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Abstract: This paper describes the development and implementation of an optimization model
to solve the integrated problem of personnel allocation and machine scheduling for industrial size
multipurpose plants. Although each of these problems has been extensively studied separately,
works that study an integrated approach are very limited, particularly for large-scale industrial
applications. We present a mathematical formulation for the integrated problem and show
the results obtained from solving large size instances from an analytical services facility. The
integrated formulation can improve the results up to 22.1% compared to the case where the
personnel allocation and the machine scheduling problems are solved sequentially.
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1. INTRODUCTION

The machine scheduling problem, also known as scheduling
operations problem or short-term scheduling, is one of
the most relevant optimization problems and arises in
several industrial and engineering fields such as chemical
production, mining, computers and manufacturing plants
(Abedinnia et al., 2017; Blazewicz et al., 1994; Schulze
and Zimmermann, 2017; Patil et al., 2015). In general,
this problem involves finding the assignment of resources
to execute tasks in a given time horizon aiming to opti-
mize a goal, such as minimizing costs, turnaround time
(makespan) or maximizing throughput.

The complexity of machine scheduling problems varies
according to the class associated to the problem (Blazewicz
et al., 2007). Although some scheduling problems can be
solved in polynomial time, the most realistic problems con-
sider operational constraints that increase their complexity
and fall in the NP-Hard class. The machine scheduling
problem that is considered in this study belongs to the
NP-Hard class since jobs are non-preemptive and have
precedence constraints (Lenstra and Kan, 1978).

The scheduling problem associated to this work arises from
an analytical services facility that receives thousands of
samples from different clients every week. The large scale
feature associated to this problem increases its complexity
and requires efficient methods to solve the problem within
a reasonable amount of time. This problem was first intro-
duced by Patil et al. (2015) who proposed a solution us-
ing multicommodity flow and integer linear programming
based on a discrete time representation framework.

Follow-up studies conducted by Lagzi et al. (2017a,b) fo-
cused on different formulations for the machine scheduling
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problem, in particular different time representation frame-
works. Those studies show that, for the problem under
consideration non-uniform discrete time representation is
the better choice. One of the drawbacks of their approach,
and other traditional machine scheduling problems, is the
assumption that processing time of machines is constant
for identical tasks, which is not necessarily the case for
many applications. For instance, this happens when ma-
chines depend on the operator skills to execute their tasks.
This is typical in the analytical services sector, where tasks
involve preparation and setup of machines and samples.
Therefore, a more skilled operator may perform this activ-
ity in shorter processing times and better overall solutions
may be achieved if the machine scheduling and the em-
ployee allocation decisions are performed simultaneously.

The personnel allocation problem, also known as employee
timetabling or staff scheduling, has also received attention
from the literature (Ernst et al., 2004). The problem
consists of finding work timetables for an organization
staff so that it can satisfy the demand for goods or ser-
vices. Different types of objectives and constraints can be
considered, including employees satisfaction, regulations
and costs. The complexity of the problem depends on
the constraints to be met; however, in most real world
applications, problems are NP-Hard (Brucker et al., 2011).

These two important optimization problems - Machine
Scheduling and Personnel Allocation - come together when
one needs to assign employees to machines in order to
process tasks of a given scheduling problem. In particular,
this problem becomes more challenging when machines’
processing times are given in terms of the employees’ skills.
A naive solution approach is to tackle the problem sequen-
tially: first to solve the personnel allocation problem and
then proceed with the solution for the machine scheduling
problem. However, this approach may lead to suboptimal
solutions, since optimal solutions for the first problem do
not necessarily provide the best setting to solve the second.
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The integrated personnel allocation and machine schedul-
ing problem has also received attention from the literature.
One of the first attempts to solve the problem was pro-
posed by Daniels and Mazzola (1994) followed by Daniels
et al. (2004), where they model employees as resources
required by the machines and solve the machine scheduling
problem with this additional constraint. The approach
proposed by Artigues et al. (2009) combine methods based
on integer linear programming and constraint program-
ming to solve an integrated problem that considers regu-
lations in the employees’ schedule. More recently Guyon
et al. (2014) introduce a cut generation framework based
on Bender’s decomposition to evaluate optimal solutions
for the problem.

