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Abstract 

Quantum dots (QDs) provide opportunities for development of bioassays, biosensors, and drug delivery strategies. 

Decoration of the surface of QDs offers unique functions such as resistance to non-specific adsorption, selective 

binding to target molecules and cellular uptake. The quality of decoration has substantial impact on the functionality 

of modified QDs. Single-phase microfluidic devices have been demonstrated for decorating QDs with biological 

molecules. The device substrate can serve as a solid phase reaction platform, with a limitation being difficulty in the 

realization of reproducible decoration at high density of coverage of QDs. Magnetic beads (MBs) have been explored 

as an alternative form of solid phase reaction platform for decorating QDs. As one example, controlled decoration to 

achieve unusually high density can be realized by first coating MBs with QDs, followed by addition of molecules 

such as DNA oligonucleotides. Uniformity and high density of coatings on QDs have been obtained using MBs for 

solid phase reactions in bulk solution, with the further advantage that the MBs offer simplification of procedural steps 

such as purification. This study explores the use of a droplet microfluidic platform to achieve solid phase decoration 

of MBs with QDs, offering control of local reaction conditions beyond that available in bulk solution reactions. A 

microchannel network with a two-junction in-series configuration was designed and optimized to co-encapsulate one 

single 1 𝜇m MB and many QDs into individual droplets. The microdroplet became the reaction vessel, and enhanced 

conjugation through the confined environment and fast mixing. A high density of QDs was coated onto the surface of 

single MB even when using a low concentration of QDs. This approach quickly produced decorated MBs, and 

significantly reduced QD waste, ameliorating the need to remove excess QDs. The methodology offers a degree of 

precision to control conjugation processes that cannot be attained in bulk synthesis methods. The proposed droplet 

microfluidic design can be widely adopted for nanomaterial synthesis using solid phase assays. 
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1 Introduction 
 

In the last two decades, a promising nanomaterial, known as a semiconductor nanoparticle or quantum dot (QD), has 

demonstrated tremendous potential for enhancing imaging. Examples include applications such as fixed cell labeling, 

imaging of live cell dynamics, sensing and in vivo animal imaging (Bruchez Jr. et al. 1998; Zhang et al. 2005; Xing 

and Rao 2008; Algar et al. 2010; Sun and Gang 2013; Chou et al. 2014; He et al. 2014; Cao et al. 2016). QDs are 

chemically synthesized semiconductor nanocrystals with diameters of a few nanometers (2 to 10 nm) and quantum 

yields that routinely approach 50-80%. They are 100 times more resistant to photobleaching than molecular 

fluorescent dyes (Resch-Genger et al. 2008). 

 

To endow QDs with selective binding capability, different biomolecules such as nucleic acids and antibodies that act 

as targeting agents or probes have been used to modify the surface of QDs via bioconjugation (Mattoussi et al. 2000; 

Zhang et al. 2005; Algar and Krull 2007; Resch-Genger et al. 2008). Such functionalized quantum dots have drawn a 

great deal of attention from both academia and industry because they enable the development of assays, in vitro 

diagnostics, and biosensors (Huo et al. 2006; Kim et al. 2009; Prabhu and Hudson 2009; Chou et al. 2014; Inoue et al. 

2016; Liu et al. 2017). For instance, QDs functionalized with DNA oligonucleotides have been successfully used for 

biological applications within in vitro and in vivo environments (Boeneman et al. 2010; Lalander et al. 2010; Giri et 

al. 2011; Cutler et al. 2012; Noor et al. 2013a; Petryayeva et al. 2013; Stanisavljevic et al. 2015). QD-based DNA 

hybridization assays can operate on the basis of fluorescence resonance energy transfer (FRET) which often involves 

the conjugation of single-stranded DNA oligonucleotides (ssDNA) with QDs. A FRET pair can form where QDs are 

donors, and hybridization of the probe oligonucleotide with a target DNA strand that carries a fluorescent label serves 

as the acceptor (Zhang et al. 2005; Peng et al. 2007; Suzuki et al. 2008; Coopersmith et al. 2015). The sensitivity, 

selectivity and speed of binding of the ssDNA-QD conjugates depends on the density and structural uniformity of the 

oligonucleotide strands at the surface of the QDs.  

