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Abstract

In this thesis, we study the special case of linear optimization to show what may affect
the sensitivity of the optimal value function under data uncertainty. In this special case,
we show that the robust optimization problem with a locally smaller feasible region yields
a more conservative robust optimal value than the one with a locally bigger feasible region.
To achieve that goal, we use a geometric approach to analyze the sensitivity of the optimal
value function for linear programming (LP) under data uncertainty. We construct a family
of proper cones where the strict containment holds for any pair of cones in the family.
We then form a family of LP problems using this family of cones constructed above; the
feasible regions of each pair of LPs in the family holds strict containment, every LP in
the family has the unique optimal solution at the vertex of the cone and has the same
objective function, i.e., every LP in the family shares the same optimal solution and the
same optimal value. We rewrite the LPs so that they reflect the given data uncertainty
and perform local analysis near the optimal solutions where the local strict containment
holds. Finally, we illustrate that an LP with a locally smaller feasible region is more
sensitive than an LP with a locally bigger feasible region.
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Chapter 1

Introduction

Suppose that we want to solve an uncertain linear programming problem (LP), i.e., a
linear program with uncertain data; and, we are given bounds for each element of the
uncertain data. We want to obtain the best possible optimal value in the presence of
data uncertainty. Robust optimization handles such linear programming problems. Robust
optimization tries to find the best uncertainty(perturbation)-immunized solution with given
uncertainty set. Given a linear programming problem, we call an optimal value with no
uncertainty involved a nominal optimal value and call an optimal value with uncertainty
involved a robust optimal value.

We sometimes obtain a robust optimal value that is very close to its nominal optimal
value. In this case, data uncertainty does not play a big role in terms of determining its
optimal value. In this thesis, we want to study the question of why a robust optimal value
may be so well behaved. Similarly, we may obtain a robust optimal value that is far from
its nominal optimal value and want to answer the question of why a robust optimal value
may be poor, more precisely why it is too conservative. We show that the behaviour of
robust optimal value is related to the local geometric structure of the problem. For this, we
construct a family of LPs that share the same objective function and the feasible regions
are of the same structure. At the same time, we have control over the sizes of the feasible
regions.

We achieve the goal of this thesis via sensitivity analysis. Sensitivity analysis tries
to answer how sensitive the optimal value/solution is to small changes in one or more
of the parameters/data of the original problem. We first consider an uncertain linear
programming and formulate its robust counterpart. We then show that the resulting robust
counterpart can be written as a parametric LP. We analyze the sensitivity of the optimal
value function of the parametric form of the robust counterpart. Intuitively speaking, we
want to show that if a nominal optimal solution is determined at a sharp corner of the
feasible region, then its robust optimal value is more sensitive than the case where the
nominal optimal solution is at a fatter corner.

The topic of this thesis lies in the intersection of the polyhedral theory, robust opti-
mization, parametric linear programming and sensitivity analysis.
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This thesis is organized as follows: For the rest of this chapter, we introduce an ele-
mentary example and some notations. In Chapter 2, we introduce some definitions and
lemmas that we need in the later chapters. In particular, the polyhedral theory and the
robust optimization will be extensively used in the later chapters. In Chapter 3, we present
how we build polyhedral cones so that we can control their sizes. We then study properties
of the cones constructed above. We also study relations between two sets based on the
cones generated above. In Chapter 4, we present the main results of this thesis. We first
define two classes of LPs we wish to study their sensitivities. We consider two classes of
LPs such that the part of their feasible regions are the cones constructed in Chapter 3.
In Chapter 5, we experiment the result presented in Chapter 4. In Chapter 6, we conclude
the results presented in this thesis, limitations and further work.

1.1 An Elementary Example

We observe the following example.

Example 1.1.1. Define the following two families of LPs where E is the matrix of ones
and ε ∈ [0, 0.1] :

ψP (ε) = min 〈w̄, x〉
(R(ε, P )) subject to (P − εE)x ≥ p

x ≥ 0,

ψQ(ε) = min 〈w̄, x〉
(R(ε, Q)) subject to (Q− εE)x ≥ q

x ≥ 0,

where

w̄ =

(
0
1

)
, P =

[
−
√

3
2

1
2√

3
2

1
2

]
, Q =

[
−
√

2
2

√
2

2√
2

2

√
2

2

]
, p =

(
1−
√

3
2

1+
√

3
2

)
, q =

(
0√
2

)
.

Figure 1.1.1a shows the feasible regions of (R(0, P )) and (R(0, Q)). We note that the
feasible region of (R(0, Q)) contains the one of (R(0, P )).

(R(0, P )) and (R(0, Q)) both have the same optimal value and the same optimal so-
lution, which are 1 and e, respectively. However, for ε ∈ (0, 0.1], we have the following
relation:

ψP (ε) > ψQ(ε). (1.1.1)

For example, if ε1 = 10−10 and ε2 = 10−2, we have

ψP (ε1) ≈ 1 + 4 · 10−10 > 1 + 2.828 · 10−10 ≈ ψQ(ε1), and
ψP (ε2) ≈ 1 + 5 · 10−1 > 1 + 3.29 · 10−1 ≈ ψQ(ε2).

Figure 1.1.1b shows the computational result of (1.1.1). In this example, we observe that
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(a) The feasible region of (R(0, P ))
contains the one of (R(0, Q)).

(b) ψP (ε) > ψQ(ε), ∀ε ∈ (0, 0.1]

Figure 1.1.1: The optimal value function ψP (ε) is associated with the region filled with
diagonal lines on the LHS. We note that ψP (ε) yields bigger function values than ψQ(ε).

the optimal value of (R(ε, P )) is more sensitive to its change of data than the optimal value
of (R(ε, Q)).

We relate the sensitivity of the optimal value functions to the dual optimal solutions of
the given LPs. We will show in Chapter 4 that ψP (ε) is more sensitive than ψQ(ε), since
the nonzero coordinates of the dual optimal solutions of (R(ε, P )) is bigger than the ones
of (R(ε, Q)).

1.2 Notations

We first explain some notations used in this thesis. We use these notations without further
explanations in later chapters. We extensively use the definitions from [1,10,25].

To represent a part of a matrix, we follow Matlab notations. For example, given a
matrix A, A(:, j) denotes the j-th column of a matrix A. Similarly, A(i, :) denotes the i-th
row of a matrix A. Given a subset of column indices of A, A(:, I) denotes a submatrix A′

of A such that columns of A′ are columns of A associated with I. The rank of A is denoted
by rank(A).

Given a set X, we denote X⊥ the orthogonal complement of X; int(X) denotes the
interior of X and relint(X) denotes the relative interior of X. The null space of X is
denoted by null(X).

We use superscript to denote various vectors. For example, we write wi to denote
different vectors in Rn. However, we use subscript wi, when the meaning is clear. We use
en to denote the vector of all one’s in Rn. However, we often omit the superscript when
the meaning is clear; ei denotes the i-th column of the identity matrix; E is the matrix of
all ones with an appropriate size; and Ball(x, ε) is the ball centered at x with radius ε.

3



Chapter 2

Preliminaries

2.1 Convex Analysis Background

We present some of the background in convex analysis and polyhedral theory needed in
subsequent chapters. In Section 2.1.1, we introduce basic notions of convex analysis and
some related results. In Section 2.1.2, we present basic definitions of general cones and
some examples. In Section 2.1.3, we present some important lemmas in polyhedral theory
used in later chapters of this thesis.

2.1.1 Convex Sets

A reader familiar with the basics of convex sets and extreme points can skip to the next
section.

Definition 2.1.1 (convex combination). A point x in Rn is a convex combination of the
points x1, . . . , xk ∈ Rn, if there exist nonnegative scalars λ1, . . . , λk such that

x =
k∑
i=1

λixi and
k∑
i=1

λi = 1.

If all scalars λ1, . . . , λk are positive, then we call x is a strict convex combination of the
points x1, . . . , xk.

Definition 2.1.2 (convex set). A set X ⊆ Rn is convex if X contains all convex combi-
nations of points in X. Equivalently, X ⊆ Rn is convex if for any two points x1, x2 ∈ X,
the line segment {λx1 + (1− λ)x2 : λ ∈ [0, 1]} with endpoints x1, x2 is contained in X.

Definition 2.1.3 (convex hull). Given a set X ⊆ Rn, the convex hull of X, denoted by
conv(X), is the smallest convex set containing X.

4



Definition 2.1.4 (extreme point). We say that x ∈ X is an extreme point of X if

x = αx1 + (1− α)x2 with α ∈ (0, 1) and x1, x2 ∈ X =⇒ x = x1 = x2.

We let ext(X) denote the set of all extreme points of X.

Lemma 2.1.5 ([28, Theorem 8.11]). 1 Let X be a compact convex set in Rn. Then for any
p ∈ int(X), one can fix a0 ∈ ext(X) and find a1, . . . , an ∈ ext(X), and write p as a convex
combination of {aj}nj=0, with positive coefficient λ0, i.e.,

p =
n∑
j=0

λjaj, with λ ≥ 0, λ0 > 0 and
n∑
j=0

λj = 1.

Lemma 2.1.6. Let X be a compact convex set in Rn and let ext(X) = {x1, . . . , xk}. Then
every point p ∈ int(X) can be written as a strict convex combination of all the extreme
points, i.e.,

p =
k∑
i=1

λixi, for some λ > 0 and
k∑
i=1

λi = 1.

Proof. Let p be an interior point of X. Fix x1 ∈ ext(X) and let J1 be a subset of indices
{1, . . . , k} satisfying |J1| = n+ 1 and 1 ∈ J1. Then, by using Lemma 2.1.5, we can write

p =
∑
j∈J1

λ1
jxj, for some λ1 ∈ Rn+1

+ with
∑
j∈J1

λ1
j = 1 and λ1

1 > 0.

In fact, we can write, by letting λ1
j = 0, j ∈ [k] \ J1,

p =
k∑
j=1

λ1
jxj, for some λ1 ∈ Rk

+ with
k∑
j=1

λ1
j = 1 and λ1

1 > 0.

Similarly, for each i ∈ {1, . . . , k}, we can fix xi ∈ ext(X) and write

p =
k∑
j=1

λijxj, for some λi ∈ Rk
+ with

k∑
j=1

λij = 1 and λii > 0. (2.1.1)

Then adding k equations for each i ∈ {1, . . . , k} of (2.1.1) leads to

kp =
k∑
i=1

k∑
j=1

λijxj =⇒ p =
1

k

k∑
i=1

k∑
j=1

λijxj.

1The statement in [28, Theorem 8.11] is modified. The original statement is precisely: Let A be a
compact convex subset of Rν of dimension n. Then any point in A is a convex combination of at most
n + 1 extreme points. In fact, for any x, one can fix e0 ∈ ext(A) and find e1, . . . , en ∈ ext(A) so x
is a convex combination of {ej}nj=0. If x ∈ relint(A), then x =

∑n
j=0 θjej with θ0 > 0. In particular,

A = conv(ext(A)).
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Since 1
k

∑k
i=1

∑k
j=1 λ

i
j = 1 and each coefficient of xj is positive, p is a strict convex combi-

nation of extreme points of X.

Remark 2.1.7.

1. An interior point of a compact convex set may not have a unique strict convex com-
bination.

2. An interior point of a compact convex set that is written as a strict convex combina-
tion of all extreme points may not use all the extreme points.

Examples are illustrated in Example 2.1.8 below.

Example 2.1.8. Given the set

X =

{(
1
0

)
,

(
0
1

)
,

(
−1
0

)
,

(
0
−1

)}
= {e1, e2,−e1,−e2},

consider the convex set S = conv (X) (See Figure 2.1.1.). It is clear that all elements in

Figure 2.1.1: A convex set with four extreme points in R2.
(

1
2
, 0
)T

is an interior point of
S.

X are extreme points of S.

1.
(

1
2
, 0
)T

does not have a unique strict convex combination of all extreme points since(
1
2
, 0
)T

= 5
8
e1 + 1

8
e2 + 1

8
(−e1) + 1

8
(−e2),

and (
1
2
, 0
)T

= 6
10
e1 + 3

20
e2 + 1

10
(−e1) + 3

20
(−e2).

2. We note that (
1
2
, 0
)T

= 1
2
e1 + 1

4
e2 + 1

4
(−e2),

and the extreme point −e1 is not used to represent
(

1
2
, 0
)T

above.
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Remark 2.1.9. The statement of Caratheodory’s theorem is as follows: Any x ∈ conv(X) ⊂
Rn can be represented as a convex combination of n+ 1 elements of S. In Example 2.1.8,
we note that S is in R2. Hence, Caratheodory’s theorem states that we need at most three

points in S to represent
(

1
2
, 0
)T

as a convex combination of points in S (See Item 2 of
Example 2.1.8.).

2.1.2 General Cones

A reader familiar with basic definitions of cones, polar cones, cone bases and extreme rays
may skip to the next section.

Definition 2.1.10 (cone). A nonempty set S ⊆ Rn is a cone if 0 ∈ S and for every x ∈ S
and λ ≥ 0, λx belongs to S. In other words, a nonempty set S is a cone if, and only if,
0 ∈ S and for every x ∈ S \ {0}, S contains the half line starting from the origin in the
direction x.

Definition 2.1.11 (pointed cone). A cone K is said to be pointed if it does not contain a
line, i.e.,

x,−x ∈ K =⇒ x = 0.

Definition 2.1.12 (pointed cone with vertex ). Given a pointed cone K, a pointed cone
with vertex x is any set of the form x+K.

Definition 2.1.13 (proper cone). A cone K ⊂ Rn is called a proper cone if K is convex,
closed, pointed and has nonempty interior.

Definition 2.1.14 (dual cone). The dual cone K∗ of a set K is

K∗ := {x ∈ Rn : 〈x, y〉 ≥ 0, ∀y ∈ K}.

Definition 2.1.15 (conic combination, conical hull). A conic combination of elements
x1, . . . , xk is an element of the form

∑k
i=1 αixi, where the coefficients αi are nonnegative.

If the coefficients αi are positive, ∀i = 1, . . . , k, then we call
∑k

i=1 αixi a strict conic
combinations of x1, . . . , xk.

The set of all conical combinations from a given nonempty set S ⊂ Rn is the conical
hull of S, denoted by cone(S).

Definition 2.1.16 (base for a cone, e.g., [1]). Let P be a cone in a vector space. A
nonempty convex subset B of P \ {0} is said to be a base for the cone P (or, cone base),
if for each x ∈ P \ {0}, there exists λ > 0 and b ∈ B both uniquely determined such that
x = λb.

7



Lemma 2.1.17 ( [1, Corollary 3.8]). Every closed pointed cone in a finite dimensional
vector space has a compact base.

By the homogeneity of cones, we may assume that a base B for a pointed cone P in a
finite dimensional vector space X is of the form

B = P ∩ {x ∈ X : 〈x, p〉 = α},

for some p ∈ X and α ∈ R (See Figure 2.1.2.). We note that B is a convex compact set.

Figure 2.1.2: An illustration of a cone base in R3: The shaded region is a cone base of the
given cone.

Example 2.1.18. Suppose that P = Rn
+. Then we can choose a base

B = Rn
+ ∩ {x ∈ Rn : 〈e, x〉 = 1},

i.e., if x ∈ Rn
+, then we let λ = 〈e, x〉 and b = 1

λ
x to get the unique representation.

Similarly, if P = Sn+ (i.e., the cone of positive semi-definite matrices), then we can choose

B = Sn+ ∩ {X ∈ Sn+ : 〈I,X〉 = 1} = Sn+ ∩ {X ∈ Sn+ : trace(X) = 1},

i.e., if X ∈ Sn+, then we let λ = 〈I,X〉 and B = 1
λ
X to get the unique representation.

Definition 2.1.19 (ray). Given a vector a ∈ Rn, we denote the half-line generated by a

ray(a) = cone({a}) = {ka : k ≥ 0}.

Definition 2.1.20 (extremal vector , extreme ray). Let P ⊂ Rn be a cone. A nonzero
vector v ∈ P is said to be an extremal vector of P if

x ∈ P and v − x ∈ P =⇒ x = λv,

for some λ ≥ 0. In this case, the half-ray ray(r) is called an extreme ray.
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Example 2.1.21. Given

a1 =

(
−1
1/2

)
, a2 =

(
1/2
1/3

)
, and a3 =

(
0
1

)
,

define P := cone({a1, a2, a3}). Then ray(a1) and ray(a2) are extreme rays of P and a1 and
a2 are extremal vectors of P (See Figure 2.1.3.). In fact, for any λ ∈ R++, λa1, λa2 are
extremal vectors of P .

Figure 2.1.3: The shaded region is cone({a1, a2, a3}).

Definition 2.1.22 (recession cone). The recession cone of the closed convex set C is the
closed convex cone C∞ defined by

C∞ := {d ∈ Rn : x+ td ∈ C, ∀t > 0 and ∀x ∈ C}.

We call each element in C∞ a recession direction.

An extreme direction d, with ‖d‖ = 1, of a convex set is a recession direction of the set
that cannot be represented as a strict conic combination of two distinct recession directions
d1 and d2 with ‖d1‖ = ‖d2‖ = 1.

Lemma 2.1.23 ([25, Theorem 18.5]). Let C be a close convex set containing no lines, and
let S be the set of all extreme points and extreme directions of C. Then C = conv(S).

Definition 2.1.24 (polar cone). Let K be a convex cone. The negative polar cone of K
is

K◦ := {s ∈ Rn : 〈s, x〉 ≤ 0, ∀x ∈ K}.

The positive polar cone of K is

K∗ := {s ∈ Rn : 〈s, x〉 ≥ 0, ∀x ∈ K},

which is precisely the dual cone of K (See Definition 2.1.14.).
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Lemma 2.1.25. Given two cones K1, K2 satisfying K1 ⊆ K2, polarization is order-
reversing, i.e.,

K1 ⊆ K2 =⇒ K◦1 ⊇ K◦2 ,

K1 ⊆ K2 =⇒ K∗1 ⊇ K∗2 .

Proof. Suppose that x ∈ K◦2 . Then 〈s, x〉 ≤ 0, ∀s ∈ K2, by Definition 2.1.24. Since K2

contains K1, we have 〈u, x〉 ≤ 0, ∀u ∈ K1. Hence x ∈ K◦1 , by Definition 2.1.24 again.
Replacing ≤ with ≥ in the preceding proof gives the proof for the dual cone.

2.1.3 Polyhedral Theory

In the previous section, we studied some definitions of general cones. In this section, we
further study a special class of cones, namely, the polyhedral cones.

Definition 2.1.26 (polyhedral cone). A set P ⊆ Rn is a polyhedral cone if P is the
intersection of a finite number of halfspaces containing the origin on their boundaries.
That is, P := {x ∈ Rn : Ax ≥ 0} for some A ∈ Rm×n.

Definition 2.1.27 (finitely generated cone). A set P ⊆ Rn is a finitely generated cone if
P is the convex cone generated by a finite set of vectors r1, . . . , rk, for k ≥ 1. We write
P = cone

(
{r1, . . . , rk}

)
, and we say that r1, . . . , rk are the generators of P . If R is the

n× k matrix with columns r1, . . . , rk,

cone
(
{r1, . . . , rk}

)
= {x ∈ Rn : ∃λ ≥ 0 such that x = Rλ}.

Lemma 2.1.28 ([10, Theorem 3.11], Minkowski, Weyl). A subset of Rn is a finitely gen-
erated cone if, and only if, it is a polyhedral cone.

We can also make a statement that resembles Lemma 2.1.6 in terms of proper polyhedral
cones. We first present a lemma on the cone base of a cone.

Lemma 2.1.29 ([1, Theorem 1.48]). Let B be a base of a cone K. Then a vector b ∈ B
is an extremal vector if and only if b is an extreme point of the convex set B.

With Lemma 2.1.17 and Lemma 2.1.29, we can state the cone version of Lemma 2.1.6. In
other words, an interior point in a proper cone can be written as a strict convex combination
of its extremal vectors.

Lemma 2.1.30. Let K be a pointed cone generated by {ai}i=1,...,k, i.e., K = cone({ai}i=1,...,k).
Assume that each ai, i = 1, . . . , k is an extremal vector of K. Then a point p ∈ int(K)
can be written as a strict conic combination of extremal vectors of K, i.e.,

p =
k∑
i=1

λia
i, with λi > 0,∀i = 1, . . . , k.
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Proof. By Lemma 2.1.17, we can choose a compact convex cone base B for K. Since K
has a finite number of extremal vectors, B has a finite number of extreme points in B, say
B = {b1, . . . , bk}, by Lemma 2.1.29. Since p ∈ int(K), γp = p̄ ∈ int(B), for some γ > 0.
Then, by Lemma 2.1.6,

p̄ =
k∑
i=1

µib
i, for some µ > 0 and

k∑
i=1

µi = 1.

Let λi = (1/γ)µi, for all i = 1, . . . , k. Then, we have

p =
k∑
i=1

λib
i, for some λ > 0.

In Section 3.1, we will construct a polyhedral cone P with specified properties. The
cone is constructed by generating its extreme rays and is defined by the convex hull of these
extreme rays, i.e., P = cone({pi : i ∈ I}), where I is the set of indices of extreme rays.
By Lemma 2.1.28, we know that we need a finite number of extreme rays to construct
a polyhedral cone. Depending on the number of its extreme rays, the cone can be a
nondegenerate cone or a degenerate cone. In the rest of this section, we explore how the
number of extreme rays of a cone determines its nondegeneracy/degeneracy.

Definition 2.1.31 (nondegenerate/degenerate polyhedral cone). A proper cone P formed
from an intersection of halfspaces is said to be nondegenerate, if exactly n distinct halfs-
paces are active at its vertex. If there are more than n active halfspaces at its vertex, then
we call P degenerate.

Figure 2.1.4: A non-degenerate cone(LHS) and a degenerate cone(RHS) in R3.

Given a cone P , knowing all extreme rays of P makes it very easy to obtain its polar
cone.

Lemma 2.1.32 ([1, Theorem 3.36]). Let a polyhedral cone P be generated by its extremal
vectors {ai}i∈I . Then aside from scalar multiples, the dual cone P ∗ is precisely the inter-
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section of halfspaces determined by the same ai’s, i.e.,

P ∗ = {y ∈ Rn : 〈ai, y〉 ≥ 0, ∀i ∈ I}.2

Proof. Suppose that we are given any points

x ∈ cone({ai}i∈I) and y ∈ {y ∈ Rn : 〈ai, y〉 ≥ 0, ∀i ∈ I}.

Then, for some λ ≥ 0,

〈x, y〉 =

〈
k∑
i=1

λia
i, y

〉
=

k∑
i=1

λi
〈
ai, y

〉
≥ 0.

Hence, {y ∈ Rn : 〈ai, y〉 ≥ 0, ∀i ∈ I} ⊂ P ∗.

To show the equality, suppose to the contrary that there exists

y′ ∈ P ∗ \ {y ∈ Rn : 〈ai, y〉 ≥ 0, ∀i ∈ I}.

Then there exists j ∈ I such that 〈aj, y′〉 < 0. Note that 〈aj, y′〉 ≥ 0 since aj ∈ P . Hence,
we have 0 ≤ 〈aj, y〉 < 0 and this yields a contradiction.

A set {x ∈ Rn : 〈ai, x〉 ≤ bi, 〈aj, x〉 = bj, i ∈ I, j ∈ J , for some I,J } is said to be in
minimal representation for P if all its constraints are irredundant. The following lemma is
written with polyhedra. Since cones are polyhedra, Lemma 2.1.33 still works with cones.
Lemma 2.1.33 shows that there is a unique representation of the dual cone P ∗, up to scalar
multiples.

Lemma 2.1.33 ([10, Corollary 3.31]). Let P be a full-dimensional polyhedron and let
Ax ≤ b be a minimal representation of P . Then Ax ≤ b is uniquely defined up to scaling,
i.e., up to multiplying inequalities by a positive scalar.

In this thesis, we assume that the full-dimensional polyhedral cones are given in their
minimal representations. By Lemma 2.1.33, we may assume that each normal vector ai to
the halfspace {x ∈ Rn : 〈ai, x〉 ≥ 0} is of length 1.

