always be in increasing order as well and the maximum index is the index of the last
occurrence of an element in temp.

Table 5.1: Time Measurements for Algorithmic Restructuring

N Input Average Time [s] Average Time [s]

OpenCL kernel v1 OpenCL kernel v2

1× 106 Evenly Increasing 0.0040 0.0055

1× 106 Unevenly Increasing 0.0132 0.0148

The notion behind these different kernels is to see how different implementations of
the same function perform for different inputs and help determine which one offers better
time performance. The average time measurements over ten runs for each of the parallel
implementations are shown in Table 5.1. The kernels were executed on a AMD R9-390X
GPU. From the table, it can be seen that both kernels are quite close in performance but,
the kernel with atomic operation provides slightly better timing measurement for both
inputs in this specific example. Hence, there can be more than one way to parallelize a
particular code segment if possible, and it is essential to evaluate the different parallelism
possibilities to use the GPU effectively.

5.4 Determining the Number of Threads/Work-Items

In addition to experimenting with the structure of writing kernel code, it is also essential to
determine the block-thread configuration or work-item configuration (or in general, kernel
configuration) when launching or enqueueing a kernel. Recent GPUs have the facility to
dispatch a large number of threads resulting in several possible configurations and hence,
it is vital to determine the configurations to utilize the GPU effectively.

Intuition 1: More the number of blocks in CUDA or more the number of work-groups in
OpenCL, better is the performance [11, 4].

59

As each block can be executed by a SM in CUDA and each work-group can be executed
by a CU in OpenCL, it is important to set the number of blocks or work-groups to be at
least the number of SMs or CUs. This prevents idle SMs or CUs. Unlike in CUDA where
the number of thread blocks can be specified, OpenCL only provides a way to determine the
total number of work-items (i.e. global work size G) and the number of work-items in each
work-group (i.e. local work size L). OpenCL then calculates the number of work-groups
which is G

L
.

Intuition 2: The number of threads in a block to be a multiple of the number of threads
in a wrap (32) and the local work size to be a multiple of the number of work-items in a
wavefront (64) [11, 4].

This is because each wrap or each wavefront is the fundamental unit of work in CUDA
or OpenCL GPU respectively. The performance can be affected negatively if this intuition
is not followed. The OpenCL vector addition example shown in Figure 5.1 can be used to
demonstrate the impact of kernel configuration on the performance. In addition to these
intuitions, there are performance counters that affect the configurations, and these can
be evaluated using profilers such as nvprof for CUDA and CodeXL for OpenCL in AMD
GPUs. Lastly, it is also important to keep in mind that each device has a limit on the
number of threads in a block or the number of work-items in a work-group.

Table 5.2: Time Measurements for Different OpenCL Kernel Configurations

Configuration Global Work Size Local Work Size Time [ms]

C1 (1024, 1, 1) (64, 1, 1) 482.533

C2 (N, 1, 1) NULL 45.067

C3 (N/2, 1, 1) NULL 50.31896

C4 (N, 1, 1) (32, 1, 1) 80.052

C5 (N, 1, 1) (64, 1, 1) 47.213

C6 (N, 1, 1) (65, 1, 1) 64.283

The results for using different configurations of the kernel in Figure 5.1 on an AMD
R9-390X GPU are tabulated in Table 5.2. N in the table is the size of the input arrays,
and it is set to 536, 870, 912 (512× 1024× 1024) elements. The following observations can
be made:

� C1 takes the longest as it has the lowest global work size of 1024 resulting in a small
number of work-groups.

60

� C2 and C3 set the global work size to N and N
2

respectively with the local group
size to NULL. This means that OpenCL will determine the local work size and in this
case, CodeXL shows that OpenCL uses the maximum available local work size for
the device, i.e. 256. C2 performs better, and this is by Intuition 1.

� However, C4 uses the most number of groups but performs slower than C2. This
can be due to Intuition 2. This is verified by CodeXL using the VALUUtilization

performance counter which is the percentage of active vALU threads in a wavefront.
VALUUtilization for C4 is at 50% and at 100% for C2. According to the CodeXL
documentation, the ideal value is 100%, and a lower value can be due to the work-
group size not being a multiple of 64.

