
Aggregation of Heterogeneous Anomaly
Detectors for Cyber-Physical Systems

by

Murray Dunne

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2018

c© Murray Dunne 2018

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

Portions of this thesis have been adapted from other works currently submitted for peer-
review.

• Section 3.2 is co-authored by Sean Kaufmann and myself.

• The symptom examples in Section 3 were selected by Dr. Giovani Gracioli.

• The eleven anomaly scenarios in Section 7.3 were selected in a cooperation between
Shefali Sharma and myself.

• The Palisade printed circuit boards were developed by Dr. Carlos Moreno. The
Palisade firmware is entirely my own work.

• The autoencoder layout (Figure 4.2) was selected by Shailja Thakur.

• Figure 6.2 is co-authored by Dr. Carlos Moreno and myself.

All of the work in this thesis was completed under the guidance of Dr. Sebastian
Fischmeister at the University of Waterloo. He provided ideas, discussion, and reviewed
this thesis.

iii

Abstract

Distributed, life-critical systems that bridge the gap between software and hardware
are becoming an integral part of our everyday lives. From autonomous cars to smart
electrical grids, such cyber-physical systems will soon be omnipresent. With this comes a
corresponding increase in our vulnerability to cyber-attacks. Monitoring such systems to
detect malicious actions is of critical importance.

One method of monitoring cyber-physical systems is anomaly detection: the process of
detecting when the target system is deviating from expected normal behavior. Anomaly
detection is a vibrant research area with many different viable approaches. The literature
suggests many different anomaly detection methods for the diversity and volume of data
from cyber-physical systems. We focus on aggregating the result of multiple anomaly
detection methods into a final anomalous or non-anomalous verdict.

In this thesis, we present Palisade, a distributed data collection, anomaly detection,
and aggregation framework for cyber-physical systems. We discuss various methods of
anomaly detection and aggregation and include a case study of anomaly aggregation on a
cyber-physical treadmill driving demonstrator. We conclude with a discussion of lessons
learned from the construction of Palisade, and recommendations for future research.

iv

Acknowledgements

Thanks to Dr. Sebastian Fischmeister, my supervisor, for all the help, support, and
the opportunity to pursue this research.

Thanks to Dr. Carlos Moreno for helping with all my questions about hardware design.

v

Dedication

This thesis is dedicated to Kathryn, Tim, and Allie. Thank you for all your support.

vi

Table of Contents

List of Tables x

List of Figures xi

1 Introduction 1

2 Background 4

2.1 Anomaly Detection . 4

2.2 Ensemble Learning . 5

2.2.1 Diversification . 5

2.2.2 Diversifying Algorithms . 6

2.2.3 Combination Techniques . 8

2.2.4 Deep Learning Based Approaches 10

2.3 Collaborative Intrusion Detection Systems 12

3 Symptoms of Anomalies 13

3.1 Continuous Signal Anomaly Symptoms . 14

3.1.1 Spikes and S-waves . 14

3.1.2 Drifting . 14

3.1.3 Noise . 15

3.1.4 Clipping . 15

vii

3.1.5 Loss . 15

3.1.6 Smoothing . 16

3.1.7 Amplification . 16

3.1.8 Level Change . 17

3.1.9 Frequency Change . 17

3.1.10 Echo/Reflection . 17

3.2 Event Series Anomaly Symptoms . 19

3.2.1 Event Frequency Change . 19

3.2.2 Unexpected Event . 20

3.2.3 Periods of Silence . 20

3.2.4 Sampled Value Anomaly Symptom 20

4 Anomaly Detectors 22

4.1 Watermark Detector Example: Hash Detector 24

4.2 Statistic Detector Example: Spike Detector 25

4.3 Machine Learning Detector Example: Autoencoder 26

5 Anomaly Aggregators 29

5.1 Simple Majority Vote Aggregator . 31

5.2 Weighted Majority Vote Aggregator . 32

5.3 Logistic Regression Aggregator . 33

5.4 Probability Sum Aggregator . 34

5.5 Stacked Generalization . 35

6 Palisade: Anomaly Detection for Cyber-Physical Systems 37

6.1 Palisade Requirements . 37

6.2 Palisade Terminology . 38

6.3 Palisade Structure . 39

6.3.1 Data Acquisition Units . 40

6.3.2 Software Subsystem . 44

viii

7 Case Study 46

7.1 ADAS Demonstrator . 46

7.2 Experiment Setup . 47

7.3 Anomaly Scenarios . 48

7.3.1 CAPEC 148 - Content Spoofing . 48

7.3.2 CAPEC 94 - Man in the Middle . 49

7.3.3 CAPEC 248 - Command Injection 49

7.3.4 CAPEC 548 - Contaminate Resource 49

7.3.5 CAPEC 184 - Software Integrity Attack 50

7.3.6 CAPEC 125 - Flooding . 50

7.3.7 CAPEC 130 - Excessive Allocation 51

7.3.8 CAPEC 594 - Traffic Injection . 51

7.3.9 CAPEC 607 - Obstruction . 51

7.3.10 CAPEC 176 - Configuration Manipulation 52

7.3.11 CAPEC 441 - Malicious Logic Insertion 52

7.4 Channels . 53

8 Results and Discussion 54

8.1 Data . 54

8.2 Algorithm Selection . 55

8.3 Methodology . 57

8.4 Discussion . 57

9 Future Work and Conclusion 60

9.1 Lessons Learned . 60

9.2 Future Work . 61

9.3 Conclusion . 62

References 64

ix

List of Tables

7.1 Anomalies In ADAS Experiment . 48

7.2 Anomaly Channels for ADAS Experiment 53

8.1 Experimental Detector Results . 58

x

List of Figures

3.1 Time Series Anomaly Symptoms . 18

4.1 Spike Detector Example - Highlighted Regions are Spikes 27

4.2 Autoencoder Neural Network Layout . 28

5.1 Quantization of Aggregator Input in Time Domain 32

5.2 Stacked Generalization Neural Network Layout 36

6.1 Palisade Hardware Subsystem . 39

6.2 Current Sensor Bandwidth Reduction Method 41

6.3 DAQ Synchronization Signal . 42

6.4 Palisade Software Subsystem . 44

7.1 Abstracted ADAS Demonstrator Layout 46

8.1 ROC Curves for Aggregators . 59

xi

Chapter 1

Introduction

Cyber-physical systems are distributed, large-scale, and often life-critical systems such as
autonomous vehicles, unmanned aircraft, and smart electrical grids [1]. They are composed
of sensors, actuators, and various networking and processing equipment. From driverless
cars to medical devices, our critical infrastructure is becoming distributed as fast as such
systems can be integrated. With the rise of these systems comes a commensurate increase
in cyber attacks [1].

We can monitor the condition of cyber-physical systems by examining live data traces
and comparing them against a predetermined characterization of normal behavior. Such
a process is called anomaly detection [2]. The anomaly detection problem can be stated
as: given a stream of data representing a property of some system, determine if that
data represents normal behavior or not. This result is often given as an estimate of the
probability (or confidence) the system is performing anomalously. The source data stream
could be an explicitly measured metric, such as the current speed of a car as collected
by a speedometer, or side-channel data, such as the power consumption of a computer
processor.

In this thesis, we consider only the detection of cyber attacks on cyber-physical systems.
This approach is called intrusion detection. Intrusion detection is divided into methods
that identify specific data patterns that are presumed to be malicious (called signature
detection), or approaches that recognize deviations from normal system behavior (called
anomaly detection) [3]. When we discuss intrusion detection in this thesis, we are referring
to the second type: anomaly detection.

In physical systems, evidence of an attack as it occurs is sufficient to activate automated
or manual safeguards. The objective of an anomaly detection system (or intrusion detection

1

system) is to detect cyber-attacks on the instrumented system before they are capable of
rendering harm. This adds a requirement to practical anomaly detection algorithms: they
must work on system data as it is collected, that is, they must be online algorithms.

As cyber-physical systems grow and gain components, the number of data streams
available to anomaly detection systems increases. An anomaly system must be able to
ingest all these streams and produce a decision on the condition of the monitored system.
Thus the anomaly aggregation problem for cyber-physical systems can be stated as:

Given a set of confidence levels from anomaly detection algorithms on multiple data
streams at a given time, determine if they monitored system as a whole is behaving normally
or anomalously at that time.

This decision may be informed by previous system state and the history of anomaly
detector confidence levels.

A complex event processing system is a distributed system that aggregates event notifi-
cations to identify scenarios of interest [4]. A collaborative intrusion detection system is a
set of individual intrusion detection systems that cooperate to detect coordinated attacks
[5]. Collaborative intrusion detection systems are built to tackle the anomaly aggregation
problem. We can consider a collaborative intrusion detection system to be a special case of
an complex event processing system where the scenarios of interest are anomalous system
behaviour. In this thesis we present Palisade, a complex event processing system that we
use in this work for anomaly detection.

This thesis is split into three contributions. The first contribution is a description of
symptoms of anomalies that may manifest in data being ingested by an anomaly detection
system. We define symptoms of anomalies as perturbations in the data being considered
for anomaly detection that may indicate the presence of an anomaly (see Chapter 3). The
second contribution is Palisade, a complex event processing system that we use for anomaly
detection in cyber-physical systems (Chapter 6). Palisade uses Redis [6] as a central
publish-subscribe broker, which adjudicates between data sources, anomaly detectors, and
aggregators. The final contribution is an evaluation of published aggregation algorithms
on the anomaly aggregation problem (Chapter 7). We use data from a cyber-physical
demonstrator platform and perform realistic cyber attacks taken from the Common Attack
Pattern Enumeration and Classification (CAPEC) database.

We begin with a background review of ensemble learning, anomaly detection, and
applications for intrusion detection (Chapter 2). We then present a mathematical setup
for perturbations in data leading to anomalies, which we call symptoms (Chapter 3) which
is followed by a discussion of anomaly detection algorithms (Chapter 4) and ensemble
aggregation algorithms (Chapter 5). We discuss the construction of Palisade (Chapter

2

6) and then present a case study using an Advanced Driver-Assistance Systems (ADAS)
demonstrator (Chapter 7) and its results and lessons learned (Chapter 8). We conclude in
Chapter 9 and discuss future work.

3

Chapter 2

Background

2.1 Anomaly Detection

We have defined anomaly detection in the introduction (Section 1) based on Chandola et
al.’s [2] definition. Anomaly detection is the process of comparing data representing the
current state of the target system to a predetermined characterization of normal system
behavior. Deviations from normal behavior are considered anomalies.

Anomaly detection can be thought of as a binary classification problem. Given a sam-
ple of data from the system, classify it as normal or anomalous. In an online environment,
the definition of what constitutes a sample that can then be classified gets murky. Online
classification techniques can be separated into stationary or non-stationary stream classi-
fiers [7]. Stationary classifiers operate under the assumption that the data stream is stable.
Non-stationary classifiers can account for concept drift. Concept drift is the notion that
the underlying distribution of the data will change naturally with time, and this is not
an anomaly. Consequently, machine learning techniques that apply in a non-stationary
setting must be able to train (or adjust) online to not miss-classify data that has changed
as a result of concept drift [7]. Concept drift can be mitigated by continuously updating
the model as the underlying distribution of the data changes [8] or by trigger mechanisms
based on statistic change detectors [9].

In this thesis, we consider only stationary classifiers in an anomaly detection context.
If the system is varying from its expected operating conditions, we consider it an anomaly,
not a natural process. We leave an investigation of non-stationary classifiers in an anomaly
detection context for future work (see Section 9.2).

4

Krawczyk et al. also make a distinction between chunk-based and online classifiers [7].
Chunk-based techniques build up a set of samples in a fixed-size buffer before evaluating
them as a batch, which might include several iterations over the chunk. This is distinct from
Krawczyk’s definition of an online detector, which processes each data instance separately
at arrival time [7]. This definition is difficult to distinguish in practice: it may be that some
"online" classifiers maintain a buffer of previously seen samples as internal state, even if
they produce a classification for each input. Alternatively, it could be that a chunk-based
technique keeps a fixed-size buffer internally that may be iterated over several times and
produce a classification for each sample in that buffer. As such, we do not distinguish
classifiers by this metric.

Anomaly detection techniques for intrusion detection are broken down by Hoang et
al. into three categories: statistical methods, data-mining methods, and machine learning
methods [10]. They consider statistical methods to be those that measure a statistic about a
system property, such as processor usage, or network packet count, and check that statistic
maintains a distribution observed during normal system behavior. Data-mining methods
extract additional features from underlying metrics. Methods such as outlier detection,
system-call sequence analysis, Bayesian belief networks, and hidden Markov models are
data-mining based methods. Finally, machine learning methods consist of more opaque
designs such as artificial neural networks or random forests.

2.2 Ensemble Learning

Ensemble learning is the process of making a classification decision as a composite of
multiple classifiers [11]. Ensemble learning systems may also be called: ensemble classifiers,
composite classifier systems, classifier fusion, committees of neural networks, voting pool
of classifiers, and various other names.

2.2.1 Diversification

The primary benefit of ensemble classifiers comes from mitigating the weaknesses of the
member classifiers such that the composition improves on the accuracy of any one member.
For such improvement to be possible, the classifiers must be diverse [11]. Specifically:
as no classifier is perfect, the member classifiers must make different errors. This can
be accomplished by training the member classifiers on (possibly disjoint) subsets of the
training data, varying the training parameters of the classifiers, or combining entirely
different classification methods (the approach we take this thesis) [11].

5

There exist a multitude of statistics for quantifying diversity. Polikar describes six of
them in his 2006 paper [11]: correlation, q-statistic, disagreement and double fault measure,
entropy, Kohavi-Wolpert variance, and measure of difficulty.

2.2.2 Diversifying Algorithms

Algorithms for ensemble learning are often structured around inducing diversity in a pop-
ulation of classifiers built with the same algorithm [12, 13, 14, 15]. Here we discuss several
algorithms that induce diversity to construct an ensemble.

Boosting

Schapire proved in 1990 that the existence of a "weak" learner (a learner with some error
α and a lower bound on such error) can constructively be used to build a "strong" learner
(with error at most 3α2 − 2α3) [12]. That is, the error can be made arbitrarily small,
rather than having a fixed bound. He begins training a classifier h1 on some subset of the
training set normally. He then trains a second classifier h2 on a subset of the training set
composed half of samples correctly classified by h1 and half of samples incorrectly classified
by h1. A third classifier h3 is trained on instances where h1 and h2 disagree, and the final
classification is made by majority vote of h1, h2, and h3. This algorithm can be repeated
arbitrarily to boost the accuracy of any given classifier, so long as the classifier can produce
results better than random guessing for all inputs.

AdaBoost

Freund and Schapire improve on boosting with a multiplicative weight update algorithm
called AdaBoost [13]. Beginning with each training sample having equal weight, the chance
that a given sample is drawn into the training set for the next classifier decreases multi-
plicatively for each classifier that has previously correctly classified it. The multiplicative
factor is proportional to the error of the classifier on that iteration. That is, samples that
are "easy" to classify are selected for training less often as later classifiers are trained. The
final classification is produced by tallying the number of times a sample was classified as
a given class across all iterations, and weighting them by the error of the classifier at the
iteration that classification was made.

There exist several variants of this algorithm [11, 16], including versions capable of
boosting accuracy for regression problems.

6

Bagging

Breiman describes a simple ensemble learning algorithm using a procedure called bootstrap
aggregating (shortened to bagging) [14]. Bagging takes the subset approach to diversifica-
tion and requires only one classification algorithm. For a training set T of size n, bagging
begins by drawing k replicate data sets by sampling n samples from T with replacement.
This means that each replicate set is the same size as T , but may contain multiple copies
of some samples, and omit others. Breiman later adds a variant of bagging using smaller
subsets that selects samples that are important, similarly to Schapire [17]. Chawla et al.
show this is superior to random selection [18].

Random Forests

In 2001 Breiman developed the popular Random Forest approach to ensemble classification
[15]. He begins by drawing a training set for each tree using bagging, and then feature
selection and ordering is randomized for each tree. The trees are not pruned. A plurality
vote among the trees determines the final classification. The combination of random test set
selection, random feature selection for each tree, and random ordering of feature decision
within each tree produces significant diversity between trees. Breiman shows that random
forests compare well to AdaBoost on his data sets [15].

Haeusler et al. user random forests along with seven confidence measurement functions
to stereo vision problems [19]. They begin by sampling the training sets using bagging
[14], and then train each tree by greedily selecting a confidence measure and associated
binary decision test with the lowest error according to the chosen measure. Final results
are decided by majority vote (they only have two classes) as described by Breiman [15].