Let {pj}j∈J be the set of extremal vectors of the dual cone, (cone({ai}i∈I))
∗
. Then,

Table 2.1.1 is the consequence of Lemma 2.1.32. We observe from Table 2.1.1 that each
extremal vector of the cone P gives a normal vector of a half-space determining its dual
cone P ∗. In other words, it is very easy to find halfspaces determining a cone as long as we
know the extremal vectors of its dual cone. Similarly, if we know the extremal vectors of
the dual cone, we can easily find P as an intersection of halfspaces. The following example

2The statement in Lemma 2.1.32 is modified. The original statement in [1, Theorem 3.36] is precisely:
Let a polyhedral cone P is generated by the minimal set of inequalities {(ai)Tx ≥ 0 : i ∈ 1, . . . , l}. Aside
from scalar multiples, its inequalities are precisely the ones given by any collection of the l extremal vectors
that generate the dual cone P ∗.
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Cone P P ∗

Extremal vectors a1, . . . , ak p1, . . . , pj

Minimal set of inequalities p1, . . . , pj a1, . . . , ak

Table 2.1.1: Conic duality

illustrates how easily we can obtain the halfspace description of a cone once we know all
extremal vectors of the primal and dual cones.

Example 2.1.34. Given the vectors in R3,

a1 =

2/
√

5

1/
√

5
0

 , a2 =

0
1
0

 , a3 =

0
0
1

 , and a4 =

−2/3
2/3
1/3

 ,

define P := cone({a1, . . . , a4}). Then by Lemma 2.1.32, we have

P ∗ = {x ∈ R3 : 〈ai, x〉 ≥ 0, i = 1, . . . 4}.

The extremal vectors of P ∗ are given by

p1 =

0
0
1

 , p2 =

1/
√

5
0

2/
√

5

 , p3 =

1/
√

2

1/
√

2
0

 , and p4 =

−1/
√

5

2/
√

5
0


(We are going to see how to obtain extremal vectors of the dual cone in Algorithm 2.1.1
later in this section.). Then by Lemma 2.1.32 again, the dual cone of P ∗ is

P ∗∗ = {x ∈ R3 : 〈pi, x〉 ≥ 0, i = 1, . . . 4}.

Therefore, we have

cone({a1, . . . , a4}) = P = P ∗∗ = {x ∈ R3 : 〈pi, x〉 ≥ 0, i = 1, . . . 4}.

See Figure 2.1.5 for an illustration.

The following lemma shows a characterization for an extremal vector of a pointed
polyhedral cone.

Lemma 2.1.35 ([10, Theorem 3.35]). Let P be a pointed polyhedral cone and let ray(r)
be a ray in P . Then r is an extremal vector of P if, and only if, r satisfies n − 1 linear
independent constraints of Ax ≥ 0 with equality.

An extremal vector of a pointed polyhedral cone P := {x ∈ Rn : Ax ≥ 0}, with
A ∈ Rm×n, can be obtained by using Lemma 2.1.35. We assume that P is in its minimal
representation, i.e., all halfspaces of P are irredundant.
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Figure 2.1.5: The solid black lines represent P = cone({a1, . . . , a4}) and the red dashed
lines represent P ∗ = cone({p1, . . . , p4}).

1. We choose n − 1 linearly independent rows of A and form a (n − 1) × n submatrix
A′ of A as follows:

A′ =

 (a1)T

...
(an−1)T

 .
2. We compute the null space of A′. Then we have

null(A′) = {kp : k ∈ R}, for some p ∈ Rn.

(Note that dim(null(A′)) = 1, since the size of A′ is (n − 1) × n and the rows of A′

are linearly independent.)

3. We need to check the feasibility of p. This process is necessary as p might not be a
part of the cone P :

(a) If Ap ≥ 0, then p is an extremal vector.

(b) If Ap ≤ 0, then −p is an extremal vector of P .

If p satisfies neither Ap ≤ 0 nor Ap ≥ 0, p cannot be made to be feasible to Ax ≥ 0.

The above process Item 1-3 was to obtain just one extremal vector. Hence we need to
find all possible n − 1 linearly independent rows of A and repeat the above process Item
1-3 for each submatrix of A that has n − 1 linearly independent rows of A. We present
this in Algorithm 2.1.1 below.

As we are able to obtain all extremal vectors of a pointed polyhedral cone of the form
{x ∈ Rn : Ax ≥ 0} using Algorithm 2.1.1, we can write the dual cone K∗ = {x ∈ Rn :
〈ai, x〉 ≥ 0, i = 1, . . . , k} as the convex hull of its extreme rays, say K∗ = cone ({pj}j∈J).
Then by Lemma 2.1.32 again, we obtain

K = K∗∗ = {x ∈ Rn : 〈pj, x〉 ≥ 0, j ∈ J}.
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Algorithm 2.1.1: Compute Extremal Vectors of a Cone

Input: A pointed polyhedral cone C = {x ∈ Rn : Ax ≥ 0}, where A ∈ Rm×n

with m ≥ n.
Make a list L ∈ RmCn−1×n−1 of all possible combinations of {1, . . . ,m} taken n− 1
at a time, where each row of L contains a combination.
for i = 1 : mCn−1 do
I := L(i, :)
Ā := A(I, :)
if rank

(
Ā
)

= n− 1 then
compute p = null

(
Ā
)

normalize p
if Ap ≥ 0 then

save p . p is an extremal vector of C.
end if
if Ap ≤ 0 then

save −p . −p is an extremal vector of C.
end if

end if
end for
Return: A matrix P with each row corresponds to an extremal vector (pi)T of C.

Hence, by using Algorithm 2.1.1 and Lemma 2.1.32, we can convert the cone defined by
the convex hull of its extreme rays into the cone defined by the intersection of halfspaces.
We present a diagram of this procedure in Table 2.1.2:

K = cone({ai}i∈I)
Lemma 2.1.32−−−−−−−−→ K∗ = {x ∈ Rn : 〈ai, x〉 ≥ 0, i ∈ I}

= ↓ Algorithm 2.1.1

K∗∗ = {x ∈ Rn : 〈pj, x〉 ≥ 0, j ∈ J} Lemma 2.1.32←−−−−−−−− K∗ = cone({pj}j∈J)

Table 2.1.2: Starting from K = cone({ai}i∈I), we can convert K as an intersection of
halfspaces.

We now present a lemma on the number of extreme rays.

Lemma 2.1.36. If P = {x ∈ Rn : Ax ≥ 0} is a proper nondegenerate cone, then there are
exactly n extreme rays in P .

Proof. Suppose that P is nondegenerate. Then the intersection of exactly n distinct half-
spaces {x ∈ Rn : (ai)Tx ≤ 0, i = 1, . . . , n} determine the cone P . Let (ai)T be the i-th
row of A. Then there are exactly

(
n
n−1

)
one-dimensional null spaces determined by n − 1
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halfspaces. Suppose without loss of generality that A′ is obtained by removing the last row
of A. Let d be the basis of null(A′). Then we get

Ad =

[
A′

(an)T

]
d =

[
A′d
〈an, d〉

]
=

[
0

〈an, d〉

]
.

Therefore, d must satisfy either 〈an, d〉 > 0 or 〈an, d〉 < 0. If 〈an, d〉 > 0, d is a feasible
extremal vector. If 〈an, d〉 < 0, we obtain 〈an,−d〉 > 0 and hence −d is an extremal vector.
Therefore, every n−1 of n halfspaces determine an extreme ray of P . Thus, P has exactly
n extreme rays.

Corollary 2.1.37. If a cone P is the convex hull of exactly n extreme rays, then P is
nondegenerate.

Proof. Suppose that P = cone ({ai}i=1,...,n), where each ai, i = 1, . . . , n, is an extremal
vector of P . Then by Lemma 2.1.32, the dual cone P ∗ is

{x ∈ Rn : 〈ai, x〉 ≥ 0, i = 1, . . . , n}.

By Lemma 2.1.36, the dual cone is the convex hull of exactly n extreme rays. Denote each
extremal vector by pi. Then, by the Lemma 2.1.32 again,

P ∗∗ = {x : 〈pi, x〉 ≥ 0, i = 1, . . . , n}.

Thus, P is a non-degenerate cone.

Corollary 2.1.38. If P is proper and nondegenerate, then so is P ∗.

Proof. It is clear by the proof of Corollary 2.1.37.

2.2 The Generalized Gradient

This section contains contents from Section 2.1 in [9]. In this section, we work with an
arbitrary Banach space X, i.e., a complete normed space.

Definition 2.2.1 (locally Lipschitz near x). Let Y be a subset of X. Let f : Y → R be a
given function, and let x ∈ Y ⊆ X. The function f is said to be locally Lipschitz near x
if there exists a scalar K and a positive number ε such that the following holds:

|f(y′′)− f(y′)| ≤ K‖y′′ − y′‖, ∀y′′, y′ ∈ Ball(x, ε) ∩ Y.

Intuitively speaking, when a function f is locally Lipschitz near x, the function values
near x cannot be fluctuating too wildly.
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Remark 2.2.2. We want to point out that ‘locally Lipschitz near x’ and ‘locally Lipschitz
at x’ are not the same notion. A function f : Y → R is said to be locally Lipschitz at
x ∈ Y if

|f(x)− f(y)| ≤ K‖x− y‖, ∀y ∈ Ball(x, ε) ∩ Y.

While ‘locally Lipschitz near x’ implies ‘locally Lipschitz at x’, however the other direction
does not hold (See Example 2.2.3.). Hence, ‘locally Lipschitz near x’ is a stronger property
than ‘locally Lipschitz at x’.

Example 2.2.3. Consider the function f : R→ R (See Figure 2.2.1.)

Figure 2.2.1: A function that is locally Lipschitz at 0, but not locally Lipschitz near 0

f(x) =

{
x2 sin

(
1
x2

)
, if x 6= 0,

0 , if x = 0.

We note that f(x) is differentiable at all x ∈ R. In particular, f ′(0) = 0, since limh→0

(h2 sin(1/h2)) /h = 0. Hence, by the definition of differentiability, we have

∀ε > 0,∃δ > 0 such that |h| < δ =⇒
∣∣∣∣f(h)− f(0)

h

∣∣∣∣ < ε.

In other words, there exists δ > 0 such that |f(h)− f(0)| < 1 · |h|. Thus, f(x) is Lipschitz
continuous at 0.

Suppose that f(x) is Lipschitz continuous near 0. Then there exists ε > 0 such that
∀x′′, x′ ∈ (−ε, ε), we have |f(x′′) − f(x′)| ≤ L|x′′ − x′|, for some L. Let x = 1/

√
2nπ + δ

and y = 1/
√

2nπ such that 0 < x < y < ε. We note that

sin

(
1

y2

)
= 0 and x− y =

√
2nπ −

√
2nπ + δ√

2nπ
√

2nπ + δ
.
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Then, we have

|f(x)− f(y)| =
∣∣∣x2 sin

(
1
x2

)
− y2 sin

(
1
y2

)∣∣∣
=
∣∣x2 sin

(
1
x2

)∣∣
=
∣∣ 1

2nπ+δ
sin(2nπ + δ)

∣∣
=

∣∣∣∣sin(2nπ + δ)

√
2nπ√

2nπ + δ(
√

2nπ −
√

2nπ + δ)

√
2nπ −

√
2nπ + δ√

2nπ
√

2nπ + δ

∣∣∣∣
≤
∣∣∣∣sin(2nπ + δ)

√
2nπ√

2nπ + δ(
√

2nπ −
√

2nπ + δ)

∣∣∣∣ |x− y|
=

∣∣∣∣sin(2nπ + δ)

√
2nπ

(√
4n2π2 + 2δnπ + 2nπ + δ

)
−2δnπ − δ2

∣∣∣∣ |x− y|
≤ L |x− y| .

However, letting n → ∞ yields a contradiction. Thus, f(x) is not Lipschitz continuous
near 0.

The conventional directional derivative of f at x in the direction d is defined as

f ′(x; d) := lim
t↓0

f(x+ td)− f(x)

t
.

A reader may refer to [18, Section D.1.1] for more arguments on the directional derivative.

We define the generalized directional derivative of a nonsmooth function as well.

Definition 2.2.4. (generalized directional derivative) Let f be locally Lipschitz near x,
and let v be any other vector in X. The generalized directional derivative of f at x in the
direction v is given by

f ◦(x; v) := lim sup
y→x,λ↓0

f(y + λv)− f(y)

λ

(
= lim

λ↓0
sup

y∈Ball(0,δ),δ∈(0,λ)

f(x+ y + δv)− f(x+ y)

δ

)
.

Definition 2.2.5 (generalized gradient). The generalized gradient of f at x is

∂f(x) := {ξ ∈ X∗ : f ◦(x; v) ≥ 〈v, ξ〉, ∀v ∈ X},

where X∗ is the dual space of X.

Example 2.2.6. Let f be a real valued function on R (See Figure 2.2.2.):

f(x) =

{
2x , if x ≥ 0,
−1

2
x , if x < 0.

If x > 0, then we have
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Figure 2.2.2: A nonsmooth function on R.

f ◦(x; v) = lim sup
y→x,t↓0

2(y + tv)− 2y

t
= 2v, and ∂f(x) = {2}.

If x < 0, then we have

f ◦(x; v) = lim sup
y→x,t↓0

−1/2(y + tv) + 1/2y

t
= −1

2
v, and ∂f(x) = {−1/2}.

Now suppose that x = 0. If v ≥ 0, then we have

f ◦(x; v) = lim
t↓0

sup
|y|<δ,δ∈(0,t)

f(y + δv)− f(y)

δ
= lim

t↓0

2δv

δ
= 2v,

and 2v ≥ ξv implies that 2 ≥ ξ. If v < 0, we have

f ◦(x; v) = lim
t↓0

sup
|y|<δ,δ∈(0,t)

f(y + δv)− f(y)

δ
= lim

t↓0

−1/2δv

δ
= −1

2
v,

and −1/2v ≥ ξv implies that −1/2 ≤ ξ. Thus, by Definition 2.2.5, we have ∂f(x) =
[−1/2, 2].

We introduced Example 2.2.6 for illustrative purposes. In practice, it is not easy to
compute the generalized gradients. Hence, we introduce the following characterization
between the generalized directional derivative and the generalized gradient for later use.

Proposition 2.2.7 ([9, Proposition 2.1.2]). Let f be Lipschitz continuous near x ∈ X.
Then, for every v in X,

f ◦(x; v) = max {〈ξ, v〉 : ξ ∈ ∂f(x)} .

Lemma 2.2.8. If a function f is continuously differentiable at x, then ∂f(x) = {∇f(x)},
i.e., ∂f(x) is a singleton.
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2.3 Linear Programming

In this section, we introduce some basic definitions and lemmas related to linear program-
ming theory. We follow the approach from [17]. A reader familiar with the basics of linear
programming can skip to the next section.

Definition 2.3.1 (linear programming (LP)). A linear programming (LP) is the problem
of maximizing or minimizing an affine function subject to a finite number of linear equality
and/or inequality constraints.

Given a minimization LP denoted (P), we call a vector x a feasible solution if x satisfies
all the constraints of (P). If the objective value of a feasible solution x∗ is at least as small
as any other feasible solution, then we call x∗ an optimal solution to (P). An LP is said to
be in standard equality form (SEF), if it is of the form

(SEF)
maxx 〈c, x〉+ z̄

subject to Ax = b ∈ Rm

x ∈ Rn
+,

where z̄ is a scalar in R, and Below we use the given linear system in (SEF) and assume
that the matrix A ∈ Rm×n has linearly independent rows. In addition, we refer to a
polyhedron that is formed from the constraints in (SEF).

Given a subset B of column indices of A ∈ Rm×n, let AB be the matrix formed by
columns A(:, i) for all i ∈ B.

Definition 2.3.2. (basis, basic/nonbasic variable) Given the linear system Ax = b as in
(SEF), we say that a set of column indices B forms a basis, if the matrix AB is square
and non-singular. Then, the variables xj, j ∈ B are said to be basic; and the variables
xj, j ∈ N := {1, . . . , n} \B, are said to be nonbasic.

Definition 2.3.3 (basic solution!basic feasible solution). A vector x̄ is said to be a basic
solution of Ax = b for a basis B, if

Ax̄ = b and x̄N = 0.

x̄ is called a basic feasible solution, if x̄ ≥ 0.

Definition 2.3.4 (degenerate/nondegenerate basic solution). Given the polyhedron {x ∈
Rn : Ax = b, x ≥ 0} with A ∈ Rm×n, let x̄ be a basic solution. The vector x̄ is said to be a
degenerate basic solution, if more than n−m of the coordinates of x̄ are zero. If the basic
solution x̄ has exactly n−m of nonzero coordinates, x̄ is said to be a nondegenerate basic
solution.
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Readers not familiar with duality may refer to [7, Chapter 5] or [17, Chapter 4]. In
this thesis we concentrate on two primal-dual pairs. We list two pairs of primal-dual LPs,
which we will use frequently, the standard and symmetric forms, respectively, e.g., [22]:

min 〈c, x〉 max 〈b, y〉
subject to Ax = b subject to ATy ≤ c

x ≥ 0

min 〈c, x〉 max 〈b, y〉
subject to Ax ≥ b subject to ATy ≤ c

x ≥ 0 y ≥ 0

The following strong duality theorem follows from standard LP duality theorems in
texts on LP, see e.g., [22].

Theorem 2.3.5 (primal-dual strong duality for LP). Let (P) and (D) be a feasible primal-
dual pair. Then there exist optimal solutions x̄ of (P) and ȳ of (D). Moreover, the objective
value with x̄ in (P) equals the objective value with ȳ in (D).

Given a minimization LP(P ) min{〈c, x〉 : Ax ≥ b, x ≥ 0}, we denote

Argmin{〈c, x〉 : Ax ≥ b, x ≥ 0}

as the set of optimal solutions to (P ). Similarly, given a maximization LP(D) max{〈b, y〉 :
ATy ≤ c, y ≥ 0}, we denote

Argmax{〈b, y〉 : ATy ≤ c, y ≥ 0}

as the set of optimal solutions to (D).

There are many interesting statements involving primal-dual pairs of LPs. For exam-
ple, primal-dual strong duality holds for any primal-dual LP pair as long as one of them
has a finite optimal value. In fact, the optimal values of the pairs are always the same
unless both are infeasible. The primal LP has Slater points if, and only if, the dual optimal
set is bounded. One can never find a primal-dual pair in standard form where both have
bounded feasible regions.

2.4 Linear Robust Optimization Theory

Robust optimization is a field of optimization that tries to find the best uncertainty
(perturbation)-immunized solution with given uncertainty set. A candidate solution x
needs to satisfy all possible realizations of uncertain data. We call the set of all uncertain
data an uncertainty set. Usually, the uncertainty set contains infinitely many elements
and hence we can have infinitely many constraints. Such systems are called semi-infinite
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systems. (If the uncertainty set has finitely many elements, then we generally reduce to a
finite constrained problem.) It is important to convert the infinite system of constraints to
a finite system of inequalities and a finite number of variables. That is, we wish to convert
the semi-infinite system into a tractable form.

In Section 2.4.1, we introduce some basic definitions of robust optimization theory. In
Section 2.4.2, we show how to convert a semi-infinite system into a tractable system with
box uncertainty.

2.4.1 Definitions

We follow the definitions and the preliminaries from [6].

Definition 2.4.1 (uncertain linear programming). An uncertain linear programming prob-
lem is a collection

(LPU)
{

min
x
{〈c, x〉+ d : Ax ≤ b}

}
(c,d,A,b)∈U

of LP problems minx {〈c, x〉+ d : Ax ≤ b} with a common structure (i.e., with the same
number of constraints and the same number of variables) with the data varying in a given
uncertainty set U .

We assume that the uncertainty set U is affinely parametrized by a perturbation vector
ζ varying in a given perturbation set Z, i.e.,

U =

{
(c, d, A, b) :

[
cT d
A b

]
=

[
cT0 d0

A0 b0

]
+

L∑
`=1

ζ`

[
cT` d`
A` b`

]
for ζ ∈ Z

}
.

Here, (c0, d0, A0, b0) is the nominal data given in (LPU). We may partition the uncertainty
set U as follows:

U = UA,b × Uc,d,

where UA,b := {(A, b) : (A, b, c, d) ∈ U} and Uc,d := {(c, d) : (A, b, c, d) ∈ U}.

Definition 2.4.2 (robust feasible). A vector x̄ ∈ Rn is a robust feasible solution to (LPU),
if it satisfies all realizations of the constraints from the uncertainty set UA,b. We denote
FU(A, b) as the set of robust feasible solutions (robust feasible set), i.e.,

FU(A, b) := {x ∈ Rn : Ax ≤ b, ∀(A, b) ∈ UA,b}.

Definition 2.4.3 (robust counterpart). The robust counterpart of an uncertain LP prob-
lem (LPU) is the optimization problem

p∗RC = min
x

sup
(c,d,A,b)∈U

{〈c, x〉+ d : Ax ≤ b}

= min
x∈FU (A,b)

sup {〈c, x〉+ d : (c, d) ∈ Uc,d}
(2.4.1)
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of minimizing the robust value of the objective over all robust feasible solutions to the
uncertain problem.

An optimal solution to the robust counterpart is called a robust optimal solution to
LPU and the optimal value of the robust counterpart is called the robust optimal value of
LPU . The meaning of the robust counterpart (2.4.1) is that we are looking for a solution
that gives the best possible guaranteed value. The word best corresponds to min, and the
word guaranteed corresponds to sup.

2.4.2 Reformulation of LP with Box Uncertainty

In this section, we will explore how a linear semi-infinite system

Ax ≤ b, ∀(A, b) ∈ UA,b

can be reformulated as a system of finite number of inequalities and variables under box
uncertainty.

We first focus on a single uncertainty-affected linear inequality 〈a, x〉 ≤ β, x ∈ Rn. We
let 〈a0, x〉 ≤ β0 be a single nominal constraint of Ax ≤ b. Given an uncertainty set

U :=

{
[a; β] =

[
a0; β0

]
+

L∑
`=1

ζ`
[
a`; β`

]
, for some ζ = (ζ`) ∈ Z

}
, (2.4.2)

we want to represent the family of linear inequalities

{〈a, x〉 ≤ β}(a,β)∈U

using a finite number of inequalities and a finite number of variables. Note that in (2.4.2),
elements in U are parametrized by the set Z, which we call the perturbation set.

Let the perturbation set be defined as

Z := Box1 :=
{
ζ ∈ RL : ‖ζ‖∞ ≤ 1

}
.
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Then, we have

x is robust feasible ⇐⇒ aTx ≤ β, ∀[a; β] ∈

{
[a0; β0] +

L∑
`=1

ζ`
[
a`; β`

]
, ζ ∈ Z

}

⇐⇒
[
a0
]T
x+

L∑
`=1

ζ`
[
a`
]T
x ≤ β0 +

L∑
`=1

ζ`β
`, ∀ζ ∈ {ζ : ‖ζ‖∞ ≤ 1}

⇐⇒
L∑
`=1

ζ`

[[
a`
]T
x− β`

]
≤ β0 −

[
a0
]T
x, ∀(ζ : |ζ`| ≤ 1, ` = 1, . . . , L)

⇐⇒ max
−1≤ζ`≤1

[
L∑
`=1

ζ`

[[
a`
]T
x− β`

]]
≤ β0 −

[
a0
]T
x

⇐⇒
L∑
`=1

∣∣∣[a`]T x− β`∣∣∣ ≤ β0 −
[
a0
]T
x

⇐⇒
[
a0
]T
x+

L∑
`=1

∣∣∣[a`]T x− β`∣∣∣ ≤ β0

⇐⇒
[
a0
]T
x+

L∑
`=1

∣∣∣[a`]T x− β`∣∣∣︸ ︷︷ ︸
u`

≤ β0

⇐⇒
[
a0
]T
x+

L∑
`=1

u` ≤ β0 and − u` ≤
[
a`
]T
x− β` ≤ u`, ` = 1, . . . , L.

(2.4.3)

Note that we started with a semi-infinite system of inequalities and ended up with a system
of linear inequalities with a finite number of constraints and a finite number of variables
(though there was some dramatic increase in the number of constraints and variables.).

Remark 2.4.4. A robust counterpart can change its character. The class of problem that
a robust counterpart lies in depends on its perturbation set. For example, if the given
perturbation set is an ellipsoid, the resulting constraint of the robust counterpart is a conic
quadratic constraint. See [16, page 5] for a summary.