� Though C5 obeys Intuition 1 and 2, C2 still performs slightly better relatively. All
performance counters except FetchSize and WriteSize are the same or very similar
between the two configurations. FetchSize is the total kilobytes fetched from the
memory and WriteSize is the total kilobytes written to the memory. C2 uses rela-
tively lower values of FetchSize and WriteSize which can be a possible explanation
for better performance.

� C6 is another example of not setting local work size to be a multiple of 64. An
increase by one work-item on the local work size of C5 results in an increase by
around 20 ms in time. This can be due to another wavefront being launched for that
one extra work-item, and though the remaining 63 work-items in the wavefront are
inactive, they still consume the resources in a CU [11].

Similar observations can be made in Nvidia GPUs using the CUDA profiler, nvprof
which offers several different performance counters such as Global Load Throughput and
Global Memory Load Efficiency [11].

5.5 Vector Datatypes

In addition to the scalar data types such as int, float, OpenCL and CUDA also provide
vector data types which are defined with the scalar type name followed by a suffix n such
as int2, int4, float2 and float4. The value of n indicates the number of elements
that can be held by the vector and the supported values are {2, 3, 4, 8, 16}. The detailed
specifications on the supported vector data types can be found in the OpenCL and CUDA
documentations. The elements in the vector can be accessed using .x, .y, .z and .w

notations as shown in the following example:

61

float4 f = (float4)(1.0f, 2.0f, 3.0f, 4.0f);
float a = f.x; // a = 1.0
float b = f.y; // b = 2.0
float c = f.z; // c = 3.0
float d = f.w; // d = 4.0

One benefit of using a variable declared as a vector data type is that the elements in the
vector are operated on at the same time by a work-item and thread [39]. This is done by
packing multiple instructions into a Very Long Instruction Word (VLIW) thereby reducing
the total number of instructions. In addition to this, vector data types also provide better
timing performance in specific cases, and this can be demonstrated using an example. The
kernel add1 in Figure 5.7 shows a vector addition example using the float data type.

1 __kernel void add1(global float *a, global float *b, global float *

out , long N) {

2 for (long i = get_global_id (0); i < n; i+= get_global_size (0)) {

3 out[i] = a[i] + b[i];

4 }

5 }

Figure 5.7: Vector Addition Kernel Using float Scalar Data Type

1 __kernel void add2(global float2 *a, global float2 *b, global float2

*out , long n) {

2 for (long i = get_global_id (0); i < n; i+= get_global_size (0)) {

3 out[i] = a[i] + b[i];

4 }

5 }

Figure 5.8: Vector Addition Kernel Using float2 Vector Data Type

1 __kernel void add4(global float4 *a, global float4 *b, global float4

*out , long n) {

2 for (long i = get_global_id (0); i < n; i+= get_global_size (0)) {

3 out[i] = a[i] + b[i];

4 }

5 }

Figure 5.9: Vector Addition Kernel Using float4 Vector Data Type

This kernel is compared against two other kernels, add2 and add4 as shown in Figure 5.8
and Figure 5.9 respectively. The kernel add2 uses the float2 data type and the value

62

of n in this kernel is half of the number of elements processed by add1. Similarly, the
kernel add4 uses the float4 data type and the value of n in this kernel is quarter of the
number of elements processed by add1. Figure 5.10 shows a plot that illustrates the timing
performance comparison between these kernels on an AMD R9-390X GPU. From the plot,
it can be seen that all the kernels have similar performance in the beginning but as the
value of N increases, add4 gives the best performance at around N = 5 × 107 and add2

provides the best performance for N > 1.3× 108 in this setup.

0.0 0.5 1.0 1.5 2.0 2.5
N 1e8

100

101

102

lo
g(

Ti
m

e)
 [m

s]

add1
add2
add4

Figure 5.10: Performance Comparison Between a Scalar Data Type and Vector Data Types

Therefore, there are specific cases where vector data types have the potential to provide
better performance than scalar data types. However, one caveat to vector data types is
that the device memory pointer of a vector data type should be aligned to the size of the
data type used and the size of the data type should be a power of two in bytes. Also,
as the number of elements processed by add2 and add4 is less than that of add1, the
overall parallelism has been reduced. Lastly, using vector data types increases the use of
registers thereby, possibly impeding the performance of register-limited kernels. Therefore,
vector data types are a potential catalyst for optimizations and should be used whenever
possible.