Despite the number of works related to the integrated
problem, there is still a lack of works addressing large
scale industrial applications. One of the few works solving
the problem for industrial size problems is from Schulze
and Zimmermann (2017), which proposes a mathematical
formulation to solve small size instances and a heuristic
algorithm to obtain feasible solutions for large size in-
stances. Similarly, Ahmadi-Javid and Hooshangi-Tabrizi
(2017) solved an industrial application of the integrated
personnel allocation and machine scheduling problem us-
ing a heuristic algorithm, which is tuned using a mathe-
matical formulation that solves only small size instances.

The above works differ from this study from two perspec-
tives: (i) they solve different scheduling problems from
the one considered here; (ii) both implement heuristic
algorithms to solve large size instances. No works were
found in the literature focusing on efficient exact methods
for the integrated problem applied to large-scale industrial
applications. In this context, the proposed work improves
on the literature of the integrated machine scheduling and
personnel allocation introducing an efficient mathematical
formulation to solve a real application from an analytical
service industry.

2. PROBLEM DEFINITION

Let P be the set of processing units available in the
analytical services facility. Each processing unit i ∈ P
consists of a set of identical machines Pi that perform a
specific process. The set of all machines in the plant is
given by M = ∪i∈PPi. The facility receives a set of jobs
J to be processed within a scheduling horizon H > 0.
Each job j ∈ J must be processed along a sequence of
nj processing units Kj = (P j

1 , P
j
2 , . . . , P

j
nj
), also called a

path.

Values ajk define how many samples from job j should
start processing at the kth processing unit of path Kj .
Once a sample starts processing at the kth processing unit,
it needs to visit all of the subsequent processing units of
path Kj . These values may represent, for instance, sam-
ples for a particular job that have already gone through
previous processing units at the beginning of the current
scheduling horizon.

Sync is not required between samples of the same job,
which means that given x and y distinct samples from job
j, it is possible that different processing units Pi and Pk

process respectively x and y at the same time, as long as

they visit processing units from path Kj in the sequence
specified.

Each processing unit Pi has a specific capacity βi, which
means that each machine m ∈ Pi can be loaded with at
most βi samples from potentially different jobs. Although
machines from the same processing unit are assumed
to be identical, they can have different processing times
depending on which employee is operating the machine.
Let S be a discrete number of skills employees can operate
machines and s = 0, 1, . . . , S, where 0 represents no
operation and S represents the maximum skill level. We
define τms as the processing time of machine m under
skill s. Also, E is the number of employees available for
scheduling in the facility such that e = 1, . . . , E represent
each employee.

Non-preemption is assumed, which means that once ma-
chine m operated by employee e is assigned to process
samples, it will run without interruption for τms units
of time before releasing the samples. Also, there is no
minimum working capacity for any machine, i.e, machines
can be turned on with any number of samples between
0 and βi and no transportation time or storage capacity
between processing units is considered. It is assumed that
all machines in the facility are available to start processing
materials at the beginning of the scheduling horizon.

Feasible solutions for this problem consist of an integrated
schedule in the analytical services facility such that each
employee is associated to exactly one machine and no more
than one employee operates a machine. Also, samples of
each job j ∈ J must visit processing units in the order
given by path Kj such that each sample is processed
by at most one machine at a time and the total sum of
samples in a given machine from processing unit Pi does
not exceed βi. The most common objective function for
scheduling problems is to minimize makespan, which is the
time spent processing all jobs in the facility. However, this
objective cannot be explicitly implemented in this study
because it considers that some jobs may not be able to
finish processing within the horizon. Accordingly, we set
our objective function to maximize a weighted samples
throughput. The weight gives higher priority to samples
in the last stage of their paths, which also increases the
jobs throughput within the horizon H.