We considered a single linear inequality so far. Now suppose that more than one linear
inequality of Ax ≤ b are uncertain and each uncertain inequality is associated with its own
uncertainty set

Ui =

{
[ai; bi] =

[
a0
i ; b

0
i

]
+

L∑
`=1

ζ`
[
a`i ; b

`
i

]
: ζ ∈ Zi

}
,

where [a0
i ; b

0
i ] is the data of the i-th linear inequality of Ax ≤ b. We repeat (2.4.3) for each

uncertain inequality. We note that each reformulation will require additional variables, u’s.
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Robust Counterpart of a Special Case

Given a linear inequality 〈a, x〉 ≤ β, suppose that each coefficient of a is uncertain and is
known to vary in the interval [−ε, ε], i.e.,

〈ã, x〉 ≤ β, ∀ãi ∈ [ai − ε, ai + ε], ∀i ∈ [n]. (2.4.4)

Then the robust counterpart of (2.4.4) can be rewritten as

max {〈ã, x〉 : ãi ∈ [ai − ε, ai + ε], ∀i ∈ [n]} ≤ β. (2.4.5)

We may introduce additional variables and turn the semi-infinite constraint (2.4.5) into a
finite system of linear deterministic inequalities as shown in (2.4.3). However in a special
case, we have a simpler way to reformulate (2.4.5). Rewriting (2.4.5) gives

〈a, x〉+ max
{
〈u, x〉 : u ∈ {y : ‖y‖∞ ≤ ε}

}
≤ β. (2.4.6)

We use the notion of dual norm to convert (2.4.6).

Definition 2.4.5 (dual norm). Let ‖ · ‖ be an arbitrary norm on Rn. The dual norm ‖ · ‖∗
of ‖ · ‖ is defined by

‖s‖∗ := max{〈s, x〉 : ‖x‖ ≤ 1}.

It is well-known that the dual norm of the `∞ norm is the `1 norm:

‖x‖∗∞ = ‖x‖1.

Therefore, we have

max {〈u, x〉 : u ∈ {y : ‖y‖∞ ≤ ε}} = max {〈u, x〉 : u ∈ ε{y : ‖y‖∞ ≤ 1}}
= ε ·max {〈u, x〉 : u ∈ {y : ‖y‖∞ ≤ 1}}
= ε‖x‖∗∞
= ε‖x‖1.

Hence, (2.4.6) becomes
〈a, x〉+ ε‖x‖1 ≤ β.

If we impose nonnegativity on the variable x, we have

〈a, x〉+ ε〈e, x〉 ≤ β. (2.4.7)

It is easy to see that if the given inequality is of the form aTx ≥ β (i.e., with the opposite
inequality), its robust counterpart is

min
{
〈ã, x〉 : ãi ∈ [ai − ε, ai + ε], ∀i ∈ [n]

}
≥ β, (2.4.8)

which is equivalent to
〈a, x〉 − ε〈e, x〉 ≥ β. (2.4.9)
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We note that if a = εe and β > 0, (2.4.9) is violated. In this case, x is not robust feasible
since x does not satisfy all possible realizations of uncertain data. We will frequently
make use of (2.4.7) and (2.4.9) later. We also note that (2.4.7) and (2.4.9) are in a nice
parametric form.

Optimistic Counterpart

The contents in this section are not needed until Section 4.5.4. Readers may want to come
back to this section later.

Given an uncertainty set U , define the following LP(P ):

(P )
min
x

g(x)

subject to fi(x;ui) ≥ 0, i = 1, . . . ,m, ui ∈ U , x ∈ Rn.
(2.4.10)

Definition 2.4.6 (optimistic feasible solution, [4]). A vector x is an optimistic feasible
solution of (P ) if it satisfies the constraints for at least one realization of the uncertainty
set. That is, x is an optimistic feasible solution if, and only if, for every i = 1, . . . ,m,
fi(x;ui) ≥ 0 for some ui ∈ U .

The optimistic counterpart of problem (P ) consists of minimizing the best possible
objective function (i.e., minimum with respect to the parameters) over the set of optimistic
feasible solutions:

min
x

min
u∈U

g(x)

subject to fi(x;ui) ≥ 0 for some ui ∈ Ui, i = 1, . . . ,m.
(2.4.11)

Let the constraint system in (P ) is given by Ax− b ≥ 0. Let 〈a, x〉 ≥ β be one of the
inequalities of Ax− b ≥ 0. Suppose that each coefficient of a is uncertain and is known to
vary in the interval [−ε, ε], i.e.,

〈ã, x〉 ≥ β, ∀ãi ∈ [ai − ε, ai + ε], ∀i ∈ [n]. (2.4.12)

Then, the optimistic counterpart of (2.4.12) can be written as

max {〈ã, x〉 : ãi ∈ [ai − ε, ai + ε], ∀i ∈ [n]} ≥ β. (2.4.13)

Note that ‘max’ was used in (2.4.13) (in optimistic counterpart), while ‘min’ was used in
(2.4.8) (in robust counterpart). If we impose nonnegativity on the variables, we have the
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following:

max {〈u, x〉 : u ∈ {y : ‖y‖∞ ≤ ε}} = max {〈u, x〉 : u ∈ ε{y : ‖y‖∞ ≤ 1}}
= ε ·max {〈u, x〉 : u ∈ {y : ‖y‖∞ ≤ 1}}
= ε‖x‖∗∞
= ε‖x‖1

= ε〈e, x〉.

Hence, the uncertain inequality becomes

〈a, x〉+ ε〈e, x〉 ≥ β. (2.4.14)

We will make use of (2.4.14) in Section 4.5.4.

2.5 Linear Sensitivity Analysis

LP sensitivity analysis is a very well-established field. There is a considerable amount of
literature on LP sensitivity analysis. There is a literature even dating back to 1954 by
Saaty and Gass [27] and to 1956 by Mills [23]. A reader may refer to [2, 13, 20, 21, 31]
for general understanding in this field. Arsham and Oblak [2] suggested classifications in
LP postoptimal analysis (See Table 2.5.1.). A book by Gal [14] contains comprehensive
arguments on postoptimal analysis with an ample number of examples.

Classical sensitivity analysis questioned how much given data could be perturbed while
keeping the current optimal basis. However this approach has a grave shortcoming: In the
presence of degeneracy(i.e., the existence of multiple optimal bases) of the primal optimal
solution, we might get incorrect information in terms of sensitivity. A good example is
illustrated in the short paper by Strum [30]. An approach using an optimal partition was
suggested to remove the concerns that arise with the degeneracy of the optimal solution
by Jansen et al. [21].

Most of the classical sensitivity analysis is performed on the RHS vector or the objec-
tive vector changes using the simplex tableau. In addition, we often encounter sensitivity
analysis on only one component of the RHS vector or the objective vector for easier anal-
ysis. When the RHS (the cost vector, respectively) is perturbed, only the RHS (the cost
vector, respectively) is affected in the final tableau. However, when matrix coefficients are
perturbed, not only the matrix coefficients are affected but also both the RHS and the
cost vector are affected in the final tableau. Moreover, there could be some additional
implicit constraints imposed on each matrix coefficient due to the modelling. Hence, sen-
sitivity analysis on the matrix coefficients using bases is relatively less studied because the
analysis is more complex.

There are many interesting statements; one parameter change in the RHS and the
cost vector yield the optimal value function to be piecewise linear convex and concave,
respectively (A reader may refer to [31] for properties.). However, matrix coefficient changes
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Perturbation Analysis

Tolerance Analysis

Symmetric Tolerance Analysis

Parametric Analysis

Sensitivity Analysis

Allowable change in one RHS
or cost or/and element of

matrix coefficient A

Simultaneous change in a given direction
for RHS or cost or coefficients of matrix A

Allowable equal percentage change over all
RHS and/or cost and/or coefficients of matrix A

Allowable percentage change in either direction for
each RHS, cost and/or coefficients of matrix A

Largest set of any simultaneous changes in the RHS,
cost and coefficients of matrix A

Table 2.5.1: Hierarchy in LP postoptimal analysis suggested by Arsham and Oblak [2].
Parametric analysis is often referred as sensitivity analysis.

do not guarantee the convexity nor concavity of the optimal value function and the optimal
value function is often nonlinear (See the example in [32].). We can also find an example
that the optimal value function is not even continuous with respect to the changes in matrix
coefficients (See [14, Example 8-2].).

The sensitivity of an LP heavily relies on the dual optimal solutions. Each component
of dual optimal solutions is often referred as the shadow price (or marginal value, Lagrange
multiplier) associated with a particular constraint. The Shadow price plays an important
role in analysis of economic models. It gives the change in the optimal value function
per unit increase in the RHS value for a specific constraint, while all other problem data
remains unchanged. A recent paper by Gisbert et al [15] contains the calmness of objective
value function in the variation of the objective vector and the RHS vector based on sets
of dual optimal solutions (A reader who wishes to explore the definition of calmness may
refer to [26, Section 8.F].).

Regardless of perturbations on the RHS, the objective vector or the matrix coefficients,
we see that the dual optimal solutions play a very important role in sensitivity analysis.
Hence, when we have a full knowledge on the set of primal-dual optimal solutions, the
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sensitivity analysis gets easier. In this thesis, we study the sensitivity of the optimal value
function over all the matrix coefficients. Freund [12] performed the postoptimal analysis
under simultaneous changes in matrix coefficients involving the optimal bases. In the
case of nondegeneracy, Freund suggests a very easy analysis. However, as we mentioned
above, postoptimal analysis using the bases is difficult when the degeneracy is present. De
Wolf [32] suggested a formula using the generalized gradient for sensitivity analysis without
involving arguments on bases in the statement. However it requires full knowledge on the
set of primal-dual optimal solutions. In this thesis, we extensively use the results given
in [12,32]. The results from [12,32] will be stated in Chapter 4.

29



Chapter 3

Construction of Cones and the
Properties of Constructed Cones

3.1 Generating the Polyhedral Cones

We now generate proper polyhedral cones with special properties that allow us to control
their sizes. In other words, we generate proper cones satisfying the strict containment
using a parameter (or an angle) in (0, π/2). In Sections 3.1.1 and 3.1.2, we show how we
build the desired cones that hold the strict containment; while in Section 3.1.3 we study
some of the properties of these cones.

3.1.1 Construction of Generator c in a Two-Dimensional Sub-
space

We first focus on a two-dimensional subspace of Rn and construct a unit vector c to be
used to generate the polyhedral cone. Suppose that we are given two orthonormal vectors
w̄ and w′, (〈w̄, w′〉 = 0, ‖w̄‖ = ‖w′‖ = 1), and the scalar θ ∈ (0, π/2). We want to find a
vector c ∈ Rn such that c lies in span ({w̄, w′}) and the angle between c and w̄ is θ, i.e.,

c = αw̄ + βw′, for some α, β ∈ R, and arccos

(
〈c, w̄〉
‖c‖‖w̄‖

)
= θ.

Then letting cos(θ) = α/1 and sin(θ) = β/1 gives the desired vector c (See Figure 3.1.1.);

c = cos(θ)w̄ + sin(θ)w′. (3.1.1)

3.1.2 Building a Polyhedral Cone

We assume that the vectors satisfying the following hypothesis are given.
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Figure 3.1.1: Given w̄ and w′ satisfying 〈w̄, w′〉 = 0: construction of c such that 〈c, w̄〉 =
cos θ.

Hypothesis 3.1.1. Let K = {1, . . . , k}, and suppose we are given k distinct unit vectors
w1, . . . , wk ∈ Rn such that the following hold:

(1) k ≥ n,

(2) ‖wi‖ = 1, ∀i ∈ K,

(3) dim(span({wi}i∈K)) = n− 1,

(4) 0 ∈ relint conv
(
{wi}i∈K

)
.

Remark 3.1.2. For the case n = 2, we note that k cannot be greater than 2. If k > n = 2,
then (2) and (3) of Hypothesis 3.1.1 and the assumption ‘distinct vectors w1, . . . , wk ∈ Rn’
cannot be satisfied simultaneously.

By Item (3) of Hypothesis 3.1.1, the set {wi}i∈I spans a n− 1 dimensional subspace of
Rn, that is, we can fix w̄ ∈ Rn, ‖w̄‖ = 1 such that the orthogonal complement

w̄⊥ = span({wi}i∈K).

Given θ ∈ (0, π/2), for each i = 1, . . . , k, we define

ci := cos θw̄ + sin θwi. (3.1.2)

We note that 〈ci, w̄〉 = cos θ, for each i = 1, . . . , n. We construct the desired polyhedral
cone using the ci’s, i.e., as a convex hull of the rays ray(ci), ∀i = 1, . . . , k:

K = cone
(
{ci}i=1,...,k

)
. (3.1.3)

We study the properties of these generated cones K in Section 3.1.3, below. In the rest
of this section, we present a simple example and discuss how we may generate data that
satisfies our Hypothesis 3.1.1.
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Example 3.1.3. Suppose that the following vectors and angle are given:

w1 =

1
0
0

 , w2 =

0
1
0

 , w3 =

−1
0
0

 , w4 =

 0
−1
0

 , θ = π/6. (3.1.4)

Let w̄ = (0, 0, 1)T and define vectors

ci := cos θw̄ + sin θwi =

√
3

2
w̄ +

1

2
wi, ∀i = 1, . . . , 4.

Then we have

c1 =

 1/2
0√
3/2

 , c2 =

 0
1/2√
3/2

 , c3 =

−1/2
0√
3/2

 , c4 =

 0
−1/2√

3/2

 .

We define K := cone
(
{ci}i=1,...,4

)
(See Figure 3.1.2.).

Figure 3.1.2: The cone constructed in R3 from the given data in (3.1.4).

We can generate a vector w̄ and k vectors wi satisfying Hypothesis 3.1.1 as follows.
Our first goal is to generate a matrix Ŵ ∈ R(n−1)×k and a vector λ̂ ∈ Rk

++ such that

1. each column of Ŵ is of length 1,

2. rank(Ŵ ) = n− 1,

3. Ŵ λ̂ = 0, and

4.
∑k

i=1 λ̂i = 1.

This means that 0 is in the relative interior of conv
({
Ŵ (:, i)

}
i∈K

)
. We generate such a

matrix Ŵ as follows: We first generate a vector λ ∈ Rk
++. Then the null space of λT has
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k−1 basis elements. We choose any n−1 basis elements of null(λT ). We form an (n−1)×k
matrix Ws, where each row is a basis element chosen above. We form a k × k diagonal
matrix S such that each diagonal element is the norm of each column of Ws ∈ R(n−1)×k.
Define

Ŵ := WsS
−1 and λ̂ :=

Sλ∑k
i=1(Sλ)i

.

Then, we have that each column of Ŵ is of length 1, rank(Ŵ ) = n− 1, and 0 is the strict

convex combination of columns of Ŵ as desired.

We now lift the dimension of column vectors of Ŵ to Rn by adding zero coordinates to
each column of Ŵ , i.e.,

wi :=

[
Ŵ (:, i)

0

]
∈ Rn, ∀i = 1, . . . , k.

Then, letting w̄ = [0, . . . , 0, 1]T ∈ Rn yields 〈wi, w̄〉 = 0, ∀i = 1, . . . , k. We generate an
orthogonal matrix O ∈ Rn×n and obtain

w̄ ← Ow̄, and wi ← Owi, ∀i = 1, . . . , k.

One may obtain an orthogonal matrix O by performing QR decomposition of an n × n
matrix A, i.e., O := Q, where A = QR. Then we have a vector w̄ and k vectors wi as
desired. Algorithm 3.1.1 shows the computational steps explained above.

Algorithm 3.1.1: Generate Vectors Satisfying Hypothesis 3.1.1 and w̄

Input: n : dimension,
k : number of vectors in Hypothesis 3.1.1 we wish to generate

Generate a vector λ ∈ Rk
++

Let W0 be the matrix such that each column of W0 is a basis element for null(λT )
Let Ws := W0(I, :), for some |I| = n− 1 and I ⊂ {1, . . . , k}
Let S ∈ Rk×k be a diagonal matrix such that S(i, i) = ‖Ws(i, :)‖,∀i ∈ {1, . . . , k}
Let Ŵ = WsS

−1

W =

[
Ŵ
0Tk

]
∈ Rn×k, w̄ =

[
0n−1

1

]
∈ Rn

Generate an orthogonal matrix O ∈ Rn×n

W ← OW , w̄ ← Ow̄
Return: a matrix W ∈ Rn×k such that each column wi corresponds to a vector

in Hypothesis 3.1.1,
a vector w̄ orthogonal to wi, ∀i ∈ {1, . . . , k}
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3.1.3 Properties of the Constructed Cone

In this section, we study some properties of the cone K = cone
(
{ci}i=1,...,k

)
constructed in

Section 3.1.2.

Figure 3.1.3: arccos function

The next theorem shows that the ci’s constructed in (3.1.2) are, in fact, extremal vectors
of K.

Theorem 3.1.4. Let K = cone
(
{ci}i=1,...,k

)
be the cone constructed in (3.1.3). Then each

ci, i = 1, . . . , k, is an extremal vector of K.

Proof. Let I be the subset of the indices {1, . . . , k}. We proceed by induction on |I|.
Suppose that |I| = 1. Then K = cone({c1}) and c1 is clearly an extremal vector of K.
Suppose that K = cone({ci}i∈I) with I = {1, . . . , j − 1} and each ci, where i ∈ I, is an
extremal vector of K. Let K ′ = cone({ci}i∈I′) with I ′ = I ∪ {j}. Suppose to the contrary
that there is a member in {ci}i∈I′ that is not an extremal vector of K ′. Without loss of
generality, we let cj be such a member, i.e., cj is not an extremal vector of K ′. By Lemma
2.1.23, we have

γcj =
∑
i∈I

λic
i for some γ > 0, with λi ≥ 0 and

∑
i∈I

λi = 1.
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Note that arccos
(
〈ci,w̄〉
‖ci‖‖w̄‖

)
= θ, i.e., 〈ci, w̄〉 = cos θ, ∀i ∈ I ′. Thus we have

θ = arccos

(
〈γcj, w̄〉
‖γcj‖‖w̄‖

)

= arccos

(∑
i∈I λi〈ci, w̄〉
‖γcj‖

)

= arccos

(∑
i∈I λi cos θ

‖γcj‖

)

= arccos

(∑
i∈I λi‖ci‖ cos θ

‖
∑

i∈I λic
i‖

)

< arccos

(∑
i∈I λi‖ci‖ cos θ∑

i∈I λi‖ci‖

)
= arccos (cos θ)

= θ.

(3.1.5)

The strict inequality holds, since arccos is strictly decreasing (See Figure 3.1.3.) and

‖γcj‖ =

∥∥∥∥∥∑
i∈I

λic
i

∥∥∥∥∥ <∑
i∈I

λi‖ci‖,

since ci and c` are not collinear for all i 6= `. Therefore the strict inequality yields a
contradiction and so cj is an extremal vector of K ′.

We state a necessary condition for an element in K.

Lemma 3.1.5. Let each ci be constructed by (3.1.2). If x ∈ K = cone ({ci}i=1,...,k), then

arccos

(
〈w̄, x〉
‖w̄‖‖x‖

)
≤ θ.

Proof. We showed in Theorem 3.1.4 that {c1, . . . , ck} is the set of extremal vectors of K.
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Then x =
∑k

i=1 λic
i, for some λ ≥ 0. Thus we have

〈w, x〉
‖w̄‖‖x‖

=

∑k
i=1〈w̄, λici〉
‖w̄‖‖x‖

=

∑k
i=1 λi〈w̄, ci〉
‖x‖

=

∑k
i=1 λi cos θ

‖x‖

=

∑k
i=1 λi‖ci‖ cos θ

‖x‖

≥
∑k

i=1 λi‖ci‖ cos θ∑k
i=1 λi‖ci‖

= cos θ.

Hence arccos
(
〈w̄,x〉
‖w̄‖‖x‖

)
≤ arccos(cos θ) = θ.

We can also show that K is a full-dimensional and pointed cone, i.e., a proper cone.
We first show that K is full-dimensional.

Lemma 3.1.6 ([25, Theorem 2.4]). The dimension of a convex set C ⊆ Rn is the maximum
of the dimensions of the all simplices included in C.

Lemma 3.1.7. Let K be the cone constructed in (3.1.3). Then K is a full-dimensional
cone.

Proof. By Items (3) and (4) of Hypothesis 3.1.1, there exists a set {ui}i∈I of n affinely
independent vectors ui in relint conv

(
{wi}i∈K

)
(of dimension n−1). We can choose vectors

ui of the same length and let ū = γw̄ satisfy ‖ū‖ = ‖γw̄‖ = ‖ui‖, ∀i ∈ I. Define

S :=
{

cos θū+ sin θui
}
i∈I .

We show that S is a set of linearly independent vectors in Rn. Since {ui}i∈I is the set
of affinely independent vectors,∑

i∈I\n

αi
(
ui − un

)
= 0 =⇒ αi = 0, ∀i = 1, . . . , n− 1. (3.1.6)

In order to show that S is a set of linearly independent vectors in Rn, suppose that∑
i∈I

βi
(
cos θū+ sin θui

)
= 0. (3.1.7)
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Then, we have

0 =
∑

i∈I βi (cos θū+ sin θui − sin θun + sin θun)

=
∑

i∈I βi
(

(cos θū+ sin θun) + sin θ (ui − un)
)
.

(3.1.8)

Then, by rearranging the terms in (3.1.8), we get

n∑
i=1

βi sin θ
(
ui − un

)
=

n∑
i=1

−βi (cos θū+ sin θun) . (3.1.9)

We note that the LHS of (3.1.9) is equal to
∑n−1

i=1 βi sin θ (ui − un). We also note that

(cos θū+ sin θun) /∈ span
(
{ui − un}i=1,...,n−1

)
.

Therefore, (3.1.9) holds only when both sides of (3.1.9) are equal to zero. Thus we get

n−1∑
i=1

βi
(
ui − un

)
= 0 =⇒ βi = 0, ∀i = 1, . . . , n− 1,

by (3.1.6). It follows from (3.1.9) that βn = 0. Therefore, S is a set of linearly independent
vectors in Rn.

We note that conv (S ∪ {0}) is a simplex in Rn, and conv (S ∪ {0}) ⊂ K. Therefore,
by Lemma 3.1.6, K is a full-dimensional cone.

Theorem 3.1.8. Let K = cone ({ci}i=1...,k) be constructed by (3.1.2). Then K is a pointed
cone.

Proof. Suppose to the contrary that there is a nonzero unit vector x such that x ∈ K and
−x ∈ K. Note that for all y ∈ K, we have 〈y,w̄〉

‖y‖‖w̄‖ ≥ cos θ by Lemma 3.1.5. Then

〈x, w̄〉 ≥ cos θ and − 〈x, w̄〉 ≥ cos θ,

so we have
cos θ ≤ 〈x, w̄〉 ≤ − cos θ.

This yields a contradiction since the inequalities hold only when 〈x, w̄〉 = cos θ = 0 but
θ ∈ (0, π/2).

We also have a special element in the interior of K.

Lemma 3.1.9. Let K = cone ({ci}i=1,...,k) be constructed by (3.1.2). Then, w̄ ∈ int(K).

Proof. By Items (3) and (4) of Hypothesis 3.1.1, there exists a set {ui}i∈I of n affinely
independent vectors ui in relint conv

(
{wi}i∈K

)
. We can choose vectors ui of the same
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length and let ū = γw̄ be satisfying ‖ū‖ = ‖γw̄‖ = ‖ui‖, ∀i ∈ I. Define

si := cos θū+ sin θui, ∀i ∈ I.

We can find λ ∈ Rn such that

0 =
n∑
i=1

λiu
i, for some λi > 0 and

n∑
i=1

λi = 1. (3.1.10)

By summing λis
i = λi(cos θū+ sin θui),∀i ∈ I, we have

n∑
i=1

λis
i =

n∑
i=1

cos θλiū+
n∑
i=1

sin θλiu
i.

Then, with (3.1.10), we get

cos θū =
n∑
i=1

λis
i. (3.1.11)

Let z be any positive real number satisfying 1−
∑n

i=1 λi/z > 0. By dividing both sides
of (3.1.11) by z, we have

cos θ

z
ū =

n∑
i=1

λi
z
si =

n∑
i=1

λi
z
si +

(
1−

n∑
i=1

λi
z

)
0.

We note that the coefficients of si’s and 0 lie in the interval (0, 1). Hence cos θ
z
ū is in the

interior of the simplex conv

(
0 ∪

{
λi
z s

i
}
i=1,...,n

)
. Therefore w̄ is in the interior of the cone

K.

Remark 3.1.10. The properties of K shown in this section hold for every cone constructed
by (3.1.3) with any θ ∈ (0, π/2).

Given a cone K constructed by (3.1.2), we would like to construct a cone K ′ ) K, that
is bigger than K. Let θ̄ ∈ (0, π/2) such that θ̄ > θ. We copy the construction (3.1.2) with
θ replaced by θ̄, and then obtain di (See Figure 3.1.4.), i.e.,

di = cos θ̄w̄ + sin θ̄wi. (3.1.12)

We define two sets in Rn and two corresponding n× k matrices,

C := {c1, . . . , ck} and D := {d1, . . . , dk},
C :=

[
c1 · · · ck

]
and D :=

[
d1 · · · dk

]
.