63

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we present an exploratory study on the acceleration of computationally de-
manding data analysis tools using parallel computing in heterogeneous systems. Applying
parallel computing via heterogeneous systems are increasingly becoming valuable alterna-
tives to overcome the performance limits of CPUs. This is demonstrated using two recently
proposed computationally intensive data analysis tools - construction of arrival curves and
regular specification mining - on a heterogeneous platform with CPU as the host and GPU
as the device. For each such tool, we discuss the background, the algorithmic formulations
to transform the problems into parallel computations and also, experiments using CUDA
and OpenCL programming models to demonstrate the acceleration obtained. The experi-
ments showed that heterogeneous platforms with a GPU outperform equivalent sequential
implementations with significant speedups. Thus, to summarize the major contributions
of this thesis:

� Presentation of novel approaches to construct empirical arrival curves and to mine
specifications using the regular language class of automaton (regular specification
mining) from execution traces.

� Algorithmic breakdown of arrival curve construction and regular specification min-
ing to expose the high-degree of data-level parallelism involved and showcase the
significant accelerations obtained using GPUs.

� Optimizations that can be considered when applying parallel computing to compu-
tationally intensive tasks using GPUs.

64

6.2 Future Work

The parallel approaches in both algorithms presented in this thesis are platform indepen-
dent. This enables the application of the algorithms on other parallel processing technolo-
gies such as Open Multi-Processing (OpenMP) or OpenCL in other devices. Specifically,
as OpenCL allows portability by supporting devices with different architectures, future
work can be to accelerate these algorithms in another heterogeneous system with a differ-
ent OpenCL compliant device such as a Xilinx FPGA. Xilinx, a manufacturer of FPGA,
also collaborates with the Khronos Group to develop and support OpenCL applications
for Xilinx FPGA devices using the Xilinx SDAccel development environment.

Preliminary experiments conducted by porting with minimal or no changes of the TRE
mining developed for AMD GPUs onto a Xilinx Kintex UltraScale FPGA KCU1500 on the
CMC Cloud Services did not result in speedups. The initial run with L = 500000, |Σ| =
80, d = 2 and no optimizations finished execution after 4 hours. This showed that direct
porting of OpenCL code from an AMD GPU to a Xilinx FPGA device cannot guarantee
acceleration. Two key observations in OpenCL for a Xilinx FPGA were the limited number
of work-items and the strided loops discussed in Section 5.1 being ineffective. This resulted
in assigning a range of contiguous memory locations to each of the limited set of work-items
as the first optimization. In addition to this, loop unrolling inside the kernels brought the
execution time down to 40 minutes. Likewise, other optimizations such as using multiple
Double Data Rate (DDR) banks, using multiple command queues and many more as
recommended in the SDAccel Optimization Guide need to be applied to use the Xilinx
FPGA for acceleration efficiently. Also, the long compilation process in current OpenCL
tools for FPGA should be considered during development.

Unlike a GPU device where the architectural design allows developers to use off-the-
shelf hardware readily, a FPGA device starts as an empty computational canvas and allows
the developers to customize the device to fit an application or a class of applications best.
Additionally, as discussed in recent literature, FPGAs are becoming more valuable nowa-
days due to relatively better performance-to-power efficiency when compared to GPUs,
and this can serve as a good motivation for future work.

65

References

[1] Rajeev Alur and Dana Fisman. Colored Nested Words. In Adrian-Horia Dediu, Jan
Janoušek, Carlos Mart́ın-Vide, and Bianca Truthe, editors, Language and Automata
Theory and Applications, pages 143–155, Cham, 2016. Springer International Publish-
ing.

[2] Rajeev Alur and P. Madhusudan. Adding Nesting Structure to Words. J. ACM,
56(3):16:1–16:43, May 2009.