 

One method to increase the deposition density is to first immobilize QDs onto the surface of magnetic beads (MBs) 

via electrostatic reaction, and then continuously load oligonucleotides onto the surface of QDs (Sedighi and Krull 

2016). This solid phase conjugation strategy also offers the opportunity to concurrently decorate the QDs with 

different molecules meaning that the exposed part of the QD surface is coated with a particular probe ssDNA, and on 

release from the MB, the other face of the QD can be coated with a different probe, or even a different class of 

molecule than an oligonucleotide. This strategy was implemented using a batch setting by bulk solution reaction. 

While functional, the batch operation imposes limitations. The batch approach does not allow multiple coating 

processes to be completed continuously. The reagent concentration is high to push reactions forward, but the 

consumption in each batch is small, resulting in high cost and large waste. The entire process is prone to variability 

due to changing conditions such as temperature, and to contamination (e.g. dust). Finally, yet importantly, purification 

is required to remove excess reagents and QD aggregates at each functionalization step in batch settings (Coopersmith 

et al. 2015). Microfluidics has potential to address these challenges by offering continuous processing using a 

confined environment for enhancing reactions, reducing reagent consumption, offering sample management for 

purification and efficient NP collection. 

 

Single phase microfluidics that uses miscible fluids to transport samples and perform reactions has been reported for 

decoration of QDs, where the channel surface serves as the solid substrate for immobilizing QDs (Noor et al. 2013b). 

This work demonstrated that microfluidic-based solid phase reactions allowed nucleic acid hybridization within 

seconds to minutes due to small sample volumes, in contrast to bulk solution reactions where the identical 

hybridization reaction took hours to reach equilibrium. Despite its success, single phase microfluidics has some 

inherent limitations such as slow mixing, low throughput and high risk of cross contamination, which have largely 

limited the quantity and quality of the functionalized QDs and the opportunity to selectively decorate the surfaces of 

QDs. Droplet microfluidic methods that use an immiscible fluid to disperse the sample reagents into pico- to nano-

liter droplets is capable of addressing these inherent limitations (Günther and Jensen 2006; Teh et al. 2008; Zhu and 

Fang 2013; Rosenfeld et al. 2014; Kaminski et al. 2016) while maintaining the continuous flow advantage. First, 

benefiting from the confinement of microchannels, monodispersed droplets can be generated at kHz rates offering the 

potential to handle a reasonable quantity of decorated QDs even when the volume per droplet is quite small. Second, 

three-dimensional (3D) motion occurs within the droplets, which provides almost instantaneous mixing enabling 

faster and more homogeneous reaction. Finally, selective decoration of the surface of QDs is possible by merging, 

splitting, trapping and releasing droplets in a controllable manner. Droplet microfluidics allows the integration of 

multiple reactions, as possible for the immobilization of QDs on solid substrates such as MBs, conjugation of 
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biomolecules with the solution-facing surface of QDs, releasing the partially-decorated QDs from MBs, and 

conjugating other biomolecules onto the freshly exposed surface of QDs.  
 
Even though the opinion of using the droplet-based microfluidics and the magnetic bead loading method to assist the 

nanoparticle decoration was mentioned in the review paper (Han et al. 2017), our reported work firstly advances the 

first step of a process to selectively decorate the surface of QDs by demonstrating the feasibility of using a droplet 

microfluidics platform to enhance rapid, high-density immobilization of QDs onto single 1 𝜇m MBs that serve as 

solid substrates. This step is critical to the subsequent processes and quality of bioconjugation, and thus the 

performance of QDs for biosensing and imaging. The ability to manipulate one single MB that is coated with QDs 

offers a degree of control of the conjugation conditions that is unattainable in batch settings. One question that arises 

is whether a droplet microfluidics approach is promising in ameliorating the need for QDs to reach uniform coating 

density on MBs. Therefore, effort has been made to characterize the quality of deposition by physical inspection using 

fluorescence microscopy. 

