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Abstract 

Community owned renewable energy generation (electricity and heat) is often associated with 

improving reliability and affordability of supply, increasing local wellbeing, empowering through 

new revenues, business opportunities and capacity building, and reducing environmental impacts. 

Similar motivations for renewable energy projects are observed in the case of Canadian remote 

indigenous communities that target activities that improve their socioeconomic conditions and 

mitigate socioeconomic-political-cultural impacts resulting from colonization, while having 

minimal influence on the environment and traditional activities. However, the slow transformation 

of remote indigenous communities’ diesel-powered electricity systems through the introduction of 

renewable energy technologies (RETs) between 1980 and 2016 called for an examination of factors 

that influence the transition to more sustainable electricity options. 

The purpose of this dissertation was to improve understanding of the technical, contextual, and 

social complexity associated with the introduction of RETs into Canadian remote indigenous 

community electrical systems, explain the diffusion of RET projects within these systems to date, 

and examine the implemented governance processes and how these processes were modified to 

encompass indigenous perspectives. Improved understanding enables identification of pathways 

and development of policy recommendations for the transition to more sustainable energy systems. 

These objectives were achieved through: (a) a review of prior academic and non-academic 

documents on the introduction of RETs into remote communities, the examination of 133 

community electrical systems in Yukon, NWT, Nunavut, British Columbia, Ontario, Quebec and 

Newfoundland and Labrador, and the identification of RET projects undertaken between 1980 and 

2016, (b) an empirical study in the context of northern Ontario, Canada, and (c) an analysis of 

events related to the introduction of RETs through, first, the multi-level perspective (MLP) 

approach to explain the non-linear uptake of RET projects in remote indigenous communities and 

identify macro- and meso-level factors that influenced the deployment, and, second, the 

technological innovation system (TIS) approach to examine policy measures and activities in 

Northwest Territories and Ontario and generate insights on micro-level factors that led to the 

development of an increased number of mostly solar projects in these provinces between 2009 and 

2016.  

The key findings of the research suggest that the deployment of RET projects was influenced by 

the institutional complexity of indigenous electrical systems, the diversity of stakeholder 
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perspectives (government, utilities and indigenous peoples) on community electricity generation 

and the challenges that the introduction of RETs is expected to address, and the uncertainty 

associated with both the future “long term” structure and governance of provincial and territorial 

electricity generation systems and the financial viability of small-scale off-grid applications. 

Furthermore, the shift from utility-driven to community-driven RET projects in the period 

examined was explained through the interplay between tensions developed from new legislation 

favouring indigenous aspirations and sustainability concerns, governmental and utility internal 

stresses expressed through governmental targets and supporting policies for renewable electricity 

alternatives, and pressures from technological advances. Governments engaged in a dialogue with 

indigenous people and other participants, which resulted in a policy shift from capital financing to 

capabilities improvements and network formation, and, finally, to regulatory and financial 

arrangements supporting indigenous demand for community owned electricity generation. 

This research contributes to scholarship and provides insights to policy design. First, it improves 

understanding of the nature of the problem associated with the introduction of RETs into Canadian 

remote indigenous communities by providing a description of the origins, dynamics, extent, and 

pattern of transition and the associated technical, contextual, and social complexity. Furthermore, 

it contributes to the field of sustainability studies by providing research using both the MLP and 

TIS concepts in the context of remote Canadian indigenous communities and evidence, first, that 

the proposed complex causal mechanisms were present and performed as predicted, and second, 

that regional institutional structures and networks (or the lack of them) played an important role in 

the diffusion of RET projects. Finally, this research suggests that a transition management 

approach involving the co-development of policies supportive of indigenous aspirations, 

experimenting and learning, and evaluation and adjustment of policies based on the acquired 

knowledge, may lead to an increased number of RET projects in remote indigenous communities. 

Accordingly, policy related recommendations include the need for (a) establishing specific targets, 

policies, and programs for the reduction of diesel consumption and the introduction of RETs (b) 

policy development in a collaborative and negotiated way with indigenous people, and (c) effective 

coordination of interventions for the creation of networks that would improve interactions and 

learning.  
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Chapter 1: Introduction 

 

1.1 Research context and problem rationale 

Remote communities in Canada are communities that are not connected to the North American 

electrical grid and are permanent settlements with at least 10 permanent dwellings (AANDC and 

NRCan, 2011). In 2011, there were 292 such communities in Canada with an approximate 

population of 195,000, of which 171 were indigenous communities1 of approximately 126,000 

people (AANDC and NRCan, 2011; AANDC, 2012). Several communities in NWT and Yukon 

are integrated within local territorial grids powered mainly by hydroelectricity, while 144 remote 

indigenous communities with a population of approximately 90,000, use exclusively diesel 

powered electricity (AANDC, 2012). 

Diesel-generated electricity in these communities can limit economic development opportunities 

and result in poor quality services, increased production of CO2 emissions, as well as associated 

spills and leakages from fuel storage facilities. Increased current and anticipated fuel prices lead to 

high electricity costs, which when combined with substantial transport costs (often air), lead to 

high expenses for electrification (AANDC, 2012). There is a need to transform the current fossil 

fuel based energy systems to low carbon sustainable systems that address both environmental and 

economic development issues, either through the connection of the communities to local or 

provincial grids, the introduction of renewable technologies to local energy systems, or a 

combination of both. 

The rationale for research into pathways for the introduction of renewable electricity technologies 

(RETs) in remote indigenous communities in Canada stems from empirical results that point to a 

limited number of such projects between 1980 and 2016 (AANDC and NRCan, 2011; Arriaga, 

Canizares, & Kazerani, 2014; Weis, 2011). Pathways are understood as conceptualizations of 

different processes and patterns that explain the transition from a current sociotechnical 

                                                 
1 According to Crown-Indigenous Relations and Northern Affairs Canada “the Canadian Constitution recognizes three groups 

of Aboriginal peoples: Indians (more commonly referred to as First Nations), Inuit and Métis. These are three distinct peoples 

with unique histories, languages, cultural practices and spiritual beliefs” (GC, 2017b; AANDC, 2012a). Some indigenous 

people live on reserves. A reserve is a “tract of land, the legal title to which is held by the Crown, set apart for the use and 

benefit of an Indian band” (AANDC, 2012a). Some indigenous peoples have also adopted the term "First Nation" to replace 

the word "band" in the name of their community (AANDC, 2012a). 
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configuration to a more sustainable one. As such, stimulation of these processes and patterns can 

in turn stimulate the transition process (Rosenbloom, 2017).  

Motivations for community participation in renewable energy generation (electricity and heat) 

include community social goals (such as distributional and procedural justice), increased local 

wellbeing through revitalization projects and community capacity development, as well as the 

opportunity to address environmental challenges (Wuestenhagen, Wolsink, & Buerer, 2007; 

Walker, Hunter, Devine-Wright, Evans, & Fay, 2007; Walker, 2008; Seyfang & Smith, 2007; 

Hicks & Ison, 2011). Furthermore, in the case of rural communities challenged by low population 

densities, lack of infrastructure, low levels of economic activity and restricted access to main 

centres due to physical terrain and long distances, residents’ motivations for RET deployment 

relate to reliability, affordability, as well as independence and community empowerment through 

new revenues, jobs, business opportunities, and capacity building  (OECD, 2012; Hicks & Ison, 

2011; DelRıo & Burguillo, 2009; Slattery, Johnson, Swofford, & Pasqualetti, 2012; Giddings & 

Underwood, 2007). 

Similar motivations for participation in renewable electricity generation are observed in Canadian 

indigenous communities focused on rebuilding their societies and mitigating the socioeconomic-

political-cultural impacts resulting from colonization (Corntassel, 2012). Self-governance and self-

reliance may also be attained through renewable energy ventures that have minimal impact on the 

environment and traditional activities while providing appropriate economic rents that could 

contribute to sustainable economic development (Kendal, 2001; Slowey, 2008). Revenue 

generation to support community self-sufficiency goals appears to be the main motivation for 

recent participation of indigenous communities in numerous community owned (or co-owned) on-

grid large-scale hydroelectric, wind and solar projects (Henderson, 2013; Henderson, 2009; INAC, 

2004; McLaughlin, McDonald, Nguyen, & Pearce, 2010). For example, Krupa (2012b) states 

revenue generation, employment during projects’ construction phase, and the creation of two full 

time jobs for operations as the main outcomes of the Pic River First Nations’ owned three 

hydroelectricity assets (see also AECOM, 2012). Similarly, Chief Keith "Keeter" Corston of the 

Chapleau Cree First Nation, identifies community self-reliance as the outcome of the Kapuskasing 

hydroelectricity project and states that “our goal and our destiny is to be self-governing, but to be 

self-governing you have to have an economic engine and the economic engine that we have is the 
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resources on the land" (Landers, 2014, p. 1). Shawn Batise, executive director of the Wabun Tribal 

Council, sees RET projects as contributors to sustainable indigenous development, since the 

revenue generated provides “a regular flow of income over time, rather than mining, which is over 

once the ore is depleted” (Stewart, 2009, p. 1). Finally, compatibility with indigenous values is 

expressed in the words of Batchewana First Nation Chief Dean Sayers, stating that the community 

co-owned renewable energy project is “…perfectly aligned with our original expectations at Treaty 

time; those expectations were to benefit from our resources in sustainable ways” (Marketwired, 

2013, p. 1). 

However, despite the multiple potential benefits associated with community participation in 

renewable electricity projects, the deployment of RETs into remote indigenous community 

electricity systems between 1980 and 2016 has been limited (AANDC and NRCan, 2011; Arriaga, 

Canizares, & Kazerani, 2014; Weis, 2011). As discussed in Chapter 4, during this timeframe 71 

RET projects were installed in 57 of the examined 133 diesel powered remote indigenous 

communities in Yukon, Northwest Territories (NWT), British Columbia, Ontario, Quebec, and 

Newfoundland and Labrador, with a total of 31.5 MW, or 13% of the total electricity capacity. If 

hydroelectricity is excluded, 63 of these projects were small-scale wind and solar applications with 

a total capacity of 1.6 MW, or less than 1% of the total electricity generation capacity.  

This slow transformation of community electrical systems, despite the potential of RETs to address 

multiple concerns and provide numerous potential socioeconomic and environmental benefits 

(OECD, 2012; IEA, 2011), calls for an examination of factors that influence the transition process. 

As the responsibility for electricity generation in these communities is shared among the federal 

government, provincial/territorial governments, utilities, and local indigenous governments (OEB, 

2008), it could be that differing stakeholder perspectives over the challenges that RETs are 

supposed to address, and the governance structures necessary to support their implementation 

contribute to inaction over the transition to green electricity generation. With this in mind, the 

introduction of RETs into community electrical systems exhibits characteristics similar to those of 

a “wicked problem” or a social problem that is difficult to define in terms of causal relationships 

surrounding the issue in question (Rittel & Webber, 1973). As Head and Alford (2015) observe, 

wicked problems are characterized by a variety of stakeholders that contribute to an “ill-definition” 

of the problem under consideration. This lack of “definitional clarity” results from stakeholders’ 
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diverse perceptions arising from a variety of differing, often opposing, world views, backgrounds, 

cultures, moral, political and professional agendas (Weber & Khademian, 2008; Ritchey, 2013), 

as well as governance structures and political economy considerations (Fritz, Kaiser, & Levy, 

2009), such as the existence of “redistributive implications for entrenched interests” (Rayner, 2006, 

p. 2).  Rittel and Weber (1973) also refer to insufficient scientific knowledge, the problem’s unique 

character, the existence of value laden conflict, and the fact that one wicked problem is usually 

part of a larger wicked problem.  

Research contributions on wicked problems (including energy-related papers) refer extensively to 

the “challenge of identifying, defining and describing the nature” of the problem under 

consideration (Danken, Dribbisch, & Lange, 2016, p. 20). Understanding the problem’s technical, 

contextual (wickedness associated with localized factors), and social (participating actors) 

complexity, is approached through examining the participating network, consisting of different 

actors, their backgrounds (educational and professional), worldviews, political agendas, cultural 

traditions, economic interests, and institutional and governance arrangements (Raisio, 2010). 

Furthermore, Fritz et al. (2009) argue that a governance and political economy analysis is necessary 

to understand “why the identified problem has not been addressed successfully and what the 

relative likelihood is of stakeholder support for various change options” (p. x). A second focus of 

studies on wicked problems also is to concentrate on approaches to cope with such complexities, 

examining the type of coping strategy selected and the actors’ necessary skills for implementation 

(Danken, Dribbisch, & Lange, 2016). 

 

1.2 Purpose of the study, rationale and study objectives 

Accordingly, and given the suspected “wickedness” stemming from the participation of multiple 

stakeholders with diverse worldviews, the purpose of this doctoral study is to improve 

understanding and advance knowledge on the factors that influence the introduction of RETs into 

remote indigenous community electrical systems in Canada. Within this broader purpose there are 

three specific study objectives: 
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1. Develop a conceptual framework to examine the transformation of remote community 

electrical systems;  

2. Use the conceptual framework to improve understanding of the “wickedness” (the technical, 

contextual, and social complexity) associated with the introduction of RETs into remote 

indigenous community electrical systems, and explain the diffusion of RET projects within 

these systems to date; and  

3. Examine the processes implemented to cope with the wickedness of the problem (in the form 

of mechanisms and actor strategies) and how these processes were modified to encompass 

indigenous perspectives in order to identify pathways and develop policy recommendations for 

their transition to more sustainable systems. 

 

1.3 Dissertation outline 

This thesis was prepared in a manuscript style and includes three stand-alone articles written for 

publication in peer-reviewed journals. This introductory chapter outlines the problem rationale and 

research context, the problem statement, purpose, and objectives of the study.  

Chapter two provides a literature review of energy-related research that examines sociotechnical, 

political, economic and environmental factors to explain change in multi-stakeholder settings, as 

well as past research contributions on the introduction of RETs in rural and remote communities. 

Since the goal of this study is to examine the transformation of indigenous community electrical 

systems, additional context to the study is provided through a review of changes in indigenous 

governance and political economy structures over recent years.  

Chapter three addresses the first research objective by examining the theoretical background, 

methodological approaches and limitations of three subdisciplines, with the goal of identifying a 

conceptual framework for the study. The multi-level perspective (MLP) and the technological 

innovation system (TIS) are introduced as analytical tools for understanding and explaining the 

introduction of RETs in remote community electrical systems. Driven by the conceptual 

frameworks and research setting, the research approach, data collection methods, analysis process, 

and research limitations are presented, along with the researcher’s positionality.  
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Chapter four summarizes results from seven papers, which are presented in Appendix A and 

published in the journal Papers in Canadian Economic Development. The papers use internet 

searches and literature reviews of academic and governmental and utilities’ policy documents and 

reports to describe the electrical systems of remote communities in Yukon, NWT, Nunavut, British 

Columbia, Ontario, Quebec and Newfoundland and Labrador. In addition, the papers identify RET 

projects installed between 1980 and 2016 and policies that supported their implementation. This 

chapter improves understanding of the contextual and technical complexity of the introduction of 

RETs into remote indigenous communities’ electrical systems. 

The three remaining chapters address the second and third objective of the study. Because of the 

stand-alone format of the dissertation, some contributions in chapter three and four are repeated in 

chapters five, and six, and seven. Each of these three manuscripts is a co-authored article with my 

dissertation advisor Dr. Paul Parker. 

Chapter five presents a paper entitled “Technical solution or wicked problem?: Diverse 

perspectives on Indigenous community renewable electricity in northern Ontario”. The manuscript 

addresses the second objective. It uses a literature review and semi-structured interviews with key 

informants of a remote community to improve understanding on the wickedness associated with 

the introduction of RETs into remote community systems.  Findings indicate that technical and 

institutional complexity of the electricity system, diversity of stakeholders’ perspectives, and 

uncertainty over the future of community electrical systems influence the deployment of RETs. 

The manuscript is published in the Journal of Enterprising Communities: People and Places in the 

Global Economy: Konstantinos Karanasios, Paul Parker, (2018). Technical solution or wicked 

problem?: Diverse perspectives on indigenous community renewable electricity in Northern 

Ontario. Journal of Enterprising Communities: People and Places in the Global Economy, Vol. 12 

Issue: 3, 322-345. 

Chapter six presents a paper entitled “Tracking the transition to renewable electricity in remote 

indigenous communities in Canada”. The manuscript improves understanding of transitions within 

communities’ electrical systems and addresses the second and third research objectives. An MLP-

based framework is used to analyze and explain the non-linear deployment of RETs in remote 

indigenous communities and identify macro- and meso-level factors that influenced the 
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development of projects in Yukon, Northwest Territories, British Columbia and Ontario. Factors 

include community interest in participating in local electricity generation, learning processes 

facilitated by multiple experiments, and the existence of supporting regulatory and fiscal policies 

that were negotiated and adapted to indigenous sustainability visions. The manuscript is published 

in the journal Energy Policy: Karanasios, K., & Parker, P. (2018). Tracking the transition to 

renewable electricity in remote indigenous communities in Canada. Energy Policy, Vol. 118, 169-

181. 

Chapter seven presents a paper entitled “Explaining the diffusion of renewable electricity 

technologies in Canadian remote indigenous communities in NWT and Ontario through the 

technological innovation system approach”. The manuscript addresses the second and third 

research objectives. It identifies the systemic and transformational failures responsible for the 

functional performance of the innovation systems and applies the technological innovation system 

(TIS) approach and compares the NWT and Ontario TISs to generate insights into the main factors 

that have the potential to sustain the development of RETs by examining the policy measures and 

activities that led to an increased number of mostly solar projects developed between 2009 and 

2016. The manuscript is published in the journal Sustainability: Explaining the diffusion of 

renewable electricity technologies in Canadian remote indigenous communities through the 

technological innovation system approach. Sustainability, 2018, 10, 3871. 

Chapter eight summarizes the major research findings presented in chapters five, six, and seven, 

and outlines the strengths and weaknesses of the study, as well as potential areas for further 

research. Furthermore, it summarizes the contributions of the research and offers policy related 

recommendations for the design of pathways for the introduction of RETs into remote community 

electricity systems and their transition to more sustainable options.  

Appendices at the end of the thesis include the seven papers published in the journal Papers in 

Canadian Economic Development described in chapter four, and a list of the RET projects 

developed in remote indigenous communities identified in this thesis. 
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1.4 Significance of the study 

The potential of RET deployment to mitigate climate change has been extensively discussed in the 

literature (see for example Simns, 2004; Mathiesen, Lund, & Karlsson, 2011; IPCC, 2011; IPCC, 

2014). In addition, numerous contributions document the environmental and socioeconomic 

benefits of distributed renewable generation for rural, remote, and isolated communities in 

developing countries that either lack access to electricity or use diesel powered electrical systems 

(UNDP, 2000; UNDP, 2004; UNDP-ESMAP, 2003; ESMAP, 2007; IRENA, 2015; Yadoo & 

Cruickshank, 2012).  

However, in the case of Canadian remote indigenous communities there are limited studies that 

examine non-technical factors that influence the uptake of renewable applications. This study 

improves understanding of the challenges associated with the energy transition of Canadian remote 

indigenous communities, explains the transition until now, and identifies factors that have the 

potential to increase the deployment rates of RET projects. The 2017 Budget announcement of 

support for INAC’s Northern Responsible Energy Approach for Community Heat and Electricity 

Program, as well as of additional funding over the coming years to reduce the reliance of remote 

communities on diesel affirms the renewed interest of federal and provincial governments in 

assisting indigenous communities to embrace renewable energy (INAC, 2018b; PI, 2018). In this 

direction, understanding the challenges associated with the introduction of RETs, explaining “what 

was done” (in terms of extent and transition patterns) and “how it was done” (how the transition 

was managed), and understanding the dynamics of the transition can inform policymakers, 

practitioners, and indigenous leaders, both in Canada and other countries, about potential pathways 

to the benefit of all parties involved in guiding the transition process.  
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2 Chapter 2: Literature review 

 

2.1 Research context 

Energy is the capacity to do work. Energy in its various forms, heat, radiation, electrical, chemical, 

nuclear energy, and gravitational (Peake, Everett, & Boyle, 2012), has been the focus of numerous 

studies that span from household dependence on lower forms of energy for daily meals  (Leach, 

1975; Barnes & Floor, 1996; Heltberg, 2004; Heltberg, 2005), to key energy technologies and 

renewable electricity alternatives (Brabec, 2004; Dincer, 2000; Midilli, Dincer, & Ay, 2006), 

public policies for decarbonization of energy systems (Gallant & Fox, 2011; Liming, Haque, & 

Barg, 2008), and household appliance and energy efficiency standards (Bansal, Vineyard, & 

Abdelaziz, 2011). Energy-related studies also examine the contribution of energy to economic 

development and the direction of causality in the energy-development relationship (Toman & 

Jemelkova, 2003; Stern, 2011; Omri, 2014). 

This thematic and methodological variety of energy research across disciplines and subdisciplines 

is demonstrated by Agostino et al. (2011) in a 2011 review of 2,502 articles published between 

1999 and 2008 in three major energy journals (Energy Policy, The Energy Journal, and The 

Electricity Journal). Engineering and sciences were identified as the main contributing disciplines 

to energy research, followed by social sciences, and, to a lesser extent, geography and planning. 

Thematically, most studies related to both conventional and renewable electricity supply, followed 

by transportation (conventional and renewable liquid fuels), energy efficiency, and heating and 

cooling. Methodologically, more than 40% of published articles within the Energy Policy journal 

employed engineering and economic methods, such as economic modelling, econometric 

modeling, scenario analysis, cost benefit analysis, financial analysis, input-output analysis, 

regression analysis and mathematical programming. There were a limited number of surveys, 

questionnaires or interviews/focus groups. A subsequent review of 4,444 articles published 

between 2009 and 2013 in the same journals found that only 12.6 % of studies used qualitative 

methods, with geography and issues relating to space and scale representing approximately 1% of 

the total number of articles (Sowacool, 2014). 
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Besides engineering, subdisciplines of economics, such as energy economics, environmental 

economics, and ecological economics, examine multiple themes and rely extensively on 

quantitative studies as their main methodological tool. Energy economics contributions investigate, 

among others, energy supply, energy markets, international trade, and economic development and 

use multivariate statistics, stochastic optimization modelling, investment impact analysis, time 

series analysis, and financial analysis as their methodologies. For example, Asafu-Adjaye (2000) 

used econometric modelling to examine relationships between energy and income in developing 

countries, Soytas & Sari (2003) used time series analysis to examine the causality relationship 

between energy and GDP in developed countries and emerging markets, while D’Ecclesia (2016) 

reviewed 27 papers that used a variety of quantitative methodologies to examine the role of fossil 

fuels and the role of renewable energy in power markets’ dynamics.  

Environmental (and resource) economics studies examine the management of public goods, the 

efficient allocation of resources, including energy in various forms, and the identification of an 

optimal level of (negative) externalities (Van den Bergh, 2001).  According to Ma & Stern (2006), 

energy-related topics in environmental economics include mainly market valuation through the use 

of econometric modelling (see for example Kosenius & Ollikainen, 2013) and optimization 

modelling (for example Berrada, Loudiyi, & Zorkani, 2016; Ernsten & Boomsma, 2018; 

Obydenkova, Kouris, Hensen, Heeres, & Boot, 2017), and, to a lesser extent, environment and 

resources.  

Finally, ecological economics examine the relationship between economic systems and ecosystems 

to investigate current global challenges, such as global warming and sustainability (Constanza, 

1989). Ecological economics aims at sustainability and recognizes the complexity of managing 

economic and ecological systems, and, contrary to environmental economics, considers that 

complexity and uncertainty are not controlled through market prices and mechanisms (Van den 

Bergh, 2001). Early research concentrates on pollution control costs and policy instrument design, 

followed by discussions on the future of energy and resources (see Meadows, 1972), and their 

contribution to carbon emissions, and role in the transition to a low carbon future (Roepke, 2004). 

More recent research focuses primarily on green accounting and the environmental Kuznets curve 

(Ma & Stern, 2006). Energy and energy markets within ecological economics prior to deregulation 

are examined through optimization studies that examine the allocation and generation output of 
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utilities emphasizing system cost minimization, while in deregulated markets computational 

methods and decision support tools (such as Multi-Criteria-Decision Analysis) inform the 

integration of renewable resources and policy making analysis (Georgopoulou, Sarafidis, 

Mirasgedis, Zaimi, & Lalas, 2003; Ribeiro, Ferreira, & Araujo, 2013; Balint, et al., 2017).  

However, as Sovacool (2014) suggests, quantitative methodologies are unable to capture human 

dimensions related to energy use, such as habits, attitudes, experiences, different cultures and 

lifestyles. Exploring human-environment relationships through qualitative methodological 

approaches employed by political economy, political ecology, and geography, may lead to new 

conceptualizations of energy use and energy problems.  

Political economy contributions to the study of energy include, among others, discussions about 

states’ and corporations’ use of power and violence to secure fossil fuel related operations, 

challenges associated with resource curse, and the connection between energy and national security 

(Sovacool & Brown, 2010). Furthermore, political economy examines energy-related 

distributional justice issues, such as the distribution of benefits and burdens to society members 

across countries and continents, energy poverty and the need for affordable energy (Bickerstaff, 

2017; Burke & Stephens, 2018; Sovacool & Dworkin, 2015), and the role of institutional and 

political factors, such as markets, oil prices, and national interests, on fossil fuel exploitation 

(Matutinovic, 2009; Hancock & Vivoda, 2014).  

In a similar vein, political ecologists argue that it is political and social power combined with the 

high complexity of environmental problems that influence understanding and solution finding of 

social-ecological problems. Political ecologists use both quantitative and qualitative 

methodologies and case studies to identify power relationships and explain linkages and changes 

in socioenvironmental systems (Walker, 2006). For example, Baka (2017) examines structural 

factors responsible for poverty, Zimmerer (2015) and Sovacool (2000) investigate the role of power 

and politics in the formation of energy patterns, and McDowell & Ford (2014) use key informant 

interviews to identify specific socio-economic, political, and biophysical issues resulting from 

hydrocarbon development activities in Greenland. 

Finally, energy has been extensively studied within the geography discipline. Early studies 

examine energy development, supply, transportation, and use patterns, as well as their determinants 



 

  

12 

from a spatial, regional, or resource management perspective. More recently, a variety of theories 

and, mostly, qualitative methodologies were employed to examine different fossil fuels and their 

impacts on human health and sustainability, expansion and integration of renewable technologies, 

energy consumption in buildings, industry, transportation, integration of transmission grids and 

electricity markets, decentralized electricity generation, and global energy networks (for a review 

of studies see Calvert, 2016; Salomon & Calvert, 2017).  

A recent focus of geographers’ research concentrates on transitions, a theoretical contribution 

aiming to address current complex environmental problems such as climate change, biodiversity, 

and resource depletion (Meadowcroft, 2005; Kemp & Loorbach, 2006). Within this strand, energy 

transitions examine the transformation of energy systems at a community, urban, regional, or 

national scale. A number of studies take a descriptive approach to illustrate the transforming nature 

of energy flows in the world’s energy intensive regions (see for example Mabee, Cabral, & Webb, 

2017; Tolmalsquim & Livino, 2017), or examine the nexus of energy, water and food and look into 

how their interrelated nature impacts community resilience (Loring & Gerlach, 2013; Hossain, 

Loring, & Marsik, 2016). 

Another research strand in geography uses a sociotechnical transition approach to examine the 

transformation of large-scale infrastructural systems, such as energy, transportation or agri-food 

systems, towards more sustainable options (Geels, 2005). Changes in such systems necessitate new 

technological innovations as well as changes in user practices, policy and culture (Geels, 2010). 

Sociotechnical systems are unable to be restructured under market forces due to their inherent 

stability and vested interests, and political will, state intervention, and policy support are necessary 

for their radical transformation (Geels, 2011; Meadowcroft, 2011). The governance (steering) of 

energy transitions and energy resources is examined under the transitions management approach 

(Meadowcroft, 2005; Kemp & Loorbach, 2006; Smith, Stirling, & Berkhout, 2005; Loorbach, 

2007) or resource management perspectives, such as adaptive management and co-management, 

participation, and stakeholder engagement (Mitchell & Parker, 2017). Furthermore, transition 

pathways are examined at the national level (McDowall, Radošević, & Zhang, 2013; Berkhout, 

Angel, & Wieczorek, 2009), regional level (Rosenbloom & Meadowcroft, 2014), or sectoral level 

(Jacobsson & Bergek, 2004; Labrinopoulou, Renwick, Klerkx, Hermans, & Roep, 2014), as well 

as at the community level, which will be discussed in the next section.  
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2.2 Energy research in remote and rural communities 

Energy research in remote and rural communities in developing countries examines the energy 

transition of households from lower forms of fuel to modern fuels, household factors that induce 

the use of household-level small RET applications (such as solar homes), and community level 

electricity access though the deployment of RETs. In the case of rural settlements in developing 

countries that rely on fuelwood or charcoal as the main energy source, households make decisions 

to ascend the “energy ladder” by switching to modern fuel (e.g. propane) and electricity or use 

multiple fuels and technologies simultaneously (fuel stacking). Energy studies examine the 

environmental and health impacts of fuelwood use and the factors that influence households’ 

energy and technology use choices (see for example Bhatt & Sachan, 2004; Chen, Heerick, & Van 

den Berg, 2006; Demourger & Fournier, 2007; Heltberg, 2004; Heltberg, 2005; Edwards & 

Langpap, 2012).  

In rural communities that have access to electricity through small diesel generators and solar 

panels, or a combination of both, studies focus on the identification of household level factors (such 

as employment, income, and family status) that influence electricity consumption and household 

choices over electrical services (see for example Mainali & Silveira, 2013; Mandelli, Barbieri, 

Mereau, & Colombo, 2016; Kaundinya, Balachandra, & Ravindranath, 2009). Most of these 

studies rely on nationwide statistical data on household energy use and household data and surveys 

of household socioeconomic status.  

Furthermore, energy studies examine electricity access and supply through renewable sources in 

isolated communities that use (or lack) diesel powerplants. An overview of energy planning models 

for decentralized systems is presented in Hiremath, Shikha, & Ravindranath (2007), while energy 

models of hybrid2 systems, either in grid-connected or stand-alone mode, are presented in 

Kaundinya et al. (2009). Most of these studies are concerned with the technical configuration and 

the cost effectiveness of such systems and use techno-economic analysis (which may include 

environmental benefits) to calculate the system’s net present value and payback period for different 

                                                 
2 According to Gupta et al. (2011, p. 459): “Hybrid Energy Systems (HES), or remote area power systems (RAPS), generally 

integrate renewable energy sources with fossil fuel powered diesel/petrol generator to provide electric power where the 

electricity is either fed directly into the grid or to batteries for energy storage. The role of integrating renewable energy in a 

hybrid energy system is primarily to save diesel fuel”. 
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interest rates, diesel fuel prices, electricity prices and subsidy rates, or the levelized cost of energy, 

to compare the cost effectiveness of alternative renewable energy sources to established fossil fuel-

based options (see also Bhattacharyya, 2012). Optimization techniques, such as linear 

programming, mixed integer linear and non-linear programming, and stochastic discrete dynamic 

programming among others (for an overview see Gupta, Saini, & Sharma, 2011) are used to 

optimally size hybrid systems. Software solutions, such as HOMER, for sizing and assessing the 

techno-economic performance of hybrid systems have contributed to the evaluation of multiple 

scale hybrid systems mostly in remote and rural areas (NREL, 2005; Bahramara, Moghaddam, & 

Haghifam, 2016). 

Other studies use differing methods to assess RET alternatives, such as sustainability indicators, 

Multi-Criteria-Decision Analysis (MCDA), and Sustainability Impact Assessments (SIA) to 

introduce sustainability considerations and stakeholders’ opinions in the decision-making process. 

Sustainability indicators (Ribeiro, Ferreira, & Araújo, 2011) consider technical, socioeconomical, 

environmental, social and strategic dimensions defined, weighted, and scored through interviews 

with local stakeholders, and, finally,  evaluated by an MCDA method (e.g. analytic hierarchy 

process, multi-attribute utility theory, and outranking) (Georgopoulou, Sarafidis, & Diakoulaki, 

1998; Wang, Jing, Zhang, & Zhao, 2009; Pohekar & Ramachandran, 2004; Huang, Keisler, & 

Linkov, 2011). Sustainability based assessments  (Ness, Urbel-Piirsalu, Anderberg, & Olsson, 

2007) may produce a variety of results depending on the participating actors, since sustainability 

represents different values for different people and is influenced by geographic location, local 

resource availability, local business strategies, special considerations (e.g. health concerns), local 

user practices and local cultures, objectives and visions (Gibson, Holtz, Tansey, & Whitelaw, 2005; 

Winfield, Gibson, Markvart, Gaudreau, & Taylor, 2010; Nathwani, et al., 2014; Alanne & Saari, 

2006; Pope, Annandale, & Saunders, 2004; Afgan, Gobaisi, Carvalho, & Cumo, 1998). 

However, several studies in developing countries move beyond the technology and finance 

perspective and use the sociotechnical approach and, to a limited extent, political aspects and 

common-pool resource management, to explain energy transitions (for an overview see Ockwell, 

Byrne, Hansen, Haselip, & Nyggard, 2018). Although the applicability of transition frameworks, 

such as the Multi-Level Perspective (MLP), Strategic Niche Management (SNM) and 

Technological Innovation System (TIS), in developing countries has been criticized due to the 
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differing contexts (Jacobsson & Bergek, 2006; Lachmann, 2012), these frameworks have recently 

been applied, on their own or combined with other theories, to examine the deployment of 

innovative technologies. For example, Pedersen and Nygaard (2018) adopt the MLP approach and 

institutional theory to examine firms and the business models employed in Kenya’s rural 

electrification. They identify niche experiments and potential for the upscaling of RETs through 

increasing institutionalization of niche rules, practices and norms. Hansen et al. (2015) use the TIS 

framework to review the development of photovoltaics in different segments in Kenya, Tanzania 

and Uganda and identify trends and factors that encourage the diffusion of solar home systems.  

Similarly, the TIS framework is used to identify market structure and dynamics for the diffusion 

of improved cookstoves in Ghana (Agbemabiese, Nkomo, & Sokona, 2012), actors, systemic 

problems and system building processes in the case of solar panels in Ethiopia (Kebede & 

Mitsufuji, 2014), and obstacles to the deployment of biodigesters in Rwanda and Kenya (Tigabu, 

Berkhout, & van Beukering, 2015). The TIS analysis is also used to evaluate RET supporting 

polices and programs in the case of photovoltaic deployment in the Maldives  (VanAlphen, 

Hekkert, & VanSark, 2008).  

Methodologically, these studies use case studies, ethnographic research, historical analysis of 

events, and interviews with participating stakeholders as their empirical data sources (Ockwell, et 

al., 2018). Besides the use of MLP and TIS, Ockwell et al. (2018) point to social theory (in 

combination with MLP and TIS) and political economy (in combination with MLP and transitions 

management) as important lenses for understanding energy transitions in developing countries. 

While adaptation of social group practices is considered a factor for the success of RETs in areas 

with no grid connection, political analysis focuses on the material interests, politics, and power 

involved in both the deployment of utility scale grid connected solar deployment  (Rodríguez-

Manotas, Bhamidipati, & Haselip, 2018), and  small-scale photovoltaic applications (Byrne, 

Mbeva, & Ockwell, 2018) to identify enabling conditions and strategies of participating actors.  

Canadian remote indigenous communities share some characteristics with developing countries. In 

both contexts, demand for electricity exceeds supply. Communities in both contexts also face the 

choice to expand their current unsustainable systems, to use hybrid solutions, or to look to 

connecting with the main grid. They also have weak local economies, lack of financial and human 

resources, and poor infrastructure (Lachmann, 2012; Graham, 2012; Swiderski, 1992; Southcott & 
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Irlbacher, 2009). However, Canadian indigenous communities have access to diesel-generated 

electricity and local technology as opposed to very small-scale diesel plants or lack of electricity 

and imported renewable technologies in communities in developing countries. Past and recent 

research on the transformation of Canadian remote indigenous community electrical systems will 

be discussed in the next section. 

 

2.3 Research on the introduction of RETs into Canadian remote communities’ 

electrical systems 

Remote communities in Canada rely on diesel-generated electricity. Early studies on the potential 

of RETs to reduce diesel consumption by introducing hydroelectricity, wind, and solar applications 

were performed by the Saskatchewan Power Corporation and North Sask Electric in 1972. 

Research for electrification alternatives was driven by high diesel price increases that led to high 

electricity expenses, and considered line extensions, large units serving several communities, fuel 

cells, and small hydroelectric plants (Cooke, 1980; Ostrom, 1981). Subsequent studies on RET 

penetration in remote Canadian communities include the 1985 Sigma Engineering study and later 

updates by CanmetENERGY-Varennes in 1999, which estimated renewable energy deployment at 

173 MW of hydroelectricity, 630 kW of wind, and 15.9 MW of biomass projects (Ah-You & Leng, 

1999; AANDC and NRCan, 2011).  

Recent studies in Alaska, Canada, and Australia on the introduction of RETs in remote indigenous 

communities’ electrical systems concentrate on the identification of technical factors that influence 

deployment and financial viability (Baring-Gould & Corbus, 2007; Fay, Keith, & Schwörer, 

2010a; 2010b; Tan, Meegahapola, & Muttaqi, 2014; Nathwani, et al., 2014). Technology factors 

include the choice over the extent of the renewable energy resource component (low, medium or 

high penetration RET integration), the architecture type of the hybrid system (single vs. a 

combination of renewable resources), economies of scale, the existence of trained personnel, 

availability of information systems (e.g. SCADA monitoring equipment), developers’ expertise, 

availability of distribution infrastructure, smart grid considerations, lower cost storage technology, 

reliable, robust equipment, and packaged systems using plug-and-play control technologies.  
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Non-technical issues hindering the deployment of RETs are captured through interviews and 

surveys; findings include institutional weaknesses and capacity issues, vested interests and funding 

structures for energy services that act as disincentives, lack of capital and financial capacity, high 

capital costs, lack of expertise, missing infrastructure, and perceptions that RETs may damage the 

environment and significantly affect traditional practices (McDonald & Pearce, 2012; McDonald 

& Pearce, 2013; Ostrom, 1981; Parcher, 2004; Inglis, 2012; Weis, 2006; Weis, 2014; Krupa, 

2012a; Senate Canada, 2014c; INAC, 2005; INAC, 2007; AFN, 2011b; Weis & Cobb, 2008; Fay 

& Udovyk, 2013). 

Furthermore, numerous non-academic contributions concentrate on indigenous and 

governmental/utility concerns over diesel-generated electricity and their perspectives on renewable 

electricity generation as factors that influence the introduction of RETs in remote indigenous 

communities. Indigenous concerns over diesel-generated electricity include, first, electricity costs, 

influenced by rising fuel transportation and diesel fuel prices in addition to growing utilities’ 

generation and operation, maintenance and administration costs (GNWT, 2008b; Hydro One, 

2012; NTPC, 2012). High electricity costs result in higher electricity prices for both residential 

customers and local governments (GNWT, 2008b; Hydro One, 2012; NTPC, 2012; Knowles, 

2016). These higher prices in turn increase residents’ cost of living and local governments’ 

electricity expenses, therefore limiting available funds for economic development opportunities 

(OEB, 2008; NWT, 2011).  

Second, load restrictions posed by utilities and conditioned by the output of diesel generators, limit 

new housing development and business connections, leading to the overcrowding of existing 

houses, and hindering community potential to participate in resource projects (KLFN, 2013; NAN, 

2012). Even if the diesel generators were to be upgraded, continuous community growth would 

lead to a new cycle of load restrictions within the next five to seven years. In addition, high variance 

of community electricity loads, and safety considerations lead to the use of multiple diesel 

generators and/or their frequent operation below capacity, which increases generations costs 

(Arriaga, Canizares, & Kazerani, 2014; Knowles, 2016).  

Third, communities experience power outages, surges, and brownouts due to poorly serviced and 

outdated diesel generators (GNWT, 2009a; Senate Canada, 2014b; Bell, 2015). Power outages 
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during winter conditions in northern communities may generate costs, damage community 

equipment and infrastructure, and threaten the safety of residents (GNWT, 2009b; AANDC, 2012). 

Maintenance and replacement of diesel generators is subject to budgets approved by different 

authorities leading to delays and, in some cases, operation of diesel generators beyond their 

recommended life expectancy (Senate Canada, 2014a).  

Fourth, there are community environmental concerns over increasing direct and indirect carbon 

emissions, as well as black carbon emissions, caused by the burning and road or air transportation 

of diesel, fuel spills during transportation and storage, as well as fuel tank leakages (AANDC, 

2012; GC, 2017a; Knowles, 2016). The per capita direct carbon emissions in Northern Ontario’s 

HORCI-operated remote communities increased from 2.5 tonnes CO2,eq in 1991 to 4.4 tonnes 

CO2,eq in 2011 (HORCI, 2012), while direct emissions range between 9 tonnes CO2,eq annually per 

capita in British Columbia, to 3 tonnes CO2,eq annually per capita in Nunavut, and an average of 

4,4 tonnes CO2,eq annually per capita for 133 remote indigenous communities (see also Chapter 4). 

In addition, the transportation and storage of millions of litres of diesel fuel annually results in fuel 

spills and contamination of soils in the majority of remote aboriginal communities. According to 

AANDC and the Federal Contaminated Sites Inventory, contaminated sites on reserve lands north 

of 60o latitude represented a financial liability of approximately $1.5 billion in 2008 (AANDC, 

2008; TBS, 2016; AANDC, 2012b), with the majority of these sites related to hydrocarbon 

contamination of soils caused by leakages from fuel storage tanks3.  

Government concerns over diesel dependency are associated with higher carbon emissions and 

increasing electricity cost subsidies as a result of higher diesel prices. In 2013, the 133 remote 

indigenous communities noted above were responsible for the consumption of approximately 151 

million litres of diesel and direct emissions of 400,000 tonnes of CO2, eq. (see Chapter 4), while 

additional indirect emissions caused by the transportation of diesel to remote communities 

represent almost 70% of direct emissions in the case of fly-in communities (see HORCI (2012)). 

In addition, direct electricity subsidies for residential customers in remote communities, ranged 

from $3.5 million in 2015-2016 in Yukon (GY, 2015a) to approximately $34 million in 2015 in 

both British Columbia and Ontario (see Chapter 4) (BC Hydro, 2015b; Hydro One, 2012; GN, 

                                                 
3 See also WP (2013c) for the projected costs of soil remediation in Ontario’s remote communities. 
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2015a). Consequently, diesel displacement in remote communities through the introduction of 

electricity generation alternatives could contribute to Canada’s recent commitments towards GHG 

emission reductions to 30% below 2005 levels by 2030 (GC, 2016; DSF, 2012), and could 

potentially be translated to lower subsidies provided by provincial and federal governments for the 

operation of remote diesel systems (OPA, 2014). Finally, government owned utilities’ additional 

concerns over diesel dependency relate to rates affordability, the need to build redundancy into the 

systems through alternatives to diesel generation and increased reliability of supply, as well as the 

desire to increase self-sufficiency by reducing diesel consumption (GNWT, 2009a; Yukon Energy, 

2012a). 

Moreover, since 2000, numerous studies have employed quantitative methodologies, such as 

feasibility and optimization methods, to evaluate the performance of RET projects in remote 

indigenous communities (Table 1). These studies use wind speed and solar data acquired from 

local meteorological stations, installed wind measurement equipment, and installed demonstration 

projects to construct future meteorological profiles and perform a technoeconomic analysis to 

calculate the project’s net present value or levelized cost of energy. Results indicate that there is a 

limited number of wind and solar projects that are financially viable in remote indigenous 

communities. Financial returns may vary among communities in the same province and territory 

and among communities in different locations, as they are highly dependent on the availability of 

the renewable resource component and local factors. The accuracy of results can be improved 

through the acquisition of high quality meteorological data based on locally deployed monitoring 

equipment, as well as good quality household data, which can be challenging in the context of 

indigenous communities (Fay, Keith, & Schwörer, 2010a; Weis, 2014). In addition, there is a need 

for accurate future meteorological and community load profiles, which can be developed through 

probabilistic and component modelling approaches, and then used in optimization studies for sizing 

the hybrid systems’ components to meet cost and reliability targets under certain design constraints 

(Tan, Meegahapola, & Muttaqi, 2014). 
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Table 1: Feasibility and optimization studies for RETs in remote communities 

Feasibility studies 
Communities Technology Year Source 

Sachs Harbour, Tuktoyaktuk, Holman, Paulatuk Wind 2003 ARI (2003) 

Sachs Harbour, Ulukhaktok, Paulatuk, Tuktoyaktuk, 

Yellowknife, Inuvik 

Wind 2007 Pinard (2007) 

31 communities in NWT 

14 communities in Nunavik, Quebec 

2 communities in Yukon (Destruction Bay, Old Crow) 

Wind 2006 Maissan (2006a) 

14 communities in Nunavik, Quebec Wind 2005 Krohn (2005) 

Colville Lake, NWT  Wind 2008 Pinard & Maissan 

(2008) 

Deline, Jean Marie River, Trout Lake, Fort Providence Wind/ solar 2008-2012 ARI (2016) 

Storm Hills, Colville Lake, NWT, Lutselk’e, Norman Wells, 

Paulatuk, Sachs Harbour, Thor Lake, Tuktoyaktuk, 

Ulukhaktok, Wekweètì, Whati, Yellowknife, Inuvik  

Wind/ solar 2008-2015 ARI (2016) 

Optimization studies 

Cartwright (Labrador) Wind/ solar 2007 Iqbal, n.d.(b) 

12 communities in NWT 

13 communities in Nunavut 

2 communities in Yukon (Destruction Bay and Old Crow) 

10 communities in Nunavik-Quebec 

21 communities in Newfoundland and Labrador 

3 communities in Manitoba 

1 community in Ontario (Fort Severn) 

Wind 2008 Weis & Ilinca (2008) 

22 communities in Newfoundland and Labrador 

(with results for Cartwright, Charlottetown, Hopedale, 

Makkovik, Mary's Harbour, Nain and Port Hope Simpson) 

Wind, solar, 

small hydro 

2009 NFL Hydro (2009) 

12 communities in NWT 

19 communities in Nunavut 

2 communities in Yukon (Destruction Bay and Old Crow) 

14 communities in Nunavik-Quebec 

22 communities in Newfoundland and Labrador 

3 communities in Manitoba 

16 communities in Ontario  

2 communities in BC 

Wind/storage 2010 Weis & Ilinca (2010) 

Kasabonika Lake First Nation Wind/ solar 2013 

 

2017 

Arriaga, Cañizares & 

Kazerani (2013); Karimi 

(2017) 

Brochet (Manitoba) Wind 2013 Bhattarai & Thompson 

(2016) 

Ramea (non-aboriginal) Wind/storage 
 

Iqbal, n.d.(a) 

13 communities in Nunavut Wind, solar, 

battery 

storage 

2016 Das & Canizares (2016) 

 

In addition to quantitative studies a limited number of qualitative contributions provides insights 

into the deployment of RETs in remote indigenous communities.  Best practices (INAC, 2004; 

INAC, 2005; INAC, 2007; INAC, 2010b) and guides (AEA, n.d.; OSEA, n.d.) use interviews with 

community members to identify critical success factors (CSFs) (Bullen & Rockart, 1981), in the 

form of technological, structural, and institutional factors, for the successful deployment of RET 
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projects. Technological CSFs relate to both the need for understanding and monitoring of local 

renewable resources and the use of proven technologies in northern environments, since equipment 

failure may discourage the project implementation and affect financial performance. Institutional 

and structural CSFs relate to the existence of capable leadership teams (able to engage in 

collaborative action with governments and utilities), the potential of community equity 

participation, internal financial capacity to perform RET projects, the existence of governmental 

funding and financial incentives to overcome technical and financial barriers, and local 

infrastructure supporting RETs integration within local grids. Additional factors mentioned were 

the existence of a community energy plan (CEP) and learning and sharing experiences for the 

development of internal capacity to maximize benefits from the projects (Brookshire & Kaza, 

2013; St.Denis & Parker, 2009; Krupa, 2012b). A significant number of community profiles and 

CEP plans have been conducted for remote indigenous communities from non-governmental 

organizations such as the Arctic Energy Alliance (AEA) in NWT (see for example AEA, 2016; 

AEA, n.d.) and Pembina Institute (see for example Cobb & Weis, 2007; Weis & Cobb, 2008). 

Furthermore, Keyte (2015) used a resilience theory-related framework and data from document 

reviews and interviews with key informants to examine a biomass application in a remote 

indigenous community in NWT. He identified willingness towards experimentation, leadership to 

form partnerships, and the ability to harness local resources as key success factors for improving 

remote communities’ energy resilience.  

Finally, a few qualitative studies focus on sociocultural and economic factors that have the 

potential to influence the transformation of indigenous electrical systems. Rezaei and Dowlatabadi 

(2015) argue that indigenous motivation for participation in new electricity generation through 

RETs is driven by self-reliance considerations and capacity development. In Ontario, ten remote 

indigenous communities act as Independent Power Authorities (IPAs) and own their electrical 

systems. These communities, despite higher costs and reduced subsidies in comparison to 15 

Ontario remote indigenous communities serviced by Hydro One Remote Communities Inc. 

(HORCI), state that their motivation for ownership is local control through rate settings according 

to community needs, collection methods that support members facing poverty, opportunities for 

local job creation, and a sense of community pride (OEB, 2008). Furthermore, Jaffar (2015) uses 

the MLP framework and discourse analysis to understand how indigenous values, and their 



 

  

22 

compatibility with renewable energy generation, influence politics and power relationships in 

energy transitions. The transition approach was also employed in the context of on-grid Canadian 

indigenous communities in Nova Scotia, Ontario and Saskatchewan: Martens (2015) employed a 

combined framework, consisting of the MLP and TIS frameworks and discourse coalition theory, 

and data from document reviews and interviews with key stakeholders to analyze the participation 

of indigenous people in on-grid large-scale renewable electricity generation and generate insights 

on the likelihood of indigenous participation in sustainable electricity transitions. He observed that 

successful First Nation participation in the transformation of energy systems is likely to occur 

where governments focus on reconciliation efforts and allow for new actors’ participation in the 

electricity generation process. In addition to regulatory changes, Martens (2015) identifies 

supporting policies and financial resources that enable revenue generation activities through the 

sale of electricity to the provincial grid as important factors for the long-term success of indigenous 

participation in the electricity sector. 

Since governance and revenue-generating arrangements are considered important to Canadian 

indigenous communities, the next section provides an overview of how these structures have 

evolved over recent years. 

 

2.4 Indigenous governance and political economy considerations 

Governance and political economy considerations provide understanding on how societies change 

over time and may lead to the identification of governance structures able to promote economic 

development (Fritz, Kaiser, & Levy, 2009). Understanding indigenous governance and political 

economy shifts over time may improve understanding of factors that (have the potential to) 

influence indigenous decision making for the transformation of indigenous communities’ electrical 

systems. In addition, these changes may provide insights for the choice of the theoretical and 

conceptual frameworks that will drive research design (Grant & Osanloo, 2014). 

Accordingly, the purpose of this section is to provide a brief description of changes in indigenous 

governance and political economy structures over the last century. Political economy is broadly 

defined as the analysis of linkages between politics and economics, stemming from the perspective 
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that governance, in the form of political behavior (exercising power and authority) and institutions, 

influence economic outcomes (Weingast & Wittmann, 2015).   

According to Frideres (2008) indigenous peoples encompass a diversity of groups of various 

linguistic and historical backgrounds, currently located in different socioeconomic and political 

contexts, and pursuing different goals. Indigenous people in Canada “do not make up a single-

minded monolithic entity, speaking with one voice” (Frideres, 2008, p. 314). The relationship 

between indigenous and settler societies is captured in the indigenous governance literature that 

consists of topics related to self-determination, indigenous knowledge, legal and inherent rights, 

colonialism and Eurocentrism, environmental decision making, and decolonization (for an 

overview see von der Porten, 2012). However, the self-determination literature is most relevant to 

this study as it is closely associated with political economy considerations and the governance of 

indigenous lands and resources. According to Henricksen (2001) (cited in von der Porten, 2012, 

p.2) indigenous self-determination is “the right to exercise cultural, linguistic, religious, territorial 

or political autonomy within the boundaries of the existing state”. The United Nations General 

Assembly (2007) states: “Indigenous peoples [may] freely determine their political status and 

freely pursue their economic, social and cultural development…[and] have the right to the lands, 

territories and resources which they have traditionally owned, occupied or otherwise used or 

acquired” (ibid.). 

 

2.4.1 Changes in indigenous governance and political economy 

The early relationship between indigenous people and newcomers was defined by agreements on 

sharing land and resources and was eventually succeeded by treaties that involved peaceful 

relations, trade agreements, military assistance, and, eventually, the surrendering of indigenous 

lands to Canada. European colonization proceeded within First Nation territories through the 

signing of Peace and Friendship Treaties from 1725-1779 and the numbered Treaties between 

1870-1930, with the exception of what is today Labrador, the N.W.T., Yukon, and the Northern 

parts of British Columbia and Quebec (Hamley, 1995; Borrows, 2001; INAC, 2010a; AANDC, 

2010). The numbered Treaties involved ceding title to indigenous land in return for the creation of 
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protected spaces (reserves), certain rights, such as hunting and fishing within traditional territories, 

as well as material benefits in the form of education and financial support.  

In an effort to assimilate indigenous populations to westernized and industrial society habits the 

newly formed Canadian state introduced the Indian Act in 1876. The Indian Act replaced 

traditional forms of governance and increased the authority of Indian Affairs over indigenous 

peoples through an elective system of Chiefs and Councillors, which allowed limited local 

authority for the care of communities, such as the creation of bylaws related to health, education, 

road maintenance and public and social housing  (Milloy, 2008). Through control the 

administrative and political band structures the federal government controlled aboriginal 

education, employment, cultural values, and the management of aboriginal lands and resources 

(Coates, 2008). Land holding under the Indian Act between 1876 to 1951 was practiced through 

location tickets of reserve lands and a fee-simple interest for enfranchised indigenous people, and, 

after 1951, through two statutory property rights, the certificates of possession (CP) or proof of an 

individual’s possession of reserve land, and leases of band or CP holders land; both land holding 

mechanisms within reserve lands are associated with high transaction costs limiting the potential 

for on reserve economic development (Alcantara, 2013). 

Between 1930 and 1950 indigenous people in Canada were able to improve their socioeconomic 

status through adaptation of traditional activities and participation in commercial activities and 

wage employment, especially during WWII that encouraged the move towards major industrial 

centres in search of stable economies (Craddock, 1997). However, indigenous economic conditions 

were ultimately affected by a changing economy and competition with the non-indigenous, higher 

skilled workforce (Hayter & Barnes, 2001). By the 1960s, it was clear that reserve economies were 

unable to support indigenous populations and the gap between indigenous economies and the rest 

of the Canadian economy increased. The lack of success of indigenous economies was attributed 

to a combination of (a) lack of workforce skills, lack of local competitiveness, lack of business 

experience, as well as limited financial support for indigenous business development from the 

Indian Affairs department, and (b) a difference in culture, with indigenous people favoring non-

wage jobs and activities influenced by traditional hunting, fishing and gathering economies 

(Craddock, 1997). However, the Hawthorn report (1966-1967) (INAC, 2018c) that examined the 

problem of indigenous disadvantage continued to see assimilation policies as an appropriate 
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method for improving indigenous socioeconomic conditions and indicated a “cultural barrier” as 

the main reason of their failure. According to Craddock (1997), the report failed to acknowledge 

the importance of land and resources to indigenous peoples and their effort to participate in a 

western economy (as their ancestors did by adapting to the fur-trading culture, the subsistence-

wage culture, and the pre-war and post war wage cultures), cancelling therefore, arguments of 

“cultural barriers” on the side of indigenous people. 

Between the 1970s and 1990s assimilation policies were questioned and amendments to the Indian 

Act in 1951 emphasized indigenous self-determination. As a result of these initiatives, Indigenous 

Affairs began decentralizing and devolving its operations to Band Councils between 1960 and 1970 

and created an on-reserve indigenous bureaucracy that was able to absorb educated indigenous 

peoples (Craddock, 1997). The devolution was complemented with the establishment of numerous 

indigenous political organizations (such as the National Indian Brotherhood of the NWT, now 

known as the Assembly of First Nations (AFN), and the Union of BC Indian Chiefs in British 

Columbia) advocating for more indigenous government and a focus on land claims and treaties 

injustices. By the end of the 1970s indigenous governments and indigenous political organizations 

were the main source of employment for on-reserve indigenous people.  

Furthermore, this period is also characterized by a shift towards more flexible production systems 

and an active global environmental movement (Hayter & Barnes, 2001). Political pressure from 

First Nation, environmentalists, and supporters of indigenous peoples during the 1970s resulted in 

legislation clarifying aboriginal rights (Coates & Crowley, 2013; AANDC, 2010). The Supreme 

Court of Canada decision in the Calder case in 1973 (Calder et al. v. Attorney-General of British 

Columbia, [1973] S.C.R. 313) represents a landmark decision, as it recognizes that aboriginal title 

exists in modern times. The decision initiated the establishment of the Native Claims office by the 

Government of Canada to negotiate with First Nations over comprehensive claims and specific 

claims (Slattery, 1987; Hamley, 2005).  

In addition, changes in the mode of natural resource exploitation (from government-controlled 

projects for the provision of economic development through local processing, the creation of 

linkages and the procurement of local labor, to large-scale development employing economies of 

scale through the integration of private capital intensive equipment, and increasing environmental 
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concerns) (see, for example, Gunton, 2003; Bridge, 2004; Di Boscio, 2010; NRCan, 2013a; 

NRCan, 2014) mobilized indigenous people to actively pursue participation in the benefits from 

resource extraction (Barnes & Hayter, 2005; Hipwell, Mamen, Weitzner, & Whiteman, 2002). 

During this period the first Community Impact Agreements (CIA), an early form of Impact and 

Benefit Agreements (IBAs), were introduced, by private proponents, as formal return of benefits 

from resource development projects to communities. Early CIAs were negotiated between Ontario 

Hydro and the community of Atikokan in northern Ontario (Reschny, 2007). 

Finally, expansion of indigenous public administration on reserve land continued with local 

governments increasingly participating in education and social services. However public 

administration employment created a clear division between community members employed by 

local governments that enjoyed stable and relative high incomes and community members that had 

to rely on subsidies, traditional activities and seasonal wage employment. In some cases, this 

income gap and division between community members was further exaggerated through 

corruption, nepotism, favoritism and political gaming associated with the distribution of rents from 

land claims and impact agreements (mostly) in the form of public employment (Craddock, 1997; 

Graham, 2012). 

The years after 1990 see the political economy of indigenous peoples continuing to be based on an 

expanding public sector due to further devolution of Indian Affairs services and legislation 

favoring indigenous rights. In some communities, the Indian Act was replaced by other forms of 

governance and self-government agreements introduced through the modern treaties process. In 

1986, the Sechelt in British Columbia implemented the Sechelt Indian Band Self-Government Act 

of 1986 and the Band assumed complete responsibility for the management, administration and 

control of all Sechelt lands, which were no longer Indian Act reserves but instead fully owned by 

Band in fee simple title for “the use and benefit of the band and its members” (Schulze, 2008, p. 

22). The 1990 R. v. Sparrow case in the Supreme Court of Canada (SCC) provided a broad 

interpretation to section 35(1) of the Constitution Act (1982) and recognized and affirmed the 

existence of aboriginal rights (R. v. Sparrow, [1990] 1 S.C.R. 1075). After 2000, governance and 

political economy of indigenous people was further transformed through the introduction of the 

Crown’s duty to consult and the judicial clarification of the fiduciary relationship of the Crown to 

Aboriginal people and the private sector’s Impact Benefits Agreements (IBAs) (Isaac & Knox, 
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2005). Furthermore, 22 self-government agreements, of which 18 are part of comprehensive land 

claims agreements, were signed between the federal government and indigenous governments. 