Stacked Generalization

Wolpert suggests a method where the predictions of the ensemble classifiers are used to
create a meta-classifier [20]. Similarly to cross-validation, the component classifiers are
trained on most of the data, omitting a different subset for each classifier. The classifiers
are evaluated on these previously omitted subsets and the resulting predictions, along
with the true labels, act as input to the meta-classifier [11]. Wolpert states that this can
be viewed as a more sophisticated version of cross-validation, and a generalization of a
winner-takes-all ensemble method [20].

7

2.2.3 Combination Techniques

Combination based techniques focus on methods of aggregating the class label results of
the member classifiers, rather than methods varying the classifiers themselves [11]. This
allows them to operate on an ensemble composed of classifiers based on different algorithms,
rather than varying a single algorithm in the case of diversifying techniques.

Voting

Both simple majority and weighted majority voting are reasonably effective under the as-
sumption that each classifiers output is independent and sufficiently accurate [11]. Weighted
majority voting may increase the accuracy of the ensemble if some member classifiers are
more accurate than others. For many ensembles, the assumption that the classifier’s out-
put is independent is either not true (for classifiers trained with bagging or boosting) or
extremely difficult to verify.

Mukkamala et al. employ majority voting in their ensemble based intrusion detection
platform [21]. They use three independent machine learning algorithms which vote on a
class for a sample of network activity.

Mixture of Experts

Similar to stacked generalization, Jacobs et al. suggest training a set of weights that are
then fed to a straightforward combination rule [22, 11]. The primary distinction here is
that the network that learns the weights for the combinator can consider the input training
samples, whereas the meta-classifier in stacked generalization does not know about the
underlying training data.

Logistic Regression

Ho et al. use logistic regression to combine the results of multiple classifiers in an ensemble
[23]. They convert the probabilities of each class output by a member classifier on a sample
into a rank vector. Then for each sample, for each class, the rank of that class in each
detectors rank vector becomes a new sample class prediction vector. These vectors train a
logistic regressor that produces the ensemble classification.

8

Bayesian Combination

Predictions from independent member classifiers may be combined in a Bayesian fashion
as outlined by Buntine [24, 16]. They assign each classifier a weight equal to its accuracy
on a given training set. This is multiplied by the classifiers probability for each class,
and these values are summed across all member classifiers. The highest total likelihood is
the ensemble prediction. More explicitly: for member classifiers Ci, training set T with
samples xj and labels yj ∈ L we let:

Acc(Ci) =
(
P (Ci(xj) = yj|L(xj) = yj)∀xj ∈ T

)
(2.1)

ˆClass(x) = arg max
lk∈L

∑
i

[
Acc(Ci)P (Ci(x) = lk|x)

]
(2.2)

Dempster-Shafer

Dempster-Shafer can also be used for combining classifiers by giving each possible class
y ∈ L a "basic probability assignment" b(y, x) for any sample instance x [16]. From there
a given belief function can be maximized subject to a normalization factor.

Online Approaches

Krayczyk et al. outline the most common structure for online approaches as a voting
ensemble with update replacement [7]. For each chunk of streamed dataDi all the classifiers
in the pool cast a vote on the class of Di and the winner is determined by some voting
system. Then a new classifier Ci is trained on only Di and added to the pool. If the pool
exceeds a maximum size, some classifier is removed from the pool. This may be simply the
oldest classifier, or the poorest classifier according to some performance metric.

Street and Kim’s approach matches Krayczyk et al.’s standard framework, but they
weight the performance of each member classifier according to how close the vote is [25, 7].
On a correct prediction, the performance metric of that classifier is increased in linear
proportion to the difference between the number of votes given to the highest voted class,
and the number of votes given to the second-highest voted class. If the highest voted class
was incorrect, this difference is instead the difference between the highest voted class and
the number of votes for the correct class. If it predicts incorrectly it’s value is decreased
proportionally to the difference between the number of votes for the class it voted for,
and the number of votes for correct class [25]. By this metric, classifiers may have high

9

accuracy classifying simple samples, but their inclusion would not be useful. Classifying the
simple samples correctly is only a necessary characteristic for a plurality of the classifiers; a
classifier must perform on the remaining samples to be a valuable inclusion in the ensemble.
Street and Kim remark that this approach performs comparably to a single classifier for
stationary datasets (as expected). However, in the presence of concept drift, they recover
from the drift dramatically faster than a single classifier [25].

Scholz and Klinkenberg take a similar approach to Street and Kim, but they assign
weights to each training sample and to each classifier [26]. For each batch read, they may
choose to train a new classifier to add to the ensemble depending on the performance of
existing classifiers on a chunk of input. The member classifiers are re-weighted continuously
based on the new data and the weights of the iteration of the classifiers (Scholz and
Klinkenberg compare this to logistic regression [26]).

2.2.4 Deep Learning Based Approaches

Deep leaning based ensemble methods are a mix between varying a single classification
algorithm [27, 28] and combining classification results [29, 30]. They generally employ
neural networks [27, 30] to produce the ensemble classification.

Meta-Classifiers

Qui et al. employ a meta-classifier approach similar to stacked generalization [27]. They
train a set of 20 deep belief networks (essentially deep fully-connected networks) with
varying hyperparameters. The results of those networks are collected into a matrix which
feeds a support vector regressor [31] to produce the predicted values. They compare their
results to a standalone support vector regressor, a smaller three-layer neural network, a
single deep belief network, and an ensemble technique using multiple copies of the three-
layer network. Their ensemble of deep belief networks outperforms the other options across
seven distinct datasets.

Deng and Platt employ a mixture-of-experts style linear and log-linear combination
technique to speech recognition [29]. They consider the posterior probabilities of each class
for each frame of input audio as a set of result vectors from the member classifiers. Each
classifier is assigned a weight matrix, which can be solved for analytically over a training set
for in both the linear and log-linear cases. They construct an ensemble involving a deep
fully-connected network, a convolutional deep network, and a recurrent network. Their

10

results show that log-linear ensembles outperform linear ensembles in the two-member and
three-member ensembles they considered. All ensembles beat any network in isolation.

Yin et al. construct an ensemble of stacked autoencoders to classify human emotions
based on physiological signals [30]. They build a stacked autoencoder by first training a
single autoencoder and then training the next autoencoder with the hidden representation
of the first network. The hidden representation of that layer is used as input for the next
layer and so on. The network ends with a two-neuron output layer that produces the target
emotion ranges. They construct a separate stacked autoencoder for each physiological
feature, which are then grouped two-by-two in a tree structure by fully connected layers.
Finally the output at the end of the tree is fed into a Bayesian model that computes the
final emotional verdict. This is a stacked generalization approach taken to the extreme.
Yin et al. report a 5.26% improvement over the then best existing classifier [30].

Xu et al. use the inbuilt variability of extreme learning machines to build an ensemble
classifier for real-time security assessment of power systems [28]. Extreme learning ma-
chines are similar to traditional feedforward neural networks, except the weights of the
hidden layers are selected randomly, and the biases are computed analytically, rather than
using various gradient descent methods. This causes extreme learning machines to have
significant internal variability over the same dataset and provides the needed diversity to
implement an ensemble. Since Xu et al.’s security classification is binary, the implemented
as a single result value in [−1, 1]. They then split this range into three regions: credibly
secure, incredible, and credibly insecure. From there a vote is taken where the larger count
among the member classifiers of credibly secure or insecure becomes the classification, as
long as the number of incredible classifications does not exceed a threshold. Xu et al.
also consider real-valued security measures (rather than binary classification). Here results
are deemed incredible if they deviate sufficiently from the median value between all the
member predictors.

Bagging Approaches

Yang et al. employ bagging as described by Breiman [14] on an ensemble of stacked
denoising autoencoders [32] to predict oil prices. Denoising autoencoders first corrupt
the input data intentionally and at random, then the corrupted data is fed through an
autoencoder. The hidden representation of the first autoencoder is used as input for the
next denoising autoencoder in the stack. The stack ends with a supervised neural network
taking input from the final autoencoder’s hidden representation. Yang et al. then construct
replica training sets drawn randomly with replacement (as described by Breiman) and train

11

a stacked denoising autoencoder on each set. They take the average predicted price as the
ensemble prediction.

2.3 Collaborative Intrusion Detection Systems

Zhou et al. define a Collaborative Intrusion Detection System (CIDS) as a set of individ-
ual Intrusion Detection Systems (IDSs) that cooperate to detect coordinated attacks [5].
Elshoush and Osman provide a general architecture for this technique in their survey of
collaborative intrusion detection systems [33]. They further refine this concept into Collab-
orative Intelligent Intrusion Detection Systems (CIIDSs), which perform alarm correlation
on the results of the member intrusion detectors.

Elshoush and Osman’s architecture splits a CIIDS into two specific types of subsystem:
detection units, and correlation units [33]. Correlation has a well-defined mathematical
definition from statistics. Thus, to avoid confusion, we refer to Elshoush and Osman’s
correlation units as aggregation units in this thesis. A detection unit is a single IDS that
monitors a subsection of the target system and produces simple alerts. Detection units
are supposed to provide occasional false positives. They can afford to occasionally report
perturbations that may not actually be anomalous rather than avoiding reporting things
that do represent an underlying anomaly. Aggregation units then take the simple alerts
from detection units and use an alarm correlation algorithm to transform them into a
final intrusion verdict on a system scale. Elshoush and Osman also note the existence
of hierarchical CIIDS structures with multiple layers of aggregation units [33], but they
indicate this approach is weakened by intermediate aggregation units abstracting away
data that may be useful in producing a final verdict.

12

Chapter 3

Symptoms of Anomalies

We define anomaly detection for cyber-physical systems (see Section 2.1) as characterizing
data representing the state of a cyber-physical system as normal or anomalous. However,
small deviations from normal behavior are to be expected on occasion and are not repre-
sentative of an anomaly alone. For example, an unusually cold reading from a temperature
sensor may mean a malicious actor has moved the sensor, or that it is just an unusually
cold day. To this end, we construct the idea of an anomaly symptom.

Symptoms represent the realization of a perturbation in an internal, unobserved state
machine. They do not prove an anomaly by their mere presence, but an anomaly may
cause one or more symptoms, hence the disease-symptom analogy. A system may be
behaving anomalously (diseased), but an anomaly detection system can only ever observe
the symptoms of that anomaly.

Therefore, this chapter does not address types of anomalies, but rather the symptoms
of underlying anomalies. The list in this section is not exhaustive but categorizes common
anomaly symptoms. This taxonomy relates to Mitre’s Common Attack Pattern Enumera-
tion and Classification (CAPEC) [34], in that both can be used to classify capabilities and
behaviors. They differ substantially in that CAPEC describes possible attacks, while this
section describes symptoms of those attacks or other, non-malicious events.

These symptom definitions allow those developing anomaly detection systems to give
formal names to perturbations that may indicate an anomaly in the target cyber-physical
system. These identifications can be used to select and implement anomaly detection
algorithms that target those anomalies.

In Section 7 we use these symptoms to identify perturbations that may occur as a
result of cyber attacks we run on a target cyber-physical system. We use a Advanced

13

Driver-Assistance Systems (ADAS) demonstrator [35] to model attacks on a car driving
on a treadmill. We select anomaly detection algorithms for our case study based on the
symptoms identified from the chose cyber attacks.

3.1 Continuous Signal Anomaly Symptoms

For the purposes of anomaly symptoms, we define a continuous signal as a digitally sampled
signal with a constant sample rate, represented here as a time series. This signal is expected
to be the result of readings from a single sensor, not an amalgamation of many sources.
The constant sample rate means that the sample time of each value is known from its index
in the time series.

3.1.1 Spikes and S-waves

We define a spike (Figure 3.1(a)) as a subsequence of contiguous samples that lie farther
than a given number of standard deviations from the current mean of the signal. To
account for signals with means that change over time, we consider the distance to the
mean of a window of samples prior to the subsequence. More formally, given a time series
y, a window size n, and a constant factor c, the subsequence y[p+1,q] is a spike iff

∀yt : p < t ≤ q, |yt − y[p−n,p]| > c · stdev(y[p−n,p]) (3.1)

We define S-waves (Figure 3.1(b)) as spikes with an additional deviation in the opposite
direction immediately following the spike. S-waves can mimic spikes if the counter-spike is
sufficiently dampened.

Example: A flooding attack in the vehicle Controller Area Network (CAN) network
indicating that the collision prevention system issued a command to engage the brakes can
cause a collision [36] and it is an example of a Spike/S-Wave symptom. Such an attack
falls under the category of CAPEC-125: Flooding [34].

3.1.2 Drifting

A drift (Figure 3.1(c)) is a slow movement of the signal mean over a period of time.
We consider only linear drift here; logarithmic and sub-linear drifts are rare, and higher
order drifting encroaches on the definition of level changes or spikes. Mathematically, a

14

continuous signal y is offset by tc, where t is the time index and c is a constant representing
the slope of the drift. Formally, given a time series y, a nominal version of that time series
ŷ, and a slope c, a subsequence y[p,q] has linear drift iff

∀yt : p ≤ t ≤ q, yt = ŷt + tc (3.2)

Example: An infrared combustible sensor, when functioning over the operational tem-
perature limit, may drift or fail [37].

3.1.3 Noise

Noise (Figure 3.1(d)) is a usual part of any signal. Noise is considered a symptom of an
anomaly only when it is more pronounced than is typical. We define noise as a normally
distributed offset around the true value of the signal. Given a time series y, some noisiness
coefficient n and nominal time series ŷ, a subsequence y[p,q] is noisy iff

∀yt : p ≤ t ≤ q, yt = ŷt +N (0, n) (3.3)

Where N (0, n) is a standard normal distribution centered at zero with standard deviation
n.

Example: Compressed air in truck brakes may generate acoustical interference and
cause metallic friction noise from track vehicles in ultrasonic sensors [38].

3.1.4 Clipping

We define clipping as a loss of data at the extrema of a signal range (Figure 3.1(e)), where
a signal is of a higher amplitude than is supported by the sensor or transmission medium.
Thus a clipped signal can be represented by a series of identical samples at the maximum
or minimum extent of the sample medium.

Example: A partially blinding attack on a camera of a vehicle by emitting light can
hide objects [39]. This light can exceed the input range of the camera and would appear
as clipped. This attack is an example of CAPEC-607: Obstruction [34].

3.1.5 Loss

While loss (Figure 3.1(f)) may more typically refer to high noise levels making it difficult to
decode a signal, here we use loss to indicate a complete loss of a signal. Although trivially an

15

anomaly, a total loss of signal may be a symptom of temporary network disruption without
any more dangerous cause. We represent a total loss of signal as a sudden transition to a
fixed sample value. This can be observed as a special case of clipping, where the extrema
of the signal are identical for a short time.

Example: An attack sending a large volume of request messages over the J1939 pro-
tocol increases the computational load of the recipient ECU until it is not able to perform
regular activities like transmitting periodic messages [40]. Such an attack is an example of
CAPEC-125: Flooding [34].

3.1.6 Smoothing

We define smoothing to be a reduction in the short term variance of a signal compared
to recent history. Smoothing (Figure 3.1(g)) is the rarest of the symptoms presented
here, with few natural causes. Given a constant k representing how far back the recent
historical signal variance should be considered, and the factor threshold τ at which the
signal is considered smoothed, we say a subsequence of n samples y[t,t+n] is smoothed iff

var(y[t,t+n]) < var(y[t−(nk)−1,t−1])τ (3.4)

Example: In an attack of a control system, the attacker may observe and record sensor
readings and then continuously repeat the recorded values during the attack [41]. This is
an example where the sensor values are smoothed. Such an attack falls under the category
of CAPEC-148: Content Spoofing [34].

3.1.7 Amplification

Amplification (Figure 3.1(h)) is a simple gain on the target signal. For amplification of
an original signal we multiply every sample by some factor. Given the magnitude of the
amplification α, and an unamplified time series ŷ, a sample yt is amplified iff

yt = αŷt (3.5)

Example: Analog to Digital Converters (ADCs) can be attacked by amplifying analog
signals past the dynamic range of the device. These attacks can obscure other malicious
behavior and damage hardware [42]. This type of attack is an example of CAPEC-153:
Input Data Manipulation [34].

