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Highlights 

 

 Discrepancies of volume-averaged (VA) and pore-scale GDL models of a 
PEFC are examined 

 VA models with suitable effective properties provide a good estimate for 
overall performance 

 GDL inhomogeneities and interfacial phenomena influence predictions of 
VA models 

 Impact of GDL microstructure on spatial distributions can affect 
durability modeling 

 Interfacial design is a key control parameter for MEA manufacturing and 
assembly 
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Abstract 

Thin porous media are present in multiple electrochemical energy devices, where they 

provide key transport and structural functions. The prototypical example is gas diffusion 

layers (GDLs) in polymer-electrolyte fuel cells (PEFCs). While modeling has often been 

used to explore PEFC operation, this is often accomplished using volume-averaged (VA) 

formulations, where the intrinsic inhomogeneities of the GDL are smoothed out and the 

lack of defining a representative elementary volume is an ever-present issue. In this 

work, the predictions of a single-phase VA PEFC model are compared to those of a pore-

scale PEFC model using GDL tomograms as a part of the meshed domain to delineate 

important aspects that VA models cannot address. The results demonstrate that while 

VA models equipped with suitable effective properties can provide a good average 

estimate for overall performance, the lack of accounting for real structures limits their 

predictive power, especially for durability and degradation behavior where large 

deviations are found in the spatial distributions. Furthermore, interfacial effects 

between the GDL and the microporous layer are explored with the pore-scale model to 

understand the implications of the layered geometry. It is shown that the actual 

microstructure of the GDL/MPL transition region can significantly affect the fluxes across 

the sandwich, something that VA models cannot easily consider. Interfacial design is 

recognised as a crucial quality control parameter for large-scale MEA manufacturing and 

assembly.  

 

Keywords: gas diffusion layer; polymer electrolyte fuel cell; modeling; inhomogeneities; 

pore scale  
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1. Introduction 

Energy conversion and storage is viewed as a key element of a renewable energy 

economy.  The leading technological options are electrochemical devices such as fuel 

cells, electrolyzers, and lithium-ion and redox flow batteries [1–5]. The polymer-

electrolyte fuel cell (PEFC) is a particularly promising device as it can directly replace 

today’s internal combustion engines in the transportation sector. PEFCs offer long range, 

short refueling times and high energy efficiency, and produce virtually zero emissions of 

air pollutants if hydrogen is produced from a renewable source (water and heat are the 

only products) [6]. Widespread commercialization of PEFCs is still forthcoming, however 

there are many applications where they are showing strong growth, such as materials 

handling vehicles in warehouses and fleets [7]. The core of a PEFC is the so-called 

membrane electrode assembly (MEA), which is composed of a central proton-exchange 

membrane (PEM), anode and cathode catalyst layers (CLs), and two backing gas diffusion 

layers (GDLs). A microporous layer (MPL) composed of a mixture of carbon black and 

PTFE is also coated onto the face of the GDL adjacent to the CL to alleviate flooding 

issues, improve hydration of the membrane, and reduce electrical and thermal 

interfacial or contact resistances [8–10]. The seven layers of the MEA are bonded 

together, and assembled between two bipolar plates (BPPs) for operation [11–13].  

 

GDLs are a key multi-functional component as they mediate all transport processes 

occurring to and from the active catalyst sites. They are thin, highly porous materials 

consisting of non-woven carbon-fiber paper or woven carbon-fiber cloth [14,15]. A PTFE 

coating is also typically added to prevent wicking of liquid water throughout the pore 

space [16]. GDLs provide several critical functions: (i) a pathway for reactants access and 

products removal to/from the CLs, (ii) electrical and thermal conductivity, and (iii) 

adequate mechanical support to the MEA [17,18]. In fuel-cell applications, carbon 
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paper-based GDLs are the preferred option owing to their relatively good corrosion 

resistance, superior electrical conductivity, good gas transport properties, and higher 

mechanical stiffness compared to carbon cloth [19–21]. Besides, carbon-fiber papers 

typically show larger effective mass, charge and heat transport properties in the material 

plane owing to the preferential alignment of fibers and pores in that plane [22–24]. As a 

result, carbon-fiber papers are inherently inhomogeneous materials, consisting in a solid 

structure (fiber, binder and PTFE) and macro-pore network with average sizes in the 

order of 10-30 𝜇m and 10-100 𝜇m, respectively. Furthermore, uneven PTFE distribution 

creates non-uniform wettability, and land-channel geometry of BPPs induces additional 

inhomogeneity due to larger compression of the GDL under the lands [15,25,26].  

 

Modeling of thin porous media, such as carbon fiber-based GDLs, has been an intense 

source of discussion for the past decade and continues to be today [27]. These materials 

have a much larger in-plane dimension than its thickness (𝛿gdl~100 − 400 𝜇m), which 

typically spans no more than 10 pore sizes (𝑑p~10 − 100 𝜇m). Hence, GDLs suffer from 

a lack of scale separation between their finite thickness and their inhomogeneous 

microstructure [27–29]. Moreover, the in-plane representative scale found in these 

materials ( ~ 1–2 mm) is comparable to the rib/channel width used in PEFCs 

[15,27,30,31]. This situation precludes a rigorous definition of a representative 

elementary volume (REV) within thin porous media. In layered assemblies, the definition 

of a REV is undermined even further due to the coupling between interfacial effects 

(layer-layer microstructure, real-world defects, material damage, etc.) and the lack of 

scale separation across the small thickness of the material [23,32–39,25]. These issues 

pose new modeling challenges that are not typically found in traditional porous media, 

such as soils and rocks, which warrant further analysis by the scientific community. 

 

The most common approach used to model transport in GDLs, borrowed from the 

general porous-media literature [40,41], is macroscopic continuum modeling [42]. 