 

 

2 Working principle and Design of a microfluidic platform 
 
2.1 Working principle 
 

To ensure a coating of QDs onto a MB, co-encapsulation of many QDs with only one single MB in one droplet must 

be achieved which is one of the goals of the design of the microfluidic system. The conjugation between QDs and 

MBs is via electrostatic attraction, which tends to be rapid and can be facilitated by enhancing mixing in the reaction 

environment. It is expected that the conjugation occurs within seconds, benefiting from the fast mixing within the 

droplet due to 3D motion. Electrostatic conjugation requires QDs and MBs to have opposite charges. This is realized 

by coating QDs with glutathione (GSH) to render surfaces negatively charged, and functionalizing the MBs with 

positively charged diethyllaminoethyl (DEAE) groups. The association of a magnetic bead with many QDs is referred 

to as the MB-QD conjugate. This process is schematically illustrated in Figure 1. 

 

 
 

Fig 1. Schematic illustration of on-chip, in-droplet Magnetic Bead-Quantum Dots (MB-QD) conjugation via 

electrostatic adsorption 

 

 

Monodispersed droplets can be generated using either passive or active methods (Teh et al. 2008; Chong et al. 2016; 

Zhu and Wang 2017), with each method offering opportunities and disadvantages. A passive method is chosen in this 

study to form monodispersed water-in-oil droplets because the design requires multiple pressure controls, which is 

simplified by operating with a multi-output pressure system (MFSC 4C, Fluent). In order to co-encapsulate one single 

magnetic bead and QDs, two junctions in series are designed. Two streams of aqueous buffer solutions with one 

carrying MBs and the other transporting QDs meet at the first junction forming a stratified flow, which is the 

dispersed phase. The continuous oil phase then interacts with the dispersed phase at the second junction forming 

monodispersed water-in-oil droplets. Details of this design are introduced later. 
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Encapsulation of single micron-sized MBs is challenging. In general, each bead should be physically directed and 

sequentially ordered by using a focused flow. Some strategies have explored the use of gel materials to first 

encapsulate the beads (Tan and Takeuchi 2007; Um et al. 2008; Velasco et al. 2012) while others have used stratified 

flow with a viscosity contrast between the two fluids to focus the bead stream (Chen and Ren 2017). In the stratified 

flow design used herein, the inner fluid has a higher viscosity than the outer focusing fluid. At the beginning, the 

inner fluid moves more slowly than the outer fluid, resulting in a shear force at the interface. The shear force will 

speed up the flow of the inner phase until the velocity difference at the interface disappears. Under constant flow 

rates, the cross-section area of the inner fluid will decrease when the velocity increases, leading to a sharpened thin 

line of the inner phase ideal for focusing microbeads. In addition, the high viscosity inner fluid acts like a soft wall, 

which largely reduces the vortex inside the inner fluid, and therefore, prevents microbeads from moving out of the 

droplet during a droplet formation cycle. 

 

The QD solution is used to focus the fluid carrying MBs at the first junction, resulting in a thin stream that allows one 

single MB of 1 𝜇m diameter to enter a solution that contains many QDs. These two solutions form the dispersed 

phase which is then formed into droplets, squeezed by the continuous oil phase at the second junction. Tuning of the 

flow and geometric parameters allows encapsulation of single MBs into individual droplets as illustrated in Figure 2. 

 

2.2 Design a microfluidic platform 
 
Initial work explored the in-series two-junction design for manipulation of relatively large polystyrene (PS) beads that 

had nominal diameters of 10 𝜇m and 4 𝜇m. The design was demonstrated to operate successfully (see supplemental 

materials). Challenges arose when applying the same design and operational parameters for selecting individual 1 𝜇m 

MBs.  The MBs were more sensitive to disturbance of flow than the larger PS beads, and refinement of the design and 

precise control of all the parameters affecting flow was required. The key was to ensure that the focused bead stream 

between the two junctions was not disturbed by any event occurring downstream, such as droplet formation in the 

channel network, which caused changes in local and global flow resistance. Attention has also been paid to ensure 

homogenous mixing. Several parameters that are widely applicable to single particle analysis influence this process. 

