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Hydrodynamic shrinkage of liquid CO2 drops in water under a Taylor flow regime is studied using a straight 

microchannel (length/width ~ 100). A general form of a mathematical model of the solvent-side mass transfer coefficient (ks) 

is developed first. Based on formulations of the surface area (A) and the volume (V) of a general Taylor drop in a rectangular 

microchannel, a specific form of ks is derived. Drop length and speed are experimentally measured at three specified 

positions of the straight channel, namely, immediately after drop generation (position 1), the midpoint of the channel 

(position 2) and the end of the channel (position 3). The reductions of drop length (Lx, x = 1, 2, 3) from position 1 to 2 and 

down to 3 are used to quantify the drop shrinkage. Using the specific model, ks is calculated mainly based on Lx and drop 

flowing time (t). Results show that smaller CO2 drops produced by lower flow rate ratios (QLCO2/QH2O) are generally 

characterized by higher (nearly three times) ks and Sherwood numbers than those produced by higher QLCO2/QH2O, which is 

essentially attributed to the larger effective portion of the smaller drop contributing in the mass transfer under same levels of 

the flowing time and the surface-to-volume ratio (~ 10
4 
m

-1
) of all drops. Based on calculated pressure drops of the segmented 

flow in microchannel, the Peng-Robinson equation of state (EOS) and initial pressures of drops at the T-junction in 

experiments, overall pressure drop (ΔPt) in the straight channel as well as the resulted drop volume change are quantified. 

ΔPt from position 1 to 3 is by average 3.175 kPa with a ~1.6% standard error, which only leads to relative drop volume 

changes of 0.3‰ to 0.52‰. 

I. Introduction

Mass transfer can be found broadly in various physical and chemical processes [1], such as gas absorption (mostly 

in liquids) [2], liquid evaporation [3], liquid-liquid extraction [4] and, for many cases, chemical reactions [5-7]. 

Revealed by two prevalent models of mass transfer, i.e., the film model [8] and the penetration model [2] 

developed from gas-liquid absorptions, molecular diffusion of the solute across the interface and exposure time of 

the liquid solvent to the solute at the interface are two key factors, apart from the solubility limit of the solute in 

the liquid, for the mass transfer rate. This finding indicates that the mass transfer can be controlled by regulating 

the molecular diffusion and the contacting time, which can be achieved from either the apparatus or the fluid side 

[9]. On the other hand, it elucidates why unique macroscopic apparatus (e.g., bubbling columns and film reactors) 

and stirring strategies for increasing interfacial area or adding disturbance on the solvent side have been 

developed and implemented extensively [10,11]. Nevertheless, mass transfer within those conventional apparatus 

may be still a bottle-neck to intrinsically rapid kinetics featured reactions [12,13] due to the flow condition (e.g., 

superficial velocity, flow regime, etc.) in situ and the surface-to-volume ratio of the reactants. In addition, 

particularly for bubbles/drops/films involved macroscale reactors or contactors, one limitation is that the size 

distribution of gas or liquid segments may be compromised or difficult to be narrowed given hydrodynamic 

uncertainties (e.g., eddies) [14-16], which is manifested when compared to microscale systems characterized with 

low Reynolds numbers (≪ 100 and often < 1) and capillary numbers (often < 1) [17-21]. 

Microfluidics as well as µTAS (micro total analysis systems) have rapidly progressed over the last twenty 

years [22-24], and have become promising alternatives to the conventional apparatus. Some merits of 

microfluidics may include, but are not limited to, large surface-volume ratios, enhanced mass transfer 

performance, predictable and uniform gas/liquid segments, convenient controls of reaction parameters and 

increased securities. Besides, kinetics of chemical processes and the fluid-fluid mass transfer performance could 

be revealed and characterized, respectively [25-28]. Analogous to studies related to conventional apparatus, gas-

liquid biphasic systems as well as interphase mass transfer characteristics (e.g., mass transfer coefficient) are a 

research focus within the microfluidics sector too [29-34]. Liquid-liquid systems, with most interests in interphase 

mass transfer based extractions, emulsions and reactions have been probed as well in capillary- and microchannel-

based reactors [35-40]. For both gas-liquid and liquid-liquid systems, various flow regimes (e.g., bubbles, drops, 

slugs, annular and parallel flows)  that result from different flow geometries, fluid properties and/or flow 
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conditions [41-44] are very likely to influence the mass transfer that mainly occurs at the interface [42], though 

the influence might also be insignificant [45]. Among all flow regimes, Taylor flow (maybe also referred slug, 

bubble train, segmented or intermittent flow) has become a widely studied one [7,46]. Taylor segments (bubbles 

or drops) are generally characterized with a Bond number (Bo = Δρgd
2
/σ) smaller than 3.37 and a capsular form 

whose equivalent diameter is times of the channel (hydrodynamic) diameter. The popularity of Taylor flow in 

interphase mass transfer studies, as discussed [7,46,47], is mainly due to: (1) the stability and predictability of the 

flow regime, (2) well-defined hydrodynamic characteristics (e.g., morphology, monodispersity, size, speed, 

thickness of the thin film that encloses the drop and separates the liquid slugs from one another, etc.), and (3) re-

circulations within both liquid slugs and drops that could enhance heat and mass transfer [48-50].  

Gas-liquid and liquid-liquid systems at Taylor flow regime within microscale devices have been massively 

studied [7]. Among the fluids, carbon dioxide (CO2) has started to be attempted in the past decade (particularly 

since 2010) with main interests in microscale fluid dynamics and chemical processes. These attempts are usually 

driven by: (1) the environmental role of CO2 as one of the major greenhouse gases in climate change, and (2) the 

physical and chemical properties of CO2 based on which chemical reactions and material syntheses may be 

carried out in an efficient as well as a green way [51]. Accordingly, a few mitigation strategies including CO2 

capture and storage (CCS) have been proposed to reduce industrial emissions and to bar atmospheric CO2 

concentrations [52], and dense CO2 including liquid and supercritical state has been expected for green chemistry 

[53,54]. Regardless of the motive and the attempt related with CO2, mass transfer of CO2 itself in multi-scale 

processes such as extraction based CO2 captures, pipeline transports, geological storage and chemical reactions is 

always a key issue. Different from an immiscible fluid pair (e.g., water-oil), CO2 together with an aqueous liquid 

may be a partially miscible one. Driven by a series of mechanisms, e.g., physical absorption (or dissolution), 

diffusion and reactions with the solvent, CO2 Taylor bubbles or drops are likely to shrink due to the mass transfer 

mainly on and across the interface, the magnitude of which depends on the spatial and the temporal scale as well. 

Sun and Cubaud [55] experimentally studied the dissolution rate of CO2 bubbles shortly after initial contacts with 

three liquids (water, ethanol, and methanol) in a flow focusing device and showed that the shrinkage (in terms of 

bubble length reduction) was almost linear with time. Later, Cubaud et al. [56] focused on CO2-water at an 

extended microchannel length (~10
3
 times of channel width) and reported not only CO2 bubble shrinkage but also 

a flow regime transition (segmented to bubbly flow) at very much downstream. Also in a microfluidic flow 

focusing device, CO2 bubbles experienced a shrinkage-recovery-shrinkage (termed “bubble breathing”) transition 

subjected to varying temperatures [57]. Detailed studies of CO2 dissolution and solubility in dimethyl carbonate 

(DMC) were performed in a microscale device by the same group [58]. A similar strategy for screening CO2 

solubilities in pure and mixed solvents based on bubble shrinkage in a microfluidic device was provided by 

Lefortier et al. [59]. Using gas CO2 and sodium dodecyl sulfate (SDS) solution in a flow focusing microfluidic 

device, Shim et al. [60] reported two dissolution regimes during CO2 bubble flow, namely, a rapid size decreasing 

period (~30 ms) and a subsequent equilibrium regime during which gas was exchanged between the bubble and 

the liquid phase. Moreover, the mass transfer coefficient of gas CO2 was investigated at a Taylor flow regime in a 

microchannel and significant shrinkage effects of CO2 segments were reported [61]. However, none of these 

studies are related to dense CO2, and very few literature have reported on the shrinkage effect of dense CO2 drops 

or segments, especially in a hydrodynamic scenario. 

In this work, liquid CO2 under a Taylor flow regime is going to be studied in a uniquely fabricated 

microfluidic device. De-ionized (DI) water is used as the solvent as well as a continuously flowing liquid. A 

micro T-junction is applied to produce liquid CO2 Taylor drops. With a long straight microchannel downstream, 

hydrodynamics and the mass transfer of liquid CO2 drops in water are probed. In section II, a general 

mathematical model of the solvent-side mass transfer coefficient (ks) is developed based on the drop volume 

change in a hydrodynamic scenario. Based on a detailed geometrical description of a single drop enclosed by thin 

films in a rectangular microchannel, a specific form of ks is derived by meticulous formulations of the surface area 
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and the volume of the drop. In the second part of Section II, an overall pressure drop due to micro-segmented 

flows in microchannels is considered. With the calculated overall pressure drop, the Peng-Robinson equation of 

state [62] and the initial CO2 pressure in the T-junction, the drop volume change subjected to the pressure drop is 

analyzed. Section III introduces the experimental methodology and procedures and shows an overview of 

observed liquid CO2 drops at three specified positions of the channel. In Section IV, experimental results and 

discussions are given. Section V is a conclusion of our work. 