Throughout this thesis, we do not rearrange the orders of columns in C and D. That is,
if ci is the i-th column of C, we place di on i-th column of D. We always assume that
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Figure 3.1.4: Construction of vector di moved further from ci. The figure on the right is
an example in R3, where the dashed line and the solid line represent cone(C) and cone(D),
respectively.

cone(C) ( cone(D), unless stated otherwise. We often denote

cone(C) = cone
(
{ci}i∈I

)
= {z ∈ Rn : ∃λ ≥ 0 such that z = Cλ}, (3.1.13)

cone(D) = cone
(
{di}i∈I

)
= {z ∈ Rn : ∃λ ≥ 0 such that z = Dλ}. (3.1.14)

In addition, we interchangeably use the expressions in (3.1.13) and (3.1.14), when the
meaning is clear.

Example 3.1.11. Let the following be the given data:

w̄ =

(
0
1

)
, w1 =

(
1
0

)
, w2 =

(
−1
0

)
, θ =

π

4
, θ̄ =

π

3
.

Then, by using (3.1.2) and (3.1.12), we have

c1 =

(√
2/2√
2/2

)
, c2 =

(
−
√

2/2√
2/2

)
, d1 =

(
1/2√
3/2

)
, d2 =

(
−1/2√

3/2

)
,

and let

C = {c1, c2},D = {d1, d2}, C =

[√
2/2 −

√
2/2√

2/2
√

2/2

]
, D =

[
1/2 −1/2√
3/2

√
3/2

]
.

With C,D ⊂ R2 and C,D ∈ R2×2 above, we interchangeably use the notations

cone(C) = cone
(
{ci}i=1,2

)
= {z ∈ Rn : ∃λ ≥ 0 such that z = Cλ},

cone(D) = cone
(
{di}i=1,2

)
= {z ∈ Rn : ∃λ ≥ 0 such that z = Dλ}.

The following theorem guarantees that whenever we have θ̄ > θ, we can always construct
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a set of two cones of different sizes: one strictly contains the other. In other words, we can
control the sizes (or containment) of the cones we wish to study.

Theorem 3.1.12. Let cone (C) and cone (D) be the cones generated by the vectors con-
structed by (3.1.2) and (3.1.12), respectively. Then

cone (C) ( cone (D) .

Proof. By the construction of ci and di, we have ray(ci) ∈ cone ({w̄, di}). Since w̄ ∈
cone (D), we have cone ({w̄} ∪ D) = cone (D). Hence, we get

ray(ci) ∈ cone
(
{w̄, di}

)
⊂ cone ({w̄} ∪ D) = cone (D) .

Thus each ci can be written as

ci =
k∑
j=1

µijd
i, for some µi ≥ 0.

Let x ∈ cone(C). Then

x =
k∑
i=1

λic
i, for some λi ≥ 0

=
k∑
i=1

λi

(
k∑
j=1

µijd
i

)
, for some µi ≥ 0

=
k∑
i=1

k∑
j=1

λiµ
i
jd
i

=
k∑
s=1

σsd
s, for some σ ≥ 0.

Therefore, cone (C) ⊂ cone (D).

Since for each i, arccos (〈w̄, di〉) = θ̄ > θ, so di /∈ cone (C) by Lemma 3.1.5. Thus the
strict containment follows.

So far we have described cones such as K = cone(C) using the convex hull of its extreme
rays. Below, we want to use the cone K as constraints for a feasible region of an LP. Each
constraint of an LP is a halfspace. Therefore, we need to describe the cone K as an
intersection of halfspaces. We first check if the dual cone K∗ is a pointed cone. Given
K = cone({c1, . . . , ck}), Lemma 2.1.32 ensures that the dual cone K∗ is given by

K∗ = {x ∈ Rn : (ci)Tx ≥ 0, i = 1, . . . , k} = {x ∈ Rn : CTx ≥ 0}.

Lemma 3.1.13. Given K = cone ({ci}i∈I), K∗ is a pointed cone.

Proof. Suppose that there is x̄ ∈ Rn such that ±x̄ ∈ K∗. Then CT x̄ = 0, where i-th row

40



of CT is (ci)T . Since {ci}i∈I spans Rn, there is a square n × n submatrix C̄T of CT such
that C̄T x̄ = 0. Hence x̄ = 0.

Having a pointed dual cone, we can convert K = cone ({ci}i∈I) as an intersection of
halfspaces using the procedure in Table 2.1.2. We include the table here for convenience:

K = cone({ci}i∈I)
Lemma 2.1.32−−−−−−−−→ K∗ = {x ∈ Rn : 〈ci, x〉 ≥ 0, i ∈ I}

= ↓ Algorithm 2.1.1

K∗∗ = {x ∈ Rn : 〈pj, x〉 ≥ 0, j ∈ J} Lemma 2.1.32←−−−−−−−− K∗ = cone({pj}j∈J)

We recall that a proper cone in Rn is nondegenerate, if exactly n distinct halfspaces
are active at its vertex. We present a characterization of a nondegenerate cone K.

Proposition 3.1.14. Given a proper cone K = cone ({ci}i∈I) in Rn, the following are
equivalent.

(1) K is nondegenerate,

(2) K has exactly n extreme rays, i.e., |I| = n,

(3) K∗ is nondegenerate,

(4) K∗ has exactly n extreme rays.

Proof. (1) =⇒ (2) holds by Lemma 2.1.36 and (2) =⇒ (1) holds by Corollary 2.1.37.
(3) ⇐⇒ (4) holds by replacing K with K∗. (2) ⇐⇒ (3) holds by Corollary 2.1.38.

So far, we constructed a proper cone given the vectors satisfying Hypothesis 3.1.1. The
following remark states that given a proper nondegenerate cone, we can always find vectors
satisfying Hypothesis 3.1.1.

Remark 3.1.15. 1 Let P be any proper nondegenerate cone in Rn and let ai,∀i = 1, . . . , n,
be its extremal vectors with length 1. Then, there exists a unit vector ā ∈ Rn, a set of
unit vectors {âi}i=1,...,n ⊂ Rn, and a scalar θ ∈ (0, π/2) such that ai = cos θā + sin θâi,
∀i = 1, . . . , n.

Proof. We note that P = cone ({ai}i=1,...,n). We define AT :=
[
a1 · · · an

]
∈ Rn×n.

Consider the system Ax = (1/‖A−1e‖)e. Since A is a nonsingular matrix, there is a unique
x̄ satisfying the system. Note that ‖x̄‖ = 1 and let ā = x̄. We also note that 〈ai, ā〉 > 0 and
〈ai, ā〉 ≤ ‖ai‖‖ā‖ = 1. If there exists j ∈ {1, . . . , n} such that 〈aj, ā〉 = 1, then 〈ai, ā〉 = 1,

1Remark 3.1.15 is not used later in this thesis.
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∀i ∈ {1, . . . , n}. This yields ā = ai, ∀i ∈ {1, . . . , n} and hence contradicts nonsingularity
of A. Thus we have

0 < 〈ai, ā〉 < 1,∀i ∈ {1, . . . , n}.

In particular, we can find θ ∈ (0, π/2) such that cos θ = 〈ai, ā〉, ∀i ∈ {1, . . . , n}. For each
i = 1, . . . , n, we can also find a vector

âi ∈ span{ā, âi} such that 〈ā, âi〉 = 0 and 〈ai, âi〉 > 0.

Thus we have the result.

3.2 Properties of Two Sets of Interests

In this section, we investigate some properties of two sets we intend to study. In the later
chapters, the sets we are about to study turn out to be the sets of dual optimal solutions
of LPs we wish to study. The dual optimal solutions play an important role in sensitivity
analysis.

3.2.1 Relations between {y : Cy = w̄, y ≥ 0} and {z : Dz = w̄, z ≥ 0}

In this section, with the cones constructed in the previous section, we study special relations
between the two polyhedral sets{

y ∈ Rk : Cy = w̄, y ≥ 0
}

and
{
z ∈ Rk : Dz = w̄, z ≥ 0

}
.

Lemma 3.2.1. If w̄ = Cy for some y ≥ 0, then there exists z(y) ≥ 0 such that w̄ =

Dz, z ≥ y. In particular, we can choose z such that z =
cos θ̄

cos θ
y.

Proof. Using (3.1.2), we write

w̄ = Cy

=
k∑
i=1

yic
i

=
k∑
i=1

yi(cos θw̄ + sin θwi)

=
k∑
i=1

yi cos θw̄ +
k∑
i=1

yi sin θw
i.

By rearranging the terms above (For simplicity, we use
∑

rather than
∑k

i=1, when the
meaning is clear.), we have ∑

yi sin θw
i = w̄ −

∑
yi cos θw̄.
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Thus sin θ
∑
yiw

i = ηw̄, for some η ∈ R. Since wi ∈ w̄⊥,∀i, and sin θ 6= 0, the equality
holds only when

∑
yiw

i = 0.

We also note that

cos θ

cos θ̄
Dy = Dy +

cos θ − cos θ̄

cos θ̄
Dy

= Dy +
cos θ − cos θ̄

cos θ̄

∑
yi
(
cos θ̄w̄ + sin θ̄wi

)
= Dy + (cos θ − cos θ̄)

∑
yiw̄ +

(cos θ − cos θ̄) sin θ̄

cos θ̄

∑
yiw

i

= Dy + (cos θ − cos θ̄)
∑
yiw̄,

and

w̄ = Cy

=
∑
yi(cos θw̄ + sin θwi)

= cos θ
∑
yiw̄ + sin θ

∑
yiw

i

= cos θ̄
∑
yiw̄ + sin θ̄

∑
yiw

i + (cos θ − cos θ̄)
∑
yiw̄ + (sin θ − sin θ̄)

∑
yiw

i

= Dy + (cos θ − cos θ̄)
∑
yiw̄.

Hence Cy =
(
cos θ/ cos θ̄

)
Dy. Letting z =

(
cos θ/ cos θ̄

)
y gives the conclusion.

We note that
(
cos θ/ cos θ̄

)
> 1. This implies that if there is a vector y ≥ 0 such that

Cy = w̄, there is always a vector z such that each nonzero coordinate of z is strictly bigger
than the one of y satisfying Dz = w̄. By observing the proof of Lemma 3.2.1, we see that
the following also holds:

If z ≥ 0 satisfies w̄ = Dz, then y =
cos θ

cos θ̄
z satisfies w̄ = Cy.

Example 3.2.2. Let the following be the given data:

θ = π/6, θ̄ = π/4, w̄ =

0
0
1

 , w1 =

1
0
0

 , w2 =

0
1
0

 , w3 =

−1
0
0

 , w4 =

 0
−1
0

 .

Define the vectors

ci := cos θw̄ + sin θwi, and di := cos θ̄w̄ + sin θ̄wi, ∀i = 1, . . . , 4.

Define two 3× 4 matrices C and D as follows:

C :=

 1/2 0 −1/2 0
0 1/2 0 −1/2√
3/2

√
3/2

√
3/2

√
3/2

 , D :=

√2/2 0 −
√

2/2 0

0
√

2/2 0 −
√

2/2√
2/2

√
2/2

√
2/2

√
2/2
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Then

y1 =
1√
3


1
0
1
0

 , y2 =
1√
3


0
1
0
1

 , y3 =
1

2
√

3


1
1
1
1


are solutions to {y ∈ R4 : Cy = w̄, y ≥ 0}. Let

zi =
cos θ

cos θ̄
yi =

√
3√
2
yi, i = 1, 2, 3.

Then, by Lemma 3.2.1, each zi is a solution to {z ∈ R4 : Dz = w̄, z ≥ 0}. We note
that the solutions to {y ∈ R4 : Cy = w̄, y ≥ 0} and {z ∈ R4 : Dz = w̄, z ≥ 0} are not
unique.

The rest of this section is not used later in this thesis. A reader may skip to Section
3.2.2. However we still present some interesting statements.

Remark 3.2.3. Let θ̂ = (θ + θ̄)/2 and define

ĉi := cos θ̂w̄ + sin θ̂(−wi),

with vectors w̄ and wi’s given in Hypothesis 3.1.1. Let Ĉ = {ĉ1, . . . , ĉk} and let Ĉ =[
ĉ1 · · · ĉk

]
∈ Rn×k, and define

cone(Ĉ) = {x ∈ Rn : x = Ĉz, z ≥ 0}.

Then, for all x ∈ cone(C) with x = Cy and y ≥ 0, we have

x = Cy = Dy + Ĉγy,

where γ = −2 sin
(
θ−θ̄

2

)
.

Proof. Suppose that x ∈ cone(C). Using the trigonometric relations

cosα− cos β = −2 sin

(
α− β

2

)
sin

(
α + β

2

)
and

sinα− sin β = 2 sin

(
α− β

2

)
cos

(
α + β

2

)
,
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we obtain the following relation:

x = Cy

= cos θ̄
∑
yiw̄ + sin θ̄

∑
yiw

i +
(
cos θ − cos θ̄

)∑
yiw̄ +

(
sin θ − sin θ̄

)∑
yiw

i

= Dy +
(
cos θ − cos θ̄

)∑
yiw̄ +

(
sin θ − sin θ̄

)∑
yiw

i

= Dy +
(
−2 sin

(
θ−θ̄

2

)
sin
(
θ+θ̄

2

))∑
yiw̄ +

(
2 sin

(
θ−θ̄

2

)
cos
(
θ+θ̄

2

))∑
yiw

i

= Dy + γ sin θ̂
∑
yiw̄ + γ cos θ̂

∑
yi(−wi)

= Dy + sin θ̂
∑

(γyi)w̄ + cos θ̂
∑

(γyi)(−wi)

= Dy +
∑

(γyi)
(

sin θ̄w̄ + cos θ̂(−wi)
)

= Dy +
∑

(γyi)ĉ
i

= Dy + Ĉγy,

where γ = −2 sin
(
θ−θ̄

2

)
> 0.

Remark 3.2.4. The following are false statements:

1. If cone(C) ⊂ cone(D), then cone({ci + εe}i=1,...,k) ⊂ cone({di + εe}i=1,...,k).

2. cone({ci + εe}i=1,...,k) = cone({c1, . . . , ck}) + cone({εe, . . . , εe}).

3. For all y ≥ 0, there exists ξ ≥ 0 such that Cy = D(y + ξ) (This means that the
relation stated in Lemma 3.2.1 holds when we have w̄ = Cy.).

3.2.2 Relations between {y : P Ty = w̄, y ≥ 0} and {z : QTz = w̄, z ≥ 0}

We first note that using Lemma 2.1.32 and Algorithm 2.1.1, we can find vectors pi such
that

(cone(C))∗ = {x ∈ Rn : CTx ≥ 0} = cone
(
{p1, . . . , pm}

)
.

Thus we have
cone(C) = {x ∈ Rn : Px ≥ 0},

where each (pi)T is a row of matrix P ∈ Rm×n. Similarly, we can find vector qi’s such that

(cone(D))∗ = {x ∈ Rn : DTx ≥ 0} = cone
(
{q1, . . . , qm

′}
)
.

Thus we have
cone(D) = {x ∈ Rn : Qx ≥ 0},

where each (qi)T is a row of matrixQ ∈ Rm′×n (We show later in Lemma 3.2.6 and Corollary
3.2.8 that m′ = m.).

In this section, we study a relation between {y : P Ty = w̄, y ≥ 0} and {z : QT z =
w̄, z ≥ 0}. In Section 3.2.1, we have studied the relation between {y : Cy = w̄, y ≥ 0}
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and {z : Dz = w̄, z ≥ 0}. In the previous case, the columns of the data matrices C
and D were explicitly given and hence obtaining the relation between two sets was easy.
However, we do not know how the data matrices P and Q look like as each row of P and
Q is obtained by computing the null spaces of certain matrices (See Algorithm 2.1.1.). In
this section, we show that there is a similar relation, stated in Lemma 3.2.1, between the
sets {y ∈ Rm : P Ty = w̄, y ≥ 0} and {z ∈ Rm : QT z = w̄, z ≥ 0}. We first need a few
lemmas in order to show the relation.

We recall that w̄ ∈ int (cone(C)) by Lemma 3.1.9. The following lemma shows that w̄
is also in the interior of (cone(C))∗.

Lemma 3.2.5. Given w̄ ∈ Rn and {p1, . . . , pm} ⊂ Rn as above, we have

w̄ ∈ int
(
cone

({
p1, . . . , pm

}))
.

Proof. Note that cone ({p1, . . . , pm}) = {x ∈ Rn : CTx ≥ 0}. Since C =
[
c1 · · · ck

]
and 〈ci, w̄〉 > 0,∀i, we have CT w̄ > 0. Hence w̄ ∈ cone ({p1, . . . , pm}). In particular,
w̄ ∈ int (cone ({p1, . . . , pm})) due to the strict inequalities.

Lemma 3.2.6. Let p be an extremal vector of cone(C)∗. Define the submatrix

C0 := C(:, I) ∈ Rn×(n−1) of C satisfying CT
0 p = 0, where |I| = n− 1.

Then a vector q satisfying DT
0 q = 0, where D0 := D(:, I) is an extremal vector of cone(D)∗.

We present an example before proving Lemma 3.2.6.

Example 3.2.7. Let

w̄ =

0
0
1

 , w1 =

1
0
0

 , w2 =

0
1
0

 , w3 =

−1
0
0

 , and w4 =

 0
−1
0

 .

Given θ = π/6 and θ̄ = π/4, define

ci = cos θw̄ + sin θwi, and di = cos θ̄w̄ + sin θ̄wi, ∀i = 1, . . . , 4.

Let p =
(
1/2, 0,

√
3/2
)T

be an extremal vector of the dual cone {x ∈ R3 : CTx ≥ 0}.
We note that p ∈ null

(
[c1, c2]T

)
. Let q be a vector satisfying q ∈ null

(
[d1, d2]T

)
. Then

q = 1√
3
(1, 1, 1)T . We do not need to check [d1, d2]T determines an extremal vector of

(cone(D))∗, because the statement of Lemma 3.2.6 guarantees that q is an extremal vector
of (cone(D))∗.

Now we prove Lemma 3.2.6.

Proof. We first show that
dim

(
null

(
DT

0

))
= 1.
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Without loss of generality, we may assume that I = {1, . . . , n−1}. Since {ci}i∈I are linearly
independent, {di}i∈I are linearly independent. Hence D0 ∈ Rn×(n−1) has rank n − 1 and
the dimension of null

(
DT

0

)
is 1. Thus there is only one vector satisfying DT

0 q = 0, up to
scalar multiple. We choose ‖q‖ = 1 such that 〈w̄, q〉 ≥ 0.

We define two hyperplanes:

hC = {x ∈ Rn : 〈p, x〉 = 0, CT
0 p = 0},

hD = {x ∈ Rn : 〈q, x〉 = 0, DT
0 q = 0}.

Now we show that DT
1 q > 0, where D1 := D(:, [k] \ I). Suppose to the contrary that there

exists j ∈ {1, . . . , k} \ I such that 〈dj, q〉 < 0.

Let
T = {cos(µ)w̄ + sin(µ)wj : µ ∈ [0, θ̄]}

be the trajectory from w̄ to dj and define T (µ) := cosµw̄+ sinµwj. We show that T goes
through the interior of cone({d}i∈I) once. Let

l = {λw̄ + (1− λ)dj : λ ∈ [0, 1]}

be the line segment between w̄ and dj and define l(λ) := λw̄+(1−λ)dj (See Figure 3.2.1.).

Figure 3.2.1: l is the line segment between w̄ and dj and T is the trajectory from w̄ to dj.

Since 〈q, dj〉 < 0 and 〈q, w̄〉 ≥ 0, the hyperplane hD separates dj from w̄. Hence l intersects
hD once. We show that l intersects cone({di}i∈I) ⊂ hD, in particular.

Let l(λ̄) be the intersection of l and hD. Suppose that the line segment l does not
intersect cone({di}i∈I), i.e., l(λ̄) /∈ cone({di}i∈I). Then

cone({di}i∈I) ( cone
(
{di}i∈I ∪ l(λ̄)

)
⊂ hD. (3.2.1)

We note that cone
(
{di}i∈I ∪ l(λ̄)

)
is a pointed cone, since cone

(
{di}i∈I ∪ l(λ̄)

)
⊂ cone(D)

and cone(D) is a pointed cone by Theorem 3.1.8.
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Since (3.2.1) holds, there exists ` ∈ I such that

d` =
n−1∑
i∈I\`

zid
i + zjl(λ̄) =

n−1∑
i∈I\`

zid
i + zj(1− λ̄)dj + zjλ̄w̄,

with zi ≥ 0, ∀i ∈ I \ ` and zj ≥ 0 (See Figure 3.2.2.). We note that all the coefficients

Figure 3.2.2: An illustration of a 2-dimensional subspace in R3. d2 is in cone({d1, l(λ̄)}).

zi, zj(1 − λ̄) and zjλ̄ are nonnegative. This implies that d` is a conic combination of
{di}i∈I\l ∪ {dj} ∪ {w̄} and hence this contradicts d` being an extremal vector of cone(D).
Therefore, l must intersect cone({di}i∈I).

Since cone ({w̄} ∪ {ci}i∈I) ( cone ({w̄} ∪ {di}i∈I), l also intersects cone({ci}i∈I) and
hence T intersects cone({ci}i∈I).

Each element x in cone({ci}i∈I ∪{w̄}) satisfies arccos
(
〈x,w̄〉
‖x‖‖w̄‖

)
≤ θ by Lemma 3.1.5. In

particular, arccos
(
〈x,w̄〉
‖x‖‖w̄‖

)
< θ, if x 6= ci, ∀i ∈ I. Since 〈cj, w̄〉 = cos θ and cj 6= ci,∀i ∈ I,

we have cj /∈ cone({ci}i∈I ∪ {w̄}).
Since 〈p, T (0)〉 = 〈p, w̄〉 ≥ 0, the trajectory T starts from {x ∈ Rn : 〈p, x〉 ≥ 0}. Since

T intersects cone({ci}i∈I) ⊂ hC and

cone({ci}i∈I ∪ {w̄}) ⊂ {x ∈ Rn : 〈p, x〉 ≥ 0},

the hyperplane hC must separate cj from w̄. Hence, we have 〈cj, p〉 < 0 and this contradicts
the hypothesis CT

1 p > 0. Thus we have DT
1 q > 0.

Corollary 3.2.8. Let q be an extremal vector of cone(D)∗. Define the submatrix D0 ∈
Rn×(n−1) of D satisfying DT

0 p = 0, where |I| = n− 1. Then a vector p satisfying CT
0 q = 0,

where C0 := C(:, I) is an extremal vector of cone(C)∗.

The consequence of Lemma 3.2.6 and Corollary 3.2.8 is that the matrices P and Q
have the same size. In other words, {x ∈ Rn : Px ≥ 0} and {x ∈ Rn : Qx ≥ 0} have the
same number of inequalities. We also note that if cone(C) is a nondegenerate cone, then
n = m = k by Proposition 3.1.14.
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Throughout the thesis, if the i-th row (pi)T of P is determined by null
(
CT

0

)
, then we

place the vector determined by null
(
DT

0

)
to the i-th row of Q.

Lemma 3.2.9. Let pT and qT be i-th row of matrices P and Q, respectively. Let CI be
the maximal submatrix of C such that CT

I p = 0 and let DI be the maximal submatrix of D
such that DT

I q = 0, for some I. Then, rank([w̄, p, q]) = 2. In particular, q ∈ cone({w̄, p}).

Proof. We define

α := cos θ, β := sin θ, ᾱ := cos θ̄, and β̄ := sin θ̄.

Then we get
ci = cos θw̄ + sin θwi = αw̄ + βwi, and
di = cos θ̄w̄ + sin θ̄wi = ᾱw̄ + β̄wi.

Since p is an extremal vector of {x ∈ Rn : CTx ≥ 0}, exactly n − 1 halfspaces are active
at p among 〈ci, x〉 ≥ 0, ∀i ∈ {1, . . . , k}. If also follows that |I| = n− 1. Then

CI = αW + βW and DI = ᾱW + β̄W ,

where W =
[
w̄ · · · w̄

]
∈ Rn×(n−1) and W =

[
w1 · · · wn−1

]
∈ Rn×(n−1) (We may

assume that the first n− 1 vectors of {w1, . . . , wk} form the matrix W for simplicity.).