[3] AMD. Whitepaper - AMD Graphics Core Next (GCN) Architecture. Technical report,
AMD, Jun 2012.

[4] AMD. AMD APP SDK - OpenCL Optimization Guide. Technical report, AMD, Aug
2015.

[5] AMD. AMD Graphics Core Next Architecture, Generation 3. Technical report, AMD,
Aug 2016.

[6] Lisa Amini, Henrique Andrade, Ranjita Bhagwan, Frank Eskesen, Richard King,
Philippe Selo, Yoonho Park, and Chitra Venkatramani. SPC: A Distributed, Scal-
able Platform for Data Mining. In Proceedings of the 4th International Workshop on
Data Mining Standards, Services and Platforms, DMSSP ’06, pages 27–37, New York,
NY, USA, 2006. ACM.

[7] G. Carvajal, M. Salem, N. Benann, and S. Fischmeister. Enabling Rapid Construction
of Arrival Curves From Execution Traces. IEEE Design Test, 35(4):23–30, Aug 2018.

[8] Niccolo’ Cascarano, Pierluigi Rolando, Fulvio Risso, and Riccardo Sisto. iNFAnt:
NFA Pattern Matching on GPGPU Devices. SIGCOMM Comput. Commun. Rev.,
40(5):20–26, October 2010.

66

[9] John Cheng, Max Grossman, and Ty McKercher. Professional CUDA C Programming.
Wrox Press Ltd., Birmingham, UK, UK, 1st edition, 2014.

[10] Mihai Christodorescu, Somesh Jha, and Christopher Kruegel. Mining Specifications of
Malicious Behavior. In Proceedings of the 1st India Software Engineering Conference,
ISEC ’08, pages 5–14, New York, NY, USA, 2008. ACM.

[11] Shane Cook. CUDA programming: a developer’s guide to parallel computing with
GPUs. Newnes, 2012.

[12] Maxime Crochemore and Christophe Hancart. Automata for Matching Patterns, pages
399–462. Springer Berlin Heidelberg, Berlin, Heidelberg, 1997.

[13] Valentin Dallmeier, Nikolai Knopp, Christoph Mallon, Sebastian Hack, and Andreas
Zeller. Generating Test Cases for Specification Mining. In Proceedings of the 19th
International Symposium on Software Testing and Analysis, ISSTA ’10, pages 85–96,
New York, NY, USA, 2010. ACM.

[14] Azadeh Farzan, Matthias Heizmann, Jochen Hoenicke, Zachary Kincaid, and Andreas
Podelski. Automated Program Verification. In Adrian-Horia Dediu, Enrico Formenti,
Carlos Mart́ın-Vide, and Bianca Truthe, editors, Language and Automata Theory and
Applications, pages 25–46, Cham, 2015. Springer International Publishing.

[15] Mark Gabel and Zhendong Su. Javert: Fully Automatic Mining of General Temporal
Properties from Dynamic Traces. In Proceedings of the 16th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering, SIGSOFT ’08/FSE-16,
pages 339–349, New York, NY, USA, 2008. ACM.

[16] Mark Gabel and Zhendong Su. Online Inference and Enforcement of Temporal Prop-
erties. In Proceedings of the 32Nd ACM/IEEE International Conference on Software
Engineering - Volume 1, ICSE ’10, pages 15–24, New York, NY, USA, 2010. ACM.

[17] Stanford VLSI Group. CPU DB - Looking At 40 Years of Processor Improvements - A
complete database of processors for researchers and hobbyists alike. http://cpudb.

stanford.edu/. Accessed: 2018-10-09.

[18] Jiawei Han. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2005.

[19] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages, and Computation (3rd Edition). Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2006.

67

http://cpudb.stanford.edu/
http://cpudb.stanford.edu/

[20] Kai Huang, Gang Chen, Christian Buckl, and Alois Knoll. Conforming the runtime
inputs for hard real-time embedded systems. In Proceedings of the 49th Annual Design
Automation Conference (DAC), pages 430–436. ACM, June 2012.