Macroscopic models are based on a volume-averaged (VA) formulation of mass, 
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momentum, species, charge and energy conservation equations, usually considering a 

macro-homogeneous description of the porous medium. The model is closed through 

appropriate constitutive relationships that define the effective properties of the GDLs, 

including diffusivity, permeability and electrical/thermal conductivity under single-phase 

conditions, and relative transport properties, capillary-pressure curve and phase-change 

kinetics under two-phase conditions [34]. The large body of work presented in the 

literature has shown that macroscopic models can be conveniently configured to 

describe overall performance and trends. However, the applicability of the continuum 

hypothesis to model thin, heterogeneous GDLs has been long questioned in the 

literature (see, e.g., [27–29] and references therein), and the source and amount of 

error incurred in the predictions of VA models is unclear.  

 

Recently, great attention has been drawn to pore-scale (PS) modeling to overcome some 

of the shortcomings of VA GDL models, and improve our understanding of specific 

transport processes (see, e.g., [43–55] among others). Furthermore, PS models allow the 

characterization of effective properties that are extremely difficult to measure 

experimentally due to the small dimensions of GDLs [23,24,27,56–66]. Two main PS 

modeling approaches can be distinguished: pore-network modeling (PNM) and direct 

numerical simulation (DNS) [67,68]. PNMs idealize the pore space as a network of pore 

bodies interconnected by throats, whose size and connectivity are determined from the 

morphology of the porous medium [63]. Some authors have also presented dual 

networks that include both the solid phase and the standard fluid network [50,69]. 

Different transport processes can then be simulated on the networks, including capillary 

transport, convection, diffusion and heat conduction. On the other hand, DNS solves the 

transport equations (e.g., the heat or Navier-Stokes equations) on computational 

meshes generated on tomography images of the porous media, either using the lattice 

Boltzmann method (LBM) or conventional techniques, such as the finite-element (FEM) 

or finite-volume methods (FVM) [23,24,27,44,45]. This approach only requires the input 

of the bulk properties of the constituents of the material (e.g., the oxygen diffusion 
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coefficient in air for effective diffusivity), providing direct insight into the impact of the 

microstructure on transport processes. Consequently, the information that can be 

potentially extracted from DNS is richer, although its computational cost is significantly 

higher compared to PNM. 

 

Currently, there is an increasing need to bridge the gap between VA and PS models in 

order to create more realistic but computationally efficient tools capable of guiding the 

design of MEAs, forecasting durability and diagnosing operation issues in the most self-

predictive way as possible. This has motivated, for example, the development of hybrid 

VA-PNM/DNS models [43,49,50,70–72] and one-way multiscale models where effective 

properties extracted from PS simulations are plugged into VA models [44,45,73]. Inverse 

modeling techniques, such as global upscaling [74], have also been suggested as an 

efficient method to transfer local information from PS to VA models [27]. Nevertheless, 

the complex task of bridging the gap and constructing better simulation tools demands a 

deeper understanding of the discrepancies between VA and PS models. To the authors’ 

knowledge, this modeling exercise has not been performed using a coupled multiphysics 

PEFC model that includes the full MEA. The only reference is the work of Rebai and Prat 

[28], who compared the water saturation profiles in GDLs predicted by a VA model and a 

PNM under water-injection conditions. They found that conventional VA models offer 

poor results of water distribution in GDLs due to the lack of REV in thin porous media 

and the dominance of capillary effects. Therefore, further effort is necessary.  

 

In this work, the potential differences between VA and PS GDL descriptions are explored 

using a single-phase PEFC model. To this end, the anode and cathode GDL domains in a 

conventional VA model were replaced by tomograms of carbon paper-based GDLs, and 

transport was directly simulated on the microstructure. The effective transport 

properties (namely, diffusivity, permeability, and electrical and thermal conductivity) 

used in the VA model were computed on the same tomograms using the LBM, thereby 

enabling a one-to-one comparison. Moreover, two cases are analyzed by means of the 
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PS model, either including or not including intrusion of the MPL into the GDL to 

ascertain the impact of interfacial effects. The structure of the paper is as follows. The 

materials and X-ray tomography experiments are described in Section 2. In Section 3, the 

VA and PS models are presented, along with the operating conditions, geometrical 

parameters and key numerical considerations. In Section 4, the results are discussed, 

including a comparison of the polarization curves, 1D through-plane profiles and 2D in-

plane distributions. In addition, an analysis of GDL/MPL intrusion and GDL surface region 

is presented. Finally, concluding remarks are given in Section 5.   

 

2. Materials and X-ray tomography 

X-ray tomography experiments were carried out at Advanced Light Source (ALS) 

synchrotron (beamline 8.3.2). Tomograms of uncompressed GDLs were acquired with a 

3.5 mm field of view in the material plane and a resolution of 1.3 𝜇m/voxel: untreated 

Toray® TGP-H-120 (full thickness, 𝛿gdl
ft = 367 𝜇m) and SIGRACET® SGL 25 AA (𝛿gdl

ft =

195 𝜇m). Additional results for 10 wt% PTFE-treated TGP-H-120 and SGL 35 AA can be 

found in Supplementary Material. The above level of determination allowed us to 

capture the main characteristics of the GDL microstructure (pore and fiber diameter, 

𝑑p~ 30 − 60 𝜇m  and 𝑑f~ 6 − 12 𝜇m ). However, a precise differentiation of the 

constituents of the solid phase was not attempted due to their rather similar gray-scale 

values. Hence, homogeneous transport properties were assumed here for the entire 

solid phase [27]. In addition, the effect of nanoscale features, such as fiber roughness 

and contact points between fibers and binder, could not be resolved and should be 

explored in future work [51,75–79]. A thorough description of the experimental setup, 

the reconstruction of the image stacks, and the algorithm used to segment the gray-

scale images into fluid and solid phases can be found elsewhere [23,24,27,45].  
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3. Numerical Modeling 