3. MATHEMATICAL FORMULATION

In this section we first introduce a mathematical for-
mulation for the personnel allocation problem, then we
show how the employees allocation decisions are consid-
ered together with the machine scheduling problem in an
integrated formulation. In the present case, we assume that
horizon H is no longer than the employees’ shifts which
allows us to assign employees to machines for the entire
horizon.

3.1 The Personnel Allocation Problem

The problem here consists of assigning employees to ma-
chines respecting the employees’ skills for each machine in
order to minimize the total processing time. The formula-
tion requires as input two matrices, i.e.:
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S =





s11 . . . s1E

.

.

.
. . .

.

.

.
s|P |1 . . . s|P |E



 τ =





τ11 . . . τ1S

.

.

.
. . .

.

.

.
τ|P |1 . . . τ|P |S





S is the skills matrix and stores skills values s associated
to each processing unit p and employee e, while matrix τ
stores the processing times of each processing unit p for
the skills classes s > 0. Note that entries in matrices S
and τ are in terms of processing units p ∈ P but they can
be easily mapped to machines m ∈ M since in a given
processing unit all machines are assumed to be identical.

For the present formulation we introduce a parameter
to control whether employee e is able or not to operate
machine m. For a given processing unit i ∈ P we consider
all machines m ∈ Pi and assign values in terms of entries
of matrix S as follows:

σme =

{

0; if sie = 0
1; otherwise

Also, to increase readability of the formulation we use τme

to represent the processing time of machine m according
to the skills employee e operates that machine, instead
of τmSme

as defined in section 2. The mathematical for-
mulation makes use of binary decision variables xme to
represent whether or not employee e is assigned to work on
machinem during the scheduling horizon. The formulation
is described in (1)-(5)

min
∑

m∈M

E
∑

e=1

xmeτme (1)

E
∑

e=1

xme ≤ 1 ∀m ∈ M (2)

∑

m∈M

σmexme = 1 ∀e = 1, . . . , E (3)

E
∑

e=1

∑

m∈Pi

σmexme ≥ 1 ∀i ∈ P (4)

xme ∈ {0, 1} ∀m ∈ M, e = 1, . . . , E (5)

Objective function (1) minimizes the overall processing
time of machines assigned to employees. Constraints (2)
enforce that no more than one employee is assigned to
a machine whereas constraints (3) guarantee that each
employee is assigned to exactly one machine. Furthermore,
constraints (4) ensure that at least one machine of each
processing unit is assigned to an employee and constraints
(5) define the decision variables space.

Although formulation (1)-(5) can be efficiently solved,
optimal solutions for the personnel allocation can lead
to suboptimal allocations for the integrated problem with
machine scheduling. For this reason, we introduce a mathe-
matical formulation for the integrated personnel allocation
and machine scheduling problem.

3.2 The Integrated Machine Scheduling and Personnel
Allocation Problem

One of the main questions on solving machine scheduling
problems is regarding time representation in the schedul-
ing formulation. The methods and formulations rely on
either continuous or discrete time representation of events.
In the continuous time, events are allowed to happen any
time in the system, which provides more flexibility but has
higher computational cost. As an alternative, discrete time
representation consists of using a pre-determined number
of time points to control the events, which leads to a trade-
off between solution quality and computational cost: the
more time points the better the quality of solutions but
the higher the computational costs. Discrete time repre-
sentation can be uniform or non-uniform. The formula-
tion proposed here extends the non-uniform discrete time
formulation proposed by (Lagzi et al., 2017b) to include
personnel allocation decisions.