These agreements enabled 36 indigenous groups to be self-governed, provided ownership of 

approximately 600,000 km2 of land, certainty over indigenous land rights to over 40 percent of 

Canada's land mass, and over $3.2 billion capital transfers (INAC, 2018e). Self-government 

agreements enabled indigenous people to structure their governments, to create laws, and provide 

services to their members (INAC, 2018f). Furthermore, in 2007 the government of Canada 

introduced the Specific Claims Action Plan to accelerate the specific claims process and take action 

on a growing number of claims accumulated after 1993. According to AANDC “specific claims 

snapshot”, there are currently 390 concluded specific claims and 320 specific claims in progress 

(INAC, 2018a). Finally, further changes in indigenous governance structures and political 

economy were introduced through indigenous governments’ access to “Indian moneys”, and the 

introduction of various acts that allowed for alternative taxation systems, such as the First Nations 

Fiscal and Statistical Management Act and the First Nations Goods and Services Tax Act (Schulze, 

2008). 

As a result of the numerous changes in legal interpretation of aboriginal rights and title, and 

changes in indigenous political economy in terms of governance structures and revenue generation, 

the relationship between indigenous people and settler societies in Canada evolved in three distinct 

ways. First, through a series of legislative decisions, indigenous rights evolved from fishing rights 

in 1973 (in the Calder et al. v. Attorney-General of British Columbia) to sharing the wealth of the 

land rights in 2014 (see Tsilhqot’in Nation v. British Columbia and Keewatin v. Ontario (Natural 

Resources)). Because of this changing landscape in indigenous rights and title and the associated 

comprehensive and specific land claims, indigenous land base increased to 15 million hectares 

controlled by First Nations and 45 million hectares controlled by Inuit (AANDC, 2009). 

Second, governance structures regulating the relationship between indigenous people and settler 

societies evolved from friendship treaties and alliances, to the creation of reserves and 

establishment of hunting and fishing rights, to the 1876 Indian Act, and, recently, to self-

government agreements. Self-government agreements enable indigenous groups to create laws 

over a defined area based on their “inherent right to self-government” and decide on their 

membership basis, constitution structure of their governments, election rules, and the provision of 
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services to their members. However, a number of provincial and federal laws (e.g. criminal law) 

continue to apply in the designated areas (Imai, 2008). 

Third, both legislation on aboriginal rights and title and new governance structures led to changes 

in the sources of revenue for communities. During the period examined, indigenous peoples’ 

sources of revenue shifted from federal transfers for education, health, administrations and treaties 

provisions, to indigenous control of lands under fee simple title, revenue authority over “Indian 

moneys”, the establishment of tax regimes on indigenous lands, and alternatives to tax systems, 

such as the federal First Nations Fiscal and Statistical Management Act and the First Nations Goods 

and Services Tax Act. Further indigenous revenue generation systems include the federal First 

Nations Oil and Gas and Moneys Management Act and the First Nations Land Management Act, 

where local governments can have full control of the revenues collected for the use of their reserve 

lands other than for oil and gas (Schulze, 2008). In addition, new revenue sources were added to 

communities through the participation in land claims and self-government agreements, numerous 

resource development projects through IBAs or partnership agreements, and involvement in 

market-based activities (Loizides & Wuttunee, 2005; Loizides & Anderson, 2006; Sisco & Stewart, 

2009; Bains & Ishkanian, 2016).  

 

2.4.2 Modelling indigenous political economy 

The shifts in governance and revenue generation structures of indigenous peoples in Canada are 

explained through two, mainly, political economy models. First, the internal colony model, sees 

indigenous peoples as nations within the Canadian state that have been dispossessed from their 

traditional territories, driven by capitalism and settlers’ endless desire for more land accumulation 

(Atleo, 2014) that led to “economic and social domination” over indigenous populations and their 

economic dependency on the state (Hicks, 2004, p. 3). Impacts of colonialism include the loss of 

lands and access to traditional resources, the erosion of indigenous cultures and practices, social 

inequalities between educated community members (bureaucrats) and those practicing traditional 

activities (see also Nadasdy, 2003), and a multitude of social problems caused by assimilationist 

policies (Hodgkins, 2009; Alfred, 2009). 
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Responses to colonialism include contradicting perspectives. Indigenous peoples argue for (a) the 

returning of land and resources as the basis for economic self-reliance and (b) establishing self-

government agreements to improve the socioeconomic condition of indigenous people where prior 

assimilationist and integrationist policies failed (RCAP, 1996; Hodgkins, 2009; Kendal, 2001; 

Imai, 2008). For example, the 1986 Sechelt Indian Band Self-Government Act and the Westbank 

First Nation Self-Government Agreement of 2003, allowed for the full ownership of indigenous 

lands under “fee simple” by the local government for the benefit of community members, the 

establishment of own government structures, and (among others) taxation power for interests 

within their lands (Schulze, 2008). 

However, indigenous scholars heavily criticize the surrendering of indigenous lands in exchange 

for a (smaller) defined area where indigenous groups will exercise self-government, and some ask 

for the invalidation of any governance structures and institutions that regulate relationships with 

the Canadian state, including self government and modern treaty agreements. They argue that such 

approaches extinguish aboriginal rights and title in exchange for monetary rewards and do not 

contribute to the revival of indigenous practices (Corntassel, 2008; Alfred, 2009). Corntassel 

(2008) expresses concerns over the sustainability of such agreements and calls for “sustainable 

self-determination”, that goes beyond political/legal recognition, and includes the regeneration of 

indigenous communities and families and the building of local economies, “which are by definition 

inherently sustainable” (p. 119). 

Alfred (2009) states that self- government and economic development are “ineffective ways of 

confronting colonialism” because “rather than attacking the roots of the problem, they perpetuate 

a dualistic and dependent relationship between First Nations and the state” (p. 47) and instead 

proposes the “resurgence of an indigenous consciousness” for the real transformation of indigenous 

communities (p.49). Furthermore, it is argued that self-government agreements contribute to “… 

the transfer of a certain degree of decision-making power from ‘colonial’ elites to an emerging 

layer of local elites, within a constrained constitutional framework that poses no serious threat to 

(and arguably advances the interests of) the capitalist state or the capitalist system” (Hicks, 2004, 

p.11). Coulthard (2007) (referring to Alfred, 2005) points to the creation of different income groups 

within communities, as self-government processes and economic development  
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“produce Aboriginal capitalists whose thirst for profit comes to outweigh their 

ancestral obligations to the land and the others. And land claims processes…. 

are now threatening to produce a new breed of Aboriginal property owner, 

whose territories, and thus identities, risk becoming subject to expropriation and 

alienation. Whatever the method, … all of these approaches, even when carried 

out by sincere and well-intentioned individuals, threaten to erode the most 

traditionally egalitarian aspects of Indigenous ethical systems, ways of life, and 

forms of social organization” (p. 452).  

The second model, proposed by Widdowson (2016), aims at explaining indigenous disadvantage 

as the result of lack of indigenous proletarianization rather than dispossession. She argues that 

colonization did not happen in the case of north American Indians (as was the case with third world 

colonies) and indigenous populations were dispossessed, creating a “fourth world” type of 

economy, because their participation in the labour market was not necessary for the development 

of settler societies. As a result, most of these communities are unable to contribute to the economy, 

and they “survive”, and will continue to survive, as the result of federal transfers, which constitute 

a form of aid or (semi-rent) (Widdowson, 2016). She proposes a model of “neotribal rentierism”, 

which builds on Rata’s framework of the political economy of neotribal capitalism (Rata, 2004) 

and the “rentier state” and “semi-rentier states” theories for development (Beblawi, 1987), to 

explain indigenous political economy through class structures, rather than land ownership 

structures, and the building of traditional economies proposed by the “internal colony” model.   

According to this model, neotribes (local indigenous elites), brokers (lawyers, negotiators, 

consultants and bureaucracy), and rent distributors (corporations and the Canadian state) are the 

main interest group involved in the process of negotiated and distributed rents. Rents take the form 

of revenues from, first, the extraction of commodities within traditional territories, second, 

compensation from the Canadian state for past injustices, and third, negotiation of transfers and 

self-government agreements for the control of funds related to the administration and provision of 

services within reserves. It is then argued that rents (external sources of revenue rather than 

productive activities) “… are negotiated by brokers and then circulated unequally within 

neotribes…” (Widdowson, 2016, p. 22). Brokers benefit from negotiations about the rent (e.g. land 
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claim agreements), while corporations and the Canadian state control rents as their focus remains 

the availability of funds for the productive economy.  

However, governments have also to distribute rents to interest groups. In the case of indigenous 

communities, governments disperse rents (in the previously described ways) to promote natural 

resources development within traditional territories, to address demands from non-indigenous 

Canadians concerned about the socioeconomic conditions in indigenous communities, and to 

protect indigenous Canadians that are facing poverty and marginalization. However, rents are 

unequally distributed within the neotribes (between members of local elites, indigenous 

governments and their kinship relationships) reducing access to quality services for community 

members and contributing to the continuous dependency and disadvantage of indigenous peoples 

(Widdowson, 2016).   

 

2.5 Concluding remarks 

The review of these previous studies on the introduction of RETs into remote indigenous 

community electrical systems and the indigenous governance and political economy structures 

point to research gaps and a certain level of “wickedness” inherent within the problem of 

introducing RETs, which, in turn, drive the choice of the theoretical and conceptual framework of 

this study and, consequently, the study’s methodology (Leshem & Trafford, 2007; Grant & 

Osanloo, 2014).  

First, the review suggests that research on the introduction of RETs into remote indigenous 

community electrical systems involves a limited number of studies, of which most used 

quantitative methods, such as deterministic modelling and optimization techniques that isolate a 

few variables to generate models of limited complexity, usually presenting net present values 

(NPV) for alternative projects’ evaluation. Few studies use qualitative methodologies (e.g. 

interviews) or consider interdependencies between variables. Co-evolving factors, such as (i) 

stakeholders’ preferences on the future of electricity systems and their ownership structures, (ii) 

indigenous, provincial, and federal governments’ expectations from natural resources 

developments that influence decisions on new infrastructure and connection of communities to 

provincial grids, and (iii) the existence (or lack of) and quality of governance structures in the form 
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of RET supporting policies and programs, have the potential to impact the diffusion rates of RET 

projects into remote indigenous community electrical systems. These factors are influenced (and 

influence), in turn, by political settings, financial resources availability, volatility of energy and 

natural resources prices, and increased speed of technological transformation (Yi & Feiock, 2014). 

Accordingly, there is a need to examine such dynamic processes that have influenced the transition 

so far and have the potential to influence the transition further (Grin et al., 2010). 

Second, the “wickedness” connected to the introduction of RETs into these systems stems from 

both the technical and social complexity of the issue. Technical complexity influences the financial 

viability of such projects. The financial performance of a project depends on its technical 

performance, which, in turn, depends on local renewable resource availability, prediction of their 

future intermittency level, the level of renewable electricity penetration in comparison to the size 

of the community load, type of load (residential, commercial, or community buildings), diesel 

engine type and number of operating units, load management, the existence of storage technology, 

and, finally, operational constraints (operation and maintenance) (Mc Gowan, Manwell, & 

Connors, 1988; Arriaga, Cañizares, & Kazerani, 2013; Karimi, 2017). The social complexity of 

the issue stems from the different perspectives of participating stakeholders on the role that RET 

projects may play in communities, or the problems that the introduction of RETs is supposed to 

address. Governments’ and utilities’ perspectives concentrate on carbon emissions, financial 

performance, subsidy reductions, as well as reliability issues (GNWT, 2009a; GNWT, 2009b; 

OPA, 2014). Indigenous expectations on the role of RETs range from reductions in electricity 

costs, carbon emissions, and spills and leakages, to improvements in electricity supply reliability 

and services (GNWT, 2009a; 2009b; McDonald & Pearce, 2013), to self-sufficiency, community 

pride, and improving community socioeconomic conditions (Rezaei & Dowlatabadi, 2015; OEB, 

2008; NAN, 2014a; AANDC, 2012b). Furthermore, there is uncertainty about the potential benefits 

from community ownership of RET projects due to the existence of indigenous vested interest in 

the form of revenue and employment from diesel storage and distribution (GQ, 2014; Weis, 2014), 

and the inherent risk of such projects caused by the intermittency of renewable resources and 

technical complexity of these systems.  

However, the diffusion of RET projects into remote indigenous communities, although limited, 

points to stakeholders’ converging (rather than diverging) views on the potential for environmental 
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and socioeconomic improvements, and, therefore, the introduction of RETs exhibits characteristics 

of a “mess”, or a form of organized complexity rather than a non-solvable wicked problem, 

signaling the need for analysis through systemic approaches (King, 1993). Such approaches are 

characterized by the inclusion of multiple stakeholders, including state governments, the private 

sector, communities, and individuals, that address problem wickedness through the development 

of “clumsy” solutions, or solutions emerging from a “minimum requisite variety” of social actors 

(Rayner, 2006, p. 11). Clumsy solutions are policies that combine opposing perspectives based on 

different ways of organizing social relations that integrate scientific alternatives, good management 

and socioeconomic and political considerations (Khan & Neis, 2010; Verweji & Thompson, 2006).  

Third, the review of changes in indigenous governance and political economy structures suggests 

that indigenous peoples, utilities, territorial, and federal governments have participated in events 

and shifted their identities and preferences over recent years. Events represent actions of actors or 

what happens to actors, as a result of interactions (Poole, van den Ven, Dooley, & Holmes, 2000). 

Because of numerous events, aboriginal rights and title evolved from hunting and fishing rights, 

established through the early Treaties processes, to the sharing of the wealth of natural resources 

within traditional territories. In addition, governance structures shifted from early versions of the 

Indian Act to governance outside the Indian Act, and the establishment of self-government 

agreements that provide significant powers and control over indigenous lands and resources to 

indigenous governments.  

Based on the results of the literature review, the transformation of indigenous community electrical 

systems through the introduction of RETs would seem to occur within a changing social, historical, 

economic and political context and be influenced by a variety of actors’ actions and events that 

shape this transformation over time. From a research perspective, the shifting identities of actors, 

the problem of organized complexity, and the limited number of existing qualitative studies point 

to the need for a focus on process rather than variance theories (Poole et al., 2000). As a result, an 

exploratory and evolutionary world view may better explain the transition of remote community 

energy systems to more sustainable ones through the introduction of RETs. Exploratory research 

and process approaches will be discussed in the following section. 
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3 Chapter 3: Theoretical considerations and research approach 

 

The purpose of this chapter is to present the theoretical and methodological approach of the study, 

the conceptual framework that drives the research methodology, and the research approach to 

achieve the study’s objectives. Section 3.1 outlines process tracing as a method to examine and test 

causal inferences. Section 3.2 discusses three theoretical frameworks that have the potential to 

provide mechanisms that explain energy transitions, while section 3.3 identifies the MLP and TIS 

frameworks that will drive the research approach. Sections 3.4 and 3.5 present the research method 

and data collection process respectively. Finally, the researcher position is presented in section 3.6 

followed by the study’s limitations in section 3.7. 

 

3.1 Research approach 

Exploratory research is defined as research that aims at discovering, improving understanding, 

gaining new insights, and increasing knowledge about an understudied phenomenon (Stebins, 

2011). It is used when there is reason to explore a group, activity or situation, despite the lack of 

scientific knowledge, high levels of uncertainty, and lack of understanding surrounding the case in 

point (Reiter, 2017). It is characterized by “flexibility” and “open mindedness” regarding 

methodologies and data collection and targets understanding human acts and inductively deriving 

generalizations about the group, process, activity, or situation under examination (Stebins, 2011). 

As such, exploratory and inductive research focuses on process theory and the causal mechanisms 

that “underlie and produce social phenomena” and allow for the development of knowledge on the 

“why” and “how” (Reiter, 2017, p.140).  

Process theory, in contrast to variance theory, takes into consideration that entities (not variables) 

which change their identities over time, are responsible for outcomes. A variance approach is based 

on the deduction of causes (variables) from theory and the conducting of experiments where 

variables are manipulated, and results are compared based on the presence or absence of the 

variable investigated. The presence of cause (variable) is demonstrated through the relationship 

between inputs and outputs. These non-dynamic patterns are captured through quantitative and 
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statistical analysis methods (Poole et al., 2000). By contrast, in the non-experimental approach 

defined as the process approach, the researcher observes an effect and identifies (suspects) causes. 

Since the researcher is unable to influence the causal variable (as in the case of an experiment), 

they draw on theory and experience to indicate the mechanism suspected to be responsible for the 

effect (Pentland, 1999; Morris, 2005). 

Grin et al. (2010, p.94) focus on five main differences between variance and process approaches:  

1) Different character of entities investigated: in variance theories entities possess a fixed set of 

variables and maintain their identities through time, while variables do the acting. For example, in 

the case of measuring the relationship between the number of clients served (dependent variable) 

and stakeholder participation (independent variable) in a new program start-up, measurements that 

occur at different time points assume that, first, client service means the same thing (no change 

over time) during these different time points, and second, that an increase in stakeholder 

participation (independent variable) will not change (influence) the character of the client service 

(see Poole et al., 2000, p.31). In process theories, subjects are entities (people, groups, 

organizations, artifacts) and do the acting. Events are what entities (the actors) do or what is done 

to them. Process theories examine events rather than variables. 

2) Stability of entities: in variance theories attributes have one meaning causing change throughout 

the process. However, in process theories the unit of analysis under investigation is an entity that 

“evolves” and “makes things happen” and to which “events occur” (Poole et al., 2000, p. 39) and, 

as a result, it may change its identity (“undergo metamorphosis over time” (Grin et al., 2010, p.94)), 

define itself differently, or change its preferences as a result of experiences and learning.   

3) Time order of influence: in variance theories the sequence of influence of different independent 

variables on dependent variables over time is not important for the outcome. On the contrary, in 

process theories, the temporal sequence of the independent variables is important since the order 

in which events happen, as well as their duration, determines the causes and how long the causes 

operate and influence the outcomes. 

4) Causation and explanation: in variance theories variables act as forces on the unit of analysis 

and lead to its change (in terms of the outcome variable) signaling a “push-type causality” (Poole 

et al., 2000, p.33). In a process approach the narrative explanation is associated with “pull-type 
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causality” where “X [the precursor] does not imply Y [the outcome], but rather Y implies X” (p.42). 

Furthermore, process theories are “causally deep” (p.46), as they explain the development at 

different points based on prior events and influences. In addition, prior events become part of the 

entity’s history and continue to exercise influence on the entity and shape its future. Accordingly, 

narrative explanations are formulated as distant to recent layers of temporal explanations and may 

incorporate structural changes and trends (Grin et al., 2010). 

5) Generality of explanation: in variance theories, the evaluation of the theory’s generality is based 

on its ability to explain causality across a broad range of contexts and measured through statistical 

methods. In the case of process theories, the generality of the narrative explanation “stems not from 

its uniformity and consistency, but from its versatility, the degree to which it can encompass a 

broad domain of developmental patterns without modification of its essential character. The 

broader the domain -the greater the variety of cases, context, events, and patterns the theory can 

adapt to- the more general the explanation” (Poole et al., 2000, p. 43). 

The main method to establish knowledge on the “why” and “how” and causal sequences 

(mechanisms) involved in a case is process tracing (Collier, 2011; Bennet A. , 2010). Process 

tracing is used by qualitative researchers who investigate a limited number of cases (small-n 

methodologists), assume a complex world, and conceptualize causation as “a process involving the 

mechanisms and capacities that lead from a cause to an effect” (Bennet & Elman, 2006, p. 457). 

Accordingly, process tracing is defined as “an analytic tool for drawing descriptive and causal 

inferences (emphasis added) from diagnostic pieces of evidence-often understood as part of a 

temporal sequence of events or phenomena” (Collier, 2011, p.824). George and Bennett (2005, p. 

206) state that process tracing is used to “identify the intervening causal process—the causal chain 

and causal mechanism—between an independent variable (or variables) and the outcome of the 

dependent variable”. These causal mechanisms are defined as “unobservable physical, social, or 

psychological processes through which agents with causal capacities operate, but only in specific 

contexts or conditions, to transfer energy, information, or matter to other entities. In doing so, the 

causal agent changes the affected entities’ characteristics, capacities, or propensities in ways that 

persist until subsequent causal mechanisms act upon them” (George & Bennett, 2005, p. 137).  
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Research purposes of process tracing variants in the literature include (i) theory testing, (ii) theory 

building, and (iii) case specific process tracing (Kay & Baker, 2015; Beach & Pedersen, 2013). 

Process tracing for theory testing involves the testing of causal mechanisms that a theory supports 

by asking if the causal mechanism is present in the case and if it functions as the theory suggests, 

or, otherwise said, if the theory proposed X mechanism explains Y outcome in the case examined. 

In theory-building, process tracing is used inductively by, first, asking what the causal mechanism 

between X and Y is and, second, building a theory that can be generalized to a population.  Finally, 

process tracing in a “particular interesting and puzzling” case study (Beach & Pedersen, 2013, 

p.18) is not to build or test theory, but to generate an explanation of the outcome Y. 

Since the focus of this study is on exploring, understanding, and explaining the transition of remote 

indigenous community electrical systems between 1980 and 2016, a theory testing process tracing 

approach will be used. Investigating the presence or absence of causal mechanisms predicted by 

existing theorization in the case of remote indigenous communities would then provide the 

foundation for further investigation of causal mechanisms through in-depth single case studies 

leading to theory building (Beach & Pedersen, 2013). Furthermore, testing prior theorized 

mechanisms contributes to theory building by improving a theory’s validity, while findings may 

expand the theory’s application context and identify consequences that were not present in the 

original theory (Colquitt & Zapata-Phelan, 2007). 

In the case of theory-testing process tracing, the following methodological steps are involved 

(Beach & Pedersen, 2013, p. 14; Kay & Baker, 2015, p. 15):  

(1) Identify a preexisting theory and the hypothesized mechanisms X and their empirical proxies 

(which we expect to observe if present in the specific case and which predict the cause of Y) 

and make clear the context to which they apply. 

(2) Operationalize the theorized causal mechanisms and translate the theoretical expectations to 

case specific predictions. 

(3) Collect empirical evidence that can be used to make causal inferences. Evidence collection is 

driven by the theory chosen in the previous step. Using the definition for mechanisms, causal 

process tracing takes the form of “X caused Y through the mechanistic sequence of A, B, C in 

the case Z” (Kay and Baker, 2015, p. 15). 
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The empirical evidence provides the basis for causal inferences by improving knowledge about 

(and confidence in) (a) whether the hypothesized causal variables were present or absent in the 

examined case, or X and Y actually took place (descriptive inference), and (b) whether the causal 

mechanism functioned as expected, or X caused Y (causal inference). The hypothesized 

relationship is “inductively confirmed if the probability of it being true is higher after the diagnostic 

evidence is known than its probability of being true prior to collecting the evidence” (Kay and 

Baker, 2015, p. 15). 

Causal inference builds in careful description (Collier, 2011).  It is the detailed descriptive 

component capturing “good snapshots at a series of specific moments” (Collier, 2011, p.824) that 

provides evidence that (i) the events really occurred (the hypothesized variables were present) (ii) 

how they unfolded (their sequence and extent), and (iii) if the anticipated reaction was present (the 

hypothesized mechanisms performed as the theory predicts) (Mahoney, 2012). The theoretical 

hypothesis is evaluated using two types of empirical tests, the hoop test and the smoking gun test, 

which are developed based on the causal inferences made when, using process tracing, (a) we find 

the predicted evidence, and (b) we do not find the predicted evidence, respectively (Beach & 

Pedersen, 2013). A hoop test would involve a hypothesis that is certain (evidence is present), but 

the outcome is not unique (an alternative hypothesis may produce the same outcome). Failing such 

a test (no evidence present) reduces our confidence in the hypothesis. However, if both the 

uniqueness and the certainty about the hypothesis is increased (e.g. by hypothesizing a complicated 

mechanism and providing evidence that the components of the complex mechanism are present, 

and that the causal mechanism functioned as expected), then the strength of the hoop test is 

increased, and the confidence in the validity, and hence the importance, of the hypothesis is 

improved (Collier, 2011; Mahoney 2012; Kay & Baker, 2015). In the case of a “smoking gun test” 

it is hypothesized that an unobserved cause or outcome took place and its traces, for which the 

cause or outcome is a necessary condition, are captured by the researcher. The presence of such 

traces infers that the cause or outcome took place and the validity of the hypothesis is confirmed 

(Mahoney, 2012).  

Data collection of empirical observations that form the evidence in process tracing is guided and, 

therefore, influenced by the chosen theoretical concept. Empirical observations (called causal 

process observations (CPOs)) may take the form of a narrative data set and, to be considered 
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diagnostic evidence, must be evaluated in terms of their relevance to the process examined (Kay 

& Baker, 2015). Beach and Petersen (2013) argue that CPOs are considered evidence when they 

have “any tendency to make the existence of any fact that is of consequence to the determination 

of that action more probable or less probable than it would be without evidence” (p.99). Kay and 

Baker (2015), quoting Collier, Brady, & Seawright (2004), state that evidence is “information 

about context, process, or mechanism”, which “… contributes distinctive leverage to causal 

inference” (p. 12).  

Evidence in process tracing includes pattern, sequence, trace, and account evidence (Beach & 

Pedersen, 2013).  Pattern evidence takes the form of predictions of statistical patterns in the 

evidence set, while sequence evidence captures the “temporal sequences and events and the 

conjunctures of event chains” (Grin et al., 2010, p. 93) predicted by the hypothesized causal 

mechanism. Trace evidence provides proof that the suggested mechanisms exist, and finally, 

account evidence considers the content of the empirical material used as evidence. Furthermore, 

evidence also consists of primary CPOs, such as documents produced by participants prior or 

during events, as well as documented events themselves, which are subject to bias generated by 

the actors that produced them. Secondary CPOs used as evidence would build on, and interpret, 

primary evidence and may include historical analysis, articles, manuscripts, and interviews with 

participants that provide information on events or, in the case of participants with different 

worldviews, their motivation for events (Beach and Pedersen, 2013; Kay and Baker, 2015).  

Secondary evidence should also be examined for potential bias. In addition, evidence may also be 

assigned a weighting factor depending on their contribution to the hypothesis promoted (Mahoney, 

2012).  

Criticism towards process tracing as a research methodology in social sciences comes from 

supporters of quantitative approaches. They argue, first, that the existence of an “infinite number 

of causal steps between any independent and dependent variable” leads to “infinite regress”, and, 

second, that research that examines a large number of variables using a small number of cases is 

unable to “truly link the independent variable with the dependent variable” (Mahoney, 2010, p. 

123; Bennet, 2010). Furthermore, since in theory-testing process tracing inferences are drawn 

about whether a set of mechanisms hypothesized by an existing theory was present, and whether 

the mechanism functioned as expected, another limitation relates to the researcher’s bias towards 



 

  

40 

the selection of a specific theory. Such errors can be avoided by using multiple theories or a 

combination of theoretical approaches (Kay and Baker, 2015). A further limitation relates to the 

inability of theory-testing process tracing to test the explanations provided by alternative, or 

competing, mechanisms, or to compare mechanisms (Beach and Pedersen, 2013). Moreover, since 

the outcome of a process is not the result of the presence of the mechanisms (a mechanism does 

not cause an outcome, but “causation resides in the interaction between the mechanism and the 

context within which it operates” (Kay and Baker, 2015, p.7)), it is possible that the same outcome 

is the result of different mechanisms and processes (equifinality) and that the same mechanisms 

and processes can produce different outcomes (pathways) in different contexts (multifinality) (Kay 

and Baker, 2015).  

 

3.2 Towards a theoretical framework of the study 

In the next sections, I review three sub-disciplines involved in energy research, political ecology, 

political economy, and transitions management, which use political, economic, sociotechnical, and 

environmental factors to explain change in multi-stakeholder settings. Their theoretical 

backgrounds, methodological approaches, and limitations are highlighted, with the goal of 

providing insights for the identification of a theoretical framework to be used for this study. In a 

second step, I introduce the conceptual framework and the hypothesized mechanisms that explain 

the deployment of RETs. The framework, in turn, drives the study’s data collection, and 

interpretation of results (Leshem & Trafford, 2007; Grant & Osanloo, 2014), which will provide 

the basis for causal inferences and knowledge development on the “why” and “how” of the 

transformation, and achieve the study’s second and third objectives, namely: to improve 

understanding of the “wickedness” (the technical, contextual, and social complexity) associated 

with the introduction of RETs into remote indigenous community electrical systems; to explain the 

diffusion to date of RET projects into these systems; and to examine how these implemented 

processes for coping with the wickedness levels (the mechanisms and actors’ strategies) were 

modified to encompass indigenous perspectives, with the goal of identifying pathways and 

developing policy recommendations. 
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3.2.1 Political ecology 

Political ecology is rooted in critical theory and Marxian political economy to analyze relationships 

between economy and the environment (Greenberg & Park, 1994). Bryant (1992, p. 12) defines 

political ecology as a method to develop understanding “of how environmental and political forces 

interact to mediate social and environmental change”. Over time political ecologists’ interests 

shifted from ecological processes to the definition of power relationships involved in control and 

access of resources, and the influence of multiple scales and global policies to local environmental 

challenges (Nygren & Rikoon, 2008). This focus is captured through research questions that ask, 

“how and to what degree do control over the environment and knowledge of the environment, 

along with the distribution of environmental access and authority, influence environmental 

conditions and change?” (Turner & Robbins, 2008, p. 300). Political ecologists argue that it is 

politics and social power on top of environmental problems’ social complexity that influence the 

capacity to address social-ecological problems (Zimmerer, 2015). Furthermore, political ecology 

research “tends to reveal winners and losers, hidden costs, and the differential power that produces 

social and environmental outcomes” (Sovacool, 2000, p. 530).  

Over recent decades, political ecology has expanded in terms of worldviews, topics, and research 

directions with studies ranging from Marxian theoretical critiques, to assessments of the global 

biotechnology industry, and sustainable livelihoods in rural communities (Walker, 2006). Key 

energy-related political ecology topics include conflict, armed violence, and access to land and 

participation in decision making in the case of natural resources and fossil fuels exploitation 

(Watts, 1998; Billon, 2001; Bebbington, 2009), disputes between exploitation of marginal lands 

for biofuel production and risks for populations depending on such lands (Bailis & Baka, 2011), 

conflict between expansion of biofuel production and forest preservation (Orsato, Clegg, & Falcao, 

2013), or environmental costs of biofuels to rural communities (Baka, 2017). In the case of 

renewable energy, topics include the influence of energy security and national security, and justice 

and equity issues to spatial energy configurations (Zimmerer & Basset, 2003), environmental 

impacts, changes in resource management practices, and impoverishment of people from large 

hydroelectricity generation to the benefit of private actors and the state (Martinez & Castillo, 2016), 

or modern core-periphery conflicts to the benefit (again) of the core (Zografos & Martinez-Alier, 

2009). 
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Moreover, political ecology examines the struggle of indigenous populations around the protection 

of forests, rivers and natural resources from state, mining and other development interests (Escobar, 

1998), their right to economic, cultural and ecological perspective difference from mainstream 

models (Escobar, 2006), and the right for implementation of natural resource management 

practices that meet the economic, social and cultural practices of indigenous community members 

(Natcher, Hickey, & Davis, 2004). 

The diversity of objectives, epistemologies and methods employed by political ecologists have 

been criticized for their inability to engage policy makers. Walker (2006) argues that the large 

theoretical base and multitude of research under the political ecology discipline “poses an obstacle 

to the ability of the field to mount coordinated efforts to resolve tangible problems in the world 

outside” (p.392). Methodologically, political economy uses case studies that examine multiple 

themes, variants of ethnography, document research, and qualitative and quantitative analysis, 

including Marxian analytical methods and comparative analysis, to identify power relationships to 

explain linkages and changes in socioenvironmental systems (Walker, 2006; Baka, 2017). Another 

criticism to political ecology focuses on the use of theoretical frameworks to assume the 

relationships between political economic systems and environmental change. Vayda and Walters 

(1999) argue that the concentration on politics and power events to establish causal relationships 

may lead to the neglect of other events, and thus to a research agenda focusing on politics rather 

than ecology (see also Walker, 2005). Such an approach also overlooks complex interactions 

among factors that could be responsible for environmental change: the increased focus on 

sociopolitical factors impacting the environment diminishes the importance of ecological and 

cultural processes involved in complex change (Nygren & Rikoon, 2008). Alternatively, Walters 

and Vayda (2009) propose event ecology, or a causal historical research and analysis of events, 

where events are environmental changes. Event ecology, based on a process approach, explains 

why specific environmental changes have occurred by establishing causal connections to prior 

events through the use of socioeconomic and biophysical information relevant to the subject of 

interest, thus focusing on situation causes rather than theoretical prescriptions (Walters & Vayda, 

2009; Vayda, 2006; Walters, 2017).  

Accordingly, a political ecology investigation of the transformation of remote indigenous 

community electrical systems through RETs would examine the influence of political economy 
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decisions, energy security, and justice and equity issues associated with RET deployment. Political 

ecology considerations that would be valuable for a conceptual framework examining RETs 

deployment would focus on: (a) the historic processes that shape socioeconomic relationships 

between participants, (b) the views and role of local users on local resources exploitation and their 

participation in the decision making process, and (c) the identification of benefits from renewable 

resources exploitation and the analysis of mechanisms used by participants to “gain, control, or 

maintain access within particular political and cultural circumstances” (Ribot & Peluso, 2003, p. 

161). 

 

3.2.2 Political economy 

Political economy is broadly defined as the analysis of linkages between politics and economics, 

stemming from the perspective that governance, in the form of political behavior (exercising power 

and authority) and institutions, influences economic outcomes (Weingast & Wittmann, 2015). 

Rhodes (2000) illustrates the interplay between economy and governance by defining governance 

as a new political economy; governance is both “the political and economic processes that 

coordinate activity among economic actors” and “the complex art of steering multiple agencies, 

institutions and systems which are both operationally autonomous from one another and 

structurally coupled through various forms of reciprocal interdependence” (Rhodes, 2000, p. 59). 

Accordingly, political economy questions examine the interactions between political and economic 

processes, the distribution patterns of power and wealth between participating institutions and 

individual actors, as well as the processes responsible for the creation and transformation of these 

patterns (Collinson, 2003). 

The broad focus of political economy calls for various approaches and methodologies to examine 

political and economic processes. Quantitative methods include, for example, input-output analysis 

(Watkins, 1963), statistical analysis (Bullock, Imai, & Shapiro, 2011) and statistical inference for 

causal effects (Bowers, Fredrickson, & Panagopoulos, 2013). These methods are complemented 

by qualitative methods, such as institutional analysis used for the analysis of regional or national 

economies (Ostrom, 2011), as well as, more recently, bottom-up institutional economics that study 

individual interactions (Greif, 2006) and case studies (Odell, 2001). In addition, commodity chain 
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analysis examines control of commodities in given settings, while livelihoods analysis aims at 

identifying economic, political, social and cultural factors that define and influence the livelihoods 

of individuals, at multiple levels (local, national and international) (Collinson, 2003). Finally, a 

governance and political economy (GPE) analysis examines interactions among structure, actors, 

and institutions, and the likelihood of success of actions promoting system changes (Fritz, Kaiser, 

& Levy, 2009). 

Political economy investigations related to natural resources and energy in the Canadian context 

(see also Wellstead, 2007) focus on the different perspectives between non-renewable staples 

developers, territorial governments, and local actors that use the land’s traditional resources 

(Hutton, 2007). Since such perspectives depend on location, resource scarcity or abundance, and 

national strategies (Veltmeyer, 2013; Bebbington, Bornschlegl, & Johnson, 2013; Collinson, 

2003), political economists explore  new complex forms of governance based on more flexible and 

inclusive regulatory approaches (Fitzpatrick, 2007). For example, Carroll, Stephenson, & Shaw 

(2011) examined the post staples economy of British Columbia and the need for regulatory models 

that promote sustainable development to address resistance from various actors (including 

indigenous communities) to shale gas development. However, sustainability interpretations are 

also subject to political economy analysis based on the ideologies and arguments of participating 

actors on markets, technology, and focus on power relationships (Davidson, 2014). 

Political economy studies in the case of renewable energy development in Canada examine the 

structural changes of electricity generation producers to identify factors that may influence future 

expansion of renewable sources. Netherton (2007) used a staples analysis to identify the shifting 

structures of electricity regimes through changes in the distribution of electricity generated rents 

(industry subsidization, to mass production facilitation, to sustainable development), shifts in 

technology (from available resources, to mass hydroelectricity, to multiple renewable 

technologies), and trade networks (from fixed borders, to provincial grids and northern extensions, 

to integration to the North-American interconnected grid). Furthermore, Haley (2011) used a 

staples political economy analysis to examine Canada’s new staple trap and identified strategies, 

such as fiscal linkages between the fossil fuels industry and the green industry, to address political 

demand for transition to a low carbon economy (Haley, 2011). Finally, MacArthur (2017) 
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identified policy intervention, financial resources, and political will towards renewables as 

important factors for the uptake of small-scale community energy projects.  

In the case of renewable energy deployment in developing countries, political economy has 

examined the coalition formed by policy makers and incumbent regimes in the form of multiple 

arrangements among fossil fuel corporations, industry, military, and governments under concepts 

such as the “carbon lock-in” (Unruh, 2000), the “mineral-energy complex”, the “carbon capital”, 

and the “fossil fuel historical bloc” (Geels, 2014). Forms of power used by regimes to resist change 

include instrumental power (e.g. authority and money), discursive strategies (controlling “what” 

and “how” issues are discussed), improvements and adaptations of existing sociotechnical 

configurations, and institutional power (culture, ideology and governance structures) (Geels, 

2014).  For example, overinvestment in electricity infrastructure from the mineral-energy complex 

in combination with privatization initiatives, shape the energy landscape and the transition to 

sustainable alternatives in a socially and spatially uneven way in South Africa and Mozambique  

(Baker, Newell, & Philips, 2014; Power, et al., 2016), while powerful political vested interests in 

coal generation act as barriers to the uptake of RETs despite societal pressures for clean electricity 

in India and China (Isoaho, Goritz, & Schultz, 2016).    

Accordingly, similarly to political ecology, the integration of political economy considerations into 

a conceptual framework that examines RET deployment would focus on: (a) historical legacies 

and economic processes that create the current economic and political situation under 

consideration, (b) institutional structures, related to laws, regulations and formal and informal rules 

and cultural obligations, and (c) the creation and allocation of rents, which create winners and 

losers in a given economy, and influence governance structures and economic growth (Fritz, et al., 

2009). 

 

3.2.3 Sustainability transitions 

Sustainability transitions represent “fundamental transformation towards more sustainable modes 

of production and consumption” of established large-scale sociotechnical systems that are unable 

to address current sustainability challenges (Markard, Raven, & Truffer, 2012, p. 955). A 

sociotechnical transition is defined as a set of processes (initiated by technological innovations) 
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that radically change a sociotechnical system “along different dimensions: technological, material, 

organizational, institutional, political, economic, and socio-cultural” (Markard, Raven, & Truffer, 

2012, p. 956). These processes involve technological innovations generated by “multiple trial and 

error processes” and involving “social and cultural dimensions” (Geels, 2010, p.498). 

Sociotechnical transitions are examined under four different approaches (a) the multi-level 

perspective (b) strategic niche management; (c) transition management; and (d) technological 

innovation system (Markard, Raven, & Truffer, 2012, p. 956).  

The first three approaches are closely related and rely on a “transitions perspective”, defined 

through the multi-level perspective (MLP), which introduces transitions as the results of 

interactions between meso-level socio-technical regimes, micro-level niche innovations, and 

macro-level landscape pressures. Strategic niche management focuses on the role of technological 

niches (articulation of expectations and visions, building of social networks, learning processes) 

and how they, eventually, compete with the current sociotechnical regimes’ technologies (Schot & 

Geels, 2008). Transition management was developed as a systemic approach to examine large-

scale and complex environmental problems in energy, transport and agrifood systems (Geels, 2005) 

and understand and orient change (Meadowcroft, 2005, p. 483). It introduces “system innovation” 

and radical restructuring (rather than incremental innovations), as well as reflexive governance for 

“steering” the transformation of current unsustainable systems to more sustainable ones (Kemp & 

Loorbach, 2006; Loorbach, 2007).  

The fourth approach, the technological innovation system (TIS), adopts an “emerging 

technological perspective” and focuses on the identification of important drivers, barriers, and 

interactions responsible for the uptake of specific technological innovations (Markard & Truffer, 

2008, p. 596). All approaches aim to identify factors that influence the transition process, either at 

an aggregate level (e.g. sectoral), or at the technology or product level.  

The multi-level perspective and the technological innovation system approaches will be detailed 

next.  
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3.2.3.1 The multi-level perspective (MLP) approach 

The technological transition approach, or the multi-level perspective (MLP) approach, 

conceptualizes the transition process through the interaction of three levels, namely technological 

niches, socio-technical regimes, and landscapes (Geels, 2005; Geels & Schot, 2007). Landscape 

(macro-level) factors represent broader overarching political and social institutions, while socio-

technical regimes consist of the practices of actors and institutions that establish and maintain a 

technological system (meso-level); finally, technological niches are the spaces where new 

innovations are created (micro-level), protected from market intervention until they reach maturity 

and build the necessary networks for market integration (Foxon, Hammond, & Pearson, 2010). 

The main component of the framework is the meso-level with sociotechnical systems consisting 

of human beings and machines interacting for the provision of services; examples are 

infrastructural projects, such as electricity generation and provision, where humans, institutions 

and infrastructural components operate together for the provision of electricity services (Geels, 

2005). Within the system the sociotechnical regimes are defined as “stable configurations of 

institutions, techniques and artefacts, as well as rules, practices and networks that determine the 

‘normal’ development and use of technologies” (Smith, Stirling, & Berkhout, 2005, p. 1493). They 

experience high inertia (rigidity) due to interactions with user practices, technologies, business 

models and regulations, as well as institutional and political structures, with changes taking place 

in an incremental rather than a radical way. The MLP identifies transition pathways towards new 

sustainable systems as a result of “interactions between the internal regime dynamics and wider 

landscape factors and niche alternatives, which destabilize the incumbent regime and eventually 

give rise to a new regime” (Foxon, 2011, p. 1207). Landscape factors include political and business 

cycles, changing demographics, or shifts in environmental awareness, cultural preferences and 

public opinion (Geels, 2004; Sorell, 2018). Regime level stresses occur when regimes are 

inadequate and unable to provide the societal needs they are supposed to support and  take the form 

of “mis-matches between certain rules”, such as, for example, policies not aligned with societal 

problems or incentives and subsidies that do not contribute to problem solving (Geels, 2004, p. 

914; de Haan & Rotmans, 2011). Finally, micro- level pressures take the form of alternatives to 

the functioning of current regimes in the form of, for example, technological alternatives 



 

  

48 

(electronic vs. telefax technology vs. traditional mail) or new organizational forms (private health 

care vs. regular healthcare) (deHaan & Rotmans, 2011). 

 

3.2.3.2 The technological innovation system approach 

In the “emerging technological perspective”, sociotechnical change is the result of emerging 

technological innovation systems. A technological innovation system (TIS) distinguishes itself 

from geographically (national systems of innovation) or industrially (sectoral innovation systems) 

focused systems through its specific technological focus (Vidican, McElvaney, Samulewicz, & Al-

Saleh, 2012) and is defined as:  

“a dynamic network of agents interacting in a specific economic/ 

industrial area under a particular institutional infrastructure and involved 

in the generation, diffusion and utilization of technology (Carlsson and 

Stankiewicz, 1991, p. 111)” (quoted in Markard and Truffer 2008, 

p.599). 

In this case, the innovation system and its components, actors, institutions and interactions 

(relationships) between them, become the unit of analysis (Markard & Truffer, 2008; Bergek, 

Jacobsson, Carlsson, Lindmark, & Rickne, 2008). Actors are the private consumers, firms, 

governmental agencies, universities, non-governmental organizations (NGOs) and a multitude of 

other organizations participating in any given technological innovation. Institutions are considered 

the laws and regulations, technical, formal and informal rules and norms, visions, expectations that 

shape the interactions between actors (Markard & Truffer, 2008). Finally, interactions (or 

relationships) are means of transfer of codified and tacit knowledge at the individual or 

organizational levels; interactions are developed and exchanged between the elements of the 

system through cooperative relationships or the establishment of networks between different 

actors, between actors and institutions and among institutions (Wieczorek & Hekkert, 2012). 

Examples of interactions that influence and shape the uptake of a TIS, are the development of 

business associations, coalitions, research communities, political advocacy and business networks, 

since actors may compete or collaborate, may use existing institutional arrangements or create new 

institutions, and different institutional settings may reinforce or displace innovation potential. The 
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constant interplay between the system’s elements, coordination mechanisms and the development 

of interrelations defines the dynamic character of the TIS that may or may not lead to the uptake 

of certain innovative products within a specific environment (Bergek, et al., 2008; Markard & 

Truffer, 2008).  

Examining the uptake of a TIS can be done through the analysis of both the structural and the 

functional components that form the TIS.  A structural analysis maps the TIS elements and 

evaluates their capacity to encourage innovation (Bergek, et al., 2008; Wieczorek & Hekkert, 

2012). A structural analysis will examine if actors, institutions, networks (as operationalization of 

interactions of cooperative relationships) are present in a given setting as well as their capacity to 

perform and stimulate the TIS. Wieczorek and Hekkert (2012) add infrastructure in the form of 

physical (artefacts, machines, roads, buildings), financial (financial programs, subsidies, grants), 

and knowledge (expertise, know how, strategic information) infrastructure as an important 

structural component, the existence and performance of which influences the uptake of a certain 

TIS.  The dynamic component of the TIS is related to the “processes” that are important for the 

TIS performance, which are categorized as functions of the innovation system. According to 

Johnson (1998), Jacobsson & Bergek (2004), Bergek, et al., (2008), and Hekkert, Suurs, Negro, 

Kuhlmann, & Smits (2007) the functions are: F1 (entrepreneurial activities), F2 (knowledge 

development), F3 (knowledge diffusion), F4 (guidance of the search), F5 (market formation), F6 

(mobilization of resources), and F7 (creation of legitimacy/ support from advocacy coalitions). 

Their definitions are presented in Table 2.  
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Table 2: Functions of TIS 

F1. Entrepreneurial 

Activities 

Entrepreneurs are essential for the function of the TIS. They can be new or existing firms; they 

take advantage of opportunities and engage in experiments. Lack of entrepreneurial activity is 

caused by the underperformance of the other function. 

F2. Knowledge 

Development 

Includes learning mechanisms and captures the current knowledge of the TIS, and includes 

scientific, research, technology, market, deployment, and design knowledge. 

F3. Knowledge 

Diffusion 

Knowledge networks facilitate information exchange and promote further knowledge 

development through interactions. 

F4. Guidance of the 

Search 

Guidance of the search represents the selection process that is necessary to facilitate a 

convergence in development. It includes long-term targets, policy options, outcomes of 

technical or economic studies and technological expectations. 

F5. Market Formation  Since new technologies often cannot compete with established ones, niche markets are 

formulated to provide the opportunity for new technologies to grow. They take the form of 

incentives, favorable tax policies and new environmental regulations. 

F6. Resource 

Mobilization 

Financial, material and human capital are necessary inputs for the development of knowledge, 

new markets and experiments. This function represents input for other functions.  

F7. Support from 

advocacy coalitions/ 

legitimization 

The emergence of a new technology often finds resistance from established actors. For an 

innovation system to develop, actors lobby for resources (F6), incentives (F5) and new 

knowledge (F2) to counteract the incumbent system’s inertia. 

Source: Adapted from Hekkert et al. (2007); Bergek et al. (2008); Suurs & Hekkert (2009) 

 

Empirically, operationalization of the functional patterns is achieved through a set of indicators or 

diagnostic questions, which can be both qualitative and quantitative, describing the content of the 

function (Bergek et al., 2008). For example, entrepreneurial activities (F1) can be measured 

through the number of new firms established or new projects undertaken; the function guidance of 

the search (F4) can be measured through the targets developed by governments or press releases 

that set expectations and future policy goals (Table 3) (Markard & Truffer, 2008). Mapping of TIS 

functions through activities (their operationalizations) over a time period can additionally create 

an evolutionary pattern of the innovation under examination (Negro et al., 2007). 
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Table 3: Functions of innovation and operationalization indicators 

System function Indicators 

F1. Entrepreneurial Activities Number of new entrants and diversifying established firms; number of different 

types of applications; breadth of technologies used. 

F2. Knowledge Development Bibliometric; number, size and orientation of R&D projects; patents.  

F3. Knowledge Diffusion Number of workshops; conferences; network size and intensity. 

F4. Guidance of the Search Belief in growth potential; incentives from taxes (factor prices); regulatory 

pressure; expression of interest of leading customers; targets set by 

governments; number of press articles that raise expectations. 

F5. Market Formation  Market size; customer groups; actor strategies; role of standards; purchasing 

processes; lead users. 

F6. Resource Mobilization Volume of capital and venture capital; volume and quality of human resources; 

complementary assets. 

F7. Support from advocacy coalitions/ 

legitimization 

Alignment with current legislation; standards; visions and expectations; 

depiction in newspapers. 

Source: Adapted from Markard & Truffer (2008, p. 604). 

 

3.2.3.3 Transitions and policy intervention 

Both the MLP and TIS frameworks allow for actors participating in the transition process to “steer” 

the direction of the transformation through policy or governance interventions. “Steering” within 

the “transition perspective” leads to the transition management process (Kemp & Loorbach, 2006). 

The process is initiated by developing shared understanding of the problem through a problem 

structuring and envisioning process that examines the culture of a system (or subsystem) and 

components such as norms, values, ethics and sustainability. Subsequently, a sequence of tactical, 

operational and reflexive activities for the transformation of a societal system, or a subsystem 

(energy system and energy supply), is introduced. First, tactical activities such as rules, regulations, 

institutions and networks development related to the structure of a societal system (or subsystem, 

or project) are introduced as “steering” activities. Second, operational activities consisting of 

actions, practices and experiments introduce new structures, culture, routines and actors and are 

driven by entrepreneurial ventures and innovative social and technical solutions created at the niche 

level. Finally, reflexive activities monitor, assess and evaluate the transition process and transition 

management components (problem structuring and envisioning, transition agendas, and 

experiments) to improve learning through the interaction and cooperation of involved actors and 
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to stimulate action towards the long-term goal of the transition process (Loorbach, 2007; Loorbach, 

2010; Grin, Rotmans, & Schot, 2010). The factors that influence the sociotechnical regime 

transformation include (a) the articulation of a pressure targeting social change (addressing a 

sustainability problem), (b) the existence within the regime of adequate resources (physical and 

capabilities) for the regime transformation or the ability to acquire them, and (c) the effective 

coordination of resources to address the change (Smith, Stirling, & Berkhout, 2005).  

Similarly, “steering” and policy related issues with the TIS approach result from the proposition 

that the structure and functions of a TIS are influenced by the existence and capabilities of different 

actors and institutions, as well as the existence and quality of the interactions.  Both structure and 

function can be influenced by “inducement” and “blocking” mechanisms, which are responsible 

for the shaping of the TIS dynamics. Targeted policies may affect the mechanisms that induce the 

transformation process creating the “virtuous cycles” of successful activities, resulting in the 

moving of the key processes and the diffusion of the specific technological innovation and the 

transition from one sociotechnical regime to the desired next one (Bergek et al., 2008; Elzen & 

Wieczorek, 2005).  

 

3.2.3.4 Critique on transition approaches 

Both the MLP and the TIS frameworks have been criticized for various deficiencies. Critique on 

the MLP framework concentrates on issues of operationalization and specification of regimes, its 

focus on elite actors, a bias towards bottom up change in the form of niche-level mostly 

technological artifacts, its heuristic rather than positivist character and methodological lack of 

statistical regression techniques to offer solutions, and issues of agency and power (Geels, 2011). 

Further critique of the MLP focuses on the lack of geographical factors that may also influence the 

transition process (Hansen & Coenen, 2015; Coenen, Benneworth, & Truffer, 2012). Similarly, 

critique on the TIS approach concentrates on the lack of political power as an important contributor 

to agency issues (Kern, 2015), and lack of a spatial component and interactions between sectors 

explaining differences in TIS diffusion (Coenen, 2015; Bergek, et al., 2015; Markard, Hekkert, & 

Jacobsson, 2015).  
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Accordingly, and similar to political ecology and political economy considerations, the impact of 

power and politics on transitions represent the main criticism to the MLP and TIS. The political 

ecology perspective is summarized by Lawhon and Murphy (2011) who draw attention to four 

specific points related to power and how power is exercised within the transition literature, namely 

(a) the definition of the problem, or “how the terms of change are defined and by whom” (p. 365), 

since who decides the type, extent and direction of the sustainability transition influences the 

problem definition in a specific way and indicates a particular solution favoring some groups over 

others; (b) the inclusion or exclusion of actors from “transition arenas”; (c) the shaping of the 

sustainability direction though language and discourses used by transition experts; and (d) the 

adoption of niche-technology options that would lead to electrical systems beneficial for the local 

social systems. In a similar way Hillman et al. (2011) ask about the “who, how, and what” of the 

governance arrangements within the TIS that have the potential to influence the transition process. 

The political economy perspective of power and how it is exercised in transitions involves 

regulatory and fiscal arrangements that may influence landscape factors (e.g. the economic 

climate), regime actors (through e.g. regulations and policies providing financial incentives), and 

niches (through e.g. policies that support or discourage innovations) (Avelino & Rotmans, 2009; 

Meadowcroft, 2011). These arrangements, supporting the deployment of RETs, create a significant 

“pool of economic rents” in the form of subsidies, tax reductions, financial assistance, permits, and 

political and administrative power that influences the transition process (Helm, 2010; Strunz, 

Gawel, & Lehmann, 2016). These rents, in turn, have the potential to influence actors’ relationships 

and strategies, shape the transition process and create winners and losers among participating 

stakeholders (Shove & Walker, 2007; Smith, Stirling, & Berkhout, 2005). As May & Jochim 

(2013) state, “[policies] …shape politics by allocating winners and losers, by sending signals about 

who is deserving and undeserving, and by setting in place feedback processes that affect political 

participation and future policy demands. […] public policies are key components of governing” 

(p. 426). In the case of developing countries, as well as in the case of remote indigenous 

communities, the fact that regulations and financial rents associated with energy transitions can be 

important for economic development and political stability may complicate the process further 

(Khan & Jomo, 2000; Fritz, Kaiser, & Levy, 2009). 
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3.2.4 Concluding remarks   

Despite the analytical strength of political ecology and political economy approaches on power 

related issues, this study will use the MLP and TIS frameworks for the following reasons. First, 

the MLP and TIS are process approaches (Grin, et al. 2010; Suurs, Hekkert, Kieboom, & Smits, 

2010), and, therefore, better equipped than a variance approach to explain the transformation of 

communities’ electrical systems (see section 3.1). A variance approach and a focus on a number 

of factors as independent variables responsible for the community energy transitions would be 

unable to capture dynamic interactions that influenced their transformation (for example, the 

establishment (or lack of) electricity rates structures or indigenous vested interests) in the period 

under examination. All participants involved in the remote communities’ electricity generation 

process changed their identities and governance structures between 1980 and 2016 as result of 

participation and interactions within a changing social, historical, economic and political context. 

The MLP and TIS are able to capture these long-term processes and complex dynamics that involve 

co-evolutionary interactions between actors, different trajectories (e.g. rate structures and 

regulations), technical innovations, and broader societal transformations influenced by markets and 

social movements (Grin et al., 2010). 

Second, the MLP and TIS are able to accommodate (to a certain extent) the main concerns of 

political ecology and political economy power and politics challenges that influence the transitions. 

Geels (2011) argues that although certain types of power, such as power struggles, are less 

developed, power and politics are captured in MLP through agency that is accommodated “in the 

form of bounded rationality (routines, search activities, trial-and-error learning) and interpretive 

activities” (p. 30). Political and cultural aspects, which are shaped by landscape level factors, can 

also be captured (to a certain extent) in the perspectives of regime and niche level actors that adjust 

their discursive activities. Furthermore, Geels (2014) acknowledges that regime actors are actively 

involved in political gaming, either resisting or supporting transitions for political and economic 

benefits and proposes that MLP analysis should be enriched by focusing on regime dynamics rather 

than niche innovations.  

Similarly, the TIS framework allows agency and political aspects to be captured through its 

functions. Community visions and multiple roles of local governments, such as exercising power 

for increased self-reliance and respect for aboriginal rights, treaties negotiation, investment 
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attraction, provision of social services, environmental licensing (Public Policy Forum, 2006), as 

well as promotion of certain innovations as “compatible” with aboriginal values and beneficial for 

the community, are captured through the “guidance of the search” and “legitimization” functions 

in the TIS approach (Markard, et al., 2015). Furthermore, politics, besides influencing regulation 

that supports “market formation” and, consequently, the “legitimization” function, have also the 

potential to influence academic research funding and impact both the “knowledge development” 

and “knowledge diffusion” functions. In this sense, participation, agency and power struggles 

between participants involved in producing change, will be reflected as changes observed in the 

TIS functions (Kern, 2015). 

Third, geographical factors that may influence the transition process take the form of location, 

landscapes, territoriality, spatial differentiation and uneven development patterns, the scale of the 

energy systems, and, finally, the spatial path dependency (Bridge, Bouzarowski, Bradshaw, & 

Eyre, 2013). To identify geographical factors influencing transitions, Coenen et al. (2012) ask for 

comparative analysis of different TIS that explicitly focus on “institutional socio-spatial 

configurations” (p. 973) and introduce the concepts of “comparative institutional advantage” and 

“institutional thickness” to connect economic geography and transitions research. Similarly, 

Markard et al. (2015) argue that regional TIS comparisons would be able to capture differences in 

structures, including institutions and regional professional cultures. Finally, Coenen (2015) argues 

that TIS empirical research could benefit from existing theories on spatial proximity and 

agglomeration economies that explain why innovative entrepreneurs concentrate in space.  

Fourth, both the MLP and TIS have been developed with the purpose to provide policy insights, 

and both frameworks, unlike political ecology, have been adopted by policy makers that seek to 

induce energy transitions (Alkemade, Hekkert, & Negro, 2011; Jacobsson & Bergek, 2011). The 

MLP and transition management approaches were developed as “a framework for considering 

portfolios of policy measures that nurture low carbon niche developments, putting pressure on 

emissions from incumbent regimes and facilitating processes for niches to inform regime 

transformation” (Scrace & Smith, 2009, p. 712). These policy frameworks take different forms 

during the different transition phases ranging from promoting variation in the pre-development 

phase, to stimulating learning and experimenting during acceleration, mobilizing actors and 

networks during take-off, and, finally, controlling the transition during the stabilizing phase. The 
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main policy goal is to achieve “gradual” social change and socioeconomic and environmental 

objectives, while minimizing social resistance (Rotmans, Kemp, & VanAsselt, 2001). Similarly, 

the TIS framework was initially developed as a tool to identify system weaknesses and the 

development of policy recommendations for specific technologies (Jacobsson & Bergek, 2011; 

Markard, Hekkert, & Jacobsson, 2015). More recently Markard et al. (2015) argue that the 

framework was developed to improve understanding rather than deliver policy recipes for policy 

makers by identifying systemic problems and the mechanisms that block innovation and social 

change and developing policy relevant insights, so that poor TIS functionality is improved (Bergek 

et al., 2008).  

Finally, neither the MLP nor TIS frameworks have been used for explaining the introduction of 

RETs in Canadian remote indigenous communities, although they have been applied in similar 

contexts in developing countries. The application of these frameworks in the Canadian context 

would, first, complement variance-based methodologies in the form of feasibility and optimization 

studies, and, second, allow for identification and exploration of new pathways and patterns that 

have not been previously considered through the inclusion of cultural and social goals of 

indigenous people, which, in turn, influence the outcome of the process to the benefit of the 

communities. In addition, a process approach, in a similar vein to indigenous methodologies, 

focuses on relationships between living things and their environment versus a “western 

individualism” focus of variance approaches on characteristics of individuals or communities to 

explain causality (Weber-Pilwax, 2004; Wilson, 2001; Cohen, 2001).  Indigenous methodologies 

favour “research (that) has to benefit the community… (and) serve the community” (Hart, 2010, 

p. 11; Weber-Pilwax, 2004). Furthermore, besides achieving the study’s objectives, the application 

and testing of the MLP and TIS in the context of Canadian remote indigenous communities may 

provide useful policy insights relevant to other indigenous communities in similar contexts. 