16

3.1.8 Level Change

A level change (Figure 3.1(i)) symptom is observed when the mean of a signal changes
in a short period and then remains consistent at the new level. Slower changes may fall
under drifting. Given a time series y, an acceptable minimum level change threshold `, a
minimum number of samples the mean change must persist n, a level change has occurred
over a window of w samples y[t,t+w−1] iff

|y[t+w,t+w+n] − y[t−n−1,t−1]| > ` (3.6)

Example: An attack that increases the amount of code execution will increase the
power consumption of the system, which can be observed as a level change [43]. Such
an attack could be an example of CAPEC-175: Code Inclusion, or CAPEC-242: Code
Injection [34].

3.1.9 Frequency Change

A frequency change (Figure 3.1(j)) occurs when the primary frequency of a signal changes
over a short period. We say a frequency change occurs if the primary frequency in a
sliding window moves more than some threshold over some time window. Given a time
series y, a function P which extracts the frequency of the highest peak from a Discrete
Fourier Transform (DFT) (denoted F), a threshold τ , and a minimum number of samples
the frequency change must persist n, a subsequence of w samples y[t,t+w−1] experiences
frequency change iff

|P (F(y[t+w,t+w+n]))− P (F(y[t−n−1,t−1]))| > τ (3.7)

It may be useful to consider more frequencies, but we restrict our definition to only consider
the primary frequency for simplicity.

Example: An attack inserting flash of light into the vehicle camera may change the
frequency in which the control reacts to new environmental conditions [39]. This attack is
an example of CAPEC-607: Obstruction [34].

3.1.10 Echo/Reflection

We consider an echo (Figure 3.1(k)) to be a duplication of a previous series of samples
on top of the underlying signal at a later position. A reflection is identical to an echo,

17

excepting that the repeated signal is inverted. Given a time series y, an echo length e, an
echo coefficient (the factor at which the echo is played back) q, and the nominal form of
the time series ŷ, we consider the subsequence y[t,t+e] as the origin of the echo, we say that
the subsequence y[t′,t′+e] has echo iff

y[t′,t′+e] = ŷ[t′,t′+e] + y[t,t+e] × q (3.8)

Example: According to Petit et al, a relay attack on the original signal sent from the
vehicle LiDAR creates fake echoes and can make real objects appear closer or further than
their actual location, thus affecting the mission planning [39]. This attack is an example
of CAPEC-586: Object Injection [34].

0 50 100 150 200
Time

1

0

1

2

3

4

S
ig

n
a
l
V

a
lu

e

0 50 100 150 200
Time

6

4

2

0

2

4

6

S
ig

n
a
l
V

a
lu

e

0 50 100 150 200
Time

1.0

0.5

0.0

0.5

1.0

1.5

S
ig

n
a
l
V

a
lu

e

0 50 100 150 200
Time

1.5

1.0

0.5

0.0

0.5

1.0

1.5

S
ig

n
a
l
V

a
lu

e

(a) Spike (b) S-Wave (c) Drifting (d) Noise

0 50 100 150 200
Time

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

S
ig

n
a
l
V

a
lu

e

50 0 50 100 150 200 250
Time

1.5

1.0

0.5

0.0

0.5

1.0

1.5

S
ig

n
a
l
V

a
lu

e

0 50 100 150 200
Time

1.0

0.5

0.0

0.5

1.0

S
ig

n
a
l
V

a
lu

e

0 50 100 150 200
Time

3

2

1

0

1

2

3

S
ig

n
a
l
V

a
lu

e

(e) Clipping (f) Loss (g) Smoothing (h) Amplification

0 50 100 150 200
Time

1.0

0.5

0.0

0.5

1.0

1.5

2.0

S
ig

n
a
l
V

a
lu

e

0 50 100 150 200
Time

1.5

1.0

0.5

0.0

0.5

1.0

S
ig

n
a
l
V

a
lu

e

0 50 100 150 200
Time

1.0

0.5

0.0

0.5

1.0

S
ig

n
a
l
V

a
lu

e

Signal Value

Symptom Period

(i) Level change (j) Frequency change (k) Echo/Reflection

Figure 3.1: Time Series Anomaly Symptoms

18

3.2 Event Series Anomaly Symptoms

We define event series as a sequence of discrete samples with no defined frequency. The
time between events is neither bounded nor known in advance. While a single sample
from a time series carries only a single real value, an event (sample) in an event series
may carry more complex, hierarchical information. We define a single event as a tuple
(µ, t, ·), where µ is the topic the event occurs on (also called the source, or the channel), t
is the timestamp of the event, and · is whatever information the event carries. An event
represents the advancement of the execution by a single transition of a finite automaton.

3.2.1 Event Frequency Change

While we define events to have no fixed sampling frequency, they may still exhibit periodic
or semi-periodic behaviour. This means for some event series, we can expect a reasonably
consistent inter-arrival time (or frequency). When this frequency changes suddenly or
unexpectedly, it can be a symptom of an anomaly. It is especially likely to be an anomaly
symptom when such a change is observed in multiple traces simultaneously.

We define the inter-arrival time of an event as the difference in clock times of successive
events in the same topic (also as the inverse of the event frequency). Specifically, given a
trace T , a topic µ, and a non-empty interval defined by the end points t1, t2 : t1 < t2, the
inter-arrival time is defined as interArrival(µ, (t1, t2)) , ((max t : (µ, t, ·) ∈ S) − (min t :
(µ, t, ·) ∈ S))/(|S| − 1) where S = {(µ, t, ·) ∈ T : t1 ≤ t ≤ t2}.

Event frequency measures how often events occur for some time span. Given a trace
T , an event name µ, and a non-empty interval defined by the end points t1, t2 : t1 < t2,
the event frequency of µ is given as eventFreq(µ, (t1, t2)) , 1/interArrival(µ, (t1, t2)).

A rapid change in event frequency can be found by taking the difference between suc-
cessive time intervals in the trace. If the difference exceeds some threshold, then the
change in event frequency may indicate an anomaly. Given a trace T , an event name
µ, a window size w, and a threshold ε, an event frequency change may be defined as
∃t1, t2, t3 : eventFreq(µ, (t1, t2))− eventFreq(µ, (t2, t3)) > ε.

Example: Lin and Siewiorek introduced their Dispersion Frame Technique (DFT) to
predict hardware failures [44]. From analyzing the logs of file servers, they observed that
there exists a period of an increasing rate of intermittent errors before most hardware
failures.

19

3.2.2 Unexpected Event

In general, traces contain only a limited vocabulary of event names. While the actual
events are made unique by their clock times, the event names are repeated across many
events. An event with a never-before-seen name in a trace may be an anomaly symptom.

To remove the problem of the first few events in any given traces counting as anomalous
merely by being the first instance of a normal event, we state the definition in terms of the
probability of an event occurring. Given a trace T and a threshold ε, an unexpected event
may be defined as an event e : P(e ∈ T) < ε.

Example: Bellovin reported receiving broadcast packets meant for local networks,
requests to unused ports, and requests to unoccupied addresses over the public Internet at
AT&T in his classic whitepaper [45]. These types of requests are examples of CAPEC-169:
Footprinting [34].

3.2.3 Periods of Silence

A period of silence is a segment of time within a trace which is entirely or nearly devoid
of events. Events generally have differing frequencies during normal system operation, but
nominal system behavior usually results in at least some events appearing in any given
period of time. Thus a period in the trace without events may be an anomaly symptom.

The time threshold for when an interval is considered a period of silence will vary
between systems. Accounting for these differences, we define a minimum length of the
interval that is system dependent. Now we can define a period of silence given a trace T ,
a number of events n, and a minimum length ` > 0. A period of silence is an interval with
end points t1, t2 : t2 − t1 ≥ ` and |{(·, t, ·) ∈ T : t1 ≤ t ≤ t2}| < n.

Example: Haque et al. found that Markov Chain models performed well at detecting
missing message anomalies in High Performance Computing (HPC) logs [46].

3.2.4 Sampled Value Anomaly Symptom

When a trace is composed of events, it may still exhibit anomalies that are found in
continuous data streams as defined in Section 3.1. However, as events do not have a defined
sampling rate from which to derive a corresponding continuous data stream, we must
apply a more clever transformation. There are several well known methods for extracting

20

a continuous data stream from irregularly spaced events the Wiley/Marvasti method [47],
the Voronoi method [48], and the Adaptive Weights Method [49].

Example: Wang and Stolfo found that PAYL payload based intrusion detector was
able to achieve nearly 100% accuracy in some instances by comparing the byte frequency
patterns of network payloads to the same host and port [50]. This is an example of Sampled
Value Frequency Change.

21

Chapter 4

Anomaly Detectors

Anomaly detectors are algorithms that consider the data from a single system metric and
consider if that metric is anomalous in isolation. We introduce detectors here to set up
the discussion of anomaly aggregators in Section 5. Anomaly aggregators are constructed
from the results of multiple anomaly detectors, so we describe anomaly detectors first.

A single metric from a cyber-physical system performing anomalously may not warrant
a system-wide anomaly, so an anomaly detector alone is free to produce false positives if
necessary. Anomaly detectors consume one or more streams of data (that may have been
pre-processed) and produce a new stream: the expected probability of an anomaly. In this
section, we discuss the different types of anomaly detectors and review existing example
detectors of each type. We do not define any new anomaly detectors.

To clarify the discussion of anomaly detection algorithms, we use the following notation.
An anomaly detector is a function

f(D) 7→ P (anomaly) ∈ [0, 1]

were P (anomaly) is the detector’s best guess of the probability there is an anomaly within
D, a set of contiguous samples from a source data stream. A data stream is either a time
series or an event series (see Section 3), represented as an arbitrarily long vector of samples,
each with an associated time they were observed. That is, for a given window (sub-vector)
in the source data stream the anomaly detector produces a probability P (anomaly) ∈
[0, 1] that it believes its source data stream to be anomalous within that window. It
is expected that P (anomaly) is zero for the vast majority of windows examined by the
detector. Therefore, detectors may choose not to produce any output for a window, which
will be formally interpreted as producing P (anomaly) = 0.

22

We divide anomaly detectors into three broad groups: watermark detectors, statistic-
based detectors, and machine learning detectors. These map to Hoang et al.’s three cate-
gorizations [10] excepting that we refer to Hoang et al.’s statistical detectors as watermark
detectors, and Hoang et al.’s data-mining based detectors as statistical detectors. Water-
mark detectors are also sometimes called tripwire detectors [51]. Anomaly detectors vary
as a trade-off between false negative rate, false positive rate, and explainability.

Explainability is the measure of how easy it is to determine why a classifier made a
decision. It is valuable for system verification, legislative compliance, and human learning
[52]. In an anomaly detection context, explainability is valuable for aggregation, in that it
makes it easier to justify reporting an anomaly, and post-mortem analysis.

Watermark detectors (also called tripwire detectors) check that a single property main-
tains a known value or range of values. These properties range from the source address of
a network packet, to the hash of an executable file, or the current consumption of a motor.
Watermark detectors are often trivial to implement and have a low false positive rate.
Although watermark detectors are usually limited to detecting the simplest of anomalies,
occasionally they will detect more complex anomalies. Watermark detectors have high
explainability; when they detect an anomaly, it is often intuitive why it occurred. For
example there was a network packet from an unexpected network source, the executable
file did not have the expected contents, or the motor was consuming more power than
normal.

Statistic-based detectors evaluate a well-defined statistic over an input window and
report an anomaly if the statistic exceeds a given threshold. This statistic may be checking
the variance of a window in the source data stream, its slope over an extended period of
time, or the time between network packets. Some statistic-based detectors will maintain
some additional state to adjust P (anomaly) depending on the state of previous windows.
They have moderate to high explainability. When an anomaly occurs, there is a reasonable
explanation of why it occurred. Examples include: the variance of the water flow rate was
too high, or network packets are arriving with increasingly larger latencies.

Machine learning detectors can be categorized further into library-based and regression-
based detectors. Library-based machine learning detectors maintain a collection of patterns
that match normal behavior. Motif detectors [53, 54] are an example of library-based
methods. Regression-based detectors attempt to predict or reconstruct a sample given the
system is operating normally, and then compare their prediction to the true sample value.
Other machine learning detectors may attempt to predict P (anomaly) directly. Machine
learning detectors require significant training. They are typically based on artificial neural
networks, and therefore have low explainability. A common approach is to generate an

23

intermediate transformation as the output of the machine learning algorithm, and have a
more straightforward statistic produce P (anomaly) from the result of that transform. This
can increase the explainability of a machine learning detector. Other improvements are
being made in the area of explainable deep learning, with several new techniques showing
promise [55].

Different detection algorithms place varying demands on the size of input windows they
handle. A simple feed-forward neural network will have a fixed size input vector, and even
a recurrent neural network must select a size of input vector, even if it will advance it
across samples in a continuous signal. Varying this window size will affect the results of a
machine learning detector. Statistic detectors must also make a careful choice of window
size. In the spike detector outlined below (see Section 4.2) we measure a spike based on the
standard deviation of the signal within the current window. In all these cases the selection
of window size effects the result of the detector; some choices of window size will be better
than others for different detectors.

As a consequence of different detectors performing better at different window sizes, a
single window cannot be attributed as the source of an anomaly detected by multiple de-
tectors running on the same data stream. For more complex anomalies, and for symptoms
on event series anomalies such as frequency change (Section 3.2.1) there may not be a fixed
time at which the anomaly occurs, but any detectors that report such an anomaly must
still select a window (or multiple windows) to report P (anomaly) > 0. These factors com-
bined mean that the times at which multiple anomaly detectors report symptoms of the
same anomaly cannot be relied on to match the time of the underlying anomaly. This adds
uncertainty to the times of anomalies reported to the aggregator. For more information
on the consequences of anomaly timing uncertainty see Section 5.

4.1 Watermark Detector Example: Hash Detector

A hash detector is a watermark detector for monitoring the content of files or network
packets. Tripwire is a popular hash detector used for monitoring file systems [51]. When
checking network packets, hash detectors detect unexpected event anomalies (see Section
3.2.2). A hash detector is aimed at finding simple intrusion cases where the attacker
replaces system components with their own programs or naively attempts to alter network
packets with a fixed payload, such as a system status report.

To train a hash detector for some expected input string f , the hash detector computes
SHA-512(f) [56] and stores it, along with the information that identifies what string f ′

24

should match f . For files, this is typically the location of the file on the target filesystem,
along with remote connection information if necessary. For network packets, this is usually
the sender, receiver, and application-specific identifier of the packet expected to have fixed
content.

In operation on a file, a hash detector polls the content of that file at some determined
interval. The interval should be selected such that the detector does not overwhelm the file
system with continuous reads. If filesystem change notifications (such as inotify [57]) are
available on the target system, a hash detector may subscribe to them rather than polling.
When working on a network packet, the hash detector waits for a packet matching the
expected sender, receiver, and identifier.

Upon receipt of the contents of a file, or a network packet f ′, the hash detectors
computes SHA-512(f ′) and compares it to SHA-512(f). If they are not equal, the hash
detector reports an anomaly with P (anomaly) = 1.

Like most watermark detectors, a hash detector is not complicated. It checks for the
most straightforward attacks only, and exchanges simplicity for accuracy. If the file or
packet is not what was expected: there is an anomaly.

4.2 Statistic Detector Example: Spike Detector

A spike detector detects spikes according to the formula in Equation 3.1: given a time
series y, a window size n, and a constant factor c, the subsequence y[p+1,q] is a spike iff

∀yt : p < t ≤ q, |yt − y[p−n,p]| > c · stdev(y[p−n,p]) (3.1)

Here the window size selected for the spike detector is n+ q−p, a subsequence of the trace
that includes a window for computing the standard deviation and then a second window
the spike. The parameters of the spike detector are then the choice of n, c, and q− p. See
Figure 4.1 for an example of a spike detector applied to the throttle control of a model car
(see Section 7 for details).

Fortunately we can choose q − p = 1. We do this by observing that for sufficiently
large n the impact of any one sample ŷt ∈ y[p−n,p] on y[p−n,p] and stdev(y[p−n,p]) is small
(because sample mean and standard deviation have a sample count in their denominators).
Consider a sample that is an early part of a multi-sample spike. If that sample spills over
into the region of the window that is used to compute y[p−n,p] and stdev(y[p−n,p]), it will
have a negligible effect on those measures. Any spike that is small enough that choosing

25

q− p = 1 would not detect it for sufficiently small c is not a spike as defined by the choice
of c. Choosing a smaller c will yield spikes as small as desired.