II. Methodology 

A. Mathematical model of solvent-side mass transfer coefficient (ks) 

A1. A general form of ks 

In order to formulate the solvent-side mass transfer coefficient ks (m/s), a one-dimensional and unsteady flow 

problem where (pure) solute drops separated by solvent liquid segments flow at a Taylor flow regime in a long 

straight microchannel is considered. An incompressible flow of the drop and the solvent liquid as well as 

homogeneous material properties are assumed. In addition, no significant reactions are involved during the mass 

transfer across the interface. Despite an apparently overall unsteady state, the flow characterized by an 

intermittency could be deemed steady when an accompanying reference frame is induced relative to the moving 

drop that makes an ensemble averaging possible [63]. As a solute drop moves at speed v1 and is characterized by 

length L1, as shown in Figure 1, it may exhibit shrinkage in terms of drop length reduction due to the dissolution-

diffusion resulted mass transfer across the interface. Thus, the drop length (L) becomes a function of the position 

(x) along the straight microchannel. Drop speed together with a certain known channel distance (xn+1 - xn, n is a 

positive integral) provides a time scale during which an observable size reduction arises. Figure 1 shows a 

schematic of the liquid solute drops characterized by different lengths at different positions along a channel. 

Continuous phase slugs behave as solvent for solute drops and presumably maintains a constant flowing speed (vx) 

spanning the overall length of the straight channel. The cross section of the microchannel is defined rectangular 

and its width and depth are denoted by W (see Figure 1) and D (not shown in the schematic but deemed 

perpendicular into paper), respectively. 

 

Figure 1. Schematic of shrinking drops in the other liquid at a Taylor flow regime in a straight microchannel. Lx 

and vx indicate drop length and speed at position x (x = 1, 2, 3…), respectively; vc is the superficial flowing speed 

of the continuous fluid over the cross-section of the microchannel; ‘f’ used in the calculation of vx is a frame rate 

(frames per second, fps) of image acquisition in practice. An overall pressure drop (ΔPt) is noted as well. 

According to the conservation and a quasi-steady state assumption of the mass transfer, ks (m/s) over an 

infinitesimal time can be defined as 

𝑘𝑠𝐴∆𝐶𝑠 = 𝑛̇d ,                                                                          (1) 

where A is the effective mass transfer interfacial area, m
2
; ΔCs is a concentration difference on the solvent side 

adjoining the interface that drives the mass transfer, mole/m
3
; and 𝑛̇d is the molar flux of the mass transfer, mole/s. 

𝑛̇d can also be concisely defined from the viewpoint of mass transfer, i.e., 
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𝑛̇d=
dn

dt
=

1

𝑀

𝑑𝑚

𝑑𝑡
=

1

𝑀

𝑑(𝜌𝑉)

𝑑𝑡
=

1

𝑀

𝜌𝑑(𝑉)+𝑉𝑑(𝜌)

𝑑𝑡
,                                                  (2) 

where ρ, V and M are the density (kg/m
3
), the volume (m

3
) and the molecular weight (kg/kmol) of the solute drop, 

respectively. Due to incompressible flow, the density of the solute drop is a constant which is irrelevant to time in 

a specific hydrodynamic scenario. Therefore, d(ρ)/dt equals to 0, and equation (2) can be simplified as 

𝑛̇d=
1

𝑀

𝜌𝑑(𝑉)

𝑑𝑡
,                                                                            (3) 

Towards a mathematical model, the solute drop is assigned with a nominal molar concentration Cd (mol/m
3
) and 

𝐶𝑑 =
𝜌

𝑀
.                                                                                (4) 

Combine equation (3) and (4), we have 

𝑛̇d= 𝐶𝑑
𝑑(𝑉)

𝑑𝑡
,                                                                            (5) 

by which the mass transfer is correlated to the solute drop shrinkage in terms of drop volume change over time. 

Substitute equation (5) to (1) gives  

𝑘𝑠𝐴 =
𝐶𝑑

∆𝐶𝑠

𝑑(𝑉)

𝑑𝑡
.                                                                         (6)  

One of the main interests in this problem is the solute drop length reduction, or say, the volume reduction thanks 

to the diffusion-controlled dissolution in a hydrodynamic circumstance. A sharp interface (thickness ~ 0) 

separating the solute drop from the solvent slug very likely feature an equilibrium concentration in a saturation 

scenario, where this equilibrium concentration is denoted by Ce (mol/L). Provided that the mass transfer is a 

limited one and based on a known hydrodynamic circulating condition near the interface that homogenizes the 

bulk solvent slug, the bulk of the solvent slug is practically of a zero concentration (i.e., C∞ = 0). The 

concentration difference (Ce - C∞) on the solvent side forms a driving force for the molar flux. Hence, the 

concentration difference ΔC can be expressed by 

∆𝐶𝑠 = 𝐶𝑒 − 0 = 𝐶𝑒.                                                                    (7) 

Substitute equation (7) into (6), we have 

𝑘𝑠 =
1

𝐴

𝐶𝑑

𝐶𝑒

𝑑(𝑉)

𝑑𝑡
.                                                                           (8) 

Cd and Ce are presumably known as long as fluids are known. A and V are overall functions of time. Equation (8) 

is a general form of ks in infinitesimal time during which a constant surface area of the drop still maintains. 

A2. A specific form of ks 

As shown by equation (8), the effective surface area (A) and the drop volume (V) of the solute drop need to be 

determined in order for the mass transfer coefficient. To obtain A and V via readily accessible parameters that are 

either known or measurable, a single Taylor drop is considered in a rectangular microchannel under a three-

dimensional (3D) scenario. Figure 2 shows a solute drop flowing a microchannel that has a width W and a depth 

D (D ≤ W). As shown in Figure 2b, 2c and 2d, a thin film (with thickness δ at the channel wall and thickness δ’ at 

the channel corner) of the continuous fluid enclosing the drop exists between the drop and the channel wall and 

prevents the drop from contacting the wall. This film results from a wall wettability preferrence to the continuous 

fluid over the solute fluid. The drop is characterized with an end-to-end length L and two principal radii of 

curvature (i.e., Rw and Rd) of its meniscus, see Figure 2b and 2c. Rw and Rd can be derived by inducing the contact 
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angle θc between the drop and the continuous fluid at wall, see Figure 3. Here, Rw is chosen as an example 

showing how the radii of curvature of the drop meniscus is determined. Focusing on the triangle denoted by a 

right angle symbol in Figure 3, two geometric equations can be written, 

𝑅𝑤 ∙ cos(𝜋 − 𝜃𝑐) = 𝑊 2⁄ − 𝛿,                                                             (9) 

𝑅𝑤 ∙ sin(𝜋 − 𝜃𝑐) + 𝐿𝑐,𝑤 =𝑅𝑤.                                                           (10) 

 

Figure 2. Schematics of one single Taylor drop in a rectangular microchannel (width: W, depth: D). (a) A 3D 

view of the drop in the microchannel; (b) a top view of the drop showing the channel width W, the thickness (δ) 

of the thin film of the continuous fluid, and the radii of curvature Rw in a projected plane; (c) a side view of the 

drop showing the drop length L, the channel depth D, and the radii of curvature Rd in a projected plane; (d) A-A 

sectional view of the drop where the thin film is of thickness δ at the channel wall and thickness δ’ at channel 

corners (see the inset); (e) a projected right view of the drop meniscus. 

 

Figure 3. Geometrical descriptions of one single Taylor drop in a microchannel. The ellipse symbolizes the drop. 

Two horizontal dash lines at the top and the bottom indicate the inner channel wall. The drop is presumably 

composed of two meniscuses and a main part in the middle. A transitional surface section may exist at between 

the drop meniscus and the middle part. 

After rearranging, Rw and Lc,w can be obtained as  

𝑅𝑤 =
𝑊 2⁄ −𝛿

−cos𝜃𝑐
,                                                                         (11) 

and  
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𝐿𝑐,𝑤 =
𝑊 2⁄ −𝛿

−cos𝜃𝑐
(1 − sin𝜃𝑐),                                                             (12) 

respectively. Further, the length of the drop main part, i.e., Lm,w (see Figure 3), can be determined from deducing 

2Lc,w from the total length L, i.e.,  

𝐿𝑚,𝑤 = 𝐿 − 2𝐿𝑐,𝑤 = 𝐿 −
𝑊−2𝛿

−cos𝜃𝑐
(1 − sin𝜃𝑐).                                             (13) 

Next, the surface area and the volume of the drop will be solved based on a three-portion composition assumption 

of the drop, i.e., two drop meniscuses and one main middle part (see Figure 3). Accordingly, the surface area and 

the volume of the drop are formulated as 

A = 2A𝑐,𝑤 + 𝐴𝑚,𝑤,                                                                   (14) 

and  

V = 2V𝑐,𝑤 + 𝑉𝑚,𝑤,                                                                   (15) 

where Ac,w and Vc,w are the surface area and the volume of the drop cap, Am,w and Vm,w are those of the middlel 

part of the drop. The drop cap is approximated one half of a general triaxial ellipsoid whose semi-axes are (W/2 - 

δ), (D/2 - δ) and Lc,w, respectively, see Figure 2e and Figure 3. To determine Ac,w, an approximation (Thomsen’s 

formula) proposed by Knud Thomsen [64] is applied, i.e., 

A𝑐,𝑤 ≈ 2𝜋 {[(
𝑊

2
− 𝛿)

𝑝
(
𝐷

2
− 𝛿)

𝑝
+ (

𝑊

2
− 𝛿)

𝑝
𝐿𝑐,𝑤

𝑝 + (
𝐷

2
− 𝛿)

𝑝
𝐿𝑐,𝑤

𝑝] /3}

1

𝑝
,                   (16) 

the least relative error when p ≈ 1.6075 is within ±1.061%. Moreover, the volume Vc,w is calculated as follows, 

V𝑐,𝑤 =
4

3
𝜋 (

𝑊

2
− 𝛿) (

𝐷

2
− 𝛿)𝐿𝑐,𝑤.                                                    (17) 