 

3.3 Theoretical framework of the study 

Both the MLP and the TIS frameworks have been extensively used for the study of the diffusion 

of renewable energy technological innovations. Both frameworks are based on evolutionary 

economics and include concepts of non-linearity and path dependence, praise the importance of 
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learning processes, institutions and networks, and were developed with a view to informing policy 

(Markard & Truffer, 2008; Meelen & Farla, 2013).  

The two frameworks also complement each other: analytical weaknesses of the MLP framework 

can be covered by the TIS framework and vice versa. The MLP explains the success of innovation 

and the transition process as the result of an interplay among stabilizing mechanisms at the regime 

level, destabilizing landscape pressures applied to regimes, and the emergence of radical 

innovations at the niche level. However, the MLP is unable to elaborate in detail how, for example, 

changing policies (governance structures) that influence the transition process, come about. This 

level of detail is provided through a TIS analysis and the use of functions and functional 

interactions (Hekkert, Suurs, Negro, Kuhlmann, & Smits, 2007, p. 418). Furthermore, the MLP 

framework offers limited details on the roles and strategies of participating actors, interactions 

between actors and institutions, and resource distribution and their role in the development of 

networks and actors’ capacity (Markard & Truffer, 2008; Smith, Stirling, & Berkhout, 2005). 

Conversely, the TIS approach is unable to capture broader landscape factors that influence the 

transition process or inertia of incumbent sociotechnical regimes, but is able to deal with strategies, 

resources, and agency through the use of a combined structural and functional analysis. By 

providing a clear distinction between structure and functions, it also allows the analysis of 

interactions between actors participating in a specific institutional infrastructure, responsible for 

the generation, diffusion, and use of the technological innovation, which, in turn, reveals how 

specific policies and governance structures come about (Hekkert, et al., 2007). Furthermore, the 

TIS approach identifies underlying systemic problems, such as ineffective working networks, and 

institutional and infrastructure failures responsible for blocking and inducement mechanisms, 

which in turn influence the innovation functions (Wieczorek & Hekkert, 2012; Markard, Hekkert, 

& Jacobsson, 2015). Finally, the TIS analysis can capture spatial issues (different dynamics 

between nations or regions) and variety, such as economic drivers, institutional settings, and 

cultures, through comparative TIS studies between nations, or regions (Markard, Hekkert, & 

Jacobsson, 2015), or local levels (Ulsrud, Rohracher, Winther, Muchunku, & Palit, 2018). 

The complementary nature of the MLP and TIS frameworks was investigated by Markard and 

Truffer (2008) who proposed an integrated framework. In the integrated framework a TIS would 
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be influenced (both positively and negatively) by landscape factors, existing regimes, other TIS, 

and technological niches. Based on this integrated approach, Meelen and Farla (2013) proposed 

the integration of policy approaches related to MLP (and the associated transitions management 

and strategic niche management) with the policy recommendations resulting from the TIS literature 

into one framework for policy analysis. Furthermore, as mentioned in Chapter 2, both the MLP 

and TIS frameworks have been combined with other theories to examine the transformation of 

electrical systems in developing countries and in the context of on-grid Canadian indigenous 

communities. 

This study will employ the MLP and TIS frameworks at different scales to examine the 

transformation of remote indigenous community electrical systems through RETs and address the 

study’s second and third objectives. In a first step, a modified MLP framework that includes 

governance structures (Smith et al., 2005) is applied at a national scale to analyze the transition 

dynamics in Canadian remote indigenous communities between 1980 and 2016 (Chapter 6). The 

analysis identifies transformation patterns and regime shifts and provides an explanation of the 

diffusion of RETs into communities’ electrical systems. However, the MLP framework is unable 

to explain in detail how (and why) the supporting policies came about, the roles and strategies of 

participating actors, the interactions between actors and institutions, or the distribution of resources 

and their role in the development of networks and actors’ capacity (Markard & Truffer, 2008; 

Smith, Stirling, & Berkhout, 2005; Hekkert, et al., 2007). In a second step, therefore, a combined 

structural and functional analysis of the NWT and Ontario TISs, where the majority of RET 

projects were deployed between 2000 and 2016, will examine and compare the diffusion of RET 

in these remote communities and further address the study’s second and third objectives (Chapter 

7). In addition, this within nation sub-national level comparison (at the provincial level) (Snyder, 

2001) may illustrate similarities and differences based on cultural, historical, institutional, and 

socioeconomic dimensions and demonstrate the importance of geographical factors in the 

transition process. 

The next section outlines the conceptual frameworks to be used in the study, and, based on the 

framework components, the methodology for achieving the study’s remaining objectives. 
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3.3.1 Modified MLP framework 

The modified MLP framework (Figure 1) conceptualizes the transformation of communities’ 

electrical systems through the introduction of three main subsystems (constellations or regimes) of 

the sociotechnical system that contribute to the system’s functioning and influence the transition 

process: first, the incumbent regime that currently dominates the functions of the sociotechnical 

system that meets societal needs; second, novel constellations called niches that are able to provide 

system functions, but lack the power to become the dominant regime; finally, niche-regimes that 

provide, or are able to provide, system functions due to their power and are situated between the 

previous actors. Accordingly, the transition from the current system to a more sustainable one is 

conceptualized through the emergence of a niche-regime, either existing or developed out of a 

niche, that applies a different way (in terms of structure, culture and practices) of fulfilling societal 

needs, competes with the incumbent regime, and, eventually, takes over its functions, thus 

becoming the main provider of the system’s functioning (deHaan & Rotmans, 2011; Grin, 

Rotmans, & Schot, 2010). 

 

Figure 1: MLP modified framework: regime and niche-regime conditions and governance 

processes of the transition 
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Transformative change in the system occurs through: (a) tensions, or misalignment of the 

incumbent regime’s functioning as a response to new developments at the broader landscape level 

of economic, cultural, political or ecological nature, (b) stresses, defined as internal misalignments 

of the incumbent regime’s functioning that are either inadequate or inconsistent with the societal 

needs, and (c) pressures, developed towards incumbent regimes from new technologies and/or the 

existence of niches or niche-regimes (deHaan & Rotmans, 2011).  When the regime conditions 

(tensions, stresses and pressures) reinforce each other towards a certain direction, then the 

introduction of transition experiments in the form of technological innovative projects aimed at 

societal change, allow for learning processes and the empowerment of niches and their 

transformation to niche-regimes which challenge the incumbent regime (deHaan & Rotmans, 

2011; Grin, Rotmans, & Schot, 2010; van den Bosch & Rotmans, 2008). Learning processes 

include learning from transition experiments implemented in a specific context (deepening), in 

different contexts (broadening), as well experiments that are integrated and embedded (scaling-up) 

into mainstream activities and practices (van den Bosch & Rotmans, 2008; Grin, Rotmans, & 

Schot, 2010).  

Van den Bosch & Rotmans (2008) add four niche related conditions for the success of transition 

experiments, namely (a) the internal alignment of the niche, (b) the ability of the niche to exercise 

power on the incumbent regime locally, (c) the existence of a cooperative regime that is responsive 

to experiments and the existence of key actors that assist in transforming experiments to practices 

that address societal needs, and (d) the alignment of the niche with trends and developments at the 

broader landscape level. The transition contains “slow” phases (pre-development and 

stabilization), resulting from negative feedback mechanisms caused by the incumbent regime in 

charge during the specific period, and “fast” phases (take-off and acceleration), where regime and 

niche regime conditions create positive feedback mechanisms that move the innovation forward 

(Grin, Rotmans, & Schot, 2010). 

Because a transition process (or transition pathway) covers periods of (slow and fast) 

transformation, it could be represented as a sequence of transition patterns, or a sequence of 

transformations from a current system state to a new system state, involving changes in the 

system’s functioning (deHaan & Rotmans, 2011). This transformative change can be “managed” 
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by creating supporting mechanisms that create positive feedbacks, thereby influencing the 

transition. 

Accordingly, transition pathways can be represented through a series of successive transition 

patterns, with the dynamics of each stage depending on (1) the current system state (system 

composition), (2) the system conditions, in terms of regime tensions, stresses, and pressures, and 

niche conditions, and (3) the governance processes negotiated between different regime members 

that seek to influence the transition process (Smith, Stirling, & Berkhout, 2005; deHaan & 

Rotmans, 2011; Haxeltime, Whitmarsh, & Bergman, 2008). As a result of the dynamic processes 

involved, niches can grow to niche regimes and eventually replace the incumbent regime, or they 

can be incorporated into, or co-exist with, the incumbent regime (Schot & Geels, 2008).  

The analysis will indicate the extent to which RETs have emerged as a viable electricity generation 

alternative in remote communities in terms of regime shifts (which indicate a transition), the speed, 

size, period of change, and the phase (pre-development, take-off, etc.) of the transition, as well as 

the origin of the transition, in terms of where (which level and which constellation), when (in terms 

of tensions, stresses and pressures, niche related conditions and governance processes), and how 

(what type of experiments and learning processes). The dynamics of the process are elaborated 

through the articulation of expectations, learning processes, the creation of networks, building of 

institution (including governance structures), and experimenting (Schot & Geels, 2008; Smith & 

Raven, 2012). Furthermore, the transition patterns, as indicated by the extent of regime shifts, will 

also provide information on the effectiveness of strategies and instruments, and indicate targets 

and levers that could be the object of policies for influencing transitions. 

 

3.3.2 TIS framework and TISs comparison 

Based on the TIS analytical framework (see the process proposed by Bergek et al., 2008, and 

Wieczorek & Hekkert, 2012), the NWT and Ontario TISs are defined as networks of actors that 

interact within each province’s institutional infrastructure for the diffusion and use of RET 

technologies into remote communities’ systems. New RET technologies, such as wind and solar, 

“emerge” as electricity generation options as they co-evolve with the communities’ social contexts 

and are adopted if they align with community sociocultural and economic practices (Ockwell, et 
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al., 2018). Methodologically, first, the structure, functional pattern, and the main blocking 

mechanisms and underlying systemic problems that induce or hinder the fulfilment of the functions 

in both TISs will be identified using the analytical framework presented in Table 4. Second, the 

systemic problems responsible for the poor functional performance of both the NWT and Ontario 

TISs will be “precisely identified” and analyzed (Wieczorek & Hekkert, 2012, p. 85). Third, the 

functional performances of the NWT and Ontario TISs during the 2000-2016 period will be 

analyzed and compared in order to, first, explain the diffusion of the TISs, and, second, generate 

insights concerning the main factors that influence the deployment.  

 

Table 4: Framework for the analysis of the TIS in remote indigenous communities 

Functions Evaluation 

of functions 

based on 

diagnostic 

questions 

Identification 

of the reasons 

affecting 

function 

performance 

Identification of systemic (actors, institutions, networks, 

infrastructure), and transformational (directionality, 

demand articulation, policy coordination and reflexivity) 

failures responsible for the blocking/inducement 

mechanisms 

Fn 

 

 with 

 n= 1,…,7 

……….. 

Blocking 

/inducement 

mechanisms) 

affecting Fn 

• Actors: Presence? Capabilities? 

• Institutions: Presence? Capacity/quality? 

• Interactions: Presence? Intensity/quality? 

• Infrastructure: Presence? Capacity/quality? 

• Presence and quality (effectiveness) of directionality measures? 

• Presence and quality (effectiveness) of demand articulation 

measures? 

• Presence and quality (effectiveness) of policy coordination 

measures? 

• Presence and quality (effectiveness) of reflexivity measures? 

Adapted from Wieczorek and Hekkert (2012) and Weber and Rohracher (2012). See also Labrinopoulou, Renwick, Klerkx, 

Hermans, & Roep (2014). 

 

Functional performance during the period investigated is assessed through mapping actors’ 

activities (events) that changed institutions, influenced interactions and modified infrastructure, 

and, therefore, addressed systemic problems and contributed to TIS function changes and 

fulfillment. Events are then allocated to functions based on operationalization indicators (Suurs et 

al., 2010) described in Table 5. Findings will follow in the form of a narrative that will explain the 

historic development of both TISs through changes in the structure and functions’ interactions.  

The aim of the TIS analysis is to offer additional explanation of the diffusion process by examining 

interactions (the functional pattern), the reflexivity of governance processes (why certain policies 
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and programs came into existence), and differences in context and institutional settings that may 

influence the diffusion process.  

 

Table 5: Functions and operationalization indicators for the NWT and Ontario TIS 
System function Operationalization indicators 

F1. Entrepreneurial activities • Development of remote community owned RET projects.  

F2. Knowledge development • Conducting renewable resource surveys, monitoring studies, feasibility studies.  

• Community energy plans. Small-scale RET experiments. Participation in research 

projects. 

F3. Knowledge diffusion • Training of community members. Promoting energy-related education, developing 

energy campaigns, organizing and participating in conferences, exhibitions, 

workshops, charrettes, seminars, meetings. 

F4. Guidance  

of the search 

• Establishing targets for RETs. Design of policies and regulations that favor RET 

solutions. Design of policies and regulations that favor RET solutions in remote 

indigenous communities. Establishing expectations from RETs projects on 

indigenous lands. Providing direction and expressing interest in RETs options. 

• Publication of results from studies involving RETs in remote communities. 

F5. Market  

formation  

• Regulatory arrangements that allow local governments and their organizations to 

participate in the electricity generation process as Independent Power Producers 

(IPP). Power purchase agreements (PPAs). Net metering agreements. 

F6. Resource mobilization • Providing financial incentives (for project capital, technical training, and electricity 

generation). Providing loans. Providing loan guarantees. Financing research 

projects. Mobilizing cooperation with the private sector. 

F7. Support from advocacy 

coalitions/ legitimization 

• Advocating for indigenous RETs projects in remote communities. Statements of 

indigenous leadership on the cultural fit of RETs projects. Community visions and 

expectations favoring RETs deployment. 

 

 

3.4 Methods 

The choice of analytical frameworks and their components offers a visualization of the 

transformation of indigenous community electrical systems and aims, first, to improve 

understanding of the technical, contextual, and social complexities associated with the introduction 

of RETs into these systems and, second, to explain the diffusion of RET projects to date. A 

conceptual framework additionally provides information on the (i) the relationships that the study 

will examine, and hence the data to be collected and analyzed, (ii) the literature that should be the 

focus of the study, and (iii) the methods that need to be applied in order to study the phenomenon 

(Leshem & Trafford, 2007). 
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The study uses process tracing as its research methodology (see section 3.1). As George and Bennet 

(2005, p.6) state “in process tracing, the researcher examines histories, archival documents, 

interview transcripts, and other sources to see whether the causal process a theory hypothesizes or 

implies in a case is in fact evident in the sequence and values of the intervening variables in that 

case”. Data on event sequences in transitions’ studies that use the MLP in both developed (see for 

example, Raven, 2005; Verbong & Geels, 2007; Rosenbloom & Meadowcroft, 2014) and 

developing countries (see for example, Verbong, Christiaens, Raven, & Balkema, 2010; Nygaard 

& Hansen, 2016; Hansen, Pedersen, & Nygaard, 2015) are collected mainly from printed 

documents and literature reviews and interviews with actors participating in different regimes, as 

well as, to a lesser extent, from observations.  

Similarly, empirical studies that use the TIS approach identify events, which are mapped to 

functions, and trend and interaction patterns, and construct a narrative that captures the 

development of the TIS (Bergek et al., 2008; Suurs and Hekkert 2009). Data on events in both 

developed countries (Negro et al., 2007; Negro et al., 2008; Hekkert & Negro 2009; Suurs and 

Hekkert 2009; 2010; VanAlphen et al., 2009; Wieczorek et al., 2015) and developing countries 

(VanAlphen et al., 2008; Kebede et al., 2015; Kebede & Mitsufuji, 2014; Agbemabiese, Nkomo, 

& Sokona, 2012; Tigabu, Berkhout, & van Beukering, 2015; Blum, Bening, & Schmidt, 2015) are 

collected mainly from literature reviews of secondary data (including technical and grey literature) 

and interviews with actors from various participating groups, as well as field observations (Blum 

et al., 2015). Interviews may additionally be used to rate functions’ performance (see VanAlphen 

et al., 2009) and as expert feedback for triangulation of the interaction patterns and the narrative’s 

content (Suurs and Hekkert, 2010).  

 

3.5 Research process and data collection 

The data collection and data analysis process and manuscripts’ writing and submission 

proceeded in three phases.  

During the first phase (January 2014 to July 2016) the aim of the research was identifying the 

remote indigenous communities to be investigated, understanding community electrical 
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systems and the technical problem associated with the introduction of RETs in isolated electrical 

systems, as well documenting the RET projects undertaken in these communities. Data collection 

involved internet searches that led to documents published by provincial governments and utilities, 

the federal government, academia, indigenous organizations, non-governmental organizations, and 

professional associations. However, most of the documents were unable to provide details on 

remote communities’ electrical systems, except for the AANDC and NRCan (2011) initial study 

and provincial policy documents and utilities’ annual reports. As a result, further searches involved 

“backward snowballing” and “forward snowballing” (Wohlin, 2014; Lecy & Beatty, 2012) based 

on the initial documents and searches. Results included additional provincial and territorial policy 

documents and utilities’ annual reports to identify descriptions of current electrical systems, future 

plans for electrical system expansion, and information on past and current renewable electricity 

targets and programs. Searches were terminated once new documents were unable to produce any 

further insights relevant to the literature review scope (Wohlin, 2014). Data on RET projects in 

133 of the 144 remote indigenous communities located in seven provinces and territories (Yukon, 

Northwest Territories, Nunavut, British Columbia, Ontario, Quebec, and Newfoundland and 

Labrador) were gathered through reviews of  provincial policy documents, utilities annual reports 

and grey literature, and online searches using the name of the specific remote indigenous 

community and combinations of keywords, such as “renewable electricity”, “solar”, “wind”, and 

“hybrid electrical systems”. The documents are referenced in the papers presented in Appendix A. 

Findings from the first phase indicated that the introduction of RETs in remote indigenous 

communities exhibits similarities to a wicked problem, involving participants that changed their 

identities and perspectives over time, and, therefore, necessitated the use of a process approach that 

considered systemic sociotechnical frameworks involving collaborative actions in multi-

stakeholder settings (King, 1993). Accordingly, and following the choice of the MLP and TIS as 

analytical frameworks of the study, research during the second phase (September 2015 to July 

2017) concentrated on, first, exploring indigenous and non-indigenous perspectives on the roles 

and challenges associated with the current community diesel powered systems, the future of 

electricity generation, the expectations from RET applications, as well as barriers to their 

implementation, and, second, examining the events that influenced the transformation of remote 

communities’ electrical systems between 1980 and 2016.  
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Furthermore, the MLP-based analysis required the collection of data on (1) the current status of 

the Canadian remote indigenous communities’ electrical systems and the RET projects developed 

to date; (2) the communities’ electrical systems conditions in terms of regime tensions (landscape 

macro-level factors), stresses (regime meso-level factors), and pressures (niche micro-level 

factors), as well as niche level conditions, influenced by the relationship between federal 

government, provincial and territorial governments, indigenous governments, utilities, and other 

participating actors; and, finally, (3) governance processes, which aimed at influencing the 

transition process, that may have been negotiated between participants. In a similar way, the TIS-

based analysis required the collection of data on (1) the structure (including infrastructure) of the 

NWT and Ontario TISs, and the main inducement and blocking mechanisms, as well as the 

underlying systemic problems that influenced functional performance and interactions between 

actors and between actors and institutions, and (2) actors’ activities (captured as events) that 

changed institutions, influenced interactions and modified infrastructure.   

Data collection during this phase involved a combination of literature reviews of academic, non-

academic, policy and utilities’ documents, interviews with key informants in a remote indigenous 

community, and discussions with participants during various conferences and thematic events. 

Although documents and internet sources are easily retrievable, can be reviewed by others, and 

may contain facts and specific details, they may also be inaccurate and biased due to the author’s 

personal stance. In addition, important documents may also be missing (selectivity bias).  

Therefore, multiple document types from multiple sources were employed to improve information 

quality and corroborate facts (Yin, 2003). The following document types were used: 

• Articles from scientific journals 

• Articles from newspapers and industry journals 

• Conference proceedings and conference reports 

• Studies and reports from research institutes, universities, government agencies, non-

governmental organizations, indigenous organizations 

• Books on energy and energy policy, and indigenous governance 

• Government (federal, provincial and territorial, and indigenous) internet sites  

• Provincial and territorial utilities’ reports  
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• Provincial and territorial reports related to energy and natural resources 

• Federal, provincial and territorial and indigenous governments’ policy documents and reports 

• Statistical reports from Statistics Canada. 

The documents used for data retrieval and analysis are referenced in Chapters 5, 6 and 7. 

Interviews can be used as an important source of primary information about structures, behaviors, 

experiences, and events and to verify, corroborate, and augment other evidence (Yin, 2003; Hay, 

2000). However, drawbacks of interviews include interviewee selection and problems with 

interviewee responses related to bias and poor recall (Yin, 2003). Due to time and financial 

constraints, interviews were conducted with ten community members in one northern Ontario 

remote indigenous community in October 2014. This community is typical of northern Ontario’s 

25 remote indigenous communities, in terms of language, common values, and traditional 

practices, population (approximately 1,000), building stock (residential, community and 

infrastructure), and electricity generation facilities. Interview participants were identified by the 

Band Council, were over 18 years old and consented in writing and orally to be interviewed.  

Interviews aimed at collecting information on niche level conditions (the internal alignment of the 

niche, its ability to exercise power on the incumbent regime locally, the existence of a cooperative 

regime, the existence of key actors participating in experiments, and the alignment of the niche 

with trends and developments at the broader landscape level) and blocking and inducement 

mechanisms to the deployment of RETs. The semi-structured interviews included qualitative, 

open-ended questions on the current electricity system governance structure, motivations for 

participating in renewable electricity generation, barriers to RETs deployment, and potential 

community benefits from the implementation of RET projects.  Research in the community was 

undertaken following the Tri-Council policy requirements and received ethics clearance from the 

Office of Research Ethics at the University of Waterloo (ORE#19350). The interview questions 

are presented in Appendix B. 

In addition, information for data triangulation (Yin, 2003) was collected through informal 

conversations with sixteen indigenous communities’ leaders, members, energy managers, 

economic development officers, representatives of indigenous organizations, and federal 

government employees during the following public and thematic events: the Toronto Remote 
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Microgrids Conference (2013), the Northern Ontario First Nations Environmental Conference 

(NOFNEC) (2014), the Rise of the Fourth World Conference (2014), and the Energy Council of 

Canada Energy Summit (2015), and various Waterloo Institute for Social Innovation and 

Resilience (WISIR) workshops that included the participation of indigenous leaders at the 

University of Waterloo.  

Finally, during a third phase (September 2016 to July 2018) data was analyzed using the techniques 

detailed in Chapters 5, 6 and 7, while manuscripts were written and submitted between February 

2017 and July 2018. 

 

3.6 Researcher’s position  

Besides the research problem, additional factors that affect the choice of research approach are 

associated with the personal experiences of the researcher, the audience, and the advisors’ views 

(Creswell, 2014; Brown & Tandon, 1983). Moreover, both the researcher’s and the research 

participants’ identities influence the research process (Bourke, 2014). The concept of positionality 

includes the researcher’s personal attributes (race, nationality and gender), and his or her personal 

life and experiences, philosophical and theoretical beliefs, perspectives, and cultural background, 

which are expected to influence (to different extents) the research design and methods used, 

including data acquisition (Chiseri-Strater, 1996; Bourke, 2014). In this sense, positionality would 

refer to the position of the researcher in relation to the research problem, the participants and the 

research process itself. 

I entered into this research, involving the introduction of RETs in remote indigenous communities 

in Canada, with limited knowledge of Canadian history and historical treaties, acquired only 

through my high school history education and personal interest in indigenous peoples. During the 

research process, I improved my understanding of the continuous effort of indigenous people for 

self-governance by reviewing documents about Canadian history, treaties, indigenous governance 

and aboriginal rights and title. Furthermore, as (originally) a non-Canadian, I consider that my 

relation to indigenous participants and my research approach is not influenced by a “settler society” 

mentality or “guilt” for injustices to indigenous people of Canada. However, although my limited 

contact with indigenous people of Canada through this research would still certainly position me 
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as an “outsider”, I found myself sometimes sharing their perspectives on resisting westernized 

economic development approaches to preserve traditional practices and cultures. 

Accordingly, throughout my research and during my visits to a remote indigenous community and 

through conversations with indigenous people I have used a reflexive approach, constantly thinking 

about the way I think, where I am, and how I interpret things, and have remained critical of my 

position as an educated, middle class, white male, trained in engineering and business, and the way 

that these attributes affect my research approach. Throughout the process I aimed at understanding 

and reflecting on both indigenous and non-indigenous governance perspectives and viewing the 

introduction of renewable electricity systems through a sociotechnical lens rather than an 

engineering lens that “focuses too much on reducing unsustainability through optimization, thereby 

(unwillingly) adding to the lock-in of societal systems” (Loorbach, Frantzeskaki, & Avelino, 2017, 

p. 602). 

 

3.7 Limitations of the study 

Besides the limitations of the process tracing methodology described in section 3.1, additional 

limitations are associated with the choice of the theoretical frameworks and the quantity/quality of 

the data collected. First, the MLP is a middle range theory and its explanatory strength is that of a 

“heuristic” device that “guides the analyst’s attention to relevant questions and problems” and 

“helps the analyst ‘see’ interesting patterns and mechanisms” and “identify the relevant variables 

….to develop conclusions tailored to a particular industry or company” (Geels, 2011, p. 34). 

Furthermore, the MLP, as a process theory, produces narrative explanation that captures complex 

interactions and explains outcomes in terms of event sequences (Grin et al., 2010, Geels, 2011). In 

a similar way, the TIS framework is unable to capture all potential interactions influencing a TIS, 

such as interactions between multiple technologies in the form of competing TIS or political 

strategies (Markard et al., 2015). 

As a result, the narrative causality, defined through the “morphogenetic cycles” in the MLP or 

“motors of innovation” in the TIS (Grin et al., 2010, p.99; Suurs & Hekkert, 2009), is probabilistic. 

The MLP and TIS capture broader landscape level changes that influence the transition and provide 

information on the important actors and rules of the game, actors’ resources, interests, motivations, 
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available alternatives and possibilities for action, as well as interactions between actors and the 

impacts of their strategies. Both the MLP and TIS analysis may specify the general form of the 

transition but the specific transition patterns are subject to local events and consequences, as actors 

may, or may not, take advantage of opportunities, change, or modify their strategies, which, in 

turn, may lead to new forms of interactions and may generate an alternative sequence of events. 

Second, the quantity and quality of data necessary for the structure of indigenous electrical systems 

and the event analysis are important. Data on remote communities’ electrical systems were limited, 

and there is limited academic research capturing indigenous peoples’ perspectives on new off-grid 

renewable electricity generation. In addition, most information on the future of electrical systems 

is based on governmental and utilities documents, which include perspectives of current electricity 

generation regimes, including the perspectives of Band Councils, which may not be representative 

of all indigenous people within a community. Furthermore, financial and time constraints of the 

study allowed visits and interviews with key informants in one northern Ontario remote 

community. Community members within each community may have different opinions on 

electricity generation and integration of renewable options; some may favor local generation, 

others would see benefits in a transmission connection to local grids, and others may oppose both 

grid expansions and new off-grid renewable electricity generation that may potentially impact 

traditional activities. Moreover, perspectives of indigenous and non-indigenous authors on 

indigenous governance structures are not representative of all indigenous people; some are in favor 

of development (see for example Slowey, 2008), while others may oppose any development seen 

to impact traditional activities (Alfred, 2005; 2009), or others may favour a “midway” solution 

involving community based social entrepreneurial forms (Atleo, 2008). 
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4 Chapter 4: Electrical systems in remote indigenous 

communities in Canada 

 

Chapter 4 summarizes the research results on the electrical systems of 133 Canadian remote diesel 

power communities and aims at improving understanding of the complexity associated with the 

introduction of RETs in remote indigenous communities. Analytical results are presented in 

Appendices A and B and include community population, power plant size and electricity 

generation output, diesel consumption, carbon emissions, electricity costs and subsidies, 

alternatives to diesel generation and utilities future electricity generation plans, and RET projects 

installed, as well as federal and provincial/territorial targets, policies, and programs supporting 

their deployment between 1980 and 2016. 

 

4.1 Electricity generation in Canadian remote indigenous communities 

Electrification of the remote communities began in the 1960s and 1970s, following arrangements 

with the federal and provincial governments (OEB, 2008). During this time the energy systems of 

the provinces and territories were developed with hydroelectricity and diesel as the main methods 

for electrification, and provincial utilities were formed through acquisition of private electricity 

generation assets and the development of new large-scale hydroelectricity projects.  

In British Columbia, BC Hydro was formed in 1962 and by 1984 owned approximately 10,700 

MW of hydroelectricity and 1,000 MW of diesel capacity (OPC, 2010). In Northwest Territories 

(NWT), Nunavut and Yukon, the Northwest Territories Power Commission (later Northern Canada 

Power Commission (NCPC)) was established by the federal government in 1948 to provide 

electricity to the developing mining sector; between 1950 and 1984 NCPC expanded the current 

hydroelectric projects in Yukon and NWT creating local grids and providing electricity through 

hydro and diesel to the territories’ remote communities. In 1987 NCPC transferred its assets to the 

Yukon Government (its newly formed Yukon Energy), and to the government owned Northwest 

Territories Power Corporation (NTPC). In 2001, following the Creation of Nunavut in 1999, assets 

were transferred to the Government of Nunavut’s Nunavut Power Corporation (NTPC, 2016a). In 
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Ontario, electrification of remote indigenous communities began in the 1960s by Ontario Hydro 

following electrification agreements with the federal and provincial governments.  After 1998 

electricity was provided under the new Electricity Act by Hydro One Remote Communities Inc 

(HORCI), a daughter company of Hydro One (OEB, 2008). In Quebec, between 1944 and 1971 

the Quebec Hydro-Electric Commission (later Hydro-Quebec) acquired private and cooperative 

existing hydroelectric stations, added 6,200 MW new hydroelectric capacity, and in 1971 initiated 

the construction of the La Grande hydroelectric projects (Hydro Quebec, 2016a). Finally, in 

Newfoundland and Labrador (NFL), the Newfoundland Power Commission (NPC) (after 2007 

named Newfoundland and Labrador Hydro (NLH), a subsidiary of Nalcor Energy) was established 

by the government in 1954 to extend electrification within the province to rural areas, build 

transmission lines and install diesel plants in remote communities (Baker , 1990; PA-Hatch , 2015).  

Electricity generation in Canada is highly fragmented. According to s. 92, 92A of the Constitution 

Act (1867) and s.109 of the Constitution Act (1982) electricity generation is under 

provincial/territorial jurisdiction, and provincial governments are responsible for the development 

and regulation of energy projects within their borders (Valentine, 2010). This fragmentation results 

in both a lack of provincial interconnections that could take advantage of the abundance of 

hydroelectricity resources in some provinces, and the lack of unified policy towards electricity grid 

integration and collaboration to take advantage of RET potential in different areas (Liming, Haque, 

& Barg, 2008). In the case of remote indigenous communities, responsibility for communities’ 

electricity systems is divided between the federal government, which is responsible for the capital 

cost of electricity systems’ upgrades, and provincial governments and utilities, which are 

responsible for providing electricity at a reasonable cost and for the operation and maintenance of 

community power plants (OEB, 2008). With most of the federal funding being devolved to 

aboriginal communities, this division creates friction between local band councils and utilities 

regarding future electricity system upgrades (NAN-HORCI, March 2013).  

Diesel-generated electricity is the main source of electricity for 144 of the 171 remote indigenous 

communities, with the remaining powered by hydroelectricity plants and backed-up by diesel 

generators. Diesel power plants offer a number of operational advantages in the environment of 

remote communities, such as simple design and layout of facilities, mature technology and reduced 

number of operating staff, low initial capital costs, short purchasing and installation time period, 
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and reliable operation for 20-25 years (Edwards & Negnevitsky, 2008; Usher, Jean, & Howell, 

1994; ICF, 2015). The disadvantages of diesel powered electricity are the high consumption and 

cost of fuel, which can be more than ten times the initial capital cost within a year, poor quality 

services, increased production of CO2 emissions, which may affect the health of the local 

population, and spills and leakages from the fuel storage facilities (AANDC, 2012b). Load 

restrictions posed by utilities limit new housing and business connections, and communities’ 

potential for successful participation in resource projects (KLFN, 2013). Additionally, increased 

current and anticipated fuel prices in combination with high (mostly air) transport costs, lead to 

high electricity costs influencing local government expenses and cost of food (NWT, 2011).  

Available data on 133 out of the 144 diesel powered aboriginal remote communities (5 in Yukon, 

25 in NWT, 25 in Nunavut, 23 in BC, 25 in Ontario, 14 in Quebec, and 16 in NFL), indicate a 

population of approximately 90,000, of which 36,000 are in 25 communities in Nunavut (Table 6). 

Population in these communities ranges from as low as 13 people of the Gwawaenuk Tribe in 

British Columbia to over 7,500 people in Iqaluit, with most of the communities in NWT, Ontario, 

Quebec and NFL having a population between 300 and 1,200. Depending on location, communities 

are accessed by all-weather road networks or winter roads available during the period of mid-

January to late March and remote airports, while a few can be accessed by barge.  

 

Table 6: Population, electricity capacity, generation and emissions in diesel powered remote 

aboriginal communities  

Province/ 

Territory 

Number 

of 

commu- 

nities 

Population 

(Year) 

Generation Capacity 

 

Electricity Generated 

 
Fuels Emissions 

MW Year MWh Year lit/year tonnes/year 

CO2,eq 

Yukon 5 2,009 * 8.5 2012 21,263 2012 5,970,000 17,000 

NWT 25 13, 788 * 40.9 2013 83,884 2013 23,300,000 67,000 

Nunavut 25 36,556 * 54.0 2013 174,000 2013 48,000,000 116,000 

BC 23 5,586 ** 41.0 2011a 67,500 2011a 18,750,000 b 50,250 d 

Ontario 25 14,900 ** 22.8 2011a 78,960 2011a 23,950,000 c 64,200 d 

Quebec 14 12,090 ** 24.3 2000[1] 85,500 2013 [2] 23,700,000 b 63,500d 

NFL 16 5,719 ** 15.6 2011a 28,148 2011a 7,900,000 b 21,200 d 

TOTAL 133 90,648k 207.1  539,255  151,570,000 399,150 

* Population in 2014, ** population in 2011, [1] Hydro Quebec (2002, p.11), [2] GQ (2014, p.16). 

a: according to AANDC and NRCan (2011); b: estimated, based on an average efficiency of 1 lit diesel=3.6 kWh; c: 

estimated, based on HORCI (2012) data and OEB (2008); d: estimated, based on average emissions 2.88 kg CO2, eq/ lit diesel 

Source: Statistics Canada (2011); AANDC and NRCan (2011); Karanasios & Parker (2016a-g). 
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Systems in 112 communities are operated by provincial owned utilities operating at arm’s length 

from provincial and territorial governments under provincial budgeting and regulations, while the 

remaining 21 communities own and operate their own systems as Independent Power Authorities 

(IPAs) (10 in Ontario, 10 in British Columbia and one in Newfoundland and Labrador).  Utilities’ 

size, generation and distribution assets, and business structure differ between provinces and 

territories (Yukon Energy, 2012a; NT Energy, 2013; QEC, 2013; OPA, 2014; BC Hydro, 2015b; 

COGUA, 2016). The size of communities’ power systems varies between 20 kW in small 

communities to 15,000 kW in Iqaluit, Nunavut. There are 23 systems with a capacity below 500 

kW, and 36 systems with a capacity above 1,500 kW, while more than half of the electricity 

systems in remote communities (71 out of 132 systems4) range between 500 kW and 1,500 kW. 

Based on available data, the installed capacity of the 133 remote electricity systems is 

approximately 207 MW, with an estimated5  electricity generation of 547,000 MWh for 2013, and 

an estimated average electricity consumption of approximately 6,000 kWh/capita per year. In 2013 

the 133 remote aboriginal communities were responsible for the consumption of approximately 

151 million liters of diesel and direct emissions of 400,000 tonnes of CO2, eq, while additional 

indirect emissions caused by the transportation of diesel to remote communities represent almost 

70% of direct emissions in the case of fly-in communities (see HORCI (2012)). 

Electricity generation costs in remote indigenous communities consist of a fuel cost and an 

administrative and operational component (Hydro One, 2012) and is influenced by utilities’ 

economies of scale, location and access to markets. Costs differ among provinces and territories 

and among communities within the same province or territory, ranging from 26 c/kWh to as high 

as 215 c/kWh in Yukon (Table 7) in comparison to 5-18 c/kWh in southern Canada (IESO, 2016; 

Hydro Quebec, 2016b; BC Hydro, 2015b).  

These high electricity costs are subsidized through the creation of special rates and the allocation 

of cross-subsidies. Rate design takes into consideration cost categories (residential, governmental 

and commercial buildings, and street lighting), and cost differentiations due to location, access 

(road or air access), and electricity generation sources (hydroelectricity or thermal generation). 

                                                 
4 The communities of Destruction Bay and Burwash Landing in Yukon share the same power plant. 
5 The 2013 electricity generation, fuel consumption, and CO2, eq emissions are estimated using the 2011 and 2012 available 

data and an average annual electricity generation increase of 2%. 



 

  

75 

Such subsidies are justified through arguments promoting energy affordability, poverty reduction, 

enhanced security and energy supply, and economic growth (IEA, 2010).  Lower rates for 

residential consumers in remote aboriginal communities are supported by direct governmental 

subsidies from Indigenous and Northern Affairs Canada (INAC)6, cross subsidies in the form of 

higher rates (at the full electricity cost) for provincial and federal governmental customers 

operating within remote aboriginal communities, and financial transfers from provincial ratepayers 

through funding mechanisms supporting rural and remote electrification (OPA, 2014; SNC 

Lavalin, 2007). Direct electricity subsidies for residential customers in remote communities, 

ranged from $3.5 million in 2015-2016 in Yukon (GY, 2015a), to $34 million in 2015 in British 

Columbia (BC Hydro, 2015b), approximately $ 34 million in 2013 for Rural or Remote Rate 

Protection (RRRP) contributions in Ontario (Hydro One, 2012), and $30 million in 2012-2013 in 

Nunavut (GN, 2015a).  

 

Table 7: Cost of electricity generation in remote aboriginal communities 
Province/ 

Territory 

Cost of electricity generation 

Yukon 2009: Diesel electricity cost between 26.4 c/kWh and 57.3 c/kWh (for Old Crow) (Osler, 2011). 

2012: Diesel electricity cost between 97 c/kWh and 215 c/kWh (Cherniak, Dufresne, Keyte, Mallett, & 

Scott, 2015). 

NWT 2008-2009: An average cost of 64.9 c/kWh in 2007/2008 fiscal year (GNWT, 2008b; GNWT, 2009a; 

GNWT, 2009b). 

2015: Cost of electricity for 2015 is between 58 c/kWh and 70 c/kWh (Cherniak et al., 2015).  

2016: Cost of electricity for 2016 is between 21 c/kWh and 60.83 c/kWh (NTPC, 2016d).  

Nunavut 2012-2013: Cost of electricity for 2012-2013 is between 50 c/kWh and 101 c/kWh (Cherniak et al., 2015). 

BC No data available. 

Ontario  2014: For HORCI communities, equals the Standard A rate of 94.17 c/kWh (Hydro One, 2013). 

No data available for IPA communities, but is assumed 2-3% higher than the cost in HORCI communities 

(OPA, 2014). 

Quebec  2013: Diesel electricity cost between 65 c/kWh and 132.4 c/kWh (GQ, 2014; Cherniak et al., 2015). 

NFL  No data available. 

 

Electricity consumption has increased in all remote communities due to population growth, an 

increase in homes and community buildings, and changes in household electricity use. For 

example, the electricity consumption in HORCI’s serviced northern Ontario remote communities 

increased by an average of 4.2% per year from approximately 24,500 MWh in 1990 to 

                                                 
6 Former ministry of Aboriginal Affairs and Northern Development (AANDC). The name was changed to Indigenous and 

Northern Affairs Canada (INAC) in 2015. 
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approximately 59,000 MWh in 2011, while the per capita electricity consumption doubled from 

2,800 kWh/capita in 1991 to 5,800 kWh/capita in 2011 (HORCI, 2012). This continuous increase 

in electricity demand has been addressed mainly through diesel generator upgrades. Further non-

industrial electricity load growth ranging from 0.5% to 3.9 % is forecast for all remote aboriginal 

communities (Table 8), thereby raising concerns for governments, utilities and aboriginal 

communities over the continued high dependence on diesel-generated electricity. 

 

Table 8: Forecast non-industrial electricity demand growth in remote communities 
Province/ 

Territory 

Forecasted non-industrial electricity demand growth in remote 

communities 

Source 

Yukon 0.5 % annually until 2030 Yukon Energy (2012a) 

NWT 2.26 % annually  NT Energy (2013) 

Nunavut 3-4% annually, significant growth is expected in Cambridge Bay due to the 

creation of the Canadian High Arctic Research Station (CHARS) campus 

QEC (2015a) 

BC 2% over the next 5 years, 1.2% over the next 11 years, 0.7% over the next 21 

years 

BC Hydro (2012b) 

Ontario 3.9 % annually between 2013 and 2053 OPA (2014) 

Quebec 2-4 % annually between 2005 and 2024 Hydro Quebec (2003) 

NFL 3.4 % annually since 2007 PA-Hatch (2015) 

 

4.2 Alternatives to diesel-generated electricity in remote indigenous communities 

The main alternatives to address future industrial and residential electricity demand growth include 

connection to provincial interconnected or local grids, conservation initiatives and the use of 

alternative fuels, and the introduction of RETs into communities’ systems (Table 9).  

 
Table 9: Future provincial and territorial power requirements and resource alternatives  

Province/ 

Territory 

Future power 

requirements 

Alternatives to address future load growth Source 

Yukon -Increase of non-industrial 

loads 

-Diesel load is forecasted 

to increase from off-grid 

mines  

 

-Short term, enhancements of current hydroelectric 

facilities.  

-Long term, development of new hydroelectric projects. 

-Development of Demand/Supply Side Management 

(DSM/SSE) programs.  

-RETs: solar applications. 

-Natural gas developments. 

-Connection to the Alaska Highway Pipeline. 

-Extending the current grid and connect to the BC or 

Alaska electrical grid.  

Yukon Energy 

(2012a; 2012b) 

NWT -Residential load increase 

-Commercial and 

industrial load increases 

-Development of medium (on the 10 MW scale) 

hydroelectric projects, such as the La Martre Falls, Snare 

Site 7, and the Taltson Expansion.  

 NT Energy 

(2013) 
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due to mining and oil 

exploration  

-RETS: solar, wind, biomass. 

-Diesel and liquefied natural gas (LNG) development. 

-Expansion of the hydroelectricity-based transmission 

system to connect the remote communities and mines to the 

provincial grid. 

-Interconnection of the NWT transmission system with one 

or more of the Saskatchewan, Alberta or British Columbia 

provincial grids. 

BC Hydro 

(2013f) 

Nunavut -Residential load increase 

(new housing building) 

-Load increase due to 

territorial and federal 

government driven major 

projects 

-Load increase due to 

exploration activities in 

the mining sector  

-Replacement and updates of QEC diesel plants, since 17 

out of 25 facilities have reached the end of their designed 

service life.  

-Infrastructure investments in hydroelectricity projects to 

power Nunavut’s potential mining operations, while at the 

same time reducing diesel consumption. 

-The connection of five Nunavut’s Kivalliq region 

communities (Arviat, Whale Cove, Rankin Inlet, 

Chesterfield Inlet and Baker Lake) to Manitoba’s electrical 

grid. 

Senate Canada, 

(2014a); 

Murray (2015); 

Bell (2015); 

Senate Canada 

(2014b); QEC 

(2015a) 

BC -Load increase due to 

population growth and 

residential demand 

-Increase in commercial 

and industrial loads due to 

economic activity, mining 

and liquefied natural gas 

developments 

-Conservation measures. 

-Supply from major hydroelectricity projects (such as the 

Site C on the Peace river).  

-RET supply from biomass, run-of-river hydro and wind 

projects developed in cooperation with Independent Power 

Producers (IPP).  

BC Hydro, 

(2013a); BC 

Hydro 

(2013b); WEL 

(2009) 

Ontario  -Load increase form 

population growth and 

residential demand 

-Future mining projects in 

remote communities 

-Conservation measures introduced by HORCI. 

-RET projects development for the supply of clean 

electricity. 

-Connection to the provincial grid. 

OME (2013); 

OPA (2014) 

Quebec  -Load increase from 

population growth and 

residential demand 

-Future mining projects in 

remote communities 

-RET projects development for the supply of clean 

electricity. 

-Connection to the provincial grid.  

 

GQ (2006a); 

NRBHSS, 

(2013); 

NRBHSS, 

(2014); KRG 

(2012) 

NFL  -New industrial demand -Interconnection to Labrador via a High-Voltage direct 

current link bringing power from the Muskrat Falls 

hydroelectric generating station as the least-cost option.  

-Renewal of aging infrastructure and upgrades for the 

integration of Muskrat Falls energy. 

-Energy conservation. 

-RETs including solar, wind and mini-hydroelectric 

facilities for remote Labrador communities, and 

advancement of the Ramea Wind-Hydrogen-Diesel energy 

research and development project. 

NE (2014) 

 

 

4.2.1 Grid extensions 

The extension of national or local grids for the connection of most remote communities and 

interconnection to other electrical grids is the main option examined by provinces and territories 

to address future residential and commercial/industrial sector electricity demand, due to low price 
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affordability, potential for clean hydroelectricity generation and export of local generated 

renewable electricity (Table 9) (GY, 2009a; NT Energy, 2013; GQ, 2006a; Rogers, 2015; Cherniak 

et al., 2015). Yukon is considering the interconnection to Alaska and BC grids (Yukon Energy, 

2012a; 2012b), and NWT is examining the expansion and interconnection of its two 

hydroelectricity grids and, finally, the connection to the Alberta, BC or Saskatchewan 

interconnected provincial grids (BC Hydro, 2013f). In Nunavut, the Kivalliq region communities 

(Arviat, Whale Cove, Rankin Inlet, Chesterfield Inlet and Baker Lake) have investigated a 

connection to the Manitoba hydroelectric grid (Rogers, 2015). Ontario is currently considering the 

connection of 21 out of 25 remote communities (OME, 2013; OPA, 2014), with 22 aboriginal 

communities participating in the creation of the transmission line (WP, 2012; WP, 2013a). Finally, 

in Quebec the connection of the 14 Nunavik communities to the provincial grid is being examined 

as an alternative for regional hydroelectricity generation powering resource development in the 

area (GQ, 2006a; KRG, 2012).  

Governments, industry and indigenous communities anticipate an increase in natural resources 

exploitation in Canada’s remote areas (TCM, 2014; Eyford, 2013; NRCan, 2013b; NRCan, 2014; 

Rheaume & Caron-Vuatari, 2013). Mining and oil and gas projects are being considered in Yukon 

(YEC, 2015; Yukon Energy, 2012a), and NWT (NT Energy, 2013). In British Columbia increased 

mining and natural gas activity is expected in northwest British Columbia (MABC, 2008; STAC, 

2011), while in Ontario and Quebec mining projects include the development of chromite deposits 

in the Ring of Fire area (Dadgostar, Garofalo, Gradojevic, Lento, & Peterson , 2012; TB-CEDC, 

2013), and expansion of the Raglan mine and new developments in Nunavik (KRG, 2012). 

Potential future developments include more than 600 resource projects planned for the next 10 

years with a total value of more than $650 billion (Eyford, 2013; Bains, 2013; NRCan, 2014). 

Many projects are to be located within 100 km of aboriginal communities, while 110 out of 111 

projects currently under review involve aboriginal rights or interests (Bains, 2013; Rheaume & 

Caron-Vuatari, 2013; NRCan, 2013b). 

However, resource development in the north is shaped, besides investor expectations of financial 

gains, by the continuous change in institutional relationships between indigenous people and 

resource exploitation (TCM, 2014), which in turn are influenced by changes in the legislation 

supporting indigenous rights (Isaac & Knox, 2005; Morellato, 2008; AFN, 2011a; BC-AFN, 2009). 
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Indigenous people anticipate long term opportunities for indigenous communities through 

participation in transmission connection infrastructure, ownership of renewable electricity 

generation assets (mainly hydroelectricity), supply of electricity to power natural resource projects, 

and Impact Benefit Agreements (IBAs) from the development of natural resources within 

traditional territories to maximize revenue and employment benefits and create sustainable regional 

economies (see for example NAN, 2012; KRG, 2012; OEB, 2008). 

Examples of past combined resources and electricity infrastructure development projects 

impacting remote aboriginal communities include (a) the connection of Fort Albany, 

Kashechewan, and Attawapiskat to Ontario’s electrical grid between 2001 and 2003 (Five Nations 

Energy Inc., 2006), (b) the 2008 connection of Minto copper-gold mine to the Yukon 

hydroelectricity powered electrical grid, which  benefitted Little Salmon Carmacks First Nation, 

Selkirk First Nation and Na-Cho Nyak Dun First Nation along the path of the transmission line 

(CMC, 2008; Ragsdale, 2010), (c) the development of the Carmacks Stewart Transmission project 

in 2011,  dictated by new demand generated by current and future mining projects, which led to  

the creation of the  Yukon Interconnected System (YIS), and the connection of the community of 

Pelly Crossing  (Yukon Energy, 2012), (d) the development of the Northwest Transmission line in 

BC in 2014, which provided electricity for eleven potential mining projects from newly constructed 

hydroelectricity projects in the area, connected the remote communities of Eddontenajon and 

Telegraph Creek, and led to the generation of over $ 1.8 billion of benefits for the Tahltan First 

Nation (RWB, 2011; BC Hydro, 2016). 

 

4.2.2 Electricity conservation initiatives 

Grid extension is considered a long-term option and unable to address short term electricity needs 

of remote communities. Electricity conservation initiatives to reduce diesel consumption and 

emissions, took the form of technological upgrades and demand side management (DSM) 

programs implemented after 1995 in Yukon, British Columbia and Ontario (HORCI, 2012; Yukon 

Energy, 2011; Yukon Energy, 2012a). However, conservation is not prioritized by some remote 

communities’ consumers, since reductions in electricity use are rewarded with electricity bill 
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increases when utilities aim at recovering electricity generation costs, formed by both fuel costs 

and fixed costs, from the existing customer base, leading to higher rates (GNWT, 2009a).  

 

4.2.3 Introduction of alternative fuels 

Alternative fuels have been used in Ontario, with biodiesel replacing diesel and leading to lower 

GHG emissions (HORCI, 2012), and natural gas use in the communities of Norman Wells and 

Inuvik (NT Energy, 2013). Both Yukon and NWT examined the use of local natural gas production 

to power remote communities (GNWT, 2011a; PRN, 2013; Yukon Energy, 2012a; 2012b).  

 

4.2.4 The introduction of RETs into community electrical systems 

Aboriginal driven electricity generation to achieve reliability (protection from diesel fuel price 

volatility, security of supply, and low electricity prices) and sustainability (environmental and 

economic development) goals can be achieved to different extents through the deployment of small 

hydro, wind, and solar technologies in remote communities, depending on long term and short term 

community electricity needs, availability of natural and financial resources, project deployment 

costs and electricity generation costs. 

 

4.2.4.1 Small hydroelectricity 

Small hydroelectricity projects are the best electricity generation option for achieving reliability 

and sustainability goals. Hydroelectricity projects are able to displace diesel completely and 

eliminate diesel related carbon emissions; they offer security of supply, due to the lack of 

intermittency, and despite higher capital costs they usually provide lower electricity costs than 

diesel, wind and solar applications (see Hatch, 2013; NFL Hydro, 2009). Successful examples of 

complete diesel displacement are the communities of Atlin (Taku Tlingit FN) (Kirby, 2009) and 

Kitasoo FN (GEA, 2016), while Deer Lake FN displaces a significant amount of diesel based on a 

hybrid hydro-diesel system (HORCI, 2012).  
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Although hydroelectricity may displace diesel and maximize community benefits, hydroelectricity 

resources are not always available in the proximity of remote communities. In addition, 

hydroelectricity projects have longer implementation timeframes than wind and solar applications. 

Solar applications, although still expensive, offer the advantage of faster deployment, easy siting, 

higher predictability than wind, decreasing solar panel prices, ease of maintenance, and simple 

installation, and, in combination with wind and storage applications, may lead to environmental 

and socioeconomic benefits for communities (Das & Canizares, 2016). 

 

4.2.4.2 Wind and solar applications 

Wind, solar, or a combination of both technologies, have the potential to displace diesel based on 

the level of renewable resource penetration: low penetration projects could displace up to 15% of 

diesel consumption, and high penetration systems could reduce up to 90%, under high wind 

resources availability (Fay, et al., 2010a; 2010b; Baring-Gould & Dabo, 2009).  

However, one of the main technical issues increasing the technical complexity of introducing RETs 

in remote communities is associated with the levels of renewable energy penetration from 

intermittent resources. Using the case of a wind turbine project, instantaneous penetration would 

be defined as the Wind Turbine Power Output (kW) divided by the Primary Electrical Load (kW), 

and average penetration would be defined as the Total Wind Turbine Energy Output (kWh) 

divided by the total Primary Electrical Load (kWh) over a given time period, typically a month or 

year. Based on the definitions, three penetrations classes are distinguished (Table 10), namely low, 

medium and high penetration levels (Baring-Gould & Dabo, 2009; Fay, Keith, & Schwoerer, 2010; 

Ibrahim, Younes, Ilinca, Dimitrova, & Perron, 2010). 
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Table 10: Penetration classes based on instantaneous penetration and average penetration 
Penetration 

Class 

Operating Characteristics Penetration level 

Peak Instantaneous Annual Average 

Low 

Diesel(s) run full time 

< 50% < 20% 
Wind power reduces net load on diesel 

All wind energy goes to primary load 

No supervisory control system 

Medium 

Diesel(s) run full time 

50%-100% 20%-50% 

At high wind power levels, secondary loads 

dispatched to ensure sufficient diesel loading or 

wind generation are curtailed 

Requires relatively simple control system 

High 

Diesel(s) may be shut down during high wind 

availability 

100%-400% 50%-150% Auxiliary components required to regulate voltage 

and frequency 

Requires sophisticated control system 

Source: Baring-Gould & Corbus (2007, p. 4) 

 

In the case of hybrid systems with low instantaneous wind penetration, there is limited need for 

system controls, since system control is provided by devices integrated into the diesel generator 

hardware. When instantaneous penetration levels increase additional control must be put in place 

to maximize system performance and stability. In the case of medium penetration systems with 

renewable energy contributing significantly for certain periods, some diesel generators must be 

turned off, or a smaller unit must be switched on, causing power imbalances. Finally, in the case 

of high penetration systems diesel engines are to be shut down, since the intermittent resources 

provide a large amount of the load, therefore the diesel engines are unable to control frequency, 

voltage, and reactive power. In this case, use of additional control systems in the form of 

synchronous condensers, dispatchable loads, and storage, in the form of batteries or flywheel 

systems, are to be introduced to ensure energy and power balance (Baring-Gould & Dabo, 2009; 

Mc Gowan, Manwell, & Connors, 1988) .  

In the case of medium to high penetration systems, short term energy and power balance (balancing 

supply and demand) can be done by controlling energy supply, demand and storage. The microgrid 

central controller assumes the role of controlling the actions of all microgrid components, which 

provide real power or absorb the instantaneous real power difference between generation and loads 

(in the case of excess power generated), and provide or absorb the reactive power, while controlling 

local voltage and frequency (Kroposki, et al., 2008). Power balance can be achieved through dump 

loads (e.g. power is used to provide domestic hot water heating), which have to be integrated for 
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protection in the case of excess power generation. Energy storage is another way used for balancing 

the difference between excess electricity generation caused by the intermittency of renewable 

sources and fluctuating demand: electricity can be stored during excess generation and released 

when demanded (Nigim, Ahmed, Reiser, Ramani, & Mousa, 2010). Storage technologies consist 

of batteries, hydrogen fuel storage (HFS), super capacitors (SCES), flywheels, superconducting 

magnetic energy storage (SMES), compressed air energy systems (CAES) and pumped storage 

(Diaz-Gonzalez, Sumper, Gomis-Bellmunt, & Villafáfila-Robles, 2012). Another option for 

balancing supply and demand and reducing total energy demand is the manipulation of demand 

through Demand Side Management (DSM), using techniques such as peak clipping, conservation 

and load shifting (Rae & Bradley, 2012). 

Higher penetration wind, or solar applications, or a combination of both, represent high cost 

alternatives that may offer low cost electricity, depending on the availability of wind and solar 

resources (Fay, Keith, & Schwörer, 2010b; Maissan, 2006b; Das & Canizares, 2016). High wind 

or solar penetration options can achieve significant carbon reductions, although these solutions 

necessitate higher capital costs, higher subsidies in the form of capital requirements and generation 

incentives and are associated with higher operational risks. Finally, revenue generation, or reducing 

outflow of cash for the communities, and community employment are best accomplished through 

hydroelectricity projects, backed by larger lifespans of generation incentives (40 years) and 

favorable power purchase agreements (PPAs) (AECOM, 2012; Kirby, 2009), while only limited 

employment opportunities are expected from high penetration wind-diesel applications (Fay, 

Keith, & Schwörer, 2010a). In some cases, hydroelectricity projects have higher capacities that 

allow for increased community self-sufficiency, the potential for exporting excess electricity, as in 

the case of the Atlin project (Morrin, 2016; Kirby, 2009). Alternatively, the additional capacity 

could support local manufacturing, as in the case of the Kitasoo project that powers the community 

owned seafood production plant and employs most of the community (Sisco & Stewart, 2009).  

In the case of remote aboriginal communities, lower penetration systems are associated with lower 

capital costs, simplicity of operations and lower operational costs, and consequently low overall 

project risks. Higher penetration levels necessitate higher levels of system integration, increased 

technological complexity and advanced controls, increasing project costs and require the 

employment of qualified operators, who may be difficult to attract and retain in remote locations 
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(Fay, Keith, & Schwoerer, 2010a). The higher costs of high renewable energy penetration levels 

have to be compared to reduced fuel consumption, reduced diesel operation time, reduced fuel 

storage and handling, as well as possible financial gains from carbon offsets, while non-monetary 

environmental benefits, employment opportunities, or issues of energy self-reliance could also be 

considered in microgrid related decision making (Weis & Ilinca, 2010; Rolland & Glania, 2011).  

A considerable number of RETs projects in the form of wind, solar and small hydro has been 

installed in aboriginal remote and grid connected communities during the last years. A list of RETs 

projects in remote aboriginal communities is presented in Appendix C. There are limited empirical 

results on the performance of installed RETs in remote aboriginal communities. Low penetration 

hybrid wind-diesel systems installed in the communities during the 1987-2000 period experienced 

mechanical failures, high servicing and maintenance costs and poor performance, resulting in 

failures by 2006 (Weis and Ilinca, 2008), while existing assets exhibit poor performance7 (HORCI, 

2012). However, it should be noted that although the results on the efficiency of wind diesel 

systems integrated in remote communities’ microgrids are not encouraging, each microgrid has 

unique characteristics and hybrid system design should be adjusted accordingly.  