This leaves the choice of c and n, which can be determined during training. Training
c is a matter of choosing an acceptable probability that a sample will be a spike based
on the sample rate and the observed distribution of the data. A non-zero spike count on
the training data is acceptable, as the aggregator makes the final verdict on if an anomaly
is reported (see Section 5). Selecting c is more of a selection of spike frequency than a
selection of a final anomaly threshold. A larger c will cause only the larger spikes to be
detected, a smaller c will detect all the spikes a larger c would detect and more. Once c is
determined, the choice of n is merely a case of trading memory for volatility. A larger n
will require storing a larger buffer y[p−n,p], but will yield a more stable mean and standard
deviation (as a larger sample size will yield a better approximation of the population mean
and standard deviation).

4.3 Machine Learning Detector Example: Autoencoder

An autoencoder is a form of unsupervised representation machine learning [58]. The ob-
jective of an autoencoder is to learn to represent the input in a smaller feature space. In
the case of deep learning autoencoders, this space is arbitrary and develops as a product
of training the artificial neural network. There is no human-understandable mapping back
from the features of this space back to real features. Autoencoders can also be viewed as
a dimensionality reduction technique.

An autoencoder is composed of an encoder function e(X) 7→ R and a decoder function
d(R) 7→ X [58] where R is the lower-dimension "encoded" representation of the input. The
encoder is tasked with learning the mapping from the input to the encoded representation,
and the decoder with converting the encoded representation back to the associated input.
Together the encoder and decoder are combined into a single neural network d(e(X)) 7→ X
which can then be conveniently trained on its own input. That is, the learning process
minimizes the error between the original input and the reproduced input from the result
of the network.

While the encoded representation has many uses, in anomaly detection we are only
interested in the combined network d(e(X)) 7→ X, and specifically in the reconstruction
error of that network. We train the autoencoder to learn how to encode, and then decode,
only on normal data. When the autoencoder encounters anomalous data, it will have
difficulty reconstructing it because it was not trained on similar samples, and will yield a
large reconstruction error.

26

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (seconds)

6

8

10

12

14

16

18

T
h
ro

tt
le

 V
a
lu

e
 (

%
)

Command Injection Spikes in Car Throttle

Anomalous Data
Normal Data

Figure 4.1: Spike Detector Example - Highlighted Regions are Spikes

27

e(X)
{

R

X X

d(R)

{
Figure 4.2: Autoencoder Neural Network Layout

Autoencoders for anomaly detection have been well explored in the last year. Chen
et al. constructed an ensemble of autoencoders for anomaly detection using randomized
connection dropping achieve diversity [59]. Xu et al. use autoencoders to detect anomalies
in statistics from web applications [60], and Baur et al. use autoencoders for segment
anomalies in brain magnetic resonance images [61].

Out implementation of autoencoders is similar to Chen et al.’s RandNet [59] excepting
that we do not randomly disconnect some of the connections, as we are not constructing
an ensemble of varying autoencoders specifically. In our structure (see Figure 4.2) each
autoencoder begins with a fully connected layer that takes the input and reduces it to
a vector of size 20. Another layer reduces that vector to another vector of size 10, and
a final encoding layer takes it to the encoded representation R which is a vector of size
5. The process is then reversed for the decoder: a fully connected layer takes the hidden
representation and expands it to a vector of size 10, and another layer to a vector of size
20, and then a final layer back to the same dimension as the input.

28

Chapter 5

Anomaly Aggregators

The job of an anomaly aggregator is to collect the anomaly probabilities output from
anomaly detector nodes in the system and produce a final decision: should an anomaly be
reported to the system operator. We will consider aggregators as a part of the Palisade
software subsystem (see Chapter 6) and evaluate some existing ensemble learning methods
as aggregators in a case study (see Chapters 7, and 8). In this section, we expand on the
definition of the anomaly aggregation problem outline in Chapter 1 and provide a formal
mathematical definition, followed by five example aggregators.

We consider the result of an aggregator as a fundamentally a binary decision; we do
not consider reporting different levels of anomalousness. This was an intentional design
choice: if the system is in an anomalous state, it is the operator’s responsibility to engage
relevant safeguards. We do not want to add the additional overhead of determining if
the anomaly is severe enough to warrant said safeguards. Alarm fatigue occurs where
the system operator grows desensitized to alarms due to an abundance of false alerts [62].
This can cause the operator to disregard alerts that indicate a true system-wide anomaly.
Aggregation algorithms must be designed so that if the system reports an anomaly, the
anomaly will be taken seriously. We leave a discussion of how much information to show
the system operator for future work.

Anomaly aggregators can be viewed as a learning ensemble where the member classifiers
are the anomaly detector nodes (see Section 4). However, here we come to a break from
existing literature on ensemble learning (see Section 2); we have a heterogeneous collection
of member classifiers working on different inputs and may report the same underlying
anomaly at different times (as discussed in Section 4). The collection is heterogeneous
because different algorithms will perform differently on different data streams from within

29

a cyber physical system (see Section 4). This heterogeneity and the addition of a time
domain adds interesting constraints to the selection of aggregation algorithms.

To clarify the discussion of anomaly aggregation algorithms, we use the following no-
tation. An anomaly aggregation algorithm is a function

f(V) 7→ {Normal,Anomalous} (5.1)

where V is a matrix of sets where set Vij contains the results of anomaly detection algorithm
i (of n total algorithms) running on input channel j (of m total channels). Each element
(p, t) ∈ Vij is a tuple where p is the probability P (anomaly) reported by the detector for
this set at time t. The result of f is a single value: either the input probabilities represent an
anomaly, or they are normal behaviour. When in use in an online (see Chapter 4) anomaly
detection environment f is reevaluated every time some anomaly detector produces a new
tuple (p, t).

Some ensemble learning methods from the literature (such as majority voting, weighted
voting, and logistic regression, see Section 2.2.3) do not explicitly include a time domain,
so we apply a time quantization approach to enable these instance-based methods. Let t′
be the time component of the last anomaly probability report tuple (p, t) in any Vij. Let
tnow be the present system time. For some time quantum q (which is typically selected as
some fraction of a second) create a new matrix Vq with dimensions n×m×d(tnow− t′)/qe.
Each entry Vqijk in this matrix is the the probability entry p from a tuple (p, t) in Vij where
tnow − qk ≥ t > tnow − qk − q. This makes the submatrix at k = 0 (called Vqij0) the most
recent quanta within Vq. If there is more than one such tuple, it is the average of all p
from tuples satisfying the condition. If there are no such tuples, Vqijk is zero (in Section 4
we discuss that no output is assumed to be P (anomaly) = 0). See Figure 5.1 for a visual
example of this quantization.

If an anomaly detector reports multiple anomalies within a single quanta, we select
the average probability between all such reports. Vqijk represents the results of a single
anomaly detector i working on channel j during time quanta k. We are treating the
anomaly detectors contributing to the aggregators as black-box functions matching the
definition of an anomaly detector as defined in Chapter 4. If there are more than one
report from such a detector within a quanta, the aggregator has no additional information
to choose between those reports. It cannot tell if the first report was more representative of
the cyber-physical system state than the second, or if the second was more representative
than the first (and so on for more than two reports). An average is a straightforward
method of balancing these possibilities when no other information is available. Future
work may wish to consider different combination methods, such as selecting the first or
last value in the quanta.

30

We limit the size of Vq (and V) by selecting a maximum number of quanta r to maintain
history for. After r quanta have elapsed, we drop the oldest quanta from the end of Vq,
keeping the matrix a constant size. By limiting the number of quanta kept in Vq we fix
the space complexity of Vq at O

(
nmr

)
.

We must also decide when to reevaluate f(Vq). There are two choices: reevaluate
f(Vq) as soon as some detector reports a new tuple (p, t) or wait one quantum q between
evaluations regardless of how many new tuples (p, t) arrive during that time. While the
first approach covers all the possible version of Vq during a quantum (as each new tuple
may update tnow and cause a full reconstruction of Vq), the second approach is the one
we adopt for this experiment. The second approach is made more straightforward than
the first approach by the ability to append a new two-dimensional matrix onto Vq for that
quantum without having to reconstruct all the other two-dimensional matrices for all past
quanta (as tnow has changed by exactly q).

Maintaining Vq only costs O
(
nm
)
per quanta elapsed, and constant time per anomaly

reported by any anomaly detector. Updating an average in one cell of Vq takes constant
time (so long as the number of entries in each cell is maintained, which adds only constant
space complexity). Updating Vq for a new time quanta takes O

(
nm
)
time, as the submatrix

at k = r used for the oldest quanta can be filled with zeros and reused as the newest quanta
if Vq is stored as a linked-list of quanta (which adds only a size r overhead for linked-list
pointers, not enough to change the space complexity of Vq). We can store Vq as a linked
list of quanta because we wait one quanta every time we reevaluate f(Vq) (see above).

5.1 Simple Majority Vote Aggregator

We begin with a majority vote aggregator as described by Polikar [11]. The majority vote
aggregator uses Vq as described above. It considers only one two-dimensional sub-matrix of
Vq, specifically the sub-matrix where k = 0, which will be the results from detectors in the
most recent quanta. For each element, we consider it a vote for an anomaly if Vqij0 ≥ 0.5
and a vote against an anomaly otherwise. We construct the total anomaly vote X as:

X =
∑
ij∈Vq

{
1 if Vqij0 ≥ 0.5

−1 otherwise
(5.2)

For some threshold T , if X > T then we report (that is, f(Vq) produces) Anomalous,
otherwise we report Normal. Training the simple majority vote aggregator is a matter of

31

Detectors

C
h
a
n
n
e
ls

P
ro
b
a
b
ili
ti
e
s

Detectors

C
h
a
n
n
e
ls

Tim
e

Probabilities

Quantization

Figure 5.1: Quantization of Aggregator Input in Time Domain

voting on each instance of the training set and selecting T to be the threshold at which no
non-anomalous instances are classified as anomalous (the zero-false-positive threshold).

The simple majority vote aggregator is not intended to be accurate (see the results in
Section 8), but instead to provide a baseline against which to judge the other aggrega-
tion algorithms. Any more sophisticated algorithm should perform better than a simple
majority vote that considers no history.

5.2 Weighted Majority Vote Aggregator

The weighted majority vote aggregator works similarly to the simple majority vote aggre-
gator except that a detector’s vote is weighted by its accuracy across all channels. This is
based on Polikar’s description of weighted majority voting [11] were we select the weights
to be the accuracy of the detectors on the training set. We use the standard statistical
definition of accuracy for an anomaly detector Di:

Acc(Di) =
true positives + true negatives

true positives + true negatives + false positives + false negatives
(5.3)

32

We again use only the most recent sub-matrix of Vq where k = 0, and a vote for an anomaly
is counted if Vqij0 ≥ 0.5, otherwise a vote against and anomaly is counted. We can then
construct the total anomaly vote X as:

X =
∑
j∈Vq

∑
Di

{
Acc(Di) if Vqij0 ≥ 0.5

−Acc(Di) otherwise
(5.4)

Again like the simple majority vote aggregator, we consider some threshold T . IfX > T
then we report Anomalous, otherwise we report Normal. To train the weighted majority
vote detector, we compute X on each instance of the training set and select T to be the
zero-false-positive threshold.

5.3 Logistic Regression Aggregator

Ho et. al. suggest a method of combining decisions from multiple classifiers using logistic
regression [23]. We implement their technique here for a binary classification of the sub-
matrix of Vq where k = 0 (as used in the voting schemes above). Ho et al. define Yc as 1
if the c is the correct predicted class for the ensemble on sample Y , and Yc = 0 if it is not.
From here the let P (Yc = 1|Xc) = π(Xc) where Xc is the vector of ranks given to class c
by the member classifies. If a classifier i ranks class c as the most likely class for a sample,
it will have the highest rank value. In binary classification this means Xci = 1 if classifier
i believes c is the correct class, and Xci = 0 otherwise. Now we can define π(Xc). Ho et
al. let the probability that the ensemble will predict the correct class given the outputs of
the member classifiers (here as Vqij0 to match our notation) be:

π(Vqij0) =
exp

(
α + βVqij0

)
1 + exp

(
α + βVqij0

) (5.5)

where α is a scalar and β is a weight vector (see below) that can be determined by logistic
regression. For binary classification, the values of α and β are determined for only one of
the classes (in this case Anomalous). If the resulting probability P (anomaly) > 0.5 then
we predict Anomalous ; otherwise we predict Normal.

The logistic regression aggregator is trained by splitting out each two-dimensional sub-
matrix varying on k from Vq in the training set, then flattening this matrix into a vector
(so that when multiplied by β it produces a scalar). The values Vqijk are bucketed into
two buckets: if Vqijk > 0.5 it is bucketed to 1, otherwise it is bucketed to zero. All the

33

flattened sub-matrices (now vectors) so bucketed are fed as input to a logistic regressor (in
this case LIBLINEAR [63]). The resulting α and β are used during testing to produce the
probability of the ensemble predicting an anomaly. For some user selected threshold T if
the result of the logistic regression π(Vqij0) > T then we report Anomalous; otherwise, we
report Normal. As in voting, T is selected to be the zero-false-positive threshold.

5.4 Probability Sum Aggregator

In Section 4 we conclude that anomaly detectors may report anomalies at a different
time than the anomaly actually occurred. However, detectors do report the probability
P (anomaly) that they believe an anomaly has occurred at the time they report it. Here
we must make an assumption: the time-domain error of a reported anomaly is normally
distributed around the time the underlying anomaly occurred.

There are two primary arguments against the normal distribution of time-domain errors:
you cannot detect an anomaly before it occurs so the distribution of the time domain error
cannot be symmetric, and anomalies are not instantaneous events, and so there is no fixed
point against which to measure the time-domain error.

The first argument is correct in that anomalies cannot be detected before they occur.
However, due to windowing, a detector may report an anomaly on a window with an
underlying anomaly near its end. Some detectors may not be able to ascertain where in
the considered window the anomaly occurred, and many detectors will default to the time
of the beginning or the middle of the window. This leaves a significant gap between when
the anomaly is reported and when it occurs and provides a reasonable basis for selecting a
symmetric anomaly time-domain error distribution.

The second argument also has merit; anomalies are not instantaneous events. However,
if the underlying anomaly has a start and end time, some detectors will not be able to
ascertain when the anomaly started or ended. Consider a watermark detector working on
a slowly leaking tank: the leak (underlying anomaly) started long before the water fell
below the threshold checked by the detector. A detector looking at the tank pressure may
have detected the leak earlier, and one looking at the tank temperature may detect it
later. Since the anomaly aggregator does not know underlying physical properties of the
anomaly, assuming the time within the anomaly when the report occurs to be normal is a
fair assumption.

If we assume the time domain error is normally distributed, then we can sum the
probabilities from different detectors as if they were probabilities for the same event: that

34

there is a true anomaly to report. The probability sum aggregator considers all tuples
(p, t) in V equally, regardless of the source detector. To determine if there is an anomaly
at time tnow, for some sensitivity factor σ the probability sum aggregator evaluates:

S =
∑
ijk∈V

[Vijk[p]
σ
√

2π
e−(tnow−Vijk[t])

2
/2σ2]

(5.6)

and reports an anomaly if S is greater than or equal to some threshold T selected dur-
ing training. This is just a sum of the normal probability density function for reported
anomaly probability tuple, shortened vertically depending on the probability reported by
the source detector (the factor Vijk[p] in the numerator). The sensitivity factor σ is the
standard deviation of the normal distribution that we assume the error in the anomaly
time prediction to take. This is a hyperparameter to be selected before training.

The probability sum aggregator is trained by evaluating it on the training data and
observing the maximum value of S over the normal training set and the minimum value of
T over the anomalous training set. T can then be selected depending on the desired level
of sensitivity as opposed to the number of false positives. Since it is desirable to have as
few false positive as possible, selecting T to be equal to the lowest value of S for which a
true anomaly occurs in the training set is a reasonable choice. If training only on normal
data, select S to be slightly larger than the largest value of S for which no true anomaly
is present in the training set (the zero-false-positive threshold).

5.5 Stacked Generalization

Wolpert describes stacked generalization as an approach for ensemble learning where a
higher-level classifier is trained on the outputs of the member classifiers [20] (see Section
2.2.2). Here we implement stacked generalization without cross-validation on the inputs
to the member classifiers. The primary benefit of this cross-validation is the ability to use
the majority fraction (in the case of 10-fold cross-validation, this fraction is 9

10
) to train

each of the member classifiers, and the entirety of the training set to train the higher-
level classifier. Our implementation of stacked generalization assumes that the member
classifiers have already been trained on a different dataset, and thus the cross-validation is
unnecessary as we can already use the entire training set on the higher-level classifier.