Prior to calculating Am,w and Vm,w, the perimeter and the area of the cross section of the drop middle part that is 

perpendicular to the flowing direction (see Figure 2d) need to be determined. By referring to the film thickness at 

the channel wall and wall corners, as shown in the local enlarged view in Figure 2d, the perimeter and the area of 

the drop cross section are 2(πx + W + D - 4δ - 4x) and [WD - 2δ(W + D) - (4 - π)x
2
 + 4δ

2
], respectively, in which 

x ≈ 
𝛿′−√2𝛿

√2−1
. Based on literature results of Taylor bubble (or drop) flows in rectangular capillaries with Ca < 10

-2
 

[58,65,66], the thin fim thickness δ and δ’ at the channel wall and the channel corner may be approximated by 

0.02W and 0.1W, respectively. Thus x can be simplified as 0.17W, and the perimeter and the area of the drop 

cross section are further simplified, respectively, as 2(0.774W + D) and (0.96WD - 0.0632W
2
). Therefore, the 

surface area Am,w and the volume Vm,w of the main middle part of the drop can be written as 

𝐴𝑚,𝑤 = 2(0.774𝑊 + 𝐷) ∙ 𝐿𝑚,𝑤,                                                     (18) 

and  

𝑉𝑚,𝑤 = (0.96𝑊𝐷 − 0.0632𝑊
2) ∙  𝐿𝑚,𝑤.                                                (19) 

Substitute Equation (13) into the above two equations and rearranging δ by 0.02W,  

𝐴𝑚,𝑤 = 2(0.774𝑊 + 𝐷) ∙ (𝐿 + 0.96
1−𝑠𝑖𝑛𝜃𝑐

𝑐𝑜𝑠𝜃𝑐
𝑊),                                      (20) 

and 
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𝑉𝑚,𝑤 = (0.96𝑊𝐷 − 0.0632𝑊
2) ∙ (𝐿 + 0.96

1−𝑠𝑖𝑛𝜃𝑐

𝑐𝑜𝑠𝜃𝑐
𝑊).                                (21) 

Similarly, Equation (16) and (17) are specified as follows 

A𝑐,𝑤 ≈ 2𝜋 {
(0.24𝑊𝐷−0.0096𝑊2)

1.6075

3
+
[(0.48𝑊)1.6075+(0.5𝐷−0.02𝑊)1.6075]∙(0.48

1−𝑠𝑖𝑛𝜃𝑐
−𝑐𝑜𝑠𝜃𝑐

𝑊)
1.6075

3
}

0.6221

,       (22) 

and 

V𝑐,𝑤 = 0.32𝜋𝑊(0.5𝐷 − 0.02𝑊) ∙ 0.96
1−𝑠𝑖𝑛𝜃𝑐

−𝑐𝑜𝑠𝜃𝑐
𝑊.                                       (23) 

Integrate equation (20) - (23) with (14) and (15), the surface area A and the volume V of a drop are formulated as 

𝐴 = 4𝜋 {
(0.24𝑊𝐷−0.0096𝑊2)

1.6075

3
+
[(0.48𝑊)1.6075+(0.5𝐷−0.02𝑊)1.6075]∙(0.48

1−𝑠𝑖𝑛𝜃𝑐
−𝑐𝑜𝑠𝜃𝑐

𝑊)
1.6075

3
}

0.6221

+ (1.548𝑊 + 2𝐷) ∙

(𝐿 + 0.96
1−𝑠𝑖𝑛𝜃𝑐

𝑐𝑜𝑠𝜃𝑐
𝑊),                                                                                                                                    (24) 

and 

V = (0.96𝑊𝐷 − 0.0632𝑊2) ∙ 𝐿 + (0.0435𝑊𝐷 + 0.0221𝑊2) ∙
1−𝑠𝑖𝑛𝜃𝑐

−𝑐𝑜𝑠𝜃𝑐
𝑊.                         (25) 

It is necessary to note that a transitional surface section (see Figure 3) from the drop meniscus to the main middle 

part has not been considered, instead, is incorporated to the middle part of the drop. Thus, the surface area and the 

volume determined by Equation (24) and (25) are likely to overestimate. The incorporation may only be 

appropriate when drop length L is relatively larger than the channel width W, thus the transitional area compared 

with the realistic middle part becomes small. Additionally, the above formulation are generally based on that the 

volume of the drop middle part is larger than that of the two caps, i.e., Vm,w > 2Vc,w, thus there exists a critical 

drop length L (determined by W, D and θc) below which Equation (24) and (25) may not be applicable. It can be 

seen that the surface area and the volume of the flowing drop in a defined channel geometry with involved fluids 

being known are determinable as long as the drop length L can be measured. The solvent-side mass transfer 

coefficient, starting from Equation (8), can be further specified as follows 

𝑘𝑠 =
1

𝐴

𝐶𝑑
𝐶𝑒

𝑑(𝑉)

𝑑𝑡
=
1

𝐴

𝐶𝑑
𝐶𝑒
(0.96𝑊𝐷 − 0.0632𝑊2)

𝑑(𝐿)

𝑑𝑡
 

↓ 

𝑘𝑠
𝐶𝑒
𝐶𝑑

1

(0.96𝑊𝐷 − 0.0632𝑊2)
𝑑𝑡 =

1

𝐴
𝑑(𝐿) 

↓ 

∫𝑘𝑠
𝐶𝑒
𝐶𝑑

1

(0.96𝑊𝐷 − 0.0632𝑊2)
𝑑𝑡 = ∫

1

𝐴
𝑑(𝐿) =

1

(1.548𝑊 + 2𝐷)
∫
1

𝐴
𝑑(𝐴) 

↓ 

𝑘𝑠
𝐶𝑒
𝐶𝑑

1

(0.96𝑊𝐷 − 0.0632𝑊2)
𝑡 =

1

(1.548𝑊 + 2𝐷)
(ln𝐴)𝐴𝑥

𝐴0 + 𝐵 
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in which B is a constant resulting from the integral. An initial condition (Ax = A0, at t = 0) can be applied to 

determine that B = 0. Thus, 

𝑘𝑠 (mm/s) =
(0.96𝑊𝐷 − 0.0632𝑊2)

(1.548𝑊 + 2𝐷)

𝐶𝑑
𝐶𝑒
∙
1

𝑡
 

∙ ln

4𝜋{
(0.24𝑊𝐷−0.0096𝑊2)

1.6075

3
+
[(0.48𝑊)1.6075+(0.5𝐷−0.02𝑊)1.6075]∙(0.48

1−𝑠𝑖𝑛𝜃𝑐
−𝑐𝑜𝑠𝜃𝑐

𝑊)
1.6075

3
}

0.6221

+(1.548𝑊+2𝐷)∙(𝐿0+0.96
1−𝑠𝑖𝑛𝜃𝑐
𝑐𝑜𝑠𝜃𝑐

𝑊)

4𝜋{
(0.24𝑊𝐷−0.0096𝑊2)

1.6075

3
+
[(0.48𝑊)1.6075+(0.5𝐷−0.02𝑊)1.6075]∙(0.48

1−𝑠𝑖𝑛𝜃𝑐
−𝑐𝑜𝑠𝜃𝑐

𝑊)
1.6075

3
}

0.6221

+(1.548𝑊+2𝐷)∙(𝐿𝑥+0.96
1−𝑠𝑖𝑛𝜃𝑐
𝑐𝑜𝑠𝜃𝑐

𝑊)

, (26) 

B. Pressure drop and its impact upon drop size 

B1. Pressure drop over the micro channel length 

A short review of some commonly referred pressure drop models of segmented flows in microchannels is 

provided in the Supplemental Materials (See S3 in SM). By comparisons in terms of applicability, a modified 

version of Warnier’s model proposed by Eain et al. [67] is going to be used for calculating the total pressure drop 

of the Taylor flow over the microchannel length in this work. This modified Warnier’s model is specified as 

follows 

∆Pt=𝐿𝑡
32𝜂𝑐𝑣𝑐
(2𝑅ℎ)

2 [1 +
8.16×3

2
3

32

1

𝐿𝑐
∗

𝐴𝑐

𝐴𝑑

1

(𝐶𝑎𝑑

1
3+3.34𝐶𝑎𝑑)

],                                           (27) 

where Lt and ΔPt are the total microchannel length and the total pressure drop over the channel length, 

respectively. ηc and 𝑣𝑐 are the dynamic viscosity and the superficial mean velocity of the continuously flowing 

slugs, the latter of which can be determined from dividing the total flow rate by the channel cross area. Rh is the 

hydrodynamic radius of the microchannel and Rh = DW/(D + W) for a rectangular one. Lc
* 
is a non-dimensional 

length of the continuously flowing slug, and Lc
*
= Ls,w/(2Rh) in which Ls,w indicates the slug length. In addition, (L 

+ Ls,w) accounts for the length of a flow unit composed by a drop and a continuous slug. Ac and Ad are the channel 

and the bubble cross sectional area, respectively. Cad is the capillary number calculated on the drops. 

Based on the modification of a curvature parameter from 7.16 to 8.16, the applicability of Warnier’s model [68] 

is further extended in terms of such non-dimensional parameters: 1.45 ≤ Re ≤ 567.59, 4.5×10
-5

 ≤ Ca ≤ 0.067, 0.76 

≤ Lc
* 
≤ 46.83, 1.05 ≤ Ld

*
 ≤ 14.25, and liquid-liquid Taylor flows in micro capillaries as well. However, as noted 

by Warnier et al. [68], the model is partly based on the work of Bretherton [69] and Aussillous and Quéré [70] in 

determining the pressure drop of a single Taylor bubble. Thus, the model as well as the modified one is unlikely 

to be applicable to circumstances such as non-axisymmetric channels, non-laminar flows of continuous phase, 

strong inertia, nor non-ignorable velocity of the thin film that separates the bubble from touching the channel wall. 