The time representation makes use of steps ∆p > 0
to represent the time elapsed between two consecutive
time points for processing unit p ∈ P . Let θp =
(0, ǫp1, ǫp2, . . . , H) be the increasing sequence of time
points and tp = 0, 1, . . . , Tp be the time points indices
associated to θp, such that ∆(p) = ǫpt− ǫpt−1 : 1 ≤ t ≤ Tp.
Note that, ∆p is known a priori as a parameter of the
problem. Also note that, the formulation can be readily
adapted to deal with more general discretizations where
consecutive time intervals can have different lengths.

The formulation comprises four groups of decision vari-
ables. Variables xjkst ∈ Z

+ control the number of samples
from job j ∈ J that start processing in the kth processing
unit of the path which is operated by an employee with
skills s at time index t. We recall that in pathKj , P

j
1 is not

necessarily the processing unit P1 but the first processing
unit that needs to be visited by job j, P j

2 is the second and
so on. It is also noteworthy that, processing unit i ∈ P
has a set of Pi identical machines performing the same
process but having possibly different processing times due
to different employees skills assigned to these machines.

Decision variables ypst ∈ Z
+ represent the number of ma-

chines from processing unit p ∈ P operated by employees
with skills s to process samples at time index t. wjkt are
the variables modelling the number of samples from job j
that are available to start processing in the kth processing
unit at time index t. These variables are introduced to
control the samples’ flow balance in the system. In ad-
dition, decision variables zpe ∈ {0, 1} represent whether
employee e is assigned or not to operate processing unit p.
These variables are responsible for the personnel allocation
control in the machine scheduling model.

Some additional notation is required before introducing
the formulation. For the kth processing unit of job j at
time index t operated using skills set s, we define

γ(P j
k , t, s) = {t′ : ǫ

P
j

k
(t−1) < ǫ

P
j

k−1
t′
+ τ

P
j

k−1
s
≤ ǫ

P
j

k
t
}

as the set of time point indexes associated to the preceding
processing unit of P

j
k able to finish processing samples

between time points ǫ
P

j

k
(t−1) and ǫ

P
j

k
t
. Similarly, the set

φ(P j
k , t, s) = {t′ : ǫ

P
j

k
t
< ǫ

P
j

k
t′
≤ ǫ

P
j

k
t
+ τ

P
j

k
s
}
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comprises all indices associated to time points of process-
ing unit P

j
k able to finish processing between ǫ

P
j

k
t
and

ǫ
P

j

k
t
+ τ

P
j

k
s
. Parameter σpe from formulation (1)-(5) needs

an extra index to determine whether employee e operates
processing unit p with skills s or not and is redefined as

σpes =

{

1; if spe = s
0; otherwise.

The formulation for the integrated personnel allocation
and machine scheduling is given in (6)-(15).

max
∑

j∈J

nj
∑

k=1

k

nj

S
∑

s=1

t
P

j

k
∑

t=1

xjkst (6)

∑

j∈J

nj
∑

k=1

S
∑

s=1

xjks0 = 0 (7)

wjk0 = ajk; ∀ j ∈ J, ∀ k = 1 . . . nj (8)

S
∑

s=1

xj1st + wj1t = wj1(t−1) ∀ j ∈ J, t = 1, . . . , t
P

j

1

(9)

S
∑

s=1

xjkst + wjkt = wjk(t−1) +

S
∑

s=1

∑

t′∈γ(P j

k
,t,s)

xj(k−1)st′

∀ j ∈ J, k = 2, . . . , nj , t = 1, . . . , t
P

j

k

(10)

∑

j,k:p=P
j

k

xjkst ≤ βpypst ∀p ∈ P, s = 1, . . . , S, t = 1, . . . , tp

(11)

S
∑

s=1

∑

t′∈φ(P j

k
,t,s)

ypst′ ≤
S
∑

s=1

E
∑

e=1

speszpe ∀p ∈ P, t = 1, . . . , tp

(12)

ypst ≤

E
∑

e=1

speszpe ∀ p ∈ P, s = 1, . . . , S, t = 1, . . . , tp

(13)