We implement the higher-level classifier as a fully connected feed-forward neural net-
work (see Figure 5.2). Neural networks are well explored for anomaly detection [64, 65,
66, 67] and are considered viable, so it is fitting to examine them here in our comparison

35

Tim
e

n x m

Detectors (n)

Detectors (n) Detectors (n) Detectors (n)

C
h
a
n

n
e
ls

 (
m

)

C
h
a
n

n
e
ls

 (
m

)

C
h
a
n

n
e
ls

 (
m

)

Figure 5.2: Stacked Generalization Neural Network Layout

of aggregators. The network takes the most recent r quanta from Vq to add additional
historical context to the classifications of the algorithm. While Wolpert’s method did not
consider classifications of member classifiers that vary in the time domain [20], we feel it
is a reasonable augmentation to the approach.

The network consists of three fully connected layers that reduce the input from the
sub-matrix of Vq with shape n×m× r (recall r is the number of quanta kept in Vq) down
to a single output. The first layer increases the size of the hidden representation to the
shape n × m × nm (because in general nm >> r, and Sietsma and Dow conclude that
small first hidden layers produce poor generalization performance [68]). Then we reduce
the shape to n×m×n and then down to 1. The output layer uses sigmoid activation [69],
and all the other layers use rectified linear activation.

Our stacked generalization method is trained on the training set using a traditional
backpropagation approach. Once the network is trained we select a threshold T to be
the zero-false-positive threshold of the aggregator as run on the training set. We report
Anomalous in testing if the output of the final layer of the neural network is larger than
T ; otherwise, we produce Normal. See Chapter 8 for the results of this implementation of
neural network stacked generalization.

36

Chapter 6

Palisade: Anomaly Detection for
Cyber-Physical Systems

Palisade is a complex event processing framework built for anomaly detection in cyber-
physical systems. It is divided into software and hardware subsystems. The hardware
components collect diagnostics from the target cyber-physical system and pass them to
the software components, which perform the anomaly detection and inform the system
operators of a verdict.

6.1 Palisade Requirements

The construction of Palisade was motivated by the desire to have a lightweight, efficient,
and modular system for anomaly detection in cyber-physical systems. To accomplish this
aim, we outline a set of requirements that drive the design of Palisade.

Requirement 1: Palisade shall scale to any size of target cyber-physical system. While
presently Palisade has been installed on motor vehicles, we aim to install Palisade on larger
and more complex target systems in the future.

Requirement 2: Anomaly detectors in Palisade should support being distributed
over a network. To go with Requirement 1, we must be able to scale the computational
capability of Palisade to accommodate arbitrary computational requirements from large
cyber-physical systems.

Requirement 3: Multiple anomaly detectors shall be able to run on the same data.

37

Many detection algorithms in Palisade (see Section 4) may work with multiple data streams.
Thus, detectors must be able to share data stream for maximum effect.

Requirement 4: Palisade shall be able to collect side-channel data at a sufficiently
high sampling rate. The accuracy of anomaly detection algorithms on side-channel data
scales with the sampling rate of that data (to a point [70]).

6.2 Palisade Terminology

For the discussion of Palisade, we define actors in the system by specific names defined
herein.

The target system is the cyber-physical system that Palisade is set up with. This means
the Palisade hardware is installed locally along with the components of the target system,
and not operating remotely.

The system operator is a human in charge of operating or maintaining the target system.
This would be the driver/pilot for a motor vehicle or airplane. When Palisade generates
an alert, it is the system operator’s responsibility to respond to the alert and undertake
whichever safeguards are necessary. Palisade (as presented here) is strictly an anomaly
detection framework; it does not attempt to counteract malicious activity, only detect it.

A control unit is a microprocessor that controls a component of the target system. For
a car, examples of control units include the engine control unit (ECU), the infotainment
controller, the Anti-lock Braking System (ABS) controller, and many others.

We define a sensor as a device that measures a physical property at a fixed point within
the target system. Examples of such properties include vibration, temperature, and electric
current. At present, the hardware implementation of Palisade uses five types of sensors:
microphones, accelerometers, gyroscopes, temperature sensors, and current sensors.

We define a probe as a sensor that measures a digital signal travelling on a bus. Exam-
ples of such buses might include: a Controller Area Network (CAN), a Serial Peripheral
Interface (SPI), or an Inter-Integrated Circuit (I2C) bus. Palisade currently only has probe
that monitors activity on a CAN bus.

A sensor suite is a set of sensors, one of each type Palisade includes, that measure the
characteristic of one component of the target system. A single sensor suite in Palisade
consists of a microphone, an accelerometer, a gyroscope, a temperature sensor, a current
sensor, and a CAN bus probe.

38

Sensor and Probe
Readings

(Analog and Digital)

Redis Publish Messages
(Ethernet Packets)

Power and
Synchronization Signal

Power and
Sensor Data

To Controller and
Software Subsystem

Main Power

Sensor Suite DAQ Unit

Power and Clock Unit

Ethernet Switch

Collection Board Transmission Board

Figure 6.1: Palisade Hardware Subsystem

6.3 Palisade Structure

The hardware subsystem of Palisade (see Figure 6.1) is composed of separate Data Ac-
quisition Units (DAQs). Each unit records data from an attached sensor suite. Each unit
instruments a subsystem of the target system. In practical terms, this means that the
sensor suit instruments a single device and the control unit for this device. For example,
consider the engine control unit in a car. The accelerometer, gyroscope, and temperature
sensor are mounted directly to the engine block, the microphone is affixed to the frame
near the exhaust, and the current sensor is connected to the power supply of the engine
control unit. Together this sensor suite is connected to a single DAQ. In a full installa-
tion of Palisade, there are multiple DAQs, each instrumenting a separate subsystem of the
target system. Continuing with the car analogy: there would be a DAQ for the engine,
transmission, infotainment, ABS, alternator/battery, and possibly more.

Each of these DAQ units is connected to the central controller. There is only ever
one controller, which adjudicates between the hardware and the software subsystems of
Palisade. The controller runs Redis [6], (REmote DIctionary Server) as a publish-subscribe
broker. For a discussion on the choice of publish-subscribe broker, see Dunne 2018 [71].

39

Redis maintains a list of channels, to which packets of data can be sent over a network
socket. Components of the Palisade software subsystem can subscribe to channels and
will receive any data packets sent to the requested channels. Each DAQ publishes data to
Redis on the controller, and the software components subscribe to those streams.

The software subsystem of Palisade is composed of nodes. Nodes subscribe to a set
of channels in Redis and publish to another set. Together, they form a complex event
processing system [4]. There are three types of nodes: source, processor, and sink. Source
nodes stream input data on a channel into Redis. Processing nodes include pre-processors,
that consume a channel and produce a new channel after applying a transformation, and
anomaly detector nodes (herein referred to as detectors) which consume a channel and
produce a verdict on if the data on the channel is currently anomalous. Sink nodes consume
a channel, which is often the result of a detector, and either aggregate results into a final
anomalous verdict on the entire target system, or simply display the results to the operator
in a graphical user interface.

6.3.1 Data Acquisition Units

Data Acquisition Units (DAQs) are the core building block of the hardware subsystem
of Palisade. They aggregate the results from a sensor suite and pass them on to the
controller. Each DAQ is composed of two primary components: an collection board, and
a transmission board. The collection board collects data from the sensor suite and passes
it to the transmission board, which formats the data and sends it to the controller on a
Redis channel (see Figure 6.1).

Collection Boards

A collection board is a custom printed circuit board (PCB) build around an Atmel UC3A3256
microprocessor [72]. We split the sensors into two large groups: analog sensors and digital
sensors. The microphone, temperature sensor, and current sensor are analog sensors. They
are connected to an Analog to Digital Converter (ADC) on the collection board which for-
wards the digital form of the signal from these sensors to the Atmel microprocessor. The
accelerometer, gyroscope, and CAN bus probe are digital sensors and are connected di-
rectly to the Atmel microcontroller over I2C for the accelerometer and gyroscope, and SPI
for the CAN bus probe.

We sample the current sensor using a two channel bandwidth reduction method pro-
posed by Moreno and Fischmeister [73] with permission. Consider a window of the current

40

Input Signal
(power trace)

Low-Pass
Filter

High-Pass
Filter

xp

Rectifier
Low-Pass

Filter

Low-Pass
Filter

xhe

Figure 6.2: Current Sensor Bandwidth Reduction Method

consumption of a control unit as x. Moreno and Fischmeister’s method runs a low-pass
filter and a high-pass filter on x (see Figure 6.2). The result of the low pass filter xp forms
the first channel of power recorded by the ADC on a DAQ unit. This can be sampled at
some sample rate r. The result of the high-pass filter is then passed through a rectifier,
essentially removing local periodicity from the signal and reducing it to an envelope. This
envelope is passed through a low-pass filter and produces xhe, the second channel of power
recorded by the ADC. The innovation here is that xhe can also be recorded at sample rate
r, but it contains information about the magnitude of the high-frequency activity in x. xhe
would not have sufficient sample rate to record that activity, but it does have sufficient
sample rate to record the envelope of that activity. We use this two channel approach to
sample current consumption from the control units of the target system.

We choose to sample the current sensor channels at 200 kHz, the microphone at 50 kHz,
and the remaining channels at 1 kHz. The CAN probe can receive two messages at a time
when it is polled, so it could be considered sampled at 2 kHz. Due to the decision to have
a DAQ unit for each of the control units in the target system, for anomaly aggregation
to remaining consistent (specifically the construction of V and Vq, see Section 5), we need
samples from channels recorded by each unit to occur at the same time. This means that a
detector that is examining a sample At from time t on channel A will be observing a sample
collected at the exact same time (in as much as is possible) that a detector observing a
sample Bt from time t on channel B. Ensuring At and Bt are collected at the same time,
where A and B are channels originating from separate DAQ units, is the primary challenge
we faced in the design of the Palisade hardware subsystem.

We solve this synchronization problem with a synchronization signal, which is a digital
clock signal that shared among all the DAQ units. We chose a shared hardware clock
because it can be used to make a hardware trigger for analog to digital converters to
sample, and therefore guarantee the samples from different DAQ units are taken at the

41

t = -2s t = 0s
Collection Start

t = 1mst = -3s
Sync Sequence Start

t = -1s
Sync Sequence End

Synchronization Signal

Timeline

Sample Power

Sample Audio

Sample Others

800kHz 800kHz

t = 20µs

Figure 6.3: DAQ Synchronization Signal

same time. A disadvantage of this technique is that it requires an additional wire to carry
the signal to all the DAQ units.

The synchronization signal is generated at the power and clock unit, a separate hub
of the Palisade hardware subsystem. The power and clock unit is tasked with supplying
constant DC power to all the DAQ units and generating the synchronization signal. The
synchronization signal dictates when the collection board polls the sensors for samples (see
Figure 6.3). Due to the internal limits of the hardware clocking in the UC3A3 microcon-
troller on the collection board and the ADC, the synchronization signal must be supplied
at least four times the rate we wish to sample the highest rate sample (the current sensor).
Thus we generate a synchronization signal at 800 kHz. Since each unit shares this signal
and uses it as input to a hardware timer, they all will poll their sensors at the same time.

Unfortunately, a simple square wave clock is insufficient for complete synchronization.
While it can ensure the sensors are polled at the same time, the separate collection units
do not know at which time a given sample was polled (it knows that it was a multiple of
5 µs, because we are polling at 200 kHz). Thus the units need a method of keeping track
of exactly which sample they are collecting.

Since the power and clock unit supplies power to all the DAQ units, it knows when
the collection boards in the DAQs are beginning their power-up sequence. The power and
clock unit contains a small 8-bit microcontroller (the Atmel ATtiny25 [74]) that powers up
at roughly the same time as the collection boards and generates the synchronization signal.
However, due to the initialization process on the collection boards taking a variable amount
of time depending on attached sensors, relying solely on power-up time to synchronize is
insufficient.

To remedy this we add a startup sequence (called the sync sequence) to the beginning of
the synchronization signal that occurs immediately on power-up (see Figure 6.3). The sync

42

sequence begins by holding a value of low on the synchronization signal for one second, this
allows for the variable startup time of the collection boards. Once the collection boards
are initialized, they wait for the synchronization signal to begin oscillating at 800 kHz,
which it does for another second. Then the synchronization signal goes low again, and
the collection boards initialize their hardware timers, so when the synchronization signal
begins oscillating at 800 kHz indefinitely they all count time t = 0 exactly at the same
time.

The reason the sync sequence has two periods of no oscillation is so that collection
boards that are powered on late can distinguish between a disconnected clock signal and the
startup sequence. The second period of silence also allows collection boards to differentiate
between starting late and seeing the permanent oscillation only, and starting at the same
time as the other DAQ units (and therefore seeing the period of silence). If a collection
board detects it has started later than the other units, it reports this error to the controller,
which forwards the fault directly to the system operator. This indicates a fault in the
Palisade system and is separate from detecting anomalies.

The downside to having a startup sequence of such a duration is that there is a minimum
of three seconds before the Palisade system can begin collecting data from the target
system. This can be mitigated by the system operator powering on Palisade before starting
up the target system. Future work on Palisade may wish to look at a system that encodes
the current time as a digital value in the synchronization signal (not supported by the
current Palisade hardware), as this would remove the need for the startup sequence.

Once every millisecond, the collection board collects all the samples polled during that
millisecond and sends them in Universal Serial Bus (USB) packets to the transmission
board.

Transmission Boards

A transmission board is a Raspberry Pi 3 Model B [75], a small single-board computer
running Linux (specifically Raspbian, a Debian Linux derivative [76]). The transmission
board receives power from the collection board and is also connected to the collection board
over USB.

The collection board listens on for USB packets from the collection board once a mil-
lisecond. Those packets contain exactly one millisecond of sensor readings from the at-
tached sensor suite (see Figure 6.1) along with the exact timestamp of the millisecond
in which that data was collected (relative to time t = 0, see Figure 6.3). The collection

43

DetectorPreprocessor

Detector

Detector

Detector
AggregatorController

Sources Processors Sinks

System
Operator

Sensor Data P(anomaly)

C
h
a
n

n
e
ls

From
Hardware

Subsystem

Final
Anomaly
Verdict

DetectorPreprocessor

Figure 6.4: Palisade Software Subsystem

unit separates this data into individual channels, one for each sensor, and sends a pub-
lish command containing this data and its timestamp to the Redis server running on the
controller.

We separate the collection board from the transmission board to the unreliability of
communications over IP networks. The collection board has strict timing requirements to
maintain, and dispatching data over high-speed USB has very low latency when you have
complete control over the receiver and sufficient buffer space allocated. This separation of
concerns allows the transmission board to maintain a buffer of several seconds of data in
case of temporary network outages. Since the collection board timestamps each millisec-
ond’s worth of data, additional latency on the transmission board will not affect detector
accuracy.

6.3.2 Software Subsystem

The Palisade software subsystem is composed of source nodes, processor nodes, and sink
nodes (see Figure 6.4). Source nodes are responsible for providing input data for the
processor nodes. Processor nodes either perform a pre-processing task and pass on data to
other processors, or are anomaly detector nodes (see Section 4). The results P (anomaly)
from the detector nodes are forwarded to the sink nodes, which are either aggregators (see
Section 5) or a graphical user interface.

Source nodes provide input to Redis. The transmission boards from the hardware
subsystem of Palisade are also source nodes in the software subsystem, and the controller

44

itself could also be considered a source. Other source nodes may read input from recorded
log files and play it back into Redis, simulating a live environment with DAQ units without
necessitating a full hardware setup. Source nodes may also be bridges to other systems
that supply data that Palisade nodes may wish to consider. Many target systems also use
a central publish-subscribe broker similar to Redis, and converting data from that system
to Redis channels may provide more valuable input for detector nodes.

Processor nodes are primarily composed of anomaly detectors (see Section 4), which
consume an input channel from Redis and produce a probability P (anomaly) that the
target channel contains an anomaly in a given window. There are also a few processor
nodes that pre-process a Redis channel and republish it to Redis under a new channel
name, where a detector can then consume it. Such processors perform tasks such as
taking the derivative of a channel or combining multiple channels into one channel (such
as combining the X, Y, and Z axes of the accelerometer or gyroscope into one magnitude
value). This allows detectors to work on different inputs from the same channel without
requiring any changes to the coder of the detector itself.