 

 
 

Fig 2. a) Layout of the droplet microfluidic platform for co-encapsulating a single MB and many QDs in individual 

droplets, with rapid mixing to enhance MB-QD conjugation, and b) The equivalent electrical circuit used to modify 

the microfluidic network. 

 

The distance between the two junctions, 𝐿𝑗, is critical and should satisfy two main requirements: (1) allowing the 

stratified flow to fully develop, and (2) minimizing diffusion at the interface between the two miscible fluids. In 

addition, because the two junctions are coupled together, the hydrodynamic focusing in the first junction is also 

affected by the pressure change during the droplet formation cycle at the second junction (Garstecki et al. 2006; Chen 

et al. 2015). A design with the above concerns addressed is proposed using an electrical circuit analog (Oh et al. 

2012) (Figure 2b). The microfluidic network is treated as a 1D circuit where the pressures applied at the inlets and 
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outlets are considered as applied voltages, hydrodynamic resistances act like electrical circuit resistors and volumetric 

flow rate in each stream is treated as the electronic current. Kirchhoff’s current law (KCL) and Kirchhoff’s voltage 

law (KVL) are applied to analyze the circuit, and thus the operating parameters for the microfluidic network. In order 

to minimize the coupling effects caused by the pressure drop between the two junctions and maintain the 

hydrodynamic focusing of the bead stream, the length between the two junctions (𝐿𝑗) in our design is set at 300 𝜇m.  

Smaller channel dimensions provide for improved spatial control of smaller particles such as 1 𝜇m MBs. However, 

the overall hydrodynamic resistance would increase dramatically, requiring much higher applied pressures to control 

the flow. In addition, smaller channels are prone to blockages. To balance these concerns, the channel height is set to 

be 25 𝜇m, the width of the channels upstream and downstream are set to be 40 𝜇m and 50 𝜇m, respectively. The 

microfluidic chip is made of polydimethylsiloxane (PDMS), which absorbs silicon oil. In practice, this results in 

slight swelling of the polymer and provides smaller channel heights than stipulated (i.e. < 25 𝜇m), which has been 

considered in the design. In our study, the channels are primed with silicon oil for 20 minutes to reach saturation 

resulting in a channel height of ~16-18 𝜇m (measured by using an optical microscope). An orifice is used at the 

second junction to better control and reduce droplet size (Um et al. 2008; Velasco et al. 2012) (Figure 2a). The total 

length of the main stream after the orifice is adjusted to carry more than 50 droplets, so as to minimize the 

fluctuations in the hydrodynamic resistance and flow rate caused by droplets entering and exiting the main stream 

(Glawdel and Ren 2012a). 

 

A long serpentine channel is placed after the orifice to provide homogeneous mixing. 3D motion occurs in each half 

of the droplet due to symmetric vortices while droplets are travelling through straight channels. Mixing between the 

two halves of the droplet is dominated by molecular diffusion. To ensure homogeneous mixing across the entire 

droplet, the symmetry must be disturbed by pumping droplets through serpentine channels (Song et al. 2003b, 2006; 

Shestopalov et al. 2004). Non-axisymmetric vortexes inside droplets induced by the time periodic recirculating flow 

inside plug-shaped droplets results in chaotic advection. This recirculating flow is the result of shearing interaction 

between the channel wall and the fluid of the droplet. The chaotic flow happening inside the droplet can be interpreted 

by using the Baker’s transformation (Song et al. 2003a). The thickness of layers of fluids is calculated by: 

 

stl (n) = stl (0) × 2−n     (1) 

 

where 𝑛 is the number of chaotic cycles. The mixing time is estimated by: 

 

tmix,ca~ (
aw

U
) log (Pe)     (2) 

 

where 𝑎 is the dimensionless length of the plug measured relative to the channel width, 𝑤. 𝑃𝑒 is the Peclet number. 