3.1. Volume-averaged (VA) vs. pore-scale (PS) model 

PEFC performance was modeled based on the 3D non-isothermal, steady-state volume-

averaged model implemented by García-Salaberri et al. [80] in the FVM-based code 

ANSYS® Fluent. The mathematical formulation, including a detailed description of the 

conservation equations (i.e., mass, momentum, energy, species, electronic/ionic 

potentials and membrane water content), constitutive relationships and boundary 

conditions, is presented in Supplementary Material. As shown in Figure 1, an elementary 

differential cell comprising the seven layers of the MEA was used to explore the 

potential discrepancies between VA and PS GDL models. The first modeling approach 

considers a fully VA formulation equal to that used in the original model [80], while the 

second one includes GDL tomograms as a part of the meshed domain. A VA formulation 

was used for the remaining components (catalyst layers, microporous layers, membrane 

and bipolar plates), whose effective transport properties were kept equal to those 

assumed in [80]. Two cases were examined with the PS model: one that is geometrically 

equivalent to the VA model (hereafter denoted as PS), which neglects any intrusion of 

the MPL into the GDL, and another one that includes a uniform intrusion of 30 𝜇m 

between the MPL and the GDL pore space (hereafter denoted as PS w/). The same 

effective transport properties were used for both the intruded and the core region of 

the MPL.  

 

The effective anisotropic properties of the GDLs (diffusivity, permeability and electrical 

and thermal conductivity) were computed on the same tomograms used in the PS model 

by means of the LBM (see [27] for further details). The properties determined in the 

direction of the rib-channel pattern (y-direction) were used for both principal directions 

in the material plane. This methodology provided a direct link between the GDL 

tomograms and the effective properties of the VA model. As shown in Table 1, SGL 25 AA 

has a higher diffusivity and permeability ( 𝑓sgl/𝑓tgp~1.4 , 𝐾sgl/𝐾tgp~4.7 ) but a 
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significantly lower electrical and thermal conductivity (𝜎sgl
eff/𝜎tgp

eff ~0.2, 𝑘sgl
eff/𝑘tgp

eff ~0.3) 

compared to TGP-H-120, as a result of its higher porosity and pore size (𝜀sgl ≈ 0.8, 

𝑑p,sgl ≈ 60 𝜇m vs. 𝜀tgp ≈ 0.7, 𝑑p,tgp ≈ 30 𝜇m) [27]. On the other hand, the PS model 

was implemented using a direct mapping between the voxel image of the GDL and a 

hexahedral mesh created with the same spatial resolution in ANSYS® Fluent. Specifically, 

a binary mask containing the location of solid and fluid voxels was imported into the CFD 

code, and then the conforming solid and fluid regions were generated with the available 

unstructured meshing tools. Prior to this operation, a preprocessing step was performed 

in Matlab® to ensure that the GDL images contained only one solid and fluid region 

based on a 6-neighbor connectivity. That is, there were no closed pores or floating solids 

in the images. This step was critical to avoid numerical singularities, even though it 

involved minor changes in the images (less than 0.5% of the voxels interchanged their 

original solid/fluid label). Gas species transport was directly modeled on the fluid region 

by solving the Navier-Stokes and convection-diffusion equations with a wall boundary 

condition at the solid/fluid interface. Whereas, electron and heat conduction were 

modeled by solving either Laplace’s or Poisson’s equation in the entire GDL domain with 

a coupled boundary condition at the solid/fluid interface. The bulk electrical 

conductivities of the solid and fluid phases were fixed to 𝜎gdl
solid = 105 S m−1  and 

𝜎gdl
fluid = 10−16 S m−1, respectively, while the bulk thermal conductivity of the solid 

phase was set to 𝑘gdl
solid = 70 W m−1 K−1 . These values are comparable to those 

considered by other authors [57–59,76,78,81–86], and are equal to those used to scale 

the normalized effective properties computed with the LBM. The thermal conductivity of 

the gas phase was internally determined in ANSYS® Fluent according to the composition 

of the gas mixture (see Supplementary Material). Joule heating due to electron transport 

in the GDL was included in the solid phase. 

 

3.2. Operational and geometrical parameters 

The operational and geometrical parameters are summarized in Table 2. The air-feed 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

11 

 

PEFC was simulated under high stoichiometric conditions ( 𝜉a,  𝜉c ≫ 1 ), using a 

temperature 𝑇cell = 𝑇a
in = 𝑇c

in = 80 °C , back-pressure 𝑝a
out = 𝑝c

out = 1.5 bar , and 

relative humidity RHa
in = RHc

in = 50% . These operating conditions avoided water 

condensation (RHlocal ≥ 100%) except at high current densities (𝐼avg ≳ 2 A cm−1), thus 

providing a good scenario to perform a direct comparison between both modeling 

approaches. Typical geometrical dimensions were considered in the model: 𝑤rib =

0.936 mm, 𝑤ch =  1.014 mm, 𝐻ch =  1 mm, and 𝐿ch =  0.975 mm. The thicknesses of 

the VA components of the MEA were fixed to 𝛿mpl = 30 𝜇m , 𝛿cl = 10 𝜇m  and 

𝛿mem = 20 𝜇m, while the GDL thickness was varied according to the sample under 

consideration. As shown in Figure 2, the modeled GDL domain mostly included the core 

region of the material [27], so as to mimic the scenario of an assembled MEA that is 

substantially compressed. Nevertheless, a more detailed analysis of the impact of 

inhomogeneous compression due to the rib-channel pattern should be considered in 

future work [25,87]. The GDL thickness was equal to 𝛿gdl = 275 𝜇m for TGP-H-120 and 

𝛿gdl = 130 𝜇m for SGL 25 AA, representing 75% and 67% of their full thickness, 

respectively. The same GDL tomograms were used at the anode and cathode sides, 

although interchanging the faces exposed to the MPL and the BPP. No important 

differences in the interfacial porosities and pore sizes of both interfaces were present in 

the samples examined. 