Since
w̄ ∈ int (cone(C)) = int ({x ∈ Rn : Px ≥ 0}) ,

we get 〈p, w̄〉 > 0. Let z be an orthonormal vector to w̄, lying in span({p, w̄}) and satisfying
〈p, z〉 > 0 (See Figure 3.2.3.). Then, we can write

Figure 3.2.3: z satisfies 〈z, w̄〉 = 0, z ∈ span({p, w̄}) and 〈p, z〉 > 0.

p = cosσw̄ + sinσz, for some σ ∈ (0, π/2).

Define
q′ := cosσ′w̄ + sinσ′z, for some σ′ ∈ (0, π/2).
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We want to show that q = q′. We note that

0 = CT
I p =

(
αW T + βW

T
)
p

= αW Tp+ βW
T
p

= αW T (cosσw̄ + sinσz) + βW
T

(cosσw̄ + sinσz)

= α cosσW T w̄ + α sinσW T z + β cosσW
T
w̄ + β sinσW

T
z.

(3.2.2)

Since W T w̄ = e and W T z = W
T
w̄ = 0, it follows that

0 = α cosσe+ β sinσW
T
z.

Thus we have

e = −β sinσ

α cosσ
W

T
z. (3.2.3)

Similar expansion of DT
I q
′ used in (3.2.2) gives

DT
I q
′ = DT

I (cosσ′w̄ + sinσ′z) = ᾱ cosσ′e+ β̄ sinσ′W
T
z. (3.2.4)

Plugging (3.2.3) into (3.2.4) yields

DT
I q
′ =

[
−ᾱ cosσ′

β sinσ

α cosσ
+ β̄ sinσ′

]
W

T
z. (3.2.5)

We make an observation on the coefficient of the RHS in (3.2.5):

−ᾱ cosσ′
β sinσ

α cosσ
+ β̄ sinσ′ = − cos θ̄ cosσ′

sin θ sinσ

cos θ cosσ
+ sin θ̄ sinσ′

= sin θ̄ sinσ′

(
−

cos θ̄

sin θ̄

cosσ′

sinσ′
sin θ

cos θ

sinσ

cosσ
+ 1

)

= sin θ̄ sinσ′

(
−

tan θ tanσ

tan θ̄ tanσ′
+ 1

)
.

Since the range of the tangent function is (−∞,∞), there exists σ′ ∈ (−π/2, π/2) such
that

tanσ′ = (tanσ tan θ)/ tan θ̄.

Since tanσ, tan θ, tan θ̄ > 0, we must have tanσ′ > 0. Thus σ′ ∈ (0, π/2). We may take
such σ′ and we have DT

I q
′ = 0 and ‖q′‖ = 1.

Since rank
(
DT
I
)

= n − 1, there exists only one vector x that satisfies DT
I x = 0 up to

scalar multiple. If there are two vectors x1, x2 such that ‖x1‖ = ‖x2‖ = 1 and DT
I x

1 =
DT
I x

2 = 0, x1 and x2 can hold only one of the following two cases: x1 = −x2 or x1 = x2.
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We note that
〈w̄, q′〉 = cosσ′〈w̄, w̄〉+ sinσ′〈w̄, z〉 = cosσ′ > 0,

and
w̄ ∈ cone(D) = {x ∈ Rn : Qx ≥ 0} =⇒ 〈w̄, q〉 ≥ 0.

Therefore, q and q′ cannot have different signs and so we have

q = q′ = cosσ′w̄ + sinσ′z.

Thus rank([w̄, p, q]) = 2. Since polarization is order-reversing (See Lemma 2.1.25.), we
have

cone(C) ⊂ cone(D) =⇒ cone
(
{pi}i∈{1,...,m}

)
⊃ cone

(
{qi}i∈{1,...,m}

)
.

Therefore, q ∈ cone({w̄, p}).

We can represent Lemma 3.2.9 pictorially (See Figure 3.2.4.). For each 2-dimensioanl
subspace of Rn, ŵi plays the role of z in the proof of Lemma 3.2.9. We pay attention to
the subscript i of θi. We may have different θi’s for each two-dimensional subspace (Note
that in Figure 3.1.4, same θ is used in each two-dimensional subspace in Rn.).

Figure 3.2.4: pi is rotated further from w̄ than qi.

Now we are ready to show the special property we mentioned at the beginning of this
section.

Lemma 3.2.10. For all y ∈ {y : P Ty = w̄, y ≥ 0}, there exists z ∈ {z : QT z = w̄, z ≥ 0}
such that y ≥ z.

Proof. By Lemma 3.2.9, we have

qi = cos θiw̄ + sin θiŵ
i, and

pi = cos θ′iw̄ + sin θ′iŵ
i,

where each ŵi is an orthonormal vector to w̄ and lying in span({w̄, pi}).
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Suppose that w̄ = P Ty. Then,

w̄ = P Ty =
∑

yi cos θ′iw̄ +
∑

yi sin θ
′
iŵ

i.

Then, for some η ∈ R,

ηw̄ =
∑

yi sin θ
′
iŵ

i. (3.2.6)

Since ŵi ∈ w̄⊥, ∀i = 1, . . . ,m, the equality (3.2.6) holds only when η = 0 and hence∑
yi sin θ

′
iŵ

i = 0. (3.2.7)

We note that
QTy =

∑
yi cos θiw̄ +

∑
yi sin θiŵ

i.

Then, we have

P Ty =
∑
yi cos θ′iw̄ +

∑
yi sin θ

′
iŵ

i

=
∑
yi cos θ′iw̄ +

∑
yi sin θ

′
iŵ

i +
∑
yi(cos θi − cos θi)w̄ +

∑
yi(sin θi − sin θi)ŵ

i

=
∑
yi cos θiw̄ +

∑
yi sin θiŵ

i +
∑
yi(cos θ′i − cos θi)w̄ +

∑
yi(sin θ

′
i − sin θi)ŵ

i

= QTy +
∑
yi(cos θ′i − cos θi)w̄ +

∑
yi(sin θ

′
i − sin θi)ŵ

i

= QTy +
∑
yi(cos θ′i − cos θi)w̄ −

∑
yi sin θiŵ

i.
(3.2.8)

The last equality holds by (3.2.7).

Let y′i =
cos θ′i
cos θi

yi, ∀i = 1, . . . ,m. We note that
cos θ′i
cos θi

< 1. Then, we have

QTy′ =
∑
y′iq

i

=
∑ cos θ′i

cos θi
yiq

i

=
∑ cos θ′i

cos θi
yiq

i +
∑
yi(cos θi − cos θi)w̄ +

∑
yi(sin θi − sin θi)ŵ

i

=
∑
yi cos θiw̄ +

∑
yi sin θiŵ

i +
∑ cos θ′i

cos θi
cos θiyiw̄ +

∑ cos θ′i
cos θi

sin θiyiŵ
i

−
∑
yi cos θiw̄ −

∑
yi sin θiŵ

i

= QTy +
∑
yi(cos θ′i − cos θi)w̄ +

∑
yi

(
cos θ′i sin θi

cos θi
− sin θi

)
ŵi.

(3.2.9)

We focus on the last term of (3.2.9). If we show∑
yi

cos θ′i sin θi
cos θi

ŵi = 0, (3.2.10)

then the last line of (3.2.8) and the last line of (3.2.9) are the same, and hence we have
P Ty = QTy′. Thus, if we show (3.2.10), we are done.

Let pj be an extremal vector formed by
{

(ci)T
}
i∈I , for some I ⊂ {1, . . . , k} and |I| =
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n − 1. Then, ∀i ∈ I, we have 〈pj, ci〉 = 0, since pj is in the orthogonal complement of
span ({ci}i∈I). Hence, for i ∈ I,

0 = 〈pj, ci〉
=
〈
cos θ′jw̄ + sin θ′jŵ

j , cos θw̄ + sin θwi
〉

= cos θ′j cos θw̄T w̄ + cos θ′j sin θw̄Twi + sin θ′j cos θw̄T ŵj + sin θ′j sin θ(ŵj)Twi

= cos θ′j cos θw̄T w̄ + sin θ′j sin θ(ŵj)Twi.

Therefore, we have

cos θ′j cos θ = − sin θ′j sin θ(wi)T ŵj =⇒ (wi)T ŵj = −
cos θ′j cos θ

sin θ′j sin θ
= − 1

tan θ′j tan θ
.

(3.2.11)
Similarly, let qj be an extremal vector formed by

{
(di)T

}
i∈I . Then, ∀i ∈ I, we have

〈qj, di〉 = 0, since qj is in the orthogonal complement of span ({di}i∈I). Thus, for i ∈ I,

0 = 〈qj, di〉
=
〈
cos θjw̄ + sin θjŵ

j , cos θ̄w̄ + sin θ̄wi
〉

= cos θj cos θ̄w̄T w̄ + cos θj sin θ̄w̄Twi + sin θj cos θ̄w̄T ŵj + sin θj sin θ̄(ŵj)Twi

= cos θj cos θ̄w̄T w̄ + sin θj sin θ̄(ŵj)Twi.

Therefore,

cos θj cos θ̄ = − sin θj sin θ̄(wi)T ŵj =⇒ (wi)T ŵj = −cos θj cos θ̄

sin θj sin θ̄
= − 1

tan θj tan θ̄
.

(3.2.12)
Thus, (3.2.11) and (3.2.12) imply that

1

tan θ′j tan θ
=

1

tan θj tan θ̄
⇐⇒ tan θ̄

tan θ
=

tan θ′j
tan θj

, ∀j ∈ {1, . . . ,m}.

We note that tan θj/ tan θ′j is the same constant, ∀j ∈ {1, . . . ,m}. Let γ := tan θ/ tan θ̄ be
the constant.

We observe the following:

∑
yi

(
cos θ′i sin θi

cos θi

)
ŵi =

∑
yi

(
cos θ′i sin θi
sin θ′i cos θi

)
sin θ′iŵ

i

=
∑
yi

tan θi
tan θ′i

sin θ′iŵ
i

= γ
∑
yi sin θ

′
iŵ

i

= 0.

(3.2.13)

The last equality of (3.2.13) holds by (3.2.7). Therefore, (3.2.13) verifies (3.2.10), and we
are done.
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By observing the proof of Lemma 3.2.10, we see that the following also holds:

If z ≥ 0 satisfies QT z = w̄, then there exists y satisfying P Ty = w̄ and y ≥ z.

We note that Lemma 3.2.10 looks similar to Lemma 3.2.1. Lemma 3.2.1 tells us that

w̄ = Cy, for some y ≥ 0 =⇒ ∃ z =
cos θ̄

cos θ
y such that w̄ = Dz.

In other words, Lemma 3.2.1 tells us that given y ≥ 0 satisfying w̄ = Cy, there is z ≥ 0
with w̄ = Dz and all nonzero coordinates of z are proportionally bigger than the nonzero
coordinates of y. However, Lemma 3.2.10 tells us slightly different property. It tells us
that given ȳ ≥ 0 satisfying P T ȳ = w̄, there is a z̄ ≥ 0 with QT z̄ = w̄ and all nonzero
coordinates of z̄ are just bigger than the nonzero coordinates of ȳ. Hence given such ȳ, we
cannot clearly specify each coordinate of z̄, unless we perform further computations.
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Chapter 4

Sensitivity of Optimal Value Function

In this chapter, we present the main results for this thesis. Specifically, we perform postop-
timal analysis to show that the different sizes of the cones (or, feasible regions) affect ro-
bustness of the optimal value. The sensitivity analysis in this thesis has some different
aspects from the classical sensitivity analysis of linear programming. While the classical
sensitivity analysis focuses on obtaining allowable perturbation ranges, this thesis focuses
on the change of the optimal value under the assumption that some reasonable bounds
for the perturbations are given. We also view the problem geometrically, i.e., we relate
the dual optimal solutions to the geometrical structures constructed in Chapter 3. We
can perform the postoptimal analysis relatively easier, because of our knowledge of the
primal-dual optimal solutions for our models. This is shown in Sections 4.1 and 4.2 below.

This chapter is organized as follows: in Section 4.1, we define two families of LPs,
LP(P) and LP(Q), in order to study their sensitivities. In Section 4.2, we study the
optimal solutions to instances (P) and (Q) in the two families, as well as their dual optimal
solutions. In Section 4.3, we study some properties of the optimal value functions of (P)
and (Q). We then consider the LPs divided into two classes: nondegenerate (Section 4.4)
and degenerate (Section 4.5). In Section 4.4, we study the strict monotonicity and the
sensitivity of the optimal value function, when the given LP is nondegenerate. In Section
4.5, we study the sensitivity of the optimal value function via directional differentiability,
when the given LP is degenerate. We also further study a sufficient condition for local
differentiability of the optimal value functions of (P) and (Q).

4.1 LP Models

With the data from Section 3.1, we consider a vector w̄ for the objective function and two
classes of cones using the set and matrix C, C, respectively. (See Figure 4.1.1.)

1. cone(C) = {x ∈ Rn : Px ≥ 0},

2. cone(C)◦ = {x ∈ Rn : CTx ≤ 0}, i.e., the negative polar of cone(C).
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Figure 4.1.1: An illustration of cone(C) and its negative polar cone in R2.

Using these two cones, we define two LPs with nonnegativity constraints on the vari-
ables:

1. min{〈w̄, x〉 : Px ≥ 0, x ≥ 0},

2. min{〈−w̄, x〉 : CTx ≤ 0, x ≥ 0}.

In the presence of data uncertainty, we wish to form the robust counterparts of the above
LPs. Before forming their robust counterparts, we consider a general form of an LP.

Given
LP min{〈c, x〉 : Ax ≥ b, x ≥ 0}, (4.1.1)

with A ∈ Rm×n, suppose that each entry of the data matrix A is uncertain and each
uncertain entry is known to have perturbation range [−ε, ε], with ε > 0. It is shown in
(2.4.9) that the robust counterpart of each constraint aTi x ≥ bi of (4.1.1) is

aTi x− εeTx ≥ bi.

Hence, the robust counterpart of (4.1.1) is

min{〈c, x〉 : Ax− εEx ≥ b, x ≥ 0},

where we recall that E = em(en)T is the matrix of ones.

If b above is the zero vector, then the constraint system Ax ≥ b of (4.1.1) forms a
homogeneous system. If we further assume that 0 is the unique optimal solution to (4.1.1),
and we consider the robust counterpart of the homogeneous system Ax ≥ 0, i.e.,

min{〈c, x〉 : Ax− εEx ≥ 0, x ≥ 0}, (4.1.2)

then the uncertainty does not do anything to the problem as 0 remains the optimal solution
to (4.1.2). Hence, having b = 0 trivializes the problem even after perturbations. This
motivates us to translate the cones away from the origin.
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In our problems, we translate the two cones cone(C) and (cone(C))◦ by e to obtain a
cone with vertex at e, (see Definition 2.1.12) and optimal solution at e. We thus have a
nonzero RHS in our constraint systems (See Figure 4.1.2.):

A(x− e) ≥ 0 ⇐⇒ Ax ≥ Ae. (4.1.3)

Figure 4.1.2: An illustration in R2: The shaded region is the feasible region of the original
cone.

Hence with (4.1.3), its robust counterpart becomes

min{〈c, x〉 : Ax− εEx ≥ Ae, x ≥ 0}. (4.1.4)

Now we are ready to define the LPs for sensitivity analysis. We define an LP

min 〈w̄, x〉
(P) subject to Px ≥ Pe

x ≥ 0.

Suppose that the data matrix P on the LHS of the constraints Px ≥ Pe of (P) is uncertain,
and each uncertain entry of P is known to take perturbations in the range [−ε, ε], with
ε > 0. Then the robust counterpart of (P) is

min 〈w̄, x〉
(R(ε)) subject to Px− εEx ≥ Pe

x ≥ 0.
(4.1.5)

Similarly, we define an LP

min 〈−w̄, x〉
(Q) subject to CTx ≤ CT e

x ≥ 0.

Suppose that the data matrix CT on the LHS of the constraints CTx ≤ CT e is uncertain,
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and each entry of CT is known to take perturbations in the range [−ε, ε]. Then the robust
counterpart of (Q) is

min 〈−w̄, x〉
(S(ε)) subject to CTx+ εEx ≤ CT e

x ≥ 0.
(4.1.6)

Example 4.1.1. Consider the cone generated by c1 =

(√
3/2

1/2

)
, c2 =

(
1/2√
3/2

)
. Then

cone({c1, c2}) = {x ∈ R2 : Px ≥ 0}, where P =

[
−1/2

√
3/2√

3/2 −1/2

]
. We translate cone({c1, c2})

by e and obtain the system

{x ∈ R2 : Px ≥ Pe} =

{
x ∈ R2 :

[
−1/2

√
3/2√

3/2 −1/2

]
x ≥

[
(
√

3− 1)/2

(
√

3− 1)/2

]}
.

The negative polar cone of cone({c1, c2}) is {x ∈ R2 : CTx ≤ 0}, where C = [c1, c2].
We translate the vertex of {x ∈ R2 : CTx ≤ 0} to e and obtain

{x ∈ R2 : CTx ≤ CT e} =

{
x ∈ R2 :

[√
3/2 1/2

1/2
√

3/2

]
x ≤

[
(
√

3 + 1)/2

(
√

3 + 1)/2

]}
.

See Figure 4.1.3.

(a) cone(C) and (cone(C))◦. (b) cone(C) + e and (cone(C))◦ + e.

Figure 4.1.3: Two cones in (b) are translations of the cones in (a).

4.2 Primal and Dual Optimal Solutions to (P) and (Q)

In this section, we find the primal and dual optimal solutions to (P) (Section 4.2.1) and
(Q) (Section 4.2.2). We also show that the uniqueness of dual optimal solutions to (P)
and (Q) depends on degeneracy/nondegeneracy of cone(C).
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4.2.1 The Optimal Solutions to (P) and its Dual

We recall the primal problem

min 〈w̄, x〉
(P) subject to Px ≥ Pe ∈ Rm

x ∈ Rn
+.

Then, the dual (DP) of the primal (P) is

max 〈Pe, y〉
(DP) subject to P Ty ≤ w̄

y ≥ 0.

Recall that the homogeneous inequalities Px ≥ 0 define cone(C). We now see that the
shift to Px ≥ Pe moves the vertex of the cone to e, which is the unique optimal solution
to (P). In addition, we see that degeneracy of cone(C) directly corresponds to degeneracy
of the dual optimal solutions. In other words, the number of extremal vectors of cone(C)
directly relates to the number of dual optimal solutions.

Lemma 4.2.1. Given the primal-dual pair (P) and (DP) above, we have the following:

1. The set of optimal solutions to (DP) satisfies

Argmax
{
〈Pe, y〉 : P Ty ≤ w̄, y ≥ 0

}
=
{
y ∈ Rm : P Ty = w̄, y ≥ 0

}
.

2. The unique optimal solution to (P) is x = e.

3. If cone(C) is a nondegenerate cone, then (DP) has a unique optimal solution.

4. If cone(C) is a degenerate cone, then (DP) does not have a unique optimal solution.

Proof. 1. We note that e is a feasible solution to (P). We observe that

〈w̄, e〉 = 〈P Ty, e〉 = 〈Pe, y〉,

for all y ≥ 0 satisfying P Ty = w̄. In other words, for each nonnegative vector y
such that P Ty = w̄, y achieves a primal objective value 〈w̄, e〉. Hence, 〈w̄, e〉 is the
optimal value of (DP) and

{y ∈ Rm : P Ty = w, y ≥ 0} ⊂ Argmax
{
〈Pe, y〉 : P Ty ≤ w̄, y ≥ 0

}
.

Now suppose to the contrary that

∃y′ ∈ Argmax
{
〈Pe, y〉 : P Ty ≤ w̄, y ≥ 0

}
\ {y ∈ Rm : P Ty = w, y ≥ 0}.
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Then, there exists i ∈ {1, . . . , n} such that eTi P
Ty′ < eTi w̄, i.e., one of the inequalities

in P Ty′ ≤ w̄ must be strict. Then, we get

〈w̄, e〉 > 〈P Ty′, e〉 = 〈Pe, y′〉,

and y′ does not achieve the primal objective value, which means that y′ is not an
optimal solution. Therefore, {y ∈ Rm : P Ty = w̄, y ≥ 0} is the set of optimal
solutions to (DP).

2. By observing the proof in Item 1 of Lemma 4.2.1 directly above, it also follows that
e is an optimal solution to (P). Here, we show that e is not only an optimal solution
to (P), but also the unique optimal solution to (P).

Suppose that x′ is an optimal solution to (P). By Lemma 3.2.5 we get

w̄ ∈ int
(

cone({p1, . . . , pm})
)
.

Therefore we know that there exists a dual optimal solution y′ > 0 such that P Ty′ =
w̄. Hence, we have

0 ≤ 〈Px′ − Pe, y′〉 = 〈P Ty′, x′〉 − 〈P Ty′, e〉 = 〈w̄, x′〉 − 〈P Ty′, e〉 = 0.

The last inequality holds by strong duality. Thus we get

〈Px′ − Pe, y′〉 = 0, y′ > 0 =⇒ Px′ = Pe.

Since P ∈ Rm×n with m ≥ n and rank(P ) = n, we have rank(P TP ) = n. Hence,

P TPx′ = P TPe =⇒ x′ = e.

Therefore, x′ = e is the only optimal solution to (P).

3. Since cone(C) is nondegenerate, the dual cone has exactly n extremal vectors by
Proposition 3.1.14. By Lemma 3.2.5, we have w̄ ∈ cone ({p1, . . . , pn}). Hence, there
exists a nonnegative vector y such that w̄ = P Ty. Since P is a nonsingular matrix,
the system P Ty = w̄ has the unique solution.

4. Since cone(C) is degenerate, cone ({p1, . . . , pm}) has more than n extremal vectors by
Proposition 3.1.14. Since cone ({p1, . . . , pm}) is a proper cone, it has a compact cone
base B, say B = {b1, . . . , bm}. Let w̄B ∈ B, where w̄B = γw̄, for some γ > 0.

By Minkowski’s theorem, we need at most n extreme points in B to represent w̄B
as a convex combination of extreme points, since dim(conv(B)) = n− 1. Hence, we
have

w̄B =
∑
i∈I

λib
i, λ ≥ 0 and

∑
i∈I

λi = 1, for some λ ∈ Rn and |I| = n.
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Let bj ∈ B, where j ∈ [m] \ I. Then, by Lemma 2.1.5, we can write w̄B as a
convex combination that involves bj. Since there are at least two distinct convex
combinations for w̄B, (DP) does not have a unique optimal solution.

Remark 4.2.2. We note that previously in Section 3.2.2 we studied the relations between
the two sets

{y ∈ Rm : P Ty = w̄, y ≥ 0}, {y ∈ Rm : QTy = w̄, y ≥ 0}.

The above results hold for both sets, i.e., for both P,Q.

Remark 4.2.3. Given a feasible primal-dual LP pair, it is well-known that there is a
pair of primal-dual optimal solutions that satisfies the strict complementarity. We note
that there is a vector y′ > 0 satisfying P Ty′ = w̄ by Lemma 3.2.5. Hence, with x′ = e,
we see that (x′, y′) is a pair of optimal solutions of (P) and (DP) that holds the strict
complementarity.

4.2.2 The Optimal Solutions to (Q) and its Dual

The argument in this section parallels the argument used in Section 4.2.1. A reader may
skip the proof given in this section. We recall that

min 〈−w̄, x〉
(Q) subject to CTx ≤ CT e

x ≥ 0.

Then, the dual (DQ) of (Q) is

max 〈−CT e, y〉
(DQ) subject to Cy ≥ w̄

y ≥ 0.

We study the set of the primal-dual optimal solutions of the primal-dual LPs given above
and show that the uniqueness of optimal solutions to (DQ) depends on the degener-
acy/nondegeneracy of cone(C).

Lemma 4.2.4. Given the primal-dual pair (Q) and (DQ) above, we have the following:

1. Argmax
{
〈−CT e, y〉 : Cy ≥ w̄, y ≥ 0

}
= {y ∈ Rn : Cy = w̄, y ≥ 0},i.e., {y ∈ Rn :

Cy = w̄, y ≥ 0} is the set of optimal solutions to (DQ).

2. x = e is the unique optimal solution to (Q).