Based on the range of operating conditions, the serpentine channel is designed to have 20 turns with an inner and 

outer diameter of 150 and 200 𝜇m, respectively.  

 
 

3 Experimental Validation 
 
3.1 Materials and Experiment setup 
 
3.1.1 Device Fabrication  
 

Microfluidic devices were fabricated using standard soft-lithography.(Xia and Whitesides 1998; Kim et al. 2008) 

Briefly, SU8 -2015 negative photoresist (MicroChem) was used to form the micro-mold containing the 

microchannels. For replica molding, PDMS (Sylgard 184 Dow Corning) base and curing agent were mixed and de-

gassed at a ratio of 1:9, poured on top of the mold and baked at 95
o
C for 2 hours. The PDMS substrate was then 

peeled and cleaned with isopropyl alcohol before being bonded to a clean glass slide coated with a thin film of PDMS 

exposed to oxygen plasma treatment. Inlets and outlets were made using a 1.5 mm biopsy punch. To achieve wetting 

stability, the microfluidic chip was placed on a hot plate at 110
o
C for 2 days rendering its surface hydrophobic before 

the experiment.  
 

3.1.2 Materials 
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Green-emitting CdSe/ZnS core/shell quantum dots (photoluminescence, PL at 518 nm) were from Cytodiagnostics 

(Burlington, ON, Canada). Diethylaminoethyl (DEAE)-functionalized magnetic beads (MB, 1 um) were from 

Bioclone Inc. (San Diego, CA). The capturing buffer for immobilizing QDs on MBs was Tris-borate buffer (100 mM, 

pH 7.4) with 20 mM NaCl. The buffer for releasing QDs from MBs was borate buffer (100 mM, pH 10) with 1 M 

NaCl. The 5 CSt silicon oil was from Sigma Aldrich Canada. Water-soluble quantum dots were prepared from the 

oleic acid-capped CdSe/ZnS quantum using a previously reported ligand exchange procedure with glutathione (GSH) 

(Noor et al. 2013a). Approximately 0.2 g GSH was dissolved in 600 μL of TMAH. Then 700 pmol of QDs was 

dissolved in 2 mL of chloroform that was gradually added to the GSH solution. Thereafter, the solution was briefly 

agitated and incubated overnight at room temperature. After incubation, the GSH-modified QDs (GSH-QDs) were 

extracted to a top layer of 200 μL of borate buffer (BB) containing 250 mM NaCl, at pH of 9.2. The organic layer was 

discarded and the aqueous layer was transferred to a 1.5 mL centrifuge tube. Ethanol was added to the QD solution 

until the solution became turbid. The mixtures were centrifuged at 8000 rpm for 7 min to obtain a pellet of QDs. The 

buffer addition, ethanol precipitation and centrifugation was repeated two more times. Finally, GSH-QDs were re-

dispersed in a borate buffer at pH 9.2 without NaCl. The concentration of QDs was determined using UV-vis 

absorption spectroscopy. An extinction coefficient value of 284,000 L mol
-1

 cm
-1 

was used to complete the 

calculations based on the absorption of the QDs with the first excitation peak at ~500 nm. 

 

3.1.3 Experimental setup 

 

The experimental system consisted of two main parts: 1) a pressure system (MSFC 4C, Fluigent) that was used to 

pump the fluids through microchannels, and 2) an inverted microscope (Nikon Ti-Eclipse) that was used to record the 

dynamic flow of droplets and detect luminescence. The conjugation processes were visualized using the microscope 

with 40 x (N/A: 0.75mm) and 20 x (N/A: 0.45mm) objectives. The excitation sources were a 100 W LED lamp 

(Nikon) for bright field images and 100 W mercury halide lamp (Nikon) for fluorescence images. All images were 

captured using a CCD camera (Q-imaging R2000), or a high-speed CMOS camera (Phantom v210, Vision Research). 