Sink nodes are generally composed of anomaly aggregators. At any one time in Palisade,
one anomaly aggregator is operational at a time. For a breakdown of anomaly aggregators,
see Section 5. Aggregators consume the output of detector nodes and produce a final
anomaly verdict that can then be passed on to the system operator. Other types of sink
nodes include graphical user interfaces for monitoring the statuses of individual detectors
and logging nodes that keep track of the state of various detectors and data channels for
postmortem analysis.

45

Chapter 7

Case Study

To validate the claims made about the performance of Palisade for cyber-physical systems
we test the Palisade detectors and aggregators on an Advanced Driver-Assistance Systems
(ADAS) demonstrator. While the data used here was not collected by the hardware com-
ponents of Palisade, we still consider this a test of a representative set of the anomaly
detectors and aggregators in Palisade.

7.1 ADAS Demonstrator

Donghyun Shin constructed the ADAS demonstrator as a test environment for researching
anomaly detection in cyber-physical systems [35]. It consists of a treadmill that mimics
an infinite highway, model cars that drive on the treadmill, and cameras that monitor the
positions of those cars. See Figure 7.1 for an overview of the components we consider. The

Workstation

Car TreadmillCamera

β

δ
γ

α

ε

Figure 7.1: Abstracted ADAS Demonstrator Layout

46

software components of the system run on the Robot Operating System (ROS) [77]. Each
component is encapsulated in a ROS node (distinct from a node in Palisade), and can
use facilities provided by ROS as a publish-subscribe broker much like Redis. The ADAS
platform is powerful, and we direct the reader to Shin’s 2018 thesis [35] for further details
on its construction.

For this case study, we focus on four subsystems within the ADAS demonstrator. The
first and simplest subsystem we consider is the treadmill, which rotates in place under the
cars and negates their movement, allowing them to remain in motion in their reference
frame while staying stationary on the treadmill to an external observer. The treadmill has
a target velocity (the target speed the treadmill is trying to maintain) and a true velocity
(the actual speed as measured by a rotational encoder) that the treadmill is currently
rotating.

The second subsystem we focus on is a car. While the ADAS demonstrator supports
multiple cars in formation, for simplicity in this test case we consider only a single car.
The car attempts to maintain its current position and velocity on the treadmill based on
information from the camera and the speed of the treadmill. This scenario is called free run,
and while the ADAS demonstrator supports more complicated scenarios, we consider only
free run for simplicity. The car steers on a single axis and uses a kinematic bicycle physics
model to drive [35]. It aims for a goal state and uses a Proportional-Integral-Derivative
(PID) controller to maintain its position at a given goal position.

The third subsystem we focus on is the camera, which acts as a pseudo-Global Posi-
tion System (GPS) within the confines of the treadmill. The camera is mounted above
the treadmill and uses AprilTag [78] markers to locate the cars using image recognition
techniques [35]. This location information serves as a surrogate GPS.

7.2 Experiment Setup

For simplicity, our experimental setup consists only of cases with a single car on the tread-
mill. This allows us to clearly show the detection and effects of anomalies on a small set
of channels. We have augmented the workstation with additional instrumentation to col-
lect CPU and memory usage. The CPU and memory usage and combine these with ROS
messages in the

47

CAPEC Name Location Expected Symptoms

1 148 Content Spoofing α Drift, Level Change
2 94 Main in the Middle Attack β Event Frequency Change
3 248 Command Injection γ Spike, S-Wave, Noise,

Amplification, Level Change,
Unexpected Event

4 548 Contaminate Resource Car Drifting, Noise,
Amplification, Level Change

5 184 Software Integrity Attack Treadmill Event Frequency Change
6 125 Flooding δ Event Frequency Change
7 130 Excessive Allocation Workstation Drifting
8 594 Traffic Injection ε Spike, S-Wave, Drifting,

Noise, Level Change
9 607 Obstruction Camera Loss, Periods of Silence
10 176 Configuration Manipulation Car Spike, S-Wave, Drifting,

Noise, Clipping,
Loss, Smoothing,
Amplification, Level Change,
Frequency Change

11 441 Malicious Logic Insertion Car Level Change

Table 7.1: Anomalies In ADAS Experiment

7.3 Anomaly Scenarios

Each of the scenarios described below (and in Table 7.3) is based on an attack from the
CAPEC database [34]. These were selected based on existing published works demonstrat-
ing the viability of these attacks on cyber-physical systems. Using the restricted system
model from Figure 7.1, we inject the described anomalies into the streams labelled therein.

7.3.1 CAPEC 148 - Content Spoofing

A content spoofing attack occurs when the adversary modifies the content from its original
value without changing its source [34]. Fan et al. consider GPS spoofing to be a serious
threat to cyber-physical systems [79].

48

For this case, we intercept the goal position messages sent to the car from the camera
(channel α in Figure 7.1), as a surrogate for GPS. We alter the contents of those messages
to direct the car to a different goal location. The car believes this to be the correct goal
state.

7.3.2 CAPEC 94 - Man in the Middle

Man in the middle (MITM) attacks occur when an adversary inserts themselves within
the communication channel between two system components [34], A and B. From there
they can alter the contents of messages from A to B by pretending to be A from B’s point
of view, and alter messages from B to A by pretending to be B from A’s point of view.
Neither component knows they are not in direct communication with the other component.
Conti et al. note that MITM attacks are among the most common attacks on computer
systems today [80], and review over 200 papers on MITM attacks alone.

We implement a simple MITM attack between the camera and the workstation (channel
β in Figure 7.1) where the adversary is doing something with the contents of the camera
image. We delay the camera messages to arrive slightly slower to the workstation, simu-
lating some additional processing or exfiltration that an actual MITM attacker might do
with the image from the camera.

7.3.3 CAPEC 248 - Command Injection

An adversary conducts a command injection attack by inserting a command of their choos-
ing into a data stream of otherwise legitimate commands [34]. This typically manifests in
web applications in the form of SQL command injection [81], but Srivastava et al. discuss
the use of command injection attacks to trip relays in a smart electrical grid [82].

We implement a command injection attack between the workstation and the car (chan-
nel γ in Figure 7.1). A command with a very large velocity is inserted into the stream
of otherwise normal driving commands. An adversary would use such an attack to cause
unintended acceleration leading to a crash.

7.3.4 CAPEC 548 - Contaminate Resource

A resource contamination attack occurs when an adversary inserts data into a data stream
which that data stream should not have the appropriate permissions to handle [34]. The

49

attacker inserts the privileged information into a communications channel that usually
handles information at a lower privilege level. Giani et al. discuss various methods for
exfiltrating sensitive data, including hiding information by contaminating unused fields in
packet headers or network routing information [83].

We manifest a contaminate resource attack as the attacker compromising the car and
passing out the battery voltage in the z-axis channel of the car’s position on the track.
While this information is usually available on other channels from the car, we pretend for
this purpose that the battery information is privileged. The nodes that make decisions
based on the car’s velocity now have access to the battery state of the car, where the
previously did nothing with the z-axis.

7.3.5 CAPEC 184 - Software Integrity Attack

Software integrity attacks occur when an attacker compromises the integrity of a soft-
ware system component [34]. This is usually a side-effect, or an in-progress step within
a more involved attack. Examples may be as simple as replacing an executable file or
interpretable script file, or as involved as faking an entire network service. Sharma et
al. observed cases where attackers of an open networked supercomputing environment re-
placed network service executable files with versions that stole authentication credentials
from users attempting to log in [84].

We implement a software integrity attack by replacing the treadmill node with a new
node that performs the same tasks as the treadmill node, but slightly slower (by adding an
unnecessary wait). This simulates a compromised version of the treadmill node where the
attacker is using the node as a remote access terminal, causing the actual functionality of
the node to be delayed.

7.3.6 CAPEC 125 - Flooding

An adversary conducts a flooding attack by sending a large volume of messages to a target
service intending to overwhelm it and manifest a denial of service [34]. Hahn et al. consider
ethernet flooding attacks aimed at causing a denial of service as a demonstration of their
cyber-security testbed [85]. Philips et al. note that flooding could be used to cause a denial
of cooperation in a smart grid [86], and as a stepping stone to impersonating a node after
forcing it offline by a denial of service flooding attack.

We implement a flooding attack by flooding the position channel between the car and
the workstation (channel δ in Figure 7.1). This is the channel on which the car transmits

50

its estimated position to the workstation. By flooding this channel an attacker would aim
to deny the workstation an accurate location on the car, potentially causing a crash.

7.3.7 CAPEC 130 - Excessive Allocation

An excessive allocation attack occurs when an attacker causes a system resource to allocate
large amounts of unneeded resources to starve other legitimate processes on the same
system [34]. Leiwo and Zheng note that an excessive allocation can cause denial of service,
and provide an example of a process that duplicates itself, taking the majority of memory
and CPU time [87].

We simulate and excessive allocation attack by starting a process on the workstation
that progressively reserves one gigabyte of memory every second. This process is not a
part of ROS, but it simulates an attacker getting some backdoor access to the workstation
and attempting to cause a denial of service by reserving all the system memory.

7.3.8 CAPEC 594 - Traffic Injection

Traffic injection occurs when an attacker inserts traffic into a target network with the
aim of degrading the connection and potentially modifying the contents of messages [34].
McLaughlin et al. describe the possibility of using a traffic injection attack to steal electric-
ity from and advanced electrical metering architecture [88]. They note that traffic injection
could be used to replace demand information from an electrical meter if cryptography was
not correctly applied.

To cause a traffic injection attack, we insert messages about the velocity of the treadmill
into the message channel between the treadmill and the workstation (channel ε in Figure
7.1). These messages cause a random variation in the reported speed of the treadmill, with
the goal of confusing the car control logic into causing a crash.

7.3.9 CAPEC 607 - Obstruction

Obstruction occurs when an attacker blocks communication between system components
[34]. This may manifest as simply as a network disconnection or physically blocking a sen-
sor, or as complex as selectively dropping network packets. While we consider obstruction
as a form of cyber-attack, it is just as possible that the obstruction may occur by accident,
such as an object falling over in front of a camera. Xu et al. discuss attack and defense

51

strategies for jamming attacks that obstruct wireless sensor networks [89]. They note that
detecting jamming attacks is difficult because it can be hard to distinguish between normal
and malicious sources of poor connectivity.

We simulate and obstruction attack by inserting a blocked area into the camera feed.
Specifically, we modify the camera node to suppress and readings about car location within
a chosen circular area. This mimics a blackout in the camera that could be caused by an
attacker physically holding a blocking object in front of that area of the camera.

7.3.10 CAPEC 176 - Configuration Manipulation

CAPEC defines a configuration (or environment) manipulation attack as a scenario where
an attacker alters files or settings for a target application that affect the operation of
that application [34]. This is typically easier than altering the application itself, as the
configuration parameters are intended to be changed by legitimate users of the application.
By adjusting these settings the attacker masquerades as a user that made a mistake,
rather than as a malicious actor. Lee et al. write in an analysis that in 2015 an attacker
manipulated the configuration of a networked power supply such that it would fail during
a wider attack on a power grid [90]. This impacted a target company’s data centers, as
their primary and backup power was disrupted.

We simulate a configuration manipulation attack by editing the configuration files the
holds the coefficients for the PID controller that drives the car’s control system. By altering
these values we change how the car responds to commands, causing over-steering, excessive
acceleration and deceleration, and crashes.

7.3.11 CAPEC 441 - Malicious Logic Insertion

A malicious logic insertion attack occurs when an attacker adds malicious code into an
otherwise normally operating system component [34]. Typically this manifests as malware
being installed on the target system, either by a malicious actor or as part of a self-
propagating worm. Sridhar et al [91] and Mo et al. [92] consider malware a serious
security threat to cyber-physical systems for smart electrical grids.

We implement a malicious logic insertion attack by modifying the logic in the car
controller node. We change the channel to add an offset to all location related commands
sent to the car, with the aim of causing the car to crash off the treadmill. While our
approach is quite blunt, a more subtle malware might wait for the car to reach a high
speed before offsetting the location to induce a more severe crash.

52

Number CAPEC Name Channel(s)

1 Content Spoofing /car/2/goal /car/2/pose
2 Main in the Middle Attack /tracker/april_poses
3 Command Injection /car/2/command
4 Contaminate Resource /car/2/nav/goal
5 Software Integrity Attack /treadmill/command_velocity
6 Flooding /car/2/pose
7 Excessive Allocation /available_memory /cpu_percent
8 Traffic Injection /treadmill/velocity
9 Obstruction /car/2/tag_pose_demuxed
10 Configuration Manipulation /car/2/command /car/2/pose
11 Malicious Logic Insertion /car/2/nav/goal

Table 7.2: Anomaly Channels for ADAS Experiment

7.4 Channels

Each of the anomaly scenario presented above (Section 7.3) has one or more channels on
which the anomaly is expected to be observed. That set of channels is not an exhaustive
list of all the channels recorded from the ADAS system, however, for simplicity we consider
only those channels. We call this set of possibly anomalous channels the anomalous channel
set. This gives us a set of channels for all the anomaly scenarios where a subset should
test positive for any given anomaly, but not every channel will have an anomaly for every
scenario.

While we know which channels we expect the anomalies to manifest on by virtue of the
experiment design, we run all the anomaly detectors on all available channels regardless.
In a real-world Palisade installation we would not know which channels are anomalous;
running all detectors on all channels is the most realistic simulation of the system in
practice. We consider 33 channels in our anomalous channel set for this experiment, each
of which is a component of the ten high-level channels covered in Table 7.4.

53

Chapter 8

Results and Discussion

8.1 Data

ROS provides a simple mechanism for recording messages within the ADAS system, called
a ROSBAG (or just bag). For each of the anomaly scenarios detailed in Section 7.3 we
induce the anomaly, then record a bag file. The moment the anomaly takes effect is not
recorded. For some cases, we have multiple bag files available, for a total of 31 anomalous
bag files spanning 32 minutes of data. We also take five recordings with no known anomalies
present, totalling seven minutes of data. We reserve two of these recordings to train the
detectors. While this is a small fraction of the total data available, the focus of this case
study is on the power of the anomaly aggregators, not on the accuracy of the individual
anomaly detectors. The remaining normal recordings (not used to train the detectors) are
separated out into 18 samples. The 31 anomalous bag files are split into halves, for a total
of 62 anomalous samples. We reserve 9 normal samples and 31 anomalous samples for
aggregator training, and the remaining 9 normal samples and 31 anomalous samples for
aggregator testing.

Here we run into a dichotomy: supervised anomaly detection, or unsupervised anomaly
detection. This is a common problem in the training of anomaly detection systems [2].
Both options have their advantages, with unsupervised detection more applicable where
the nature of anomalies is unknown, and supervised detection easier to train. Chandola
et al. mention a middle ground: semi-supervised detection [2] where labels and training
instances exist only for non-anomalous data.

In our case study, we adopt a semi-supervised model for the anomaly detectors and a
fully supervised model for the aggregators. Anomaly detectors are trained (for those that

54

need training) only on non-anomalous cases, but aggregation algorithms are trained with
both anomalous and non-anomalous data.

8.2 Algorithm Selection

This primary objective of this experiment is to compare and contrast anomaly aggregation
algorithms (as reviewed in Section 5). Therefore we select a simple, but representative
set of anomaly detection algorithms. The detection algorithms themselves are not the
focus of this experiment. Many of the algorithms below require a threshold to be selected
where some metric exceeding the threshold will cause the detector to report an anomaly.
In this thesis we do not discuss threshold selection methods (see future work in Section
9.2), so all the thresholds for anomaly detectors are selected by human observation on only
the anomaly detector training data. We select the following detection algorithms for the
experiment:

1. Hash Detect - We use the hash detector as described in Section 4.1. This runs on
the executable script files and associated configuration files that make up the nodes
of the ADAS system. It reports an anomaly with P (anomaly) = 1 if there are any
changes to any of these files. We expect changes to manifest only in the Software
Integrity Attack scenario and the Configuration Manipulation scenario.

2. Spike Detect - We use the spike detector as outlined in Section 4.2. We select a
threshold of 3.0 standard deviations away from the mean to be considered a spike,
and a buffer size of 40 samples (selected by human observation).

3. Level-Change Detect - The level change detector looks for changes in the mean of
the data stream, looking for instances of the level change anomaly symptom (see Sec-
tion 3.1.8). Recall Equation 3.6 reproduced here: given a time series y, an acceptable
minimum level change threshold `, a minimum number of samples the mean change
must persist n, a level change has occurred over a window of w samples y[t,t+w−1] iff

|y[t+w,t+w+n] − y[t−n−1,t−1]| > `

For this detector we select w = n = 20 samples (again selected by human observa-
tion). We select ` to be the largest level change observed in the training data.