3. If cone(C) is a nondegenerate cone, then (DQ) has a unique optimal solution.

4. If cone(C) is a degenerate cone, then (DQ) does not have a unique optimal solution
(See Example 3.2.2.).
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Proof. 1. We use strong duality (See Proposition 2.3.5.) to find the optimal value of
(Q) and (DQ). Since x = e satisfies the constraints of (Q), (Q) is feasible. We also
know that cone(C) that w̄ ∈ int(cone(C)) by Lemma 3.1.9. Hence, there exists a
nonnegative vector y such that Cy = w̄. Thus, (DQ) is feasible and strong duality
holds, i.e., the optimal values of (Q) and (DQ) coincide. For y ≥ 0 such that Cy = w̄,
we observe that

〈−w̄, e〉 = 〈−Cy, e〉 = 〈−CT e, y〉.

Hence, the optimal value of (Q) and (DQ) is 〈−w̄, e〉 and

{y ∈ Rn : Cy = w̄, y ≥ 0} ⊂ Argmax
{
〈−CT e, y〉 : Cy ≥ w̄, y ≥ 0

}
.

Suppose to the contrary that

∃y′ ∈ Argmax
{
〈−CT e, y〉 : Cy ≥ w̄, y ≥ 0

}
\ {y ∈ Rn : Cy = w̄, y ≥ 0}.

Then, there exists i ∈ {1, . . . ,m} such that eTi Cy > eTi w̄, i.e., one of the inequalities
of Cy ≥ w̄ must be strict. Thus we get

〈Cy′, e〉 > 〈w̄, e〉 =⇒ 〈−w̄, e〉 > 〈−Cy′, e〉 = 〈−CT e, y′〉.

Since y′ does not achieve the optimal value, y′ is not an optimal solution. Therefore,
{y ∈ Rn : Cy = w̄, y ≥ 0} is the set of optimal solutions to (DQ).

2. By observing the proof in Item 1 of Lemma 4.2.4, it also follows that e is an optimal
solution to (Q). Here, we show that e is not only an optimal solution to (Q), but
also the unique optimal solution to (Q).

Suppose that x′ is an optimal solution to (Q). We know that there exists a dual
optimal solution y′ > 0 such that Cy′ = w̄, since w̄ ∈ int(cone(C)) by Lemma 3.1.9.
Hence, we have

0 ≥ 〈CTx′ − CT e, y′〉 = 〈Cy′, x′〉 − 〈Cy′, e〉 = 〈w̄, x′〉 − 〈Cy′, e〉 = 0.

The last inequality holds by the strong duality. Thus we get

〈CTx′ − CT e, y′〉 = 0, y′ > 0 =⇒ CTx′ = CT e.

Since C ∈ Rn×k with k ≥ n and rank(C) = n, we have rank(CCT ) = n. Hence,

CCTx′ = CCT e =⇒ x′ = e.

Therefore, x′ = e is the only optimal solution to (Q).

Remark 4.2.5. We note that previously in Section 3.2.1 we studied the relations between
the two sets

{y ∈ Rk : Cy = w̄, y ≥ 0}, {y ∈ Rk : Dy = w̄, y ≥ 0}.

The above results hold for both sets, i.e., for both C,D.
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Remark 4.2.6. Given a feasible primal-dual LP pair, it is well-known that there is a
pair of primal-dual optimal solutions that satisfies the strict complementarity. We note
that there is a vector y′ > 0 satisfying Cy′ = w̄ by Lemma 3.1.9. Hence, with x′ = e,
we see that (x′, y′) is a pair of optimal solutions of (Q) and (DQ) that holds the strict
complementarity.

4.3 Properties of the Optimal Value Functions

In this section, we study some basic properties of the optimal value functions of (P) and
(Q) and its robust counterparts.

We define the optimal value function ψ(ε) of the robust counterpart (R(ε)) in (4.1.5):

(R(ε)) ψ(ε) := min{〈w̄, x〉 : (P − εE)x ≥ Pe, x ≥ 0}. (4.3.1)

We interchangeably use the notations (P) and (R(0)), since (R(0)) and (P) are the same
LP. If we want to emphasize the matrix P in (4.3.1), we write

(R(ε, P )) ψP (ε) := min{〈w̄, x〉 : (P − εE)x ≥ Pe, x ≥ 0}.

Similarly, we define the optimal value function φ(ε) of the robust counterpart (S(ε)) in
(4.1.6):

(S(ε)) φ(ε) := min
{
〈−w̄, x〉 : (CT + εE)x ≤ CT e, x ≥ 0

}
. (4.3.2)

We note that (S(0)) and (Q) are the same LP. If we want to put an emphasis on the
matrix C in (4.3.2), we write

(S(ε, C)) φC(ε) := min
{
〈−w̄, x〉 : (CT + εE)x ≤ CT e, x ≥ 0

}
.

We study some properties of the optimal value function ψ(ε). By making necessary
changes to the arguments below, we can show that the same properties that hold for ψ(ε)
also hold for φ(ε).

1. For some ε̄ > 0, we have

ψ(ε) is a non-decreasing monotone function on [0, ε̄], (4.3.3)

by the definition of robust counterpart. We recall from the first line of (2.4.3) that

x is robust feasible to ãTx ≤ β̃, ∀(ã, β̃) ∈ U
m

aTx ≤ β, ∀[a; β] ∈
{

[a0; β0] +
∑L

`=1 ζ`
[
a`; β`

]
, ζ ∈ Z

}
, for some Z.

63



In our case,

x is robust feasible to ãTx ≤ β, ∀ãi ∈ [ai − ε, ai + ε]
m

aTx ≤ β, ∀[a; β] ∈
{

[a0; β0] +
∑L

`=1 ζ`[e; 0], ζ ∈ {u : ‖u‖∞ ≤ ε}
}
.

This implies that if the perturbation set gets bigger (i.e., ε increases), then the un-
certainty set gets bigger. Hence, the robust optimal value cannot decrease as the
feasible region of the robust LP gets smaller.

2. We observe that
ψ(0) < ψ(ε), ∀ε > 0. (4.3.4)

We recall that e is the only optimal solution to (P) (See Item 2 of Lemma 4.2.1.),
and e does not satisfy the inequality Px− εEx ≥ Pe, ∀ε > 0. We note by the above
that the feasible region of (R(ε)) gets smaller as ε increases. Thus (4.3.4) holds, since
the feasible region of (R(0)) contains the feasible region of (R(ε)) and e is no longer
feasible for (R(ε)), ∀ε > 0.

3. Given two cones cone(C) and cone(D) constructed by the vectors from (3.1.2) and
(3.1.12), respectively, we have

{x ∈ Rn : Px ≥ 0} = cone(C) ⊂ cone(D) = {x ∈ Rn : Qx ≥ 0}.

We observe the following:
ψP (0) = ψQ(0). (4.3.5)

The equality (4.3.5) holds because Item 2 of Lemma 4.2.1 holds for any cone con-
structed by (3.1.3). In other words, we have constructed a family of LPs that have
the same optimal value and the same optimal solution.

Item 1 above states that ψ(ε) is a nondecreasing function. Furthermore, if the opti-
mal solution of (P) is nondegenerate (i.e., exactly n constraints are active at the optimal
solution), we can show that ψ(ε) is a strictly increasing function and we show this in Sec-
tion 4.4.2. Given (R(ε, P )) and (R(ε, Q)), Item 2 above states that ψP (0) < ψP (ε) and
ψQ(0) < ψQ(ε), ∀ε > 0. Item 3 above states that ψP (0) = ψQ(0). In other words, both
ψP (ε) and ψQ(ε) have the same function value at ε = 0 and both function values increase
for ε > 0. In Section 4.4.2 (in nondegenerate cases) and Section 4.5.3 (in degenerate cases),
we show that ψP (ε) always increases more than ψQ(ε) for small ε > 0. That is, ψP (ε) is
more sensitive than ψQ(ε) due to its local geometric structure.
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4.4 The Strict Monotonicity and Sensitivity of the

Optimal Value Function: Nondegenerate Cases

In this section we focus on (P) where exactly n halfspaces are active at the optimal solution
e. In this case, we say (P) is nondegenerate.

4.4.1 Known Results on Parametric LP: Nondegenerate Cases

We first present some known results on a parametric LP under linear, scalar θ perturbations
of the coefficient matrix. We define a family of LPs in SEF

LP (θ) z(θ) := min
{
〈c, x〉 : Aθx = b, x ≥ 0

}
, (4.4.1)

where Aθ = F + θG ∈ Rm×n, for some F,G ∈ Rm×n and θ ∈ R. For completeness, we
include the proof of the following theorem on parametric LP in the nondegenerate case.
In the following theorem, nondegenerate basis refers to a basis where the basic variables
associated with the basis are nonzero.

Theorem 4.4.1 ([12, Theorem 1]). 1 Let P (θ) be an instance of the parametric LP as
given in (4.4.1), and let θ̄ ∈ R be given. Suppose that B is a unique nondegenerate optimal
basis for P (θ̄), and x̄ and π̄ are unique optimal solutions to P (θ̄) and its dual, respectively.
Then for all θ near (in a neighbourhood of) θ̄, B is a nondegenerate optimal basis for
P (θ), and the optimal value function z(θ) and the optimal solution x(θ) of P (θ) hold the
following:

(1) z(θ) =
∞∑
i=0

cTB(θ − θ̄)i(−B−1GB)ix̄B,

(2) zk(θ) =
∞∑
i=k

i!
(i−k)!

cTB(θ− θ̄)(i−k)(−B−1GB)ix̄B , for k ∈ N, where zk(θ) is the k-th deriva-

tive of z(θ),

(3) x(θ) = (xB(θ), xN(θ)) =

(
∞∑
i=0

(θ − θ̄)i(−B−1GB)ix̄B , 0

)
,

(4) zk(θ̄) = (k!)cTB(−B−1GB)kx̄B,

where B = Aθ̄B.

Proof. We show (3) =⇒ (1) =⇒ (2) =⇒ (4). Let B = Aθ̄B be the optimal basis matrix
of P (θ̄). We observe that

AθB = FB + θGB, B = Aθ̄B = FB + θ̄GB.

1The original statement in [12, Theorem 1] was written with a maximization LP.
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Hence, we have
AθB −B = (θ − θ̄)GB.

For all θ near θ̄, (AθB)−1 exists and so

I = AθB(AθB)−1 = (B + (θ − θ̄)GB)(AθB)−1. (4.4.2)

Premultiplying B−1 to (4.4.2) yields

B−1 = (I + (θ − θ̄)B−1GB)(AθB)−1 =⇒ (AθB)−1 = B−1 − (θ − θ̄)(B−1GB)(AθB)−1. (4.4.3)

By recursively substituting for (AθB)−1 in (4.4.3), we obtain

(AθB)−1 =
∞∑
i=0

(θ − θ̄)i(−B−1GB)iB−1.

(This series converges for all θ such that |θ− θ̄| < 1/ρ(−B−1GB). See Lemma 4.4.4.) Item
(3) follows from xB(θ) = (AθB)−1b. Item (1) follows from z(θ) = cTx(θ) = cTBxB(θ). Taking
derivatives from (1) gives (2). Plugging θ̄ into θ in (2) gives (4).

We can obtain a simple formula by considering a special case of Item (4) in Theorem
4.4.1. We introduce the following lemma first.

Lemma 4.4.2. Consider the LP in SEF

LP max{〈c, x〉 : Ax = b, x ≥ 0}.

Suppose that x∗ is a nondegenerate optimal basic feasible solution with basis B. Then, a
corresponding dual optimal solution is y∗ = (ATB)−1cB. In addition, if there is a unique
nondegenerate optimal solution, then there is a unique dual optimal solution.

Proof. Let x∗ be a nondegenerate optimal feasible solution and y∗ a dual optimal solution.
Then complementary slackness implies(

cj − A(:, j)Ty∗
)
x∗j = 0, ∀j ∈ B =⇒ A(:, j)Ty∗ = cj, ∀j ∈ B.

Since AB is nonsingular,

y∗ =
(
ATB
)−1

cB. (4.4.4)

The uniqueness is clear.

With Lemma 4.4.2, we have the following corollary.

Corollary 4.4.3. The derivative of the optimal value function of LP (θ) at θ̄ exists and is

z′
(
θ̄
)

= −π̄TGx̄.
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Proof. By pugging k = 1 into Item (4) in Lemma 4.4.1, we have

z′(θ̄) = (1!)cTB(−B−1GB)1x̄B

= −cTBB−1GBx̄B

= −cTB(Aθ̄B)−1Gx̄

= −π̄TGx̄,

where dual solution is given by π̄T = cTB(Aθ̄B)−1 in (4.4.4).

4.4.2 The Monotonicity and Sensitivity in Nondegenerate Cases

In this section, we confine ourselves to the case where our data matrix P of

(P) min{〈w̄, x〉 : Px ≥ Pe, x ≥ 0}

is a square matrix. In other words, there are exactly n active halfspaces at the optimal
solution e. In this case, we recall that there are exactly n extreme rays in cone(C) = {x ∈
Rn : Px ≥ 0} by Proposition 3.1.14. We also recall that x∗ = e is the unique optimal
solution to (P) by Item 2 of Lemma 4.2.1. The uniqueness of optimal solution does not
change after transforming (P) into SEF. Therefore,

min{〈w̄, x〉 : Px− Is = Pe, x ≥ 0, s ≥ 0} (4.4.5)

has a unique nondegenerate optimal solution, which is given by

(
x∗

s∗

)
=

(
e
0

)
, with the

optimal basis B = {1, . . . , n}. We showed in Lemma 4.4.2 that the dual of LP (4.4.5) has
a unique optimal solution as well.

Our aim in this section is to show the following:

1. ψ(ε) is a strictly increasing function on [0, ε̄], for some ε̄ > 0.

We showed in (4.3.3) that ψ(ε) is a non-decreasing function. When we have nonde-
generacy, we can guarantee that ψ(ε) is a strictly increasing function.

2. Given two cones cone(C) and cone(D) constructed by the vectors in (3.1.2) and
(3.1.12), respectively, we have

{x ∈ Rn : Px ≥ 0} = cone(C) ⊂ cone(D) = {x ∈ Rn : Qx ≥ 0}.

We define two LPs

ψP (ε) = min {〈w̄, x〉 : (Pe− εE)x ≥ Pe, x ≥ 0} ,

ψQ(ε) = min {〈w̄, x〉 : (Qe− εE)x ≥ Qe, x ≥ 0} .
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Then, there is µ̄ > 0 such that

ψP (ε) > ψQ(ε), ∀ε ∈ (0, µ̄). (4.4.6)

The strict inequality in (4.4.6) implies that

ψP (ε)− ψP (0) > ψQ(ε)− ψQ(0), ∀ε ∈ (0, µ̄).

This means that when (P) has a locally smaller feasible region, the difference between
its nominal optimal value and robust optimal value is larger than when (P) has a
locally bigger feasible region. In other words, a locally small feasible region of an
LP drives the problem more sensitive under data uncertainty. Throughout this thesis,
we often omit the word ‘locally’ and state ‘smaller feasible region’ instead of ‘locally
smaller feasible region’. Similarly, we often state ‘bigger feasible region’ instead of
‘locally bigger feasible region’.

The Strict Monotonicity of Robust Optimal Value Function ψ(ε)

In this section, we show that ψ(ε) is a differentiable strictly increasing function, for all
positive ε near ε̄ = 0. That is,

ψ′(ε) > 0, for ε > 0 near 0. (4.4.7)

We recall from (4.3.3) that ψ(ε) is a non-decreasing function due the the definition of
robust counterpart.

To show (4.4.7), we make use of Item (2) of Theorem 4.4.1:

z′(θ) =
∞∑
i=1

icTB(θ − θ̄)(i−1)(−B−1GB)ix̄B. (4.4.8)

We note that Theorem 4.4.1 is written with LPs in SEF. Hence, we first write (R(ε)) in
SEF :

ψ(ε) = min 〈w̄, x〉

subject to
[
P − εE, −In

](x
s

)
= Pe

x, s ≥ 0.

(4.4.9)

We can write the constraint coefficient matrix of (4.4.9) in an explicit parametric form:[
P − εE, −I

]
=
[
P −I

]
+ ε
[
−E O

]
. (4.4.10)

In our case, the data we should consider in (4.4.8) is the following:

θ = ε, θ̄ = 0, B = P ∈ Rn×n, GB = −E ∈ Rn×n and x̄B = e.
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The i-th term of the series in (4.4.8) becomes

icTB(θ − θ̄)(i−1)(−B−1GB)ix̄B = iεi−1cTBB
−1(EB−1)i−1Ee = inεi−1yT (EB−1)i−1e,

where y is the dual optimal solution to (P) by Lemma 4.4.2. Hence, we have

ψ′(ε) = nyT

(
∞∑
i=1

iεi−1(EB−1)i−1

)
e. (4.4.11)

We first check the convergence for small ε of the matrix power series in (4.4.11):

∞∑
i=1

iεi−1(EB−1)i−1. (4.4.12)

The radius of convergence of the scalar power series
∑∞

k=0 akz
k is

R = 1/(lim sup
k→∞

k
√
|ak|),

and is equal to limk→∞

∣∣∣ ak
ak+1

∣∣∣, if the limit exists. The spectral radius of a matrix A ∈ Cn×n

is defined as
ρ(A) := max{|λi| : λi is an eigenvalue of A}. (4.4.13)

Lemma 4.4.4 ( [19, Theorem 5.6.15]). Let R be the radius of convergence of a scalar
power series

∑∞
k=0 akz

k, and let A ∈ Cn×n be given. The matrix power series
∑∞

k=0 akA
k

converges, if ρ(A) < R.

Now we show that ψ′(ε) > 0, for small ε > 0. Let ak = kεk−1. Then, we have

R = lim
k→∞

∣∣∣∣ akak+1

∣∣∣∣ = lim
k→∞

∣∣∣∣ k

k + 1

1

ε

∣∣∣∣ =
1

ε
.

Hence, as long as we have ρ(EB−1) < 1/ε, the series in (4.4.12) converges. Since EB−1

is a rank one matrix, there is exactly one nonzero eigenvalue of EB−1. We note that the
nonzero eigenvalue of EB−1 is eTB−1e and the corresponding eigenvector is e. Thus the
spectral radius of EB−1 is

ρ(EB−1) = |eTB−1e|.

Hence, Lemma 4.4.4 reads, if |eTB−1e| < 1/ε, the series (4.4.12) converges. Thus we
assume that ε is given small enough so that |eTB−1e| < 1/ε is satisfied.

Let λ := eTB−1e. Since EB−1e = λe, (4.4.11) becomes

ψ′(ε) = nyT

(
∞∑
i=1

iεi−1(EB−1)i−1e

)
= nyT

(
∞∑
i=1

i(ελ)i−1e

)
. (4.4.14)
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Each coordinate of the vector
∑∞

i=1 i(ελ)i−1e in (4.4.14) has the same value. Hence, in
order to study the convergence of vector series (4.4.14), we may consider a series on R,
that is of the form

∑∞
k=0 ck, where ck = k(ελ)k−1.

We first recall the formula for a general geometric series and its derivative. We define
a function f(z) :=

∑∞
k=0 z

k, with the domain {z ∈ R : |z| < 1}. Then, the geometric series
converges to 1/(1 − z). f(z) is well-defined and differentiable on z ∈ (−1, 1). Hence, we
have

f ′(z) =
∞∑
k=0

kzk−1 =
1

(1− z)2
> 0. (4.4.15)

Thus the series
∑∞

k=0 ck with ck = k(ελ)k−1, with |ελ| < 1, converges to a positive number
by (4.4.15). Therefore, if ε > 0 satisfies |eTB−1e| < 1/ε, then(

∞∑
i=1

iεi−1(EB−1)i−1

)
e > 0.

We recall that nyT ≥ 0 and y 6= 0. Thus we have ψ′(ε) > 0 (See (4.4.11).), and (4.4.7) is
verified.

The Strict Inequality ψ′P (0) > ψ′Q(0)

We recall that the constraint coefficient matrix of LP (4.4.9) in a parametric form is[
P − εE, −I

]
=
[
P −I

]
+ ε
[
−E O

]
.

Let y be the dual variable associated with the equality constraints at ε = 0. Then, by
Corollary 4.4.3, we have

ψ′(0) = −y∗T
[
−E O

](x∗
s∗

)
= −y∗T

[
−Ee 0

]
= y∗TEe, (4.4.16)

where (x∗, s∗) and y∗ are the primal-dual optimal solutions. We note that y∗TEe does
not involve the slack variable s∗. Hence, we may consider the optimal solution of (R(ε))
without transforming into SEF to study the sensitivity.

Suppose that we have two robust counterparts,

ψP (ε) = min{〈w̄, x〉 : (P − εE)x ≥ Pe, x ≥ 0}, (4.4.17)

ψQ(ε) = min{〈w̄, x〉 : (Q− εE)x ≥ Qe, x ≥ 0}, (4.4.18)

where cone(C) = {x : Px ≥ 0}, cone(D) = {x : Qx ≥ 0} and cone(C) ( cone(D). Let
x∗P and x∗Q be the optimal solutions to (4.4.17) and (4.4.18), respectively, when ε = 0. We
know that x∗P = x∗Q = e by Item 2 of Lemma 4.2.1. Let y∗P and y∗Q be the optimal solutions
to the duals of (4.4.17) and (4.4.18), when ε = 0. We recall from Item 1 of Lemma 4.2.1
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that the set of dual optimal solutions to (R(0, P )) is{
yP ∈ Rm : P TyP = w̄, yp ≥ 0

}
.

Similarly, the set of dual optimal solutions of (R(0, Q)) is{
yQ ∈ Rm : QTyQ = w̄, yQ ≥ 0

}
.

We recall that, for all nonnegative yP such that P TyP = w̄, there exists yQ ≥ 0 such that
QTyQ = w̄ and yP ≥ yQ, by Lemma 3.2.10. Therefore, using Corollary 4.4.3, we obtain

ψ′P (0) = −(y∗P )T (−E)x∗P = (y∗P )TEe = neTy∗P ,

ψ′Q(0) = −(y∗Q)T (−E)x∗Q = (y∗Q)TEe = neTy∗Q.

Since yP ≥ yQ and yP 6= yQ, we conclude that

ψ′P (0) > ψ′Q(0). (4.4.19)

That is, when the feasible region is smaller, its robust optimal value is more sensitive at
ε = 0. We state the result (4.4.19) in the proposition below. The above argument gives
the proof for the following proposition.

Proposition 4.4.5. For the two robust optimal value functions ψP (ε) and ψQ(ε) with
nondegenerate optimal solutions, we have

ψ′P (0) > ψ′Q(0).

The Strict inequality ψP (ε) > ψQ(ε)

Now we want to show that

ψP (ε) > ψQ(ε), ∀ε ∈ (0, ε̄), for some ε̄ > 0.

We summarize the results we have so far:

(1) ψP (0) = ψQ(0) (See (4.3.5) on page 64.),

(2) ψ′P (0) > ψ′Q(0) (See Proposition 4.4.5.).

We observe the following: By Item (1) and Item (2) above, we have

0 < lim
h→0

ψP (h)− ψp(0)− ψQ(h) + ψQ(0)

h
= lim

h→0

ψP (h)− ψQ(h)

h
.

Therefore, we conclude the following:

There is an interval I = (0, ε̄) such that ψP (ε) > ψQ(ε), ∀ε ∈ I. (4.4.20)
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This implies that
ψP (ε)− ψP (0) > ψQ(ε)− ψQ(0), ∀ε ∈ I.

That is, there is an interval such that the robust optimal value of a smaller feasible region
is always worse than the robust optimal value of a bigger feasible region.

4.4.3 The Robust Optimal Value Function φ(ε)

In this section, we make a brief note on the robust optimal value function φ(ε) of the robust
counterpart (S(ε)). A reader who wishes to recall the definition of φ(ε) and (S(ε)) may
refer to Section 4.2.2 and Section 4.3.

In the previous sections, we have studied the optimal value function ψ(ε) of (R(ε))
under the nondegenerate case. We note that the argument on the optimal value function
φ(ε) of (S(ε)) parallels the argument in the previous sections owing to Lemma 3.2.1 (Note
that Lemma 3.2.10 played an important role on getting the sensitivity result in Section
4.4.2.). Thus, by making necessary changes in the previous section, we have the following
result:

1. φ(ε) is a strictly increasing function for all ε near 0,

2. There is an interval I = (0, ε̄) such that φC(ε) < φD(ε), ∀ε ∈ I.

We recall that cone(C)◦ ⊃ cone(D)◦ since polarization is order-reversing (See Lemma
2.1.25.). Hence, the above argument also shows that there is an interval such that the
robust optimal value of a smaller feasible region is always worse than the robust optimal
value of a bigger feasible region.

4.5 The Sensitivity of the Optimal Value Function:

Degenerate Cases

In this section, we focus on (P), where more than n halfspaces are active at the optimal
solution e. When an LP in SEF has a degenerate basic optimal solution, we obtain more
than one optimal basis. Hence, the approach used in Theorem 4.4.1 is no longer valid.