B2. Drop volume change subjected to pressure drop 

Since a very general dispersed fluid is considered that might be either a bubble or a droplet surrounded by a 

continuous liquid in the Taylor flow, it is better to use a more applicable equation of state (EOS) to describe the 

dispersed fluid rather than a classical ideal gas law. Cubic equations, among other equations, of state in terms of 

volume have been proposed and developed in the past 140 years to correlate pressure, volume and temperature 

together for a given quantity of substances within a system, to name a few, the Van der Waals EOS [71], the 

Redlich-Kwong EOS [72], the Soave-Redlich-Kwong EOS [73], the Peng-Robinson EOS [62], volume-translated 
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EOS [74,75] and Patel-Teja EOS [76]. Despite such many cubic EOS, a generic cubic EOS [77] may be written as 

below 

P =
𝑅𝑇

𝑉−𝑏
−

𝑐

𝑉(𝑉+𝑑)+𝑒(𝑉−𝑑)
,                                                              (28) 

in which b, c, d, and e are constants or functions of temperature as well as fluid properties (e.g., acentric factors, 

critical compressibility factors, etc.); P, V and T are pressure, volume and temperature, respectively; R is the 

universal gas constant. The first and the second term on the right-hand side of the above equation indicate a 

repulsion pressure and an attraction pressure, respectively. Among numerous cubic EOS not limited to the above 

ones, the Soave modified Redlich-Kwong EOS (also called Soave-Redlich-Kwong EOS) and the Peng-Robinson 

EOS have been the most frequently applied ones in studies related to thermo-physical and vapor-liquid 

equilibrium (VLE) properties. Moreover, as compared by Peng and Robinson [62] between their calculated vapor 

pressures of pure substances and equilibrium ratios of mixtures and those calculated by the Soave-Redlich-Kwong 

EOS, Peng-Robinson EOS provided slightly more accurate agreements with experimental data. Therefore, the 

Peng-Robinson EOS is chosen to correlate the drop volume change (viz., drop length change) with the pressure 

drop over the micro channel. The Peng-Robinson EOS is given below 

P =
𝑅𝑇

𝑉𝑚−𝑏(𝑇𝑐)
−

𝑐(𝑇𝑐)𝛽(𝑇𝑟,𝜔)

𝑉𝑚[𝑉𝑚+𝑏(𝑇𝑐)]+𝑏(𝑇𝑐)[𝑉𝑚−𝑏(𝑇𝑐)]
,                                                 (29) 

in which  

𝑏(𝑇𝑐) = 0.07780
𝑅𝑇𝑐

𝑃𝑐
,             𝑐(𝑇𝑐) = 0.45724

𝑅2𝑇𝑐
2

𝑃𝑐
, 

 𝛽(𝑇𝑟 , 𝜔) = [1 + (0.37464 + 1.54226𝜔 − 0.26992𝜔
2)(1 − 𝑇𝑟

0.5)]2,                       (30) 

where Pc, Tc and Vm are the critical pressure, the critical temperature and the molar volume (Vm: volume/mole), 

respectively; β (Tr, ω) is a non-dimensional function of temperature ratio Tr (Tr = T/Tc) and an acentric factor ω of 

the specific substance (ω for common hydrocarbons and N2, CO2, H2S are referred to the figure 2 in Peng and 

Robinson’s original paper [62].). If temperature (T) is a constant, equation (29) for a known fluid becomes  an 

equation with two unknown variables, i.e., P and Vm. Furthermore, two such equations may be available at the 

starting and the ending point of the straight channel, and an equation set including these two equations can be 

obtained as follows 

{
 
 

 
 P0 =

𝑅𝑇

𝑉𝑚0−𝑏(𝑇𝑐)
−

𝑐(𝑇𝑐)𝛽(𝑇𝑟,𝜔)

𝑉𝑚0[𝑉𝑚0+𝑏(𝑇𝑐)]+𝑏(𝑇𝑐)[𝑉𝑚0−𝑏(𝑇𝑐)]
,

P𝑡 =
𝑅𝑇

𝑉𝑚𝑡−𝑏(𝑇𝑐)
−

𝑐(𝑇𝑐)𝛽(𝑇𝑟,𝜔)

𝑉𝑚𝑡[𝑉𝑚𝑡+𝑏(𝑇𝑐)]+𝑏(𝑇𝑐)[𝑉𝑚𝑡−𝑏(𝑇𝑐)]
,

  ∆Pt = (P0 −
𝜎 cos𝜃𝑐

𝑅ℎ
) − (P𝑡 −

𝜎 cos𝜃𝑐

𝑅ℎ
) = P0 − P𝑡 .

and                                       (31) 

If P0 is known in practice, together with the pressure drop determined by equation (27), Pt at the ending point of 

the microchannel can be determined and then used to solve out the two unknowns, i.e., Vm0 and Vmt, where 

subscript ‘0’ and ‘t’ indicate the parameter at the starting and the ending point, respectively. Based on solved Vm0 

and Vmt, the relative volume change of the drop ΔV/V0 due to the pressure decrease can be calculated by 

∆V 𝑉0⁄ =N∙∆V𝑚 𝑉0⁄ = 𝑁∙(𝑉𝑚𝑡 − 𝑉𝑚0) (𝑁 ∙ 𝑉𝑚0)⁄ =
𝑉𝑚𝑡

𝑉𝑚0
− 1.                          (32) 

According to equation (27), (31) and (32), an estimated (or directly measured) initial pressure and a (quantitative) 

knowing of the Taylor flow in the microchannel are required in order to obtain the drop volume change subjected 

to the pressure decrease. However, such a clear idea of the drop volume change will not be possible without any 
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experiments or numerical methods. Next, a series of experiments is going to be carried out in which liquid CO2 

and water are used as a drop fluid and a continuous liquid, respectively, in Taylor flow regimes. 

III. Experiments 

A. Setup 

The experimental system (see Figure S1 in SM) introduced in our previous work [78] is applied here to 

undertake the hydrodynamic dissolution of pressurized Taylor drops in a straight microchannel. In brief, two 

mechanical syringe pumps (Teledyne Isco 260D and 100DM) are used to deliver two different fluids to the 

microfluidic system comprised of a self-made non-permanent connector and a silicon-glass microchip. The 

connector bridges the large-scale stainless steel tubing to the microchip. The fabrication of the microchip is 

mainly fulfilled by, in sequence, standard photolithography, deep reactive ion etching (DRIE), inlet & outlet 

drilling, anodic bonding of silicon and glass wafer, and dicing (of bonded wafers) into a final rectangular shape 

(74 × 44 × 1.2 mm
3
). As shown by Figure 4, a micro T-junction in the microchip is applied to produce Taylor 

drops in the microchannel. In particular, liquid carbon dioxide (purity 99.9%, Praxair Canada) is used as a 

dispersed fluid which is injected at constant flow rates into the side channel of the T-junction; de-ionized (DI) 

water is used as the continuous liquid flowing at various constant flow rates in the main channel. One specific 

flow case is characterized by a constant flow rate ratio, i.e., QLCO2/QH2O. The side channel, main channel as well as 

the downstream straight microchannel (total length = 14.7 mm) are all characterized by a uniform width (W) of 

150 µm and a uniform depth (D) of 100 µm. Although not shown, the further downstream to the end of the 

straight channel features a 90° turning first and a 55 mm long microchannel which eventually connects to the 

outlet of the connector. The back pressure of the flowing system is controlled by a back pressure regulator (model 

EB1ULF1, Equilibar) together with a needle valve. A nitrogen gas tank provides a reference back pressure at the 

back pressure regulator. However, practical back pressures during experiments are measured by a pressure 

transducer (Swagelok) installed between the connector and the back pressure regulator. A circulating water bath 

(Thermo Scientific) for maintaining a constant temperature (i.e., 25°C) of CO2 from within the pump cylinder, 

through the stainless steel tubing, up to the microchip is used.  

 

Figure 4. Schematic of the experimental methodology for investigating liquid CO2 drops’ shrinkage in a straight 

microchannel (16 < Lt/Lx < 60, x = 1, 2, 3; W = 150 µm). Drop length Lx is monitored and measured at three 

positions, i.e., immediately after the drop generation (position 1), at the midpoint of the microchannel length 

(position 2) and at the end of the microchannel (position 3). Total microchannel length Lt is 14.7 mm. 

B. Measurements 

The experimental methodology for studying the dissolution caused Taylor drop shrinkage is schematically 

introduced in Figure 4. The liquid CO2 drop at three sequential positions of the straight microchannel, i.e., 

immediately after the drop generation (position 1), the midpoint of the microchannel (position 2) and the end of 
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the microchannel (position 3), are visualized by using an upright microscope (BX51, Olympus) combined with a 

high speed camera (v210, Phantom). Images-stacked videos (3000 fps (frames per second)) are recorded 

separately at the three positions after a waiting time of 20 minutes, each time when a different QLCO2/QH2O is 

applied, in order for a stable flow state. Later, these videos are first cropped into a constant size of 800 × 200 

pixels (1 pixel ≈ 2 µm), and then analyzed in Matlab (R2014a, The Mathworks, Inc.) by using a series of self-

developed Matlab codes based on identifying drops. Drop length (measured from the vertex of the back meniscus 

to that of the front one of the drop in the flow direction) and drop speed are the two main parameters extracted 

from the video analysis. Under a given QLCO2/QH2O at one of the positions, the drop length is measured for all 

emerging drops in the video, and the averaged value is considered a characteristic drop length, i.e., 

𝐿𝑥 =
1

𝑁
∑ 𝐿𝑖,𝑥
𝑁
𝑖=1 ,       𝑥 = 1, 2 or 3,                                                 (33) 

and the standard deviation sLx is calculated by 

s𝐿𝑥 = √
1

𝑁−1
∑ (𝐿𝑖,𝑥 − 𝐿𝑥)