 

4.3 Renewable electricity policies, targets and programs 

Decision on the introduction of RETs into remote indigenous communities’ electrical systems are 

also influenced by policy support. Early policy objectives evolved from oil and fossil fuel 

substitution targets in the late 1970s to energy self-reliance, security of energy supply, energy 

diversity, and, more recently, sustainable development and climate change (Gingras & Dalp, 1993; 

Pneumatikos, 2003 ). RET policy was influenced by residential and industrial demand growth, 

availability of renewable resources, financial capacity, the changing structure of the electricity 

industry and the increasing role of the private sector in the generation, transmission and distribution 

of electricity, and the interests of market players, such as investors, bankers, project developers 

and indigenous people (NRCan, 2016a; PA-Hatch , 2015; WEL, 2009; Enzenberger, Wietschel, & 

                                                 
7 The three 10 KW wind turbines in Kasabonika Lake First Nation remote community generated 11,730 kWh for 2011, 

displacing approximately 3,300 liters diesel from a total of 1,126,943 liters of diesel consumed in the community (or 0.3% of 

total community’s fuel consumption) and reducing CO2 emissions by 8.5 tonnes (HORCI, 2012). 
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Rentz, 2002; Yi & Feiock, 2014). Thus, RET support policies differentiated between provinces 

and territories, and took the form of renewable electricity targets, supply push approaches in the 

form of feed-in tariffs, as well as demand-pull approaches with different quota models. 

Furthermore, federal programs and provincial targets and programs supporting RET deployment 

differentiated in terms of technologies, project scale, indigenous participation and focus on diesel 

substitution.  

In the case of BC, Ontario, Quebec and NFL, provincial targets focused on large-scale expansion 

of renewable electricity, mainly through hydroelectricity and wind. In Yukon and NWT, new 

hydroelectricity generation and extension of local grids, due to the lack of connection to the North-

American interconnected grid, were the primary aims. Conservation and alternative energy were 

mentioned as energy-related targets in Nunavut’s Ikummatiit strategy, but no specific technologies 

were identified. Targets and programs also differed between provinces in terms of private sector 

and indigenous participation. In British Columbia, future electricity production (mostly 

hydroelectricity and wind) is being developed by private proponents (including communities) 

(WEL, 2009), while indigenous communities are supported by revenue sharing agreements, 

specific programs for capacity building, and equity funding through the First Nations Clean Energy 

Business Fund (FNCEBF) (GBC, 2016). Quebec’s targets for hydroelectricity and wind expansion 

included requests for proposals designated specifically for First Nations (GQ, 2006b). In Ontario, 

private proponents’ involvement in generation, transmission and conservation projects was 

promoted through a feed-in tariff (FIT) mechanism, which included additional selection points for 

projects which included First Nation and Metis partners. These programs led to indigenous 

participation in approximately 240 projects with over 1,000 MW of clean electricity capacity 

connected to the main grid (OME, 2013). 

However, specific targets promoting RETs for diesel substitution in remote communities were 

developed only in NWT and Yukon. In NWT, policies aimed at supplying up to 20% of the average 

load of the 25 diesel powered communities through solar photovoltaic applications and displacing 

10% of annual diesel-generated electricity (GNWT, 2012b). In Yukon, recent policies target a 20% 

increase in renewable energy supply (Yukon Government, 2015).  
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4.4 Concluding remarks 

The goal of this chapter was to improve understanding of the contextual and technical complexity 

of the introduction of RETs into remote indigenous communities’ electrical systems. Alternatives 

to diesel-generated electricity are expected to address utilities and indigenous communities’ 

concerns over diesel dependency, rates affordability, reliability of supply, as well as the desire to 

increase self-sufficiency by reducing diesel consumption (GNWT, 2009a; Yukon Energy, 2012a). 

Furthermore, diesel displacement in remote communities could contribute to Canada’s recent 

commitments towards GHG emissions reductions and reduce provincial and federal governments’ 

subsidies for the operation of remote diesel systems (GC, 2016; DSF, 2012; OPA, 2014).  

However, decisions on the future design of indigenous electrical systems are influenced by natural 

resources development and the availability and integration of large-scale provincial and territorial 

renewable hydroelectricity resources into provincial electricity generation systems and the 

potential connection of remote communities with provincial grids. Communities in the proximity 

of future natural resources development expect multiple benefits from transmission connections 

that could eliminate carbon emissions and improve both electricity supply availability and price 

affordability. 

Decisions on the introduction of small-scale RETs into communities’ electrical systems are 

influenced by the size of communities’ power plants, availability of renewable resources, high 

capital costs and the associated technical complexity of the integration of RETs into local systems, 

electricity cost, rates, and service quality comparisons between diesel generators and intermittent 

sources, such as wind and solar. Furthermore, the complicated nature of electricity generation 

funding and rates subsidization influences RET acceptance as it may increase rather than decrease 

the cost of electricity in the north, while the risky nature of renewable electricity generation may 

threaten community budgets in the case of community owned project failures, as past practices 

indicate. As high penetration RET projects lead to higher electricity prices, further rates 

subsidization would be necessary for utilities revenues to remain at levels able to technically 

support the generation process and the quality of electricity services.  
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Furthermore, economies of scale favor the introduction of RET in larger diesel systems powering 

indigenous communities with larger populations and rich renewable resources, such as 

hydroelectricity, wind and solar. 
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5 Chapter 5: Technical solution or wicked problem?: Diverse 

perspectives on Indigenous community renewable electricity in 

Ontario, Canada 

 

The purpose of this chapter is to understand the issues related to the deployment of renewable 

electricity technologies (RETs) in remote indigenous communities by examining the views of key 

informants in a remote northern Ontario community through the lens of a wicked problem 

approach, with the goal to identify policy direction and strategies for the further development of 

renewable electricity projects. The chapter uses semi-structured interviews with community key 

informants, informed discussions with community members and energy conference participants, 

and literature reviews of academic, policy, and utility documents as complementary data sources 

for triangulation of results. 

According to informants, the complexity surrounding the deployment of RETs in remote Canadian 

indigenous communities is the result of different stakeholder perspectives on the issues that RETs 

are expected to address. Furthermore, institutional challenges of the electricity generation system, 

and uncertainty over both the choice of off-grid renewable technology and the future of electricity 

generation systems structure and governance add to this complexity. Given the government’s legal 

obligation to consult with indigenous peoples for projects within their territories, community 

perspectives provide insights for policy design to support both the deployment of RET and address 

indigenous communities’ sustainability goals.   

 

5.1 Introduction  

Historically, Canadian indigenous communities have relied on mixed economies with incomes 

supported by employment in resource based businesses, federal financial support and a subsistence 

component based on hunting and gathering (Usher, et al., 2003; Southcott & Walker, 2009). 

Recently, however, this economic model is being challenged by an increasingly young population, 

low educational attainment, health issues, high unemployment, as well as reduced state financial 
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assistance (Loppie & Wien, 2009; Wilson & Macdonald, 2010). In order to mitigate 

socioeconomic, political and cultural impacts arising from these challenges, some indigenous 

communities aim to achieve self-governance and self-reliance through economic independence 

based on their lands, resources and the creation of entrepreneurial ventures with indigenous and/or 

non-indigenous partners (Anderson & Bone, 1995; Anderson, Dana, & Dana , 2006). Such ventures 

are expected to have minimal impact on the environment, traditional activities, and community 

way of life, and provide appropriate economic rents, thus contributing to sustainable economic 

development (Kendal, 2001; Slowey, 2008). 

Improving local sustainability could be a complex process, as there is always tension between 

“sustainability and development, between environmental requirements and sociocultural needs and 

desires, between needs of the present generation and those of future generations” (Murphy, 2012, 

p.1).  At the same time, indigenous community entrepreneurial ventures emerging out of economic, 

environmental and community vulnerability, call for innovative solutions (Peredo & Chrisman, 

2006) that have to perform within a complex (wicked) environment (Dorado & Ventresca, 2013) 

characterized by distinct property rights, lands that are subject to claims by indigenous peoples, 

and multiple economic development barriers (OAG, 2003). In this sense, advancing community 

sustainability agendas that aim at addressing climate change issues and sustainable development 

through entrepreneurial ventures, exhibit characteristics similar to those of a “wicked problem”. It 

is constrained by the complexity generated through the engagement of different stakeholders with 

different perspectives and subject to specific multi-layered institutional environments (Rittel & 

Webber, 1973).  

One sector with potential for the development of indigenous owned ventures is community energy 

and electricity generation based on renewable resources (AFN, 2011a; BC-AFN, 2009). 

Motivations for community energy ventures include gaining financial support for community 

revitalization projects and capacity development, rent seeking, social justice and environmental 

oversight (Walker, 2008; Wuestenhagen, Wolsink, & Buerer, 2007; Walker, Hunter, Devine-

Wright, Evans, & Fay, 2007; Walker & Devine-Wright, 2008). In the case of Canadian on-grid 

indigenous communities, recent research indicates that participation in large-scale renewable 
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electricity generation projects is primarily motivated by the desire for self-sufficiency through the 

establishment of new revenue streams (Henderson, 2013; INAC, 2004; McLaughlin, McDonald, 

Nguyen, & Pearce, 2010; Krupa, 2012b; Landers, 2014; Stewart, 2009). 

However, participation in renewable electricity technologies (RET) projects (hydroelectricity, 

wind and solar applications) was limited in the 140 indigenous remote communities in Canada that 

are powered by diesel plants. Remote off-grid communities are permanent or long term (five years 

or more) settlements with at least ten dwellings that are not connected to the North American 

electricity grid or piped natural gas network. In 2011 293 communities in Canada were still 

considered remote with an approximate population of 198,000 people, 328 MW estimated diesel 

capacity, 132 MW renewable energy capacity, and an estimated consumption of 230 million liters 

of diesel per year (AANDC and NRCan, 2011). In 2011, 171 of these communities were 

indigenous, of which 144 were powered solely by diesel generators (Table 11). 

Table 11: Remote communities in Canada  

  
British 

Columbia 

Alberta, 

Saskatche

wan 

Manitoba 

Ontario Quebec Yukon 

North 

west 

Territori

es 

Nunavut 

Newfoun

dland 

and 

Labrador 

Total 

Remote indigenous 
communities (2011) (a) 

25 5 25 16 25 33 26 16 171 

Diesel powered 

indigenous communities 
25 5 25 19 5 23 26 16 1448 

Non-indigenous 
communities (b) 

61 5 13 25 1 5 0 12 122 

Total (a)+(b) 86 10 38 41 26 38 26 28 293 

Indigenous population 7,619 2,217 14,236 15,452 7,705 22,410 29,453 5,634 104,726 

Non-indigenous 
population 16,449 1,436 7,106 19,277 26,192 19,540 0 3,276 67,420 

Total population9  24,068 3,653 21,342 34,729 33.897 41,950 29,453 8,910 198.002 

Source: AANDC & NRCan (2011) (modified) and AANDC (2012b).  

 

Research on 133 of the 144 indigenous remote indigenous diesel powered communities indicates 

that 71 RET projects were deployed in 57 communities in Yukon, NWT, Nunavut, British 

Columbia, Ontario, Quebec and Newfoundland and Labrador between 1980-2016, or 

                                                 
8 Some communities are now connected to provincial or local electrical grids, reducing the number of diesel powered 

communities to 140. See Appendices 1-7.  
9 Population data are based on 2006 Canadian Census as reported in AANDC & NRCan (2011), except the population of 

Yukon that was modified based on the 2011 National Household Survey (NHS) (Statistics Canada, 2016b). 
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approximately 13% of the total installed capacity (Karanasios and Parker, 2016a-g). In comparison, 

hydroelectricity represented 56% of Canada’s total electricity capacity (EMMC, 2013). However, 

if hydroelectricity projects are excluded, 63 of the 71 projects were small-scale wind and solar 

applications with a total capacity of approximately 1,660 kW, or less than 1% of total installed 

capacity.  

Contrary to the clarity of motivation for on-grid indigenous renewable electricity generation 

ventures, the drivers for the introduction of RETs into remote indigenous communities vary. For 

example, in NWT’s and Nunavut’s isolated local grids, community members examine the 

introduction of RETs to reduce high electricity costs (GNWT, 2009a; McDonald & Pearce, 2013), 

while Ontario’s Independent Power Authorities (IPAs), which own electricity systems in ten 

remote communities in northern Ontario, prioritize local control through rate settings according to 

community needs, collection methods that support members facing poverty issues, opportunities 

for local job creation, and a sense of community pride as the main motivations for running their 

own power systems, despite higher costs and reduced subsidies in comparison to 15 Ontario remote 

communities serviced Hydro One Remote Communities Inc. (HORCI) (OEB, 2008). 

The variety of community motivations and the slow diffusion rates of RETs applications in remote 

Canadian indigenous communities, despite public policy support (Bailie et al., 2009; Karanasios 

and Parker, 2016a-g) indicate that the RETs deployment process may represent a “wicked 

problem”. Wicked problems lack a clear definition of challenges to be addressed, are “messy, 

circular, aggressive and intrinsically complex” (Hunter, 2007, p. 36), and, unlike “tamed” problems 

which, although technologically complex, are well defined and thus solvable through an 

established solution methodology (Conklin, 2005; Roberts, 2000), they lack an identifiable 

solution (Rittel & Webber, 1973). In a recent review of contributions examining modern policy-

making challenges through a “wicked problems” approach, Danken et al. (2016) identify 

insufficient and contested knowledge, the need for building new knowledge due to the uniqueness 

of the problem, the nesting of the problem within overarching problems, and the existence of value-

laden conflict between stakeholders, as the main factors for the lack of definitional clarity in the 

case of a wicked problem.  
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Accordingly, the purpose of this study is to advance understanding of the introduction of RETs 

into remote Canadian indigenous communities’ electrical systems by (a) identifying the main 

stakeholders’ perspectives on the challenges of diesel systems and the potential role of RET to 

address them, and (b) exploring the “wickedness” of the problem.  A deeper understanding of the 

problem and assessment of its wickedness degree in terms of complexity, uncertainty, and 

divergence of opinions (Head, 2008), may provide policy direction for developing coping strategies 

(Roberts, 2000; APSC, 2007; Head & Alford, 2015). In the next section, the “wicked problem” 

approach is examined, followed by the research setting and methodology in section three. Section 

four presents the results, followed by the discussion in section five and concluding remarks in 

section six. 

 

5.2 Wicked problems 

The concept of “wicked problems” was introduced by Rittel and Weber (1973) to describe social 

problems that were difficult to define in terms of causal relationships surrounding the issue in 

question. This lack of definitional clarity results from stakeholders’ diverse perceptions arising 

from a variety of differing, often opposing, world views, backgrounds, cultures, moral, political 

and professional agendas (Weber & Khademian, 2008; Ritchey, 2013), as well as the existence of 

“redistributive implications for entrenched interests” (Rayner, 2006, p. 2).  Lack of definition acts 

as a barrier to an end-of-searching-rule and prevents the formulation of potential solutions (Rittel 

& Webber, 1973). Additionally, wicked problems are almost always unique, and solutions 

identified for one set of problems, may not be applicable to similar situations in other contexts. 

Such problems are never completely “solved”, merely “resolved”, as they tend to reappear in other 

forms, since each wicked problem may only be a symptom of another “higher level” wicked 

problem (Rittel & Weber, 1973). Finally, and perhaps most significantly, due to changes in 

resources, constraints and political will, wicked problems are in a constant state of flux and need 

to be continually redefined (Hunter, 2007; Roberts, 2000). However, as these problems are part of 

“multiple, overlapping, interconnected subsets of problems that cut across multiple policy domains 

and levels of government” (Weber and Khademian, 2008, p.336), any effort to solve them may 
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have a knock-on effect adding to the complexity of related policy agendas. For this reason, despite 

good intentions and resource availability, these problems often defy solution and persist over time.  

Addressing wicked problems necessitates understanding the nature of the problem, the 

identification of possible solution(s), and an implementation approach (Roberts, 2000; APSC, 

2007). To further describe and understand the “wickedness” of a problem, Head (2008) introduced 

three dimensions, namely complexity (both technical and social complexity related to system’s 

elements and interdependencies), uncertainty (related to risks, consequences, and future changes), 

and divergence (related to values, viewpoints, and stakeholder strategies to address the problem). 

For a problem to be characterized as “wicked”, it would have to score high in all three dimensions, 

since technical uncertainty or social complexity alone could be addressed through scientific and 

technical analysis, and divergence of stakeholder opinion in itself does not necessarily make a 

problem wicked (Head, 2008).  

Approaches for the governance of wicked problems often focus on the reduction of social 

complexity, since it is this social complexity, rather than the technical challenges, that allows for 

possible solution identification and a management approach to implementation. Such approaches 

examine the views and visions of multiple stakeholders with competing interests, thereby moving 

towards, first, a shared understanding of the problem and commitment to the possible solutions, 

and, second, the development of solutions to “tame the problem” in the form of criteria 

identification to “lock down” the problem statement (Conklin, 2005). Next steps involve “coping” 

with the issue through the identification, examination and selection of a limited number of 

alternatives, and experimenting through learning by doing (Conklin, 2005; Valkenburg & Cotella, 

2016; Loorbach, 2007). Rogers (2000) suggested three generic coping strategies, authoritative, 

competitive, and collaborative, based on the level of conflict present in problem definition and 

solutions and power structures among stakeholders. Authoritative strategies are to be employed 

when power is concentrated in the hands of a few stakeholders that define the problem and seek 

appropriate solutions from a position of power. Competitive strategies have their roots in power 

conflicts that develop between stakeholders in their fight to define the problem and move towards 

a solution. Finally, collaborative strategies (Roberts, 2000), “clumsy solutions” (Khan & Neis, 
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2010; Verweji & Thompson, 2006), or a “transitions management” approach in the case of 

sociotechnical systems (Loorbach, 2007), combine opposing perspectives to develop a “win-win” 

view on problem definition and potential solution, in the form of alliances, partnership and joint 

ventures, and aim at “enlarging the pie” to the long-term benefit of all stakeholders involved 

(APSC, 2007). This paper will use the wicked problem framework to examine whether the three 

dimensions of complexity, uncertainty and divergence are found in the case of RETs in remote 

indigenous communities. 

 

5.3 Research methodology 

The purpose of this paper is to advance understanding of the introduction of RETs into remote 

Canadian indigenous communities’ electrical systems by identifying the main stakeholders’ 

perspectives on electricity generation in remote communities and exploring the “wickedness” of 

the problem. Main stakeholders in the remote communities’ electricity generation process include 

the federal government, provincial and territorial governments, community governments, utilities, 

and community members (Karanasios & Parker, 2016a-g; Knowles, 2016). To improve 

understanding on the “wickedness”, we combined a review of academic and non-academic 

literature, policy and utilities’ documents, with interviews with members of a remote northern 

Ontario community, and discussions with energy conference participants, to explore stakeholders’ 

opinions on the roles and challenges associated with the current communities’ diesel powered 

systems, the future of electricity generation, the expectations from RET applications, as well as 

barriers to their implementation.  

For the literature search process, we used the electronic databases Scopus, Web of Science and 

ABI/INFORM and multiple combinations and variations of the following keywords: 

"Indigenous" AND "renewable" AND "electricity" AND "remote" AND "Canada". Results in 

Scopus peer reviewed journals ranged between 430 documents for the search string 

"aboriginal" AND "energy" AND "remote" AND "Canada", to 28 results for the search string 

“indigenous” AND “renewable” AND “energy” AND “electricity” AND “wind” AND “remote” 

and “Canada”. After eliminating studies irrelevant to Canadian context, sixteen articles related to 
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indigenous communities and renewable electricity generation, of which only three were related to 

remote indigenous communities and involved interviews with stakeholders of the electricity 

generation process. The first of these involved opinions from government and utilities 

representatives and community leaders for RET projects in British Columbia’s remote 

communities (Rezaei & Dowlatabadi, 2015). The second documented the perspectives of Inuit and 

non-Inuit residents on the acceptability of RET in three Nunavut communities (McDonald & 

Pearce, 2013). Finally, Weis, et al. (2008) surveyed multiple stakeholders, including governments 

and utilities, but not community members, on barriers to RET implementation. 

We then extended the search to non-scholarly journals and the internet and included stakeholders’ 

perspectives on renewable electricity generation and the future of remote communities’ electrical 

systems as expressed in energy conferences and meetings (4 documents), and indigenous 

perspectives expressed by remote indigenous communities (3 documents), and indigenous 

organizations, such as the AFN, BC-assembly of First Nation, NWT Aboriginal Governments, 

Council of Yukon First Nations, and Ontario’s Nishnawbe Aski Nation (NAN) (7 documents), as 

well as documents created by indigenous organizations for the federal government (4 documents). 

We then included energy policy documents and utilities reports (14 documents) capturing the 

perspectives of provincial and territorial governments and utilities (see Table 12) 

These sources were also used for a review of technical and non-technical barriers to 

implementation of RETs in remote indigenous communities to improve understanding of the 

associated technical and social complexity. 
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Table 12: Systematic literature review documents 

Scholarly articles 

Rezaei & Dowlatabadi (2015); McDonald & Pearce (2013); Weis et al., 2008 

Stakeholders’ perspectives from energy conferences and meetings 

NTPC (2007); YE (2011); GNWT (2012b); GNWT (2014) 

Indigenous perspectives (remote communities) 

VGFN (2002); HFN-ED (n.d.); KFN (n.d.) 

Indigenous organizations’ perspectives  

AFN (2011a; 2011b); NAN-HORCI (2013); NAN (2012); OEB (2008); BC-AFN (2009); BC-AFN (n.d.) 

Indigenous organizations (for the federal government) 

INAC (2004; 2005; 2007; 2010) 

Perspectives of provincial /territorial governments and utilities 

AANDC (2012b); Yukon Energy (2012); NT Energy (2013); GNWT(2008b; 2009a; 2009b); GN (2007); Northern 

Vision (2014); BC-Hydro, 2013a-f; OME (2013; 2017); IESO (2014); GQ (2016); Hydro Quebec (2013); GNFL, 

(2015a)  

 

The secondary research data were complemented with primary data from semi-structured 

interviews with key informants in a remote community in northern Ontario10. The community is 

typical of northern Ontario’s 25 remote indigenous communities (Flyvbjerg, 2006), in terms of 

language, common values, and traditional practices, population (approximately 1,000), building 

stock (residential, community and infrastructure), and electricity generation facilities. Economic 

activities include fuel supply, diesel storage, and tourist services, but employment is primarily 

provided through the local government/band council services and the local store. The community 

is a member of the Nishnawbe Aski Nation (NAN), the political territorial organization that 

represents 49 northern Ontario First Nation communities, signatories of the James Bay Treaty No. 

9 and Ontario’s portion of Treaty No. 5 (NAN, 2014).  

Research in the community was undertaken following the Tri-Council policy requirements and 

received ethics clearance from the Office of Research Ethics at the University of Waterloo. 

Participants were identified by the Band Council, were over 18 years old and consented in writing 

and orally to be interviewed. The semi-structured interviews with ten key informants were 

conducted in October 2014. Interviews were conducted in a respectful manner, were on average 

20 minutes in length, and included qualitative, open ended questions to explore views on the 

current electricity system governance structure, their motivations for participating in renewable 

                                                 
10 The name of the community is not disclosed to protect the informants’ anonymity.  
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electricity generation, and their opinion on potential community benefits from the implementation 

of RET projects.  Interviewee responses were written down and subsequently analyzed by topic. 

The qualitative, semi-structured and open-ended question interview approach is aligned with 

indigenous worldviews on knowledge transfer through oral history and storytelling (Wilson, 2001; 

Kovach, 2010; Smith, 2001) and indigenous qualitative research methods that include talking 

circles, interviews and personal narratives (Weber-Pilwax, 2004). It is worth noting, however, that 

although the community is typical among northern Ontario remote community served by HORCI 

in terms of population, buildings, and local economy, interview results cannot be considered 

representative of either the community’s whole population or the rest of Ontario’s remote 

community populations. 

Finally, triangulation data were collected through informal conversations with indigenous 

communities’ leaders, members, energy managers, economic development officers, 

representatives of indigenous organizations, and federal government employees during the 

following public and thematic events: the Toronto Remote Microgrids Conference (2013), the 

Northern Ontario First Nations Environmental Conference (NOFNEC) (2014), the Rise of the 

Fourth World Conference (2014), the Energy Council of Canada Energy Summit (2015), and 

various Waterloo Institute for Social Innovation and Resilience (WISIR) workshops that included 

the participation by indigenous leaders at the University of Waterloo.  

All data was analyzed using pattern coding to identify overarching concepts within the documents 

and interview results.  In a second step, findings were compared to identify commonalities and 

differences and, finally, using the “wicked problem” lens, organized under complexity, 

uncertainty, and divergence of opinions categories. 

 

5.4 Findings  

Table 13 summarizes the findings from the literature review and key informant interviews 

regarding challenges associated with the current communities’ diesel powered systems, the future 
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of electricity generation, and, finally, the expectations from RET applications, as well as challenges 

to their implementation.  

 

Table 13: Stakeholders perspectives on community electrical systems and RETs 

 Perspectives of 

indigenous remote 

communities’ members 

(scholarly literature) 

 

Indigenous perspectives 

as expressed in 

-conferences and 

meetings 

-remote communities 

-indigenous 

organizations 

Perspectives of federal 

and provincial 

/territorial governments 

and utilities 

Perspectives of key 

informant interviews 

Challenges 

associated with 

the current 

systems 

Environmental  

-Carbon emissions 

 

Economic  

-High cost of electricity 

 

 

Reliability issues 

-Frequent interruptions 

Diesel dependency 

-Community acceptance 

of diesel as a necessity 

Technical skills 

 -Lack of community 

knowledge about energy 

Environmental  

-Environmental 

(responsibility) 

Economic  

-Affordability (minimize 

cost for power)  

Reliability issues 

-Reliability (reliable 

capacity) 

-Flexibility (new 

resources to be planned 

for load uncertainties) 

 

Environmental  

-Environmental (carbon 

emissions, fuel transport, 

spills, noise, health issues) 

 

Economic 

-High electricity expenses, 

limits to economic 

development 

-Key issues: small 

customer base, isolation, 

high fixed and operating 

costs, limited economies 

of scale 

Reliability issues 

-Reliability and 

redundancy issues 

Environmental  

-Environmental (carbon 

emissions, black carbon, 

leaks and spills, soil 

contamination) 

Economic 

-Limits to economic 

development 

Reliability issues 

-Reliability (power 

interruptions, surges, 

brownouts) 

-Maintenance issues 

Diesel dependency 

-Increased consumption 

(diesel dependency) 

Issues 

associated with 

the 

institutional 

set-up and 

governance 

structures 

System complexity 

-Fear for higher electricity 

rates from alternative 

electricity options 

-Lack of communication 

on community energy 

issues 

 

Indigenous control 

-Need for indigenous 

control over electricity 

systems 

-Need for indigenous 

supply of electricity 

 

System complexity 

-High complexity of 

electrical system  

-Electrical system 

isolation (loss of major 

loads leads to rate 

increases) 

 

 

 

Indigenous control 

-Community participation 

in electricity generation 

-Need for partnerships 

development in electricity 

generation 

System complexity 

-Regulated vs. non-

regulated utilities 

-Complexity and high cost 

of the regulatory 

environment 

-Complexity of rates 

systems  

-Residential subsidies 

create market distortions 

-Lack of economies of 

scale increase electricity 

costs 

- “Use less, pay more” 

because of the isolated 

nature of the remote 

systems 

System complexity 

-High complexity of 

electrical system  

-Bureaucratic, red tape, 

unionized procedures in 

electricity generation limit 

community participation 

 

 

Indigenous control 

-Improve participation in 

governance of the 

electricity system 

(influence electricity cost 

decisions, bills collection, 

economic development) 

-Improve community 

technical and managerial 

capacity issues 

Future of 

communities’ 

electrical 

systems 

Off grid RET as an 

option 

-Increase RET share 

without increasing 

Off grid and on grid 

RET as options 

-Engage in clean/ 

renewable initiatives and 

Off grid and on grid 

RET as options 

-Focus on clean 

technologies and capture 

Off grid and on grid 

RET as options 

-Small-scale RETs 
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 Perspectives of 

indigenous remote 

communities’ members 

(scholarly literature) 

 

Indigenous perspectives 

as expressed in 

-conferences and 

meetings 

-remote communities 

-indigenous 

organizations 

Perspectives of federal 

and provincial 

/territorial governments 

and utilities 

Perspectives of key 

informant interviews 

community electricity 

costs 

reduce carbon emissions 

(mainly hydroelectricity) 

-Connect to 

interconnected grid to 

address long term 

community electricity 

demand and economic 

development 

-Create indigenous 

utilities 

-Renewable and mining 

opportunities to be 

exploited under 

indigenous governance 

and participation 

 

local alternatives (multiple 

mini hydro plants) 

-Reduce carbon emissions 

-Connect to 

interconnected grids 

engage large-scale 

hydroelectricity as the 

most affordable and clean 

option to support mining 

development  

-Connect to the provincial 

grid to address long term 

community electricity 

demand and economic 

development 

-On-grid hydroelectricity 

generation is associated 

with multiple 

socioeconomic benefits 

Potential 

community 

benefits of off-

grid 

indigenous 

RET projects 

Socioeconomic 

-Community economic 

development 

-Lower cost for electricity 

-Revenue potential 

 

 

 

Political 

-Self sufficiency 

 

Socioeconomic 

-Green economy as key to 

indigenous prosperity  

-Economic benefits 

-Capacity building and 

employment 

-Financial savings 

-Use of local waste 

Political 

-Self sufficiency 

-Local control 

 

 Socioeconomic 

-Financial benefits 

(revenue, reduction of 

expenses) 

-Improve learning, 

management skills, local 

control 

-Partnership development 

Political 

-Improve self reliance 

(self sufficiency) to 

combat anticipated fiscal 

cuts 

Challenges of 

off-grid 

indigenous 

RET projects 

Technical  

-High upfront capital costs 

-System sizing issues 

 

Institutional 

-Bureaucratic barriers 

hinder RET 

implementation 

-Lack of governmental 

funding 

-Community acceptance 

-Lack of community 

technical and managerial 

capacity 

-Need for community 

control of assets 

 

Technical  

-High capital costs 

 

 

Institutional 

-Need for electricity 

generation incentives 

-Need for cooperation, 

commitment between 

utilities and communities 

-Need for leadership 

-Risk minimization 

-Establishment of a 

supportive policy 

framework 

Technical  

-Technical challenges 

(financial viability, 

technical integration) 

-Resources availability 

-System redundancy 

Technical  

-Technical challenges 

(capital costs, capacity 

issues) 

Institutional 

-Ownership challenges 

(full community 

ownership vs. 

partnerships) 
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The wickedness associated with the introduction of RETs into communities’ electrical systems can 

be explored as the result of four interrelated factors, namely: 1) the institutional complexity of the 

electricity system, 2) the diversity of stakeholder perspectives (government, utilities and 

indigenous peoples) on community electricity generation and the challenges that the introduction 

of RETs is expected to address, 3) “long term” uncertainty over the future of the electricity 

generation systems structure and governance, and 4)“short term” uncertainty over the  choice of 

off-grid renewable technology. These factors are explored in detail next. 

 

5.4.1 Complexity of the governing system 

Complexity over remote indigenous communities’ electrical systems stems from the joint 

responsibility of federal and provincial governments for electrical services. Under electrification 

agreements developed in the 1970s, the provincial government and utilities are responsible for 

funding the ongoing operation and maintenance of the electricity generation and distribution 

system, while the federal government, through Aboriginal Affairs and Northern Development 

(AANDC), is responsible for funding capital upgrades and the expansion of the electricity system 

(OEB, 2008; NAN-HORCI, 2013). However, since the 1990’s, the devolution of almost 85% of 

AANDC’s funding to local governments has complicated the process of capital funding for diesel 

system upgrades. In Ontario, HORCI claims that diesel upgrades are no longer under its control, 

and aboriginal governments express concerns over the apportionment of shares among the three 

parties involved for capital cost of generation, distribution and maintenance (NAN-HORCI, 2013).  

In addition, informants criticized regulatory arrangements and bureaucratic procedures that further 

complicate the management of the generation process thus hindering community participation. 

Various departmental policies and “red tape procedures and increased bureaucracy”, community 

members’ lack of understanding of electricity issues, and the existence of technical regulations and 

unionized procedures were referred to as barriers limiting community voices in electricity system 

investment decision processes and participation in generation and distribution processes. 
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The existence of different subsidy structures for residential and governmental electricity rates 

further complicates the governance of electricity generation. The high electricity cost in remote 

communities (five to six times the average rate of grid connected customers, see for example Hydro 

One, 2012, pp. 679-681; GNWT, 2009b; Hydro Quebec, 2016; NLH, 2017) is heavily subsidized 

for residential use. Residential customers are billed at lower rates subsidized by provincial 

governments (for example, Ontario remote communities’ rates are subsidized through the Rural or 

Remote Rate Protection (RRRP) program (IESO, 2017)). However, community buildings are 

billed at the full cost of electricity generation, and paid out of community budgets, which are 

subsidized through direct and indirect funding from federal and provincial governments. 

Accordingly, rising electricity costs coupled with population and per capita usage growth, increase 

both indigenous governments’ expenses for the electrification of community buildings (paid 

through indirect funding), as well as federal and provincial direct and indirect subsidies (IESO, 

2014).  The introduction of community owned RETs “behind the meter” further compounds the 

issue by reducing electricity consumption billed at full rates. The installation of a RET project, e.g. 

solar electricity, on a community building under a net metering agreement will reduce ‘full cost’ 

electricity consumption, thereby reducing community expenses, that were subsidized indirectly by 

the federal government, and potentially making those funds available for other pressing community 

needs. However, these projects also reduce revenues for utilities and may necessitate an increase 

in either electricity rates, or provincial direct subsidies, or potentially both.  

Finally, local government’s vested interest in diesel-generated electricity in the form of revenue 

and employment through diesel fuel transportation and storage adds another layer of complexity, 

since revenues from RET projects are expected to compensate for financial losses related to the 

diesel fuel displaced (Weis, 2014). 

 

5.4.2 Diversity of issues that the introduction of RETs is expected to address 

Governments and utilities shared similar views on the need to improve supply reliability and reduce 

diesel consumption, and consequently, carbon emissions and subsidies, while at the same time use 

local resources. Utilities’ mandate is to provide reliable electricity and at the same time the main 
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goal is to reduce cost, ensure affordability, and distribute costs equally (GNWT, 2009a; 2009b; 

IESO, 2014).  

Indigenous peoples’ perspectives on the main challenges associated with the current diesel systems 

were similar and included environmental concerns related to diesel dependency, carbon emissions, 

spills, leakages, and soil contamination, as well as the need for reliability (providing uninterrupted 

quality services) at a low and affordable cost. Informants noted that the increase in electricity 

consumption since the 1970s was largely due to population growth and household appliance use, 

and also referred to increased numbers of youth and their daily use of electronic devices to explain 

the recent growth in household electricity consumption. It is worth noting that in 2011 young 

people under 24 years old accounted for 56% of the population in northern Ontario’s remote 

communities, (see Statistics Canada, 2011; 2016a). 

However, besides these shared concerns over diesel dependency, reliability of supply, and 

environmental impacts expressed by both community members and governments, indigenous 

perspectives prioritize communities as active participants in the ownership of RET projects and 

governance of the electricity generation process to control its economic, social and cultural impacts 

(OEB, 2008; KFN, n.d.; HFN-ED, n.d.).  

Informants also stated that the community (through the Band Council) should play a more central 

role in controlling electricity generation assets in order to influence electricity cost, bills collection, 

and community development. One informant said “… the community should have a say on 

decisions regarding electricity, because they live here, so they have to say about the high cost of 

living here, the cost of food, and how it is to live in an isolated community”. Another informant 

confirmed that the community wants both more electricity and to “have a saying to it” adding that 

“I want to see someone take the payments and see where the money goes” thereby connecting 

electricity expenses with out-of-community administrative costs and leaking of potential local 

spending. Another informant stated that community motivation for participating in decisions 

regarding electricity generation is “ownership (of electricity assets) and self-sufficiency”. In further 

conversations, the concept of self-sufficiency, originating from the principles of “self-reliant” 

indigenous societies living from their traditional pursuits before western contact (IISD, 1992), was 



 

 

'This article https://doi.org/10.1108/JEC-11-2017-0085 is © Emerald Publishing and permission has been granted for this version to appear 

in https://uwspace.uwaterloo.ca/handle/10012/6. Emerald does not grant permission for this article to be further copied/distributed or 

hosted elsewhere without the express permission from Emerald Publishing Limited.' 

 103 

associated with increased control over community electricity systems, and control of electricity 

generation and distribution costs and associated financial flows (see INAC, 2004; 2007; OEB, 

2008; McDonald & Pearce, 2013; Rezaei & Dowlatabadi, 2015; KFN. n.d.). 

Furthermore, informants agreed that despite the devolution of funding giving the opportunity to 

the community (through the Band Council) to engage in conversations with HORCI and AANDC11 

on updates and upgrades to the electricity system, community views were not taken into 

consideration due to differential power relationships. Another participant stated that asset 

ownership by HORCI gives authority over generation and distribution and sets community views 

in second place. 

 

5.4.3 Uncertainty over the future of community electricity systems and RET technology 

choice 

The wickedness of the introduction of RETs into community electrical systems is further increased 

through the dilemma a community faces: whether or not to be in favor of off-grid RET projects. 

This decision is influenced by the possibility of a future extension of provincial grids and a 

potential connection of remote communities and further complicated by the inherent uncertainty 

surrounding the financial performance of off-grid RET projects. 

Indigenous peoples see large-scale on-grid renewable electricity generation combined with future 

natural resources development as opportunities for the creation of local economies to the benefit 

of the communities involved. For example, such a future direction is encompassed within Ontario’s 

Nishnawbe Aski Nation (NAN) four energy-related priorities: transmission expansion, connection 

of remote communities, renewable electricity generation, and supply of renewable electricity to 

communities and prospective (mining) developments in the north (OEB, 2008; OME, 2013; IESO, 

2014) (see also WP, 2012; PWC, 2015; TB-CEDC, 2013).  

                                                 
11 The ministry of Aboriginal Affairs and Northern Development Canada (AANDC) was renamed Indigenous and Northern 

Affairs Canada (INAC) in 2015.  
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Informants also expressed their interest in future connection to the provincial grid as an option to 

change the current electricity governance structure and address long-term community electricity 

demand and economic development through ownership of large-scale transmission and renewable 

electricity generation entrepreneurial ventures. Hydroelectricity generation was referred to by three 

of the ten informants as the main alternative that will maximize revenue and employment 

opportunities. Five informants discussed large-scale grid-connected hydroelectricity generation 

projects developed in partnership with the private sector as a means to increase revenues, training, 

and qualifications for community youth. In total, seven out of ten informants mentioned 

employment benefits, four out of ten mentioned revenue generation and one informant additionally 

referenced the availability of affordable electricity to support community expansion and new 

business development. Finally, one informant pointed out the long-term importance of grid 

connected large-scale RET investments in association with potential electricity demand from future 

resource development projects in northern Ontario. 

Furthermore, a decision in favor of small-scale off-grid projects is influenced by the inherent 

technical complexity and scientific uncertainty of off-grid RET projects, since their financial 

viability depends on the availability of the renewable resource, be it wind, solar, or hydro, future 

community electricity loads, and future diesel fuel prices (Mc Gowan, Manwell, & Connors, 1988; 

Tan, Meegahapola, & Muttaqi, 2014). These parameters define the choice of RET technology and 

the penetration level of the renewable component, which, in turn, define the participation and 

cooperation level between indigenous governments and utilities, the extent to which the previously 

mentioned challenges related to diesel systems are addressed, and the financial risks of the venture.  

Low penetration solar or wind hybrid projects require low capital costs, displace up to 20% of 

diesel consumption and carbon emissions, and are associated with low financial risk, as well as 

low levels of revenue generation (Baring-Gould & Dabo, 2009; Mc Gowan, Manwell, & Connors, 

1988). On the other hand, higher penetration solar or wind hybrid projects in resource rich locations 

may result in improved reliability of electricity supply, up to 90% fuel displacement and emission 

reductions, and provide higher, but riskier, financial returns. Additionally, high penetration 

projects equipped with advanced controls require trained system operators, who may be difficult 
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to find and retain in remote locations, as well as close cooperation with utilities for operational and 

technical expertise, therefore resulting in higher project and electricity generation costs (Fay, 

Keith, & Schwoerer, 2010a; 2010b). In contrast to such solar or wind hybrid projects, 

hydroelectricity plants exhibit less technical complexity and scientific uncertainty and have the 

greatest potential to improve reliability, reduce or eliminate emissions, and generate revenue and 

community employment. Such advantages are largely achieved through the mature technology 

associated with hydro power, the low or non-intermittent nature of the renewable source, and 

longer lifespans of generation assets (40 years) in addition to favorable power purchase agreements 

(PPAs) (AECOM, 2012; Kirby, 2009).  

Uncertainty regarding the choice of off-grid renewable application was reflected in informants’ 

opinions on the financial benefits of RETs projects. Informants expressed different opinions about 

revenue generation or employment numbers stemming from off-grid small-scale RET projects and 

were cautious on the potential impacts on local governments’ budgets of community investment 

decisions for off-grid RET applications. One informant expected financial benefits through the 

creation of multiple small solar projects under “net metering” agreements that will allow for 

community savings from energy intensive buildings, and private consumer savings though 

installations on residential buildings. Two informants mentioned that off-grid RETs were 

welcomed as a means of establishing partnerships and improving management skills. Two 

informants did not foresee any positive financial contribution through off-grid RET projects. These 

divergent opinions highlight the complexity and wicked nature of the issue and will be discussed 

further in the next section.  

 

5.5 Discussion 

5.5.1 RETs as a wicked problem 

The slow diffusion of RET projects in remote indigenous communities demonstrates the following 

characteristics of a wicked problem. 
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First, there is high institutional complexity in communities’ electrical systems, as expressed 

through the presence of different institutional arrangements (type of utilities, rates, subsidies 

structures and funding sources, technical regulations that define power relationships and limit 

community’s ability to participate in the governance of the electricity system, and vested interests 

in diesel) (see for example GNWT, 2009b; Hydro One, 2012; Hydro Quebec, 2016; NLH, 2017; 

GN, 2015). The systems’ complexity leads to numerous issues to be addressed, such as diesel 

dependency and reliability of electricity supply, high electricity costs, poor quality services, 

increased subsidies expenditures, carbon emissions, diesel spills and leakages, economic 

development constraints due to the size of the electrical systems, and improvement of community 

socioeconomic and political conditions (AANDC, 2012b).  

Second, there is a lack of a clear definition of the challenges that the introduction of RETs is 

supposed to address, and, consequently, lack of identification of a solution acceptable by all parties 

involved, because of the co-existence of a variety of actors (state and indigenous governments, 

utilities, and community members), with different and competing current and future interests and 

sustainability views on the future of community electrical systems.  Findings suggest that 

indigenous expectations from RETs implementation go beyond the initial concerns (impacts of 

diesel-generated electricity on current electricity costs, improvement in system reliability, emission 

reductions, and environmental performance), which are shared by indigenous peoples, 

governments and utilities. Indigenous preferences point to community participation in the 

governance of the electricity generation process and renewable electricity generation to control 

community socioeconomic development and increase self-sufficiency and community autonomy 

by reducing dependence on external sources of electricity. 

Third, the introduction of RETs into remote electricity systems could be considered a non-stable 

problem (APSC, 2007) of high uncertainty, since it depends on interdependent factors, such as 

changing legislation on aboriginal title (Osler, 2017), financial resources availability, political will 

at the federal, state, and community level, and future natural resources developments. These factors 

are evolving at the same time that the problem is being addressed. For example, natural resources 

prices influence decisions over future electricity demand, grid extensions and investment on new 
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mining operations in the area of remote communities (NT Energy, 2013; Hall & Coates, 2017). 

Accordingly, indigenous perspectives are divided regarding uncertain outcomes of off-grid RET 

applications that could potentially endanger community restricted budgets, and the potential 

benefits from a future community connection to the provincial electrical grids. Such a strategic 

perspective increases uncertainty over small-scale off-grid RET implementation benefits, since 

access to affordable and low emission electricity through a transmission connection to the 

provincial grid could secure long-term economic development benefits through participation in 

both large-scale renewable electricity generation and natural resource development within 

traditional territories.  

Finally, limited participation by indigenous communities in renewable electricity generation within 

indigenous reserves can be considered a symptom of the broader wicked problem of indigenous 

economic development, rooted in distinct property rights, culture and traditions, previous 

problematic governmental interventions, existing institutional arrangements promoting sustainable 

economic development within indigenous reserves, and the lack of governmental support to 

address infrastructural, technical, managerial and financial barriers (OAG, 2003; Alcantara, 2003; 

Hunter, 2007; Senate Committee, 2007).  

 

5.5.2 Policy implications 

Policy implications stem from governmental obligations to consult with indigenous peoples over 

the development of projects (including electricity generation) within traditional territories (Sterling 

& Landmann, 2011; Morellato, 2008). Therefore, considering indigenous perspectives is crucial 

for improving understanding of the problem’s wickedness and developing coping strategies. 

Our interviews suggest that to cope with the “wickedness” of the off-grid RET introduction and to 

gain more control over local electrical generation, as well as the long-term transformation of the 

electrical system, informants pointed to both collaborative and competitive approaches (Roberts, 

2000). Specifically, they point to cooperation with local utilities, other indigenous communities, 
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state and federal governments and private proponents, as well as community entrepreneurial 

ventures in electricity generation and transmission assets.  

Competitive approaches are evident in the joint venturing of 22 northern Ontario remote 

indigenous communities with a private proponent to form Wataynikaneyap Power, an indigenous 

co-owned licensed transmission company competing for the Wataynikaneyap Transmission 

Project, which would connect 21 of the 25 remote communities to the provincial grid, and supply 

power to both communities and mining developments in the Ring of Fire area through indigenous 

owned large-scale renewable electricity generation and transmission (WP, 2012; WP, 2013b; 

IESO, 2014). Similar views focusing on local control, community benefits, and entrepreneurial 

ventures and community ownership of electricity generation and transmission assets combined 

with natural resource development within traditional territories have been expressed by remote 

indigenous communities in Quebec (GQ, 2006a; KRG, 2012), and Nunavut (Rogers, 2015) and 

have been successfully implemented by communities in British Columbia (RWB, 2011; BC Hydro, 

2016).  

Both types of these entrepreneurial ventures (off-grid and on-grid RETs) are consistent with 

indigenous aspirations for local control and sustainable development through the creation of a 

reliable economic base that is driven by the people themselves, directed with community consent, 

able to provide localized socioeconomic benefits and lead to ownership opportunities, and, thus, 

self-sufficiency and self-reliance (OAG, 2003; Anderson, Dana, & Dana, 2006; Senate Committee, 

2007; Slocombe, 2008; AAWG, 2010). It is apparent that such visions of active participation 

diverge significantly from governmental, utilities and environmentalist market-based approaches 

that see indigenous remote communities as passive receivers of technological solutions and simply 

as part of the renewable application implementation and experimentation market (Ibrahim, Younes, 

Ilinca, Dimitrova, & Perron, 2010; Rezaei & Dowlatabadi, 2015).  

Accordingly, policies supporting RET implementation will have to take the form of “variable sum” 

collaborative and negotiated agreements between indigenous and state governments and utilities 

that promote benefits for all parties involved (Head, 2008; Roberts, 2000). Negotiated agreements 

(such as the Impacts and Benefit Agreements in mining projects) are an established method for 
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indigenous peoples to define their development ideas and concerns and gain economic 

independence (Fidler, 2010; Sosa & Keenan, 2001; Dylan, et al., 2013).  

In addition, a collaborative approach to policy co-development supporting the deployment of both 

off-grid RET projects and the connection to provincial grids would need to engage competing 

stakeholders, experienced researchers, policy analysts, and non-governmental stakeholders with 

expertise in delivering services and evaluating performance, to understand the problem (including 

political and economic development targets pursued by indigenous communities), resolve 

conflicts, provide options, and implement policies (Enzenberger, et al., 2002; Head & Alford, 

2015). The effectiveness of these networks, and their potential for the creation of virtuous 

reinforcing cycles that will enable further collaboration between stakeholders (Loorbach, 2007; 

Head & Alford, 2015), will depend on, first, the development and sharing of new knowledge on 

the potential of RET solutions  (Weber & Khademian, 2008), and, second, the co-development of 

regulatory and fiscal policies that are both supportive of provincial, private, and indigenous 

development interests, as well as tailored to address electricity demand, local electricity generation, 

community barriers to participation, and economic development goals of particular indigenous 

communities (Enzenberger, et al., 2002).  

Tailored negotiated policies are necessary since state governments, utilities, and indigenous 

perspectives may differ among communities within the same province, and among different 

provinces and territories, as they are shaped by indigenous self-governance agreements (e.g. 

Nunavut and Yukon) (AANDC, 2017), the presence of different institutional arrangements (type 

of utilities, electricity rates and federal and provincial subsidies structures), and local factors (e.g. 

infrastructural deficiencies and renewable resources availability) (see for example GNWT, 2009b; 

Hydro One, 2012; McDonald & Pearce, 2013). Problem definition, and identification of coping 

strategies is further complicated by the existence of local vested interest, competing community 

priorities (e.g. housing needs), competing interests supporting new fuels (such as biodiesel or 

natural gas), natural resource development, and future grid extensions (NT Energy, 2013; OEB, 

2008; Yukon Energy, 2012a; NT Energy, 2013; Weis, 2014).  
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Furthermore, not all indigenous peoples see participation in large-scale projects as culturally 

appropriate. Critiques concentrate mainly on the potential danger of low quality governance, and 

rent dissipation and appropriation (Vining & Richards, 2016), through the exercise of culturally 

insensitive capitalistic practices (Atleo, 2008, p. 24) by local elites that use a neo-traditionalist 

ideology of “revived leadership” (Rata, 2004, p. 56) to personally benefit from deals with the 

corporate sector at the expense of the community (Slowey, 2008; Atleo, 2014).  

Finally, policy implementation should be constantly evaluated and re-evaluated, since there is 

always potential for negotiated arrangements to be shaped by political priorities and the “gaming” 

behavior of competing participants aimed at rent extraction at the expense of indigenous peoples 

and the broader public interest (Head & Alford, 2015).   

 

5.6 Conclusion 

The objective of this paper was to examine the slow deployment of RETs in remote indigenous 

communities through the lens of the “wicked problem” planning literature. Wicked problems are 

characterized by the lack of a shared understanding by participating stakeholders of the causal 

relationships surrounding the issue in question. In the case of the introduction of RET into remote 

indigenous’ communities electrical systems, the wickedness of the problem is seen to stem from 

the diversity of stakeholders’ perspectives on exactly which challenges the use of RETs is expected 

to address, including governmental cost considerations, utilities reliability of electricity supply, 

environmental commitments, sustainability, as well as indigenous targets of increasing local 

control and community socioeconomic benefits within traditional territories. In addition, the 

institutional complexity of current electrical systems, uncertainty over RET technology choices, 

and future governance structures of provincial/territorial and community electricity systems further 

deepen the wickedness of the problem. 

Strategies to cope with the problem wickedness result from developing improved understanding of 

the problem, which, in the case of RETs deployment, necessitates the integration of indigenous 

viewpoints due to the legal obligations of the duty to consult and accommodate indigenous peoples 
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for projects within their traditional territories. Indigenous perspectives were therefore examined to 

help describe the issues that the use of RETs is supposed to address, as without this much needed 

clarity, it is unlikely that appropriate coping strategies can be identified. Both literature and 

interviews findings suggest that indigenous peoples want to participate and control local electricity 

systems and new renewable electricity generation, and cope with the aforementioned wickedness 

by aiming at both long-term competitive (indigenous ownership of transmission and generation 

assets) and short-term collaborative (development of alliances and partnerships with utilities and 

private sector) entrepreneurial ventures. 

Accordingly, further research on the governance structures and mechanisms that may steer 

indigenous RET entrepreneurial ventures and participation in the electricity generation process, 

should focus on both market model (competitive) approaches, as well as interactive (reflexive) and 

negotiated policy approaches for the co-development of solutions tailored to actors with different 

views and values (Geels, et al., 2004; Voss & Bornemann, 2011). Potentially, such solutions may 

also contribute to the identification of coping strategies for addressing the broader wicked issue of 

indigenous economic development.  
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6 Chapter 6: Tracking the transition to renewable electricity in 

remote indigenous communities in Canada 

 

Diesel-generated electricity in 144 Canadian remote indigenous communities is responsible for 

carbon emissions, spills, leakages, poor quality services, and potentially restricts community 

development. Introducing renewable electricity technologies (RETs) into community electrical 

systems could address both environmental and socioeconomic development issues. This chapter 

identifies 71 RET projects developed in remote communities between 1980 and 2016 and uses the 

multi-level perspective (MLP) to examine the diffusion and governance processes influencing the 

transformation of these systems. The MLP framework explains the non-linear deployment of RETs 

through the shift from a utility driven phase focusing on hydroelectricity and small wind 

applications to a community driven phase concentrating on solar projects. Reasons for the 

development of projects in Yukon, Northwest Territories, British Columbia and Ontario include 

community interest in participating in local electricity generation, learning processes facilitated by 

multiple experiments, and the existence of supporting regulatory and fiscal policies that were 

negotiated and adapted to indigenous sustainability visions. The MLP framework indicates that 

remote indigenous communities now reject the role of passive recipients of technologies promoted 

by non-aboriginal interests. Instead, active participation in transforming electrical systems is 

sought, based on local sustainability agendas which further their goals of economic development 

and self-governance. 

 

6.1 Introduction  

In 2015, 193 member states of the United Nations adopted the 17 Sustainable Development Goals 

including goal number 7: “Ensure access to affordable, reliable, sustainable and modern energy for 

all” (UN, 2016). Although renewable sources account for over half of all electricity generated in 

https://doi.org/10.1016/j.enpol.2018.03.032
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Canada (NRCan, 2016a), there are 144 remote indigenous communities12 with a population of 

approximately 100,000 that are powered by isolated diesel systems (AANDC and NRCan, 2011; 

AANDC, 2012). Alternatives to diesel-generated electricity include the connection to electrical 

grids, the use of alternative fuels (such as natural gas), and the introduction of renewable electricity 

technologies (RETs) into the communities’ electrical systems. Despite the availability of 

renewable resources in remote indigenous communities, and research on the potential for 

integration of RETs, the shift to increased renewable electricity generation has only just begun. 

Seventy-one small RET projects over the 1980-2016 period serve as transition experiments to 

generate valuable learnings for a broader transition toward distributed and locally/indigenous 

owned RETs in remote communities. 

Analytical tools for studying the diffusion of RETs include the STEP and AKTESP frameworks, 

which are used to identify agreement (A), knowledge (K), technical (T), economic (E), social (S), 

and political (P) factors influencing deployment. These frameworks have previously been used to 

identify and examine the deployment of grid connected large-scale RETs in Saskatchewan 

(Richards, Noble, & Belcher, 2012) and Canada as a whole (Valentine, 2010). In the case of 

Canadian remote indigenous communities, non-technical barriers to communities’ participation in 

RETs include institutional weaknesses and capacity issues, vested interests in diesel-generated 

electricity, lack of capital, high capital costs, lack of expertise, missing infrastructure, and limited 

community acceptance (Ostrom, 1981; Parcher, 2004; INAC, 2005; INAC, 2007; Inglis, 2012). 

Technological constraints include, the need for developer, installer and operator expertise, the 

availability of distribution infrastructure, information systems, smart grids, lower cost storage, 

packaged systems control technologies, and robust equipment able to operate in extreme climatic 

conditions and variable load configurations (Fay, Keith, & Schwörer, 2010b; Baring-Gould & 

Dabo, 2009; Weis, Ilinca, & Pinard, 2008). Another strand of research examines the financial 

performance of RET projects through feasibility and optimization studies, conducted between 2003 

and 2015 for 96 remote indigenous communities (ARI, 2003; Krohn, 2005; Maissan, 2006a; 

                                                 
12 According to AANDC and NRCan (2011) remote or off-grid communities are permanent or long-term (five years or more) 

settlements with at least ten dwellings that are not connected to the North American electricity grid or the piped natural gas 

network.  
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Pinard, 2007; Weis and Ilinca, 2008, NFL Hydro, 2009; ARI, 2016). Results indicate, under 

numerous assumptions, that a limited number of RET projects are financially viable, due to the 

high cost of RET generated electricity and limited economies of scale. Finally, a number of studies 

point to communities’ sustainability concerns in the form of lack of economic benefits and assets 

control (OEB, 2008; INAC, 2004; Rezaei & Dowlatabadi, 2016), and high residential electricity 

costs (McDonald & Pearce, 2013; GNWT, 2008b) as factors responsible for limited community 

participation in renewable electricity generation. 

Overall, these studies fail to take into consideration the functional dynamics of transforming 

electrical systems in the form of interactions between participating actors’ structures, cultures, and 

practices that may drive non-linear behaviors, and the existence of positive and negative feedback 

mechanisms that may accelerate or slow the diffusion of new technologies (Grin, Rotmans, & 

Schot, 2010). For example, the establishment of new institutions and relationships may give rise 

to new policies, which in turn, supported by appropriate technologies, may define new institutions 

and relationships, create new interest groups and new institutions in electricity markets (Yi & 

Feiock, 2014; Smith, Stirling, & Berkhout, 2005). An alternative means of analyzing technological 

change and the diffusion of innovative solutions is the technological transitions approach, or the 

multi-level perspective (MLP) framework. The MLP analysis includes economic factors (such as 

costs, profitability and technological knowledge), but additionally considers interactions between 

broader overarching political and social institutions (landscapes-macro level), the functional 

relationships between actors participating in the technological system (regimes-meso level), as 

well as the influence of technological niches, to conceptualize the transition process towards more 

sustainable options (Geels, 2005; Geels & Schot, 2007; Smith, Stirling, & Berkhout, 2005).  

Based on available data for 133 remote Canadian indigenous communities in seven provinces and 

territories that rely on diesel-generated electricity, this paper seeks to apply the MLP framework 

to examine the development of RETs in these communities between 1980 and 2016. More 

specifically, the paper examines the extent to which RETs have emerged as a viable electricity 

generation alternative in remote communities and identifies governance processes responsible for 

transition patterns, with the goal to provide (i) insights on the effectiveness of governance 

processes and instruments, and (ii) levers influencing the transition. 

https://doi.org/10.1016/j.enpol.2018.03.032
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The paper is structured as follows: section 6.2 presents the analytical framework, while section 6.3 

describes the methodology followed. Section 6.4 presents the findings, followed by a discussion 

in section 6.5 and concluding remarks in section 6.6.  

 

6.2 Analytical framework  

Sustainability transitions examine the transformation of sociotechnical systems into more 

sustainable alternatives through the interaction of three levels, landscapes, socio-technical regimes, 

and technological niches (Geels, 2005; Geels & Schot, 2007). Landscape (macro-level) factors 

represent broader overarching political and social institutions, while socio-technical regimes 

consist of the structures, cultures and practices of actors that establish and maintain a technological 

system (meso-level); finally, niches are the spaces where new innovations are created (micro-

level), protected from market intervention until they reach maturity and build the necessary 

networks for market integration (Grin, Rotmans, & Schot, 2010).  

DeHaan and Rotmans  (2011) conceptualize sociotechnical change by introducing three main 

subsystems (constellations or regimes) of the sociotechnical system that contribute to the system’s 

functioning and influence the transition process: first, the incumbent regime that currently 

dominates the functions of the sociotechnical system that meets societal needs; second, novel 

constellations called niches that are able to provide system functions, but they are not powerful 

enough to become the dominant regime; finally, niche-regimes that provide, or are able to provide, 

system functions due to their power and are situated between the previous actors. Accordingly, the 

transition from the current system to a more sustainable one is conceptualized through the 

emergence of a niche-regime, either existing or developed out of a niche, that applies a different 

way (in terms of structure, culture and practices) of fulfilling societal needs, competes with the 

incumbent regime, and, eventually, takes over its functions, thus becoming the main provider of 

the system’s functioning  (deHaan & Rotmans, 2011; Grin, Rotmans, & Schot, 2010). 