4. Range Check - The range check detector is a simple bound checking watermark
detector. We observe all the samples from the data stream in the training data

55

and keep track of the minimum and maximum values. Then we add a 20% margin
(selected by human observation) to suppress false positives. During testing, if any
value exceeds this threshold, we report an anomaly at that time with probability
P (anomaly) = 1.

5. Frequency Detect - The frequency detector aims to detect Event Frequency Change
anomaly symptoms (see Section 3.2.1). During training, we record the mean fmean
and standard deviation fstd of the inter-arrival times of messages on the target data
stream. During testing, the frequency detector reports an anomaly if the inter-arrival
time i of two messages satisfies i < fmean − fstd or i > fmean + 3fstd. We arrived at
these thresholds by noting that messages being delayed due to network activity is
frequent, but the reverse is not nearly as common (messages that pile up during an
outage still arrive at close to the expected frequency in ROS).

6. Slope Detect - The slope detector tries to drifting anomaly symptoms (see Section
3.1.2. It divides the input windows (which we have selected to be 50 samples long) and
determines their average slope by linear least-squares regression. We then conduct a
χ2 test against the null hypothesis that the slope of the input window is zero. If the
p-value of this test is less than 0.01, we report an anomaly with P (anomaly) = 1.

7. Autoencoder - We use the autoencoder as described in Section 4.3. We select an
input window size of 50 samples, overlapping at 50% (selected by human observation).
For each of these buffers X we run the autoencoder to produce X ′ = d(e(X)) and
take the Euclidean distance ∆ between the X ′ and X. If that exceeds the largest
error observed in training, we report an anomaly with probability

P (anomaly) = 1− 1

5∆ + 1
(8.1)

This gives us a probability that climbs rapidly to 1 as ∆ increases. We chose the
coefficient 5 arbitrarily. A more rigorous selection of probability function may yield
better results from the autoencoder.

When selecting aggregation algorithms for this experiment we aim to select a represen-
tative sample of algorithms varying from simple voters to more complex machine learning
based detectors. All the algorithms chosen for the experiment are discussed in Chapter 5.
We use a simple majority vote aggregator, a weighted majority vote aggregator, a logis-
tic regression aggregator, a probability sum aggregator, and a stack generalization based
aggregator.

56

8.3 Methodology

The experiment proceeds in two phases: the detector phase, and the aggregator phase,
both of which comprise of a training step and a testing step. In the detector phase, we
begin by training the detectors in an unsupervised fashion on the training set reserved for
the detectors (see Section 8.1). In this phase we also select the threshold above which each
detector will report an anomaly. We choose this to be the zero-false-positive threshold
(as discussed in Section 5). Then we proceed to the aggregator phase. In the aggregator
phase we begin by running all the detectors on the aggregator training set, and producing
the relevant V and Vq matrices based on the thresholds from the detector training phase.
Since we have 7 detectors and 33 channels, we know the first two dimensions of V and Vq
will be 7 × 33. We let q (the quantization parameter) be two seconds. For simplicity, we
select tnow as the last time an anomaly is detected in a given sample, and quantize back
from that point accordingly (for a justification of this approach see Section 5). We then
train the aggregators, using the methods from Section 5, on all the V and Vq matrices.

Once training is complete, we run all the detectors on the aggregator testing set and
use them to construct another set of V and Vq matrices. We also report the accuracy and
F1-score of the detectors for each of the samples in the test set, and again for each quanta
select during the construction of the associated Vq matrices for that sample. The results
of this test can be seen in Table 8.4. The aggregators are then evaluated on V and Vq
matrices for a range of threshold T values sufficient to generate the Receiver Operating
Characteristic (ROC) curves seen in Figure 8.1.

8.4 Discussion

As can be seen in Table 8.4, the spike, slope, frequency, and autoencoder detectors all
performed identically on a per-sample basis. This was because they all reported at least one
anomaly in every possible testing sample. The other detectors did not perform much better.
In general, such a result would necessitate an adjustment of the thresholds for each detector
to be less sensitive. However, this behavior is ideal for the evaluation of our aggregation
techniques, as it allows the strengths of the various detection algorithms to show. If the
detectors actually reported zero false positives on the aggregator testing set, we would not
have any results to share from the aggregators, as a pass-through aggregator (that reports
Anomalous if any detector reports Anomalous) would be sufficient. Instead, the detector
accuracies on a per-quantum basis give a much larger diversity between the strengths and
weaknesses of each detector and provide a motivation for a time-based analysis.

57

Detector Acc./Case F1/Case Acc./Quanta F1/Quanta

Hash Detect 0.350 0.278 0.255 0.280
Spike Detect 0.775 0.873 0.842 0.914
Level-Change Detect 0.800 0.886 0.672 0.784
Range Check 0.675 0.806 0.712 0.822
Slope Check 0.775 0.873 0.855 0.922
Frequency Check 0.775 0.873 0.881 0.934
Autoencoder 0.775 0.873 0.886 0.940

Table 8.1: Experimental Detector Results

In Figure 8.1 we observe that both the voting aggregators and the probability sum
aggregator provide a detection rate around 60% at a zero-false-positive rate. This is ac-
ceptable but low. The logistic regression aggregator does slightly better, 70%, but proceeds
immediately up to 100% before reaching a 20% false positive rate. The stacked generaliza-
tion aggregator gives 80% at a zero-false positive rate and rapidly climbs to 100% as we
permit a handful of false positives.

The primary observation we make on the performance of aggregators is that voting
aggregators are insufficient alone. The first three detectors (the voters and logistic regres-
sion) do not consider any history. This is a significant weakness of these approaches, and it
shows in their mediocre accuracy. The probability sum aggregator is an ad-hoc approach
and likely needs further refinement to produce significant results. The only method that
provided a reasonable detection rate at zero false-positives was the stacked generalization
aggregator. Unfortunately, it is difficult to ascertain if this was a consequence of the power
of neural networks or a boon from the ability to consider the history of reported anomalies.

The main take-away from these results is that considering history is valuable, but there
are many other factors that influence the strength of aggregation algorithms.

58

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC Curve for Simple Majority Aggregator

Simple Majority Aggregator
Random Classification

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC Curve for Weighted Majority Aggregator

Weighted Majority Aggregator
Random Classification

(a) Simple Majority (b) Weighted Majority

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC Curve for Logistic Regression Aggregator

Logistic Regression Aggregator
Random Classification

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

ROC Curve for Probability Sum Aggregator

Probability Sum Aggregator
Random Classification

(c) Logistic Regression (d) Probability Sum

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC Curve for Stacked Generalization Aggregator

Stacked Generalization Aggregator
Random Classification

(e) Stacked Generalization

Figure 8.1: ROC Curves for Aggregators

59

Chapter 9

Future Work and Conclusion

9.1 Lessons Learned

During the construction of Palisade (see Chapter 6) we had to select a framework to use as a
publish-subscribe middleware. For more information on the frameworks and methodology
we used for making this decision see [71]. We considered four different publish-subscribe
brokers: Redis, Kafka, NATS, and RabbitMQ. Redis and RabbitMQ had significantly
better throughput and latency than either of Kafka or NATS. We choose Redis dues to
the simplicity of the interface, but RabbitMQ is essentially an equivalent choice. This
experiment produced our first lesson: selection of middleware matters.

We select sensors capable of recording data at up to 200 kHz in the case of the Palisade
current sensor. A very early iteration of Palisade could only collect data from sensors
at up to 1 kHz, and this lead to unusable data with errors so large it was impossible to
get a coherent classification from any detectors, let alone produce a reliable final anomaly
verdict. As we focused on increased sensor sampling rate as we developed Palisade into its
current incarnation. The lesson here: anomaly detection performance is only as good as
the input data, sensor quality and sample rate matter.

When collecting training data for anomaly detection systems, it is always easier to
collect normal data than it is to collect anomalous data. Normal data can be collected
by merely instrumenting the system during regular operation. Anomalous data collection
requires a safe environment in which to induce the anomaly, an anomaly of a type that is
known in advance (which are difficult to find, zero-day attacks are of considerable concern),
and an anomaly that can be induced without causing permanent or costly damage to

60

the target system. Inserting fake anomalies into already recorded normal data is often
insufficient, as the side-effects of anomalies than manifest on side channels are often difficult
to predict. Inducing symptoms (as outlined in Chapter 3) and trying to detect them is
often the only possible solution. Fortunately in our case study in Chapter 7, we were able to
induce many anomalies due to having full access to the system source code. This would be
difficult to do for a black-box target system. The main lesson here is that finding anomalous
data is difficult, so using detectors (and aggregators) that can be trained unsupervised (or
only on normal data) is important.

Anomaly detection and aggregation algorithms often have low explainability. This
means if Palisade is not operating as intended, it is difficult to determine what is at fault.
Debugging is a difficult task in any distributed system. In a distributed system in which
the results of an operation may vary because of a bug in the system, or because of an actual
anomaly are even more difficult to understand. Thus good visualization tools are essential.
The lesson here is that the ability to observe the underlying values in data streams, as
well as the outputs of detectors and aggregators in real-time, is essential to deploying any
distributed framework.

In the case study in Chapter 7 we considered 7 detectors over 33 channels. In a full
Palisade installation, we may be considering dozens of detectors over hundreds of channels.
The optimization problems that were simple in our case study become much more difficult
in a real-world scenario. This further complicates explainability; as the dimension of the
input increases, the individual contributions of data streams and detectors becomes more
difficult to distinguish. The practical lesson here: select algorithms that have as much
explainability as possible to increase scalability.

9.2 Future Work

In this work, we did not consider anomaly detectors that consume multiple input streams
but render a single anomaly verdict. Such detectors may be statistical detectors that check
some assumed physical relationship between system metrics. For example, a detector that
checks that the water pressure in a pipe is correctly related to the speed of a pump feeding
that pipe. These detectors pose an interesting challenge as they do not fit into anomaly
matrices V and Vq. Such detectors would warrant a new approach to the construction of
anomaly aggregators.

There is very little literature on approaches that consider the classification history as
a prior to aid in making an ensemble classification. Future work may want to investigate

61

methods for ensemble learning from classifiers that produce multiple outputs that vary
over time. Our quantization approach from Section 5 may not be the best method for
considering history. Perhaps some Bayesian or Dempster-Shafer based approach that con-
structs a model of the component aggregators, and updates its beliefs in the presence of
new samples, could be considered. Other methods might try convolution over the time
domain in a deep learning based approach to recognize temporal patterns.

It may be possible to dynamically adjust the thresholds of the anomaly detectors that
make up members of the aggregator ensemble. Perhaps increasing the thresholds of mem-
ber detectors that report anomalies to often where the system as a whole disagrees, and
decreasing the thresholds of the others may yield better system-wide results. Such an ap-
proach would have to be mindful of the effect of this adjustment on the learning models
from previously trained aggregators.

In this thesis, we only considered stationary classifiers. Non-stationary classifiers com-
plicate the aggregation problem by removing the ability for aggregators to assign member
classifiers static weights. Some form of dynamic weight allocation scheme might be benefi-
cial here. This may add significantly to the computational complexity of machine learning
based aggregators, as training a neural network is much more computationally expen-
sive than evaluating one. In additional, non-stationary member classifiers may update
themselves at varying times. Some form of update coordination between different mem-
ber classifiers would be needed to determine when to update the dynamic weights of the
aggregator.

While anomaly detection in a practical cyber-physical system cannot tolerate false
positives, it may be acceptable to raise the acceptable false positive rate for aggregators if
there was an additional check before the anomaly reached the system operator. Another
level of aggregator (a meta-aggregator) could perhaps enable the reduction of the false
positive threshold of the (now member) aggregators, as the meta-aggregator could then
have a zero-false-positive threshold set. Alternatively, a quantifiable explainability measure
for the result of the aggregator might be able to inform the final anomaly verdict further.

9.3 Conclusion

In this thesis, we discussed a view of anomaly detection based on a set of formalized
symptoms. We reviewed the literature on anomaly detection and ensemble learning as well
as intrusion detection for cyber-physical systems. We discussed various anomaly detection
algorithms and ensemble learning aggregation algorithms along with the construction of

62

a data collection and anomaly detection framework called Palisade. We evaluated the
above anomaly detection and aggregation algorithms on a dataset from a cyber-physical
demonstrator system using attacks based on real-world scenarios and discussed the results.

There are two primary results of this work. The first is the assertion that considering
history is valuable when designing anomaly detection systems. It is specifically useful
for aggregating the results of multiple distributed detectors throughout a cyber-physical
system. The second result is that the construction of a distributed anomaly detection
system for cyber-physical systems is both practical and viable.

63

References

[1] Robert Mitchell and Ing-Ray Chen. A survey of intrusion detection techniques for
cyber-physical systems. ACM Computing Surveys (CSUR), 46(4):55, 2014.

[2] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey.
ACM Computing Surveys (CSUR), 41(3):15, 2009.

[3] Shikha Agrawal and Jitendra Agrawal. Survey on anomaly detection using data mining
techniques. Procedia Computer Science, 60:708–713, 2015.

[4] Gianpaolo Cugola and Alessandro Margara. Processing flows of information: From
data stream to complex event processing. ACM Computing Surveys (CSUR), 44(3):15,
2012.

[5] Chenfeng Vincent Zhou, Christopher Leckie, and Shanika Karunasekera. Decentral-
ized multi-dimensional alert correlation for collaborative intrusion detection. Journal
of Network and Computer Applications, 32(5):1106–1123, 2009.

[6] Redis documentation. https://redis.io/documentation. Accessed: 2018-10-09.

[7] Bartosz Krawczyk, Leandro L Minku, João Gama, Jerzy Stefanowski, and Michał
Woźniak. Ensemble learning for data stream analysis: A survey. Information Fusion,
37:132–156, 2017.

[8] Gerhard Widmer and Miroslav Kubat. Learning in the presence of concept drift and
hidden contexts. Machine Learning, 23(1):69–101, 1996.

[9] Indrė Žliobaitė, Mykola Pechenizkiy, and Joao Gama. An overview of concept drift
applications. In Big Data Analysis: New Algorithms for a New Society, pages 91–114.
Springer, 2016.

64

https://redis.io/documentation

[10] Xuan Dau Hoang, Jiankun Hu, and Peter Bertok. A program-based anomaly intrusion
detection scheme using multiple detection engines and fuzzy inference. Journal of
Network and Computer Applications, 32(6):1219–1228, 2009.

[11] Robi Polikar. Ensemble based systems in decision making. IEEE Circuits and Systems
Magazine, 6(3):21–45, 2006.

[12] Robert E Schapire. The strength of weak learnability. Machine Learning, 5(2):197–
227, 1990.

[13] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Computer and System Sciences,
55(1):119–139, 1997.

[14] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

[15] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[16] Lior Rokach. Ensemble-based classifiers. Artificial Intelligence Review, 33(1-2):1–39,
2010.

[17] Leo Breiman. Pasting small votes for classification in large databases and on-line.
Machine Learning, 36(1-2):85–103, 1999.

[18] Nitesh V Chawla, Lawrence O Hall, Kevin W Bowyer, Thomas E Moore, and W Philip
Kegelmeyer. Distributed pasting of small votes. In International Workshop on Multiple
Classifier Systems, pages 52–61. Springer, 2002.

[19] Ralf Haeusler, Rahul Nair, and Daniel Kondermann. Ensemble learning for confidence
measures in stereo vision. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 305–312, 2013.

[20] David H Wolpert. Stacked generalization. Neural Networks, 5(2):241–259, 1992.

[21] Srinivas Mukkamala, Andrew H Sung, and Ajith Abraham. Intrusion detection using
an ensemble of intelligent paradigms. Journal of Network and Computer Applications,
28(2):167–182, 2005.

[22] Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive
mixtures of local experts. Neural Computation, 3(1):79–87, 1991.

65

[23] Tin Kam Ho, Jonathan J. Hull, and Sargur N. Srihari. Decision combination in
multiple classifier systems. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 16(1):66–75, 1994.

[24] Wray Buntine. A theory of learning classification rules. PhD thesis, University of
Technology Sydney Australia, 1992.

[25] W Nick Street and YongSeog Kim. A streaming ensemble algorithm (sea) for large-
scale classification. In Proceedings of the Seventh ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pages 377–382. ACM, 2001.