2𝑁
𝑖=1  ,          𝑥 = 1, 2 or 3,                                      (34) 

where N is the total number of complete drops that have emerged in the video at position x (x = 1, 2 or 3). If one 

single drop of the N drops has been presented as a complete one (i.e., both its front and back meniscus are 

simultaneously visible in the video) from the j
th
 frame to the (j + M)

th
 frame, an average speed (vsd) of this drop at 

this position is determined by 

𝑣𝑠𝑑 =
1

𝑀
∑ 𝑣ℎ→(ℎ+1)
𝑀
ℎ=1 ,                                                                (35) 

where vh→(h+1) is the speed of this single drop calculated from two consecutive frames, i.e., the h
th
 and the (h+1)

th
 

frame (j ≤ h < M), as formulated below 

𝑣ℎ→(ℎ+1) =
∆𝑑ℎ→(ℎ+1)

1/fps
,                                                                   (36) 

in which Δd is the drop displacement from the h
th
 and the (h+1)

th
 frame. Based on vsd, of one single drop, drop 

speed vx by averaging on all the drops is considered a characteristic speed, which is calculated as follows, 

𝑣𝑥 =
1

𝑁
∑ (𝑣𝑠𝑑)𝑖,𝑥
𝑁
𝑖=1 , ,          𝑥 = 1, 2 or 3,                                               (37) 

and the standard deviation svx is determined by 

s𝑣𝑥 = √
1

𝑁−1
∑ [(𝑣𝑠𝑑)𝑖,𝑥 − 𝑣𝑥]

2𝑁
𝑖=1  ,          𝑥 = 1, 2 or 3,                                       (38) 

C. Observations 

Figure 5 provides an overview of all liquid CO2 drops under Taylor flow regime at the specified three positions 

of the straight microchannel for a total of nine flow rate conditions. Here, the flow rate ratio QLCO2/QH2O is tuned 

from 20/80 to 75/25, and (QLCO2 + QH2O) has been controlled as a constant 100 µL/min. The capillary number (Cac) 

calculated by the water flow (Cac = ηcvc/γ) ranges from 8 × 10
-4

 to 2.5 × 10
-3

. The viscosity (ηc = 890 µPa∙s) [79] 

and the interfacial tension (γ = 31.7 mN·m
-1

) [80,81] are referred to 298 K and 65 bar, respectively. Using the 

same reference, the viscosity of liquid CO2 in our work is around 58 µPa∙s, thus a viscosity ratio (ηd/ηc) of 0.065 is 

used here. In addition, the Schmidt number (Scc = ηc/(ρcDdc), where ρc and Ddc are the water density and the CO2 

diffusivity in water, respectively.) of water is calculated around 593, for which Ddc is approximately 1.5 × 10
-9

 

m
2
/s [82]. The superficial velocity of water, i.e., vc, results from dividing QH2O by the cross sectional area (WD) of 

the channel. 
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At position 1, liquid CO2 drop generations are periodic, and the length of the generated drops increases as 

QLCO2/QH2O increases from 20/80 to 75/25. At position 2 and 3, CO2 drops also periodically emerge in the imaging 

frames, and they flow in from the left side and out on the right side. The drop length and the drop speed, at each 

of the three positions, are measurable based on the aforementioned methodologies. It is noted that when 

QLCO2/QH2O > 75/25 a complete drop can not be captured by our imaging methods at position 1, and when 

QLCO2/QH2O < 20/80 the generation of Taylor drops becomes unstable and non-periodic. Therefore, flow rate 

conditions characterized by QLCO2/QH2O beyond these two thresholds are not probed in our work. 

 

Figure 5. Snapshots of liquid CO2 drops at three specified positions in the straight microchannel under various 

QLCO2/QH2O. The scale bar for all images is 150 µm. The image video at position 1 for QLCO2/QH2O = 75/25 results 

from combining two images in an end-to-end way for showing both the T-junction and a completely generated 

drop. 

IV. Results and discussions 

A. Size of the generated liquid CO2 drop 

The length (L1) of the generated liquid CO2 drop at the micro T-junction has been measured and normalized by 

the microchannel width (W). Normalized drop lengths (i.e., L1/W) are plotted against the QLCO2/QH2O of the 

investigated cases, as shown in Figure 6a. 

              

    (a)                                                                        (b) 
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Figure 6. (a) Non-dimensional lengths (L1/W) of generated liquid CO2 drops at the micro T-junction under various 

QLCO2/QH2O; (b) Lengths of the liquid CO2 drops at the three positions (x = 1, 2 and 3) under various QLCO2/QH2O. 

Each error bar indicates one standard deviation of the mean drop length (i.e., the data point). 

The drop length increases from around 1.5W to 6.3W when QLCO2/QH2O ascends from 0.25 to 3. These data 

points are fitted with a method analogous to that having been applied in our previous work [78], i.e., a linear 

relation between L1/W and QLCO2/QH2O (i.e., the ratio defined by the flow rate of the dispersed fluid to that of the 

continuous fluid). The fitting line, L1/W = 1.15 + 1.79∙(QLCO2/QH2O), is shown in Figure 6, which is characterized 

by an adjusted R-squared of 0.97. The Y-intercept is approximately 1 with a 15% deviation and the slope is 1.79 

that is much larger than 1. The factor underlying the slope is related to the squeezing-elongating stage within a 

period of the drop generation, which has been elucidated previously [78]. The fitting, on the other hand, suggests 

that distinctly sized Taylor drops in terms of non-dimensional drop length can be produced by simply tuning the 

applied flow rate ratio in a constant micro T-junction device. However, there should exist an upper limit of 

QLCO2/QH2O beyond which Taylor flow starts to vanish and co-flow regimes occur, as evidenced in our previous 

work [78]. Drop lengths at the midpoint (position 2) and the ending point (position 3) of the long straight 

microchannel are measured as well. Figure 6b shows the absolute length of the liquid CO2 drop at the three 

specified positions under various QLCO2/QH2O. As shown, for each flow rate condition, there is always a slight 

decline tendency of the drop length from position 1 to 2 and to 3, and the declines are approximately linear. The 

drop length tendency qualitatively describe the drop shrinkage which is considered a result of the dissolution-

diffusion mechanism across the interface between the CO2 drop and the continuously flowing water. 

B. Length reduction of liquid CO2 drops 

Detailed drop length reductions are plotted against QLCO2/QH2O in Figure 7a. Here, three length reductions, namely, 

a total length reduction ΔL (ΔL = L1 – L3), a first length reduction ΔL1 (ΔL1 = L1 – L2), and a second length 

reduction ΔL2 (ΔL2 = L2 – L3) are calculated and shown. The scattering data points of respective length reductions 

are linearly fitted by keeping the slopes as zeros. The mean values of drop length reductions ΔL, ΔL1 and ΔL2 are 

24.35 µm, 16.52 µm and 7.83 µm, respectively. Correspondingly, the standard errors of these mean drop length 

reductions are 1.08 µm, 1.71 µm and 1.17 µm, respectively, which are calculated from dividing the standard 

deviations (see equation 34) by the square root of the sample size (i.e., 9 in our work). These mean drop length 

reductions may be able to be comprehended in such a way that, regardless of the sizes of the CO2 drops being 

produced from the T-junction and investigated later in the microchannel, absolute values of ΔL, ΔL1 and ΔL2 

resulted from the interphase mass transfer from CO2 to water are generally constants, despite of two deviants that 

occur at QLCO2/QH2O = 45/55 and QLCO2/QH2O = 65/35. 

To evaluate the total length reductions relative to the original drop length, ΔL/L1 for all cases are plotted as a 

function of the flow rate ratios, as shown in Figure 7b. It is obvious that, although the total drop length reductions 

(ΔL) may be a constant for all cases, ΔL/L1 is likely to be an exponential decreasing function (whose base is 

between 0 and 1) of increasing QLCO2/QH2O. This result is rational in view of the larger surface-to-volume ratios of 

smaller drops that are produced by lower QLCO2/QH2O which further enhance the mass transfer through the 

interface between CO2 drops and the continuous flowing water. Also plotted in Figure 7b are averaged 

coefficients of variations (COVs) of the drop lengths at those three positions. Here, the COV of drop lengths at 

each position is defined by dividing the standard deviation over the mean drop length as follows 

𝐶𝑂𝑉𝑥 =
s𝐿𝑥
𝐿𝑥

,       𝑥 = 1, 2 or 3,                                                         (39)  

where Lx and sLx are calculated from equation (33) and (34), respectively. The averaged COV as a characteristic of 

each investigated QLCO2/QH2O is obtained from averaging the ones at position 1, 2 and 3, as determined by 
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𝐶𝑂𝑉𝑄𝐿𝐶𝑂2/𝑄𝐻2𝑂 =
1

3
∑

s𝐿𝑥
𝐿𝑥

3
𝑥=1 ,            𝑥 = 1, 2 or 3.                                   (40) 

The averaged COVs behave as a measure of the variability extent of the mean drop length for each flow rate 

condition. For almost all the flow rate conditions, averaged COVs are approximately a constant with a value of 

0.029 (± 0.003), and vast majority of them are well below the relative drop length reductions except for 

QLCO2/QH2O = 75/25. This comparison, in general, shows that the drop length reductions are beyond the error 

scopes and can be the real characteristics of drop shrinkage. 

     

(a)                                                                       (b) 

Figure 7. (a) Shrinkage of liquid CO2 drops quantified by drop length reductions (ΔL, ΔL1 and ΔL2) and linear 

fitting lines (horizontal) of the three calculated drop length reductions, ΔL (■): a total length reduction, ΔL = L1 – 

L3; ΔL1 (▼): a first length reduction, ΔL1 = L1 – L2; and ΔL2 (▲): a second length reduction, ΔL2 = L2 – L3. Solid 

line is a fitting line of ΔL, and a positive and a negative one standard deviation band (dash lines above and below 

the solid line) of the mean ΔL are added for reference. (b) Relative total drop length reductions ΔL/L1 (■) versus 

averaged coefficients of variations (COVs) of drop lengths (×) at various flow rate ratios. 