Transformative change in the system occurs through (a) tensions, or misalignment of the incumbent 

regime’s functioning as a response to new developments at the broader landscape level of 

economic, cultural, political or ecological nature, (b) stresses, defined as internal misalignments of 

https://doi.org/10.1016/j.enpol.2018.03.032
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incumbent regime’s functioning that is either inadequate or inconsistent with the societal needs, 

and (c) pressures, developed towards incumbent regimes from new technologies and/or the 

existence of niches or niche-regimes (deHaan & Rotmans, 2011).  When the regime conditions 

(tensions, stresses and pressures) reinforce each other towards a certain direction, then the 

introduction of transition experiments in the form of technological innovative projects aiming at 

societal change, allow for learning processes and the empowerment of niches and their 

transformation to niche-regimes that challenge the incumbent regime (deHaan & Rotmans, 2011; 

Grin, Rotmans, & Schot, 2010; van den Bosch & Rotmans, 2008). Learning processes include 

learning from transition experiments implemented in a specific context (deepening), in different 

contexts (broadening), as well experiments that are integrated and embedded (scaling-up) into 

mainstream activities and practices (van den Bosch & Rotmans, 2008; Grin, Rotmans, & Schot, 

2010). Van den Bosch & Rotmans (2008) add four niche-related conditions for the success of 

transition experiments, namely (a) the internal alignment of the niche, (b) the ability of the niche 

to exercise power on the incumbent regime locally, (c) the existence of a cooperative regime that 

is responsive to experiments and the existence of key actors that assist in transforming experiments 

to practices that address societal needs, and (d) the alignment of the niche with trends and 

developments at the broader landscape level. The transition contains “slow” phases (pre-

development and stabilization), resulting from negative feedback mechanisms caused by the 

incumbent regime in charge during the specific period, and “fast” phases (take-off and 

acceleration), where regime and niche regime conditions create positive feedback mechanisms that 

move the innovation forward  (Grin, Rotmans, & Schot, 2010). 

Because a transition process (or transition pathway) covers periods of (slow and fast) 

transformation, it could be represented as a sequence of transition patterns, or a sequence of 

transformations from a current system state to a new system state, involving changes in the 

system’s functioning (deHaan & Rotmans, 2011). This transformative change can be “managed” 

by creating supporting mechanisms that create positive feedbacks, thereby influencing the 

transition. According to Loorbach (2007), transitions governance uses a cyclical process starting 

at the strategic level by envisioning a solution to a societal problem (problem structuring phase). 

At a second step, actions at the tactical level (policies and regulations) are negotiated (development 
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of transition agendas). The next phase (implementation) is concerned with transition experiments, 

where policies and innovative projects and practices are transformed into action, coalitions are 

formed, and implementation initiated. The final phase (process evaluation) includes monitoring, 

evaluating, and learning from the implemented experiments and, based on the knowledge acquired, 

the adjustment of the visions, agendas, experiments and coalitions, initiating an iterative cycle of 

actions (development rounds), until the system transformation is completed (see also Voss & 

Bornemann, 2011; Schot & Geels, 2008; Grin, Rotmans, & Schot,2010). The emphasis on 

participation, collaboration, collective learning and “shared rule making and agreements between 

interdependent actors with diverging actors and beliefs” (Elzen & Wieczorek, 2005, p. 658) situate 

transition management as a reflexive governance approach of social regulation between top down 

and bottom up (or market) governance paradigms (Voss & Bornemann, 2011; Elzen & Wieczorek, 

2005).  

Depending on the changes in structure, culture and practices observed in the sub-system and the 

origin of resources supporting the transformation, DeHaan and Rotmans (2011) distinguish 

between transformation and adaptation transition patterns. A transformation of a niche or niche-

regime to regime (empowerment pattern) results when niches or niche-regimes gain power 

supported by inside and/or outside influences (bottom up and top-down pressures and resources 

respectively) and assume part of the incumbent regime’s functioning. The incumbent regime either 

adapts to the new state by incorporating new processes within its system’s functions or is 

eventually replaced by the niche-regime (regime shift). A regime change (reconstellation pattern) 

describes a system transformation through large-scale, mostly infrastructural type, fast changes at 

the landscape level that are exerted on the incumbent regime (top down pressures rather than niche 

related pressures). Finally, incumbent regimes under tensions, stresses and pressures, may adopt 

innovative solutions leading to an internal transformation (adaptation pattern), as opposed to a 

transition. 

Accordingly, transition pathways can be represented through a series of successive transition 

patterns, with the dynamics of each stage depending on (1) the current system state (system 

composition), (2) the system conditions, in terms of regime tensions, stresses, and pressures, and 

niche conditions, and (3) the governance processes negotiated between different regime members 
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that seek to influence the transition process (Smith, Stirling, & Berkhout, 2005; deHaan & 

Rotmans, 2011; Haxeltime, Whitmarsh, & Bergman, 2008). As a result of the dynamic processes 

involved, niches can grow to niche regimes and eventually replace the incumbent regime, or they 

can be incorporated into, or co-exist with, the incumbent regime (Schot & Geels, 2008). 

 

6.3 Research approach 

The application of the MLP framework described in section two in the remote community context 

explores whether the transition from the initial utilities operated diesel systems to low carbon 

renewable systems under communities’ full or partial ownership (a change in structures, cultures 

and practices) would be the result of successive transition patterns defined through regime and 

niche related conditions, as well as governance processes (Figure 2). These governance processes 

take the form of interventions influencing (a) the selection pressures that apply on target regimes, 

and (b) the adaptive capacity (resources, capabilities, knowledge) of target regimes so that they 

respond to the applied selection pressures. They take the form of: 

1. policies that shape the selection pressures (e.g. environmental regulations, 

electricity regulations, renewable electricity generation targets, independent power 

producer (IPP) policies) and  

2. policies and programs that support the innovation system (e.g. R&D 

programs), and influence regimes’ adaptive capacity (e.g. capital grants and technical 

assistance, community energy planning programs and electricity generation incentives) 

(Smith, Stirling, & Berkhout, 2005).  
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Figure 2: MLP modified framework: regime and niche-regime conditions and governance 

processes of the transition 

 

According to the MLP based conceptual framework described in Figure 2, these policies and 

programs may influence the problem structuring and envisioning process towards more sustainable 

electricity systems desired by local governments and band councils, mobilize resources to address 

barriers to project deployment, create transition experiments and actor networks, and lead to 

learning processes through the mechanisms of deepening, broadening and scaling-up. Learning is 

also informed by similar projects developed in different communities in different provinces, as 

well as globally, leading to solution standardization and the formulation of best practices (Geels & 

Raven, 2006). Learning processes may shift indigenous leaderships and other participating actors’ 

perspectives on local electricity generation; such enhanced perspectives, in turn, lead to adaptation 

of local government responses to selection pressures and the negotiation of new regulatory and 
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fiscal arrangements, which lead to new experiments, and, over time, shape the transition pathway 

towards sustainable electricity options in remote communities. 

Our analysis uses the MLP modified framework (Figure 2) to examine changes in remote 

community electricity systems. The analysis aims to identify:  

1. the extent to which RETs have emerged as a viable electricity generation 

alternative in remote communities in terms of (i) speed, size, period of change, and the 

phase (pre-development, take-off, etc.) of the transition, and (ii) the origin of the transition, 

in terms of where (which level and which constellation), when (in terms of tensions, 

stresses and pressures, niche related conditions, and governance processes), and how (what 

type of experiments and learning processes), and,  

2. transition patterns, that provide information on the effectiveness of 

strategies and instruments and indicate targets and levers that could be the object of policies 

for influencing transitions.  

Accordingly, first the RET experiments deployed in remote communities between 1980 and 2016 

were identified.  Most projects are in NWT, Yukon, British Columbia and Ontario, and include 

hydroelectric, wind and solar applications of different capacities (see Table 14). Second, academic 

and non-academic literature was reviewed to identify factors that influenced changes in community 

electricity systems during the period examined. Finally, federal, provincial and utility policy 

reports on electricity generation, renewable energy targets, policies and programs were examined 

to identify the governance processes that “steered” the deployment of experimental RET projects 

in remote indigenous communities. Based on the data, historical narratives for the 1980-2000 and 

2001-2016 periods were developed that include the tensions, stresses and pressures on the system, 

the niche conditions, the governance structures that drove the transition experiments, and the 

transition patterns observed. 
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6.4 Results 

6.4.1 The utility driven phase (1980-2000) 

6.4.1.1 Regime and niche related conditions 

The electrification of remote indigenous communities through hydroelectricity and diesel plants 

was initiated in the 1960s and 1970s following the formation and expansion of provincial utilities 

(Valentine, 2010; Liming, Haque, & Barg, 2008). Electrification responsibilities were shared 

between the federal government, which was typically responsible for the capital cost of electricity 

system upgrades, and provincial governments and utilities, which were responsible for providing 

electricity at a reasonable cost and for the operation and maintenance of community power plants 

(OEB, 2008). 

According to the MLP based conceptual framework, tensions influencing utilities between 1980 

and 1990 were marked by oil price increases during the first and second oil crisis in 1973 and 1979, 

and the subsequent 1986 oil price fall to previous levels. Following the publication of the 

Brundtland report (WCED, 1987) and Canada’s adoption of the Kyoto Protocol in 1998 (OAG, 

2016; GC, 2003), utilities were pressured towards sound environmental practices and 

implementation of alternative solutions to diesel electrification in indigenous communities. During 

the same period, following the 1973 Supreme Court of Canada decision on the Calder case (INAC, 

2003; Coates, 1995), the federal government initiated a lengthy procedure to settle comprehensive 

land claim agreements with Indigenous Peoples (Slattery, 2007). In 1982, aboriginal and treaty 

rights were recognized and affirmed in the Canadian Constitution Act. By 2004 sixteen 

comprehensive land claims had been settled in Canada, including the Nisga’a Agreement, Tlicho 

Agreement and Yukon Umbrella Final Agreement, which provided indigenous governments with 

rights to self-government, land ownership, surface rights and royalties from resource 

developments, and significant roles in the management of renewable and non-renewable resources 

within their territories (AANDC, 2015). These pressures led to increased friction among 

governments, utilities and indigenous governments regarding electricity generation upgrades and 

new generation assets (OEB, 2008). Additional internal stresses during this period resulted from 

transformations within utilities, such as the transfer of NCPC assets to Yukon Energy, Northwest 
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Territories Power Corporation (NTPC), and Nunavut Power Corporation, and the restructuring of 

Ontario Hydro in 1998, as a response to structural changes at the provincial level (NTPC, 2016a; 

OEB, 2008). 

Additionally, the continuous increase in electricity consumption due to population, residential, and 

community buildings growth, as well as changes in household electricity use (HORCI, 2012), and 

the resulting increased demand for diesel, led governments and utilities to examine other options 

to diesel-generated electricity. The first electrification alternatives considered by utilities were 

small hydroelectric plants, transmission line extensions, large generation units serving several 

communities, and fuel cells (Cooke, 1980). Small-scale hydroelectricity was developed initially in 

Newfoundland and Ontario (Ostrom, 1981), followed by experimental wind turbines deployed 

initially in Quebec (Adamek & Tudor, 2009). Lack of indigenous governments’ direct participation 

in new renewable electricity generation during this period can be attributed to competing priorities, 

high cost and risk of RET alternatives, and numerous barriers to the development of projects within 

reserve lands (Parcher, 2004; OAG, 2003; INAC, 2005).  

 

6.4.1.2 Governance processes 

Governmental support for the deployment of RET projects in remote communities was initiated in 

the late 1970s as part of policy objectives evolving from oil and fossil fuel substitution to energy 

self-reliance, security of energy supply, energy diversity, sustainable development and climate 

change (Pneumatikos, 2003 ). Federal policies between 1978 and 1983 included capital support 

and tax write offs for hydroelectricity demonstration projects (Ostrom, 1981), the establishment of 

research institutes for the development of wind turbine prototypes between 1974 and 1984, and the 

implementation of wind demonstration projects in remote communities (AWTS, 1999; Green, 

Clark, Brothers, & Saulnier, 1994). Policies were implemented in a “top down” mode (Gingras & 

Dalp, 1993) facilitated by governmental ownership of utilities, while the participation of local 

governments was limited to cooperation with utilities on the siting of renewable projects (Nunavut 

Power, n.d. ).   
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6.4.1.3 Experiments and transition patterns 

Transition patterns in remote indigenous communities during this period take the form of utilities 

adaptation to mainstream and niche technologies through emission reduction measures (fuel 

switching, higher efficiency generators and demand response systems) after 1995 (see for example 

(HORCI, 2012), and the deployment of medium and small-scale hydroelectricity, wind and solar 

applications into community systems (Table 14). In British Columbia, BC-Hydro purchased 

electricity generated by four privately owned hydroelectric plants13 to electrify larger geographical 

areas with multiple communities and settlements. Utility-owned small hydro-diesel hybrid systems 

were installed in Mary’s Harbour in 1987 and Deer Lake in 1998. Finally, experimentation with 

innovative technologies in the form of wind turbines and solar photovoltaic by NTPC, Hydro One, 

and Hydro Quebec led to the development of eleven wind turbine projects and one 3.2 kW solar 

system in Iqaluit.  

 

Table 14: Development of RETs in remote indigenous communities between 1980 and 2016 
Province/Territory  YU NWT NU BC ON QU NFL Total 

Number of remote communities  5 25 25 23 25 14 16 133 

1st period: 

1980-2000 

Hydro > 10 MW 

Hydro ≤ 10 MW 

   1 

3 

 

1 

  

1 

1 

5 

Wind >100 kW 

Wind ≤ 100 kW 

  

1 

1 

4 

  

4 

 

1 

 1 

10 

Solar >10 kW 

Solar ≤ 10 kW    

   

1 

     

1 

Total  0 1 6 4 5 1 1 18 

2nd period: 

2001-2016 

Hydro> 10 MW 

Hydro≤ 10 MW 

    

2 

    

2 

Wind >100 kW 

Wind ≤ 100 kW 

     

1 

   

1 

Solar >10 kW 

Solar ≤ 10 kW 

Other 

1 

3 

10 

19 

 

1 

1 

 

3 

9 

3 

 

  21 

26 

3 

Total  4 29 1 6 13 0 0 53 

Source: Karanasios and Parker (2016a-g) 

 

 

                                                 
13 Ocean Falls in Bella Bella, Clayton Falls in Bella Coola, Queen Charlotte in Haida Gwaii (Skidate), and Dease Lake. 
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6.4.2 The community driven phase (2001-2016) 

6.4.2.1 Regime and niche related conditions 

Using the MLP-based conceptual framework, the main tensions surrounding utilities during the 

2001-2016 period were identified as a series of legislative and court decisions favoring indigenous 

participation in projects within traditional territories, and the priority of governments to promote 

indigenous development and climate change mitigation. First, the 1996 RCAP report on indigenous 

economic development (RCAP, 1996), the 1997 Delgamuukw decision on the existence and 

constitutionally protected status of aboriginal title in Canada (Hurley, 1998), and the 2004 Supreme 

Court of Canada Haida decision on the Crown’s “duty to consult” with indigenous people (Sterling 

& Landmann, 2011), initiated a new relationship between indigenous and state governments 

(Nacher, 2001). These decisions impacted institutional relationships and investor and community 

financial expectations regarding the exploitation of natural resources in northern Canada (Benoit, 

2012). Moreover, they provided the background for indigenous participation in natural resources 

development either in full, through self-governance agreements, or partially, through revenue 

sharing agreements (RSA) and impact and benefit agreements (IBA) (Isaac & Knox, 2005; 

Morellato, 2008; AFN, 2011a). By 2006, following the settlement of comprehensive land claims 

agreements initiated in 1973, First Nations owned and controlled 15 million hectares of land and 

Inuit controlled over 45 million of hectares of land in Canada (MIAND, 2009).  Second, during 

this period the federal government targeted indigenous economic development through a series of 

policy actions that supported labor market and business development, indigenous entrepreneurship, 

human capital development, partnerships and the development of indigenous assets (MIAND, 

2009; AANDC, 2014c). Finally, in the context of the Copenhagen Accord in 2009, the Cancun 

Agreement in 2010, and the Paris Climate Conference in 2015, the government of Canada 

committed to reduce greenhouse gas emissions by 30% below 2005 levels by 2030 (GC, 2016; 

ME, 2014). Provincial governments also introduced targets and policies and established joint action 

plans and cooperation frameworks to meet emission targets (GC, 2016; DSF, 2012). 

Internal stresses during this period take the form of utilities and federal and provincial 

governments’ joint concerns regarding emissions and subsidy reductions. Federal and provincial 
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governments aimed to reduce diesel fuel consumption because of the continuous increase in 

electricity cost subsidies due to community growth and increasing diesel fuel prices (OPA, 2014; 

GY, 2015a; BC Hydro, 2015; Hydro One, 2012; GN, 2015b). Utilities concerns over continuous 

diesel dependency were related to rates affordability, and the need to build redundancy and increase 

supply reliability and self-sufficiency by reducing diesel consumption, while keeping electricity 

costs down (GNWT, 2008b; Yukon Energy, 2012b).  

Pressures on utilities for community participation in renewable electricity generation during this 

period were driven by indigenous governments’ renewable electricity generation goals to improve 

local systems’ reliability and sustainability. Enhanced reliability relates to reduced diesel fuel price 

volatility, improved security of supply, and low electricity prices (GNWT, 2008b; NAN, 2012; 

OEB, 2008). Local electrical systems’ sustainability improvements are associated with community 

owned and controlled renewable electricity generation that can reduce “black carbon” emissions, 

caused by the burning and road or air transportation of diesel (GY, 2015b; ECCC, 2016), and fuel 

spills and leakages responsible for the contamination of soils (HORCI, 2012; AANDC, 2008; 

AANDC, 2012; TBS, 2016). Additionally, new electricity generation can remove utility imposed 

load restrictions (based on the output of diesel generators), which limit new housing development 

and business connections (NAN, 2012), and contribute to revenue generation and/or reductions in 

local electricity expenses, thus increasing available funds for other pressing community needs, 

such as housing and education (OEB, 2008). Finally, niche level pressures during this period are 

expressed through advances in renewable electricity generation and storage technologies (Diaz-

Gonzalez et al., 2012; NTPC, 2016c), microgrid planning (NREL, 2005), equipment quality and 

deployment practices (NRCan, 2017a; Tugliq Energy, n.d.), and customized hybrid solutions (Fay, 

Keith, & Schwörer, 2010a), combined with declining equipment costs (NREL, 2014). These 

pressures increased the attractiveness of small hydroelectricity, wind and solar projects as 

alternatives to diesel-generated electricity. 

Finally, niche conditions were present in Yukon, NWT, BC, and Ontario, with indigenous 

governments expressing their interest in local electricity systems’ transformation through 

participation in energy charrettes, workshops and conferences (YE, 2011; GNWT, 2008b; GNWT, 

2009a; GNWT, 2009b; NAN, 2012), community driven RET propositions (VGFN, 2002; 
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Morissette, 2014), cooperation with utilities (Mast, 2014a; Mast, 2014b), and the interventions of 

indigenous political organizations on the future of electricity generation in remote communities’ 

territories (OEB, 2008; NAN-HORCI, 2013). Indigenous governments in Quebec, Nunavut and 

Newfoundland and Labrador expressed less interest in renewable electricity generation (NG, 2016) 

due to mixed views on the potential of RET to displace diesel (Rohner, 2015; Murray, 2015) and 

their contribution to electricity price increases (McDonald & Pearce, 2013), or the existence of 

alternatives, such as Nunavik’s focus on connecting to the provincial grid and the development of 

local hydroelectricity (KRG, 2012). 

 

6.4.2.2 Governance processes  

Governance structures towards the introduction of RETs in remote communities’ electricity 

systems between 2001 and 2016 take the form of policies that supported (i) RET deployment and 

indigenous participation in electricity generation, (ii) research and development for RETs, and (iii) 

improvements to communities’ adaptive capacity. First, support for renewable electricity 

generation to address future provincial electricity needs and carbon emission reduction took the 

form of RET deployment targets and commitments, the promotion of RETs in diesel powered 

communities, and the establishment of regulations supporting local electricity generation (Table 

15). Provincial targets for renewable electricity generation in the interconnected grids of BC, 

Ontario, Quebec and NFL, were established after 2007 and focused on large-scale expansion of 

hydroelectricity and wind projects driven by predicted future growth of residential and industrial 

consumption and export potential. However, specific targets promoting RETs for diesel 

substitution in remote communities were developed only in the isolated micro-grids of NWT and 

Yukon. In NWT, policies aimed at supplying up to 20% of the average load of the 25 diesel 

powered communities through solar photovoltaic applications and displacing 10% of annual diesel-

generated electricity (GNWT, 2012b), and in Yukon, recent policies targeted a 20% increase in 

renewable energy supply (Yukon Government, 2015). Regulations promoting the participation of 

remote indigenous communities in local electricity generation were introduced in Yukon, NWT, 

British Columbia and Ontario after 2011, and took the form of “behind the meter” and “net 
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metering” policies for electricity self-generation, and IPP policies for stand-alone community 

owned RET generation projects (GNWT, 2008; GY, 2015c; WEL, 2009; HORCI, 2015). 

 

Table 15: Targets and regulations for RET in provinces and territories between 2001 and 

2016 
 Targets 

 

Targets for diesel 

substitution in 

remote 

communities 

Regulations for 

indigenous 

participation 

Sources 

Yukon -2009 Yukon Energy 

Strategy  

-2009 Yukon 

Energy Strategy  

-2015: IPP Policy GY (2009); GY (2015c) 

NWT -2011-2015 Greenhouse 

Gas Strategy for NWT  

 

-2012 NWT Solar 

Energy Strategy 

 

-2014: Net metering 

policy  

-2015: IPP policy 

GNWT (2011); GNWT 

(2012b); Cherniak, Dufresne, 

Keyte, Mallett, & Scott 

(2015); NTPC (2016b) 

Nunavut -2007 Ikummatiit- a 

territorial energy strategy 

  (GN, 2007)  

BC -2002 Energy Plan 

-2007 Energy Plan 

-2010 Clean Energy Act 

(CEA)  

-2002-2013: Eight power 

acquisition processes  

 -2002-2007: IPP 

policies established in 

the 2002 and 2007 

Energy Plans 

 

WEL (2009); BC Hydro 

(2013a) ; BC Hydro (2013c) 

ON -2013 Ontario’s Long-

Term Energy Plan 

 

-2013 Ontario’s 

Long-Term Energy 

Plan 

 

-2012-2016: HORCI 

net metering, behind 

the meter policy 

2012-2016: HORCI 

REIDEER (IPP 

policy) 

OME (2013); HORCI (2015) 

QU -2006-2015 Québec 

Energy Strategy  

 

-2006-2015 Québec 

Energy Strategy  

 

 GQ (2006a); GQ (2006b) 

NFL -2007 NFL Energy Plan 

 

 -2007 NFL net 

metering policy 

GNFL(2007); GNFL(2015a); 

GNFL(2015b); NFL Hydro 

(2009) 

 

Second, policies that supported the development of the innovation system during this period 

included financial support for research and development of RETs, offered though the Clean Energy 

Fund (2007-2014), and the ecoEnergy Innovation Initiative (EEII) (2011-2016) (NRCan, 2017b). 

Third, policies that improved indigenous governments’ adaptive capacity between 2001 and 2016 

took the form of programs that reduced RET capital costs, provided technical support, and 

introduced generation incentives (Table 16). Programs addressing capital costs and technical 

support were launched successively by the federal government, while provincial programs 
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providing grants and rebates for equipment and system balancing costs were established in BC, 

NWT and Ontario. Challenges of access to financial resources necessary for larger projects and 

community ownership were addressed through project financing mechanisms (see BC-Hydro’s 

RCE program (BC Hydro, 2010) and Ontario’s 2014 ALGP program (OFA, 2016)). Resource 

assessments, feasibility, and community energy planning studies addressing technical and capacity 

barriers in remote communities were introduced after 2003 as part of the ANCAP federal program 

and provincial programs in BC, and Ontario. These studies complemented RET capital reduction 

funding programs with a view to increasing the efficiency of RET project implementation. Finally, 

the establishment after 2011 of regulatory arrangements for “net metering’ and IPP policies, 

described previously, and the accompanying generation incentives to compensate for vested 

interests’ revenue losses and support economic development through revenue generation, was 

decisive for the deployment of projects implemented in Yukon, NWT and Ontario.  

 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.1016/j.enpol.2018.03.032


 

 

'This article https://doi.org/10.1016/j.enpol.2018.03.032  is © 2018 Elsevier Ltd and permission has been granted for this version to appear 

in https://uwspace.uwaterloo.ca/handle/10012/6.' 

129 

Table 16: Programs supporting RETs in remote indigenous communities between 2001 and 

2016 
Level Programs Source 

Federal A. Programs that reduce capital costs 

-2001-2003: Aboriginal and Northern Climate Change Program (ANCCP). 

-2003-2007: Aboriginal and Northern Community Action Program (ANCAP). 

-2007-2016: ecoENERGY for Aboriginal and Northern Communities Program 

(EANCP). 

AANDC (2014a) 

Yukon C. Programs that provide financial benefits 

-2015: IPP policy for the five diesel-based communities in cooperation with ATKO 

Electric Yukon. 

GY (2009); GY 

(2015) 

 

NWT A. Programs that reduce capital costs 

-2001-2003: RETCAP   

-2007- to date: CREF as part of the Alternative Energy Technologies (AET) program. 

C. Programs providing financial benefits 

-2015: IPP policy and net metering policy for aboriginal community projects. 

GNWT (2011b); 

GNWT (2012b); 

Carpenter (2013); 

GNWT (2013); 

Cherniak et al., 

(2015) 

Nunavut No programs  

British 

Columbia 

A. Programs that reduce capital costs 

-2009-2013: Remote Communities Initiative (RCI)  

-2005-2010: Community Action on Energy & Emissions (municipal) 

B. Programs that provide technical assistance 

-2009-2013: Remote Communities Initiative (RCI)  

-2005-2010: Community Action on Energy & Emissions (CAEE) (municipal)   

C. Programs that provide financial benefits 

-IPP, Standard Offer Program (SOP), Call for Power (CFP).  

-2005-2015: Remote Communities Electrification (RCE) program including IPP 

option.  

BC Hydro (2010); 

BC Hydro (2013b) 

 

Ontario A. Programs that reduce capital costs 

-2011-2015: Northern Ontario Development Program (FedNor)  

-2010: Aboriginal Renewable Energy Fund (AREF) and Community Energy 

Partnerships Program (CEPP) 

-2014: Aboriginal Loan Guarantee Program (ALGP). 

-2014: Aboriginal Transmission Fund (ATF). 

-2015: Aboriginal Energy Partnerships Program (AEPP). 

B. Programs that provide technical assistance 

-2014: Remote Electrification Readiness Program. 

-2013: Aboriginal Community Energy Plan (ACEP) and the Education and Capacity 

Building (ECB) Program (technical support), as part of the AEPP. 

C. Programs that provide financial benefits 

2012-2016: Behind the meter, net metering options for community buildings and 

REINDEER program (HORCI).  

AEPP (2016) 

NFL C. Programs that provide financial benefits  

-2007: Net metering 

GNFL (2007) 

 

 

6.4.2.3 Transition experiments and patterns 

During this period, regime and niche conditions, and governance processes, led to the development 

of 53 RET projects: 2 hydroelectric plants (in BC) and 8 solar demonstration projects (5 in NWT 

and 3 in British Columbia) were developed between 2000 and 2010, followed by one wind project 
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and 42 solar installations between 2011 and 2016, deployed mainly in NWT and Ontario (Table 

14). Three main technological strategies were implemented leading to the transformation of the 

electrical systems of 46 remote communities through four transition patterns (Table 17). First the 

connection to provincial grids led to a reconstellation pattern in six communities and the creation 

of new (indigenous) regimes due to infrastructural change. The connection to provincial grids 

represents a transformational opportunity to address local electricity generation goals and can lead 

to a virtuous cycle of economic development through indigenous governments’ participation in 

transmission extensions, renewable electricity generation, and resource project related IBA and 

RSA that contribute to the creation of a reliable economic base to support communities’ self-

reliance and self-governance goals (AFN, 2011a). Extensions and interconnections with other 

electrical grids are examined in Yukon (Yukon Energy, 2012a; Yukon Energy, 2012b), NWT (NT 

Energy, 2013), British Columbia (BC Hydro, 2013c), Nunavut (Rogers, 2015), Ontario (WP, 2012; 

OME, 2013; OPA, 2014) and Quebec (GQ, 2006a; KRG, 2012). 

Second, the use of community scale hydroelectricity allowed one indigenous community to 

become the owner and operator of their electrical system and enjoy significant socioeconomic 

benefits from the transition (Table 17). Small-scale run-of river hydroelectricity projects can 

displace diesel completely, offer security of supply due to the lack of intermittency, and, despite 

high capital costs, usually provide lower electricity costs than diesel, wind and solar applications 

(see Hatch (2013); NFL Hydro (2009)). 

Third, the integration of wind and solar projects into communities’ diesel systems led to adaptation 

and empowerment transition patterns. In the case of Independent Power Authorities (IPA) owned 

plants, seven indigenous regimes adapted to new innovative renewable solutions, while the 

installation of one wind and 39 community owned solar projects led to empowerment of 31 

communities through participation in the electricity generation process. However, all projects 

involved low level renewable resource penetration that can displace up to 15% of diesel 

consumption, and, therefore, addressed local electricity generation goals and socioeconomic goals 

to a lesser extent than grid connection or small hydroelectricity generation (Fay, Keith, & 

Schwörer, 2010a; Baring-Gould & Dabo, 2009).  
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Table 17: Transition patterns in utilities owned systems between 2001 and 2016 
System state I Pattern System state II 

 

Number 

of  

RET 

projects 

Number 

of 

commu-

nities  

Type of project and 

community location  

Technolo- 

gy 

IPA operated communities 

-Regime: 

indigenous 

government 

-Adaptation 

through niche 

innovations  

-Regime: 

indigenous 

government 

7 7 6 solar projects (ON) 

1 hydroelectric (BC) 

 

Solar, 

hydroele-

ctricity 

Utilities operated communities 

Regime: Utility 

(QEC) 

-Adaptation 

through niche 

innovations  

Regime: Utility 1 1 1 solar project (NU) 

 

Solar 

Regime: utility 

Niche- regime: 

indigenous 

government 

-Adaptation of 

the incumbent 

regime through 

niche 

innovations  

Regime: utility 

Niche- regime: 

indigenous 

government 

2  Colville Lake (NWT) 

and  

Fort Simpson (NWT) 

solar projects 

 

Solar 

-Regime: utility 

-Niche-regime: 

indigenous 

government 

-Empowerment 

of the niche 

regime and 

regime shift 

 

-Niche regime 

(indigenous 

government) 

becomes the 

incumbent 

regime. 

-Old regime 

(utility) 

declines.  

1 1 Tlingit FN (BC) 

Hydroe-

lectricity  

-Regime: utility 

-Niche-regime: 

indigenous 

government 

-Adaptation of 

the incumbent 

regime  

-Empowerment 

of the niche 

regime  

-Utility remains 

the main 

regime. 

-Niche-regime 

performs regime 

functions. 

42 31 1 solar project (BC) 

2 other projects (BC) 

1 wind project (ON) 

6 solar projects (ON)  

28 solar projects 

(NWT)  

4 solar projects (YU) 

Wind, 

solar 

-Regime: utility 

-Niche-regime: 

indigenous 

government 

-Reconstellation 

 

-Infrastructural 

change. 

-Indigenous 

government 

participates in 

the new regime. 

 6 Fort Albany (ON)  

Kashechewan (ON) 

Attawapiskat (ON) 

Pelly Crossing (YU)  

Eddontenajon (BC) 

Telegraph Creek (BC) 

Grid  

conne-

ction 

Total   53 46   

 

6.5 Discussion 

According to our MLP based framework, the transformation of the indigenous communities’ 

electrical systems is the result of regime tensions, stresses, and pressures, niche related conditions, 

and governance processes. The analysis provides information on the origin of the transition (which 

level and which constellation) and development phases, the type of experiments and the learning 

processes involved, and the transition pattern (adaptation, empowerment or reconstellation). As a 
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result, insights on the effectiveness of governance processes, as well as targets and levers that could 

be the object of policies for influencing transitions can be discussed. 

 

6.5.1 The effectiveness of governance processes 

According to our MLP modified framework (Figure 2), the effectiveness of governance processes 

can be assessed in terms of communities’ engagement leading to RET experiments, learning 

processes, adaptation of expectations, and a “fast phase” of RET deployment (Grin, Rotmans, & 

Schot, 2010). The 1980-2000 governance processes consisted of federal policies in the form of 

capital support and tax write offs that supported utility owned hydroelectricity and wind projects. 

The initial three wind demonstration projects developed between 1986 and 1988, were followed 

by a second “fast” round of eight projects deployed between 1994 and 1998, leading to a total wind 

capacity of 705 kW by 1998 (Figure 3). However, mechanical failures, high capital and operation 

/ maintenance costs stimulated utility learning on the low financial performance of these projects, 

and, eventually, ended early experimentation with small wind turbines in remote electrical systems. 

By 2006 only two of these systems remained operational (Weis & Ilinca, 2008).  
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Figure 3: Cumulative number and capacity of wind and solar projects in remote indigenous 

communities (1980-2016) 

 

The 2001-2016 governance processes were shaped by macro-level tensions, utilities’ internal 

stresses, and pressures from local governments aiming to participate in electricity generation and 

contributed to the transformation of remote community electricity systems from “utility driven” to 

“community driven”. Within this environment, provincial regulatory arrangements and fiscal 

support through federal and provincial policies and programs adjusted to community learning, new 

networks formation, and the adaptation of communities’ visions and expectations, and were able 

to engage communities in one or more projects of increasing capacity and drive RET development 

through two phases and four development stages. 
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2  
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Figure 4: Governance structures and cumulative number of RET projects between 2001 

and 2016 
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The initial phase between 2001 and 2010 (Figure 3), was characterized by the establishment of 

provincial targets on renewable electricity generation, and federal and provincial programs 

financing numerous resource monitoring, feasibility and optimization studies for wind applications 

(see Figure 4) developed by utilities, academia, and the Aurora Research Institute (ARI) for 

communities in NWT, Yukon, Nunavut, Ontario, Quebec, and NFL. During this period eight solar 

projects with a total capacity of 50 kW were installed on community buildings (5 in NWT and 3 

in British Columbia). Early RET studies improved learning regarding resource availability, design 

options, technical and financial viability, and created the first networks and a community of interest 

on the feasibility of wind and solar applications in remote communities (BP, 2016). 

The 2001-2010 “slow” phase was followed by a “fast” development phase through three successive 

stages of solar installations of increasing capacity (Figure 3). The local government and utility shift 

towards solar projects can be explained through the low performance of wind projects (1980-2000), 

numerous studies indicating limited wind resources, decreasing prices of solar panels, higher solar 

resource predictability, low maintenance and ease of siting photovoltaic projects. This shift was 

supported by federal programs and provincial regulatory and fiscal arrangements (Figure 4). First, 

in 2011-12 there were 13 small-scale (less than 5 kW) solar projects with a total capacity of 55.6 

kW, funded mainly through the EANCP 1 program (8 in NWT, 4 in Yukon and 1 in British 

Columbia). These projects were deployed on the roof of community buildings offsetting electricity 

consumption and contributed to the “deepening” of learning on the potential of solar photovoltaic 

experiments in remote communities. Second, during the 2013-14 period, improved learning on the 

technical feasibility and the potential of solar applications to contribute to community well-being 

drove the articulation of more concrete expectations and the establishment of “net metering” 

arrangements that allowed for the installation of solar projects on community electricity intensive 

buildings for self-generation. Supported with capital funding through the EANCP 2 and provincial 

programs in NWT and Ontario, 15 solar projects with a total capacity of 350 kW (9 in NWT, 5 in 

Ontario, and 1 in Nunavut), including two projects higher than 100 kW, were installed on 

community water treatment plants, schools and arenas. Finally, during the 2015-16 period, further 

learning on the potential of such projects in offsetting the electricity expenses of communities, and 

financial support from EANCP 2 and provincial programs and incentives (net metering and power 
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purchase agreements (PPA)), gave rise to 14 solar projects larger than 15 kW (average capacity) 

with a total capacity of 369 kW (7 in NWT and 7 in Ontario). Most of the projects were installed 

on various community buildings adding up to the creation of a national “technological trajectory” 

and the creation of articulated rules in the form of technical specifications and financial support 

(Geels & Raven, 2006, p. 378), thus contributing to the “broadening” and “scaling-up” of solar 

photovoltaic experiments (van den Bosch & Rotmans, 2008; van den Boesch & Taanman, 2006).  

Furthermore, a number of communities were involved in successive RET projects. In NWT, 19 out 

of the 25 indigenous communities installed solar capacity, of which three communities (Whati, 

Paulatuk and Gameti) were involved in two successive projects, and two communities (Inuvik and 

Fort Simpson) deployed four solar projects or more. In Ontario, 11 (five communities serviced by 

HORCI and six IPA operated communities) out of the 25 remote indigenous communities installed 

solar projects, while two communities (Deer Lake FN and Kasabonika Lake FN) were involved in 

more than one RET application. Further learning and scaling-up (embedding) of RET projects in 

communities’ electrical systems is expected through three higher penetration community owned 

projects planned for Yukon (Tobin, 2016; Ronson, 2014; Morissette, Watson Lake Hydro Project 

Feasibility Study, 2014), and one in Ontario (MNDM, 2015).  Successive projects of increasing 

capacity indicate the potential for a virtuous cycle (Grin, Rotmans, & Schot, 2010), as local 

governments experience socioeconomic and environmental benefits from RET implementation, 

improve their adaptive capacity (resources and coordination skills) and move from demonstration 

to higher penetration community scale and community owned projects that could, eventually, lead 

to a regime shift and community ownership of local electrical systems. 

Moreover, policies and programs during this period contributed to the building of social networks 

through further participation of agencies (see Cherniak et al., 2015 for the role of the Arctic Energy 

Alliance (AEA) on the Lutselk’e FN project), and the involvement of the private sector, academia, 

NGOs, and indigenous communities in R&D activities (NRCan, 2016b; ME, 2016), feasibility 

studies, microgrid planning, testing, and training (ME, 2016; UW, 2014), and the deployment and 

installation of RETs projects (NCC, 2016).  
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6.5.2 Levers for influencing the transition 

According to the MLP-based framework, the effectiveness of governance processes depends on 

the transition context (regime and niche related conditions, selection pressures and availability of 

resources) in each province/territory. According to Smith, et al. (2005) “the art of governing the 

transitions becomes the art of recognizing which context prevails and the drivers that offer the best 

leverage for guiding change in the desirable direction” (p.1498). Accordingly, governance levers 

for community empowerment through RETs and the transition of community systems towards 

more sustainable ones, take the form of (a) the existence of indigenous leadership articulating an 

interest on sociotechnical change, and (b) the creation of pressures on existing and target regimes 

for diesel displacement and local electricity systems transformation, and, at the same time, the 

support of innovative technological alternatives at the niche-level, so that a “modulation” of 

developments can take place and the “take-off” phase is reached, and (c) adjustment of policy 

instruments to challenges influenced by landscape developments and regime level concerns (Elzen, 

Geels, Hofman, & Green, 2004). 

First, the existence or creation of action-oriented indigenous leadership with a clear focus on 

community electricity generation goals is considered as one of the main institutional factors that 

positively influence the successful “steering” of the transformation of local electrical systems 

throughout the transition phases (INAC, 2004; INAC, 2005; Henderson, 2013; Wesley-Esquimaux 

& Calliou, 2010). Indigenous communities, utilities and state governments should extend programs 

that improve local capacity and provide training to local energy professionals (APC, 2017). 

Furthermore, pressures on existing and target regimes for transformation of electricity systems take 

the form of regulatory and fiscal policies. Regulatory policies should include long-term 

government commitment to diesel displacement, such as emission reduction standards, carbon 

pricing, and RET deployment targets in the form of percentages of electric generation from 

renewable resources. Examples are NWTs solar strategy (GNWT, 2012b), or Alaska’s 

commitment to the generation of 50% of its electricity from renewable and alternative resources 

by 2025 (Ardani, Hillman, & Busche, 2013). Fiscal policies supporting RET deployment should 

include various instruments, such as capital cost reductions, technical assistance, and generation 
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incentives, tailored to address each community’s non-technical and technical barriers and 

electricity generation goals. Incentives should also be tuned to stimulate niche-level technical 

innovations.  

In addition, the following challenges need to be taken into consideration when designing regulatory 

and fiscal arrangements for the transformation of communities’ electrical systems. First, the 

effectiveness of policy programs varies; for example, while rebates and grants reduce capital costs 

for RET projects, increase RET implementation rates, and possibly lead to revenue generation and 

even employment, such measures also need to recognise vested interests, such as transportation 

and distribution companies, that communities have developed to benefit from the delivery and 

storage of diesel (Weis, 2014).  

Second, access to funding should be facilitated by reducing complexity and promoting 

consolidation of some programs. Support through multiple programs administered by multiple 

provincial authorities and NGOs (Inglis, 2012, p. 2) has been criticized as increasing community 

technical, financial and managerial needs and creating barriers to community participation (Bailie, 

et al., 2009).  

Third, there is a need for the coordination of multiple provincial and federal policies and programs 

with RET related policies. Policies supporting (a) long term mining and electricity generation 

projects, (b) remote communities infrastructure (public works, equipment, accommodation, 

hardware availability, diesel upgrades, new community facilities), entrepreneurship and economic 

development, and (c) research and development of alternative technologies (e.g. small wind turbine 

designs and installation procedures for northern environments, and low cost storage technologies), 

could be coordinated with RET deployment policies to increase the outcome of the projects for 

communities, governments, and industrial partners involved. For example, the high deployment 

costs of RETs in remote communities caused by on reserve infrastructural deficiencies could be 

reduced by integrating clean energy and energy efficiency projects into the Indigenous and 

Northern Affairs Canada (INAC) administered Infrastructure and Capacity Program and its sub-

programs, which support renewable energy projects, community infrastructure, electrification, and 

community buildings (INAC, 2016). 
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Fourth, the ownership of higher renewable penetration electricity generation projects is subject to 

power structures defined through regulatory arrangements and resource interdependencies between 

federal, provincial and local governments. Local governments’ renewable electricity generation 

could be constrained by utilities due to integration, balancing and grid stability considerations, at 

least during the early stages of the transition (Fay, Keith, & Schwörer, 2010a). Additionally, in the 

context of the low population isolated grids of Yukon, NWT, and Nunavut, government 

intervention regarding the extent of RETs deployment can be justified, since community owned 

RETs may lead to lower utilities revenues and electricity price increases, which, in turn, may drive 

communities to stand alone generation and out of the provincial electricity system, which can 

increase the electricity costs of remaining communities (GNWT, 2008b). Furthermore, since 

communities’ internal resources (financial and capabilities) are unable to produce large-scale RET 

projects, governments and utilities have the power to deploy resources in a way that will limit 

participation of local governments, thereby reproducing the current regime structure (Smith et al., 

2005).  

Fifth, the extent of local government electricity generation ownership is also subject to community 

benefits considerations. The operation of local governments as IPPs and the sales of community 

owned renewable electricity under a negotiated PPA might represent the option that maximizes 

local governments’ revenues, and residential consumers’ wellbeing, since local electricity 

generation and subsidization of residential rates remains the obligation of federal and provincial 

governments. In comparison, a regime shift could also cause changes in subsidies structures (e.g. 

the elimination of Ontario’s Rural or Remote Rate Protection (RRRP) subsidy), which would 

increase the cost of electricity for residential consumers. 

Finally, assuming that power, politics and political negotiation are part of the governance process 

(Smith et al., 2005; Meadowcroft, 2009), the governance of electrical systems’ transition may be 

influenced by actors’ competing and/or complementing interests. Accordingly, although broadly 

accepted goals such as emissions reductions, elimination of diesel dependency, or renewable 

energy access for improved community sustainability may represent the main transition motivation 

promoted by all stakeholders involved, the pattern of transition, and the extent of community 

empowerment through higher levels of community-owned renewable electricity generation 
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supported by financial incentives, could depend on local circumstances and negotiations influenced 

by hidden economic, social or political factors related to future exploitation of northern natural 

resources. 

 

6.6 Conclusion 

The use of the MLP for analyzing the transformation of remote communities’ electrical systems 

during the 1980-2016 period provides understanding of the origins and dynamics of the transitions 

(where, when, and how), as well as the resulting transition patterns. First, it uses tensions, stresses 

and pressures surrounding utilities to explain the shift from a “utility perspective of sustainability” 

through utilities owned wind projects developed between 1980 and 2000, to a “community 

perspective of sustainability” through local government owned solar projects between 2001 and 

2016. Second, it explains the non-linear deployment of RETs between 2001 and 2016 mainly in 

NWT and Ontario, and the move from an initial slow phase of community experimenting with 

different technologies and demonstration scale projects to a fast phase of increasingly larger scale 

solar applications and recent diesel-solar-storage hybrid projects. The increase is explained through 

positive interactions resulting from successive rounds of local governments, utilities, and state 

governments learning through RET experimentation, adaptation of key actors’ perspectives, and 

the negotiation of supportive regulatory and fiscal arrangements in the form of financing capital 

expenses, technical and managerial knowledge development and generation incentives. 

Therefore, an analysis through the MLP and transitions management framework may offer a 

reflexive governance approach for the establishment of new institutions and the empowerment of 

indigenous communities. It points to learning as the preferred mechanism to initiate positive 

interactions and proposes supportive policies for experimentation that allow each community to 

achieve its electricity generation goals at its own pace, based on its capacity, visions and 

expectations, rather than solutions being imposed on them. Learning through experimentation, 

leads to empowerment of local governments through ownership of higher penetration renewable 

projects and the identification of the appropriate cooperation mode with utilities that maximizes 

community sustainability. Accordingly, further research through case studies and interviews with 
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community members could identify indigenous perspectives on community electricity generation 

and preferred governance structures and mechanisms, thereby enabling RETs to contribute to local 

sustainability goals.  

Through the MLP approach it also becomes evident that in the future, remote indigenous 

communities will not accept the role of passive recipients of new technological innovations that 

address sustainability concerns expressed by non-indigenous interests, but actively participate to 

transform technological solutions through experimentation based on local sustainability agendas, 

as they pursue their goals of economic development and self-governance.  
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7 Chapter 7: Explaining the diffusion of renewable electricity 

technologies in Canadian remote indigenous communities 

through the technological innovation system approach 

 

This chapter applies the Technological Innovation System (TIS) approach to explain the diffusion 

of renewable energy technologies (RETs) in remote indigenous communities in Northwest 

Territories (NWT) and Ontario. These communities need reliable and clean electricity to address 

social, environmental and economic development issues. The study examines the diffusion of 

RETs during the 2000-2016 period, identifies the systemic and transformational failures 

responsible for the functional performance of the TISs, and generates insights about factors that 

have the potential to sustain the development of RET projects. Although there is evidence that the 

accumulation of TIS functions determines the rate of diffusion of renewable technologies, policy 

intervention to improve local learning and networking could lead to accelerated diffusion of RETs 

to the benefit of the communities and other stakeholders. 

 

7.1 Introduction  

There is increasing interest in the role of renewable energy technologies (RETs) within community 

sustainability transitions, ranging from energy efficiency measures to energy efficient housing 

development and local electricity generation (Walker & Devine-Wright, 2008; Seyfang & Smith, 

2007; Forest & Wiek, 2015). Overall, 144 Canadian remote14 indigenous communities, with an 

approximate population of 100,000, depend upon diesel generators to meet their electricity needs 

(AANDC, 2012; AANDC and NRCan, 2011). The transformation of these local electrical systems 

through the introduction of RETs therefore has the potential to reduce environmental impacts in 

the form of carbon emissions, fuel spills and leakages, increase electricity supply and reliability, 

as well as improve socioeconomic conditions through new housing and business connections and 

reductions of community electrification costs  (AANDC, 2012).  

                                                 
14 According to AANDC and NRCan (2011), remote or off-grid communities are permanent or long term (five 

years or more) settlements with at least ten dwellings that are not connected to the north American electricity grid 

or the piped natural gas network. 
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However, despite the multiple potential benefits of RETs in off-grid communities (OECD, 2012), 

the diffusion of such projects remains low. Research in 133 remote indigenous communities 

indicates 71 RET projects in Yukon, Northwest Territories (NWT), Ontario, British Columbia, 

Ontario, Quebec and Newfoundland and Labrador between 1980 and 2016 with a total of 31.5 MW 

or 13% of the total electricity generation capacity. However, if hydroelectricity is excluded, 63 of 

these projects were small-scale wind and solar applications with a total capacity of 1.6 MW, or less 

than 1% of the total electricity generation capacity. 53 of these projects were developed after 2006 

and the majority were installed in the NWT (29 projects) and Ontario (13 projects) (Karanasios & 

Parker, 2016a-g).  

Prior research on the introduction of RETs in RETs in remote indigenous communities’ electrical 

systems concentrates on the identification of technical factors that influence a project’s financial 

viability, such as the choice over the extent of the renewable energy resource component (low, 

medium or high penetration RET integration), economies of scale, developers’ expertise, 

availability of distribution infrastructure, smart grid considerations, lower cost storage technology, 

reliable, robust equipment, and packaged systems using plug-and-play control technologies  (see 

for example, Baring-Gould & Corbus, 2007; Weis & Ilinca, 2008; Weis & Ilinca, 2010; Fay, Keith, 

& Schwörer, 2010a; Fay & Udovyk, 2013; Arriaga, Cañizares, & Kazerani, 2013; Tan, 

Meegahapola, & Muttaqi, 2014; Arriaga, Cañizares, & Kazerani, 2016). 

In addition to quantitative studies a limited number of qualitative contributions provide insights on 

structural, institutional and sociocultural factors for the successful deployment of RET projects in 

Canadian remote indigenous communities (INAC, 2004; 2005; 2007; Rezaei & Dowlatabadi, 

2015). Furthermore, the dynamics of the transition of remote indigenous communities’ electrical 

systems to more sustainable ones have been explained using the Multi-Level Perspective (MLP) 

framework (Geels, 2005; Geels & Schot, 2007) and the interaction of co-evolving factors, such as 

destabilizing mechanisms at the landscape level, stabilizing mechanisms and governance structures 

at the regime level, and the adoption of innovative technologies at the niche level (Karanasios & 

Parker, 2008). However, the MLP is unable to elaborate in detail, first, how the implemented 

governance structures that influenced the transition process came about, and, second, the roles and 

strategies of participating actors, the interactions between actors and institutions, and the role of 
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resource distribution in the development of networks and actors’ capacity (Markard & Truffer, 

2008; Smith, Stirling & Berghout, 2005).  

This level of detail could be provided through the technological innovation system (TIS) approach 

and the use of functions and functional interactions (Hekkert et al., 2007). The TIS approach 

defines innovation systems as “a dynamic network of agents interacting in a specific economic/ 

industrial area under a particular institutional infrastructure and involved in the generation, 

diffusion and utilization of technology (Carlsson and Stankiewicz, 1991, p. 111)” (cited in Markard 

& Truffer, 2008). Actors, institutions and interactions (relationships) between them are introduced 

as the unit of analysis (Hekkert et al., 2007; Bergek et al., 2008). Actors include private consumers, 

firms, governmental agencies, universities, non-governmental organizations (NGOs) and a 

multitude of other organizations participating in any given technological innovation. Institutions 

are considered the laws and regulations, technical, formal and informal rules and norms, visions, 

and expectations that shape the interactions among actors (Markard & Truffer, 2008). Finally, 

interactions (or relationships) are means of transferring codified and tacit knowledge at the 

individual or organizational level; as such, interactions are developed and exchanged between the 

elements of the system through cooperative relationships or the establishment of networks between 

different actors, between actors and institutions, and among institutions (Markard & Truffer, 2008). 

Wieczorek and Hekkert (2012) add infrastructure, in the form of physical (artifacts, machines, 

roads, buildings), financial (financial programs, subsidies, grants), and knowledge (expertise, 

know how, strategic information), as important structural components, the existence and 

performance of which may directly influence the uptake of a certain TIS.   

The performance of a TIS depends on the way that actors engage and interact with each other at 

multiple levels thereby influencing the quality of three main functions, the generation, diffusion, 

and use of the innovation investigated (Negro, Hekkert, & Smits, 2007; Jacobsson & Bergek, 

2004). These functions, in turn, depend on the quality and interactions generated by a set of “sub-

functions”, defined as F1 (entrepreneurial activities), F2 (knowledge development), F3 (knowledge 

diffusion), F4 (guidance of the search), F5 (market formation), F6 (mobilization of resources), and 

F7 (creation of legitimacy/support from advocacy coalitions) (Hekkert et al., 2007; Bergek et al., 

2008), It is during the formative period of the TIS that the interactions between sub-functions may 

create virtuous cycles (or motors of innovation) or processes of cumulative causation leading to 
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the uptake of the TIS; the successful fulfillment of a function possibly leads to the fulfillment of 

other functions leading to the reinforcement of the process and a virtuous cycle. The sub-functions 

in turn are influenced by the existence and quality of the structural elements, so it is the constant 

interplay between the system elements, coordination mechanisms and the development of 

interrelations that defines the dynamic character of the TIS that may or may not lead to the uptake 

of certain innovative products within a specific environment (Hekkert et al., 2007; Bergek et al., 

2008; Wieczorek and Hekkert, 2012). 

Empirically, operationalization of the functional patterns is achieved through a set of indicators or 

diagnostic questions, which can be both qualitative and quantitative describing the content of the 

function (Bergek et al., 2008); for example entrepreneurial activities (F1) can be measured through 

the number of new firms established or new projects undertaken, and the function guidance of the 

search (F4) can be measured through the targets developed by governments or press releases that 

set expectations and future policy goals (Markard & Truffer, 2008). Mapping of TIS functions 

through activities (their operationalization) over a time period can additionally create an 

evolutionary pattern of the innovation under examination (Negro et al., 2007).  

Accordingly, the uptake of a TIS can be examined through an analysis of both the functional and 

structural components that form the TIS. A combined functional-structural analysis will explain 

the diffusion of the innovation through the presence, or lack of, or weakness of functions, which, 

in turn, may be the result of systemic problems of the TIS examined. The systemic problems (or 

systemic failures or weaknesses) were categorized as actors’ problems (presence and capabilities), 

institutional (presence and capacity), interaction (presence and quality), and infrastructure 

(presence and quality) problems (Woolthuis, Lankhuizen, & Gilsing, 2005; Negro, Alkemade, & 

Hekkert, 2012; Wieczorek & Hekkert, 2012). Therefore, policy related issues result from the 

proposition that both the structure and functions of a TIS are influenced by the existence and quality 

of different actors and their capabilities, institutions, and infrastructure, as well as the existence 

and quality of the interactions (Bergek et al., 2008; Jacobsson & Bergek, 2006; Smith, Stirling, & 

Berkhout, 2005).  Both structure and function can be influenced by “inducement” and “blocking” 

mechanisms, which are responsible for the shaping of the TIS dynamics. Targeted policies may 

affect the mechanisms that induce the transformation process creating the “virtuous cycles” of 

successful activities, resulting in the moving of key processes and the diffusion of the specific 
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technological innovation, and the transition from one sociotechnical regime to the desired next one 

(Bergek et al., 2008; Elzen & Wieczorek, 2005; Markard & Truffer, 2008).  

The TIS approach has been criticized for its (internal) focus on innovations’ functional 

performance and a lack of integrating external factors (Markard & Truffer, 2008; Weber & 

Rohracher, 2012), concepts of power (Avelino & Rotmans, 2009) and political intervention 

(Meadowcroft, 2009). Accordingly, systemic problems within a TIS were extended to include 

directionality (lack of shared vision), policy coordination (lack of horizontal and vertical policy 

coordination), demand articulation (absence of public demand) and reflexivity (involving actors in 

processes of self-governance) failures (Weber & Rohracher, 2012). Furthermore, recent TIS 

studies on the diffusion of RET innovations argue for exploring the link between deployment and 

local contexts, institutional conditions, and learning (Coenen, Benneworth, & Truffer, 2012; 

Dewald & Truffer, 2012; Binz, Truffer, & Coenen, 2014; Blum, Bening, & Schmidt, 2015), which 

could only be partially captured through a comparative structural analysis of regional or national 

TISs (Markard, Hekkert, & Jacobsson, 2015).  

In terms of empirical studies, the TIS approach has been used to examine the development, 

generation and deployment of innovations as either a single process in developed countries 

(Hillman, Suurs, Hekkert, & Sanden, 2008; Suurs & Hekkert, 2009; Suurs et al., 2010), or as an 

innovation aimed at replacing existing products in developing countries (Jacobsson & Bergek, 

2006). Furthermore, the approach has been used to examine both the deployment of infrastructural 

level energy innovations, such as combined heat and power (Jacobsson, 2008) and district heating 

(Hawkey, 2012), as well as the deployment of less technologically demanding RET applications 

in both developed (Palm, 2015) and developing country contexts characterized by remoteness 

(VanAlphen, Hekkert, & VanSark, 2008) and energy access challenges (Tigabu et al., 2015; 

Kebede & Mitsufuji, 2014). Accordingly, the purpose of this study is to apply the TIS approach to 

explain the diffusion of RET projects, primarily in the form of solar applications, in the specific 

political, cultural and institutional context of Canadian indigenous remote communities (see for 

example, RCAP, 1996; BCAFN, 2011; Angell & Parkins, 2011) in Northwest Territories (NWT) 

and Ontario between 2000 and 2016, and generate insights about factors that have the potential to 

sustain their development.  
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This paper is structured as follows: section 7.2 presents the methodological approach, followed by 

the results and discussion in sections 7.3 and 7.4 respectively. Section 7.5 offers concluding 

remarks.   

 

7.2 Materials and methods 

To explain the diffusion of RETs in Canadian remote indigenous communities and identify factors 

influencing their deployment, the performance of the NWT and Ontario TIS are assessed through 

a combined functional and structural analysis. The steps proposed by Bergek et al., (2008) and 

Wieczorek & Hekkert (2012) are followed (Table 18).  

 

Table 18: Research process 
Step Description Supporting 

framework 

Methods Results 

Step 1 • Definition and structure of the 

TISs under consideration. 

• Identification of blocking 

mechanisms that influence the 

functional performance of the 

TISs. 

Table 19 (based 

on Wieczorek & 

Hekkert, 2012). 

Systematic review of 

academic and policy 

documents and key informant 

interviews in a remote 

indigenous community. 

Section 

7.3.1 and 

section 

7.3.2. 

Step 2 • Identification and analysis of 

systemic problems responsible for 

the blocking mechanisms. 

Table 19 (based 

on Wieczorek & 

Hekkert, 2012). 

Multiple literature reviews of 

academic and non-academic, 

policy, utilities’ and 

communities’ related 

literature. 

Section 

7.3.3. 

Step 3 • Analysis and comparison of the 

NWT and Ontario TISs functional 

performance through event 

mapping. 

Table 20 (based 

on Bergek et al., 

2008). 

Multiple literature reviews of 

academic and non-academic, 

policy, utilities and 

communities’ literature. 

Section 

7.3.4. 

 

 

First, the TIS under investigation is defined and the structure, functional pattern, and the main 

blocking mechanisms and underlying systemic problems that hinder the fulfilment of the functions 

in both TIS are identified using the framework presented in Table 19. In a second step, the systemic 

problems responsible for the poor functional performance of both the NWT and Ontario TIS are 

“precisely identified” and analyzed (Wieczorek & Hekkert, 2012, p. 85).  
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Table 19: Framework for the analysis of the TIS in remote indigenous communities 

Functions Evaluation 

of functions 

based on 

diagnostic 

questions 

Identification 

of the reasons 

affecting 

function 

performance 

Identification of systemic (actors, institutions, networks, 

infrastructure), and transformational (directionality, 

demand articulation, policy coordination and reflexivity) 

failures responsible for the blocking/inducement 

mechanisms 

Fn 

 

With 

n=1, …, 7 

……….. 

Blocking 

/inducement 

mechanisms) 

affecting Fn 

• Actors: Presence? Capabilities? 

• Institutions: Presence? Capacity/quality? 

• Interactions: Presence? Intensity/quality? 

• Infrastructure: Presence? Capacity/quality? 

• Presence and quality (effectiveness) of directionality measures? 

• Presence and quality (effectiveness) of demand articulation 

measures? 