∑

p∈P

zpe ≤ 1 ∀ e = 1, . . . , E (14)

E
∑

e=1

zpe ≤ |Pp| ∀ p ∈ P (15)

Objective function (6) aims to maximize samples through-
put. It includes a weight k

nj
to increase samples priority ac-

cording to their order in the jobs’ path, which gives higher
weights to samples in the last processing units of the path
and helps improving jobs throughput. Constraints (7) and
(8) are for initialization purposes and complement each

other defining decision variables values at the beginning of
the time horizon. More specifically, constraints (7) ensure
that no samples start processing at time point 0, while
constraints (8) state that all samples become available in
the facility at that time.

The samples’ flow balance is enforced by constraints (9)
and (10). They guarantee that, at each time point, the
sum of samples waiting, processing and already processed
is the same for each job and processing unit. Constraints
(9) are in charge of the flow balance of the first machine
of the path for each job, while constraints (10) ensure
the flow balance for the remaining processing units of the
path. Constraints (11) are the knapsack-style constraints
to enforce capacity feasibility in the machines of each
processing unit.

Coupling constraints (12) and (13) are included to inte-
grate the machine scheduling and the personnel allocation
problems. On the one hand, constraints (12) enforce that
the number of active machines in a given processing unit
p in between two consecutive time points ǫp(t−1) and ǫpt is
no higher than the number of employees assigned to it. On
the other hand, constraints (13) guarantee that machines
operate under skills s only if there are proper employees
assigned to the associated processing unit.

Moreover, constraints (14) and (15) are related to the per-
sonnel allocation problem and ensure respectively that one
employee is assigned to at most one processing unit and
the number of employees assigned to a given processing
unit is no more than the number of machines it comprises.

4. COMPUTATIONAL EXPERIMENTS

This section presents results of formulations (1)-(5) and
(6)-(15) solving the integrated personnel allocation and
machine scheduling problem for an analytical services
facility. We first provide details about the facility, then
we show the results for instances built based on it. The
identity of the industrial partner is not disclosed as per our
non-disclosure agreement. However, the proposed compu-
tational study retains the characteristics of the majority
of the operations at this facility.

We recall that, the following experiments cannot be com-
pared to related works in the literature since they study
applications with different sets of operational constraints.
In particular, Schulze and Zimmermann (2017) solve an
integrated scheduling problem that arises in the operation
of a potash mine, while Ahmadi-Javid and Hooshangi-
Tabrizi (2017) consider a ternary-integration scheduling
problem that incorporates personnel allocation into the
scheduling of machines and transporters.

4.1 The Analytical Services Facility Operations

The facility is composed by |P | = 25 processing units
with a total of |M | = 102 machines. Each processing
unit i has 1 ≤ |Pi| ≤ 10 machines, which are assumed
to be identical with capacity βi. The performance of each
machine of a given processing unit is determined by the
skills’ set in which they are operated. For this study, we
define S = 3 which discretizes the skills’ set into four
groups s = {0, 1, 2, 3}, representing whether the employee
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Fig. 1. Analytical Service Facility Processing Units and
Paths (Lagzi et al., 2017b)

associated to skill s is not able to operate machines (0)
or operates with junior (1), regular (2) or senior (3) skills.
Since all machines of a processing unit are assumed to be
identical, two different machines from the same processing
unit m1,m2 ∈ Pi have the same performance if operated
under the same skill s, τm1s = τm2s.

The number of employees available to operate the ma-
chines may vary seasonally between 25 (the minimum to
ensure the facility operation) and 102 (the total number
of machines) in terms of the facility demands. We consider
here 51 employees for each time horizon, since this num-
ber represents half of the facility capacity and is a good
estimate between the lower and higher demand seasons.