C. Pressure drop and resulted drop volume change 

C1. Total pressure drop ΔPt 

With experimentally obtained drop and slug lengths and by revisiting the section II. B, the pressure drop and 

the drop volume change can be evaluated according to equation (27) and (32). Nevertheless, the length of the 

continuous slugs needs to be known and an estimate of the initial pressure (P0) at the micro T-junction is required 

as well in order to determine the pressure drop ΔPt. Figure 5, on the other hand, delivers an intuitive scene of the 

slug between two consecutive drops. However, the case QLCO2/QH2O = 20/80 is unable to show a complete slug 

length due to a size limitation of our field of view (1650 µm × 380 µm) in which CO2 drops are prioritized. 

Detailed water slug lengths, under all other flow conditions, have been measured at each of the three positions and 

are plotted similarly as for drop lengths, as shown in Figure 8. Almost all the cases except QLCO2/QH2O = 30/70 are 

characterized by invariant slug length (relative total slug length increases (Ls3,w-Ls1,w)/Ls1,w ≤ 0.08), which may be 

also true for QLCO2/QH2O = 30/70 considering the error having been introduced by the syringe pump operating at 

lower flow rates.  

Shown by equation (27), ΔPt is inversely proportional to the non-dimensional slug length Lc
*
. Next we are 

going to calculate the pressure drops in a further-case scenario by using the nominal minimum slug length among 

the ones at position 1, 2 and 3, which may introduce somewhat overestimated pressure drops. Apart from Lc
*
, 

other parameters on the right-hand side of equation (27) are listed in Table 1 and their physical meanings and 

determinations are briefly introduced in the table annotations. Based on Table 1 and equation (27), the pressure 
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drop over the practical total length of the straight microchannel is calculated and has been plotted against 

QLCO2/QH2O in Figure 9a. Although there exists a slight decrease of ΔPt subjected to increasing QLCO2/QH2O from 

30/70 to 75/25, the decrease compared to the pressure drop is very insignificant. Variations of ΔPt are within 1.6% 

of a mean value of ΔPt = 3175.383 Pa. Despite a constant ΔPt, the decreasing trend of ΔPt subjected to an 

increasing QLCO2/QH2O (i.e., a larger CO2 drop length fraction and a smaller water slug length fraction in the entire 

channel) reflects a dominant role of the water slugs in controlling the pressure drop. Moreover, it is also noticed 

that the contribution of the second term on the right-hand side of equation (27) (non-dimensional as well) to the 

pressure drop, comparatively, is almost two orders of magnitude smaller than the water as a continuous fluid.
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Table 1. The parameters that are applied to calculate the pressure drops over the total channel length by equation 27. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1
 vc̅ is a superficial velocity of the water slug at downstream of micro T-junction, calculated by dividing (QLCO2 + QH2O) over the cross section of the 

microchannel. 
2
 The capillary number calculated by the CO2 drops. 

3
 Rh is the hydrodynamic radius the microchannel, Rh = (1/2)Dh = (1/2)∙4(WD)/2(W+D) = (WD)/(W+D). 

4
 The cross section area (Ad) of CO2 drops is calculated by Ad = (0.96WD-0.0632W

2
), see section A.2. 

5
 The cross section area (Ac) of water slugs is calculated by Ac = WD. 

6
 Lt is a nominal total length of the straight channel and Lt = 15mm. 

7
 Lt

’
 is a real total length of the channel from experiments, the starting point is the back cap of the first generated drop (in a complete plus shape) at position 1 and 

the ending point is the front cap of the drop that closely approaches to the end of the channel at position 3.  
8
 The initial pressure P0 at the micro T-junction is estimated by the CO2 pressure that read from the syringe pump. 
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(Pa∙s) (m/s)  (m) (1) (m
2
) (m

2
) (mm) (mm) (10

5 
Pa) 

30/70 930.32 111.11 2.88 60 6.19 12978 15000 15 13.894 65.21 

40/60 930.32 111.11 2.95 60 3.63 12978 15000 15 13.690 65.23 

45/55 930.31 111.11 3.08 60 2.82 12978 15000 15 13.751 65.50 

50/50 930.28 111.11 3.23 60 3.01 12978 15000 15 13.700 66.81 

60/40 930.28 111.11 3.11 60 2.36 12978 15000 15 13.583 66.94 

65/35 930.27 111.11 3.25 60 2.17 12978 15000 15 13.335 67.07 

70/30 930.27 111.11 3.12 60 1.92 12978 15000 15 13.477 67.12 

75/25 930.27 111.11 3.16 60 2.00 12978 15000 15 13.306 67.10 
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Figure 8. Water slug length at the three positions under various QLCO2/QH2O. Each error bar indicates one standard 

deviation of the mean slug length. 

             

(a)                                                                                (b) 

Figure 9. (a) Total pressure drops ΔPt (Pa) over the practical straight microchannel length and (b) pressure drop 

gradient ΔPt/Lt
’
 (Pa/mm, or equivalently, kPa/m), respectively, as a function of flow rate ratio QLCO2/QH2O. 

As the focus shifts from an absolute pressure drop to a gradient of the pressure drop (i.e., ΔPt/Lt
’), as shown by 

Figure 9b, smaller length fractions of water slugs (Lc
*
 in Table 1) generally result in a slight increase of ΔPt/Lt

’
 as 

QLCO2/QH2O increases from 30/70 to 75/25, though variations are still subtle. This variation tendency reveals that 

larger occupations of CO2 drops may lower down overall pressure drops on one hand, but on the other hand, they 

may lead to a more rapid decline of the pressure drop.  

C2. Drop volume change subjected to ΔPt 

Since carbon dioxide (critical temperature Tc = 304.15 K and critical pressure Pc = 7.38 MPa) is applied as the 

drop fluid in this study and the temperature during experiments is a room temperature (T = 298.15 K, thus Tr = 

T/Tc = 0.98), equation (29) combined with equation (30) can be specified as  

P =
𝑅𝑇

𝑉𝑚−2.6659×10
−5 −

4.0183×10−1

𝑉𝑚
2+5.3318×10−5𝑉𝑚−7.107×10

−10,                                            (41) 

for which R = 8.3145 J/(mol∙K) and ω = 0.228 [62,83] of CO2 are used during the specification. In addition, the 

equation set (31) can also be rewritten as 
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{
 
 

 
 P0 =

𝑅𝑇

𝑉𝑚0−2.6659×10
−5 −

4.0183×10−1

𝑉𝑚0
2+5.3318×10−5𝑉𝑚0−7.107×10

−10,       

P𝑡 =
𝑅𝑇

𝑉𝑚𝑡−2.6659×10
−5 −

4.0183×10−1

𝑉𝑚𝑡
2+5.3318×10−5𝑉𝑚𝑡−7.107×10

−10 , and

∆Pt = P0 − P𝑡 .

                                     (42) 

Note that Vm, Vm0 and Vmt in the above equation set have a unit of m
3
/mol. As argued, an estimated initial 

pressure (P0) in addition to the specific pressure decrease is required to evaluate the impact of ΔPt on drop volume 

change. It is noted in Table 1 that this initial pressure P0 at the micro T-junction may be estimated by the CO2 

pressure that reads from the syringe pump, provided that CO2 under the investigated condition is characterized 

with much lower viscosities (58.759 ± 0.114) µPa∙s compared with water and a much lower flow resistance can 

result from the pump to the micro T-junction. Estimated initial pressures at the T-junction for all flow conditions 

are listed in Table 1. By solving the two cubic equations in equation set (42) based on P0 and Pt, Vm0 and Vmt of 

CO2 at position 1 and 3 can be determined, during which only real and rational (specifically, verified by the 

calculated densities by dividing molar masses over molar volumes) solutions are employed. Figure 10a shows the 

calculated Vm0 and Vmt with a unit ‘ml/mol’ (10
-6

 m
3
/mol). As QLCO2/QH2O increases, the initial pressures P0 has 

also been slightly increased from 65.2 × 10
5
 Pa to 67.1 × 10

5
 Pa. Consequently, Vm0 shows an overall decline, 

although subtly, from 69.41 ml/mol to 67.59 ml/mol. An almost same tendency arises for Vmt. Due to ΔPt 

(presented in Figure 9a), Pt always has a slightly smaller (~3.175 kPa) value than P0. The difference between Pt 

and P0 leads to a very small increase from Vm0 to Vmt by 0.03 ml/mol. According to equation (32), relative drop 

volumes changes (ΔV/V0) subjected to ΔPt can be determined via approximating to [(Vmt/Vm0) - 1]. ΔV/V0 (scaled 

by 1000) have been plotted in Figure 10b. It shows that relative drop volumes changes due to the pressure drop 

are extremely small (approximately 0.39‰ to 0.52‰). 

             

        (a)                                                                                    (b) 

Figure 10. (a) Calculated molar volume Vm0 (ml/mol) and Vmt (ml/mol) based on P0 (see Table 1) and ΔPt (Figure 

9a). (b) Relative drop volume changes ΔV/V0 (scaled by 1000) calculated from equation (32). 