• Presence and quality (effectiveness) of policy coordination 

measures? 

• Presence and quality (effectiveness) of reflexivity measures? 

Adapted from Wieczorek and Hekkert (2012) and Weber and Rohracher (2012). See also Labrinopoulou, Renwick, Klerkx, 

Hermans, & Roep (2014). 

 

In a third step, the functional performances of the NWT and Ontario TIS during the 2000-2016 

period are analyzed and compared in order to, first, explain the diffusion of the TISs, and, second, 

generate insights concerning the main factors that influence the deployment. Functional 

performance during the period investigated is assessed through mapping actors’ activities (events) 

that changed institutions, influenced interactions and modified infrastructure, and, therefore, 

addressed systemic problems and contributed to TIS function changes and fulfillment. Events are 

then allocated to functions based on operationalization indicators (Suurs et al., 2010) described in 

Table 20. Findings follow in the form of a narrative that explains the historic development of both 

TISs through changes in the structure and functions’ interactions. Events that contribute positively 

to function fulfillment are marked with a positive (+) sign, and events that influence functions in a 

negative way are marked with a negative (-) sign (section 7.3).  
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Table 20: Functions and operationalization indicators for the NWT and Ontario TIS 

System function Operationalization indicators 

F1. Entrepreneurial activities Development of remote community owned RET projects.  

F2. Knowledge development • Conducting renewable resource surveys, monitoring studies, feasibility studies.  

• Community energy plans. Small-scale RET experiments. Participation in research 

projects. 

F3. Knowledge diffusion • Training of community members. Promoting energy-related education, developing 

energy campaigns, organizing and participating in conferences, exhibitions, workshops, 

charrettes, seminars, meetings. 

F4. Guidance  

of the search 

• Establishing targets for RETs. Design of policies and regulations that favor RET 

solutions. Design of policies and regulations that favor RET solutions in remote 

indigenous communities. Establishing expectations from RETs projects on indigenous 

lands. Providing direction and expressing interest in RETs options. 

• Publication of results from studies involving RETs in remote communities. 

F5. Market  

formation  

• Regulatory arrangements that allow local governments and their organizations to 

participate in the electricity generation process as Independent Power Producers (IPP). 

Power purchase agreements (PPAs). Net metering agreements. 

F6. Resource mobilization • Providing financial incentives (for project capital, technical training, electricity 

generation). Providing loans. Providing loan guarantees. Financing research projects. 

Mobilizing cooperation with the private sector. 

F7. Support from advocacy 

coalitions/ legitimization 

• Advocating for indigenous RETs projects in remote communities. Statements of 

indigenous leadership on the cultural fit of RETs projects. Community visions and 

expectations favoring RETs deployment. 

 

Data on the blocking mechanisms were collected through interviews with members of a remote 

indigenous community and a systematic review of academic and policy documents. The semi-

structured interviews with ten key informants, members of a remote northern Ontario community 

actively pursuing RETs projects, were conducted in October 2014. Interviews were undertaken 

following the Tri-Council policy requirements and received ethics clearance from the Office of 

Research Ethics at the University of Waterloo. Participants were proposed by the Band Council, 

were over 18 years old and consented in writing and orally to be interviewed. Secondary data were 

collected through a search in Scopus and Web of Science databases of the keywords: “renewable” 

AND “electricity” AND “barriers” AND “indigenous” AND “Canada”, which returned 113 and 

12 documents respectively. After eliminating studies irrelevant to Canadian context, seven 

documents were related to Canadian remote indigenous communities, of which only one document 

discussed barriers to RETs implementation. We then extended the search to internet and policy 

documents and identified 13 documents, presented in section 7.3.2., which described barriers to 

RET deployment into Canadian remote indigenous communities.  
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Data for the event analysis were collected through multiple literature reviews of academic and non-

academic, policy, utilities and communities’ literature. Event analysis included only events that 

signaled a change of state and communicated public importance (Agbemabiese, Nkomo, & 

Sokona, 2012). A list of the events and their allocation to functions is presented in Tables 1 and 2 

in Appendix D.  

 

7.3 Results 

7.3.1 TIS structure 

The NWT and Ontario TISs (see also Karanasios & Parker, 2016b; 2016e) are defined through a 

niche component (a new technology or sociotechnical practice) and its supporting system (Markard 

& Truffer, 2008). The niche consists of a sociotechnical practice, defined as the deployment of 

existing RETs in remote communities by indigenous governments with the purpose of undertaking 

(partially or in full) the electricity generation functions currently performed by Crown corporations 

(state utilities), with the aim to improve community sustainability, environmental and 

socioeconomic conditions. This deployment encompasses both the domestication and societal 

embedding of new technologies, as well as measures involved in selecting, designing, purchasing, 

commissioning, and installing (Becker, Kunze, & Vancea, 2017; Neij, Heiskanen, & Strupeit, 

2017) solar and wind turbine applications in remote indigenous community diesel systems, to 

create hybrid solutions that provide acceptable power quality and supply. The supporting system 

includes a network of actors and institutions that jointly interact and contribute to the RET 

deployment. In addition, the TIS is concerned with the associated administrative procedures (such 

as planning and permitting), institutional and organizational changes, and regulatory and fiscal 

arrangements that allow for indigenous ownership of the RET application and participation in the 

electricity generation process.  

The deployment of RETs in NWT and Ontario can be represented as two different TISs, with 

different and shared participating actors and their networks, and subject to shared and non-shared 

institutions. Key stakeholders in electricity generation include local indigenous governments and 

residential consumers, the federal and provincial/territorial governments, utilities operating mostly 

at “arm’s length” from provincial/territorial governments, governmental agencies, academic and 
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research institutes, non-governmental organizations, and the private sector. Indigenous people are 

subject to specific governance structures (the Indian Act; Land Claims and Self Government 

processes) (Coates, 2008), lack market economies (Alcantara, 2003), have historically experienced 

high unemployment and low educational attendance levels (Southcott & Walker, 2009; Wilson & 

Macdonald, 2010; Loppie & Wien, 2009), and most importantly, have specific cultural values and 

worldviews on economic development, environmental governance and resource exploitation 

(RCAP, 1996; IAND, 1997; AAWG, 2010).  

In addition, community electrical systems are the joint responsibility of both federal and provincial 

governments, with the federal government responsible for capital upgrades of the electricity 

generation equipment, and the provincial government responsible for maintenance and operations 

(OEB, 2008). Furthermore, high electricity generation costs are subsidized by both federal and 

provincial governments, through cross subsidies, and direct and indirect funding. Communities 

also exhibit similar challenges, such as housing shortages, environmental concerns, economic 

development needs (AAWG, 2001; AAWG, 2010; OAG, 2003), competing and shifting Band 

Council interests and priorities, and fluctuations in federal and state funding (INAC, 2012). 

Entrepreneurial ventures within remote communities are the sole responsibility of indigenous 

governments and Local Development Corporations (LDCs) that aim at activities that fulfill three 

main goals, namely, economic development (in the form of revenue generation and employment), 

cultural preservation (in the form of minimal impact of ventures on lands and waters, ecological 

wellbeing, traditions and culture), and, self-governance (expressed through the use of local 

resources, participation in management, and  ownership of assets supporting self-sufficiency and 

self-reliance) (Cornell & Kalt, 2003; OAG, 2003; Anderson, Dana, & Dana , 2006; Senate 

Committee, 2007; Slocombe, 2008; Mc Tiernan, 1991). 

 

7.3.2 TIS functions performance 

The successful deployment of RETs in Ontario and NWT indigenous communities will depend on 

a well-functioning TIS, influenced by the specific institutional setting and indigenous cultural, 

socioeconomic and self-governance considerations. The fulfillment of the TIS functions is 

influenced by the existence of blocking mechanisms. Table 21 presents the blocking mechanisms 

identified through a review of academic and policy literature (Ostrom, 1981; Ah-You & Leng, 
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1999 ; Parcher, 2004 ; INAC, 2004 ; INAC, 2005a ; Weis, 2006 ; INAC, 2007 ; Weis & Cobb, 

2008 ; Weis, Ilinca, & Pinard, 2008 ; McDonald & Pearce, 2012 ; Inglis, 2012 ; McDonald & 

Pearce, 2013 ; AFN, 2011b ), and informants’ interviews  and their influence on the different TIS 

functions. The performance of the functions is discussed next. 

 

7.3.2.1 Entrepreneurial activity (F1) 

The communal character of indigenous communities, limitations under the Indian Act, and cultural 

perceptions on entrepreneurship point to LDCs as the appropriate business development entity for 

RET experimentation within indigenous communities (Peredo & Chrisman, 2006). Community 

owned RET projects could provide electricity directly to community members, or power 

community buildings under net metering agreements, or generate renewable electricity from stand-

alone projects, which can be sold to non-indigenous utilities that operate the local systems. 

Community entrepreneurial activities are hindered by the lack of community financial resources 

and technical expertise, infrastructural deficiencies and electricity generation regulations, as well 

as community interests favoring the continuation of diesel electricity generation. 

 

7.3.2.2 Knowledge development (F2) 

Knowledge development of RET applications at the community level takes the form of 

understanding potential community socioeconomic and environmental impacts and benefits, 

identifying availability of local renewable resources and potential generation sites, developing 

technical solutions and implementation techniques, as well as improving human capacity in terms 

of technical and managerial skills. The knowledge development function is blocked by existing 

regulatory processes associated with electricity generation and a lack of a governmental focus on 

addressing indigenous governance concerns through RET development. Furthermore, knowledge 

development and community knowledge development capabilities are blocked by limited linkages 

with other actors (e.g. academia and industry) and lack of community capacity to participate in 

renewable resources surveys and monitoring studies, feasibility studies, community energy plans, 

and small-scale RET experiments. 
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Table 21: Key blocking mechanisms and their influence on the NWT and Ontario TIS 

functions 

System functions Blocking mechanisms 
F1. Entrepreneurial 

activity 

 

• -Lack of capital/access to capital (S1, S3, S4, S5, S6, S7, S8, S10, S11, S13, S14) 

• -Vested interests (S8) 

• -Lack of capacity (community expertise) (S2, S3, S5, S6, S8, S10, S11, S12, S13, S14) 

• -Infrastructural deficiencies (S2, S10, S13) 

F2. Knowledge 

development 

• -Existing regulatory processes associated with electricity generation (S2, S5, S8, S12, S13, 

S14) 

• -Lack of legal/regulatory framework on RETs deployment (S1, S3, S6, S11, S12) 

• -Lack of capacity (community expertise and energy education) (S2, S3, S5, S6, S8, S10, 

S11, S12, S13, S14) 

• -Lack of networks (S1, S3, S10, S14) 

F3. Knowledge diffusion • -Lack of capacity (community expertise and energy education) (S2, S3, S5, S6, S8, S10, 

S11, S12, S13, S14) 

• -Lack of networks (S1, S3, S10, S14) 

F4. Guidance of the 

search  

 

• -Existing regulatory processes associated with electricity generation (S2, S5, S8, S12, S13, 

S14) 

• -Vested interests (S8) 

• -Lack of capacity (community expertise and energy education) (S2, S3, S5, S6, S8, S10, 

S11, S12, S13, S14) 

• -Lack of networks (S1, S3, S10, S14) 

F5. Market formation 

 

• -Existing regulatory processes associated with electricity generation (S2, S5, S8, S12, S13, 

S14) 

• -Vested interests (S8) 

• -Subsidies (S1, S2) 

F6. Mobilization of 

resources 

 

• -Electricity planning considerations (S2, S5, S8, S12, S13, S14) 

• -Bureaucratic procedures (S14) 

• -Lack of capacity (community expertise and energy education) (S2, S3, S5, S6, S8, S10, 

S11, S12, S13, S14) 

F7. Support from 

advocacy coalitions/ 

legitimization 

• -Vested interests (S8) 

• -High capital (investment) costs and reliability concerns (S3, S6, S10, S11, S13, S14) 

Source: Ostrom, 1981 [S1]; Ah-You & Leng, 1999 [S2]; Parcher, 2004 [S3]; INAC, 2004 [S4]; INAC, 2005a [S5]; Weis, 

2006 [S6]; INAC, 2007 [S7]; Weis & Cobb, 2008 [S8]; Weis, Ilinca, & Pinard, 2008 [S9] McDonald & Pearce, 2012 [S10]; 

Inglis, 2012 [S11]; McDonald & Pearce, 2013 [S12]; AFN, 2011b [S13], and key informants’ interviews [S14]. 

 

 

7.3.2.3 Knowledge diffusion (F3) 

Knowledge diffusion involves the dissemination of information within and across multiple 

communities on the cultural appropriateness, adaptation to local needs, potential benefits, and 

implementation difficulties of RETs. Favorite methods for the diffusion of knowledge of 

information exchange and learning facilitation in indigenous communities include the 

establishment of a network that facilitates community participation in meetings, conferences, 

workshops, charrettes, training of community members and promoting energy-related education.  
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The knowledge diffusion function can be blocked by limited linkages and inadequate networks 

between indigenous remote communities and specialists that can facilitate learning from 

established projects. 

 

7.3.2.4 Guidance of the search (F4) 

The guidance of research function represents the selection process that evaluates innovative 

solutions and facilitates their adoption, while taking into consideration community priorities and 

concerns based on local sustainability and governance perspectives. Indigenous perspectives on 

RETs deployment include pursuing and articulating specific targets, policies, and regulatory and 

fiscal reforms and incentives to improve remote indigenous communities’ electrical systems. 

Guidance of the search can be blocked by the existing electricity generation regulatory framework, 

consisting of planning principles, regulations, electricity rates and subsidies, and lack of provincial 

targets and policies for the development of RETs. Furthermore, the function’s performance is 

influenced by community vested interests and risk averse attitudes, lack of technical, managerial 

and financial capacity, as well as the lack of networks that could modify current community and 

governmental preferences through multiple interactions. 

 

7.3.2.5 Market formation (F5) 

Since the deployment of RETs in remote communities has to compete with established diesel 

generation, a market for renewable electricity should be instigated (Bergek et al., 2008). The 

market formation function for new renewable electricity generation is blocked, first, by reliability 

and safety regulations due to technical constraints associated with the penetration level of 

renewables in isolated diesel systems (Baring-Gould & Corbus, 2007; Tan, Meegahapola, & 

Muttaqi, 2014). Second, the isolated nature of local diesel electricity markets supported by multiple 

subsidies necessitates the availability of financial resources for the establishment of new schemes 

that would support indigenous ownership of RET projects and compensate for vested interests in 

diesel, while maintaining residential electricity prices at the present level. Regulatory and fiscal 

arrangements that allow local governments and LDCs to participate in the electricity generation 
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process take the form of Independent Power Producers (IPP) policies and generation incentives in 

the form of Power Purchase Agreements (PPAs) and net metering agreements. 

 

7.3.2.6 Mobilization of resources (F6) 

The high cost of RETs and lack of community resources necessitates financial, material and 

capacity support for their deployment (IEA, 2011). Furthermore, mobilization of resources for new 

renewable electricity generation in the area of remote indigenous communities is influenced by 

uncertainty over future electricity demand growth. This results from community and industrial 

development, and a preference of both NWT and Ontario governments towards large-scale, cost 

minimizing electricity generation options, such as hydroelectricity, in association with grid 

extensions to supply future mining projects (NT Energy, 2013; OME, 2013).  

 

7.3.2.7 Support from advocacy coalitions/ legitimization (F7) 

The implementation of RET projects would have to overcome the resistance of established interests 

in diesel-generated electricity (Weis, 2014) and community consumers’ concerns over reliability 

and increased costs (GNWT, 2009b; McDonald & Pearce, 2013). Furthermore, inclusion of 

indigenous perspectives on the anticipated contribution of RETs in the governance of community 

electrical systems, and design of policies that provide sustainable environmental and 

socioeconomic benefits would allow for higher acceptance of RETs by indigenous people. 

The underlying systemic and transformational problems responsible for the blocking mechanisms 

that influence the performance of functions in both TIS are analyzed in the next sections. 

 

7.3.3 Systemic problems influencing the NWT and Ontario TIS performance 

7.3.3.1 Hard institutional problems 

Two main sets of formal institutions influence the guidance of the search, knowledge development, 

resource mobilizations and market formation functions. First, the regulatory framework for the 

introduction of RETs, consisting of utilities’ planning principles, technical, operational, and safety 

regulations, and existing rates and subsidies structures, is different in each province. The planning 
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principles focus on energy security, affordability and reliability, reduction of environmental 

impacts and cost minimization (GNWT, 2008b), combined with business strategies aimed at 

electricity generation flexibility (NT Energy, 2013; GNWT, 2010). Technical, operational, and 

safety regulations relate to electricity services quality, since high RET penetration levels within 

local and isolated provincial grids are subject to balance and reliability considerations (Baring-

Gould & Corbus, 2007; Baring-Gould & Dabo, 2009). Furthermore, high electricity generation 

costs lead to differentiated electricity rates for residential and commercial/governmental 

consumers funded by provincial and federal subsidies15 making cost comparisons between diesel 

powered electricity and RET options difficult, and further reducing the motivation for RET 

deployment.  

Second, formal institutions related to property rights, governance under the Indian Act, and 

indigenous views on development are responsible for limited entrepreneurial activities. Lack of 

property rights limits the possibility for non-indigenous and indigenous private entrepreneurial 

activities within reserve lands (Alcantara, 2003), and hinders access to banking loans, since 

traditional land is not accepted as collateral for financing purposes (Senate Committee, 2007; 

OAG, 2003). In addition, all economic activities within reserves, including energy development, 

are subject to indigenous governments’ environmental licensing and regulation authority, which 

promotes projects under careful interpretation of treaty and indigenous rights and community 

socioeconomic benefits (Public Policy Forum, 2006; IISD, 2013).  

 

7.3.3.2 Soft institutional problems  

The existence of soft (informal) institutions associated with social norms, values and culture 

(Woolthuis, et al. 2005) within indigenous communities influence multiple TIS functions, 

including guidance of the search, knowledge development and market formation. First, 

communities have established vested interests in diesel generation through LDCs that cooperate 

with utilities, acquire rents, and provide employment through diesel storage and distribution (Weis, 

                                                 
15 The height of direct electricity subsidies for residential customers in remote communities, ranged between $ 3.5 million in 

2015-2016 in Yukon (GY, 2015a), to $34 million in 2015 in British Columbia (BC Hydro, 2015b), and approximately $ 34 

million in 2013 for Rural or Remote Rate Protection (RRRP) contributions in Ontario (Hydro One, 2012; Hydro One, 2008). 

Finally, total energy-related direct governmental subsidies in Nunavut were approximately $ 30 million for 2012-013 (GN, 

2015a). 
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2014). These community interests benefit from diesel dependency and influence market formation, 

legitimization and social acceptance of the TIS, thus limiting guidance for the search for alternative 

entrepreneurial activities. Second, risk averse attitudes of indigenous governments may influence 

guidance of the search away from risky RET applications (such as wind and solar, due to the 

inherent intermittency of these resources). Third, a community focus on economic development 

guides indigenous governments’ decisions towards grid electrification, since grid electricity is 

considered a low risk, reliable, and affordable alternative able to support productive community 

activities (Five Nations Energy Inc., 2006; NT Energy, 2013).  

 

7.3.3.3 Interaction problems  

Interaction problems are caused by the lack of information exchange and/or the quality/intensity 

of information exchange between actors, and primarily impact the following functions: guidance 

of the search, knowledge development and diffusion and legitimization of the TIS (Wieczorek & 

Hekkert, 2012). Although local governments maintain direct or indirect relationships with the 

federal and provincial governments, utilities and private firms, and with other communities through 

tribal, provincial, and national political affiliations and interprovincial networks such as the 

Assembly of First Nations (AFN), it is apparent that the quality/intensity of interactions and 

communication between indigenous people and other actors involved in the TIS are affected by 

various issues.  

First, type and extent of interactions with provincial governments are influenced by 

cultural/political differences based on indigenous views on resource driven development, with 

community members divided between those favoring economic development, and those preferring 

traditional Indigenist approaches (Atleo, 2008; Atleo, 2013). Many projects are opposed due to 

potential impacts on the community’s way of life and traditional activities (Coates & Crowley, 

2013). Second, issues of trust, past relationships, grievances, and land claim disputes, which in turn 

are affected by indigenous choice of negotiation tactics, compatibility of goals, group cohesion and 

government perception of the indigenous group, shape the interaction between indigenous people, 

governments, and private actors (Booth & Halseth, 2011; Alcantara, 2013). Third, interactions 

favoring RET deployment may be deterred due to local governments’ established focus on (lock-

in to) diesel technologies due to the stability of significant revenues provided by diesel vested 
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interests (Weis, 2014). Fourth, interactions may also be blocked due to the lack of intermediaries, 

such as mediating organizations and educational institutions that may act as “bridges” helping to 

surpass issues of trust between indigenous communities and governments, utilities, and the private 

sector. Interactions with communities that have already implemented RET projects are important, 

since the sharing of experiences and practices assists in the development of internal capacity to 

maximize benefits from the projects and legitimizes RETs (St.Denis & Parker, 2009; Krupa, 

2012a).  

 

7.3.3.4 Capability and infrastructural problems  

Knowledge infrastructure within the TIS takes the form of specialized knowledge and expertise 

generated by universities, research institutes and industry, while financial infrastructure consists 

of supporting incentives, grants and subsidies (Wieczorek & Hekkert, 2012). At the community 

level, capability problems take the form of low administrative, managerial and technical capacity 

(Weis, Ilinca, & Pinard, 2008; Fay & Udovyk, 2013; McDonald & Pearce, 2012). Lack of local 

expertise combined with risk avoidance attitudes influence RET related guidance of the search, 

knowledge development and diffusion, and entrepreneurial experimentation. Furthermore, lack of 

physical infrastructure hinders RET implementation on reserves and erodes legitimization. Limited 

access during winter through a network of ice roads, year-round access by airplanes and/or barges, 

high accommodation, communication, and energy costs, and lack of specialized equipment (such 

as cranes) increase the investment cost of any project in remote communities, and necessitate the 

mobilization of state financial resources (INAC, 2004; INAC, 2007; Weis, 2014). 

 

7.3.3.5 Transformational failures 

Transformational failures (Weber & Rohracher, 2012) are responsible for the underperformance 

of the guidance of the search and knowledge development, and, in turn, the other TIS functions. 

Prior to 2000, indigenous participation in renewable electricity generation was minimal and RET 

project development and ownership were driven by cost considerations of utilities and provincial 

governments, pointing, therefore, to a lack of shared vision regarding the direction of the electrical 

system transformation process and a directionality failure.  In addition, early governmental support 
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through national energy efficiency policies revolved around tax write-off incentives and financial 

assistance for R&D activities and implementation studies (Gingras & Dalp, 1993), instead of 

targeting the transformation of community electrical systems through engagement and support of 

indigenous self-governance aspirations in the form of community participation in the decision 

making and planning process, indicating, therefore, both a policy coordination and a reflexivity 

failure. Furthermore, limited joint learning processes between governments, utilities, and 

communities, as well as communities’ human capacity issues (INAC, 2005a; Wesley-Esquimaux 

& Calliou, 2010), hindered learning processes on the potential environmental and socioeconomic 

benefits of the introduction of RETs, thus contributing to both reflexivity and demand articulation 

failures. 

 

7.3.4 Performance of the NWT and Ontario TIS between 2000 and 2016 

7.3.4.1 The NWT TIS performance  

7.3.4.1.1 NWT policy intervention to address systemic problems 

In the NWT, policy intervention during the 2001-2016 period to support RET deployment was 

introduced through public workshops and energy charrettes that captured stakeholders’ differing 

perspectives on the future of NWT’s energy system and led to multiple reviews of energy and 

electricity related targets and policies. This interactive approach allowed for reflexivity, 

directionality and indigenous demand articulation issues to be addressed. During the same period, 

energy policy coordination issues were ameliorated through the establishment of the Ministerial 

Energy Coordinating Committee (MECC) that periodically monitored policy coherence at the 

horizontal level (between sectoral policies) (GNWT, 2008a; GNWT, 2011a).  

In addition, hard and soft institutional problems influencing multiple functions of the TIS were 

addressed through federal and territorial programs that were sequentially introduced. Initial 

programs emphasized capital cost reduction in RET projects, followed by programs focusing on 

capabilities improvements and network formation through RET related studies, and technical and 

educational assistance. Finally, during the 2013-2016 period, regulatory and financial 

arrangements were introduced to support community owned electricity generation. Network 

failures were mitigated through the participation, to varied extents, of utilities, universities, 
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research institutes, the private sector and supporting organizations in the development of RET 

studies and projects. NTPC, ARI, NGOs like Pembina, and non-governmental agencies like Arctic 

Energy Alliance (AEA), engaged in renewable resource monitoring and feasibility studies, policy 

recommendations, advisory services, and equipment deployment, and contributed to the direction 

of the search, knowledge development and diffusion, mobilization of resources, and legitimization 

of the TIS (ARI, 2016; AEA, 2016; Weis & Cobb, 2008; Campbell & Pape, 1999; CBC, 2017c). 

 

7.3.4.1.2 NWT TIS functional pattern (2001-2016) 

The functional build-up of the NWT TIS was initiated with the release of the first NWT Energy 

Strategy in 2001 (+F4). In the same year the provincial RETCAP (2001-2003) and the federal 

“Aboriginal and Northern Climate Change Program” (ANCCP) (2001-2003) were launched (+F4) 

providing capital support for RET projects (+F6). These early actions were followed by the 

“Aboriginal and Northern Community Action Program” (ANCAP) (2003-2007), engaging 

indigenous communities to take action to reduce GHG emissions, through community energy 

planning, community capacity building and wind studies in the Arctic, and promoting collaboration 

between local, federal and territorial government, utility, education institutes, and renewable 

energy companies (+F6) (INAC, 2005b; AANDC, 2014d; INAC, 2007). As a result, feasibility 

studies for the installation of wind turbines were conducted between 2003 and 2006 for most of 

the remote indigenous communities (+F2). However, results indicated that wind turbines were 

financially viable for a limited number of communities (-F4) (Weis & Ilinca, 2010). In 2006 a 

demonstration solar application was installed in the community of Jean Marie (+F1).  

The NWT government’s commitment to the use of sustainable energy sources was further 

established during the 2007-2011 period. In 2007 the 2007 Energy Plan and the 2007-2011 

Greenhouse Gas Strategy were released, both targeting the development of renewable applications 

and reductions in territorial emissions (+F4). In the same year, the first conference on wind turbine 

systems for the electrification of diesel-powered communities was organized bringing together 

communities, utilities, governments and private actors (+F3) (NTPC, 2007). At the same time the 

federal government launched the first phase of the ecoENERGY for Aboriginal and Northern 

Communities Program (EANCP) (2007-2011) funding RET project costs, and renewable resource 

monitoring and feasibility studies (AANDC, 2014a; AANDC, 2014d), while the territorial 
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government established CREF, as part of the Alternative Energy Technologies (AET) program for 

financially supporting RET project costs (+F6)(Carpenter, 2013). Furthermore, the government-

initiated dialogue with communities through the review of existing regulations, rates and subsidies 

for electricity (+F4) and focused on the coordination of all activities targeting energy reduction 

through the establishment of a coordinating committee and the use of AEA as a one stop agency 

for the delivery of programs to the communities (+F4). AEA conducted a significant number of 

energy planning projects during 2008-2015 and, following the latest technology developments, the 

Aurora Research Institute (ARI) initiated a new round of optimization studies on the feasibility of 

wind and solar applications (+F2, F3) (ARI, 2016) (see also Weis & Ilinca, 2008; Weis & Ilinca, 

2010). Continuous dialogue between stakeholders led to reviews of the electricity process in 2008, 

2009 and 2010 (GNWT, 2008b; GNWT, 2009a; GNWT, 2009b; GNWT, 2010), revealing 

community interest in participation in RET projects, and leading to a revised Energy Strategy and 

Greenhouse Gas Strategy in 2011 (+F4) (GNWT, 2011a; GNWT, 2011b). By the end of the 2007-

2011 period ten small-scale solar projects had been installed in remote communities, bringing the 

total number of solar installations to eleven (+F1) (Table 22).  

 

Table 22: RET projects in NWT and Ontario 

Time 

period 

Time 

interval 

NWT Ontario 

Installed 

projects 

Average project 

capacity 

Installed 

projects 

Average project 

capacity 

2001-2006 6 years 1 1.3 kW   

2007-2011 5 years 10 4.1 kW   

2012-2013 2 years 10 16.6 kW 3 19.3 kW 

2014-2016 2 years 8 31.9 KW 10 30.0 kW 

Total  29  13  

 

 

During the subsequent 2012-2016 period a new round of guidance of the search, knowledge 

development and mobilization of financial resources activities led to an increase in the number and 

the average capacity of community RET projects. By 2012, multiple theoretical and empirical 

contributions on remote microgrids technology had been developed globally (Bhattacharyya, 

2012). In Canada, several new optimization studies on the feasibility of RETs in indigenous remote 

communities added to knowledge development (+F2) (Bhattarai, 2013; Iqbal, n.d. (b); NFL Hydro, 

2009; Arriaga, Cañizares, & Kazerani, 2013). Furthermore, in 2012 the NWT government 
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announced its 2012 Solar Energy Strategy and organized the 2012 Energy Charrette to engage 

communities in the electricity planning process (+F4). The second phase of EANCP (2011-2016) 

was launched in 2011 emphasizing RET deployment in remote indigenous communities in addition 

to the continuous financial support from CREF (+F6) and in 2013 the government announced its 

2013 Energy Plan, which included its commitment to a reflexive and collaborative policy 

development (+F4) (GNWT, 2013). Ten higher scale solar projects (16 kW average capacity) were 

installed in 2012 and 2013 (+F1).  

The subsequent 2014-2016 period is characterized by the second Energy Charrette in 2014, where 

the impacts of previous targets and programs were discussed, and further deployment of small-

scale renewable projects was emphasized (+F2, +F4) (RMA, 2014). Specialized workshops and 

conferences were organized in Ontario (2013) and NWT16 (2015) supporting knowledge diffusion 

and interactions between multiple actors, including indigenous governments (+F3). In addition, 

regulatory arrangements were introduced in 2014-2015 in the form of net metering and 

Independent Power Producers (IPPs) policies that allowed for indigenous communities to 

participate in the electricity generation process creating a market for indigenous owned RET 

projects (+F5) (NTPC, 2016b; Cherniak, et al., 2015). Eight higher scale (32 kW average capacity) 

projects were developed in 2014 and 2015, resulting in a total of 18 solar projects between 2012 

and 2016.  

Over the 2001-2016 period in which the NWT TIS evolved, a total of 29 solar projects with a total 

capacity of 464 kW were developed in 19 of the 25 diesel powered remote indigenous 

communities. Fourteen communities developed one solar project, three communities installed two 

solar systems, one community installed three solar plants and one community installed six projects 

(Karanasios and Parker, 2016b).  

 

 

                                                 
16

 2009 Wind-Diesel Workshop, June 1-2, 2009 -Ottawa, ON, 1st Renewables in Remote Microgrids Conference, June 25-

26, 2013, Toronto, ON, 2nd Renewables in Remote Microgrids Conference, September 15-17, 2015, Yellowknife, NWT. 
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7.3.4.2 The Ontario TIS performance 

7.3.4.2.1 Ontario policy intervention to address systemic problems 

In Ontario, policy intervention during the 2001-2016 period in favor of RET deployment included 

support for both off-grid RET projects and communities’ connection to the provincial grid (OME, 

2013). Reflexivity, directionality and indigenous demand articulation issues influencing the 

guidance of the search towards RET deployment were addressed by the Nishnawbe Aski Nation 

(NAN), Tribal Councils, and community leaderships expressing an interest for sustainable options 

to address community electricity needs (OEB, 2008; NAN-HORCI, 2013; NAN, 2014b). 

Furthermore, in a similar process to NWT, systemic problems were addressed through sequentially 

introduced federal and provincial financial support for projects’ capital costs, community training, 

and community owned electricity generation. Network problems were improved through the 

participation of numerous actors, including governmental agencies (IESO, HORCI), NGOs, 

universities (UW, 2014), and the private sector that cooperated with indigenous communities in 

R&D activities related to microgrid planning, testing, and training (ME, 2016). Technical, 

educational, and training support for a number of projects was provided by Shibogama Technical 

Services (STS, 2016), an indigenous company supporting the members of the Shibogama Tribal 

Council, while project deployment and installation of solar projects were performed by indigenous 

owned enterprises (NCC, 2016). These indigenous driven RET ventures improved local 

knowledge, generated local employment, contributed to the legitimization of the TIS, and pointed 

to the importance of trusted intermediaries for successful project deployment (Schot & Geels, 

2008; Smith & Raven, 2012).  

 

7.3.4.2.2 Ontario TIS functional pattern (2001-2016) 

The functional build-up of the Ontario TIS started with the governmental commitment towards 

renewable electricity generation expressed in 2003 and supported by both requests for proposals 

and the 2006 introduction of early feed-in-tariffs to attract investments in renewable electricity 

generation (+F4, +F6) (Rowlands, 2007; Stokes, 2013). Indigenous interest in renewable electricity 

generation and the connection of communities to the provincial grid to improve socioeconomic 

conditions was expressed in 2008 by NAN, the political organization representing Ontario’s remote 

indigenous communities (+F4) (OEB, 2008; NAN, 2014b). In 2009 the government introduced the 
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Green Energy and Green Economy Act (GEGEA), which included financial incentives for 

indigenous communities’ participation in RET projects (+F4) (Winfield, 2013). In the same year, 

and parallel to the federal EANCP program, both the Aboriginal Loan Guarantee program (ALG) 

and the Aboriginal Energy Partnerships Program (AEPP) were established by the Independent 

Electricity System Operator (IESO) to support indigenous participation in both on-grid and off-

grid RETs through the development of community energy plans, feasibility and technical studies, 

resource assessments and training (+F6) (OFA, 2016; AEPP, 2016).  

Furthermore, between 2010 and 2013, optimization studies examining the potential of wind 

applications in Ontario’s remote communities were developed (+F2) (Weis & Ilinca, 2008; Weis 

& Ilinca, 2010) and the second phase of EANCP focusing on RETs for remote indigenous 

communities was introduced (+F6). Knowledge exchange between academia, government, 

utilities, private sector and communities was facilitated through the organization of the NAN 

energy conference in 2012 (NAN, 2014b), the first conference on renewable microgrids in Toronto 

in 2013 and the 2014 NOFNEC indigenous environmental conference (+F3). To support off-grid 

RET deployment, Hydro One Remote Communities Inc. (HORCI)17, the utility serving 15 of the 

remote indigenous communities (HORCI, 2012), introduced a net metering and stand-alone 

arrangement creating a market for local electricity generation (+F5) (HORCI, 2015). In 2013 two 

small-scale solar projects and one wind turbine project were developed in three communities (19.3 

kW average capacity), followed by ten higher capacity projects (30 kW average capacity) installed 

between 2014 and 2016 (+F1) (Table 22).  

In total, as the Ontario TIS evolved from 2008 to 2016, 358 kW of RET were installed in 11 of the 

25 diesel powered remote indigenous communities. Five projects were installed in HORCI serviced 

communities and six in communities operating as Independent Power Authorities (IPA). All 

projects were installed under net metering arrangements on electricity intensive buildings with a 

view to displacing full cost electricity, thereby reducing expenses of local governments. 

However, during the same period a competing TIS was established, initiated with the governmental 

commitment of the connection of remote indigenous communities to the provincial grid and the 

electrification of future natural resources development in the Ring of Fire area (+F4 towards an 

alternative niche) (OME, 2013). Technical studies verified the feasibility and financial viability of 

                                                 
17 Hydro One Remote Communities Inc. (HORCI) is a subsidiary of Hydro One Inc.  
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the connection of 21 of the 25 remote communities (+F2, alternative TIS) (IESO, 2014; PWC, 

2015; WP, 2013b), and led to the prioritization of the grid connection project in the 2013 update 

of Ontario’s LTEP (+F4, alternative TIS), and, in turn, the participation of 21 remote indigenous 

communities in the establishment of the transmission company Wataynikaneyap Power that will 

connect the communities to the provincial grid and provide electricity to mining projects in the 

Ring of Fire area (WP, 2012). 

 

7.4 Discussion 

The relationship between the functional performance and the diffusion rates of RET projects is 

discussed in terms of presence and intensity of functions, and the existence of interactions between 

functions (Hekkert, Suurs, Negro, Kuhlmann, & Smits, 2007). 

The analysis of the NWT and Ontario TISs demonstrates that the functional build-up during the 

investigated period shows a positive relationship to the number of RET projects developed and the 

transition toward more sustainable energy systems (Figure 5). In both TIS, the functional build-up 

is initiated with guidance of the search towards the introduction of RETs into community diesel 

systems followed by mobilization of financial resources, which are used to attract multiple actors, 

and the development of local knowledge through feasibility and resource monitoring studies.  The 

results of these studies improved actors’ learning on RET deployment, led to interactions between 

indigenous governments and other participants, and initiated a new round of guidance of the search, 

mobilization of resources, knowledge development and diffusion. Eventually, regulatory and fiscal 

arrangements were negotiated for the formation of local markets and installation of higher capacity 

solar applications on community buildings. In NWT, the larger scale Colville Lake project (CBC, 

2017c), and the community owned Lutselk’e solar plant that operates as an independent power 

producer (IPP), contribute further to the legitimization of the TIS (CBC, 2017a; CBC, 2017b), and 

signal an interest among communities towards higher renewable penetration projects18 under IPP 

ownership. Subsequent new governmental targets for RET deployment in remote communities 

                                                 
18 The integration of higher capacity RET projects into isolated diesel power plants, as measured through  the ratio of the 

renewable component output (kW) over the primary community electrical load (kW) (instantaneous penetration) and the ratio 

of the renewable component energy output (kWh) over the community electricity generation output (kWh) (average 

penetration) (Baring-Gould & Corbus, 2007), are associated with increased technical complexity of control devices for 

maintaining acceptable power quality, higher reductions in diesel consumption, and higher, but riskier, financial returns. 
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(CBC, 2017c; GNWT, 2016; GNWT, 2017), and the search for new financial mechanisms (BP, 

2016) indicate positive feedbacks between functions and a virtuous cycle characterizing the TIS 

development.  

However, in Ontario, although the interaction of functions led to the functional build-up and 

entrepreneurial activities within a shorter time frame than in NWT, the functional performance was 

interrupted by a shift of community interest to a competing alternative (Geels & Raven, 2006), 

namely the potential connection to the provincial grid (new guidance of the search). The new 

alternative was embraced by communities who anticipate increased socioeconomic benefits 

through their participation in Wataynikaneyap Power. As a result, high capacity off-grid 

electrification projects are expected only for the remaining four communities that are unable to 

connect (OME, 2017). 

  

Figure 5: Accumulation of functions and RET projects developed in the NWT and Ontario 

TIS 
Source: Data from Table 1 and Table 2 in Appendix D. 

 

These results are consistent with the results of Tigabu et al., (2015) and Blum et al., (2015) that 

report a positive relationship between diffusion of RET products and projects and functional 

intensity in developing countries. 
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Results also point to three policy related implications. First, the system-building functions in both 

TIS, as demonstrated by their strength, are guidance of the search and knowledge development. 

The functional build-up is initiated with actors’ shared interest towards renewable solutions and, 

given the availability of financial resources, the development of knowledge for the introduction of 

RET into community electricity systems. Knowledge development in turn engages a significant 

number of actors in studies and experiments that improve and diffuse knowledge on the 

deployment of RET. The functional pattern in both TISs consists of successive “morphogenetic 

rounds” of guidance of the search, mobilization of resources, knowledge development and 

diffusion, which, eventually, lead to new guidance of the search for ownership of higher capacity 

and complexity RET projects (Grin, Rotmans, & Schot, 2010, p. 96).  

Second, results point to the importance of financial resources mobilization for both the initiation 

of the functional build-up and the improvement of the functional performance, given the high 

investment costs and the limited financial, technical and managerial capacity of indigenous 

communities. NWT has spent approximately $21 million on studying renewable energy 

applications for remote communities (CBC, 2016) and the federal government provided, between 

2003 and 2016, $65 million through ANCAP and EANCP for knowledge development on the 

feasibility assessment and integration of RETs into indigenous communities (INAC, 2017).  

Third, a comparison between the NWT and Ontario TIS and the rest of the provinces and territories 

suggests that the system building functions (guidance of the search and knowledge development) 

are influenced by local institutional factors. Guidance of the search is influenced by the alignment 

of federal and provincial governments and utilities perspectives with indigenous aspirations to 

participate in the electricity decision making process, as demonstrated through NWT’s multiple 

electricity reviews, and in Ontario, through the adoption of the NAN agenda on both off-grid and 

on-grid participation in RETs. In addition, the performance of the knowledge development function 

in both TISs is influenced by the existence of local educational and research facilities (universities, 

research institutes and local agencies) that conducted specialized research, engaged communities 

in development and installation of RET projects, and contributed to “learning by searching” and 

“learning by doing” (Binz, Truffer, & Coenen, 2014). Finally, functions and the functional build-

up in both TIS benefitted from the evolution of a localized network that was formed to promote 

the deployment of RETs in remote indigenous communities by addressing interaction and 
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transformational failures. These formal networks, consisting of local actors (provincial 

government, utilities, communities, educational and research facilities, NGOs), but also the federal 

government and national scale NGOs (Pembina) as well as private firms (Bullfrog Power), were 

able to build trust and shared expectations, and improve local skills and knowledge through 

learning processes  (Schot & Geels, 2008) in order to  access, develop and deploy resources in a 

more effective way than other provinces and territories (Musiolik & Markard, 2011; Fischer & 

Newig, 2016). 

The importance of the functional build up for the diffusion of RET projects is demonstrated by the 

lack of such projects in Nunavut, Quebec and Newfoundland and Labrador indigenous 

communities during the 2000-2016 period. In Nunavut, despite early guidance of the search 

towards RETs (GN, 2007) and knowledge development in the form of studies conducted between  

2001 and 2009 (see for example Maissan, 2006a; 2006b), reduced availability of renewable 

resources (wind, solar and hydro), poor legitimization due to the failure of previous wind projects 

(Nunavut Power, n.d.) , as well as lack of financial resources from the government of Nunavut and 

Qulliq Energy Corporation (QEC), blocked RETs deployment from 2001 to 2016 (Rohner, 2015). 

In Quebec, although early guidance of the search for community RETs led to a number of studies 

financed by Hydro Quebec (Krohn, 2005), diverging and competing community priorities (grid 

connection and hydroelectricity generation) limited development to only one wind project over the 

2001-2016 period (GQ, 2006a; Rogers, 2014; NO, 2011). Finally, no RET projects were developed 

in Newfoundland and Labrador between 2001 and 2016, due to lack of interest towards community 

RETs from provincial and indigenous governments, and limited commitment of financial resources 

towards feasibility studies on community wind, solar and hydroelectricity options (NFL Hydro, 

2009).  

 

7.5 Concluding remarks 

The aim of this paper was, first, to explain the diffusion of RET applications in remote indigenous 

communities in NWT and Ontario by analyzing the performance of the technological innovation 

systems, and, second, to identify factors that have the potential to sustain the development of these 

RET projects. 
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The analysis shows that between 2000 and 2016 policies and programs in both jurisdictions 

addressed systemic and transformational failures, which allowed for the accumulation of TIS 

functions, which, in turn, led to the deployment of solar projects in the communities. In addition, 

the analysis points to the guidance of research and knowledge development as the driving forces 

for the build-up of the functional system. The NWT innovation system case suggests that a highly 

inclusive and reflexive policy design initiated by the territorial government for addressing the 

energy needs of the isolated territory, as well as the establishment and support of a local network, 

contributed to the uptake of the innovation system. In the case of Ontario, guidance of the search 

was driven by indigenous communities’ focus on RET projects, while the functional build-up 

evolved over a shorter period of time than NWT, as it benefitted from both knowledge developed 

in NWT and the establishment of a network of actors. Furthermore, the study also shows that, given 

the financial constraints present in most indigenous communities, governmental support is decisive 

for improving actors’ presence, capabilities and interactions, and the creation of market formation 

mechanisms necessary for the undertaking of entrepreneurial activities.  

The results confirm that the TIS approach can be used to study the diffusion of technological 

innovations in the specific institutional setting characterizing remote indigenous communities. 

Recent legal decisions prioritizing indigenous perspectives, lack of a market economy, and an 

indigenous focus on economic development, environmental protection, and self governance signal 

that the determinants of RET diffusion are more complex than simple technoeconomic factors. 

Within the communities, locally owned RET projects are blocked by multiple institutional, 

capacity and infrastructural barriers that hinder their development. These systemic failures can be 

addressed through the functional approach proposed by the TIS.  

In addition, the analysis of the functional evolution reveals that local governments and band 

councils engage in RET entrepreneurial ventures by (1) taking advantage of a sequence of events 

initiated by the provincial and territorial governments’ interest in the use of renewable energy to 

reduce carbon emissions and electricity generation costs, and the availability of financial support 

for resource monitoring and feasibility studies contributing to the guidance of the search and 

knowledge development  and diffusion, (2) learning by searching, training, and experimenting 

through projects installed in communities, and through engaging with numerous actors to improve 

knowledge on the specific applications and their potential to contribute to indigenous goals, and 
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(3) modifying and articulating their perspectives, based on accumulated learning, towards RETs 

policies and programs that are supportive of indigenous aspirations and sustainability goals. 

Furthermore, results suggest that, given the “system building” nature of the functions guidance of 

the search and knowledge development for community entrepreneurial activities, the aim of 

federal, provincial/territorial and indigenous governments should be policies targeting systemic 

and transformational problems (capabilities and interaction failures) that block these functions. 

Policy intervention for network building, capability improvements and knowledge development 

through experimenting with RETs will support further learning and empower indigenous 

communities and participating actors, enable them to adjust their perspectives and articulate policy 

direction according to their values and beliefs, and strengthen their governance structures. 

Accordingly, further research should, first, investigate local learning processes (Hegger, VanVliet, 

& VanVliet, 2007; Neij, Heiskanen, & Strupeit, 2017) in the environment of remote indigenous 

communities in terms of who, how, and what is learned related to RET deployment. Second, given 

that knowledge development and diffusion are facilitated by local networks, further research could 

focus on both the role that community leadership and trusted local intermediaries play in the 

definition of the guidance of the search and knowledge development and diffusion, as well as their 

strategies for guiding the build-up of local TIS functions. 
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8 Chapter 8: Conclusion 

 

This chapter summarizes the research findings previously outlined as well as the study’s 

contributions. Section 8.1 reviews the purpose and objectives of the research followed by a 

summary of the findings in section 8.2. Subsequent sections 8.3, 8.4, and 8.5 discuss the research 

implications, and offer recommendations for future research and the design of RET supporting 

policies. Finally, section 8.6 discusses the study’s contribution and section 8.7 the overall 

conclusion.  

 

8.1 Purpose and objectives 

The purpose of this doctoral dissertation has been to improve understanding on the factors that 

influence the transformation of indigenous community electrical systems to more sustainable ones. 

The study had three specific objectives: 

1. Develop a conceptual framework to examine the transformation of remote community 

electrical systems;  

2. Use the conceptual framework to improve understanding of the “wickedness” (the technical, 

contextual, and social complexity) associated with the introduction of RETs into remote 

indigenous community electrical systems, and explain the diffusion of RET projects within 

these systems to date; and  

3. Examine the processes implemented to cope with the wickedness of the problem (in the form 

of mechanisms and actor strategies) and how these processes were modified to encompass 

indigenous perspectives in order to identify pathways and develop policy recommendations for 

their transition to more sustainable systems. 

 To achieve the objectives, the study examined the electrical systems of indigenous communities 

and the perspectives of participating stakeholders and used a modified MLP framework, at the 

national level, to examine the extent of transformation of these electrical systems. The TIS 

framework was used, at the sub-national level, to compare the functional performance of the NWT 

and Ontario TISs.  
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8.2 Findings  

Findings were presented in chapters four, five, six and seven. Chapters four and five improved 

understanding on the contextual, technical, and social complexity associated with the introduction 

of RETs in remote indigenous communities. Chapter four described the structure of remote 

indigenous communities’ electrical systems, provided an overview of the diversity of communities 

in terms of population, power systems size, electricity generation costs, and subsidies structures, 

and identified 71 RET projects deployed between 1980 and 2016. Furthermore, the chapter 

reviewed provincial and territorial RET targets, as well as future large-scale electricity generation 

alternatives and small-scale RET options that are available to address both utilities’ and indigenous 

communities’ concerns.  

Chapter five shed additional light on the “wickedness” inherent within the introduction of RETs 

into remote communities’ systems and identified four interrelated factors that influence the 

deployment of RETs. First, there was the institutional complexity of the electricity system, 

stemming from the different types of utilities, rates, subsidy structures and funding sources, 

technical regulations, and community vested interests. The second factor encompassed the 

diversity of stakeholder perspectives (government, utilities and indigenous peoples) on community 

electricity generation and the challenges that the introduction of RETs is expected to address. 

Third, an additional factor was the uncertainty over the future “long term” structure and governance 

of provincial and territorial electricity generation systems. Such decisions are influenced by the 

availability of local available resources, mainly hydroelectricity, future mining and natural 

resources developments, and the possibility for connection to local or interconnected grids. Fourth, 

community uncertainty over the financial viability of small-scale off-grid applications influenced 

the deployment of RETs. The performance of such projects is influenced by the size of 

communities’ diesel systems, availability and integration level (low, medium, high) of local 

renewable resources, capital costs, electricity rates and subsidies structures, economies of scale, 

and, given the inherent risk of RET projects, community attitude towards risk. 

Chapter six used an MLP based framework and explained, first, how the transition of remote 

Canadian indigenous community electrical systems through RETs between 1980 and 2016 

unfolded, and second, how the transition was managed (what governance processes were 

involved). Development of RETs during this phase is explained through the interplay between 
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numerous factors including pressures from changing legislation, indigenous sustainability 

concerns, technology advances, and governmental and utility pressures for renewable electricity 

alternatives, expressed through RET targets and supporting policies.  

Finally, chapter seven used the TIS approach and analyzed the underlying factors that drove RET 

policy selection and identified micro-level mechanisms responsible for the deployment of RETs in 

NWT and Ontario between 2001 and 2016. Findings suggest that the deployment was blocked by 

systemic and transformational problems in both territories, in the form of regulatory and 

institutional problems, lack of interaction between participants, and financial and capability 

challenges in communities. To address the issues and increase diffusion of RET projects, 

governments engaged in a dialogue with participants and the design and adjustment of targets, 

policies, and programs. Policies shifted from capital support, to policies supporting capabilities’ 

improvements and network formation through RET related studies and technical and educational 

assistance, and, finally, to regulatory and financial arrangements that were introduced to support 

indigenous demand for community owned electricity generation. 

 

8.3 Implications 

Both the MLP and TIS analyses indicate that indigenous communities’ transition process is not 

made through a random interplay of factors but is the result of actors’ choices selected, strategies 

pursued, and resources employed. The evidence captured as part of the research in the form of 

“temporal sequences and events and the conjunctures of event chains” (Grin et al., 2010, p. 93) 

suggests that the complex causal mechanisms predicted by the frameworks (described in Chapters 

six and seven) were present. Furthermore, there is evidence that the proposed “morphogenetic 

cycles” or “motors of innovation” (Grin et al., 2010, p.99; Suurs & Hekkert, 2009) positive 

feedback mechanisms performed as expected; the negotiation of policies (in the form of regulatory 

and fiscal arrangements that support indigenous aspirations of self-sufficiency), experimentation 

and learning, and the creation of networks led to an increase in the number and capacity of RET 

projects. In this sense the frameworks pass a difficult “hoop test” (high complexity of the causal 

mechanisms involved), which increases the confidence in the validity, and hence the importance, 

of the hypothesized mechanisms (Mahoney 2012; Kay & Baker, 2015). The lack of the 

mechanisms (despite the presence of RET targets and policies) and the limited number of RET 
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projects in remote indigenous communities in Nunavut, Quebec, and Newfoundland and Labrador 

strengthens the “hoop test” further.  

The findings point to the importance of visions and expectations in the transition process in the 

context of indigenous communities. Visions and expectations in the transitions management 

literature function as “a framework for formulating short-term objectives and evaluating existing 

policy” (Rotmans, Kemp, & VanAsselt, 2001, p. 24). Indigenous aspirations of achieving self-

reliance through economic independence based on their lands, resources, and the creation of 

entrepreneurial ventures of minimal environmental impact with indigenous and/or non-indigenous 

partners functioned as an overarching vision and “shaped” the transformation of the communities’ 

electrical systems. The collectively created vision (Farla et al., 2012) of community owned RET 

projects structured the transition of community electrical systems by contributing to the definition 

of the problem that RETs is expected to address, therefore reducing the problem’s wickedness, and 

motivated all participating actors to seek an appropriate solution. It additionally provided the 

“possibility space” and indicated alternatives acceptable to indigenous communities, allowed for 

targets and programs to be developed and modified, specified participation of relevant actors in 

networks, and directed actors’ activities for the allocation of financial and regulatory resources 

(Smith et al., 2005).   

Furthermore, combining the MLP with the TIS framework for the analysis of the diffusion of RET 

projects in remote indigenous communities allowed for the identification of actors’ choices, 

strategies, and resources. While the MLP-based framework revealed that indigenous governments 

and utilities increased their involvement and cooperation in the electricity generation process as a 

result of changing legislation, environmental concerns and the adoption of participatory 

approaches throughout the 2001-2016 period, the TIS analysis points to how participants and 

organizations came together. First, in terms of choices, indigenous governments articulated their 

desire to participate in the local electricity generation process to address socioeconomic and 

environmental challenges and collaborated with federal, provincial/territorial governments and 

utilities.   

 Research institutes (such as Aurora Research Institute in NWT), technical experts, and supporting 

NGOs (Arctic Energy Alliance and Pembina) also gradually upgraded their role to achieve 

common goals as the network of actors was enlarged and more projects were deployed. During the 
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later stages, private proponents (indigenous and non-indigenous) (such as Canadian Solar and 

Bullfrog Power) entered the network offering research, technical advice and installation services. 

An important implication is that early isolated project developments (2001-2010 period) were 

followed by a significant increase in the number of projects as a result of actor network formation 

and collective, rather than isolated, action. 

Second, the actors participating in the transition process used different strategies (in the form of 

targets and activities) and resources (in the form of human resources, finance, and networks) to 

achieve their goals. Governmental strategies took the form of targets, policies and programs to 

support the deployment of RETs, and were directed mainly to utilities (during the 1980-2000 

period) and communities (during the 2001-2016 period), as well R&D programs towards industry 

partners. Governmental strategies directed at communities focused mainly on addressing systemic 

and transformational problems (discussed in Chapter seven). Furthermore, both governmental and 

community strategies focused on changing institutional structures, in the form of standards, 

regulations, and fiscal support (e.g. net metering and power purchase agreements) to allow for 

community participation in the electricity generation process. In addition, community strategies 

focused on negotiations with governments for the co-development of policies supporting 

indigenous aspirations and targeted knowledge and expertise acquisition and sharing by engaging 

with utilities, agencies, NGOs, research institutions, and experts. Finally, all participants pursued 

their strategies collaboratively as they all joined research program networking activities (such as 

conferences, meetings, charrettes) and project development initiatives. 

Third, findings also indicate the importance of resources in the formulation and execution of actors’ 

strategies. Resources took the form of organizational resources (knowledge and financial means) 

and institutional structures (technical knowledge, beliefs and worldviews, regulations and formal 

policies). Findings indicate that all main participants (governments, utilities, local governments, 

network actors) possessed a mix of resources, which were employed in the formulation and 

implementation of their strategies. Although governmental organizational and institutional 

resources benefitted utilities prior to 2000, the subsequent period is associated with increasing 

levels of resource mobilization towards indigenous communities to shift power relationships and 

unblock indigenous participation in the electricity generation process. Indigenous people used 

initially their status, knowledge and worldviews, and after 2010, the resources provided by 
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governments, to promote their ideas and change the perspective of other participants on the role 

that RETs are expected to play within communities. Indigenous perspectives on RET deployment 

were enriched through knowledge acquired by early experimenting and newly formulated networks 

and led to the formulation of indigenous expectations that had “a structuring role in the innovation 

process” (Farla, Markard, Raven, & Coenen, 2012, p. 996), which, in turn, guided further 

indigenous knowledge development and negotiating strategies.  

Furthermore, findings also suggest that geographical factors, in the form of institutional 

complementarities and institutional thickness (Coenen, Benneworth, & Truffer, 2012), also 

contributed to the functional performance of the innovation, and the resulting difference in the 

number of RET projects deployed in the two provinces. NWT’s demographic structure and isolated 

electrical system led to an early governmental involvement in the promotion of renewable energy, 

the adoption of a reflexive governance approach, the creation of multiple institutions, and the 

involvement of multiple organizations (state governments, utilities, communities, educational and 

research institutions, consultants, and non-governmental organizations) dedicated to the uptake of 

RET projects and the reduction of diesel-powered electricity. Ontario’s network was developed 

later, included state actors and corporations, local utilities, research facilities, and non-

governmental organizations, as well as indigenous political organizations, and Tribal Councils’ 

technical organizations, and focused on both the connection of communities to the provincial grid 

and off-grid RET deployment. Such RET supporting networks were not developed in Nunavut and 

Newfoundland and Labrador, while actors from NWT and Ontario’s networks were involved, to 

differing extents, in projects in British Columbia, Yukon, and Quebec. Furthermore, the prospect 

of connecting remote communities to provincial electrical grids was responsible for limited 

interactions in these provinces and territories. 

 

8.4 Directions for future research 

The analysis and findings presented in this study are constrained by the choice to examine the 

transition of the electrical systems of 133 Canadian remote indigenous communities. The lack of 

readily available secondary data, the geographically extended nature of the study, and the multitude 

of theoretical and conceptual challenges involved in the study of energy transitions within 
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indigenous communities necessitated an exploratory study that would allow potentially limited 

generalization of findings (Reiter, 2017). The findings function as the foundation to further focused 

research questions in two main directions: (a) research on the factors that influence the decision-

making process and, given the importance of learning and experimenting, research on learning 

processes within the communities, and (b) research on the impacts of implemented RET projects 

on community sustainability and assessment of future technologies on the potential to support 

community transformation according to indigenous aspirations. 

The first line of inquiry would involve case studies in remote indigenous communities in different 

provinces and territories to identify context related factors and interactions (Bergek, et al., 2015) 

and actors’ strategies that influence the decision-making process for the adoption of RETs. The 

research would employ qualitative interviews with community members in both communities that 

have implemented RET projects and communities that have not yet developed any such projects, 

as well as interviews with regime and other actors, to understand sociotechnical configurations and 

social practices, and the replicability of specific implementation models (see Ulsrud et al., 2015). 

Research questions would focus on landscape, political, and regime related structural and 

institutional factors, the interaction of niche-regimes with current regimes and their strategies, the 

choice over scale of RET projects, and how context and community group characteristics influence 

the scaling up of projects. Such case studies would also provide useful information on the role and 

strategies of community leadership and trusted local intermediaries, as well as geographical factors 

(such as comparative institutional advantage and institutional thickness, see Coenen, Benneworth, 

& Truffer, 2012), and their contributions to the definition of the “guidance of the search”, 

“knowledge development” and “knowledge diffusion” functions of the innovation system. The 

identified (critical) factors and interactions (of successful projects) could provide insights on the 

replicability of specific implementation models and the reconstruction of transition pathways to 

generate best practices (see Forrest & Wiek, 2014; 2015). 

Within the same line of inquiry, a further important research theme, given the “system building” 

nature of the functions “guidance of the search” and “knowledge development” for community 

entrepreneurial activities, revolves around local learning processes (Hegger, VanVliet, & 

VanVliet, 2007; Neij, Heiskanen, & Strupeit, 2017) in terms of who, how, and what is learned 

related to RET deployment.  
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The second line of inquiry, using case studies and similar methodologies, would concentrate on 

the impacts of implemented RET projects within remote indigenous communities. In a first step, 

investigating the management of local microgrids would offer information on preferred governance 

structures and what constitutes a “successful” off-grid RET project. For example, an examination 

of the management models of the hydroelectricity projects of Kitasoo FN and Tlingit FN in British 

Columbia could provide insights on the different interpretations of successful community owned 

electricity generation. Furthermore, besides identifying “if” RET projects were successful, research 

would provide insights on outcomes (changes in the community wellbeing), and “if” and “how 

much” such projects contributed to indigenous aspirations of self-governance and self-reliance. 