A reader may question that we can use the approach introduced by Fiacco [11] as (R(ε))
is in a nice parametric form. Fiacco in [11] contains a comprehensive sensitivity analysis
on parametric nonlinear programming (hence applicable to LPs) and nice formulae for
the derivatives of optimal solutions and optimal values with respect to the parameters.
However, most of the arguments are presented under the linear independence constraint
qualification. This triggers problems when the number of active constraints of an LP at its
optimal solution is bigger than its dimension. In this case, the Jacobian matrix contains
the gradients of the active linear constraints and hence it is not invertible. Thus, instead
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of using the approach from [11], we perform our analysis using directional differentiability.
A reader interested in non-linear parametric programming may refer to [3, 11].

The rest of this section is organized as follows: In Section 4.5.1, we present why the
optimal value function ψ(ε) might not be differentiable at ε = 0 in the presence of degen-
eracy. In Section 4.5.2, we present that the optimal value function ψ(ε) is directionally
differentiable. In Section 4.5.3, with directional differentiability obtained in Secion 4.5.2,
we conclude the same result stated in (4.4.20) in degenerate cases. In Section 4.5.4, we
suggest a sufficient condition for differentiability of ψ(ε) at ε = 0. Finally, in Section 4.5.5,
we show that the properties hold for the optimal value function ψ(ε) for LP (P) also hold
for the optimal value function φ(ε) for LP (Q).

4.5.1 The Generalized Directional Derivative

We recall that the optimal value function ψ(ε) is differentiable by Theorem 4.4.1, given
that the LP is nondegenerate. In this section, we show where the non-differentiability of
ψ(ε) comes from in degenerate cases.

Known Results on Parametric LP: Degenerate Cases

Theorem 4.5.1 ([32, Theorem 1]). Given c ∈ Rn, b ∈ Rm and A ∈ Rm×n, consider the
following LP

z̃(A) = max{〈c, x〉 : Ax = b, x ≥ 0}.

Let dom(z̃), i.e., the domain of z̃ be {A ∈ Rm×n : z̃(A) is finite}. If

(1) A is an interior point of dom(z̃), and

(2) z̃(A) is locally Lipschitz in a neighbourhood of A,

then
∂z̃(A) = conv{−uxT : u is any optimal dual solution,

x is any primal optimal solution}.

Remark 4.5.2. We note that Theorem 4.5.1 is also applicable to nondegenerate cases. In
the nondegenerate case, optimal solutions x and u of a primal-dual pair are unique. Then,
each entry of ∂z̃(A) is a real number, rather than an interval (under the assumption that
the hypotheses of Theorem 4.5.1 were satisfied.).

The Generalized Directional Derivative of the Optimal Value Function ẑ

In this section, we want to show where the non-differentiability of the optimal value func-
tion might be coming from, by utilizing Theorem 4.5.1. We also study the generalized
directional derivative of the optimal value function of (P) in SEF. Hence, we check that
the hypotheses of Theorem 4.5.1 are satisfied with our LP :
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1. We first introduce Proposition 4.5.3 to relate the first hypothesis (1) of Theorem
4.5.1. Proposition 4.5.3 states that for a primal-dual pair of LPs satisfying the
regularity condition, any small perturbations around given data do not render the
pair unsolvable.

2. We mention [8, Theorem 4.3] to relate the second hypothesis (2) of Theorem 4.5.1. [8,
Theorem 4.3] states the Lipschitz property of optimal value function under small
perturbations of given data.

We note that the LP in Theorem 4.5.1 is written in SEF. Hence, we need to transform
(P) in SEF :

ẑ([P,−Im]) = min 〈w̄, x〉

(PSEF) subject to
[
P −Im

](x
s

)
= Pe

x, s ≥ 0.

We explain the notation used in Proposition 4.5.3. Given X ⊂ Rn, Y ⊂ Rm and a
matrix A ∈ Rm×n, we define

A(X)− Y := {Ax− y : x ∈ X, y ∈ Y } .

Proposition 4.5.3 ([24, Theorem 1]). Let K1, K2 be non-empty polyhedral convex cones
in Rn and Rm, respectively, and let A ∈ Rm×n. Let (P ), (D) be the following LPs :

min 〈c, x〉 max 〈u, b〉
(P ) subject to Ax− b ∈ K∗2 (D) subject to c− ATu ∈ K∗1

x ∈ K1, u ∈ K2.

Then, the following are equivalent.

1. The constraints of (P ) and of (D) are regular, i.e.,

b ∈ int {A(K1)−K∗2} and c ∈ int
{
AT (K2) +K∗1

}
.

2. The sets of optimal solutions of (P ) and of (D) are nonempty and bounded.

3. There exists ε0 > 0 such that for any A′, b′ and c′ with

ε′ ≡ max{‖A′ − A‖, ‖b′ − b‖, ‖c′ − c‖} < ε0,

the two dual problems

min 〈c′, x〉 max 〈u, b′〉
(P ′) subject to A′x− b′ ∈ K∗2 (D′) subject to c′ − (A′)Tu ∈ K∗1

x ∈ K1, u ∈ K2
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are solvable.

The following lemma shows that regularity of the system {x ∈ Rn : Ax ≥ b, x ∈ Rn
+} is

equivalent to Slater condition.

Lemma 4.5.4. Let {x ∈ Rn : Ax ≥ b, x ∈ Rn
+} be a given system of inequalities with

A ∈ Rm×n. Assume that there exists x̂ such that Ax̂ > b, x̂ ≥ 0. Then, the following are
equivalent.

(1) b ∈ int
{
A(Rn

+)− Rm
+

}
,

(2) there exists x′ such that Ax′ > b, x′ ∈ Rn
+.

Proof. Suppose that Item (1) holds. Then, ∀d with small enough ε > 0, we have b+ εd =
Ax̄− s̄, for some x̄ ∈ Rn

+, s̄ ∈ Rm
+ . Taking d such that −s̄ < εd yields b = Ax̄− s̄−εd < Ax̄.

Hence, Item (2) holds.

Conversely, suppose that Item (2) holds. Then Ax′ − s = b, for some s ∈ Rm
++. Let

d ∈ Rm with ‖d‖ = 1 and let δ = mini{si}. Define s̄ := s− δd. Then we get

b+ δd = Ax′ − s+ δd = Ax′ − s̄.

We note that s̄ ≥ 0, since δdi ≤ δ ≤ si, ∀i. Therefore, ∃δ > 0 such that ∀d ∈ Rm with
‖d‖ = 1, we have

b+ δd = Ax′ − s̄, x ≥ 0, s̄ ≥ 0.

Hence, b ∈ int
{
A(Rn

+)− Rm
+

}
, so Item (1) holds.

Remark 4.5.5 states that a regular system (defined in Item 1 of Proposition 4.5.3) of
inequalities {x ∈ Rn : Ax ≥ b, x ∈ Rn

+} remains regular after being transformed into
constraints of SEF.

Remark 4.5.5. Given A ∈ Rm×n and b ∈ Rm, we define two systems

S1 := {x ∈ Rn : Ax ≥ b, x ∈ Rn
+}, and

S2 :=

{(
x
s

)
∈ Rn × Rm : Ax− s = b, x ∈ Rn

+, s ∈ Rm
+

}
.

System S1 is regular if, and only if, system S2 is regular.

Proof. If system S2 is regular, we have

b ∈ int

{[
A, −I

] [Rn
+

Rm
+

]
− (Rm)∗

}
= int

{
A(Rn

+)− Rm
+

}
. (4.5.1)

We note that (4.5.1) is equivalent to Item (1) stated in Lemma 4.5.4.
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We note that our systems {x ∈ Rn : Px ≥ Pe, x ≥ 0} and {y ∈ Rm : P Ty ≤ w̄, y ≥ 0}
have points x̂, ŷ such that Px̂ > Pe, x̂ ≥ 0 and P T ŷ < w̄, ŷ ≥ 0 by Lemma 3.2.5 and the
construction of cone(C). Hence, by Lemma 4.5.4,

Pe ∈ int
{
P (Rn

+)− Rm
+

}
and w̄ ∈ int

{
P T (Rm

+ ) + Rn
+

}
are satisfied. By Remark 4.5.5, we have that the constraint system of (PSEF) and its dual
are regular. Thus, by Proposition 4.5.3, ∃ε0 > 0 such that ∀[P ′, J ′] ∈ Ball([P,−Im], ε0),
the primal (PSEF) and its dual are solvable (Note that we do not perturb the RHS nor the
objective.). Therefore we have

[P ′, J ′] ∈ dom(ẑ), ∀[P ′, J ′] ∈ Ball([P,−Im], ε0),

and the hypothesis (1) of Theorem 4.5.1 holds with (P).

Now we check that the hypothesis (2) of Theorem 4.5.1 holds with (P). It is shown
in [8, Theorem 4.3]2 that given an LP satisfying the regularity condition, the optimal value
function is locally Lipschitz near the given data. Thus the hypotheses of Theorem 4.5.1
are satisfied and we are ready to apply Theorem 4.5.1 to (R(0)).

Applying Theorem 4.5.1 to (R(0)) in SEF gives

∂ẑ([P,−Im]) = conv
{
−y
(
xT , sT

)
: (x; s), y optimal solutions to primal-dual pair

}
.

Since (P) has the unique optimal solution x∗ = e, the optimal solution to (PSEF) is
(x∗; s∗) = (e; 0). Then, ∂ẑ([P,−Im]) reduces to

∂ẑ([P,−Im]) = conv
{
−[yeT , Om×m] : y optimal solution to (DP)

}
.

We recall that there are more than one optimal solutions to dual (DP) by Item 4 of
Lemma 4.2.1. That is, ∂ẑ([P,−Im]) is not a singleton. We also recall that if ∂f(x) is not a
singleton, then f is not continuously differentiable, by the contrapositive of Lemma 2.2.8.
Hence, ẑ is not differentiable in regards to matrix perturbations, in general. However, with
the direction of perturbations we are interested, we may obtain some partial knowledge on
the sensitivity of the optimal value function ẑ of (PSEF).

We note that the constraint matrix of (R(ε)) in SEF is given by[
P − εE, −I

]
=
[
P −I

]
+ ε
[
−E O

]
∈ Rm×(n+m).

That is, we want to perturb the matrix [P,−Im] in the direction [−E,O] ∈ Rm×(n+m).

We recall from Proposition 2.2.7 that the generalized gradient of a function f at x in
direction v is given by

f ◦(x; v) = max {〈ξ, v〉 : ξ ∈ ∂f(x)} .
2 [8, Theorem 4.3] was stated with linear semi-infinite constraints but the statement holds with ordinary

LPs as well.

76



Hence, the generalized gradient of a function ẑ at [P,−Im] in the direction [−E,O] is given
by

ẑ◦([P,−Im]; [−E,O]) = max
{〈
−[yeT , Om×m], [−E,O]

〉
: y optimal solution to (DP)

}
= max

{
yTEen : y optimal solution to (DP)

}
= max {n〈y, em〉 : y optimal solution to (DP)} .

(4.5.2)
The first equality in (4.5.2) holds by Theorem 4.5.1 and the uniqueness of the primal
optimal solution. By observing (4.5.2), we see that the sensitivity of the optimal value
function ẑ highly depends on the optimal solutions of dual (DP). In Section 4.5.2, we
show that the directional derivative of ψ(ε) at ε = 0 in the direction 1 ∈ R (positive
direction) coincides with (4.5.2).

Remark 4.5.6. In the nondegenerate case, we may use Theorem 4.5.1 and get the total
derivative of ẑ. We note that the total derivative of ẑ(P ′), where P ′ = [P,−In], can be
written as

dẑ(P ′) =
∑
i,j

∂ẑ(P ′)

∂p′ij
dp′ij.

Since

dp′ij =

{
−1, ∀i ∈ {1, . . . , n}, j ∈ {1, . . . , n}
0, ∀i ∈ {1, . . . , n}, j ∈ {n+ 1, . . . 2n} ,

the result coincides with the nondegenerate case.

4.5.2 The Directional Differentiability of ψ(ε)

We have shown, in Section 4.5.1, that the optimal value function ẑ might not be differen-
tiable at [P,−Im]. That is, the optimal value function ψ(ε) might not be differentiable at
ε = 0. However, we note that we are interested in the domain of ψ(ε) that is positive real
number, i.e., ε ∈ (0, ε̄), for some ε̄ > 0. Hence, we turn our attention to the directional
differentiability of ψ(ε), rather than the differentiability of ψ(ε) at ε = 0. In this section,
we show that ψ is directionally differentiable in direction of 1, that is,

lim
ε↓0

ψ(ε)− ψ(0)

ε
exsits. (4.5.3)

Fiacco [11, Section 2.3] and Still [29, Chapter 7] contain the related result presented in this
section. We want to show (4.5.3) by getting an upper bound (lim sup) and a lower bound
(lim inf), and claim that the upper bound and the lower bound are equal.

We recall that the robust counterpart of (P) is given by

(R(ε)) ψ(ε) = min{〈w̄, x〉 : (P − εE)x ≥ Pe, x ≥ 0}.
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We may write (R(ε)) as

(R(ε))
ψ(ε) = min 〈w̄, x〉

subject to gi(x, ε) ≤ 0, ∀i = 1, . . . ,m
gi(x, ε) ≤ 0, ∀i = m+ 1, . . . ,m+ n,

where
gi(x, ε) := −(pi)Tx+ εeTx+ (pi)T e, ∀i = 1, . . .m,
gi(x, ε) := −xi, ∀i = m+ 1, . . . ,m+ n,

(We may omit ε in the input of gi(x, ε), ∀i = m+ 1, . . . ,m+ n.). Let

S(ε) := Argmin {〈w̄, x〉 : (P − εE)x ≥ Pe, x ≥ 0} ,

i.e., the set of optimal solutions of (R(ε)). We recall that S(0) = {e} by Item 2 of Lemma
4.2.1. Let I(x) be the set of indices such that gi(x, ε) is active at x. We note that at the
optimal solution x∗ of (R(0)), the set of active indices is I(x∗) = {1, . . . ,m}. Then the
Lagrangian of (R(ε)) near (x∗, ε) = (e, 0) is given by

L(x, ε, y) = 〈w̄, x〉+
m∑
i=1

yigi(x, ε). (4.5.4)

Theorem 4.5.7 gives an upper bound for (4.5.3).

Theorem 4.5.7. Given a family of (R(ε)), for small ε > 0, let ψ(ε) be the optimal value
function of (R(ε)). Let M be the set of optimal solutions of (DP). Then, we have

lim sup
ε↓0

ψ(ε)− ψ(0)

ε
≤ max {n〈e, y〉 : y ∈M} .

Proof. Consider the LP

(P+)
v+ = min

ξ
〈w̄, ξ〉

subject to (pi)T ξ ≥ n,∀i = 1, . . . ,m.

Then, the dual (D+) of (P+) is

(D+)

max
y

n〈e, y〉
subject to P Ty = w̄

y ≥ 0.

We note that the set of feasible solutions to (D+) is M , i.e., the set of optimal solutions
to (DP) (See Item 1 of Lemma 4.2.1.). Since cone(C) = {x ∈ Rn : Px ≥ 0} is a full-
dimensional cone, there exists a vector ξ̄ such that P ξ̄ > 0. Hence, we know that there
exist feasible solutions to (P+) and (D+). Thus, by strong duality (See Proposition 2.3.5.),
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we have
v+ = max {n〈e, y〉 : y ∈M} .

Let ξ∗ be a minimizer of (P+). Let x̄ be the optimal solution to (R(0)). Define, for
small δ > 0 and ε > 0,

xε := x̄+ ε(ξ∗ + δξ̄).

Then, for i ∈ I(x̄) = {1, . . . ,m} and for small ε > 0, we have

gi(xε, ε) = gi(xε, ε)− gi(x̄, 0)

=
〈
−pi, x̄+ ε

(
ξ∗ + δξ̄

)〉
+ ε
〈
e, x̄+ ε

(
ξ∗ + δξ̄

)〉
+ (pi)T e+ (pi)T x̄− (pi)T e

= ε〈−pi, ξ∗ + δξ̄〉+ ε〈e, x̄〉+ ε2〈e, ξ∗ + δξ̄〉
= ε

[
〈−pi, ξ∗ + δξ̄〉+ 〈e, x̄〉

]
+ o(ε).

(4.5.5)
The first equality holds since gi(x̄, 0) = 0,∀i ∈ I(x̄). Then, by dividing both sides of (4.5.5)
by ε, we get

gi(xε, ε)/ε = 〈−pi, ξ∗ + δξ̄〉+ 〈e, x̄〉+ o(ε)/ε
= 〈−pi, ξ∗〉+ 〈e, x̄〉+ 〈−pi, δξ̄〉+ o(ε)/ε
= 〈−pi, ξ∗〉+ n+ δ〈−pi, ξ̄〉+ o(ε)/ε
≤ δ〈−pi, ξ̄〉+ o(ε)/ε by the feasibility of ξ∗ to (P+)
< 0 since P ξ̄ > 0.

Hence, xε is a feasible solution to (R(ε)), and this implies that ψ(ε) ≤ 〈w̄, xε〉. Thus we
have

ψ(ε)− ψ(0) ≤ 〈w̄, xε〉 − 〈w̄, x̄〉 since ψ(0) = 〈w̄, x̄〉
= 〈w̄, x̄+ ε(ξ∗ + δξ̄)〉 − 〈w̄, x̄〉
= 〈w̄, ε(ξ∗ + δξ̄)〉
= ε〈w̄, ξ∗〉+ εδ〈w̄, ξ̄〉.

Hence,
ψ(ε)−ψ(0)

ε
≤ 〈w̄, ξ∗〉+ δ〈w̄, ξ̄〉
= v+ + δ〈w̄, ξ̄〉.

Since δ > 0 can be chosen arbitrarily small, we have

lim sup
ε↓0

ψ(ε)− ψ(0)

ε
≤ max{n〈e, µ〉 : µ ∈M}.

We observe in the proof of Theorem 4.5.7 that getting an upper bound of (4.5.3) does
not require any argument on convexity (other than strong duality of (P+) and (D+).).
However, obtaining a lower bound of (4.5.3) requires the convexity status.

Theorem 4.5.8. Given a family of (R(ε)), for small ε > 0, let ψ(ε) be the optimal value
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function of (R(ε)). Let M be the set of optimal solutions of (DP). Then, we have

lim inf
ε↓0

ψ(ε)− ψ(0)

ε
≥ max {n〈e, µ〉 : µ ∈M} .

Proof. Let x` be an optimal solution to (R(ε`)) for small ε` > 0. Such optimal solutions
exist, since the constraints systems of (P) and (DP) are regular, and for any small pertur-
bations (R(ε)) is solvable by Proposition 4.5.3. Let {x`} ⊂ Rn and {ε`} ⊂ R be sequences
such that x` ∈ S(ε`), converging to x̄ ∈ S(0) and ε` ↓ 0.

We recall the Lagrangian near (e, 0) defined in (4.5.4). Since x̄ is the optimal solution
to (R(0)), we have ∇xL(x̄, 0, y) = 0, ∀y ∈ M . Since L(x̄, 0, y) is linear (convex) with
respect to x, ∇xL(x̄, 0, y) = 0 implies that x̄ is a global minimizer of L(x, 0, y), for each
y ∈M . Hence, we have

L(x`, ε`, y)− L(x`, 0, y) ≤ L(x`, ε`, y)− L(x̄, 0, y)
= 〈w, x`〉 − 〈w, x̄〉+

∑
i∈I(x̄) yi (gi(x`, ε`)− gi(x̄, 0))

≤ 〈w, x`〉 − 〈w, x̄〉
= ψ(ε`)− ψ(0).

(4.5.6)

The first inequality in (4.5.6) holds since x̄ is a global minimizer. The second inequality in
(4.5.6) holds since gi(x`, ε`) ≤ 0 and gi(x̄, 0) = 0, ∀i ∈ I(x̄). Thus we get

ψ(ε`)− ψ(0) ≥ L(x`, ε`, y)− L(x`, 0, y)

=
∑

i∈I(x̄)

yi
(
−(pi)Tx` + ε`e

Tx` + (pi)T e
)
−
∑

i∈I(x̄)

yi
(
−(pi)Tx` + (pi)T e

)
=
∑

i∈I(x̄)

yiε`e
Tx`

= ε`e
Tx`

∑
i∈I(x̄)

yi.

Dividing the above by ε` > 0 gives

ψ(ε`)− ψ(0)

ε`
≥ eTx`

∑
i∈I(x̄)

yi. (4.5.7)

Letting l→∞ in (4.5.7) yields

lim
l→∞

ψ(ε`)− ψ(0)

ε`
≥ lim

l→∞
eTx`

∑
i∈I(x̄)

yi,

which implies

lim inf
ε↓0

ψ(ε)− ψ(0)

ε
≥ eT x̄

∑
i∈I(x̄)

yi = n〈e, y〉. (4.5.8)
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Since (4.5.8) holds for each y ∈M , we have

lim inf
ε↓0

ψ(ε)− ψ(0)

ε
≥ max{n〈e, y〉 : y ∈M}.

We are now ready to show directional differentiability of ψ(ε). With Theorem 4.5.7 and
Theorem 4.5.8, we have

max
y∈M

n〈e, y〉 ≤ lim inf
ε↓0

ψ(ε)− ψ(0)

ε
≤ lim sup

ε↓0

ψ(ε)− ψ(0)

ε
≤ max

y∈M
n〈e, y〉,

where M is the set of optimal solutions of (DP). Therefore, limε↓0
ψ(ε)−ψ(0)

ε
exists and is

equal to

ψ′(0; 1) = lim
ε↓0

ψ(ε)− ψ(0)

ε
= max

y∈M
n〈e, y〉. (4.5.9)

We note that (4.5.9) coincides with (4.5.2).

4.5.3 The Sensitivity of the Optimal Value Functions ψP (ε) and
ψQ(ε)

In this section, we show the sensitivity of the robust optimal value functions ψP (ε) and
ψQ(ε) using the result obtained in Section 4.5.2, precisely the equality (4.5.9).

Given two (R(ε, P )) and (R(ε, Q)), we now compare the values of directional derivatives
of ψP (ε) and ψQ(ε), as ε ↓ 0.

Theorem 4.5.9. Given two LPs (R(ε, P )) and (R(ε, Q)) and their optimal value functions
ψP (ε) and ψQ(ε), respectively, we have

ψP (ε) > ψQ(ε), ∀ small ε > 0.

Proof. Let MP and MQ be the set of optimal solutions:

MP := Argmax{〈Pe, y〉 : P Ty ≤ w̄, y ≥ 0}, and MQ := Argmax{〈Qe, y〉 : QTy ≤ w̄, y ≥ 0}.

Then, by Item 1 of Lemma 4.2.1, we have

MP = {y ∈ Rm : P Ty = w̄, y ≥ 0},
MQ = {y ∈ Rm : QTy = w̄, y ≥ 0}.

Then, (4.5.9) leads to

ψ′P (0; 1) = max {n〈e, y〉 : y ∈MP} ,
ψ′Q(0; 1) = max {n〈e, y〉 : y ∈MQ} .
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By Lemma 3.2.10, we have

ψ′P (0; 1) = max {n〈e, y〉 : y ∈MP} > max {n〈e, y〉 : y ∈MQ} = ψ′Q(0; 1).

This yields

0 < c := ψ′P (0; 1)− ψ′Q(0; 1) = lim
ε↓0

ψP (ε)− ψP (0)

ε
− lim

ε↓0

ψQ(ε)− ψQ(0)

ε
.

Then, we have

lim
ε↓0

ψP (ε)− ψP (0)− ψQ(ε) + ψQ(0)

ε
= c.

Thus, with ψP (0) = ψQ(0), we obtain

∀ε̄ > 0, ∃δ > 0 such that 0 < ε < δ =⇒
∣∣∣∣ψP (ε)− ψQ(ε)

ε
− c
∣∣∣∣ < ε̄.

This implies that for ε̄ satisfying 0 < ε̄ < c, we have

−ε̄+ c <
ψP (ε)− ψQ(ε)

ε
< ε̄+ c =⇒ 0 < ε(−ε̄+ c) < ψP (ε)− ψQ(ε).

Therefore, we have

ψP (ε) > ψQ(ε), ∀ small ε > 0, (4.5.10)

as desired.

This implies that the robust optimal value is more sensitive if the given LP has a
smaller feasible region near the nominal optimal solution. We note that the result given
in (4.5.10) is the same as the one in (4.4.20).