[26] Martin Scholz and Ralf Klinkenberg. Boosting classifiers for drifting concepts. Intel-
ligent Data Analysis, 11(1):3–28, 2007.

[27] Xueheng Qiu, Le Zhang, Ye Ren, Ponnuthurai N Suganthan, and Gehan Amaratunga.
Ensemble deep learning for regression and time series forecasting. In Computational
Intelligence in Ensemble Learning (CIEL), 2014 IEEE Symposium on, pages 1–6.
IEEE, 2014.

[28] Yan Xu, Zhao Yang Dong, Jun Hua Zhao, Pei Zhang, and Kit Po Wong. A reliable
intelligent system for real-time dynamic security assessment of power systems. IEEE
Transactions on Power Systems, 27(3):1253–1263, 2012.

[29] Li Deng and John C Platt. Ensemble deep learning for speech recognition. In Fifteenth
Annual Conference of the International Speech Communication Association, 2014.

[30] Zhong Yin, Mengyuan Zhao, Yongxiong Wang, Jingdong Yang, and Jianhua Zhang.
Recognition of emotions using multimodal physiological signals and an ensemble deep
learning model. Computer Methods and Programs in Biomedicine, 140:93–110, 2017.

[31] Harris Drucker, Christopher JC Burges, Linda Kaufman, Alex J Smola, and Vladimir
Vapnik. Support vector regression machines. In Advances in Neural Information
Processing Systems, pages 155–161, 1997.

[32] Yang Zhao, Jianping Li, and Lean Yu. A deep learning ensemble approach for crude
oil price forecasting. Energy Economics, 66:9–16, 2017.

[33] Huwaida Tagelsir Elshoush and Izzeldin Mohamed Osman. Alert correlation in col-
laborative intelligent intrusion detection systems—a survey. Applied Soft Computing,
11(7):4349–4365, 2011.

66

[34] MITRE Corporation. Common attack pattern enumeration and classification, 2018.
https://capec.mitre.org/data/definitions/1000.html, Accessed 2018-10-29.

[35] Donghyun Shin. A platform for generating anomalous traces under cooperative driving
scenarios. Master’s thesis, University of Waterloo, 2018.

[36] Charlie Miller and Chris Valasek. Remote exploitation of an unaltered passenger
vehicle. In Blackhat USA. IOActive, 2015.

[37] Kelly Rollick, Allan Roczko, and Leslie Mitchell. Combustible gas detector sensor
drift: Catalytic vs. infrared. InTech Magazine, Aug 2010.

[38] M. Seiter, H. J. Mathony, and P. Knoll. Parking assist. In Handbook of Intelligent
Vehicles, pages 829–864. Springer, 2012.

[39] Jonathan Petit, Bas Stottelaar, and Michael Feiri. Remote attacks on automated
vehicles sensors : Experiments on camera and lidar. In Black Hat Europe, pages 1–13,
2015.

[40] Subhojeet Mukherjee, Hossein Shirazi, Indrakshi Ray, Jeremy Daily, and Rose Gam-
ble. Practical DoS attacks on embedded networks in commercial vehicles. In Indrajit
Ray, Manoj Singh Gaur, Mauro Conti, Dheeraj Sanghi, and V. Kamakoti, editors,
Information Systems Security, pages 23–42, Cham, 2016. Springer.

[41] Y. Mo and B. Sinopoli. Secure control against replay attacks. In 2009 47th Annual
Allerton Conference on Communication, Control, and Computing (Allerton), pages
911–918, Sept 2009.

[42] Alexander Bolshev, Jason Larsen, Marina Krotofil, and Reid Wightman. A rising tide:
Design exploits in industrial control systems. In 10th USENIX Workshop on Offensive
Technologies (WOOT 16), Austin, TX, 2016. USENIX Association.

[43] Carlos Moreno, Sebastian Fischmeister, and M. Anwar Hasan. Non-intrusive program
tracing and debugging of deployed embedded systems through side-channel analysis.
In Proc. of the 14th ACM SIGPLAN/SIGBED Conference on Languages, Compilers
and Tools for Embedded Systems (LCTES), pages 77–88, New York, USA, 2013. ACM.

[44] T. T. Y. Lin and D. P. Siewiorek. Error log analysis: statistical modeling and heuristic
trend analysis. IEEE Transactions on Reliability, 39(4):419–432, Oct 1990.

[45] Steven M. Bellovin. Packets found on an internet. SIGCOMM Comput. Commun.
Rev., 23(3):26–31, July 1993.

67

https://capec.mitre.org/data/definitions/1000.html

[46] Abida Haque, Alexandra DeLucia, and Elisabeth Baseman. Markov chain modeling
for anomaly detection in high performance computing system logs. In Proceedings
of the Fourth International Workshop on HPC User Support Tools, HUST’17, pages
3:1–3:8, New York, USA, 2017. ACM.

[47] Farokh Marvasti, Mostafa Analoui, and Mohsen Gamshadzahi. Recovery of signals
from nonuniform samples using iterative methods. IEEE Transactions on Signal Pro-
cessing, 39(4):872–878, 1991.

[48] K. Sauer and J. Allebach. Iterative reconstruction of bandlimited images from nonuni-
formly spaced samples. IEEE Transactions on Circuits and Systems, 34(12):1497–
1506, Dec 1987.

[49] H.G. Feichtinger. Discretization of convolutions and the generalized sampling prin-
ciple. In Progress in Approximation Theory, pages 333–345, Boston; Toronto, 1991.
Academic Press.

[50] Ke Wang and Salvatore J. Stolfo. Anomalous payload-based network intrusion de-
tection. In Erland Jonsson, Alfonso Valdes, and Magnus Almgren, editors, Recent
Advances in Intrusion Detection, pages 203–222, Berlin, Heidelberg, 2004. Springer
Berlin Heidelberg.

[51] Gene H Kim and Eugene H Spafford. Experiences with tripwire: Using integrity
checkers for intrusion detection. Purdue Department of Computer Science Technical
Reports, 1994.

[52] Wojciech Samek, Thomas Wiegand, and Klaus-Robert Müller. Explainable artificial
intelligence: Understanding, visualizing and interpreting deep learning models. ArXiv
Preprint arXiv:1708.08296, 2017.

[53] Bill Chiu, Eamonn Keogh, and Stefano Lonardi. Probabilistic discovery of time se-
ries motifs. In Proceedings of the Ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 493–498. ACM, 2003.

[54] Xiaolei Li, Jiawei Han, Sangkyum Kim, and Hector Gonzalez. Roam: Rule-and motif-
based anomaly detection in massive moving object data sets. In Proceedings of the
2007 SIAM International Conference on Data Mining, pages 273–284. SIAM, 2007.

[55] Grégoire Montavon, Wojciech Samek, and Klaus-Robert Müller. Methods for inter-
preting and understanding deep neural networks. Digital Signal Processing, 2017.

68

[56] National Institute of Standards and Technology. Secure hash standard - fips pub
180-2. NIST Publications, 2002.

[57] Robert Love. Kernel korner: Intro to inotify. Linux Journal, 2005(139):8, 2005.

[58] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A
review and new perspectives. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35(8):1798–1828, 2013.

[59] Jinghui Chen, Saket Sathe, Charu Aggarwal, and Deepak Turaga. Outlier detection
with autoencoder ensembles. In Proceedings of the 2017 SIAM International Confer-
ence on Data Mining, pages 90–98. SIAM, 2017.

[60] Haowen Xu, Wenxiao Chen, Nengwen Zhao, Zeyan Li, Jiahao Bu, Zhihan Li, Ying
Liu, Youjian Zhao, Dan Pei, Yang Feng, et al. Unsupervised anomaly detection via
variational auto-encoder for seasonal kpis in web applications. In Proceedings of the
2018 World Wide Web Conference on World Wide Web, pages 187–196. International
World Wide Web Conferences Steering Committee, 2018.

[61] Christoph Baur, Benedikt Wiestler, Shadi Albarqouni, and Nassir Navab. Deep au-
toencoding models for unsupervised anomaly segmentation in brain mr images. ArXiv
Preprint arXiv:1804.04488, 2018.

[62] Sue Sendelbach and Marjorie Funk. Alarm fatigue: A patient safety concern. AACN
Advanced Critical Care, 24(4):378–386, 2013.

[63] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin.
Liblinear: A library for large linear classification. Journal of Machine Learning Re-
search, 9(Aug):1871–1874, 2008.

[64] Srinivas Mukkamala, Guadalupe Janoski, and Andrew Sung. Intrusion detection using
neural networks and support vector machines. In Neural Networks, 2002. IJCNN’02.
Proceedings of the 2002 International Joint Conference on, volume 2, pages 1702–1707.
IEEE, 2002.

[65] James Cannady. Artificial neural networks for misuse detection. In National Infor-
mation Systems Security Conference, volume 26. Baltimore, 1998.

[66] Jake Ryan, Meng-Jang Lin, and Risto Miikkulainen. Intrusion detection with neural
networks. In Advances in Neural Information Processing Systems, pages 943–949,
1998.

69

[67] Herve Debar, Monique Becker, and Didier Siboni. A neural network component for
an intrusion detection system. In IEEE Symposium on Security and Privacy, pages
240–250, 1992.

[68] Jocelyn Sietsma and Robert JF Dow. Creating artificial neural networks that gener-
alize. Neural Networks, 4(1):67–79, 1991.

[69] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning represen-
tations by back-propagating errors. Nature, 323(6088):533, 1986.

[70] Ajay Singh. A study of the power trace sampling frequency requirements in non-
intrusive program tracing through power consumption monitoring. Master’s thesis,
University of Waterloo, 2018.

[71] Murray Dunne, Giovani Gracioli, and Sebastian Fischmeister. A comparison of data
streaming frameworks for anomaly detection in embedded systems. In International
Workshop on Security and Privacy for the Internet-of-Things, pages 30–33, 2018.

[72] Atmel Corporation. At32uc3a3/a4 series - complete datasheet, 2012. Rev. H-10/12.

[73] Carlos Moreno and Sebastian Fischmeister. Method and apparatus for non-intrusive
program traching with bandwidth reduction for embedded computing systems, 2017.
U.S. Patent Application.

[74] Atmel Corporation. Atmel 8-bit avr microcontroller with 2/4/8k bytes in-system
programmable flash, 2013. Rev.: 2586Q–AVR–08/2013.

[75] Raspberry pi 3 model b - raspberry pi. https://www.raspberrypi.org/products/
raspberry-pi-3-model-b/. Accessed: 2018-10-19.

[76] Download raspbian for raspberry pi. https://www.raspberrypi.org/downloads/
raspbian/. Accessed: 2018-10-19.

[77] Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust, Tully Foote, Jeremy Leibs,
Eric Berger, Rob Wheeler, and Andrew Ng. Ros: an open-source robot operating sys-
tem. In Proc. of the IEEE Intl. Conf. on Robotics and Automation (ICRA) Workshop
on Open Source Robotics, Kobe, Japan, May 2009.

[78] Edwin Olson. Apriltag: A robust and flexible visual fiducial system. In Robotics
and Automation (ICRA), 2011 IEEE International Conference on, pages 3400–3407.
IEEE, 2011.

70

https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/downloads/raspbian/

[79] Xiaoyuan Fan, Liang Du, and Dongliang Duan. Synchrophasor data correction under
gps spoofing attack: A state estimation-based approach. IEEE Transactions on Smart
Grid, 9(5):4538–4546, 2018.

[80] Mauro Conti, Nicola Dragoni, and Viktor Lesyk. A survey of man in the middle
attacks. IEEE Communications Surveys & Tutorials, 18(3):2027–2051, 2016.

[81] Zhendong Su and Gary Wassermann. The essence of command injection attacks in
web applications. In ACM SIGPLAN Notices, volume 41, pages 372–382. ACM, 2006.

[82] Anurag Srivastava, Thomas Morris, Timothy Ernster, Ceeman Vellaithurai, Shengyi
Pan, and Uttam Adhikari. Modeling cyber-physical vulnerability of the smart grid
with incomplete information. IEEE Transactions on Smart Grid, 4(1):235–244, 2013.

[83] Annarita Giani, Vincent H Berk, and George V Cybenko. Data exfiltration and covert
channels. In Sensors, and Command, Control, Communications, and Intelligence
(C3I) Technologies for Homeland Security and Homeland Defense V, volume 6201,
page 620103. International Society for Optics and Photonics, 2006.

[84] Aashish Sharma, Zbigniew Kalbarczyk, R Iyer, and James Barlow. Analysis of cre-
dential stealing attacks in an open networked environment. In Network and System
Security (NSS), 2010 4th International Conference on, pages 144–151. IEEE, 2010.

[85] Adam Hahn, Aditya Ashok, Siddharth Sridhar, and Manimaran Govindarasu. Cyber-
physical security testbeds: Architecture, application, and evaluation for smart grid.
IEEE Transactions on Smart Grid, 4(2):847–855, 2013.

[86] Laurence R Phillips, Bankim Tejani, Jonathan Margulies, Jason L Hills, Bryan T
Richardson, Micheal J Baca, and Laura Weiland. Analysis of operations and cyber
security policies for a system of cooperating flexible alternating current transmission
system (facts) devices. United States Department of Energy Publications, 2005.

[87] Jussipekka Leiwo and Yuliang Zheng. A method to implement a denial of service
protection base. In Australasian Conference on Information Security and Privacy,
pages 90–101. Springer, 1997.

[88] Stephen McLaughlin, Dmitry Podkuiko, and Patrick McDaniel. Energy theft in the
advanced metering infrastructure. In International Workshop on Critical Information
Infrastructures Security, pages 176–187. Springer, 2009.

71

[89] Wenyuan Xu, Ke Ma, Wade Trappe, and Yanyong Zhang. Jamming sensor networks:
attack and defense strategies. IEEE Network, 20(3):41–47, 2006.

[90] Robert Lee, Michael Assante, and Tim Conway. Analysis of the cyber attack on the
ukrainian power grid. Electricity Information Sharing and Analysis Center (E-ISAC),
2016.

[91] Siddharth Sridhar, Adam Hahn, Manimaran Govindarasu, et al. Cyber-physical sys-
tem security for the electric power grid. Proceedings of the IEEE, 100(1):210–224,
2012.

[92] Yilin Mo, Tiffany Hyun-Jin Kim, Kenneth Brancik, Dona Dickinson, Heejo Lee,
Adrian Perrig, and Bruno Sinopoli. Cyber–physical security of a smart grid infras-
tructure. Proceedings of the IEEE, 100(1):195–209, 2012.

72

	List of Tables
	List of Figures
	Introduction
	Background
	Anomaly Detection
	Ensemble Learning
	Diversification
	Diversifying Algorithms
	Combination Techniques
	Deep Learning Based Approaches

	Collaborative Intrusion Detection Systems

	Symptoms of Anomalies
	Continuous Signal Anomaly Symptoms
	Spikes and S-waves
	Drifting
	Noise
	Clipping
	Loss
	Smoothing
	Amplification
	Level Change
	Frequency Change
	Echo/Reflection

	Event Series Anomaly Symptoms
	Event Frequency Change
	Unexpected Event
	Periods of Silence
	Sampled Value Anomaly Symptom

	Anomaly Detectors
	Watermark Detector Example: Hash Detector
	Statistic Detector Example: Spike Detector
	Machine Learning Detector Example: Autoencoder

	Anomaly Aggregators
	Simple Majority Vote Aggregator
	Weighted Majority Vote Aggregator
	Logistic Regression Aggregator
	Probability Sum Aggregator
	Stacked Generalization

	Palisade: Anomaly Detection for Cyber-Physical Systems
	Palisade Requirements
	Palisade Terminology
	Palisade Structure
	Data Acquisition Units
	Software Subsystem

	Case Study
	ADAS Demonstrator
	Experiment Setup
	Anomaly Scenarios
	CAPEC 148 - Content Spoofing
	CAPEC 94 - Man in the Middle
	CAPEC 248 - Command Injection
	CAPEC 548 - Contaminate Resource
	CAPEC 184 - Software Integrity Attack
	CAPEC 125 - Flooding
	CAPEC 130 - Excessive Allocation
	CAPEC 594 - Traffic Injection
	CAPEC 607 - Obstruction
	CAPEC 176 - Configuration Manipulation
	CAPEC 441 - Malicious Logic Insertion

	Channels

	Results and Discussion
	Data
	Algorithm Selection
	Methodology
	Discussion

	Future Work and Conclusion
	Lessons Learned
	Future Work
	Conclusion

	References