A fluorescein isothiocyanate (FITC) filter cube was used within the microscope. 

 

 

3.2 Experimental Procedure 
 

3.2.1 Co-encapsulation of QDs and a single MB  

 

The stock solution of QDs solution was diluted to 1 nM (unless noted otherwise) using the capturing buffer (Tris-

borate, 100 mM, pH 7.4) for the final experiment. The saturated concentration is approximately 270 pmol QDs per 1 

mg MB (Sedighi and Krull 2016). Following the step-by-step protocol provided by Bioclone Inc., 1 𝜇l of the MB 

solution supplied by the manufacturer was washed two times with the releasing borate buffer (100 mM, pH 10), and 

then diluted by the capturing Tris-borate buffer (100 mM, pH 7.4) mixed with 80 % (wt %) glycerol. The viscosity of 

the mixture of glycerol buffer was ~44.1 mPa.s, while the viscosity of the mixture of quantum dots buffer was ~1.02 

mPa.s. The resulting concentration of MBs was ~10
7
 beads/mL. The microfluidic chip was primed with silicon oil for 

20 minutes for good wetting conditions and thus stable droplet formation. The encapsulation process was controlled 

by utilizing two side streams (dispersed phase 2) to squeeze the middle stream (dispersed phase 1), resulting in a 

focusing stream (Figure 3). The droplets were generated under the squeezing regime, which the Capillary is kept in 

the range from 0.002 to 0.006, and the ratio between the dispersed phase and continuous phase is 
1

8
≤ 𝜑 =

𝑄𝑑

𝑄𝑐
≤

1

4
. In 

details, the flow rate of the continuous phase was set at the range from 0.4 to 0.8 ul/min; whereas, the total flow rate 

of the dispersed phase was kept as constant ~ 0.1ul/min. The single encapsulation is efficient when the ratio of 

dispersed phase 1 and dispersed phase 2, (𝜆), is from 0.6 to 0.8. The range of (𝜆) ratio used in our experiment is also 

similar to the one, which is reported by X. Chen et al. (Chen and Ren 2017). So that, the 1 𝜇m MBs were kept inside 

the inner stream since the highly viscous inner fluid acted as a soft wall, and encapsulation into a droplet with the 

QDs occurred at the second junction. In addition, by varying the droplet size, the results suggested that there was a 

1um MB per droplet, when 1.2 ≤ 𝐿∗ ≤ 2.5 and 𝐿∗ = 𝐿𝑑𝑟𝑜𝑝𝑙𝑒𝑡/𝑊𝑐ℎ𝑎𝑛𝑛𝑒𝑙  is the dimensionless droplet length.  
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Fig 3. Using stratified flow with viscosity contrast in order to align a train of MBs and enhance co-encapsulation of a 

single MB and many QDs into a single droplet 

 

Three bead sizes – 1 𝜇m, 4 𝜇m, and 10 𝜇𝑚 – were used to test the effectiveness of the flow system. By counting the 

number of droplets and frames captured during a droplet generation cycle using the high-speed CMOS camera, the 

efficiency of encapsulation of a single 1 𝜇m MB was determined to be up to 70 %. (See the supplementary video 1, 2, 

3). It was noted that miscounting of the beads that were not at the focal plane was possible, but negligible because the 

channel height was 25 𝜇m before swelling, and measured as ~16 to 18 𝜇m after swelling (Roach et al. 2005; Glawdel 

and Ren 2012a, b). It was observed that majority of the beads were near the focal plane due to wall-induced lift 

forces. Image processing was necessary to clearly visualize the single encapsulation of 1 𝜇m MBs (Figure 4). 

 

 

 

Fig 4.  (Left) RGB images showing the single 1𝜇m MB encapsulation. (Right) Binary images showing the single 1 

um MB encapsulation. 