The relative drop length increases ΔL’/L0 as a result of volume expansions could be equivalent to ΔV/V0 based 

on an assumption that the drops, despite volume changes, still maintains a constant cross-sectional area. It should 

be noted that ΔL’ and L0 herein are not pertinent to the real drop, but instead, are equivalent ones to ΔL and L1 

(see Figure 9) by accounting for a cylindrical body of the drop. Therefore, ΔL’/L0 may have same magnitudes as 

ΔV/V0 does, which then can be compared to ΔL/L1 in Figure 9. Clearly, relative drop length reductions (ΔL/L1) 

dedicated to the dissolution-diffusion of CO2 in water are almost two orders of magnitude larger than the pressure 

drop resulted relative drop length expansions. It is thus concluded that the pressure drop due to the flow resistance 

of water and the existence of CO2 Taylor drops in the straight channel does not lead to a significant drop size 

change, especially when this size change is compared with the shrinkage caused by the interfacial dissolution-

diffusion of CO2 in water.  
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D. Surface-volume ratios of drops 

Surface-to-volume ratio is one of the key parameters that controls the mass transfer (particularly the rates) 

between different substances, especially when it comes to those occurring at interfaces among fluids and/or even 

solids. In view of the shrinkages of liquid CO2 Taylor drops in this study, surface-volume ratios (S/V) of the drops 

in the microchannel undoubtedly play a key role. According to the formulations of the drop surface area (A) and 

the drop volume (V), as shown in equation 24 and 25, respectively, these two parameters can be further specified 

as follows, given that the channel sizes (width W = 150 µm and depth D = 100 µm) are known and a static contact 

angle θc (θc = 150̊ , see figure 5) may be applicable in the hydrodynamic scenarios, 

A (μm2) = 432.2 ∙ L − 522.2,                                                           (43) 

and 

V (μm3) = 12978 ∙ L + 99571.27.                                                      (44) 

in which L(µm) is the drop length, and from experiments L = Lx (x = 1, 2 and 3). Therefore, surface-volume ratios 

(S/V, 1/mm) of the drops at position 1, 2 and 3 can be determined from the following equation 

S V⁄ (1/mm) =
A

V
× 103 =

432.2∙𝐿−522.2

12978∙L+99571.27
× 103.                                    (45) 

Substitute the drop length L (the ones shown in Figure 6b) into equation 45, the surface-volume ratio (S/V) at 

position 1, 2 and 3 at all the investigated flow rate ratios can be calculated, and the calculated values of S/V are 

shown in Figure 11. For smaller CO2 drops resulted from lower QLCO2/QH2O, their surface-volume ratios are 

generally slightly smaller than those of the drops produced at higher QLCO2/QH2O. This result is opposite to an 

intuition that smaller drops might generally possess higher S/V. Quantitatively, the determination of S/V should 

always take into account the surface area and the volume, in which geometrical morphologies of the Taylor drops 

with respect to microchannels may be necessary. As a specific drop flows from position 1 to position 2 and down 

to position 3, it experiences a size reduction in terms of length decrease (see Figure 7a), which also results in a 

certain extent of decrease of the surface-volume ratio. The S/V decrease due to a size reduction are more notable 

for the smaller drops which have been produced at QLCO2/QH2O < 1, however, the S/V differences of the drops 

generated at QLCO2/QH2O > 1 among at position 1, 2 and 3 are not so obvious, which is attributed to the long drop 

lengths (see Figure 7) and relative small length reductions (see Figure 9).  

 

Figure 11. Surface-volume ratios of the CO2 drops at position 1 (S/V-1, squares), position 2 (S/V-2, up triangles) 

and position 3 (S/V-3, down triangles), respectively. Horizontal line shows a mean S/V of 32.6 mm
-1

 for all drops. 

Despite the S/V difference among various drops produced at QLCO2/QH2O ranging from 0.25 to 3, as shown in 

Figure 11, the S/V of all drops can be averaged at 32.6 ± 0.1 (1/mm). Given that the S/V of all drops are on a 



20 

 

same level (~10
4 
m

-1
), the relative drop length reduction (ΔL/L1), as shown in Figure 9, are regarded independent 

of the S/V here in this study. 

E. Drop speed and drop flowing time 

Equation 26 reveals that the mass transfer between the drop phase and the slug phase is determined by not only 

the drop length L but also the time scale on which the mass transfer occur. The CO2 drops certainly take time to 

travel from position 1 to position 2 and down to position 3; and on the other hand, mass transfer has also been in 

process within this time period. Therefore, knowledge of the drop speeds in the microchannel from after their 

generations to the very end of the channel, other than the drop sizes, are required to evaluate the mass transfer. 

Based on the experimental methodologies discussed in section III.B (shown by equation 35 to 38), the drop speed 

at position 1 (v-1), position 2 (v-2) and position 3 (v-3) has been measured from the experiment and plotted in 

Figure 12a against to the corresponding QLCO2/QH2O. In addition, a horizontal dash line is added in the figure 

which shows a constant superficial velocity (vTotal) calculated from dividing the constant total flow rates (QLCO2 + 

QH2O) over the cross sectional area of the channel, i.e., vTotal = (QLCO2 + QH2O)/A. vTotal is introduced here for a 

purpose of comparison with the experimentally measured drop speeds. 

When QLCO2/QH2O is below 1, all drop speeds at the three positions are lower than vTotal (111.1mm/s); however, 

for one specific flow rate condition, those three drop speeds (i.e., v-1, v-2 and v-3) are very close (differences are 

less than 3 mm/s) to each other. As can be seen, each drop speed (e.g., v-1) are exactly within the error ranges of 

the other two speeds (v-2 and v-3). Thus, it is appropriate, in this work, to consider the drop flows as a constant 

flow speed scenario when QLCO2/QH2O is constant and below 1, and an averaged drop speed from the three drop 

speeds will be applied next for such flow rate conditions (QLCO2/QH2O < 1). When QLCO2/QH2O > 1, vTotal always 

crosses with all the range lines of the measured drop speeds and separates these error bars nearly into two 

equivalent parts. It can be interpreted that the measured drop speeds, from wherever the drops are measured, are 

always in the vicinity of vTotal. Besides, focusing on any of all the investigated QLCO2/QH2O, it is likely that there 

exists a decreasing tendency from v-1 to v-2 and down to v-3, which are more notable as the considered 

QLCO2/QH2O is widely larger than 1. Analogous to the cases of QLCO2/QH2O < 1, averaged drop speeds based on the 

measured ones at position 1, 2 and 3 are going to be used to determine the flowing time of drops in the straight 

channel; note that, however, it does not indicate the flow cases of QLCO2/QH2O > 1 are constant drop flows. 

Based on averaged drop speeds for each QLCO2/QH2O as well as the real channel lengths for the drop flows as 

shown in Table 1, flowing time of the drops, tflowing, in the straight microchannel can be calculated. The averaged 

drop speed 𝑣̅ is determined as follows 

𝑣̅ (mm/s) =
1

3
∑𝑣𝑥, x = 1, 2, and 3                                                 (46) 

and the corresponding standard deviation of 𝑣̅, 𝜎𝑣̅, can be calculated based on an error propagation, as shown 

below, 

𝜎𝑣̅  (mm/s) = √(
𝜕𝑣̅

𝜕𝑣1
)2𝜎𝑣1

2 + (
𝜕𝑣̅

𝜕𝑣2
)2𝜎𝑣2

2 + (
𝜕𝑣̅

𝜕𝑣3
)2𝜎𝑣3

2,                                  (47) 

in which the individual standard deviation 𝜎𝑣𝑥  (x = 1, 2, and 3) has been determined from experimental 

measurements and been reflected by the error bars in Figure 12a. Consequently, the flowing time of the CO2 drop 

in the straight channel is calculated from below  

tflowing (ms)=
Lt '

𝑣̅
×103,                                                               (48) 
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where Lt’ (mm) is the real total channel length for the CO2 drops and has been introduced in Table 1. Analogously, 

the uncertainties of tflowing characterized by the standard deviation 𝜎tflowing
 can be quantified as follows 

𝜎tflowing
(ms) = √(

𝜕tflowing

𝜕𝑣̅
)2𝜎𝑣̅

2 = 1000
Lt '

𝑣̅2
𝜎𝑣̅.                                         (49) 

          

(a)                                                                     (b) 

Figure 12. (a) Liquid CO2 drop speed at position 1 (v-1, squares), position 2 (v-2, up triangles) and position 3 (v-3, 

down triangles) under various QLCO2/QH2O. A dash line added in the figure shows a superficial total flow velocity 

from dividing the total flow rate (QTotal = QLCO2 + QH2O = 100 µL/min) over the cross-sectional area (A = W·D) of 

the microchannel. Error bars show one standard deviation for the corresponding drop speed. The error bar caps for 

v-1, v-2 and v-3 at one specific flow rate ratio are characterized by their widths (the longest for v-1 and the 

shortest for v-3) for a differentiation purpose. (b) Flowing time (tflowing) of CO2 drops in the straight channel 

which are respectively determined by equation (48), as shown by the circles, and based on a superficial total flow 

velocity vTotal (111.1 mm/s), as shown by the stars. 

According to the above two equations, the flowing time of CO2 drops are calculated and plotted in Figure 12b. As 

a reference, the flowing time calculated based on the superficial total flow velocity vTotal (111.1 mm/s) are also 

plotted in Figure 12b. As a consequence of a slight decrease of Lt’ from 14mm to 13.3mm, there is a slight 

decrease of tflowing from 127.2 ms to 120 ms when vTotal instead of 𝑣̅ is applied in equation 48. Apart from Lt’, 

tflowing in Figure 12b (shown by the circles) are subjected to different 𝑣̅ as well. Generally, the 𝑣̅ at QLCO2/QH2O < 1 

are marginally smaller than those at QLCO2/QH2O > 1, as shown by Figure 12a. Consequently, the flowing time 

tflowing calculated at QLCO2/QH2O < 1 are approximately 10 ms longer than those calculated at QLCO2/QH2O > 1, as 

shown in Figure 12b. Furthermore, as argued previously that 𝑣̅ may be approximated by vTotal when QLCO2/QH2O > 

1, tflowing may also be approximated by those calculated based on vTotal for such cases despite a slight difference 

(no larger than 4%) between the two sets of results. By accounting for the error ranges of the calculated tflowing 

based on experimentally obtained 𝑣̅, i.e., the error bars in Figure 12b, a trend line of tflowing from QLCO2/QH2O ~ 0.2 

to QLCO2/QH2O ~ 3 is added which indicates an inversely proportional development of tflowing  as a result of 

increasing QLCO2/QH2O. This trend well justifies the development of the relative total drop length reduction, i.e., 

ΔL/L1, as shown in Figure 9, given that the surface-volume ratios S/V for all drops are on a same level (10
4
 m

-1
). 