 

3.3. Numerical considerations and solution 

The GDL tomograms were down-sampled by a factor of 4 and 2 in the in- and through-

plane directions, respectively, to reduce computational cost. The appropriate level of 

resolution was determined from LBM simulations that led to comparable effective 

anisotropic transport properties as those computed in images with a higher resolution. 

The computed values were also confirmed in calculations performed with ANSYS® Fluent 

using the same set-up of the LBM model [27]. In addition, the electronic potential was 

only solved at the cathode side to facilitate the interpretation of results and speed up 
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the simulations. The computational cost of the PS model to solve the 11 governing 

equations on meshes with around 20 million cells was around 1-2 weeks per cell voltage 

using 24-48 processors. Cases with a larger dependence on the interfacial microstructure 

of the solid phase ran longer due to the slower transmission of information throughout 

the numerical domain. On the contrary, the computational cost of the VA model was 

vastly lower, so that only several hours were necessary to compute a polarization curve 

using meshes with around 0.4 million cells and 8 processors. The set of partial 

differential equations was solved iteratively until convergence (residuals below 10−8) 

using the pressure-based segregated solver with the SIMPLE algorithm, least square cell-

based discretization for gradients, linear pressure interpolation and second-order 

upwind spatial discretization. The computational campaign, including test and validation 

simulations, was performed on the supercomputing cluster of the Fluid Mechanics 

Research Group at University Carlos III of Madrid and the cluster Orca of the SHARCNET 

supercomputing consortium in Canada [88,89]. 

 

4. Results and discussion  

4.1. Polarization curve and through-plane profiles 

Figure 3 shows the polarization curves computed for TGP-H-120 and SGL 25 AA with the 

VA model and the PS model without MPL intrusion. Additionally, the results of the PS 

model considering a uniform intrusion between the MPL and the GDL are included (see 

discussion in Section 4.3). The curves are consistent with those experimentally obtained 

using these materials [25,90–96], although since the study is focused on comparisons of 

models a rigorous fit to experimental data was not performed. The corresponding 

through-plane profiles across the MEA at 𝑉cell = 0.5 V (𝐼avg  ≈  1 A cm−2) are shown in 

Figure 4 for key variables of interest: cathode voltage drop, temperature, oxygen and 

hydrogen mass fractions, and RH. 
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The VA and PS models are geometrically equivalent, so they provide similar overall fluxes 

across the MEA and thus overall performance. This situation is particularly evident in the 

polarization curve and the through-plane profiles of TGP-H-120. However, the 

differences are larger for SGL 25 AA (∆𝑉cell~10 mV @ 𝐼avg = 1 A cm−2) due to its more 

porous and open microstructure, which leads to significant micrometer-scale electrical 

and thermal contact resistances at the GDL/MPL interface (𝜀sgl,gdl/mpl ≈ 0.8, 𝑑p,sgl ≈

60 𝜇m vs. 𝜀tgp,gdl/mpl ≈ 0.6, 𝑑p,tgp ≈ 30 𝜇m). As a result, the electronic losses across 

the MPL-coated GDL are higher in the PS model, as are the ionic losses due to the 

slightly worse hydration of the membrane. Specifically, the GDL/MPL interfacial 

resistance arises from the combined effect of the finite interfacial area available for 

electron and heat transport (i.e., the interfacial solid fraction) and the finite conductivity 

of the MPL (𝜎mpl
eff = 300 S m−1, 𝑘mpl

eff = 0.1 W m−1 K−1). The micrometer-scale contact 

resistance at the GDL/BPP interface is significantly smaller because of the high 

conductivity of the BPP (𝜎bpp
eff = 2000 S m−1, 𝑘bpp

eff = 120 W m−1 K−1). As shown in 

Figure 4(b), the GDL/MPL electrical and thermal resistances lead to a sharp voltage and 

temperature drop between the MPL and the solid phase of the GDL (i.e., the electrically 

and thermally conductive phase), which cannot be captured by the VA model. 

Consequently, the VA model underestimates the temperature and voltage drop across 

the MPL-coated GDL.   

 

The above results show that VA models can be a good approximation to predict overall 

performance provided that the model is equipped with appropriate effective transport 

properties, as was done here. However, the lack of a well-defined REV and finite-size 

interfacial resistances complicate the development of fully predictive models. In 

particular, the interfacial microstructure of the GDL can have significant effects on 

electrical, thermal and mass-transport fluxes across the sandwich but are typically 

neglected in VA models (see, e.g., [23,24,27,29,34,37,35,32,38,33,39,25,36] among 

others). Furthermore, the intrinsic inhomogeneous nature of GDLs, along with sheet-to-

sheet and batch-to-batch manufacturing variations, warrant a cautious selection of the 
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effective properties used in VA models [27]. The picture is more confused under two-

phase conditions, since liquid water transport is strongly impacted by microstructural 

characteristics, including among others: GDL pore and throat size and distribution, PTFE 

spatial dispersion, catalyst layer and MPL cracks and GDL surface roughness (see, e.g., 

[9,10,23,32,43,46,47,53–55,63,64,70,97–103]).  