Within the same line of inquiry further research questions that emerge are, first, which energy 

technologies and systems could improve community wellbeing and reduce community reliance on 

diesel (e.g. combined heat and power applications), and, second, what are best practices for 

communities that want to take control of their electrical systems and transition to more sustainable 

options. Future-oriented technology analysis (FTA) employing quantitative and qualitative and 

participatory methodologies (see for example, Stephen, et al., 2016; Moore, Durant, & Mabee, 

2013; Trutnevyte, Stauffacher, & Scholz, 2012)  could provide a better understanding of the 

complex energy (electricity, heat, transportation), food, and water systems nexus of communities 

and assist with policy development, since it can enable dialogue between participants with different 

experiences and perspectives, create visions on future community energy systems, and generate 

research, innovation, and policy design agendas to support the transformation of communities 

(Cagnin, Havas, & Saritas, 2013). 

 

8.5 Policy recommendations 

One of the objectives of the study was to develop policy recommendations for the transition of 

communities’ electrical systems to more sustainable ones. Policy support is justified since 

transformation of communities’ non-sustainable systems is unlikely to happen as a result of market 

forces alone, or the constraints of established governance regimes. Furthermore, as Schot and Geels 

(2008, p. 539) state, “one important reason for governments to subsidise and nurture not yet 

profitable innovations is the expectation that they will become important for realising particular 

societal and collective goals in the future”. In this sense, the introduction of RETs into a remote 
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community electrical system was conceptualized as a niche level technological innovation that will 

allow niche-regimes (such as indigenous governments) to apply a different approach (in terms of 

structure, culture and practices) to the electricity generation process, and cooperate with, or 

compete with, or replace utilities that provide diesel-generated electricity, and eventually reduce 

diesel consumption, achieve community socioeconomic and environmental goals, and improve 

community wellbeing.   

Findings suggest that policies supporting indigenous aspirations are important for the uptake of 

RET projects. Indigenous governments learned by searching, training, and experimenting through 

projects installed in communities, and through engaging with numerous actors. As a result, they 

improved their knowledge on the potential benefits from RET applications and modified and 

articulated their perspectives, based on accumulated learning, towards the design of policies and 

programs that were increasingly supportive of indigenous goals of self-sufficiency and self-

reliance. The adoption and implementation of such policies (in the form of IPP regulations, net 

metering and PPAs) in NWT and Ontario led to an increase in RETs projects during the examined 

period. 

Accordingly, three policy recommendations result from the research. First, provincial/territorial 

governments should establish specific targets, policies, and programs for the reduction of diesel 

consumption and the introduction of RETs, as well as a comprehensive framework that considers 

all energy-related activities in remote indigenous communities. These measures will act as a 

pressure to current niche-regimes and established regimes for the transformation of diesel systems 

to more sustainable ones. Such policies range from targets that establish a percentage of energy 

generation from renewable sources, such as  NWT’s solar strategy (GNWT, 2012b), or Alaska’s 

commitment to the generation of 50% of its electricity from renewable and alternative resources 

by 2025 (Ardani, Hillman, & Busche, 2013), to capital cost reductions, loans, technical capacity 

building, and generation incentives, such as net metering and local FIT tariffs. Innovative 

generation policies practiced in other countries include behind the meter, in front of the meter, or 

both, policies, combined with variable compensations for generation (therefore favouring or 

disfavouring battery storage) and system sizes limits (Couture, Jacobs, Rickerson, & Healey, 

2015).  
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Second, given the complex nature of the provincial and territorial systems and the multiple interests 

involved in the current and future electricity system generation, policies should develop in a 

collaborative way and be negotiated with the indigenous people to the benefit of all participants. 

Negotiated agreements (such as IBAs in mining projects) are extensively used by indigenous 

people to communicate their perspectives and improve community socioeconomic conditions 

(Fidler, 2010; Sosa & Keenan, 2001; Dylan, et al., 2013). Policies should be able to accommodate 

indigenous aspirations for participation in both electricity infrastructure and on-grid renewable 

electricity generation, as well as off-grid RET projects, since both electricity generation options 

have the potential for providing benefits to the communities. Furthermore, given the differences in 

community financial and technical capacity, location and access, electricity cost, and available 

renewable resources, policies should be negotiated and tailored to address each community’s (or 

group of communities) systemic and transformational problems. 

Third, findings suggest that indigenous people learn, adapt, and modify their perspectives through 

participation in networks. Therefore, energy-related policy intervention should be effectively 

coordinated between different departments to reduce bureaucratic hindrances, avoid overlaps, and 

build a coherent policy framework directed towards communities’ energy issues, which, in 

combination with regional loan schemes and state support for bank financing models, would attract 

multiple participants (Timilsina & Shah, 2016). Policies involving the participation of multiple 

actors in, for example, technical assessments of community renewable resources potential, new 

technology testing, on site feasibility studies, regulatory arrangements for IPP producers and fiscal 

support through net metering and PPAs, improve interactions and learning and could lead to higher 

community participation.  

 

8.6 Contributions 

The dissertation makes three contributions: First, it improves understanding of the nature of the 

problem associated with the introduction of RETs into Canadian remote indigenous communities 

by providing a description of the origins, dynamics, extent, and pattern of transition and the 

associated technical, contextual, and social complexity. Problem understanding is critical for the 

definitional clarity of the issues that the introduction of RETs is expected to address, given the 

renewed interest of the federal government in helping indigenous communities to embrace 
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renewable energy. Furthermore, by examining the transformation of remote (off-grid) indigenous 

communities the study provides insights on the role of indigenous people in the Canadian energy 

transition.  

Second, it contributes to the sustainability studies field by providing research from a context other 

than a developed or developing country. Both the MLP and TIS concepts are based on process 

theory and gain their theoretical strength from “the variety of cases, contexts, events, and patterns 

the theory can adapt to” (Grin, Rotmans, & Schot, 2010, p. 95). As Loorbach (2007, p.32) states 

“the basic hypothesis, which is to be tested and elaborated in transition research, is that the multi-

level and multiphase concepts form a sound and adequate heuristic framework to describe and 

explain the complex dynamics of societal transformations”. Both frameworks were tested in the 

context of remote Canadian indigenous communities and there is evidence that the proposed 

complex causal mechanisms were present and performed as predicted. 

Third, the study combines both the MLP and TIS and captures macro-, meso-, and micro-factors 

and mechanisms, that have the potential to induce the diffusion of technological innovations such 

as RETs. By combining these two frameworks, the individual analytical weaknesses of each 

framework are covered by the other, thereby benefitting the analysis of the complex multi-level 

and multi-stakeholder context of remote community electrical systems (Markard & Truffer, 2008). 

Furthermore, by comparing the NWT and Ontario TISs, the study offers evidence that regional 

institutional structures and networks (or the lack of them) played an important role in the diffusion 

of RET projects, therefore supporting Markard et al. (2015) who argue that the comparison of two 

regional TISs is able to offer empirical evidence of geographical factors, such as structures and 

institutions, that may influence the transition process.  

  

8.7 Overall conclusion 

This study used the MLP and TIS analytical tools to explain the deployment of RETs in remote 

indigenous community electrical systems between 1980 and 2016 with the goal of identifying 

pathways to increase the uptake of renewable electricity generation. The study’s findings indicate 

that a transition management approach was implemented to increase RET deployment. Evidence 

shows that the complex mechanisms proposed by the MLP and TIS frameworks were present 
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between 1980 and 2001 and that they performed as predicted. After 2000, indigenous governments 

took advantage of federal and provincial and territorial governments’ interest in the use of 

renewable energy to reduce carbon emissions and electricity generation costs and used the 

supporting policies to engage in RET entrepreneurial ventures. Participating in RET projects and 

engaging with numerous actors improved knowledge on the specific applications and their 

potential to contribute to indigenous goals. The number of indigenous-owned RET projects 

increased when indigenous people negotiated regulatory and fiscal arrangements necessary for 

meaningful participation (such as IPP regulations and net metering and PPAs market formation 

policies that contribute to indigenous self-governance and self-sufficiency aspirations). Although 

there is no evidence that these complex mechanisms are the only factors that have influenced the 

diffusion of RET projects since 2010, their presence, and the fact that they functioned as expected, 

combined with the lack of RET projects in provinces and territories where these mechanisms were 

not present, infers that they are indeed relevant and important for the deployment of RETs in remote 

indigenous communities. 

Accordingly, a transition management approach involving the co-development of policies 

supportive of indigenous aspirations, experimenting and learning, and evaluation and adjustment 

of policies based on the acquired knowledge, may lead to an increased number of RET projects in 

remote indigenous communities. 

 

 

 

 

 

 

 



 

183 

9 References 

AANDC. (2008). Evaluation of INAC’s Contaminated Sites Management Policy and 

Programming. Retrieved Oct. 31, 2017 from https://www.aadnc-

aandc.gc.ca/eng/1100100011881/1100100011892. 

AANDC. (2009). Federal Framework for Aboriginal Economic Development. Ottawa: Minister 

of Indian Affairs and Northern Development and Federal Interlocutor for Métis and Non-

Status Indians. 

AANDC. (2010). Land Claims. Retrieved Oct. 31, 2017 from Aboriginal Affairs and Northern 

Development Canada: http://www.aadnc-

aandc.gc.ca/eng/1100100030285/1100100030289. 

AANDC. (2012a). Terminology. Retrieved Jan. 24, 2014 from Aboriginal Affairs and Northern 

Development Canada (AANDC): http://www.aadnc-

aandc.gc.ca/eng/1100100014642/1100100014643. 

AANDC. (2012b). Off-grid communities. Retrieved Jan. 14, 2017 from Aboriginal Affaires and 

Northern Development Canada: http://www.aadnc-

aandc.gc.ca/eng/1314295992771/1314296121126. 

AANDC. (2014a). ecoENERGY for Aboriginal and Northern Communities Program (EANCP) 

2011–2016. Retrieved Jul. 21, 2014 from Aboriginal Affairs and Northern Development 

Canada: http://www.aadnc-aandc.gc.ca/eng/1100100034258/1100100034259#ch3c. 

AANDC. (2014b). 2011-2016 ecoENERGY for Aboriginal and Northern Communities Program 

Results . Retrieved Jul. 21, 2014 from Aboriginal Affairs and Northern Development 

Canada: http://www.aadnc-aandc.gc.ca/eng/1334855478224/1334856305920. 

AANDC. (2014c). Federal framework for aboriginal economic development-Progress report 

June 2014. Aboriginal Affairs and Northern Development Canada. 

AANDC. (2014d). ecoENERGY for Aboriginal and Northern Communities Program. AANDC-

Presentation at Northern Ontario First Nations Environment Conference 2014. Retrieved 

Jan. 15, 2015 from: http://www.nofnec.ca/PDF/Presentations/ecoENERGY-Program.pdf. 

AANDC. (2014f). Federal framework for aboriginal economic development-Progress report 

June 2014. Aboriginal Affairs and Northern Development Canada. 

AANDC. (2015). General briefing note on Canada's self-government and comprehensive land 

claims policies and the status of negotiations. Retrieved 25 April 2017 from: 

https://www.aadnc-aandc.gc.ca/eng/1373385502190/1373385561540. 

AANDC. (2016). Climate Change Adaptation Program. Retrieved from Indigenous and 

Northern Affairs Canada: http://www.aadnc-

aandc.gc.ca/eng/1100100034585/1100100034586. 

AANDC. (2017). Self-government. Retrieved Oct. 30, 2017, from Indigenous and Northern 

Affairs Canada: https://www.aadnc-aandc.gc.ca/eng/1100100032275/1100100032276. 

AANDC and NRCan. (2011). Status of Remote/Off-Grid Communities in Canada. Ottawa: 

Aboriginal Affairs and Northern Development Canada (AANDC) and Natural Resources 

Canada (NRCan). 

https://www.aadnc-aandc.gc.ca/eng/1100100011881/1100100011892
https://www.aadnc-aandc.gc.ca/eng/1100100011881/1100100011892
http://www.aadnc-aandc.gc.ca/eng/1100100030285/1100100030289
http://www.aadnc-aandc.gc.ca/eng/1100100030285/1100100030289
http://www.aadnc-aandc.gc.ca/eng/1100100014642/1100100014643
http://www.aadnc-aandc.gc.ca/eng/1100100014642/1100100014643
http://www.aadnc-aandc.gc.ca/eng/1314295992771/1314296121126
http://www.aadnc-aandc.gc.ca/eng/1314295992771/1314296121126
http://www.aadnc-aandc.gc.ca/eng/1100100034258/1100100034259#ch3c
http://www.aadnc-aandc.gc.ca/eng/1334855478224/1334856305920
http://www.nofnec.ca/PDF/Presentations/ecoENERGY-Program.pdf
https://www.aadnc-aandc.gc.ca/eng/1373385502190/1373385561540
http://www.aadnc-aandc.gc.ca/eng/1100100034585/1100100034586
http://www.aadnc-aandc.gc.ca/eng/1100100034585/1100100034586
https://www.aadnc-aandc.gc.ca/eng/1100100032275/1100100032276


 

184 

AAWG. (2001). Strenthening Aboriginal Participation in the Economy. Retrieved 05 Feb. 2015 

from Working Group on Aboriginal Participation in the Economy: 

http://www.turtleisland.org/business/economy.pdf. 

AAWG. (2010). Report to provincial and territorial Ministers of Aboriginal Affairs and National 

Aboriginal Organization Leaders. Retrieved Oct. 31, 2017, from 

http://www2.gov.bc.ca/assets/gov/environment/natural-resource-stewardship/consulting-

with-first-nations/first-nations/report_aboriginal_affairs_working_group.pdf. 

Adamek, A., & Tudor, S. (2009). A brief history of wind power development in Canada 1960-

1990s.  

AEA. (2016, 03 17). Communities. Retrieved from Arctic Energy Alliance: 

http://aea.nt.ca/communities. 

AEA. (n.d.). Community energy planning. Yellowknife: Arctic Energy Alliance. 

AECOM. (2012). Economic Impact of Waterpower Projects on Crown Lands in Ontario. Ontario 

Ministry of Natural Resources. 

AEPP. (2016). About the Aboriginal Energy Partnerships Program. Retrieved from Aboriginal 

Energy Partnerships Program: http://www.aboriginalenergy.ca/about-aboriginal-energy-

partnerships-program. 

Afgan, N., Gobaisi, D., Carvalho, M., & Cumo, M. (1998). Sustainable energy development. 

Renewable and Sustainable Energy Reviews, Vol. 2, 235-286. 

AFN. (2011a). Presentation to the Senate Committee on Energy, the Environment and Natural 

Resources. First Nations and Canada: Working Together for a Sustainable Energy 

Future. Retrieved Oct. 31, 2017, from: 

http://www.afn.ca/uploads/files/parliamentary/presentationsenatecommittee.pdf. 

AFN. (2011b). Powering prosperity. Working to Build on the Potential of Energy Projects & 

Partnerships. International Indigenous Summit on Energy and Mining-Assembly of First 

Nations (AFN): Retrieved from AFN: http://www.afn.ca/uploads/files/usb2013/iisem-

dp.pdf. 

Agbemabiese, L., Nkomo, J., & Sokona, Y. (2012). Enabling innovations in energy access: An 

African perspective. Energy Policy, Vol. 38, p.38-47. 

Ah-You, K., & Leng, K. (1999). Renewable energy in Canada's remote communities. Natural 

Resources Canada. 

Alanne, K., & Saari, A. (2006). Distributed energy generation and sustainable development. 

Renewable and Sustainable Energy Reviews, Vol. 10, 539-558. 

Alcantara, C. (2003). Individual property rights on Canadian Indian Reserves: The historical 

emergenece and jurisprudence of Certificates of Possession. The Canadian Journal of 

Native Studies, Vol. 2, p.391-424. 

Alcantara, C. (2013). Negotiating the Deal-Comprehensive Land Claims Agreements in Canada. 

Toronto: University of Toronto Press. 

Alfred, T. (2005). Wasase: Indigenous Pathways of Action and Freedom. Peterborough: 

Broadview. 

Alfred, T. (2009). Colonialism and State Dependency. Journal of Aboriginal Health, Vol. 5(2), 

42-60. 

http://www.turtleisland.org/business/economy.pdf
http://www2.gov.bc.ca/assets/gov/environment/natural-resource-stewardship/consulting-with-first-nations/first-nations/report_aboriginal_affairs_working_group.pdf
http://www2.gov.bc.ca/assets/gov/environment/natural-resource-stewardship/consulting-with-first-nations/first-nations/report_aboriginal_affairs_working_group.pdf
http://aea.nt.ca/communities
http://www.aboriginalenergy.ca/about-aboriginal-energy-partnerships-program
http://www.aboriginalenergy.ca/about-aboriginal-energy-partnerships-program
http://www.afn.ca/uploads/files/parliamentary/presentationsenatecommittee.pdf
http://www.afn.ca/uploads/files/usb2013/iisem-dp.pdf
http://www.afn.ca/uploads/files/usb2013/iisem-dp.pdf


 

185 

Alkemade, F., Hekkert, M., & Negro, S. (2011). Transition policy and innovation policy: Friends 

or foes? Environmental Innovation and Societal Transitions, Vol. 1, 125-129. 

Anderson, R., & Bone, R. (1995). First Nation economic development: a contingency approach. 

The Canadian Geographer, Vol. 39 (2), 120-130. 

Anderson, R., Dana, L., & Dana , T. (2006). Indigenous Land Rights, Entrepreneurship, and 

Economic Development in Canada: ‘‘Opting-in’’ to the Global Economy. Journal of 

World Business, Vol. 41, 45-55. 

Angell, A., & Parkins, J. (2011). Resource development and aboriginal culture in the Canadian 

north. Polar Record , Vol. 47, 67–79 . 

APC. (2017, April 25). 20/20 Catalysts program. Retrieved from Aboriginal Power Community: 

http://indigenouscleanenergy.com/2020-catalysts-program/about-the-program/. 

APSC. (2007). Tackling wicked problems: A public policy perspective. Canberra: Australian 

Public Service Commission, Australian Government. 

Ardani, K., Hillman, D., & Busche, S. (2013). Financing Opportunities for Renewable Energy 

Development in Alaska. U.S. Department of Energy/Office of Indian Energy. Oak Ridge: 

Retrieved Nov. 12, 2016 from: 

https://www.energy.gov/indianenergy/downloads/financing-opportunities-renewable-

energy-development-alaska. 

ARI. (2003). Pre-Feasibility Analysis of Wind Energy for Inuvialuit Region in Northwest 

Territories. Inuvik, NWT: Aurora Research Institute. 

ARI. (2016, Jan. 2016). Wind and Solar Energy Potential. Retrieved from Aurora Research 

Institute: http://nwtresearch.com/projects/energy/wind-and-solar-energy-potential. 

Arriaga, M., Cañizares, C., & Kazerani, M. (2013). Renewable Energy Alternatives for Remote 

Communities in Northern Ontario, Canada. IEEE Transactions on Sustainable Energy, 

Vol.4, 661-670. 

Arriaga, M., Canizares, C., & Kazerani, M. (2014). Northern Lights. IEEE Power & Energy 

Magazine, Vol.12(4), 50-59. 

Asafu-Adjaye, J. (2000). The relationship between energy consumption, energy prices and 

economic growth: time series evidence from Asian developing countries. Energy 

Economics, Vol. 22, 615-625. 

Atleo, C. (2008). From Indigenous Nationhood to Neoliberal Aboriginal Economic 

Development: Charting the Evolution of Indigenous-Settler Relations in Canada. 

Retrieved from Canadian Social Economy Hub: 

http://socialeconomyhub.ca/content/indigenous-nationhood-neoliberal-aboriginal-

economic-development-charting-evolution-indigeno 

Atleo, C. (2014). Red skin, white masks: A review. Decolonization: Indigeneity, Education & 

Society, Vol. 3(2), 187-194. 

Atleo, S. (2013). Resources, risks and responsibilities; A First Nations perspective on Canada'a 

resource agenda. Retrieved from AFN: http://www.afn.ca/uploads/files/13-09-

25_nc_speaking_notes_vbot_fe.pdf. 

Avelino, F., & Rotmans, J. (2009). Power in Transition: An Interdisciplinary Framework to 

Study Power in Relation to Structural Change. European Journal of Social Theory, Vol. 

12(4), 543-569. 

http://indigenouscleanenergy.com/2020-catalysts-program/about-the-program/
https://www.energy.gov/indianenergy/downloads/financing-opportunities-renewable-energy-development-alaska
https://www.energy.gov/indianenergy/downloads/financing-opportunities-renewable-energy-development-alaska
http://nwtresearch.com/projects/energy/wind-and-solar-energy-potential
http://socialeconomyhub.ca/content/indigenous-nationhood-neoliberal-aboriginal-economic-development-charting-evolution-indigeno
http://socialeconomyhub.ca/content/indigenous-nationhood-neoliberal-aboriginal-economic-development-charting-evolution-indigeno
http://www.afn.ca/uploads/files/13-09-25_nc_speaking_notes_vbot_fe.pdf
http://www.afn.ca/uploads/files/13-09-25_nc_speaking_notes_vbot_fe.pdf


 

186 

AWTS. (1999). Atlantic Wind Test Site-Information pamphlet. Atlantic Wind Test Site. 

Bahramara, S., Moghaddam, M., & Haghifam, M. (2016). Optimal planning of hybrid renewable 

energy systems using HOMER: A review. Renewable and Sustainable Energy Reviews, 

Vol. 62, 609-620. 

Bailie, A., Doukas, A., Weis, T., Beckstead, C., & Haines, G. (2009). Renewable energy policies 

for remote and rural communities. Energy policy assesment. Drayton Valley, Alberta: 

The Pembina Institut. 

Bailis, R., & Baka, J. (2011). Constructing Sustainable Biofuels: Governance of the Emerging 

Biofuel Economy. Annals of the Association of American Geographers, Vol. 101(4), 827-

838. 

Bains, R. (2013). Opportunities for First Nations Prosperity through Oil and Gas Development. 

Fraser Institute. 

Bains, R., & Ishkanian, K. (2016). Government Spending and Own-Source Revenue for Canada’s 

Aboriginals: A Comparative Analysis. Vancouver: Fraser Institute. 

Baka, J. (2017). Political-Industrial ecologies of energy. In B. Solomon, & K. Calvert, Handbook 

on the geographies of energy (pp. 477-489). Edgar Elgar Publishing: Cheltenham, UK. 

Baker , M. (1990). Rural Electrification in Newfoundland in the 1950s and the origins of the 

Newfoundland Power Commission. Newfoundland Studies, Vol. 6(2), 190-209. 

Baker, L., Newell, P., & Philips, J. (2014). The political economy of energy transitions: the case 

of South Africa. New Political Economy, Vol. 19(6), 791-818. 

Balint, T., Lamperti, F., Mandel, A., Napoletano, M., Roventini, A., & Sapio, A. (2017). 

Complexity and the Economics of Climate Change: A Survey and a Look Forward. 

Ecological Economics, Vol. 138, 252-265. 

Bansal, P., Vineyard, E., & Abdelaziz, O. (2011). Advances in household appliances- A review. 

Applied Thermal Engineering, Vol. 31(17-18), 3748-3760 . 

Baring-Gould, I., & Corbus, D. (2007). Status of Wind-Diesel Applications in Arctic Climates. 

Presented at The Arctic Energy Summit Technology Conference. Anchorage, Alaska: 

Conference Paper, NREL/CP-500-42401. 

Baring-Gould, I., & Dabo, M. (2009). Technology, Performance, and Market Report of Wind-

Diesel Applications for Remote and Island Communities. Retrieved Sep. 27, 2018, from 

https://www.nrel.gov/docs/fy08osti/42401.pdf. 

Barnes, D., & Floor, W. (1996). Rural energy in developing countries; a challenge for economic 

development. Annual Review of Energy and the Environment , Vol. 21, p.497-530. 

BC Hydro. (2010). Remote Community Electrification Program. Retrieved 16 March 2015 from: 

http://www.cleanenergybc.org/media/BC%20Hydro%20-%20Nick%20Hawley.pdf. 

BC Hydro. (2012b). Electric Load Forecast. Fiscal 2013 to Fiscal 2033. BC Hydro. 

BC Hydro. (2013a). Integrated Resource Plan. Meeting BC's Future Electricity Needs. BC 

Hydro. 

BC Hydro. (2013b). Integrated Resource Plan. Chapter 3: Resource Options. BC Hydro. 

BC Hydro. (2013c). Integrated Resource Plan. Appendix 3A-1: 2013 Resource Options Report 

Update. BC Hydro. 

https://www.nrel.gov/docs/fy08osti/42401.pdf
http://www.cleanenergybc.org/media/BC%20Hydro%20-%20Nick%20Hawley.pdf


 

187 

BC Hydro. (2013d). Integrated Resource Plan. Chapter 4: Resource Planning Analysis 

Framework. BC Hydro. 

BC Hydro. (2013e). Integrated Resource Plan. Appendix 3A-4: 2013 Resource Options Report 

Update. Resource Options Database (RODAT). BC Hydro. 

BC Hydro. (2013f). Integrated Resource Plan. Chapter 8: Clean Energy Strategy. BC Hydro. 

BC Hydro. (2015a). Remote Community Electrification Program. Retrieved Sep. 25, 2018 from 

BC Hydro: https://www.bchydro.com/energy-in-

bc/operations/remote_community_electrification.html. 

BC Hydro. (2015b). 2015 Rate Design Application (RDA). Residential Rate Workshop - May 21, 

2015. BC Hydro. 

BC Hydro. (2016). BC-Hydro connects remote community of Iskut to power grid. Retrieved Oct. 

31, 2016 from BC Hydro: 

https://www.bchydro.com/news/press_centre/news_releases/2014/iskut-connected-to-

grid.html. 

BC-AFN. (2009). BC First Nations energy action plan. Retrieved Oct. 31, 2017, from 

http://fnemc.ca/action-plans/. 

BCAFN. (2011). Governance Toolkit: a guide to nation building-Part 1. West Vancouver, BC. 

Retrieved Dec. 06 from British Columbia Assembly of First Nation: bcafn.ca/wp-

content/uploads/2016/06/Governance-Toolkit.pdf. 

BC-AFN. (n.d.). Journey to economic independence. BC Minisrty of Economic Development- 

First Nation Leadership Council. 

Beach, D., & Pedersen, R. (2013). Process tracing methods. Foundations and guidelines. Ann 

Arbor,MI: University of Mitchigan Press. 

Bebbington, A. (2009). The New Extraction: Rewriting the political ecology of the Andes? 

NACLA Report on the Americas, Vol. 42(5), 12-20. 

Bebbington, A., Bornschlegl, T., & Johnson, A. (2013). Political Economies of Extractive 

Industry: From Documenting Complexity to Informing Current Debates. Development 

and Change, 1-16. 

Beblawi, H. (1987). The Rentier State in the Arab World. In H. Beblawi, & G. Luciani, The 

rentier state (pp. 49-62). London: Croom Helm. 

Becker, S., Kunze, C., & Vancea, M. (2017). Community energy and social entrepreneurship: 

Addressing purpose, organisation and embeddedness of renewable energy projects. 

Journal of Cleaner Production, Vol. 147, 25-36. 

Bell, J. (2015, June 18). Senate study: Nunavut’s power generation system “unsustainable”. 

Retrieved Dec. 30, 2015 from Nunatsiaq Online: 

http://www.nunatsiaqonline.ca/stories/article/65674senate_study_nunavuts_power_gener

ation_system_unsustainable/. 

Bennet, A. (2010). Process tracing and causal inference. In H. Brady, & D. Collier, Rethinking 

social inquiry : diverse tools, shared standards (pp. 207-220). Lanham: Rowman & 

Littlefield Publishers Inc. 

Bennet, A., & Elman, C. (2006). Qualitative research: recent developments in case study 

methods. Annual review of Political Science, Vol. 9, 455-476. 

https://www.bchydro.com/energy-in-bc/operations/remote_community_electrification.html
https://www.bchydro.com/energy-in-bc/operations/remote_community_electrification.html
https://www.bchydro.com/news/press_centre/news_releases/2014/iskut-connected-to-grid.html
https://www.bchydro.com/news/press_centre/news_releases/2014/iskut-connected-to-grid.html
http://fnemc.ca/action-plans/
http://www.nunatsiaqonline.ca/stories/article/65674senate_study_nunavuts_power_generation_system_unsustainable/
http://www.nunatsiaqonline.ca/stories/article/65674senate_study_nunavuts_power_generation_system_unsustainable/


 

188 

Benoit, L. (2012). Resource Development in Northern Canada.Report of the Standing Committee 

on Natural Resources. House of Commons. 

Bergek, A., Hekkert, M., Jacobsson, S., Markard, J., Sanden, B., & Truffer, B. (2015). 

Technological innovation systems in contexts: Conceptualizing contextual structures and 

interaction dynamics. Environmental Innovation and Societal Transitions, Vol. 16, pp.51-

64. 

Bergek, A., Jacobsson, S., Carlsson, B., Lindmark, S., & Rickne, A. (2008). Analyzing the 

functional dynamics of technological innovation systems: A scheme of analysis. 

Research Policy, Vol. 37, 407–429. 

Berkhout, F., Angel, D., & Wieczorek, A. (2009). Asian development pathways and sustainable 

socio-technical regimes. Technnological Forecastingand Social Change, Vol. 76, 218-

228. 

Berrada, A., Loudiyi, K., & Zorkani, I. (2016). Valuation of energy storage in energy and 

regulation markets. Energy, Vol. 115, 1109-1118. 

Bhatt, B., & Sachan, M. (2004). Firewood consumption along an altitudinal gradient in mountain 

villages of India. Biomass and Bioenergy, Vol. 27, p.69-75. 

Bhattacharyya, S. (2012). Review of alternative methodologies for analysing off-grid electricity 

supply. Renewable and Sustainable Energy Reviews, Vol. 16, 677-694. 

Bhattarai, P., & Thompson, S. (2016). Optimizing an Off-Grid Electrical System in Brochet, 

Manitoba, Canada. Renewable and Sustainable Energy Reviews, Vol. 53, 709–719. 

Bickerstaff, K. (2017). Geographies of energy justice: concepts, challenges and an emerging 

agenda. In B. Salomon, & K. Calvert, Handbook on the geographies of energy (pp. 438-

449). Cheltenham: Edward Elgar Publishing Ltd. 

Billon, P. (2001). The political ecology of war: natural resources and armed conflicts. Political 

Geography, Vol. 20, 561-584. 

Binz, C., Truffer, B., & Coenen, L. (2014). Why space matters in technological innovation 

systems- Mapping global knowledge dynamics of membrane bioreactor technology. 

Research Policy, Vol. 43(1), 138-155. 

Blum, N., Bening, C., & Schmidt, T. (2015). An analysis of remote electric mini-grids in Laos 

using the Technological Innovation Systems approach. Technological Forecasting and 

Social Change, Vol. 95, 218-233. 

Booth, A., & Halseth, G. (2011). Why the public thinks natural resources public participation 

processes fail: A case study of British Columbia communities. Land Use Policy 28 

(2011) 898– 906, Vol. 28, 898– 906. 

Borrows, J. (2001). Domesticating Doctrines: Aboriginal Peoples after the Royal Commission. 

McGill law Journal, Vol.46, 615-661. 

Bourke, B. (2014). Reflecting on the research process. The Qualitative Report, Vol. 19(33), 1-9. 

Bowers, J., Fredrickson, M., & Panagopoulos, C. (2013). Reasoning about Interference Between 

Units: A General Framework. Political Analysis, Vol. 21(1), 97-124. 

BP. (2016). Renewables in Remote Microgrids conference-Yellowknife. Retrieved from Bullfrog 

Power: http://gogreen.bullfrogpower.com/microgrids2015-home. 

http://gogreen.bullfrogpower.com/microgrids2015-home


 

189 

BP. (2017, Jan. 20). Kluane wind project. Retrieved from Bullfrog Power: 

https://www.bullfrogpower.com/green-energy/projects-and-sources/kluane-wind-project/. 

Brabec, C. (2004). Organic photovoltaics: Technology and market. Solar Energy Materials and 

Solar Cells, Vol. 83(2-3), 273-292. 

Bridge, G. (2004). Contested Terrain: Mining and the Environment. Annual Review of 

Environment and Resources, Vol. 29, 205-259. 

Bridge, G., Bouzarowski, S., Bradshaw, M., & Eyre, N. (2013). Geographies of energy 

transition: Space, place and the low-carbon economy. Energy Policy, Vol. 53, 331-340. 

Brookshire, D., & Kaza, N. (2013). Planning for seven generations: Energy planning of 

American Indian tribes. Energy Policy , Vol. 62, 1506–1514. 

Brown, D., & Tandon, R. (1983). Ideology and political economy in inquiry: action research and 

participatory research. The Journal of Applied Behavioural Science, Vol. 19, 277-294. 

Bryant, R. (1992). Political ecology. An emerging research agenda in Third-World studies. 

Political Geography, Vol. 11(1), 12-36. 

Bullen, C., & Rockart, J. (1981). A primer on critical success factors. Massachusetts Institute of 

Technology: Sloan School of Management. 

Bullock, W., Imai, K., & Shapiro, J. (2011). Statistical Analysis of Endorsement Experiments: 

Measuring Support for Militant Groups in Pakistan. Political Analysis, Vol. 19, 363-384. 

Burke, M., & Stephens, J. (2018). Political power and renewable energy futures: A critical 

review. Energy Research & Social Science, Vol. 35, 78-93. 

Byrne, R., Mbeva, K., & Ockwell, D. (2018). A political economy of niche-building: Neoliberal-

developmental encounters in photovoltaic electrification in Kenya. Energy Research & 

Social Science, Vol. 44, 6-16. 

Calvert, K. (2016). From ‘energy geography’ to ‘energy geographies’: Perspectives on a fertile 

academic borderland. Progress in Human Geography, Vol. 40(1), 105-125. 

Campbell, B., & Pape, A. (1999). Economic Development from Renewable Energy. Pembina 

Institute. 

Carpenter, W. (2013). Solar Energy in the Northwest Territories. Renewables in Remote 

Microgrids Conference. Toronto. Retrieved from WISE: 

https://wise.uwaterloo.ca/documents/events/public/renewable_in_remote_microgrids_con

ference/solarenergyinthenorthwestterritorieswadecarpentergovernmentofnwtpdf. 

Carroll, M., Stephenson, E., & Shaw, K. (2011). BC Political Economy and the Challenge of 

Shale Gas: Negotiating a Post-Staples Trajectory. Canadian Political Science Review, 

Vol. 5(2), 165-176. 

CBC. (2016). Yukon, N.W.T. and Nunavut differ in outlooks for renewable energy. Retrieved 

from CBC: http://www.cbc.ca/news/canada/north/yukon-n-w-t-and-nunavut-differ-in-

outlooks-for-renewable-energy-1.2804345. 

CBC. (2017a). Lutsel K'e Dene First Nation enters the power business. Retrieved from CBC 

News North: http://www.cbc.ca/news/canada/north/lutsel-ke-power-business-1.3602415. 

CBC. (2017b). An off-grid community goes solar, and gets closer to its roots. Retrieved from 

CBC News North: http://www.cbc.ca/news/canada/north/colville-lake-solar-power-

1.3604310. 

https://www.bullfrogpower.com/green-energy/projects-and-sources/kluane-wind-project/
https://wise.uwaterloo.ca/documents/events/public/renewable_in_remote_microgrids_conference/solarenergyinthenorthwestterritorieswadecarpentergovernmentofnwtpdf
https://wise.uwaterloo.ca/documents/events/public/renewable_in_remote_microgrids_conference/solarenergyinthenorthwestterritorieswadecarpentergovernmentofnwtpdf
http://www.cbc.ca/news/canada/north/yukon-n-w-t-and-nunavut-differ-in-outlooks-for-renewable-energy-1.2804345
http://www.cbc.ca/news/canada/north/yukon-n-w-t-and-nunavut-differ-in-outlooks-for-renewable-energy-1.2804345
http://www.cbc.ca/news/canada/north/lutsel-ke-power-business-1.3602415
http://www.cbc.ca/news/canada/north/colville-lake-solar-power-1.3604310
http://www.cbc.ca/news/canada/north/colville-lake-solar-power-1.3604310


 

190 

CBC. (2017c). Colville Lake, N.W.T., now powered by solar/diesel hybrid system. Retrieved from 

CBC News North: http://www.cbc.ca/news/canada/north/colville-lake-solar-diesel-

hybrid-power-1.3441205.  

CBC. (2016d). Northern utilities unite to seek alternatives to diesel power generation. Retrieved 

from CBC News North: http://www.cbc.ca/news/canada/north/arctic-renewable-energy-

collaboration-1.3769585. 

Chen, L., Heerick, N., & Van den Berg, M. (2006). Energy consumption in rural China: A 

household model for three villages in Jiangxi Province. Ecological Economics, Vol. 58, 

407-420. 

Cherniak, D., Dufresne, V., Keyte, L., Mallett, A., & Scott, S. (September 2015). Report on the 

State of Alternative Energy in the Arctic. Ottawa: School of Public Policy and 

Administration, Carleton University. 

Chiseri-Strater, E. (1996). Turning in upon ourselves: Positionality, subjectivity, and reflexivity 

in case study and ethnographic research. In P. Mortensen, & G. Kirsch, Ethics and 

responsibility in qualitative studies of literacy (pp. 115-133). Urbana, IL: NCTE. 

CMC. (2008, November 11). Capstone Reports Minto Mine Connected to Yukon Electrical Grid. 

Retrieved from Capstone Mining Corp: Retrieved May 26, 2016 from: 

http://capstonemining.com/news/news-details/2008/Capstone-Reports-Minto-Mine-

Connected-to-Yukon-Electrical-Grid/default.aspx. 

Coates, K. (1995). Summary Report: Social and Economic Impacts of Aboriginal Land Claims 

Settlements: A Case Study Analysis. Ministry of Aboriginal Affairs, Province of British 

Columbia. 

Coates, K. (2008). The Indian Act and the Future of Aboriginal Governance in Canada. 

Retrieved Dec. 14, 2014 from from National Centre for First Nations Governance: 

http://fngovernance.org/ncfng_research/coates.pdf. 

Coates, K., & Crowley, B. (2013). New beginnings: How Canada's natural resource wealth 

could reshape relations with Aboriginal People. Ottawa: MacDonald-Laurier Institute for 

Public Policy. 

Cobb, P., & Weis, T. (2007). Kasabonika Lake First Nation Community Energy Map (2006 

Energy Baseline Study). Drayton Valley: Pembina Institute. 

Coenen, L. (2015). Engaging with changing spatial realities in TIS research. Environmental 

Innovation and Societal Transitions, Vol. 16, 70-72. 

Coenen, L., Benneworth, P., & Truffer, B. (2012). Toward a spatial perspective on sustainability 

transitions. Research Policy, Vol. 41, 968-979. 

Cohen, B. (2001). The spider's web: creativity and survival in dynamic balance. Canadian 

Journal of Native Education, Vol. 25(2), 140-149. 

Collier, D. (2011). Understanding Process Tracing. PS: Political Science and Politics, Vol. 44(4), 

823-830. 

Collinson, S. (2003). Power, livelihoods and conflict: case studies in political economy analysis 

for humanitarian action. London: HPG Report 13, Humanitarian Policy Group,ODI. 

http://www.cbc.ca/news/canada/north/colville-lake-solar-diesel-hybrid-power-1.3441205
http://www.cbc.ca/news/canada/north/colville-lake-solar-diesel-hybrid-power-1.3441205
http://www.cbc.ca/news/canada/north/arctic-renewable-energy-collaboration-1.3769585
http://www.cbc.ca/news/canada/north/arctic-renewable-energy-collaboration-1.3769585
http://capstonemining.com/news/news-details/2008/Capstone-Reports-Minto-Mine-Connected-to-Yukon-Electrical-Grid/default.aspx
http://capstonemining.com/news/news-details/2008/Capstone-Reports-Minto-Mine-Connected-to-Yukon-Electrical-Grid/default.aspx
http://fngovernance.org/ncfng_research/coates.pdf


 

191 

Colquitt, J., & Zapata-Phelan, C. (2007). Trends in theory building and theory testing: a five 

decade study of the Academy of Management Journal. Academy of Management Journal, 

Vol. 50(6), 1281-1309. 

Conklin, J. (2005). Dialogue mapping: building shared understanding of wicked problems. 

Chichester, West Sussex: John Wiley & Sons. 

Constanza, R. (1989). What is ecological economics. Ecological economics, Vol. 1, 1-7. 

Cooke, B. (1980). Energy sources for rural and remote communities (Saskatchewan, Canada). 

Energy and community planning on the Prairies, 157-160. 

Cornell, S., & Kalt, J. (2003). Sovereignty and Nation-Building: The Development Challenge in 

Indian Country Today. The American Indian Culture and Research Journal, Vol. 22(3). 

Corntassel, J. (2008). Toward Sustainable Self-Determination: Rethinking the Contemporary 

Indigenous-Rights Discourse. Alternatives, Vol. 33, 105-132. 

Corntassel, J. (2012). Re-envisioning resurgence: Indigenous pathways to decolonization and 

sustainable self-determination. Decolonization, Vol. 1(1), 86-101. 

Coulthard, G. (2007). Subjects of Empire: Indigenous Peoples and the ‘Politics of Recognition’ 

in Canada. Contemporary Political Theory, Vol. 6, 437-460. 

Craddock, G. (1997). First Nation political economy in British Columbia-Master's thesis. 

Burnaby, BC : Simon Fraser University. 

Creswell, J. (2014). Research Design. Qualitative, Quantitative, and Mixed Methods 

Approaches. Thousand Oaks, CA: Sage Publications Inc. 

Dadgostar, B., Garofalo, S., Gradojevic, N., Lento, C., & Peterson , K. (2012). Mining in 

Northwestern Ontario: Opportunities and Challenges. Thunder Bay: Ambassador's 

Northwest. 

D'Agostino, A., Sovacool, B., Trott, K., Ramos, R., Saleem, S., & Ong, Y. (2011). What’s the 

state of energy studies research?: A content analysis of three leading journals from 1999 

to 2008. Energy, Vol. 36, 508-519. 

Danken, T., Dribbisch, K., & Lange, A. (2016). Studying wicked problems forty years on: 

Towards a synthesis of a fragmented debate. der moderne staat – Zeitschrift für Public 

Policy, Recht und Management, Vol. 9(1), 15-33. 

Das, I., & Canizares, C. (2016). Renewable energy deployment in Canadian Arctic. Waterloo: 

University of Waterloo and WISE. 

Davidson, D., & Frickel, S. (2004). Understanding environmental governance. Organization & 

Environment, Vol. 17 (4), 471-492. 

D'Ecclesia, R. (2016). Introduction to the special issue on recent developments in energy 

commodities markets. Energy Economics, Vol. 53, 1-4. 

deHaan, H., & Rotmans, J. (2011). Patterns in transitions: Understanding complex chains of 

change. Technological Forecasting & Social Change, Vol. 78, 90-102. 

DelRıo, P., & Burguillo, M. (2009). An empirical analysis of the impact of renewable energy 

deployment on local sustainability. Renewable and Sustainable Energy Reviews, Vol. 13, 

1314-1325. 



 

192 

Demourger, S., & Fournier, M. (2007). Rural poverty and fuelwood consumption: Evidence from 

Labagoumen Township (China). Available at SSRN: http://ssrn.com/abstract=553761 or 

http://dx.doi.org/10.2139/ssrn.553761. 

Dewald, U., & Truffer, B. (2012). The Local Sources of Market Formation: Explaining Regional 

Growth Differentials in German Photovoltaic Markets. European Planning Studies, Vol. 

20(3), 397-420. 

DFC. (2016). Growing the middle class. Department of Finance Canada: Retrieved June 15, 2016 

from: http://www.budget.gc.ca/2016/docs/plan/toc-tdm-en.html. 

Diaz-Gonzalez, F., Sumper, A., Gomis-Bellmunt, O., & Villafáfila-Robles, R. (2012). A review 

of energy storage technologies for wind power applications. Renewable and Sustainable 

Energy Reviews, Vol. 16, 2154-2171. 

Dignard, L., Martel, S., & Ross, M. (1998). Photovoltaics in the north: A Canadian program. 

Proc. 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion. 

Vienna, Austria. 

Dincer, I. (2000). Renewable energy and sustainable development: a crucial review. Renewable 

and Sustainable Energy Reviews, Vol. 4, 157-175. 

Dorado, S., & Ventresca, M. (2013). Crescive entrepreneurship in complex social problems: 

Institutional conditions for entrepreneurial engagement. Journal of Business Venturing, 

Vol. 28, 69-82. 

DSF. (2012). All over the map 2012. A comparison of provincial climate change plans. David 

Suzuki Foundation. 

Dylan, A., Smallboy, B., & Lightman, E. (2013). "Saying No to Resource Development is Not an 

Option": Economic Development in Moose Cree First Nation. Journal of Canadian 

Studies, Vol. 47(1), 59-90. 

ECCC. (2016). 2015 Progress report of the Federal Sustainable Development Strategy. Gatineau 

QC: Environment and Climate Change Canada. 

Edwards, D., & Negnevitsky, M. (2008). Designing a Wind-Diesel Hybrid Remote Area Power 

Supply (RAPS) System. IEEE International Conference on Sustainable Energy 

Technologies 2008. Singapore. 

Edwards, J., & Langpap, C. (2012). Fuel choice, indoor air pollution and children's health. 

Environment and Development Economics, Vol. 17, 379-406. 

Elzen, B., & Wieczorek, A. (2005). Transitions towards sustainability through system innovation. 

Technological Forecasting and Social Change, Vol. 72, 651-661. 

Elzen, B., Geels, F., Hofman, S., & Green, K. (2004). Socio-technical scenarios as a tool for 

transition policy: an example from the traffic and transport domain. In B. Elzen, F. Geels, 

& K. Green, System innovation and the transition to sustainability (pp. 251-281). 

Cheltenham: Edward Elgar Publishing Ltd. 

EMMC. (2013). Canada – A Global Leader in Renewable Energy. Yellowknife, Northwest 

Territories: Energy and Mines Ministers’ Conference. 

Enzenberger, N., Wietschel, M., & Rentz, O. (2002). Policy instruments fostering wind energy 

projects- a multi-perspective evaluation approach. Energy Policy, Vol. 30, 793-801. 

Ernsten, R., & Boomsma, T. (2018). Valuation of power plants. European Journal of 

Operational Research, Vol. 266, 1153-1174. 

http://www.budget.gc.ca/2016/docs/plan/toc-tdm-en.html


 

193 

Escobar, A. (1998). Whose Knowledge, Whose nature? Biodiversity, Conservation, and the 

Political Ecology of Social Movements. Journal of Political Ecology, Vol. 5, 53-82. 

Escobar, A. (2006). Difference and Conflict in the Struggle Over Natural Resources: A political 

ecology framework. Development, Vol. 49(3), 6-13. 

ESMAP. (2007). Technical and Economic Assessment of Off-grid, Mini-grid and Grid 

Electrification Technologies. Washington, DC: Energy Sector Management Assistance 

Program. 

Eyford, D. (2013). Forging Partnerships. Building Relationships. Aboriginal Canadians and 

Energy Development. Minister of Natural Resources. 

Fay, G., & Udovyk, N. (2013). Factors Influencing Success of Wind-Diesel Hybrid Systems in 

Remote Alaska Communities: Results of an Informal Survey. Renewable Energy, Vol. 

57, 554-557. 

Fay, G., Keith, K., & Schwörer, T. (2010a). Alaska isolated wind-diesel systems: Performance 

and economic analysis. Alaska Energy Authority. 

Fay, G., Keith, K., & Schwoerer, T. (2010b). Wind-Diesel Systems in Alaska: A Preliminary 

Analysis. Alaska Center for Energy and Power. University of Alaska Fairbanks. 

Fidler, C. (2010). Increasing the sustainability of a resource development: Aboriginal 

engagement and negotiated agreements. Environment, Development and Sustainability, 

Vol. 12, 233-244. 

Fischer, L., & Newig, J. (2016). Importance of actors and agency in sustainability transitions: A 

systematic exploration of the literature. Sustainability, 8, 476. 

Fitzpatrick, P. (2007). A New Staples Industry? Complexity, Governance and Canada’s Diamond 

Mines. Policy and Society, Vol. 26(1), 93-112. 

Five Nations Energy Inc. (2006, Nov. 09). Five Nations Energy Inc. Retrieved from Five Nations 

Energy Inc.: http://www.fivenations.ca/docs/PR%205%20years.pdf. 

Flyvbjerg, B. (2006). Five misunderstandings about case-study research. Qualitative Inquiry, 

Vol. 12(2), 219-245. 

Forest, N., & Wiek, A. (2015). Success factors and strategies for sustainability transitions of 

small-scale communities-Evidence from a cross-case analysis. Environmental Innovation 

and Societal Transitions, Vol. 17, 22-40. 

Foxon, T. (2011). A coevolutionary framework for analysing a transition to a sustainable low 

carbon economy. Ecological Economics, Vol. 70, 2258-2267. 

Foxon, T., Hammond, G., & Pearson, P. (2010). Developing transition pathways for a low carbon 

electricity system in the UK. Technological Forecasting & Social Change , Vol. 77, 

1203–1213. 

Frideres, J. (2008). Aboriginal identity in the Canadian context. The Canadian Journal of Native 

Studies, Vol. 28(2), 313-342. 

Fritz, V., Kaiser, K., & Levy, B. (2009). Problem driven governance and political economy 

analysis. Washington DC: The World Bank. 

Gallant, P., & Fox, G. (2011). Omitted Costs, Inflated Benefits: Renewable Energy Policy in 

Ontario. Bulletin of Science, Technology & Society, Vol. 31(5), 369-376. 

http://www.fivenations.ca/docs/PR%205%20years.pdf


 

194 

GBC. (2016, June 07). First Nations Clean Energy Business Fund. Retrieved from Goverment of 

British Columbia: http://www2.gov.bc.ca/gov/content/environment/natural-resource-

stewardship/consulting-with-first-nations/first-nations-clean-energy-business-fund. 

GC. (2003). Climate Change: The Federal Investment. 1997-2002 Comprehensive Report. 

Government of Canada: Retrieved Apr. 14, 2016 from: 

http://publications.gc.ca/site/eng/9.686490/publication.html.. 

GC. (2016). Canada's second biennial report on climate change. Government of Canada: 

Retrieved  Jun. 25, 2016 from: http://www.ec.gc.ca/GES-

GHG/default.asp?lang=En&n=02D095CB-1. 

GC. (2017a). Canada's black carbon inventory-2016 edition. Retrieved Oct. 31, 2017, from 

Government of Canada-Environment and climate change Canada: 

https://www.ec.gc.ca/air/default.asp?lang=En&n=3F796B41-1&offset=3&toc=show. 

GC. (2017b). Indigenous peoples and communities. Retrieved from Crown-Indigenous Relations 

and Northern Affairs Canada: https://www.rcaanc-

cirnac.gc.ca/eng/1100100013785/152910249030. 

Geels, F. (2005). Technological transitions and system innovations. Edward Elgar Publishing 

Ltd: Northampton, MA. 

Geels, F. (2010). Ontologies, socio-technical transitions (to sustainability), and the multi-level 

perspective. Research Policy, Vol. 39, 495-510. 

Geels, F. (2011). The multi-level perspective on sustainability transitions: Responses to seven 

criticisms. Environmental Innovation and Societal Transitions, Vol. 1, 24-40. 

Geels, F. (2014). Regime resistance against low-carbon transitions: Introducing politics and 

power into the Multi-Level Perspective. Theory, Culture & Society, Vol. 31(5), 21-40. 

Geels, F., & Raven, R. (2006). Non-linearity and Expectations in Niche-Development 

Trajectories: Ups and Downs in Dutch Biogas Development (1973–2003). Technology 

Analysis & Strategic Management, Vol.18(3-4), 375-392. 

Geels, F., & Schot, J. (2007). Typology of sociotechnical transition pathways. Research Policy, 

Vol. 36, 399–417. 

George, A., & Bennet, A. (2005). Case Studies and Theory Development in the Social Sciences. 

Cambridge: MIT Press. 

George, J. (2012, April 20). Wind power for Nunavut? Don’t hold your breath, QEC boss says. 

Retrieved from Nunatsiaq Online: Accessed Dec. 29, 2015 from: 

http://www.nunatsiaqonline.ca/stories/article/65674wind_power_for_nunavut_dont_hold

_your_breath_qec_boss_says/. 

Georgopoulou, E., Sarafidis, Y., & Diakoulaki, D. (1998). Design and implementation of a group 

DSS for sustaining renewable energies exploitation. European Journal of Operational 

Research, Vol. 109, 483-500. 

Georgopoulou, E., Sarafidis, Y., Mirasgedis, S., Zaimi, S., & Lalas, D. (2003). A multiple criteria 

decision-aid approach in defining national priorities for greenhouse gases emmissions 

reductions in the energy sector. European Journal of Operational Research, Vol.146, 

199-215. 

Gibson, R., Holtz, S., Tansey, J., & Whitelaw, G. (2005). Sustainability Assessment: Criteria and 

Processes. London: Earthscan. 

http://www2.gov.bc.ca/gov/content/environment/natural-resource-stewardship/consulting-with-first-nations/first-nations-clean-energy-business-fund
http://www2.gov.bc.ca/gov/content/environment/natural-resource-stewardship/consulting-with-first-nations/first-nations-clean-energy-business-fund
http://publications.gc.ca/site/eng/9.686490/publication.html
http://www.ec.gc.ca/GES-GHG/default.asp?lang=En&n=02D095CB-1
http://www.ec.gc.ca/GES-GHG/default.asp?lang=En&n=02D095CB-1
https://www.ec.gc.ca/air/default.asp?lang=En&n=3F796B41-1&offset=3&toc=show
https://www.rcaanc-cirnac.gc.ca/eng/1100100013785/152910249030
https://www.rcaanc-cirnac.gc.ca/eng/1100100013785/152910249030
http://www.nunatsiaqonline.ca/stories/article/65674wind_power_for_nunavut_dont_hold_your_breath_qec_boss_says/
http://www.nunatsiaqonline.ca/stories/article/65674wind_power_for_nunavut_dont_hold_your_breath_qec_boss_says/


 

195 

Giddings, B., & Underwood, C. (2007). Renewable energy in remote communities. Journal of 

Environmental Planning and Management, Vol. 50(3), 397-419. 

Gingras, Y., & Dalp, R. (1993). Energy R&D policy in Canada. In J. Dela Mothe, & P. Dufour, 

Science and Technology (pp. 162-180). London: Longman. 

GN. (2001). Ikuma Report- Nunavut’s Energy Options for 2001. Iqaluit: Government of 

Nunavut. 

GN. (2007). Ikummatiit: the Government of Nunavut Energy Strategy. Iqaluit: Government of 

Nunavut Energy. 

GN. (2015a, Dec. 23). Nunavut's energy system. Retrieved Sep. 20, 2018 from Nunavut Climate 

Change Centre: https://www.climatechangenunavut.ca/en/energy/energy-nunavut. 

GN. (2015b, Dec. 29). Nunavut Electricity Subsidy Program Contribution Policy. Government of 

Nunavut. 

GNFL. (2007). Focusing our energy-Newfoundland Labrador energy plan. Government of 

Newfoundland Labrador. 

GNFL. (2015a). Focusing our energy-Energy plan progress report 2015. Government of 

Newfoundland Labrador. 

GNFL. (2015b). Net Metering Policy Framework. Retrieved from Governemtn of Newfoundland 

and Labrador:http://www.nr.gov.nl.ca/nr/energy/electricity/net_metering_framework.pdf. 

GNFL. (2016, June 14). Electricity-Overview. Retrieved from Newfoundland and Labrador-

department of Natural Resources: http://www.nr.gov.nl.ca/nr/energy/electricity/. 

GNWT. (2008a). Energy priorities framework. Yellowknife, NWT: Government of Northwest 

Territories. 

GNWT. (2008b). A Review of Electricity Regulation, Rates and Subsidy Programs in the 

Northwest Territories. Government of Northwest Territories. 

GNWT. (2009a). Creating a brighter future: a review of electricity regulation, rates and subsidy 

programs in the Northwest Territoroes. Government of Northwest Territories. 

GNWT. (2009b). Electricity review: A discussion about electricity with northeners. Government 

of Northwestern Territories. 

GNWT. (2010). Efficient, Affordable and Equitable: Creating a Brighter Future for the 

Northwest Territories’ Electricity System. Government of Northwest Territories. 

GNWT. (2011a). Northwest Territories Energy Report. Yellowknife: Government of Northwest 

Territories. 

GNWT. (2011b). A Greenhouse Gas Strategy for the Northwest Territories 2011-2015. 

Government of Northwest Territories. 

GNWT. (2012a). Northwest Territories energy facts-electrical generation. Retrieved Oct. 22,  

2015 from Government of Northwest Territories: 

https://www.inf.gov.nt.ca/sites/inf/files/electrical_generation.pdf 

 GNWT. (2012b). Northwest Territories Solar Energy Strategy 2012-2017. Government of 

Northwets Territories. 

GNWT. (2013). Northwest Territories Energy Action Plan. Government of Northwest 

Territories. 

https://www.climatechangenunavut.ca/en/energy/energy-nunavut
http://www.nr.gov.nl.ca/nr/energy/electricity/
https://www.inf.gov.nt.ca/sites/inf/files/electrical_generation.pdf


 

196 

GNWT. (2016). Energy strategy discussion guide. Yellowknife: Government of Northwest 

Territories. 

GNWT. (2017). 2030 Energy Strategy-A path to more affordable, secure and sustainable energy 

in the Northwest Territories. Yellowknife: Government of Northwest Territories. 

GQ. (2006a). Partnership agreement on economic and community development in Nunavik 

(Sanarrutik agreement). Government of Quebec. 

GQ. (2006b). Using energy to build Quebec of tomorrow-Quebec Energy Strategy 2006-2015. 

Governement of Quebec. 

GQ. (2008). 2006-2012 Action Plan. Quebec and climate change- A challenge for the future. 

Gouvernement du Québec.  

GQ. (2014). Renewable power generation in remote off-grid network communities. 

Gouvernement du Québec. 

Graham, J. (2012). Dysfuctional governance. Inroads, Vol. 31, 31-46. 

Grant, C., & Osanloo, A. (2014). Understanding, Selecting, and Integrating a Theoretical 

Framework in Dissertation Research: Creating the Blueprint for Your "House". 

Administrative Issues Journal: Education, Practice, and Research, Vol. 4(2), 12-16. 

Green, H., Clark, R., Brothers, C., & Saulnier, B. (1994). Wind/Hybrid Power System test 

facilities in the United States and Canada. Golden, Colorado: National Renewable 

Energy Laboratory-NREL. 

Greenberg, J., & Park, T. (1994). Political Ecology. Journal of Political Ecology, Vol. 1, 1-12. 

Greif, A. (2006). Institutions and the Path the Modern Economy: Lessons from Medieval Trade. 

Cambridge: Cambridge University Press. 

Grin, J., Rotmans, J., & Schot, J. (2010). Transitions to sustainable development : new directions 

in the study of long term transformative change. New York: Routledge. 

Gunton, T. (2003). Natural Resources and Regional Development: An Assessment of 

Dependency and Comparative Advantage Paradigms. Economic Geography, Vol. 79, 67-

94. 

Gupta, A., Saini, R., & Sharma, M. (2011). Modelling of hybrid energy systems Part I: Problem 

formulation and model development. Renewable Energy, Vol. 36, 459-465. 

GY. (2009a). Energy Strategy for Yukon. Government of Yukon. 

GY. (2009b). Yukon Government Climate Change Action Plan. Whitehorse, YK: Yukon 

Government. 

GY. (2015a). 2014-2015 Yukon Budget Highlights. Government of Yukon.. 