4.5.4 A Sufficient Condition for Differentiability of ψ(ε) at ε = 0

We showed that ψ(ε) is differentiable near 0, if (P) is nondegenerate (See Section 4.4.2.).
The uniqueness of dual optimal solution played a big role in terms of getting the differen-
tiability of ψ. As we noted in Item 4 of Lemma 4.2.1, we do not have the uniqueness of
dual optimal solutions in degenerate cases. In degenerate cases, differnetiability of ψ(ε) at
ε = 0 may or may not hold depending on some properties of the set of optimal solutions of
(DP). In this section, we show a sufficient condition for differentiability of ψ(ε) at ε = 0.

In Section 4.5.2, we only considered the directional differentiability of ψ in the positive
direction and it is given by

ψ′(0; 1) = max
y∈M

n〈e, y〉, (4.5.11)

where M is the set of optimal solutions of (DP). By observing the proofs and making
necessary changes in the previous section, we can derive the directional differential of ψ in
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the negative direction, that is,

ψ′(0;−1) = max
y∈M
−n〈e, y〉. (4.5.12)

From (4.5.11) and (4.5.12), we can show that degeneracy of the optimal solution of (P)
does not always imply non-differentiability of ψ(ε) at ε = 0. We first observe a special case
in Example 4.5.10.

Example 4.5.10. Let w1 = e1, w
2 = e2, w

3 = −e1, w
4 = −e2 and w̄ = e3. Construct the

cone
cone{ci}i=1,...,4, where ci = cos θwi + sin θw̄ with θ = π/4.

Then, we have

cone(C) = {x ∈ R3 : Px ≥ 0}, where P =
1√
7


−
√

3 −
√

3 1√
3 −

√
3 1√

3
√

3 1

−
√

3
√

3 1

 .
The set of dual optimal solutions to (DP) is given by M := {y ∈ R4 : P Ty = w̄, y ≥ 0}.
We note that for all y ∈M , we must have 1 = w̄3 = 〈P (:, 3), y〉 = (1/

√
7)〈e, y〉.

From Example 4.5.10, we observe that for all y ≥ 0 such that P Ty = w̄, we must have
〈e, y〉 =

∑4
i=1 yi =

√
7. This implies that

max
y∈M

n〈e, y〉 = −max
y∈M
−n〈e, y〉 =⇒ ψ′(0; 1) = −ψ′(0;−1). (4.5.13)

Hence, the change of optimal value of ψ(ε) from ε = 0 in both directions yields the same
magnitude of change. Thus, when (4.5.13) occurs, we must have the differentiability of ψ(ε)
at ε = 0. From this observation, we conclude a sufficient condition for the differentiability
of ψ(ε) at ε = 0.

Theorem 4.5.11. Given (P) and its dual (DP), let M be the set of optimal solutions of
(DP). If

m∑
i=1

yi = γ, ∀y ∈M, for some constant γ ∈ R,

then the robust optimal value function ψ(ε) is differentiable at 0.

Remark 4.5.12. We note that, in the nondegenerate case, there is only one optimal so-
lution to (DP) (See Item 3 of Remark 4.2.1.). Therefore, Theorem 4.5.11 also applies to
the case where given (P) is nondegenerate.
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The Case of Non-differentiability

In this section, we observe an interesting phenomenon in the absence of differentiability
of ψ(ε) at ε = 0. Given two LPs (R(ε, P )) and (R(ε, Q)), where P is the data matrix of
cone(C) and Q is the data matrix of cone(D), we have the following:

ψ′P (0; 1) = max
y∈MP

n〈e, y〉 > max
y∈MQ

n〈e, y〉 = ψ′Q(0; 1) > 0, and (4.5.14)

ψ′P (0;−1) = max
y∈MP

−n〈e, y〉 < max
y∈MQ

−n〈e, y〉 = ψ′Q(0;−1) < 0. (4.5.15)

The strict inequality (4.5.14) implies that the change of ψP (ε) at ε = 0 to the positive
direction is greater than the change of ψQ(ε) at ε = 0. The strict inequality (4.5.15) implies
that the change of ψP (ε) at ε = 0 to the negative direction is also greater than the change
of ψQ(ε) at ε = 0. Therefore, the above implies that at ε = 0, the functions ψP (ε) and
ψQ(ε) do not kiss; they must cross. Figure 4.5.1 shows an illustration of this phenomenon
(Figure 4.5.1 was drawn with piece-wise linear functions for illustrative purposes. There is
no guarantee that ψP (ε) is a piece-wise linear function.).

Figure 4.5.1: An illustration of two functions ψP (ε) and ψQ(ε): Note that two functions
cross at the origin.

We make an interesting observation on ψP (ε) and ψQ(ε) on domain (−ε̄, 0), for some
ε̄ > 0. We introduced the notion of optimistic counterpart in Section 2.4.2. Using (2.4.14),
we can show that the optimistic counterpart of (P) is

min{〈w̄, x〉 : Px+ εEx ≥ Pe, x ≥ 0}. (4.5.16)

We pay attention to the coefficient of the matrix E in (4.5.16). We note that the opti-
mal value function of LP (4.5.16) can be expressed using the optimal value function of
(R(ε, P )), that is,

ψP (−ε) = min{〈w̄, x〉 : Px+ε Ex ≥ Pe, x ≥ 0}.
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Similarly, we may write

ψQ(−ε) = min{〈w̄, x〉 : Qx+ε Ex ≥ Qe, x ≥ 0}.

Hence, we observe that the optimal value functions ψP (ε) and ψQ(ε) on the positive domain
are associated with the robust counterparts while the optimal value functions ψP (ε) and
ψQ(ε) on the negative domain are associated with the optimistic counterparts.

With (4.5.14) and (4.5.15), we conclude as follows:

1. Given the robust counterparts of two LPs, (R(ε, Q)) (with the bigger feasible region)
enjoys its property more than (R(ε, P )) (with the smaller feasible region).

2. Given the optimistic counterparts of two LPs, (R(−ε, P )) (with the smaller feasible
region) enjoys its property more than (R(−ε, Q)) (with the bigger feasible region).

4.5.5 The Robust Optimal Value Function φ(ε)

In this section, we make a brief note on the robust optimal value function φ(ε) of the
robust counterpart (S(ε)). A reader who wishes to recall the definition of φ(ε) and (S(ε))
may refer to Section 4.2.2 and Section 4.3. We recall that we state the similar argument
in Section 4.4.3 under nondegenerate cases.

From Section 4.5.1 to Section 4.5.4, we have studied the robust optimal value function
ψ(ε) of (R(ε)) under the degenerate case. We note that the argument on the optimal value
function φ(ε) of (S(ε)) parallels the argument in the previous sections owing to Lemma
3.2.1 (Note that Lemma 3.2.10 played an important role on getting the sensitivity result
in Section 4.5.2.). Thus, by making necessary changes in the previous section, we have the
following result: given two LPs (S(ε, C)) and (S(ε,D)) and their optimal value functions
φC(ε) and φD(ε), respectively, we have

φC(ε) < φD(ε), ∀ small ε > 0.

We recall that cone(C)◦ ⊃ cone(D)◦ since polarization is order-reversing (See Lemma
2.1.25.). Hence, the above argument also shows that there is an interval such that the
robust optimal value of a smaller feasible region is always worse than the robust optimal
value of a bigger feasible region.

We also conclude the following: given (Q) and its dual (DQ), let M be the set of
optimal solutions of (DQ). If

m∑
i=1

yi = γ, ∀y ∈M, for some constant γ,

then φ(ε) is differentiable at ε = 0.
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We also have

φ′C(0; 1) = max
y∈MC

n〈e, y〉 < max
y∈MD

n〈e, y〉 = φ′D(0; 1), and

φ′C(0;−1) = max
y∈MC

−n〈e, y〉 > max
y∈MD

−n〈e, y〉 = φ′D(0;−1).

Therefore, φC(ε) and φD(ε) cross at ε = 0 (See Figure 4.5.1 for an illustration after replacing
ψP (ε) to φD(ε) and replacing ψQ(ε) to φC(ε).).

4.6 Interpretations to the Robust Optimization Prob-

lem

In this section, we briefly summarize the arguments of the previous sections as well as how
the result applies to the original robust optimization problem.

Given the vectors w̄ ∈ Rn and {wi}i=1,...,k ⊂ Rn satisfying Hypothesis 3.1.1, we con-
struct a family of cones so that we can control their sizes using θ ∈ (0, π/2) (Section 3.1).
We fix two distinct θ, θ̄ with θ < θ̄ and construct two cones:

cone(C) := cone
(
{ci}i∈{1,...,l}

)
, where ci := cos θw̄ + sin θwi,

cone(D) := cone
(
{di}i∈{1,...,l}

)
, where di := cos θ̄w̄ + sin θ̄wi.

We note that cone(C) ( cone(D).

We first focus on cone(C). With Algorithm 2.1.1 and Table 2.1.2, we find the halfspaces
defining the cone:

cone(C) := {x ∈ Rn : Px ≥ 0}.

We translate the cone by e and obtain the following system:

{x ∈ Rn : Px ≥ 0}+ e = {x ∈ Rn : Px ≥ Pe}.

We then construct LPs using the cones constructed above along with the nonnegativity
on the variables (Section 4.2):

(P) min {〈w̄, x〉 : Px ≥ Pe, x ≥ 0} .

We note that the translation of the cone yields (P) to have its unique optimal solution at
x∗ = e. We also note that the constraint x ≥ 0 of (P) may change the feasible region of
(P) but is redundant in the sense that it does not affect the optimal solution at all. The
constraint x ≥ 0 seems redundant knowing that x∗ = e is the unique optimal solution, but
it plays an important role on forming a nice parametric form of robust counterpart; see
(2.4.9).

Now we suppose that each entry of the LHS coefficient matrix P of the constraint
Px ≥ Pe is uncertain and we are given small perturbation range [−ε, ε] for each entry of
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P . We then form the following robust counterpart (Section 4.3):

(R(ε, P )) ψP (ε) = min {〈w̄, x〉 : Px− εEx ≥ Pe, x ≥ 0} .

Similarly, we do the same procedure described above for cone(D) = {x ∈ Rn : Qx ≥ 0}
and obtain the following robust counterpart:

(R(ε, Q)) ψQ(ε) = min {〈w̄, x〉 : Qx− εEx ≥ Qe, x ≥ 0} .

With the robust counterparts (R(ε, P )) and (R(ε, Q)), we show in Section 4.4 (in
nondegenerate cases) and Section 4.5 (in degenerate cases) that the optimal value function
of a smaller feasible region yields a worse robust optimal value than the robust optimal
value function of a bigger feasible region:

ψP (ε) > ψQ(ε), for small ε > 0.

That is, the robust optimal value of a smaller feasible region is more sensitive than the
robust optimal value of a bigger feasible region.

Though this thesis exploits a certain class of LPs, the arguments in this thesis give us
insights on why some robust optimization problems yield very pessimistic robust optimal
values. Essentially, the sensitivity of the robust optimal value function is related to the
magnitude of dual optimal solutions. And the magnitude of dual optimal solutions is
strongly related to the geometry near the primal optimal solution. To our knowledge, there
are no existing results in robust optimization problems that involve geometric structures
near the nominal optimal solutions and try to study the robustness. Again, this gives us a
moment to think about what may drive the robust optimal values to become conservative.
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Chapter 5

Numerical Result

In this chapter, we test the results presented in Chapter 4 numerically. We generated our
data as presented in Section 3.1.2.

Figure 5.0.1 shows the changes in the optimal value ψ ∼= ψ(θ) in (4.3.1), with respect
to changes in θ, i.e., with respect to changes in the size of cone(C). We keep ε = 10−3 fixed
for all instances. (Note that we can change the size of cone(C) by making changes to θ.).
As we showed in Section 4.5.2, a smaller feasible region always yields a larger change in
the optimal value under data uncertainty.

Figure 5.0.1: Fix ε = 10−3; changes in robust optimal value ψ(θ) w.r.t. changes in θ.

Figure 5.0.2 shows the changes in the optimal value φ ∼= φ(θ) with respect to changes
in θ, i.e., with respect to the changes in the size of cone(C). We keep ε = 10−3 fixed again.
We note that a smaller θ means that the negative polar cone of the constructed cone is
bigger (See Lemma 2.1.25.). Therefore, we see that a smaller feasible region yields a larger
change in the optimal value under data uncertainty, as was shown in Section 4.5.5.

Let cone(C) = {x ∈ Rn : Px ≥ 0} be constructed with θ = π/6, and cone(D) =
{x ∈ Rn : Qx ≥ 0} be constructed with θ = π/4. Then Figure 5.0.3 shows the change in
the optimal value functions ψP (ε) and ψQ(ε) with respect to the changes of ε from 10−10

to 10−2. We note that ψP (ε) > ψQ(ε) from the given instances and this means that: a
larger given uncertainty set corresponding to a larger ε, yields a larger change in the robust
optimal value.
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Figure 5.0.2: Fix ε = 10−3; changes in robust optimal value φ(θ).

Figure 5.0.3: Two cones cone(C) ⊂ cone(D); changes in ψP (ε), ψQ(ε) with ε ∈ [10−10, 10−2].

Given cone(C) constructed with θ = π/6, and cone(D) constructed with θ = π/4,
we have cone(C)◦ ⊃ cone(D)◦ (See Lemma 2.1.25.). Figure 5.0.4 shows the changes in
the optimal value functions φC(ε) and φD(ε) for the problems over the polar cones, with
respect to the changes in ε varying from 10−10 to 10−2. We note that in the given intervals,
φC(ε) < φD(ε). As above, this means that a smaller feasible region in the nominal problem
implies: a larger given uncertainty set corresponding to a larger ε, yields a larger change
in the robust optimal value.

Figure 5.0.4: two polar cones cone(C)◦ ⊃ cone(D)◦; changes in φC(ε), φD(ε) with ε ∈
[10−10, 10−2].
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Chapter 6

Conclusions and Further Notes

In this thesis, we study the special case of linear optimization to show what may affect the
sensitivity of a robust optimization reformulation. In this special case, we show that the
robust optimization problem with a locally smaller feasible region yields a more conserva-
tive robust optimal value than the one with a locally bigger feasible region. Following is a
brief summary of the results presented throughout this thesis.

Given the vectors w̄ ∈ Rn and {wi}i=1,...,k ⊂ Rn satisfying Hypothesis 3.1.1, we con-
struct a family of proper cones so that we can control their sizes using θ ∈ (0, π/2) in
Section 3.1. We fix two distinct θ, θ̄ ∈ (0, π/2) with θ < θ̄ and construct two cones:

cone(C) := cone
(
{ci}i∈{1,...,l}

)
, where ci := cos θw̄ + sin θwi,

cone(D) := cone
(
{di}i∈{1,...,l}

)
, where di := cos θ̄w̄ + sin θ̄wi.

The cones satisfy strict containment, cone(C) ( cone(D).

We first focus on cone(C). With Algorithm 2.1.1 and Table 2.1.2, we find the halfspaces
defining the cone:

cone(C) := {x ∈ Rn : Px ≥ 0}.

We translate cone(C) by e ∈ Rn and obtain the following system:

{x ∈ Rn : Px ≥ 0}+ e = {x ∈ Rn : Px ≥ Pe}.

We then construct LPs using the cones constructed above along with the nonnegativity
on the variables in Section 4.2:

(P) min {〈w̄, x〉 : Px ≥ Pe, x ≥ 0} .

Now suppose that each entry of the LHS coefficient matrix P of the constraint Px ≥
Pe is uncertain in the given perturbation range [−ε, ε]. We form the following robust
counterpart (R(ε, P )) as in Section 4.3:

(R(ε, P )) ψP (ε) := min {〈w̄, x〉 : Px− εEx ≥ Pe, x ≥ 0} .
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Similarly, we form the following robust counterpart (R(ε, Q)) using cone(D) = {x ∈ Rn :
Qx ≥ 0}:

(R(ε, Q)) ψQ(ε) := min {〈w̄, x〉 : Qx− εEx ≥ Qe, x ≥ 0} .

With the robust counterparts (R(ε, P )) and (R(ε, Q)), we show in Section 4.4 (in
nondegenerate cases) and Section 4.5 (in degenerate cases) that the robust optimal value
function of a locally smaller feasible region yields a worse robust optimal value than the
robust optimal value function of a locally bigger feasible region:

ψP (ε) > ψQ(ε), for small ε > 0.

That is, the robust optimal value of a locally smaller feasible region is more sensitive than
the robust optimal value of a locally bigger feasible region.

Further Notes

The motivation of this thesis is to see how the sharpness of a vertex (an optimal solution)
of a polyhedron impacts the sensitivity of the robust optimal value. We wish to utilize the
notion of solid angle to measure the sharpness of a vertex. However there is no easy way
to compute the solid angle of an arbitrary vertex of a polyhedron (For the definition of the
solid angle, see [5, Section 11.1].). Given a point x̄ in the polyhedron, computing the solid
angle at x̄ generally requires the knowledge on solid angles of all faces of the polyhedron
([5, Example 11.1] illustrates an example of the 3-simplex.). Hence, we generate data so
that we can always control the sizes of the vertex neighbourhoods of a polyhedron.

After constructing the cone, we translate the vertex of the cone to e so that we have
a non-homogeneous system of linear inequalities. We then impose nonnegativity on the
variables. Nonnegativity of variables played an important role in terms of converting the
robust counterpart into a simple parametric form. We note that the optimal solution e
is in the interior of the nonnegative orthant and we perform local analysis. Therefore the
robust optimal solution is obtained near e under small perturbations. Hence, imposing
nonnegativity on the variables is not restrictive.

Throughout this thesis, we assumed that all the coefficients of the data matrix are
uncertain with the perturbation range [−ε, ε]. We can also derive a similar result in the
cases where only some of the coefficients of the data matrix are uncertain with the pertur-
bation range [−ε, ε]. By making necessary changes to (2.4.4) - (2.4.9), we can show that
the inequality with uncertainty

〈ã, x〉 ≤ β, ãi ∈ [ai − ε, ai + ε], i ∈ I ⊂ {1, . . . , n}

can be reformulated as follows:

〈a, x〉+ ε〈u, x〉 ≤ β, where u is a 0-1 vector in Rn.

It follows that the robust counterpart of (P) with some uncertain data with perturbation
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range [−ε, ε] becomes

ψ̂P (ε) = min{〈w̄, x〉 : Px− εUx ≥ Pe, x ≥ 0},

where U is a 0-1 matrix. We can define the corresponding robust counterpart using Q with
the robust optimal value function ψ̂Q(ε). By making a similar argument given in Chapter

4, we can show that ψ̂P (ε) = ȳTUe, for some dual optimal solution ȳ. It also follows that

ψ̂Q(ε) = z̄TUe, for some dual optimal solution z̄. Then, by Lemma 3.2.10, we have that

ψ̂P (ε) ≥ ψ̂Q(ε), for small ε > 0.

We note that we might lose the strict inequality above due to some 0 entries in the matrix
U .

Similarly, if we are given an (P) where each entry pi,j of the LHS data matrix P is
uncertain with perturbation range [−εi,j, εi,j] (i.e., we are given a different perturbation
range for each entry of P ), then we may formulate the robust counterpart as follows:

ψ̃P (ε) = min{〈w̄, x〉 : Px− εV x ≥ Pe, x ≥ 0},

where

Vi,j =

{
εi,j/ε , if Pi,j is uncertain with perturbation range [−εi,j, εi,j]
0 , otherwise.

We can define the corresponding robust counterpart using Q with the robust optimal value
function ψ̃Q(ε). Then, a similar argument above gives

ψ̃P (ε) ≥ ψ̃Q(ε), for small ε > 0.

Limitations and Further Work

We have only considered a special objective vector w̄ of an LP. One may ask ‘What about
any objective vector w′ ∈ Rn satisfying w′ ∈ int(cone(C))?’. In the case of such objective
vectors, a difficulty arises by Item 3 of Remark 3.2.4, i.e., we cannot guarantee that Lemma
3.2.1 and Lemma 3.2.10 hold with an arbitrary vector instead of w̄. It will be interesting
to find a condition for an objective vector that guarantees the arguments in this thesis.

In the presence of degeneracy, we do not know if the strict monotonicity of the optimal
value functions ψ(ε) and φ(ε) holds. The numerical result strongly shows that the opti-
mal value functions are strictly increasing. However there is no guarantee that the strict
monotonicity holds for nondegenerate cases.
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[10] M. Conforti, G. Cornuéjols, and G. Zambelli. Integer programming, volume 271 of
Graduate Texts in Mathematics. Springer, Cham, 2014. 3, 10, 12, 13

93



[11] A.V. Fiacco. Introduction to Sensitivity and Stability Analysis in Nonlinear Program-
ming, volume 165 of Mathematics in Science and Engineering. Academic Press, 1983.
72, 73, 77

[12] R.M. Freund. Postoptimal analysis of a linear program under simultaneous changes
in matrix coefficients. Number 24, pages 1–13, 1985. Mathematical programming, I.
29, 65

[13] T. Gal. Shadow prices and sensitivity analysis in linear programming under degener-
acy: state-of-the-art survey. OR Spektrum, 8(2):59–71, 1986. 27
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C, 38
D, 38
E, matrix of ones, 2
K∗, dual cone of set K, 7
K◦, negative polar cone of K, 9
Argmax{(D)}, the set of optimal solutions

to (D), 21
Argmin{(P )}, the set of optimal solutions to

(P ), 21
Ball(0, ε), ball cectered at 0 with radius ε,

16, 17
cone(S), conical hull of set S, 7
cone(C), 39
cone(D), 39
conv(X), convex hull of X, 4
ext(X), set of extreme points of X, 5
int(X), interior of X, 3
null(X), null space of X, 3
∂f(x), generalized gradient, 18
⊥, orthogonal complement, 3
φ(ε), optimal value of (S(ε)), 63
ψ(ε), optimal value of (R(ε)), 63
rank(A), rank of A, 3
ray(a), a half-line generated by a, 8
relint(X), relative interior of X, 3
ρ(A), spectral radius of A, 69
LP (θ), 65
f ◦(x; v), generalized directional derivative,
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D, 38
FU(A, b), 22
Z, perturbation set, 23
LP(DP), dual of LP(P), 59
LP(DQ), dual of LP (Q), 61
LP(P), 57

LP(PSEF), LP(P) in SEF , 74
LP(Q), 57
LP(R(ε)), 57
LP(S(ε)), 58

base for a cone, 7
basic solution, 20

basic feasible solution, 20
basic variable, 20
basis, 20

cone, 7
dual cone, 7
finitely generated cone, 10
pointed cone, 7
pointed cone with vertex, 7
proper cone, 7

cone base, 7
conic combination, 7
conic combination, conical hull, 7
conical hull of set S, cone(S), 7
convex combination, 4

strict convex combination, 4
convex hull, 4
convex set, 4

degenerate basic solution, 20
degenerate polyhedral cone, 11
degenerate/nondegenerate basic solution, 20
directional derivative, 18
dual cone, 7
dual cone of set K, K∗, 7
dual norm, 25

extremal vector, 8
extreme direction, 9
extreme point, 5
extreme ray, 8

96



feasible solution, 20
finitely generated cone, 10

generalized directional derivative, f ◦(x; v),
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generalized gradient, 18
generalized gradient, ∂f(x), 18

interior of X, int(X), 3

linear programming (LP), 20
locally Lipschitz near x, 16

matrix of ones, E, 2

nominal data, 22
nonbasic variable, 20
nondegenerate basic solution, 20
nondegenerate polyhedral cone, 11
nondegenerate/degenerate polyhedral cone,

11
null space of X, null(X), 3

optimal solution, 20
optimistic counterpart, 26
optimistic feasible, 26
optimistic feasible solution, 26
orthogonal complement of X,X⊥, 3

perturbation set, 23
perturbation set, Z, 23
pointed cone, 7
pointed cone with vertex, 7
polar cone, 9

negative polar cone, 9
polyhedral cone, 10

degenerate polyhedral cone, 11
nondegenerate polyhedral cone, 11

proper cone, 7, 36

rank of A, rank(A), 3
ray, 8

extreme ray, 8
recession cone, 9
regular, 74
relative interior of X, relint(X), 3

robust counterpart, 22
robust feasible, 22
robust feasible set, 22
robust optimal solution, 23
robust optimal value, 23

semi-infinite, 21
spectral radius of A, 69
spectral radius of A, ρ(A), 69
standard equality form (SEF), 20
strict conic combination, 7
strict convex combination, 4

uncertain linear programming, 22
uncertainty set, 22
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