 

4.2. In-plane distributions 

The inhomogeneities endemic to these materials can be visualized in the 2D 

distributions at 𝑉cell = 0.5 V shown in Figures 5 and 6 for TGP-H-120 and SGL 25 AA, 

respectively. The variables include the current density, temperature and ionic resistance 

of the membrane, and oxygen mass fraction and RH in the CLs. The distributions in each 

figure have the same color scale to facilitate comparison, indicating the average value at 

the top of each subplot.  

 

Significant differences are found in the spatial distributions of the VA and PS models 

since the VA domain is homogeneous, while the PS domain fully captures the geometry 

of the macro-porous GDL. The coupling between the rib/channel geometry, the 

microstructure of the GDL and local interfacial resistances leads to distributions with 

varying degree of complexity. A positive correlation was found between the local 

microstructure at the cathode GDL/MPL interface and the distributions in the cathode CL 

(oxygen mass fraction, RH and electronic potential) and the membrane temperature; see 

spatial correlations in Supplementary Material. The dependence of the membrane 

temperature on the cathode GDL/MPL microstructure is explained by the ten-fold lower 

thermal conductivity of air ( 𝑘air~10−2 W m−1 K−1 ) compared to hydrogen 

(𝑘H2
~10−1 W m−1 K−1), along with the similar porosities and pore sizes existent at the 

anode and cathode GDL/MPL interfaces. By comparing Figure 2 with Figures 5-6, it is 

seen that transport of oxygen and water vapor is favored in high-porosity regions, 

whereas heat and electron transport are promoted in low-porosity regions of the 
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cathode GDL/MPL interface. Transport of water vapor is, in turn, further enhanced in 

high-porosity regions of the cathode GDL/MPL interface due to the larger temperatures 

reached there. As a result, there is a preferential accumulation of water vapor (decrease 

of oxygen mass fraction) in dense solid regions of the cathode GDL/MPL interface. The 

effect that different anode and cathode microstructures have on in-plane distributions 

can be seen for PTFE-treated TGP-H-120 and SGL 35 AA in Supplementary Material.  

 

The impact of GDL microstructure and its inherent inhomogeneity on the spatial 

distributions can have several practical implications, such as the formation of local 

hotspots and electrical resistances, oxygen-starved regions and water nucleation points 

that are smoothed out by VA models. For instance, the PS results presented here closely 

resemble the distributions measured by Wong et al. [104,105] by using fluorescence 

microscopy in a redox flow battery featuring carbon-paper electrodes. The extent of the 

variations between the spatial distributions of both models is shown in Figure 7. As can 

be seen, the average relative variations between both models are rather small, thus 

leading to comparable performance estimates. However, the local deviations amount 

more than 100% in the case of voltage drop, around 40-60% for oxygen mass fraction in 

the cathode CL, 10-30% for membrane resistance and RH in the CLs, and 10-20% for 

current density. These fluctuations can have important implications on degradation 

phenomena, where local conditions control degradation rates, or catalyst utilization 

estimates, where a region of catalyst can be starved of reactant. Durability modeling is 

an important building block for the community, which warrants the development of 

comprehensive multiscale VA models to improve our understanding of degradation 

mechanism from the nanoscale to the cell and stack level [34,106–108]. 

 

4.3. Interfacial effects: GDL/MPL intrusion and GDL surface region 

The polarization curves, 1D profiles and 2D distributions of the PS model with GDL/MPL 

intrusion are shown in Figures 3, 4 and 5-6, respectively. The relative variations between 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

16 

 

the PS models with and without MPL intrusion are presented in Figure 8 using a similar 

representation to that in Figure 7. The VA model was excluded from the analysis due to 

the hand-waviness of performing a one-to-one comparison. In particular, it would be 

necessary to add a ‘second’ MPL to the VA domain with different transport properties 

than the ‘core’ MPL, so as to account for the interfacial space occupied by solid carbon 

fibers.  

 

The intrusion of the MPL into the GDL has two fundamental effects: (1) it decreases the 

reactant concentration and increases the water vapor concentration in the CLs, and (2) it 

reduces the micrometer-scale contact resistances at the GDL/MPL interface due to the 

better contact between these two layers. The reduction of the electrical contact 

resistance is strong (both at the anode and the cathode sides) due to the much larger 

electrical conductivity of the MPL compared to gas species (𝜎mpl
eff = 300 S m−1 vs. 

𝜎gas = 10−16 S m−1). In terms of heat transport, the impact of MPL intrusion is larger at 

the cathode since the thermal conductivity of the MPL is ten-fold higher than that of air 

( 𝑘mpl
eff = 10−1 W m−1 K−1  vs. 𝑘air~10−2 W m−1 K−1 ). However, the impact at the 

anode is rather small because the thermal conductivity of the MPL is similar to that of 

hydrogen (𝑘H2
~10−1 W m−1 K−1). As shown in Figure 3, these two effects lead to 

significant changes in the polarization curves. In the case of TGP-H-120, the limiting 

current density is dramatically reduced due to the additional mass transport resistance 

offered by the intruded portion of the MPL (∆𝑉cell~100 mV @ 𝐼avg = 1.8 A cm−2). In 

the case of SGL 25 AA, the decrease of the GDL/MPL electrical and thermal resistances, 

along with the better hydration of the membrane, make more similar the predictions of 

both models in terms of cell performance. 

 

The effect of the GDL surface region in the case of SGL 25 AA is examined next. As 

depicted in Figure 9, starting from the base case mostly including the core region of the 

material (black patch), several GDL domains were analyzed by gradually adding an extra 

portion of the thickness (purple to yellow patches). Five domains were simulated in 
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total, including the one used in the previous sections. The thicknesses examined are 

equal to 130, 143, 156, 169 and 182 𝜇m, corresponding to 𝛿gdl /𝛿gdl
ft = 67, 73, 80, 87 

and 93% of the full thickness, respectively. Figure 9 also shows the Euclidean transform 

of the GDL pore space at the anode and cathode MPL interfaces, where it is seen that 

the interfacial porosity and pore size increase from around 0.85 to 0.95 and 80 𝜇m to 

200 𝜇m as the GDL window length is enlarged. 