[21] Xing Jin, Xuchao Hu, Kailiang Ying, Wenliang Du, Heng Yin, and Gautam Nagesh
Peri. Code Injection Attacks on HTML5-based Mobile Apps: Characterization, De-
tection and Mitigation. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’14, pages 66–77, New York, NY, USA,
2014. ACM.

[22] Ivo Krka, Yuriy Brun, and Nenad Medvidovic. Automatic Mining of Specifications
from Invocation Traces and Method Invariants. In Proceedings of the 22Nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering, FSE
2014, pages 178–189, New York, NY, USA, 2014. ACM.

[23] K. Lampka, S. Bondorf, J. B. Schmitt, N. Guan, and Yi W. Generalized finitary
Real-Time calculus. In Proceedings of IEEE INFOCOM, 2017.

[24] Kai Lampka, Björn Forsberg, and Vasileios Spiliopoulos. Keep it cool and in time:
With runtime monitoring to thermal-aware execution speeds for deadline constrained
systems. Journal of Parallel and Distributed Computing, 95:79–91, 2016.

[25] Caroline Lemieux, Dennis Park, and Ivan Beschastnikh. General LTL Specification
Mining. In Automated Software Engineering (ASE), 2015 30th IEEE/ACM Interna-
tional Conference on, pages 81–92. IEEE, 2015.

[26] Wenchao Li, Alessandro Forin, and Sanjit A. Seshia. Scalable Specification Mining for
Verification and Diagnosis. In Proceedings of the 47th Design Automation Conference,
DAC ’10, pages 755–760, New York, NY, USA, 2010. ACM.

[27] David Lo and Siau-Cheng Khoo. SMArTIC: Towards Building an Accurate, Robust
and Scalable Specification Miner. In Proceedings of the 14th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering, SIGSOFT ’06/FSE-14,
pages 265–275, New York, NY, USA, 2006. ACM.

[28] L. Mariani, M. Pezz, and M. Santoro. GK-Tail+ An Efficient Approach to Learn
Software Models. IEEE Transactions on Software Engineering, 43(8):715–738, Aug
2017.

68

[29] Apurva Narayan, Nirmal Benann, and Sebastian Fischmeister. Mining Specifications
using Nested Words. In Proceedings of the 6th International Workshop on Software
Mining, Urbana-Champaign, USA, 2017.

[30] Apurva Narayan, Greta Cutulenco, Yogi Joshi, and Sebastian Fischmeister. Mining
Timed Regular Specifications from System Traces. ACM Trans. Embed. Comput.
Syst., 17(2):46:1–46:21, January 2018.

[31] Colm Networks. Ragel State Machine Compiler. http://www.colm.net/

open-source/ragel/. Accessed: 2017-07-26.

[32] M. Neukirchner, P. Axer, T. Michaels, and R. Ernst. Monitoring of Workload Arrival
Functions for Mixed-Criticality Systems. In IEEE 34th Real-Time Systems Symposium
(RTSS), pages 88–96, Dec 2013.

[33] Marziyeh Nourian, Xiang Wang, Xiaodong Yu, Wu chun Feng, and Michela Becchi.
Demystifying automata processing: GPUs, FPGAs or Micron’s AP? In ICS, 2017.

[34] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips. GPU
Computing. Proceedings of the IEEE, 96(5):879–899, May 2008.

[35] Michael Pradel and Thomas R. Gross. Automatic Generation of Object Usage Spec-
ifications from Large Method Traces. In Proceedings of the 2009 IEEE/ACM Inter-
national Conference on Automated Software Engineering, ASE ’09, pages 371–382,
Washington, DC, USA, 2009. IEEE Computer Society.

[36] Vahid Rahmanzadeh and Mohammad Bagher Ghaznavi-Ghoushchi. A Multi-Gb/s
Parallel String Matching Engine for Intrusion Detection Systems, pages 847–851.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[37] Kai Richter. Compositional Scheduling Analysis Using Standard Event Models - The
SymTA/S Approach. PhD thesis, Technical University Carolo-Wilhelmina of Braun-
schweig, 2005.