Jobs to be processed in the facility have different paths
according to the analysis they require. Figure 1 shows
how the processing units are connected generating up to
20 different paths. Processing unit A is the starting point
of all jobs and must be followed by B,C and D in this
order. These are preprocessing activities for all jobs in
the facility. J,K,L, V are terminal processing units while
the remaining are intermediate processing units. We recall
that, processing units are composed by up to 10 parallel
machines that work in a multitasking environment.

Although the facility receives a different number of jobs for
each scheduling horizon, we use here instances with 100,
150 and 200 jobs, which represent classes for low, medium
and high demands. The number of samples ajk is an integer
value between 1 and 500 and is assigned based on real
demands values. In the case job j has ajk > 0 : k > 1 it
means that ajk samples of job j started processing in a
previous horizon but did not finish visiting all processing
units of path Kj . Therefore, these samples need to visit
the remaining processing units in the subsequent horizons.
This feature allows us to perform rolling horizon in the
scheduling problem.

4.2 Results

We compare solutions for the integrated personnel allo-
cation and machine scheduling using three different ap-
proaches. The first considers formulation (6)-(15), which
evaluates optimal solutions for the integrated problem.
The second, solves the problem separately: it first solves
the personnel allocation using formulation (1)-(5) and
maps the optimal decision variable values xme into zpe

allowing us to solve formulation (6)-(15) considering zpe
as constant values. Then, the resulting machine scheduling
problem is solved to optimality. Hereinafter we name this
approach as sequential optimization and the integrated ap-
proach as simultaneous optimization. The third approach
is similar to the second but assign employees to machines
randomly instead of solving formulation (1)-(5) and is
named random personnel allocation approach. The models
were implemented using Julia programming language and
solved using CPLEX 12.1 package with default parameters
running on a machine with 264GB of RAM memory and
2.3GHz of speed using up to 4 simultaneous threads.

The results obtained by the three approaches are reported
in Table 1. The first column shows the instance id, while
columns 2 and 3 contain the number of samples processed
during the scheduling horizon and the computational time
(in seconds) spent to evaluate the optimal solution, la-
belled respectively ‘#smp’ and ‘t(s)’. The number of sam-
ples here refers to the sum of the amount of samples
processed by all machines during the scheduling horizon.
For example, assume job j with 4 processing units in its
path (nj = 4) and 100 units of samples are fully processed,
its contribution to column ‘#smp’ is 400, since 100 samples
were processed by 4 machines. We chose to report the
number of samples instead of the objective function value
here due to the noise the term k

nj
introduces to interpret

solution. Similar entries are given in columns 4 and 5
for the sequential optimization and columns 6 and 7 for
the random personnel allocation approach. We report the
results in blocks of 100, 150 and 200 jobs. For each block
the average number of samples and computational time is
reported for each approach.

As expected, the simultaneous and the sequential ap-
proaches outperform the random personnel allocation on
solving the problem. We recall that, although the random
personnel allocation approach solves the machine schedul-
ing problem to optimality, it assigns employees to machines
without any optimization criteria. This approach was in-
cluded here as baseline to compare with the sequential and
the simultaneous approaches.

When comparing the simultaneous and the sequential
optimization approaches, the former clearly outperforms
the latter from the solutions’ quality point of view but
it also requires more computational efforts. Solutions for
the simultaneous approach are able to process on average
21.2% more samples compared to the sequential optimiza-
tion approach for those instances with 100 jobs. Similar
improvements are obtained for instances with 150 and
200 jobs, with respectively 20.1% and 19.0%. However,
the computational time also increases considerably when
solving the simultaneous approach. From all instances,
the maximum computational time spent by the sequential
optimization approach to evaluate optimal solutions is
466 seconds, while the simultaneous requires up to 1739
seconds. This difference increases if more jobs are consid-
ered in the facility. On average, solving the simultaneous
approach takes 672.9 seconds against 258.1 seconds from
the sequential.