 

The variation of the average current density and cathode voltage drop at 𝑉cell = 0.5 V as 

a function of the GDL window length is shown in Figure 10(a). As can be seen, the highly-

porous surface region leads to a strong decrease of the current density when MPL 

intrusion is neglected, decreasing from 1 A cm-2 (𝛿gdl /𝛿gdl
ft = 0.67) to 0.65 A cm-2 

(𝛿gdl /𝛿gdl
ft = 0.93). The reduction of the performance arises from the voltage drop 

created by the micro-scale electrical contact resistance at the GDL/MPL interface. As 

shown in Figure 10(b, left), the cathode voltage drop increases non-linearly from 10 mV 

to more than 70 mV as a larger portion of the surface region is included. The electrical 

contact resistance, as discussed earlier, is manifested as a sharp voltage drop between 

the MPL and the solid phase of the GDL, while the gas phase of the GDL (80% of the 

material) remains passively close to the mean; see the example in Figure 10(b, right). By 

way of contrast, the current density predicted by the PS model with MPL intrusion 

prevails relatively constant around 1 A cm-2, since the impact of contact resistances is 

significantly reduced. The slight decline of the performance in this case is caused by the 

decrease of the effective electrical and thermal conductivity of the GDL by the effect of 

the surface region (see Table 1), which increases the electronic losses in the GDL and the 

ionic losses in the membrane (worse hydration). These results show the sensitivity of 

thin porous media to local conditions [23], highlighting the importance of interfaces as a 

key control and quality parameter for large-scale MEA manufacturing. 
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5. Conclusions 

In this work, the effect of the inherent inhomogeneities of carbon paper-based gas 

diffusion layers (GDLs) used in polymer-electrolyte fuel cells (PEFCs) were examined. This 

is important information for the development of more comprehensive multiscale 

models, as well as to improve our understanding of transport processes in PEFCs as the 

model fidelity is increased. To thin end, single-phase PEFC performance was simulated 

on a 2x1 mm2 differential cell considering both a volume-averaged (VA) and a pore-scale 

(PS) description for the GDL. The PS model was equipped with micro-tomographies of 

the GDL as a part of the meshed domain, employing a VA formulation for the remaining 

layers of the membrane electrode assembly (MEA). In addition, the effective properties 

of the GDL in the VA model (i.e., diffusivity, permeability, and electrical and thermal 

conductivity) were extracted from lattice-Boltzmann simulations performed on the same 

tomographies. This enabled a direct comparison between both modeling approaches. 

Additionally, the partial intrusion between the GDL and the microporous layer (MPL), as 

well as the GDL surface region, were examined by means of the PS model to ascertain 

the effect of interfacial phenomena.  

 

It was found that VA models of GDLs accounting for suitable effective properties provide 

good estimates for aggregated quantities such as overall cell performance, even though 

their predictive power is limited by (1) the lack of a well-defined representative 

elementary volume in thin GDLs and (2) finite-size interfacial resistances in layered 

assemblies. Besides, the selection of effective transport properties can be problematic 

due to sheet-to-sheet and batch-to-batch heterogeneities existent in GDLs. This issue 

was overcome here by using a direct link between the modeled GDL microstructure and 

the effective properties considered in the VA model, but can, in general, lead to non-

negligible differences. In this study, the larger discrepancies between the VA and PS 

models were observed in the spatial distributions, since the VA model smoothed out 

oxygen-starved regions, water nucleation points, hotspots and local electrical resistances 

compared to the PS model. These inherent inhomogeneities are expected to affect 
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degradation phenomena and deserve further investigation by the community in 

multiscale degradation analyses. In addition, a large impact of interfacial effects 

between the GDL and the MPL on cell performance was found due to the sensitivity of 

through-plane fluxes across the MEA to local conditions between layers. The appropriate 

design of interfaces is a key engineering aspect to be considered for quality control in 

MEA manufacturing and assembly. 

 

In summary, this work highlighted that using macro-homogeneous VA models to 

describe GDLs should be taken with care, even though they are the de-facto choice to 

simulate large domains due to their rather low computational cost. In this regard, PS 

modeling must be considered as a complementary technique to analyze the complex 

multiscale behavior of PEFCs and guide the construction of more advanced multiscale VA 

models, especially where material heterogeneities play critical roles. Generally speaking, 

two aspects has been identified in this work to upgrade the predictive capabilities of VA 

models: (1) to incorporate the effect of GDL bulk inhomogeneities, and (2) to improve 

the modeling of interfacial phenomena. Additional exercises that should be considered 

in future work include the analysis of tomograms of catalyst layers and commercial MPL-

coated GDLs, nanoscale contact details, inhomogeneous assembly compression and two-

phase transport. 
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Nomenclature 

Symbols 

𝑑 diameter [m] 

𝑓 normalized effective gas-phase diffusivity [-] 

𝐻 height [m] 

𝐼 current density [A m-2] 

𝐾 permeability [m2] 

𝑘 thermal conductivity [W m-1 K-1] 

𝐿 longitudinal length in y-direction [m] 

𝑝 pressure [Pa] 

𝑄 volumetric flow rate [m3 s-1] 

𝑅 ionic resistance [Ω m2] 

RH relative humidity [-] 

𝑇 temperature [K] 

𝑉cell cell voltage [V] 

𝑤 width [m] 

𝑥 in-plane coordinate [m] 