[38] Mahmoud Salem, Mark Crowley, and Sebastian Fischmeister. Anomaly Detection Us-
ing Inter-Arrival Curves for Real-Time Systems. In Proceedings of the 28th Euromicro
Conference on Real-Time Systems (ECRTS), pages 97–106, 2016.

[39] Matthew Scarpino. OpenCL in action: how to accelerate graphics and computation.
Manning Pub., Shelter Island, NY, 2011.

69

http://www.colm.net/open-source/ragel/
http://www.colm.net/open-source/ragel/

[40] Eric Schadt, Michael D Linderman, Jon Sorenson, Lawrence Lee, and Garry Nolan.
Computational solutions to large-scale data management and analysis. Nature reviews
Genetics, 11:647–57, 09 2010.

[41] S. Shoham, E. Yahav, S. J. Fink, and M. Pistoia. Static Specification Mining Us-
ing Automata-Based Abstractions. IEEE Transactions on Software Engineering,
34(5):651–666, Sept 2008.

[42] Hauke Stähle. A Model-Based Framework for System-Wide Plug-and-Play with Flex-
ible Timing Verification for Automotive Systems. PhD thesis, München, Technische
Universität München, Diss., 2016, 2016.

[43] J. E. Stone, D. Gohara, and G. Shi. OpenCL: A Parallel Programming Standard for
Heterogeneous Computing Systems. Computing in Science Engineering, 12(3):66–73,
May 2010.

[44] S Sumathi and S.N. Sivanandam. Introduction to Data Mining Principles, pages 1–20.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[45] Herb Sutter. The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in
Software. Dr. Dobbs Journal, 30(3):202–210, 2005.

[46] Dogan Ulus. Montre: A Tool for Monitoring Timed Regular Expressions. In Rupak
Majumdar and Viktor Kunčak, editors, Computer Aided Verification, pages 329–335,
Cham, 2017. Springer International Publishing.

[47] Ernesto Wandeler and Lothar Thiele. Real-Time Calculus (RTC) Toolbox.
http://www.mpa.ethz.ch/Rtctoolbox, 2006.

[48] Ernesto Wandeler, Lothar Thiele, Marcel Verhoef, and Paul Lieverse. System archi-
tecture evaluation using modular performance analysis: a case study. International
Journal on Software Tools for Technology Transfer, 8(6):649–667, 2006.

[49] Martin H. Weik. pattern-matching, pages 1240–1240. Springer US, Boston, MA, 2001.

[50] Ren Wu, Bin Zhang, and Meichun Hsu. GPU-Accelerated Large Scale Analytics.
Technical report, HP Labs, 2009.

[51] Xiaodong Yu and Michela Becchi. GPU Acceleration of Regular Expression Matching
for Large Datasets: Exploring the Implementation Space. In Proceedings of the ACM
International Conference on Computing Frontiers, CF ’13, pages 18:1–18:10, New
York, NY, USA, 2013. ACM.

70

	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Contributions
	Organization of Thesis

	Background
	Nvidia GPU
	Programming in CUDA
	CUDA Memory Model
	Example

	AMD GPU
	Programming in OpenCL
	OpenCL Memory Model
	Example

	Enabling Rapid Construction of Arrival Curves from Execution Traces
	Introduction
	Background and Related Work
	Analytical Arrival Curves
	Empirical Arrival Curves

	Definitions
	Traces Model
	Empirical Arrival Curves

	Approach
	Intuition
	Algorithm
	Parallel Approach

	Experiments

	Acceleration of Mining Arbitrary Regular Specifications from Execution Traces
	Introduction
	Related Works
	Background and Definitions
	Execution Traces Model
	Regular Language
	Dominant Properties

	Approach
	Inputs
	Preprocessing
	Mining Stage
	Ranker
	Parallel Approach

	Experiments
	Case Study: Timed Regular Expression (TRE)
	Case Study: Nested Words (NW)

	Common Abstractions
	Grid/Global Size Strided Loops in a Kernel
	Memory Coalescence
	Algorithmic Design for Parallelization
	Determining the Number of Threads/Work-Items
	Vector Datatypes

	Conclusion and Future Work
	Conclusion
	Future Work

	References