 

 

3.2.2 Conjugation process  
 

After a magnetic bead and a number of quantum dots are co-encapsulated into one single droplet, the electrostatic 

association occurred within 10 seconds and continued while the droplet was travelling through the serpentine channel 

(Figure 5). The serpentine channel consists of 20 turns which provides the 3D well-mixing inside droplets via chaotic 

convection. By comparing the intensity contrast between the empty droplets and the droplets that entrained a single 

MB, it was demonstrated that this microfluidic device enabled rapid conjugation (supplemental material). 
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Fig 5. Zoom-in (40x magnification) images of fluorescence from QDs confirm the association with MBs in a 50 µm 

sized channel. a) The image was taken under the bright field, resulting in gray scale image. b) The QD-MB conjugate 

is luminescent in the fluorescent field. 

 

One of the disadvantages of batch processing is the use of large quantities of QDs to ensure a high-density coating of 

QDs on MBs. The consequence is a requirement for extensive washing to remove unbound QDs before proceeding to 

the subsequent step of QD conjugation to biomolecules. It was found that a microfluidic droplet used as a reaction 

compartment facilitated coating of MBs with a high density of QDs without using a large quantity of QDs. This is 

supported by two observations. First, the comparison of the fluorescent intensity between the inlet filled with the 

original solution containing QDs (before conjugation) and the outlet where there is a mixture of MB-QDs and excess 

QDs shows that the excess QDs after conjugation is negligible (supplemental material). Second, the fluorescent 

intensity of the recovered QDs which are detached from MBs using the releasing buffer is about 75 % of the original 

QDs solution (Figure 6). There is some loss of QDs due to multiple pipetting steps required for preparation of the 

samples for the fluorescence spectroscopy measurements, suggesting that the actual extraction of QDs on MBs is 

even higher than 75 %. In contrast, batch processing would leave most of the QDs in solution. Therefore, the 

proposed droplet-based microfluidic platform has potential to facilitate subsequent bioconjugation of the MB-QDs 

(with molecules such as single stranded oligonucleotides), as it could be done by continuous flow without washing to 

remove excess QDs (Coopersmith et al. 2015), simplifying the process of nanoparticle decoration. 

 

 

Fig 6. Comparison the intensity of original QDs solution before running experiment and the intensity of the recovery 

QDs. 
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It is noteworthy that differences in the fluorescent intensity of the MB-QD conjugates between two adjacent droplets 

are primarily due to off-focus collection of signal. Improvement of the optical interrogation to control focal position 

makes possible quantitative evaluation of the extent of conjugation of QDs onto each single MB, offering a degree of 

quality control to adjust conjugation processes on-the-fly that is impossible for batch reactions. In order to confirm 

that the electrostatic adsorption onto single MBs does not alter the optical properties of QDs, the fluorescence spectra 

of the recovered and original QDs are compared. The emission profiles of the QDs before and after interaction with 

MBs are identical (Figure 6), confirming that the solid phase manipulation does not alter the spectral properties of the 

QDs. The indication that the QDs retain their spectral characteristics is essential for further applications, such as using 

QDs as donors in FRET-based bioassays. 

 
 

4 Conclusions 
 
Droplet microfluidic methods are currently used in various fields such as biotechnology, pharmaceuticals, and 

biochemistry for sample handling, synthetic reactions, and diagnostics. In this report, a droplet microfluidic platform 

is explored as a platform that could eventually support processes to decorate quantum dots with biomolecules. The 

droplet microfluidic approach has been demonstrated to be capable of encapsulating a single 1 𝜇m magnetic bead 

with many quantum dots in one aqueous droplet. Furthermore, a rapid electrostatic association of the QDs onto the 

MB surface has been demonstrated, with speed being associated with a chaotic advection inside nano-liter sized 

droplets. The efficiency of sample consumption was improved, and the aqueous droplets were extraordinarily 

uniform. The precision of droplet formation enables quantitative control of the reaction environment. The 

methodology is applicable to other types of nanoparticle (e.g. gold nanoparticles, up-conversion nanoparticles). The 

next step to further develop the droplet microfluidic reactor will involve the decoration QDs with biomolecules in 

continuous flow production, leading to a manufacturing platform.  
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