𝑌i mass fraction of species i [-] 
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𝑦 secondary in-plane coordinate [m] 

𝑧 through-plane coordinate [m] 

Greek letters 

Δ increment 

𝛿 thickness [m]    

𝜀 porosity [-] 

𝜀i area-averaged porosity in i-direction [-] 

𝜉 stoichiometric flow ratio [-] 

𝜎 electrical conductivity [S m-1] 

𝜙e−  electronic potential [V] 

Subscripts 

a anode 

bpp bipolar plate 

c cathode 

ch channel 

cl catalyst layer 

cl-bpp between cl and bpp 

f fiber 

gdl gas diffusion layer 

ip in-plane direction 

mem membrane 

mpl microporous layer 

p pore 

rib bipolar plate rib 

tp through-plane direction 

Superscripts 

avg average 

eff effective property 

fluid GDL fluid region  
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ft full thickness 

solid GDL solid region  

Abbreviations & acronyms 

BPP bipolar plate 

CL catalyst layer 

CR core region 

DNS direct numerical simulation 

FT full thickness 

GDL gas diffusion layer 

IP in-plane 

LBM lattice Boltzmann method 

MEA membrane electrode assembly 

MPL microporous layer 

PEFC polymer-electrolyte fuel cell 

PEM polymer-electrolyte membrane 

PNM pore-network modeling 

PS pore scale 

PTFE polytetrafluoroethylene 

REV representative elementary volume 

SR surface region 

TP through-plane 

VA volume averaged 

X-CT X-ray computed tomography 
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Table 1: Effective anisotropic transport properties of the GDLs, as determined from LBM simulations. 

GDL Porosity, 

𝜀 

 

TP/IP 

normalized 

diffusivity, 

 𝑓tp / 𝑓ip [−] 

TP/IP 

permeability, 

 𝐾tp / 𝐾ip [m2]  

(× 1011) 

TP/IP electrical 

conductivity,  

𝜎tp
eff/𝜎ip

eff [S cm−1] 

TP/IP thermal 

conductivity, 𝑘tp
eff / 𝑘ip

eff 

[W m−1 K−1] 

TGP-H-120 

(0 wt%) 

0.66 0.2/0.35 0.3/0.55 53/170 3.8/11.6 

SGL 25 AA 

(𝛿gdl = 

130, 143,  

156, 169,  

182 𝜇m)  

0.75, 

0.76, 

0.77, 

0.79,  

0.8 

0.3/0.55, 

0.31/0.58, 

0.32/0.61, 

0.33/0.63, 

0.35/0.65 

1/1.5,  

1.05/1.6,  

1.1/1.7,  

1.15/1.9,  

1.2/2.2 

16/125,  

13/118,  

9/110,  

5/104,  

2.4/97 

1.2/8.8,  

0.95/8.4,  

0.7/7.8,  

0.5/7.4,  

0.25/7  
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Table 2: Operational and geometrical parameters (see boundary conditions in Supplementary 

Material). 

Parameter Symbol Value 

Operational parameters 

Hydrogen feed flow rate / sccm 𝑄H2
 800 (𝜉a = 5.8 × 103 @ 1 A cm-2) 

Air feed flow rate / sccm 𝑄air 1100 (𝜉c = 3.3 × 103 @ 1 A cm-2) 

Cell temperature / oC 𝑇cell 80  

Anode and cathode inlet temperature / oC  𝑇a
in, 𝑇c

in 80 

Anode and cathode back-pressure / bar 𝑝a
out, 𝑝c

out 1.5 

Anode and cathode inlet RH / - RHa
in, RHc

in 0.5 (50%) 

Geometrical parameters 

Rib width / mm 𝑤rib 0.936 

Channel width / mm 𝑤ch 1.014 

Channel height / mm 𝐻ch 1 

Channel length / mm 𝐿ch 0.975 

GDL thickness (TGP-H-120, SGL 25 AA) / 𝜇m 𝛿gdl 275, 130a 

MPL thickness / 𝜇m 𝛿mpl 30b 

CL thickness / 𝜇m 𝛿cl 10 

PEM thickness / 𝜇m 𝛿mem 20 

a Four extra GDL thicknesses are considered in Section 4.3 to examine the effect of the surface 

region of SGL 25 AA: 𝛿gdl = 143, 156, 169 and 182 𝜇m. The full thicknesses of the main 

samples of TGP-H-120 and SGL 25 AA are 𝛿gdl
ft = 367 𝜇m and 𝛿gdl

ft = 195 𝜇m, respectively. 

 

b The effect of MPL intrusion is examined in Section 4.3 considering a uniform intrusion of 30 

𝜇m between the MPL and the GDL pore space (in addition to the core region of 30 𝜇m).  
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Figure 1: Meshes of the volume-averaged (VA) and pore-scale (PS) models. The modeled 

domain includes a 21 mm2 elementary differential cell comprising the region between the 

mid-plane of two neighboring ribs. The location of the bipolar plate (BPP), membrane 

electrode assembly (MEA), gas diffusion layer (GDL) and channel is indicated.   
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Figure 2: (upper plot) Through-plane (TP) porosity profiles, 𝜀z, corresponding to untreated 

TGP-H-120 (𝛿gdl/𝛿gdl
ft =  75%) and SGL 25 AA (𝛿gdl/𝛿gdl

ft = 67%), showing the modeled 

domain used in the simulations. The surface region is indicated by a grey background, while 

the core region is in white. (lower plot) Euclidean distance of the void space towards the solid 

phase at the anode and cathode GDL/MPL interfaces. The average interfacial porosity, 𝜀, and 

pore diameter, 𝑑p, are also indicated. The plotted distributions were averaged over the last 10 