It is clear the trade-off involving solution quality and
computational time when comparing the simultaneous and
sequential approaches. The decision on the best approach
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Table 1. Results of three different approaches
for solving the integrated scheduling problem

Simultaneous Sequential Random
instance #smp t(s) #smp t(s) #smp t(s)

100J-1 34565 234.3 28442 105.6 21041 101.3
100J-2 33934 196.3 28345 94.9 16908 117.0
100J-3 34073 159.6 28475 98.2 17125 99.4
100J-4 34420 113.4 28496 73.9 22562 192.2
100J-5 33352 258.0 27586 117.0 21294 292.1
100J-6 29278 89.2 24263 80.8 16477 117.7
100J-7 35089 187.8 28854 107.9 21360 171.8
100J-8 35915 134.0 29787 105.7 23295 133.0
100J-9 30717 127.8 24961 93.1 18374 179.1
100J-10 32346 167.9 26700 89.9 20921 203.0
100J-11 31319 153.2 25199 107.5 19067 505.2
100J-12 32228 125.6 26439 85.1 16708 122.7

avg-100 33103 162.2 27295 96.6 19594 186.2

150J-1 40563 664.4 33627 269.6 25798 362.7
150J-2 36891 487.2 30942 230.9 19493 590.9
150J-3 39119 1101 33116 243.4 21895 599.0
150J-4 38671 702.2 31626 306.6 17050 417.3
150J-5 41431 1739 34098 287.4 20788 468.6
150J-6 43861 1049 36480 275.7 26046 499.8
150J-7 36886 383.7 30908 223.7 21300 371.4
150J-8 37834 558.7 31451 229.5 25788 475.4
150J-9 39050 468.3 32891 231.2 24412 350.3
150J-10 40710 525.8 34150 242.4 26507 420.1
150J-11 39823 716.2 32898 285.1 23699 339.7
150J-12 38331 519.8 31870 273.0 25111 261.4

avg-150 39430 748.0 32838 258.2 23157 429.7

200J-1 43590 797.2 37028 444.3 26062 592.6
200J-2 48533 1632 41225 462.6 26027 585.6
200J-3 42104 800.0 35834 465.4 24004 531.6
200J-4 42688 957.1 35111 426.0 23270 466.6
200J-5 44080 785.6 37317 333.5 27591 468.7
200J-6 46223 933.9 38941 353.3 28056 355.3
200J-7 45852 1076 38409 456.7 26712 1534
200J-8 47691 1275 40335 430.5 24617 364.8
200J-9 40840 978.0 33464 399.8 20379 460.7
200J-10 44557 1173 37187 415.9 28330 763.0
200J-11 45548 1471 38188 410.8 33083 1768
200J-12 45543 1419 38196 436.7 27618 785.0

avg-200 44770 1108 37602 419.6 26312 725.7

must be made according to the facility’s requirements but
in the case solution time is not critical, the simultaneous
approach should be chosen since it improves upon the
sequential solutions quality in more than 19% in average
for the instances considered in this study.

5. CONCLUDING REMARKS

This study introduces a new mathematical formulation for
the integrated personnel allocation and machine schedul-
ing problem. Although these problems separately are
widely studied in the literature, the number of works for
the integrated version is still modest.

The formulation proposed here extends the non-uniform
discrete formulation introduced by Lagzi et al. (2017b) and
considers personnel allocation decisions integrated to the
scheduling problem. In our approach, machines processing
times vary according to operator skills, which makes the
problem more challenging compared to the approach with
constant processing times.

We evaluate our formulation using instances based on real
world data from an analysis services facility and compare

the results with a sequential optimization approach, which
consists of solving the personnel allocation problem first
and using its solution as input to the machine scheduling
problem. The results show that the integrated approach
provides better overall solutions but is also more complex
and requires more computational time to evaluate opti-
mal solutions though its computational costs are not pro-
hibitive to be actually used depending on the application.
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