F. Solvent-side mass transfer coefficient ks 

Since the drop length and the flowing time of CO2 drops in the microchannel are available, as reported in 

previous sections, the solvent-side mass transfer coefficient (ks) can thus be determined based equation (26). The 

channel width (W = 150 µm) and the depth (D = 100 µm) are known. A nominal molar concentration (Cd = 

ρCO2/M) of pure CO2, an equilibrium concentration (Ce ≈ 1.27 mol/L [84,85]) at an assumed sharp interface 
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(saturated with CO2 molecules) referred to the pressures listed in table 1, and a constant temperature (T = 298 K) 

are going to be adopted in our calculations. Moreover, a static contact angle θc = 150° (estimated from Figure 5) 

between CO2 drops and water can be applicable as well. Therefore, equation (26) is further specified as follows 

𝑘𝑠 = 30.03
𝐶𝑑

𝐶𝑒 
(ln

432.2𝐿0−522.2

432.2𝐿𝑥−522.2
) ∙

1

𝑡
,                                                     (50) 

in which ks has a unit of µm/ms, or equivalently, mm/s. In order to determine the nominal molar concentration of 

CO2, densities at various initial pressures (P0 in Table 1) and a constant temperature (298 K) are used, which are 

referred to the NIST chemistry webbook [86]. Based on the drop length and the drop flowing time reported in 

Figure 6b and Figure 12b, respectively, we have calculated the mass transfer coefficients ks, 1-3, as shown in Figure 

13a. It is noted that the ks, 1-3 calculated here is a convective mass transport coefficient [87] accounting for a 

dynamic fluidic scenario within the solvent slug and local convective vortices in the vicinity of the interface with 

the solute drop. Given with the CO2 diffusivity (Ddc ≈ 1.5 × 10
-9

 m
2
/s [82]) in water and that a half channel width 

as a characteristic length (i.e., Lmass = W/2) for the mass transfer, the Sherwood number (Sh = ks,1-3/(Ddc/Lmass)) 

that compares the relative strength of the convective mass transfer with that of the purely diffusive one can be 

determined, the magnitude of which is shown in Figure 13b. 

              

        (a)                                                                            (b) 

Figure 13. Solvent-side mass transfer coefficients ks,1-3 (a) and Sherwood number (b). Error bar indicates the 

standard deviation calculated according to error propagation. 

Figure 13 shows that a slightly larger mass transfer coefficient ks,1-3 results at a lower QLCO2/QH2O scenario though 

a longer flowing time and a slightly lower surface-volume ratio exist for a relatively slow drop flow. Despite the 

variation for tflowing and S/V, these two parameters are generally on the same level among different flow cases. As 

shown by Figure 7a, the absolute shrinkage of all drops in terms of total length reduction (ΔL) is fairly constant. 

Further, the absolute drop volume reduction (ΔV) may be constant too in view of a same drop cross section. Back 

to the Equation (8), the surface area (A) very possibly accounts for the result of ks,1-3. For smaller drops produced 

by lower QLCO2/QH2O, they are of smaller surface area but still achieve excellent mass transfer compared with 

longer ones. In fact, the thin liquid film (thickness ~ 0.02W) close to the channel wall is fluidic stagnant (no flow 

practically) and could quickly reach saturation when a few solute drops pass by, so it will not contribute to the 

dissolution anymore in a longer time period and only the front and the back meniscus of each drop are effective 

regions for the mass transfer. Since the calculation of ks,1-3 accounts for the entire surface area, it better reflects the 

performance of smaller drops and is impaired by the main part of the longer drops that has not contributed much 

to the mass transfer. Nevertheless, our experimental work reports a solvent-side mass transfer coefficient of 0.1 ~ 

0.3 mm/s between water and liquid CO2 and shows that a smaller size of the solute drop relative to the solvent 

may be favorable to the mass transport. A similar trend applies to the Sherwood number (Sh) as well provided that 

Ddc and Lmass are constants. Revealed by Sh numbers ranging from 4 to 14.8, convections (including local ones on 
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two sides of the interface and the one in the bulk phase) have dominated over a pure diffusion in controlling the 

mass transfer. And the relative strength of convection is more profound for the smaller solute drop. 

V. Conclusion 

In this study, hydrodynamic shrinkage of liquid CO2 drops in a straight microchannel has been investigated, 

where the liquid CO2 takes a form of flowing Taylor drops and water is applied as a continuous solvent phase that 

behaves as slugs that separate the CO2 drops. An experimental system introduced in our previous work [78] is 

utilized in this study. In particular, a micro T-junction with a uniform width (W = 150 µm) and depth (D = 100 

µm) fabricated in a silicon/glass microchip is used to produce CO2 drops, in which liquid CO2 is injected from a 

side channel (perpendicular to the main channel) as a dispersed phase and water as a continuous phase flows in 

the main channel, respectively. As a result of various flow rate ratios (QLCO2/QH2O), different CO2 drops in terms 

of non-dimensional drop length (L/W) are produced in the micro T-junction. Drop length (L) and drop speed (V) 

are measured at three specified positions in downstream straight microchannel, namely, position 1 where the drop 

is exactly pinched off by water, position 2 which is the midpoint of the total length of the straight channel, and 

position 3 that is located at the very end of the straight channel. Main results are summarized as follows: 

 Non-dimensional length (L1/W) of the generated liquid CO2 drops at the T-junction is correlated with 

QLCO2/QH2O. The correlation is found to be linear but the factor of QLCO2/QH2O is much larger than 1 

(specifically, 1.79), which is consistent with what we have reported previously [78] that is essentially 

attributed to the squeezing-elongating effect of the interface during drop generation.  

 Drop length at position 1 (L1) to 2 (L2) and 3 (L3) shows a decreasing tendency. Detailed drop length 

reductions are manifested by a total length reduction ΔL (ΔL = L1 – L3), a first length reduction ΔL1 (ΔL1 = L1 – 

L2), and a second length reduction ΔL2 (ΔL2 = L2 – L3). All length reductions versus QLCO2/QH2O are 

approximated constant reductions (ΔL = (24.35 ± 1.08) μm, ΔL1 = (16.52 ± 1.71) um, ΔL2 = (7.83 ± 1.17) um), 

which indicates the absolute drop shrinkage may be independent of the original drop size. However, relative 

length reduction ΔL/L1 is different among flow rate conditions. ΔL/L1 decreases from 0.1 to 0.025 as 

QLCO2/QH2O increases from 20/80 to 75/25. Based on formulations of drop surface area and volume, surface-

volume ratios (S/V) of all drops at the three positions are determined. Generally, average S/V from at position 

1, 2 and 3 shows a declining tendency subjected to increasing QLCO2/QH2O. As QLCO2/QH2O > 1 there is almost 

no S/V difference among all three position based surface-volume ratios. Overall, S/V for all drops can be 

averaged at (32.6 ± 0.1) mm
-1

.  

 Drop speeds at position 1 (v-1), 2 (v-2) and 3 (v-3) are measured, which are applied to calculate the flowing 

time (tflowing) of CO2 drops in the channel, and as a further step, the mass transfer coefficient. When QLCO2/QH2O 

< 1, these three drop speeds are very close and generally lower than a reference flow velocity vTotal, i.e., a 

superficial velocity by dividing the total flow rate (QLCO2 + QH2O) over the channel cross section. When 

QLCO2/QH2O > 1, drop speed decreases from v-1 to v-2 and down to v-3 but still can be approximated by vTotal. 

In order to simplify the calculation of flowing time, an average drop speed (𝑣̅) by the three speeds is adopted. 

Besides, a real channel length instead of the total length dedicated to the drop flow is applied. Due to slightly 

longer real channel lengths and lower drop speeds, tflowing for QLCO2/QH2O < 1 are roughly 10 ms longer than 

those for QLCO2/QH2O > 1. 

 Starting from a general form of mass transfer coefficient ks, a specific form of ks based on detailed drop surface 

area and volume by considering microchannel size (width W and depth D), contact angle (θc) and drop length 

Lx (x = 1, 2, 3) has been developed. And by introducing the CO2 diffusivity and half channel width as a 

characteristic length, the Sherwood number is determined based on calculated ks. Generally, lower QLCO2/QH2O 

having produced smaller drops result in slightly higher mass transfer coefficients as well as higher Sh numbers, 

which is essentially attributed to the larger effective portion of the drop contributing in the mass transfer under 
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same levels of the flowing time tflowing, and the S/V for all drops (~ 10
4 

m
-1

). The Sh numbers reveal the 

dominant roles of convection over pure diffusion in controlling the mass transfer. 

 Potential effects of the pressure drops (ΔPt) due to drop flows in the straight microchannel upon the drop 

volume have been discussed. Despite a slight decrease (~100 Pa) subjected to increasing QLCO2/QH2O, ΔPt for 

all conditions is of a mean value of 3175.4 Pa with a standard error of 1.6%. By inducing the Peng-Robinson 

EOS [62] and using estimated initial pressures (P0) at the T-junction (from the CO2 pump), drop volume 

changes relative to original ones are correlated to molar volumes in the EOS and are quantified. Resulted 

volume changes are calculated as small quantities (ΔV/V0: 0.39‰ ~ 0.52‰). 
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