𝜇m of the GDL facing the MPL (i.e., 10 slices of 1.3 𝜇m thickness).  
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Figure 3: Polarization curves corresponding to untreated TGP-H-120 and SGL 25 AA, as predicted 

by the volume-averaged (VA) and pore-scale (PS) models. The results of the PS model 

considering a uniform intrusion between the MPL and the GDL are also included (see Section 

4.3). 
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Figure 4: (a) Average through-plane (TP) profiles corresponding to untreated TGP-H-120 and SGL 

25 AA, as predicted by the volume-averaged (VA) and pore-scale (PS) models at 𝑉cell = 0.5 V. 

The results of the PS model considering a uniform intrusion between the MPL and the GDL are 

also included (see Section 4.3). The plots show the cathode voltage drop, ∆𝜙e− (𝑧) , 

temperature, 𝑇(𝑧) , oxygen/hydrogen mass fraction, 𝑌O2
(𝑧)/𝑌H2

(𝑧) , and relative humidity, 

RH(𝑧). The layers of the MEA (PEM, CLs, MPLs and GDLs) are indicated by dark to light gray 

patches, where 𝑧 = 0 corresponds to the midplane of the membrane. (b) Cathode voltage drop, 

∆𝜙e− (𝑧), and temperature, 𝑇(𝑧), profiles of the VA components of the MEA (PEM, CLs and 

MPLs) and the solid phase of the GDL. The electrical and thermal contact resistance at the 

GDL/MPL interface leads to a sharp voltage and temperature drop between the MPL and the 

GDL solid phase, which is reduced when MPL intrusion into the GDL is taken into account.   

 

 

 

 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

34 

 

 

Figure 5: 2D in-plane distributions corresponding to untreated TGP-H-120, as predicted by the 

volume-averaged (VA) and pore-scale (PS) models at 𝑉cell = 0.5 V. The results of the PS model 

considering a uniform intrusion between the MPL and the GDL are also included (see Section 

4.3). The plots show the current density, 𝐼(𝑥, 𝑦), cathode voltage drop between the CL and the 

BPP, ∆𝜙e−,ccl−bpp(𝑥, 𝑦), temperature and ionic resistance of the membrane, 𝑇mem(𝑥, 𝑦) and 

𝑅mem(𝑥, 𝑦), and oxygen mass fraction and RH in the CLs, 𝑌O2,ccl
(𝑥, 𝑦), RHccl(𝑥, 𝑦)  and 

RHacl(𝑥, 𝑦). The mean value of the distributions is indicated at the top of each subplot.       
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Figure 6: 2D in-plane distributions corresponding to SGL 25 AA, as predicted by the volume-

averaged (VA) and pore-scale (PS) models at 𝑉cell = 0.5 V. The results of the PS model 

considering a uniform intrusion between the MPL and the GDL are also included (see Section 

4.3). See caption to Figure 5 for further details.  
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Figure 7: Relative variation of the spatial distributions between the pore-scale (PS) and volume-

averaged (VA) models corresponding to untreated TGP-H-120 and SGL 25 AA for various 

variables of interest: current density, 𝐼, cathode voltage drop, ∆𝜙e−,c, temperature and ionic 

resistance of the membrane, 𝑇mem and 𝑅mem, oxygen and hydrogen mass fractions in the CLs, 

𝑌O2,ccl
 and 𝑌H2,acl

, and relative humidity in the CLs, RHccl and RHacl. The average value is 

indicated by a solid black dot. The variation of the cathode voltage drop was multiplied by 0.1 

to facilitate visualization on the same scale. The bars are colored according to the extent of 

variation, while the spatial distributions can be seen in Figures 5 and 6. 
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Figure 8: Relative variation of the spatial distributions between the pore-scale models with (PS 

w/) and without (PS) a uniform intrusion between the MPL and the GDL corresponding to 

untreated TGP-H-120 and SGL 25 AA for various variables of interest. The average value is 

indicated by a solid black dot. The bars are colored according to the extent of variation, while 

the spatial distributions can be seen in Figures 5 and 6. See caption to Figure 7 for further 

details. 
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Figure 9: (left plot) Through-plane (TP) porosity profile, 𝜀z(𝑧), corresponding to SGL 25 AA, 

indicating the five GDL domains considered in the analysis of the surface region: 𝛿gdl =

130 𝜇m (𝛿gdl /𝛿gdl
ft = 67%), 143 𝜇m (73%), 156 𝜇m (80%), 169 𝜇m (87%), 182 𝜇m (93%). 

(right plot) Euclidean distance of the void space towards the solid phase at the anode and 

cathode GDL/MPL interfaces of the various domains. The range of the colormap is limited to 

150 𝜇m to facilitate visual comparison.  
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Figure 10: (a) Variation of the average current density, 𝐼avg, and cathode voltage drop, 

Δ𝜙e−,ccl−bpp
avg

, with the GDL window length, 𝛿gdl/ 𝛿gdl
ft , as predicted by the pore-scale model 

without (PS) and with (PS w/) a uniform intrusion between the MPL and the GDL at 𝑉cell =

0.5 V. (b, left) Through-plane (TP) profiles of the cathode voltage drop, ∆𝜙e− (𝑧), for different 

GDL window lengths, corresponding to the PS model. (b, right) ∆𝜙e− (𝑧)  for the case 

𝛿gdl /𝛿gdl
ft = 0.8, as predicted by the PS model without GDL/MPL intrusion. The plot includes 

the average value of the solid and gas phases of the GDL, as well as the value of both phases 

separately. The layers of the cathode compartment (PEM, CL, MPL and GDL) are indicated by 

dark to light gray patches, where 𝑧 = 0 corresponds to the midplane of the membrane. See 

caption to Figure 9 for further details.  

 

 

 

 

 