GY. (2015b). Progress report. Taking action on climate change. Retrieved 04 Apr. 2016 from: 

http://www.env.gov.yk.ca/air-water-

waste/documents/CCAP_progressreport_eng_2015.pdf. 

GY. (2015c). Yukon’s Independent Power Production Policy. Government of Yukon. 

Haley, B. (2011). From staples trap to carbon trap: Canada's peculiar form of carbon lock-in. 

Studies in Political Economy, Vol.88, 97-132. 

Hall, H., & Coates, K. (2017). Missed opportunities, glimmers of hope. Ottawa: MacDonald-

Laurier Institute. 

http://www.env.gov.yk.ca/air-water-waste/documents/CCAP_progressreport_eng_2015.pdf
http://www.env.gov.yk.ca/air-water-waste/documents/CCAP_progressreport_eng_2015.pdf


 

197 

Hamley, W. (1995). Resource development and Aboriginal rights in the Canadian Northlands. 

The London Journal of Canadian Studies, Vol. 11, 77- 86. 

Hancock, K., & Vivoda, V. (2014). International political economy: A field born of the OPEC 

crisis returns to its energy roots. Energy Research & Social Science, Vol. 1, 206-216. 

Hansen, T., & Coenen, L. (2015). The geography of sustainability transitions: Review, synthesis 

and reflections on an emergent research field. Environmental Innovation and Societal 

Transitions, Vol. 17, 92-109. 

Hansen, U., Pedersen, M., & Nygaard, I. (2015). Review of solar PV policies, interventions and 

diffusion in East Africa. Renewable and Sustainable Energy Reviews, Vol. 46, 236-248. 

Hart, A. (2010). Indigenous Worldviews, Knowledge, and Research: The Development of an 

Indigenous Research Paradigm. Journal of Indigenous Voices in Social Work, Vol.1(1), 

pp.1-16. 

Hatch. (2013). Northern Hydro Assessment Waterpower Potential in the Far North of Ontario. 

Ontario Water power Association. 

Hawkey, D. (2012). District heating in the UK: A Technological Innovation Systems analysis. 

Environmental Innovation and Societal Transitions, Vol. 5, 19-32. 

Haxeltime, A., Whitmarsh, L., & Bergman, N. (2008). A conceptual framework for transition 

modelling. Int. J. Innovation and Sustainable Development, Vol. 3(1/2), 93-114. 

Hay, I. (2000). Qualitative research methods in human geography. Victoria: Oxford University 

Press. 

Hayter, R., & Barnes, T. (2001). Canada's resource economy. The Canadian Geographer, 

Vol.45(1), 36-41. 

Head, B. (2008). Wicked Problems in Public Policy. Public Policy, Vol. 3(2), 101-118. 

Head, B., & Alford, J. (2015). Wicked Problems: Implications for Public Policy and 

Management. Administration & Society, Vol. 47(6), 711-739. 

Hegger, D., VanVliet, J., & VanVliet, B. (2007). Niche Management and its Contribution to 

Regime Change: The Case of Innovation in Sanitation. Technology Analysis & Strategic 

Management, Vol. 19(6), 729-746. 

Hekkert, M., & Negro, S. (2009). Functions of innovation systems as a framework to understand 

sustainable technological change: Empirical evidence for earlier claims. Technological 

Forecasting & Social Change, Vol. 76, 584-594. 

Hekkert, M., Suurs, R., Negro, S., Kuhlmann, S., & Smits, R. (2007). Functions of innovation 

systems: A new approach for analysing technological change. Technological Forecasting 

& Social Change, Vol. 7, 413-432. 

Helm, D. (2010). Government failure, rent-seeking, and capture: the design of climate change 

policy. Oxford Review of Economic Policy, Vol. 26, 182-196. 

Heltberg, R. (2004). Fuel switching: evidence from eight developing countries. Energy 

Economics, Vol.26, 869-887. 

Heltberg, R. (2005). Factors determining household fuel use choice in Guatemala. Environment 

and Development Economics, Vol. 10, 337-361. 

Henderson, C. (2009). Power of the first people; Aboriginal involvement is key to small-scale 

hydro in Canada. Alternatives Journal, Vol. 35, 18. 



 

198 

Henderson, C. (2013). Aboriginal power. Clean energy and the future of Canada's First Peoples. 

Erin, Ontario: Rainforest Editions. 

HFN-ED. (n.d.). Hesquiaht 100% renewable. Hesquiat First Nation: Hesquiaht Economic 

Development. 

Hicks, J. (2004). On the Application of Theories of ‘Internal Colonialism’ to Inuit Societies. 

Winnipeg: Presentation for the Annual Conference of the Canadian Political Science 

Association, June 5, 2004. 

Hicks, S., & Ison, N. (2011). Community-owned renewable energy (CRE): Opportunities for 

rural Australia. Rural Society, Vol. 20, 244-255. 

Hillman, K., Nilsson, M., Rickne, A., & Magnusson, T. (2011). Fostering sustainable 

technologies: a framework for analysing the governance of innovation systems. Science 

and Public Policy, Vol. 38(5), 403-415. 

Hillman, K., Suurs, R., Hekkert, M., & Sanden, B. (2008). Cumulative causation in biofuels 

development: a critical comparison of the Netherlands and Sweden. Technology Analysis 

& Strategic Management, Vol. 20(5), 593–612. 

Hiremath, R., Shikha, S., & Ravindranath, N. (2007). Decentralized energy planning; modeling 

and application—a review. Renewable and Sustainable Energy Reviews, Vol. 11, 729-

752. 

Hodgkins, A. (2009). Re-appraising Canada’s Northern “Internal Colonies”. The Northern 

Review, Vol. 30, 179-205. 

HORCI. (2012). 2011 Greenhouse Gas Inventory Report. Thunder Bay: Hydro One Remote 

Communities Inc. (HORCI). 

HORCI. (2014). Deer Lake First Nation installs rooftop solar PV array. Hydro One Remote 

Communities Inc. 

HORCI. (2015). Hydro One Remote Communities Inc. Renewable Energy INnovation DiEsel 

Emission Reduction (REINDEER) Guideline. Thunder Bay: Hyro One Remote 

Communities Inc. 

Hossain, Y., Loring, P., & Marsik, T. (2016). Defining energy security in the rural North—

Historical and contemporary perspectives from Alaska. Energy Research & Social 

Science, Vol. 16, 89-97. 

Huang, I., Keisler, J., & Linkov, I. (2011). Multi-criteria decision analysis in environmental 

sciences: Ten years of applications and trends. Science of the Total Environment, Vol. 

409, 3578-3594. 

Hunter, B. (2007). Conspicuous compassion and wicked problems. Agenda, Vol.14(3), 35-51. 

Hurley, M. (1998). Aboriginal title: the Supreme Court of Canada decision in Delgamuukw v. 

British Columbia. Ottawa: Library of the Parliament. 

Hutton, T. (2007). Contours of the Post-Staples State: The Reconstruction of Political Economy 

and Social Identity in 21st Century Canada. Policy and Society, Vol. 26(1), 9-29. 

Hydro One. (2008). 2009 Revenue Requirements and Rates Application- Application and Prefiled 

Evidence. Toronto: Hydro One. 

Hydro One. (2012). 2013 Revenue Requirement and Rates Application – Application and 

Prefiled Evidence. Toronto: Hydro One. 



 

199 

Hydro One. (2013). Hydro One Remote Communities Inc. 2015 Distribution Rate Application. 

Toronto: Hydro One. 

Hydro Quebec. (2003). Systèmes jumelés éolien-diesel au Nunavik – Établissement. Hydro 

Quebec. 

Hydro Quebec. (2016a). The History of Hydro-Québec. Retrieved from Hydro Quebec: 

http://www.hydroquebec.com/history-electricity-in-quebec/. 

Hydro Quebec. (2016b). Electricity rates. Hydro Quebec: Retrieved May 17, 2016 from: 

http://www.regie-

energie.qc.ca/en/consommateur/Tarifs_CondServ/HQD_Tarifs2016.pdf. 

IAND. (1997). Gathering Strength-Canada's Aboriginal Action Plan. Minister of Public Works 

and Government. 

Ibrahim, H., Younes, R., Ilinca, A., Dimitrova, M., & Perron, J. (2010). Study and design of a 

hybrid wind–diesel-compressed air energy storage system for remote areas. Applied 

Energy, Vol. 87, 1749-1762. 

ICF. (2015). Technology Characterization – Reciprocating Internal Combustion Engines.  U.S. 

Environmental Protection Agency and the U.S. Department of Energy. 

IEA. (2010). Analysis of the scope of energy subsidies and suggestions for the G-20 initiative. 

Joint report IEA,OPEC, OECD and World Bank. 

IEA. (2011). Renewable energy. Policy considerations for deploying renewables. International 

Energy Agency. 

IESO. (2014). Draft technical report and business case for the connection of remote First Nation 

communities in Northwest Ontario. Retrieved Oct. 31, 2017, from http://www.ieso.ca/-

/media/files/ieso/document-library/regional-planning/remote-community-connection/opa-

technical-report-2014-08-21.pdf?la=en. 

IESO. (2015, Dec. 12). Aboriginal Renewable Energy Network. Retrieved from IESO: 

http://www.aboriginalenergy.ca/. 

IESO. (2017, June 28). Rural and Remote Electricity Rate Protection charge increase for 2017. 

Retrieved Oct. 31, 2017, from IESO: http://www.ieso.ca/sector-participants/ieso-

news/2017/02/rural-and-remote-electricity-rate-protection-charge-increase-for-2017. 

IISD. (1992). Our responsibility to the seventh generation. Indigenous Peoples and sustainable 

development. Winnipeg: International Institute for Sustainable Development. 

IISD. (2013). The Tahltan, Mining, and the Seven Questions to Sustainability.Report of the 

Tahltan Mining Symposium, April 4–6, 2003. Dease Lake, BC: IISD and the Tahlan First 

Nation. 

Imai, S. (2008). Indigenous Self-Determination and the State. Comparative Research in Law & 

Political Economy, Research Paper No. 25/2008. 

INAC. (2003). Resolving Aboriginal Claims. Ottawa: Indigenous and Northern Affairs Canada. 

Retrieved April 14, 2016 from: http://www.aadnc-

aandc.gc.ca/eng/1100100014174/1100100014179.. 

INAC. (2004). Sharing the Story: Aboriginal and Northern Energy Experiences. Ottawa: 

Indigenous and Northern Affairs Canada. 

http://www.hydroquebec.com/history-electricity-in-quebec/
http://www.regie-energie.qc.ca/en/consommateur/Tarifs_CondServ/HQD_Tarifs2016.pdf
http://www.regie-energie.qc.ca/en/consommateur/Tarifs_CondServ/HQD_Tarifs2016.pdf
http://www.ieso.ca/-/media/files/ieso/document-library/regional-planning/remote-community-connection/opa-technical-report-2014-08-21.pdf?la=en
http://www.ieso.ca/-/media/files/ieso/document-library/regional-planning/remote-community-connection/opa-technical-report-2014-08-21.pdf?la=en
http://www.ieso.ca/-/media/files/ieso/document-library/regional-planning/remote-community-connection/opa-technical-report-2014-08-21.pdf?la=en
http://www.aboriginalenergy.ca/
http://www.ieso.ca/sector-participants/ieso-news/2017/02/rural-and-remote-electricity-rate-protection-charge-increase-for-2017
http://www.ieso.ca/sector-participants/ieso-news/2017/02/rural-and-remote-electricity-rate-protection-charge-increase-for-2017
http://www.aadnc-aandc.gc.ca/eng/1100100014174/1100100014179
http://www.aadnc-aandc.gc.ca/eng/1100100014174/1100100014179


 

200 

INAC. (2005a). Sharing the story: sustainable initiatives in First Nation. Ottawa: Indigenous and 

Northern Affairs Canada. 

INAC. (2005b). Empowering People. Canada’s Aboriginal and Northern Communities Action 

Program (ANCAP). Ottawa: Indigenous and Northern Affairs Canada. 

INAC. (2007). Reflections on Success. A Sustainable Future in a Changing Climate. Ottawa: 

Indigenous and Northern Affairs Canada. 

INAC. (2010a). A History of Treaty-Making in Canada. Ottawa: Ottawa: Indigenous and 

Northern Affairs Canada. 

INAC. (2010b). Sharing knowledge for a better future. Ottawa: Indigenous and Northern Affairs 

Canada. 

INAC. (2012, Sept. 04). Government of Canada Focuses Funding on Essential Programs and 

Services for Aboriginal Peoples-September 4, 2012. Retrieved Oct. 31, 2017, from 

Indigenous and Northern Affairs Canada: 

https://www.canada.ca/en/news/archive/2012/09/government-canada-focuses-funding-

essential-programs-services-aboriginal-peoples.html?=undefined&. 

INAC. (2016). 2016–17 Report on Plans and Priorities. Indigenous and Northern Affairs 

Canada: Retrieved Nov. 19, 2016 from: https://www.aadnc-

aandc.gc.ca/eng/1453826795178/1453826845637.. 

INAC. (2017, Dec. 12). Evaluation of the ecoENERGY for Aboriginal and Northern 

Communities Program. Retrieved from Indigenous and Northern Affairs Canada: 

https://www.aadnc-aandc.gc.ca/eng/1465235699114/1465236134726. 

INAC. (2018a, Apr. 08). Specific Claims Snapshot. Retrieved from Indigenous and Northern 

Affairs Canada: http://www.aadnc-aandc.gc.ca/eng/1395939024596/1395939088362. 

INAC. (2018b). Northern REACHE Program . Retrieved from Indigenous and Northern Affairs 

Canada: https://www.aadnc-aandc.gc.ca/eng/1481305379258/1481305405115 

INAC. (2018c, Apr. 10). A Survey of the Contemporary Indians of Canada Economic, Political, 

Educational Needs and Policies. Retrieved from Indigenous and Northern Affairs 

Canada: https://www.aadnc-aandc.gc.ca/eng/1291832488245/1291832647702. 

INAC. (2018e, Apr. 12). Comprehensive claims. Retrieved from Indigenous and Northern Affairs 

Canada: https://www.aadnc-aandc.gc.ca/eng/1100100030577/1100100030578. 

INAC. (2018f, Apr. 12). Self-Government . Retrieved from Indigenous and Northern Affairs 

Canada: https://www.aadnc-aandc.gc.ca/eng/1100100032275/1100100032276. 

Inglis, L. (2012). Barriers to Renewable Energy Development in British Columbia’s Remote 

Communities. Research project-Simon Fraser University. 

IPCC, 2011: Summary for Policymakers. In: IPCC Special Report on Renewable Energy Sources 

and Climate Change Mitigation [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. 

Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, 

C. von Stechow (eds)], Cambridge University Press, Cambridge, United Kingdom and 

New York, NY, USA. 

IPCC, 2014: Summary for Policymakers. In: Climate Change 2014: Mitigation of Climate 

Change. Contribution of Working Group III to the Fifth Assessment Report of the 

Intergovernmental Panel on Climate Change [Edenhofer, O., R. Pichs-Madruga, Y. 

Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. 

https://www.canada.ca/en/news/archive/2012/09/government-canada-focuses-funding-essential-programs-services-aboriginal-peoples.html?=undefined&
https://www.canada.ca/en/news/archive/2012/09/government-canada-focuses-funding-essential-programs-services-aboriginal-peoples.html?=undefined&
https://www.aadnc-aandc.gc.ca/eng/1453826795178/1453826845637
https://www.aadnc-aandc.gc.ca/eng/1453826795178/1453826845637
https://www.aadnc-aandc.gc.ca/eng/1465235699114/1465236134726
http://www.aadnc-aandc.gc.ca/eng/1395939024596/1395939088362
https://www.aadnc-aandc.gc.ca/eng/1481305379258/1481305405115
https://www.aadnc-aandc.gc.ca/eng/1291832488245/1291832647702
https://www.aadnc-aandc.gc.ca/eng/1100100030577/1100100030578
https://www.aadnc-aandc.gc.ca/eng/1100100032275/1100100032276


 

201 

Eickemeier, B. Kriemann, J.Savolainen, S. Schlomer, C. von Stechow, T. Zwickel and 

J.C. Minx (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New 

York, NY, USA. 

Iqbal, T. (n.d. (a)). Feasibility Study of Pumped Hydro Energy Storage for Ramea Wind-Diesel 

Hybrid Power System.  

Iqbal, T. (n.d. (b)). Sizing of a Wind-Diesel Hybrid Power System for Cartwright, Labrador.  

IRENA. (2015). Off grid renewable energy systems: status and methodological issues. Abu 

Dhabi: International Renewable Energy Agency. 

Isaac, T., & Knox, A. (2005). Canadian Aboriginal Law: Creating Certainty in Resource 

Development. Journal of Energy & Nat. Resources Law, Vol. 23, 427-464. 

Isoaho, K., Goritz, A., & Schultz, N. (2016). Governing clean energy transitions in China and 

India. Helsinki: Working paper 2016/28. United Nations University-WIDER. 

Jacobsson, S. (2008). The emergence and troubled growth of a ‘biopower’ innovation system in 

Sweden. Energy Policy, Vol. 36, 1491-1508. 

Jacobsson, S., & Bergek, A. (2004). Transforming the energy sector: the evolution of 

technological systems in renewable energy technology. Industrial and Corporate 

Change, Vol. 13, 815-849. 

Jacobsson, S., & Bergek, A. (2006). A framework for guiding policy makers. Intervening in 

emerging innovation systems in ‘catching-pp’ countries. The European Journal of 

Development Research,, Vol. 18, No.4, 687–707. 

Jacobsson, S., & Bergek, A. (2011). Innovation system analysis and sustainability transitions: 

Contributions and suggestions for research. Environmental Innovation and Societal 

Transitions, Vol. 1, 41-57. 

Johnson, A. (1998). Functions in Innovation System Approaches. Göteborg, Sweden: Department 

of Industrial Dynamics. Chalmers University of Technology. 

Karanasios, K., & Parker, P. (2016a). Recent Developments in Renewable Energy in Remote 

Aboriginal Communities, Yukon, Canada. Papers in Canadian Economic Development, 

16, 29-40. 

Karanasios, K., & Parker, P. (2016b). Recent developments in renewable energy in remote 

aboriginal communities, NWT, Canada. Papers in Canadian Economic Development, 16, 

41-53. 

Karanasios, K., & Parker, P. (2016c). Recent Developments in Renewable Energy in Remote 

Aboriginal Communities, Nunavut, Canada. Papers in Canadian Economic Development, 

16, 54-64. 

Karanasios, K., & Parker, P. (2016d). Recent Developments in Renewable Energy in Remote 

Aboriginal Communities, British Columbia, Canada. Papers in Canadian Economic 

Development, 16, 65-81. 

Karanasios, K., & Parker, P. (2016e). Recent developments in renewable energy in remote 

aboriginal communities, Ontario, Canada. Papers in Canadian Economic Development, 

16, 82-97. 

Karanasios, K., & Parker, P. (2016f). Recent Developments in Renewable Energy in Remote 

Aboriginal Communities, Quebec, Canada. Papers in Canadian Economic Development, 

16, 98-108. 



 

202 

Karanasios, K., & Parker, P. (2016g). Recent Developments in Renewable Energy in Remote 

Aboriginal Communities, Newfoundland and Labrador, Canada. Papers in Canadian 

Economic Development, 16, 109-118. 

Karimi, E. (2017). A generalized optimal planning platform for microgrids of remote 

communities considering frequency and voltage regulation constraints. University of 

Waterloo: Dissertation Thesis. 

Kaundinya, D., Balachandra, P., & Ravindranath, N. (2009). Grid-connected versus stand-alone 

energy systems for decentralized power—A review of literature. Renewable and 

Sustainable Energy Reviews, Vol. 13, 2041-2050. 

Kay, A., & Baker, P. (2015). What Can Causal Process Tracing Offer to Policy Studies? A 

Review of the Literature. The Policy Studies Journal, Vol. 43(1), 1-21. 

Kebede, E., Duncan, A., Klerkx, L., deBoer, I., & Oosting, S. (2015). Understanding socio-

economic and policy constraints to dairy development in Ethiopia: A coupled functional-

structural innovation systems analysis. Agricultural Systems , Vol. 141, 69–78. 

Kebede, K., & Mitsufuji, T. (2014). Diffusion of solar innovations in Ethiopia: Exploring 

systemic problems. International Journal of Technology Management & Sustainable 

Development, Vol. 13(1), 53-72. 

Kemp, R., & Loorbach, D. (2006). Transition management: a reflexive governance approach. In 

J. Voss, D. Baunecht, & R. Kemp, Reflexive Governance for Sustainable Development 

(pp. 103-130). Cheltenham, UK: Edward Elgar. 

Kendal, J. (2001). Circles of Disadvantage: Aboriginal Poverty and Underdevelopment in 

Canada. American Review of Canadian Studies, Vol. 31(1), 43-59. 

Kern, F. (2015). Engaging with the politics, agency and structures in the technological innovation 

systems approach. Environmental Innovation and Societal Transitions, Vol. 16, 67-69. 

KFN. (n.d.). Community energy and emissions inventory. A Kluane First Nation-Yukon Research 

Centre Partnership Project. Yukon College. 

Khan, A., & Neis, B. (2010). The rebuilding imperative in fisheries: Clumsy solutions for a 

wicked problem? Progress in Oceanography, Vol. 87, 347-356. 

Khan, M., & Jomo, S. (2000). Rents, rent seeking and economic development. Theory and 

evidence in Asia. Cambridge: Cambridge University Press. 

King, J. (1993). Learning to Solve the Right Problems: The Case of Nuclear Power in America. 

Journal of Business Ethics, Vol. 12, 105-116. 

Kirby, P. (2009). The Atlin Hydro Project-Generation for Generations. Retrieved Oct. 31, 2017, 

from: 

http://yukonconservation.org/docs/Generation_for_Generations_Atlin_Hydro_Project_Ta

ku_Land_Corp_Peter_Kirby.pdf. 

KLFN. (2013). Kasabonika pondering economic development opportunities. Retrieved Ju. 18, 

2014 from Wawatay News Online: http://www.wawataynews.ca/home/kasabonika-

pondering-economic-development-opportunities. 

Knowles, J. (2016). Power Shift: Electricity for Canada’s remote communities. Ottawa: The 

Conference Board of Canada. 

Kosenius, A., & Ollikainen, M. (2013). Valuation of environmental and societal trade-offs of 

renewable energy sources. Energy Policy, Vol. 62, 1148-1156. 

http://yukonconservation.org/docs/Generation_for_Generations_Atlin_Hydro_Project_Taku_Land_Corp_Peter_Kirby.pdf
http://yukonconservation.org/docs/Generation_for_Generations_Atlin_Hydro_Project_Taku_Land_Corp_Peter_Kirby.pdf
http://www.wawataynews.ca/home/kasabonika-pondering-economic-development-opportunities
http://www.wawataynews.ca/home/kasabonika-pondering-economic-development-opportunities


 

203 

Kovach, M. (2010). Conversational Method in Indigenous Research. First Peoples Child & 

Family Review, Vol. 5(1), 40-48. 

KRG. (2012). Plan Nunavik. Westmount, QC: Kativik Regional Government and Makivik 

Corporation. 

Krohn, S. (2005). Wind-Diesel Systems in Nunavik and other Autonomous Grids. Regroupement 

national des conseils régionaux de l’environnement du Québec (RNCREQ). 

Kroposki, B., Lasseter, R., Toshifumi, I., Morozoumi, S., Papathanassiou, S., & Hatziargyriou, 

N. (2008). Making microgris work. IEEE Power and Energy magazine, Vol. 6(3), 41-53. 

Krupa, J. (2012a). Identifying barriers to aboriginal renewable energy deployment in Canada. 

Energy Policy, Vol. 42, 710–714. 

Krupa, J. (2012b). Blazing a new path forward:A case study on the renewable energy initiatives 

of the Pic River First Nation. Environmental Development, Vol. 3, 109-122. 

Labrinopoulou, C., Renwick, A., Klerkx, L., Hermans, F., & Roep, D. (2014). Application of an 

integrated systemic framework for analysing agricultural innovation systems and 

informing innovation policies: Comparing the Dutch and Scottish agrifood sectors. 

Agricultural Systems, Vol. 129, 40-54. 

Lachmann, D. (2012). Developing countries more in need of energy system transition research. 

Academic Journal of Suriname, Vol. 3, 284-291. 

Landers, S. (2014, July 03). Aboriginal Project Ownership on the Kapuskasing River. Retrieved 

Aug. 29, 2017, from Hydroworld.com: 

http://www.hydroworld.com/articles/hr/print/volume-33/issue-2/articles/aboriginal-

project-ownership-on-the-kapuskasing-river.html. 

Lawhon, M., & Murphy, J. (2011). Socio-technical regimes and sustainability transitions: 

Insights from political ecology. Progress in Human Geography, Vol. 36(3), 354-378. 

Leach, G. (1975). Energy and food production. Food Policy, Vol. 1(1), 62-73. 

Lecy, J., & Beatty, K. (2012). Representative literature reviews using constraint snowball 

sampling and citation network analysis. Available at SSRN: 

https://ssrn.com/abstract=1992601 or http://dx.doi.org/10.2139/ssrn.1992601. 

Leshem, S., & Trafford, V. (2007). Overlooking the conceptual framework. Innovations in 

Education and Teaching International, Vol. 44(1), 93-105. 

Liming, H., Haque, E., & Barg, S. (2008). Public policy discourse, planning and measures toward 

sustainable energy strategies in Canada. Renewable and Sustainable Energy Reviews, 

Vol.12, 91-115. 

Loizides, S., & Anderson, R. (2006). Growth of Enterprises in Aboriginal Communities. Ottawa: 

The  Conference Board of Canada. 

Loizides, S., & Wuttunee, W. (2005). Creating Wealth and Employment in Aboriginal 

Communities. Conference Board of Canada. 

Loorbach, D. (2007). Transition management: new mode of governance for sustainable 

development. Utrecht: International Books. 

Loorbach, D. (2010). Transition Management for Sustainable Development: A Prescriptive, 

Complexity-Based Governance Framework. Governance: An International Journal of 

Policy, Administration, and Institutions, Vol. 23(1), 161-183. 

http://www.hydroworld.com/articles/hr/print/volume-33/issue-2/articles/aboriginal-project-ownership-on-the-kapuskasing-river.html
http://www.hydroworld.com/articles/hr/print/volume-33/issue-2/articles/aboriginal-project-ownership-on-the-kapuskasing-river.html
https://ssrn.com/abstract=1992601


 

204 

Loorbach, D., Frantzeskaki, N., & Avelino, F. (2017). Sustainability transitions research: 

Transforming science and practice for societal change. Annual Review of Environment 

and Resources, Vol. 42, 599-626. 

Loppie, C., & Wien, F. (2009). Health Inequalities and Social Determinants of Aboriginal 

Peoples' Health. Retrieved Oct. 31, 2017, from: http://www.catie.ca/en/resources/health-

inequalities-and-social-determinants-aboriginal-peoples-health. 

Loring, P., & Gerlach, S. (2013). The new environmental security: Linking food, water, and 

energy for integrative and diagnostic social-ecological research. Journal of Agriculture, 

Food Systems, and Community Development, Vol. 3(4), 55-61. 

Ma, C., & Stern, D. (2006). Environmental and ecological economics: A citation analysis. 

Ecological Economics, Vol.58, 491-506. 

MABC. (2008). Report on the Electrification of the Highway 37 Corridor. Mining Association of 

British Columbia: Retrieved May 26, 2016 from: 

https://www.northerndevelopment.bc.ca/news/report-on-the-electrification-of-the-

highway-37-corridor-now-available/. 

Mabee, W., Cabral, L., & Webb, E. (2017). Changing geograhies of energy in North America. In 

B. Salomon, & K. Calvert, Handbook on the geograpies of energy (pp. 296-312). 

Cheltenham: Edward Elgar Publishing Ltd. 

MacArthur, J. (2017). Trade, Tarsands and Treaties: The Political Economy Context of 

Community Energy in Canada. Sustainability, Vol. 9, 464. 

Magnani, N. (2012). The Green Energy Transition. Sustainable Development or Ecological 

Modernization? Sociologica, Vol. 2, 1-25. 

Mahoney, J. (2010). After KKV. The new methodology of qualitative research. World Politics, 

Vol. 62(1), 120-147. 

Mahoney, J. (2012). The logic of process tracing in the social sciences. Sociological Methods & 

Research, Vol. 41(4), 570-597. 

Mainali, B., & Silveira, S. (2013). Alternative pathways for providing access to electricity in 

developing countries. Renewable Energy, Vol. 57, 299-310. 

Maissan, J. (2006a). A Report on the State-of-the-art and Economic Viability of Wind Power 

Development in Arctic Communities. Inuvik, Northwest Territories: Aurora Research 

Institute, Aurora College. 

Maissan, J. (2006b). Report on Wind Energy for Small Communities. Leading Edge Projects Inc. 

Mandelli, S., Barbieri, J., Mereau, R., & Colombo, E. (2016). Off-grid systems for rural 

electrification in developing countries: Definitions, classification and a comprehensive 

literature review. Renewable and Sustainable Energy Reviews, Vol. 58, 1621-1646. 

Markard, J., & Truffer, B. (2008). Technological innovation systems and the multi-level 

perspective: Towards an integrated framework. Research Policy, Vol. 37, 596–615. 

Markard, J., Hekkert, M., & Jacobsson, S. (2015). The technological innovation systems 

framework: Response to six criticisms. Environmental Innovation and Societal 

Transitions, Vol. 16, 76-86. 

Markard, J., Raven, R., & Truffer, B. (2012). Sustainability transitions: An emerging field of 

research and its prospects. Research Policy, Vol. 41, 955– 967. 

http://www.catie.ca/en/resources/health-inequalities-and-social-determinants-aboriginal-peoples-health
http://www.catie.ca/en/resources/health-inequalities-and-social-determinants-aboriginal-peoples-health
https://www.northerndevelopment.bc.ca/news/report-on-the-electrification-of-the-highway-37-corridor-now-available/
https://www.northerndevelopment.bc.ca/news/report-on-the-electrification-of-the-highway-37-corridor-now-available/


 

205 

Marketwired. (2013, Dec. 03). Renewable Energy Approval Granted to Bow Lake Wind Farm. 

Retrieved Feb. 4, 2015 from Marketwired: http://www.marketwired.com/press-

release/renewable-energy-approval-granted-to-bow-lake-wind-farm-1862901.htm. 

Martinez, V., & Castillo, O. (2016). The political ecology of hydropower: Social justice and 

conflict in Colombian hydroelectricity development. Energy Research and Social 

Change, Vol. 22, 69-78. 

Mast, M. (2014a, Jan. 22). Residents still waiting for electricity as BC Hydro postpones 

expansion. Retrieved from The Globe and Mail: 

http://www.theglobeandmail.com/news/british-columbia/residents-still-waiting-for-

electricity-as-bc-hydro-postpones-expansion/article16443083/. 

Mast, M. (2014b, Feb. 17). Snubbed by BC Hydro, small towns see opportunity off mainstream 

grid. Retrieved from The Globe and Mail: 

http://www.theglobeandmail.com/news/british-columbia/snubbed-by-bc-hydro-small-

towns-see-opportunity-off-mainstream-grid/article16923595/. 

Mathiesen, B., Lund, H., & Karlsson, K. (2011). 100% Renewable energy systems, climate 

mitigation and economic growth. Applied Energy, Vol. 88, 488-501. 

Matutinovic, I. (2009). Oil and the political economy of energy. Energy Policy, Vol. 37, 4251-

4258. 

May, P., & Jochim, A. (2013). Policy regime perspectives: policies, politics, and governing. The 

Policy Studies Journal, Vol. 41(3), 426-452. 

Mc Gowan, J., Manwell, J., & Connors, S. (1988). Wind-diesel Energy Systems: Review of 

design options and recent developments. Solar Energy, Vol. 41, 561-575. 

Mc Tiernan, T. (1991). Northern communities and sustainable development. In J. Pierce, & A. 

Dale, Communities, Development, and Sustainability across Canada (pp. 90-120). 

Vancouver: UBC Press. 

McDonald, N., & Pearce, J. (2012). Renewable Energy Policies and Programs in Nunavut: 

Perspectives from the Federal and Territorial Governments. Arctic, Vol. 65 (4), 465-475. 

McDonald, N., & Pearce, J. (2013). Community Voices: Perspectives on Renewable Energy in 

Nunavut. Arctic, Vol. 66(1), 94-104. 

McDowall, W., Radošević, S., & Zhang, L. (2013). The development of wind power in China, 

Europe and the USA: how have policies and innovation system activities co-evolved? 

Technology Analysis & Strategic Management, Vol. 25(2), 163-185. 

McDowell, G., & Ford, J. (2014). The socio-ecological dimensions of hydrocarbon development 

in the Disko Bay region of Greenland: Opportunities, risks, and tradeoffs. Applied 

Geography , Vol. 46, 98-110. 

McLaughlin, D., McDonald, N., Nguyen, N., & Pearce, J. (2010). Leveraging Solar Photovoltaic 

Technology for Sustainable Development in Ontario's Aboriginal Communities. Journal 

of Sustainable Development, Vol. 3, 3-13. 

ME. (2014). Canada’s Sixth National Report on Climate Change. Retrieved 03 Mar. 2016 from 

Minister of the Environment: http://www.ec.gc.ca/cc/0BA54AAB-6E8E-4D48-B42C-

DCBB09B27D10/6458_EC_ID1180-MainBook_high_min%20FINAL-s.pdf. 

http://www.marketwired.com/press-release/renewable-energy-approval-granted-to-bow-lake-wind-farm-1862901.htm
http://www.marketwired.com/press-release/renewable-energy-approval-granted-to-bow-lake-wind-farm-1862901.htm
http://www.theglobeandmail.com/news/british-columbia/residents-still-waiting-for-electricity-as-bc-hydro-postpones-expansion/article16443083/
http://www.theglobeandmail.com/news/british-columbia/residents-still-waiting-for-electricity-as-bc-hydro-postpones-expansion/article16443083/
http://www.theglobeandmail.com/news/british-columbia/snubbed-by-bc-hydro-small-towns-see-opportunity-off-mainstream-grid/article16923595/
http://www.theglobeandmail.com/news/british-columbia/snubbed-by-bc-hydro-small-towns-see-opportunity-off-mainstream-grid/article16923595/
http://www.ec.gc.ca/cc/0BA54AAB-6E8E-4D48-B42C-DCBB09B27D10/6458_EC_ID1180-MainBook_high_min%20FINAL-s.pdf
http://www.ec.gc.ca/cc/0BA54AAB-6E8E-4D48-B42C-DCBB09B27D10/6458_EC_ID1180-MainBook_high_min%20FINAL-s.pdf


 

206 

ME. (2016, April 06). Canadian Solar. Retrieved from Ontario Ministry of Energy: 

http://www.energy.gov.on.ca/en/smart-grid-fund/smart-grid-fund-projects/canadian-

solar/. 

Meadowcroft, J. (2005). Environmental Political Economy, Technological Transitions and the 

State. New Political Economy, Vol. 10, 479-498. 

Meadowcroft, J. (2009). What about the politics? Sustainable development, transition 

management, and long term energy transitions. Policy Science, Vol. 42, 323-340. 

Meadowcroft, J. (2011). Engaging with the politics of sustainability transitions. Environmental 

Innovation and Societal Transitions, Vol. 1(1), 70-75. 

Meadows, D., Meadows, H., Randers, J., & Behrens, W. (1972). The Limits to growth: A 

report for the Club of Rome's project on the predicament of mankind. New York: 

Universe Books. 
Meelen, T., & Farla, J. (2013). Towards an integrated framework for analysing sustainable 

innovation policy. Technology Analysis & Strategic Management, Vol. 25(8), 957-970. 

MIAND. (2009). Federal Framework for Aboriginal Economic Development. Ottawa: Minister 

of Indian Affairs and Northern Development and Federal Interlocutor for Métis and Non-

Status Indians. 

Midilli, A., Dincer, I., & Ay, M. (2006). Green energy strategies for sustainable development. 

Energy Policy, Vol. 34, 3623-3633. 

Milloy, J. (2008). Indian Act Colonialism: A Century Of Dishonour, 1869-1969. National Centre 

for First Nations Governance. 

Ministry of Infrastructure. (2011). Growth Plan for Northern Ontario 2011. Toronto: Queen’s 

Printer for Ontario. 

Mitchell, B., & Parker, P. (2017). Energy geography: adopting and adapting resource 

management perspectives. In B. Salomon, & K. Calvert, Handbook on the geographies of 

energy (pp. 515-526). Cheltenham: Edward Elgar Publising Ltd. 

MNDM. (2015, August 14). Ontario Investing $2.5 Million in First Nation Renewable Energy 

Project. Retrieved from Government of Ontario-Ministry of Northern Development and 

Mines: https://news.ontario.ca/mndmf/en/2015/08/ontario-investing-25-million-in-first-

nation-renewable-energy-project.html. 

Moore, S., Durant, V., & Mabee, W. (2013). Determining appropriate feed-in tariff rates to 

promote biomass-to-electricity generation in Eastern Ontario, Canada. Energy Policy, 

Vol. 63, 607–613. 

Morellato, M. (2008). The Crown’s Constitutional Duty to Consult and Accommodate Aboriginal 

and Treaty Rights. National Centre for First Nations Governance. 

Morissette, D. (2014). Watson Lake Hydro Project Feasibility Study. Retrieved Oct. 12, 2017 

from Town of Watson Lake: http://www.watsonlake.ca/town-government/watson-lake-

hydro-potential-study/. 

Morris, D. (2005). Causal inference in the social sciences: variance theory, process theory, and 

system dynamics. Working paper. 

Murphy, R. (2012). Sustainability: A Wicked Problem. Sociologica, Vol. 2, 1-23. 

http://www.energy.gov.on.ca/en/smart-grid-fund/smart-grid-fund-projects/canadian-solar/
http://www.energy.gov.on.ca/en/smart-grid-fund/smart-grid-fund-projects/canadian-solar/
https://news.ontario.ca/mndmf/en/2015/08/ontario-investing-25-million-in-first-nation-renewable-energy-project.html
https://news.ontario.ca/mndmf/en/2015/08/ontario-investing-25-million-in-first-nation-renewable-energy-project.html
http://www.watsonlake.ca/town-government/watson-lake-hydro-potential-study/
http://www.watsonlake.ca/town-government/watson-lake-hydro-potential-study/


 

207 

Murray, N. (2015, Nov. 20). Qulliq Energy to test solar panels in Nunavut. Retrieved from CBC 

News: Retrieved Dec. 29, 2015 from: http://www.cbc.ca/news/canada/north/qulliq-

energy-to-test-solar-panels-in-nunavut-1.3326524. 

Musiolik, J., & Markard, J. (2011). Creating and shaping innovation systems: Formal networks in 

the innovation system for stationary fuel cells in Germany. Energy Policy, Vol. 39, 1909-

1922. 

Nacher, D. (2001). Co-Management: An Aboriginal Response to Frontier Development. The 

Northern Review, Vol. 23, 146-163. 

Nadasdy, P. (2003). Hunters and Bureaucrats: Power, Knowledge, and Aboriginal-State 

Relations in the Southwest Yukon. Vancouver: UBC Press. 

NAN. (2007). A Handbook on Consultation in Natural Resource Development. Retrieved Oct. 

15, 2017 from: http://www.nan.on.ca/upload/documents/pub---nan-handbook-on-

consultation---3rd.pdf. 

NAN. (2012). NAN Chiefs/First Nations energy conference report. Nishnawbe Aski Nation: 

Retrieved Nov. 7, 2016 from: http://www.nan.on.ca/upload/documents/pub---2012-

energy-conference-report-jdb.pdf.. 

NAN. (2014, Jan 12). About Us. Retrieved Oct. 28, 2017 from: Nishnawbe Aski Nation (NAN) 

website: http://www.nan.on.ca/article/about-us-3.asp. 

NAN. (2014a). NAN Chiefs Energy Conference Presentations-Independent Power Authorities 

Initiative. Retrieved Jan. 23, 2014 from NAN: 

http://www.nan.on.ca/upload/documents/energy2012-pr-brian-davey-marlon-gasparotto--

-independent-power-authorities.pdf. 

NAN. (2014b). 2012 NAN Chiefs Energy Conference Presentations- Energy Overview in 

Nishnawbe Aski Nation Territory. Retrieved Jan. 23, 2014 from NAN: 

http://www.nan.on.ca/upload/documents/energy2012-pr-ed-hoshizaki---community-

energy-needs.pdf. 

NAN-HORCI. (2013). Nishnawbe Aski Nation (NAN) Interrogatories-HORCI. 2013 Rates 

rebasing Application-EB-2012-0137. Thunder Bay: NAN and Hydro One Remote 

Communities Inc. 

Natcher, D., Hickey, C., & Davis, S. (2004). The political ecology of Yukon forestry: managing 

the forest as if people mattered. International Journal of Sustainable Development & 

World Ecology, Vol. 11, 343-355. 

Nathwani, J. (2014). Sustainable Energy Pathways for Smart Urbanization and Off Grid Access: 

Options and Policies for Military Installations and Remote Communities. In I. Linkov, 

Sustainable Cities and Military Installations (pp. 229-261). Dordrecht: Springer Science 

Business Media. 

NBS. (2014, Febr. 08). Population Estimates report July 2014. Nunavut Bureau of Statistics: 

Retrieved from Nunavut Bureau of Statistics: 

http://www.stats.gov.nu.ca/en/Population%20estimate.aspx. 

NCC. (2016, 03 15). In the news. Retrieved from NCC Development LP: 

http://www.nccsolar.com/media/news/wynne-government-announcement/. 

NE. (2014). Nalcor Energy-NFHydro. Strategic Plan 2014-2016. Nalcor Energy and 

Newfoundland Hydro: Retrieved 20 May 2016 from: 

http://www.cbc.ca/news/canada/north/qulliq-energy-to-test-solar-panels-in-nunavut-1.3326524
http://www.cbc.ca/news/canada/north/qulliq-energy-to-test-solar-panels-in-nunavut-1.3326524
http://www.nan.on.ca/upload/documents/pub---nan-handbook-on-consultation---3rd.pdf
http://www.nan.on.ca/upload/documents/pub---nan-handbook-on-consultation---3rd.pdf
http://www.nan.on.ca/upload/documents/pub---2012-energy-conference-report-jdb.pdf
http://www.nan.on.ca/upload/documents/pub---2012-energy-conference-report-jdb.pdf
http://www.nan.on.ca/article/about-us-3.asp
http://www.nan.on.ca/upload/documents/energy2012-pr-brian-davey-marlon-gasparotto---independent-power-authorities.pdf
http://www.nan.on.ca/upload/documents/energy2012-pr-brian-davey-marlon-gasparotto---independent-power-authorities.pdf
http://www.nan.on.ca/upload/documents/energy2012-pr-ed-hoshizaki---community-energy-needs.pdf
http://www.nan.on.ca/upload/documents/energy2012-pr-ed-hoshizaki---community-energy-needs.pdf
http://www.stats.gov.nu.ca/en/Population%20estimate.aspx
http://www.nccsolar.com/media/news/wynne-government-announcement/


 

208 

http://www.nr.gov.nl.ca/nr/publications/pdf/Nalcor-Hydro_2014-

16_Strategic_Plan_(Tabled).pdf. 

Negro, S., Alkemade, F., & Hekkert, M. (2012). Why does renewable energy diffuse so slowly? 

A review of innovation system problems. Renewable and Sustainable Energy Reviews , 

Vol. 16, 3836-3846. 

Negro, S., Hekkert, M., & Smits, R. (2007). Explaining the failure of the Dutch innovation 

system for biomass digestion—A functional analysis. Energy Policy, Vol. 35, 925-938. 

Negro, S., Suurs, R., & Hekkert, M. (2008). The bumpy road of biomass gasification in the 

Netherlands: Explaining the rise and fall of an emerging innovation system. 

Technological Forecasting & Social Change, Vol. 75, 57-77. 

Neij, L., Heiskanen, E., & Strupeit, L. (2017). The deployment of new energy technologies and 

the need for local learning. Energy Policy, Vol. 101, 274-283. 

Ness, B., Urbel-Piirsalu, E., Anderberg, S., & Olsson, L. (2007). Categorising tools for 

sustainability assessment. Ecological Economics, Vol. 60, 498-508. 

Netherton, A. (2007). The Political Economy of Canadian Hydro-Electricity: Between Old 

“Provincial Hydros” and Neoliberal Regional Energy Regimes. Canadian Political 

Science Review, Vol. 1(1), 107-124. 

NFL. (2011). Charting the course. Climate change Action Plan 2011. Government of 

Newfoundland and Labrador: Retrieved Jun. 15, 2016 from: 

http://www.exec.gov.nl.ca/exec/ccee/publications/climate_change.pdf. 

NFL Hydro. (2009). Preliminary Assessment of Alternative Energy Potential in Coastal 

Labrador. Retrieved Oct. 22, 2015: 

http://www.nr.gov.nl.ca/nr/publications/energy/preliminary_assessment_of_alternative_e

nergy_potential_in_coastal_labrador.pdf. 

NFL-AA. (n.d.). The future of our land. The future for our children. A Northern Strategic Plan 

for Labrador. Department of Labrador and Aboriginal Affairs. 

NG. (2016). Nunatsiavut Energy Security Plan. Retrieved from Nunatsiavut Government: 

http://www.nunatsiavut.com/article/nunatsiavut-energy-security-plan/. 

Nigim, K., Ahmed, F., Reiser, H., Ramani, O., & Mousa, A. (2010). Strategies for rapid 

development of renewable energy technologies infrastructure. IEEE International Energy 

Conference. 

NLH. (2015). 2015 Schedule of Rates, Rules and Regulations. Newfoundland and Labrador 

Hydro. 

NLH. (2016, June 16). Transmission and Rural Operations. Retrieved from Newfoundland 

Labrador Hydro: https://www.nlhydro.com/operations/transmission-and-rural-

operations/. 

NLH. (2017). 2017 7 Schedule of Rate, Rules and Regulations. Retrieved Oct. 31, 2017, from 

http://www.pub.nf.ca/applications/NLH2017GRA/index.htm. 

NO. (2011, July 20). Nunavik wants to join Quebec power grid: Plan Nunavik. Retrieved from 

Nunatsiaq Online: Retrieved Jun. 14, 2016 from: 

http://www.nunatsiaqonline.ca/stories/article/20889_nunavik_wants_to_join_quebecs_po

wer_grid. 

http://www.nr.gov.nl.ca/nr/publications/pdf/Nalcor-Hydro_2014-16_Strategic_Plan_(Tabled).pdf
http://www.nr.gov.nl.ca/nr/publications/pdf/Nalcor-Hydro_2014-16_Strategic_Plan_(Tabled).pdf
http://www.exec.gov.nl.ca/exec/ccee/publications/climate_change.pdf
http://www.nr.gov.nl.ca/nr/publications/energy/preliminary_assessment_of_alternative_energy_potential_in_coastal_labrador.pdf
http://www.nr.gov.nl.ca/nr/publications/energy/preliminary_assessment_of_alternative_energy_potential_in_coastal_labrador.pdf
http://www.nunatsiavut.com/article/nunatsiavut-energy-security-plan/
https://www.nlhydro.com/operations/transmission-and-rural-operations/
https://www.nlhydro.com/operations/transmission-and-rural-operations/
http://www.pub.nf.ca/applications/NLH2017GRA/index.htm
http://www.nunatsiaqonline.ca/stories/article/20889_nunavik_wants_to_join_quebecs_power_grid
http://www.nunatsiaqonline.ca/stories/article/20889_nunavik_wants_to_join_quebecs_power_grid


 

209 

Northern Premiers Forum. (2014). Renewable energy inventory. Retrieved Dec. 30, 2015 from A 

Northern Vision: http://www.anorthernvision.ca/inventory/. 

Northern Vision. (2014). A northern vision: building a better north. Premiers of the Northwest 

Territories, Yukon and Nunavut. 

Northwestel. (2015, Dec. 12). About Us. Retrieved from Northwestel: 

https://www.nwtel.ca/about-us/corporate-media/news-releases/2014/northwestel-deploys-

four-solar-panel-arrays-power-remote. 

NRBHSS. (2013). Parnasimautik-Information Sheet 15-Energy. Nunavik Regional Board of 

Health and Social Services: Retrieved Jun. 14, 2016 from: 

http://www.krg.ca/images/stories/docs/Parnasimautik/Parnasimautik%20Workshops/Info

rmation%20sheets/ENG/15%20Our%20Region%20energy%20eng_v2.pdf. 

NRBHSS. (2014). Parnasimautik Consultation Report. Nunavik Regional Board of Health and 

Social Services. 

NRCan. (2013a). Energy and Mines Minister's Conference: Mining sector performance report 

1998-2012. NRCan. 

NRCan. (2013b). Energy and Mines Ministers’ Conference: Capturing the opportunity-Realizing 

a shared vision for Canada's energy and mining sectors. Yellowknife, NWT: NRCan. 

NRCan. (2014). Our Resources, New Frontiers: Overview of Competitiveness in Canada’s 

Natural Resources Sector. Energy and Mines Ministers’ Conference: Sudbury, Ontario: 

Retrieved May 20, 2016 from: 

http://www.nrcan.gc.ca/sites/www.nrcan.gc.ca/files/www/pdf/publications/emmc/14-

0179_Our%20Resources%20New%20Frontiers_e.pdf. 

NRCan. (2016a). About electricity. Retrieved from Natural Resources Canada: 

http://www.nrcan.gc.ca/energy/electricity-infrastructure/about-electricity/7359. 

NRCan. (2016b). Development of a Utility Grade Controller for Remote Microgrids with High 

Penetration Renewable Generation . Retrieved from Natural Resources Canada: 

http://www.nrcan.gc.ca/energy/funding/current-funding-programs/eii/16095. 

NRCan. (2017a). Glencore RAGLAN Mine Renewable Electricity Smart-Grid Pilot 

Demonstration. Retrieved from Natural Resources Canada: 

http://www.nrcan.gc.ca/energy/funding/current-funding-programs/eii/16662. 

NRCan. (2017b). The ecoENERGY Innovation Initiative. Retrieved from Natural Resources 

Canada: https://www.nrcan.gc.ca/plans-performance-reports/dpr/2015-2016/19036. 

NREL. (2005). Getting Started Guide for HOMER. National Renewable Energy Laboratory. 

NREL. (2014, Oct. 20). Solar Energy Prices See Double-digit Declines in 2013; Trend Expected 

to Continue. Retrieved Jan. 22, 2015 from National Renewable Energy Laboratory: 

http://www.nrel.gov/news/press/2014/15405.html. 

NT Energy. (2013). A vision for the NWT Power System Plan. NT Energy. 

NTPC. (2007). Remote community wind energy conference, Tuktoyaktuk, NT. Tuktoyaktuk, NT: 

Retrieved April 15, 2016 from: http://www.enr.gov.nt.ca/files/remote-community-wind-

energy-conference. 

NTPC. (2012). A review of the cost pressures facing the Northwest Territories Power 

Corporation. Northwest Territories Power Corporation: Retrieved  May 19, 2016 from: 

http://www.assembly.gov.nt.ca/sites/default/files/12-06-06td20-173.pdf. 

http://www.anorthernvision.ca/inventory/
https://www.nwtel.ca/about-us/corporate-media/news-releases/2014/northwestel-deploys-four-solar-panel-arrays-power-remote
https://www.nwtel.ca/about-us/corporate-media/news-releases/2014/northwestel-deploys-four-solar-panel-arrays-power-remote
http://www.krg.ca/images/stories/docs/Parnasimautik/Parnasimautik%20Workshops/Information%20sheets/ENG/15%20Our%20Region%20energy%20eng_v2.pdf
http://www.krg.ca/images/stories/docs/Parnasimautik/Parnasimautik%20Workshops/Information%20sheets/ENG/15%20Our%20Region%20energy%20eng_v2.pdf
http://www.nrcan.gc.ca/sites/www.nrcan.gc.ca/files/www/pdf/publications/emmc/14-0179_Our%20Resources%20New%20Frontiers_e.pdf
http://www.nrcan.gc.ca/sites/www.nrcan.gc.ca/files/www/pdf/publications/emmc/14-0179_Our%20Resources%20New%20Frontiers_e.pdf
http://www.nrcan.gc.ca/energy/electricity-infrastructure/about-electricity/7359
http://www.nrcan.gc.ca/energy/funding/current-funding-programs/eii/16095
http://www.nrcan.gc.ca/energy/funding/current-funding-programs/eii/16662
https://www.nrcan.gc.ca/plans-performance-reports/dpr/2015-2016/19036
http://www.nrel.gov/news/press/2014/15405.html
http://www.enr.gov.nt.ca/files/remote-community-wind-energy-conference
http://www.enr.gov.nt.ca/files/remote-community-wind-energy-conference
http://www.assembly.gov.nt.ca/sites/default/files/12-06-06td20-173.pdf


 

210 

NTPC. (2016a, May 25). History of the Corporation. Retrieved from Northwest Territories 

Power Corporation: https://www.ntpc.com/about-ntpc/history. 

NTPC. (2016b, Dec. 22). Net Metering. Retrieved from Northwest Territories Power 

Corporation: https://www.ntpc.com/customer-service/net-billing. 

NTPC. (2016c, Sept. 20). Colville Lake Solar Project. Retrieved from Northwest Territories 

Power Corporation: https://www.ntpc.com/smart-energy/how-to-save-energy/colville-

lake-solar-project. 

NTPC. (2016d, May 19). Residential Electrical Rates-Thermal Zone Communities. Retrieved 

from Northwest Territories Power Corporation: https://www.ntpc.com/customer-

service/residential-service/what-is-my-power-rate. 

Nunavut Power. (n.d. ). Wind Power Generation. Regie de l'energie Quebec: Retrieved April 05, 

2016 from: http://www.regie-energie.qc.ca/audiences/3526-

04/DocumentsAudi3526/HQP-6Doc-3_3526_WindPowerGener_18mai04.pdf. 

NWT. (2011). Paths to a Renewable North. A pan-territorial renewable energy inventory. 

Retrieved Jan. 15, 2015 from Government of the Northwest Territories: 

http://www.anorthernvision.ca/documents/RenewableEnergyInventoryEN.pdf. 

Nygaard, I., & Hansen, U. (2016). Niche development and upgrading in the PV value chain: The 

case of local assembly of PV panels in Senegal. EU-SPRI Conference Lund 2016 (pp. 

247-248). Lund: EU-SPRI . 

Nygren, A., & Rikoon, S. (2008). Political Ecology Revisited: Integration of Politics and 

Ecology Does Matter. Society and Natural Resources, Vol. 21, 767-782. 

OAG. (2003). Chapter 9. Economic Development of First Nations Communities: Institutional 

Arrangements. Ottawa: Office of the Auditor General. 

OAG. (2016, April 15). Sustainable Development Strategies. Retrieved from Office of the 

Auditor General of Canada: http://www.oag-

vg.gc.ca/internet/English/sds_fs_e_920.html. 

Obydenkova, S., Kouris, P., Hensen, E., Heeres, H., & Boot, M. (2017). Environmental 

economics of lignin derived transport fuels. Bioresource Technology, Vol. 243, 589-599. 

Ockwell, D., Byrne, R., Hansen, E., Haselip, J., & Nyggard, I. (2018). The uptake and diffusion 

of solar power in Africa: Socio-cultural and political insights on a rapidly emerging 

socio-technical transition. Energy Research & Social Science, Vol. 44, 122-129. 

Odell, J. (2001). Case study methods in international political economy. International Studies 

Perspectives, Vol. 1, 161-176. 

OEB. (2008). Evidence of the Intervenor The Nishnawbe Aski Nation. Toronto: Ontario Energy 

Board. 

OECD. (2012). Linking Renewable Energy to Rural Development. Paris: OECD Publishing. 

OFA. (2016, Dec. 05). Aboriginal Loan Guarantee Program. Retrieved from Ontario Financing 

Authority: https://www.ofina.on.ca/algp/. 

OME. (2013). Achieving Balance: Ontario's Long Term Energy Plan. Toronto, Ontario: Ontario 

Ministry of Energy. 

OME. (2017). Ontario's Long Term Energy Plan-Delivering fairness and choice. Toronto, 

Ontario: Ontario Ministry of Energy. 

https://www.ntpc.com/about-ntpc/history
https://www.ntpc.com/customer-service/net-billing
https://www.ntpc.com/smart-energy/how-to-save-energy/colville-lake-solar-project
https://www.ntpc.com/smart-energy/how-to-save-energy/colville-lake-solar-project
https://www.ntpc.com/customer-service/residential-service/what-is-my-power-rate
https://www.ntpc.com/customer-service/residential-service/what-is-my-power-rate
http://www.regie-energie.qc.ca/audiences/3526-04/DocumentsAudi3526/HQP-6Doc-3_3526_WindPowerGener_18mai04.pdf
http://www.regie-energie.qc.ca/audiences/3526-04/DocumentsAudi3526/HQP-6Doc-3_3526_WindPowerGener_18mai04.pdf
http://www.anorthernvision.ca/documents/RenewableEnergyInventoryEN.pdf
http://www.oag-vg.gc.ca/internet/English/sds_fs_e_920.html
http://www.oag-vg.gc.ca/internet/English/sds_fs_e_920.html
https://www.ofina.on.ca/algp/


 

211 

Omri, A. (2014). An international literature survey on energy-economic growth nexus:Evidence 

from country-specific studies. Renewable and Sustainable Energy Reviews, Vol. 38, 951-

959. 

OPA. (2010). Technical report for the connection of remote First Nation communities in 

Northwest Ontario for Northwest Ontario First Nation Transmission Planning 

Committee. Ontario Power Authority (OPA). 

OPA. (2014). Draft technical report and business case for the connection of remote First Nation 

communities in Northwest Ontario.  

OPC. (2010). Outlook 2020: Realizing British Columbia's second renewable enlectricity 

revolution. OnPoint Consulting, Business Council of British Columbia. Retrieved Feb. 3, 

2015 from: http://www.bcbc.com/content/581/2020_201004_Molinski_Electricity.pdf. 

Orsato, R., Clegg, S., & Falcao, H. (2013). The Political Ecology of Palm Oil Production. 

Journal of Change Management, Vol. 13(4), 444-459. 

OSEA. (n.d.). Ontario First Nations and Renewable Energy. Context, Opportunities, and Case 

Studies. Windfall Ecology Centre. Retrieved Dec. 28, 2014: 

http://www.turtleisland.org/resources/renewenergy.pdf. 

Osler. (2017, Aug. 08). Tsilhqot’in Decision: The Sky Is Not Falling. Retrieved Oct. 31, 2017, 

from Osler: https://www.osler.com/en/resources/regulations/2014/tsilhqot-in-decision-

the-sky-is-not-falling. 

Osler, C. (2011). Diesel and thermal electricity generation options. Intergroup Consultants, 

Whitehorse. 

Ostrom, A. (1981). Small hydro development in Canadian remote communities. Waterpower 

1981, Proceedings Int.Conference on Hydropower, (pp. 1187-1200). Washington,DC. 

Ostrom, E. (2011). Background on the Institutional Analysis and Development Framework. The 

Policy Studies Journal, Vol. 39 (1), 7-28. 

PA-Hatch (2015). Review of the Newfoundland and Labrador Electricity System. Power 

Advisory LLC-Hatch Ltd. 

Palm, A. (2015). An emerging innovation system for deployment of building-sited solar 

photovoltaics in Sweden. Environmental Innovation and Societal Transitions, Vol.15, 

140-157. 

Parcher, C. (2004). Barriers to the implementation of renewable energy systems in remote First 

Nation communities. Major Paper: Department of Economics-University of Ottawa. 

Pentland, B. (1999). Building Process Theory with Narrative: From Description to Explanation. 

The Academy of Management Review, Vol. 24 (4), 711-724. 

Peredo, A., & Chrisman, J. (2006). Toward a Theory of Community-based enterprise. Academy 

of Management Review, Vol. 31, 309-328. 

PI. (2018, Jul. 10). Reconciliation and Budget 2017: unlocking support for Indigenous 

communities’ transition to clean energy. Retrieved from Pembina Institute: 

http://www.pembina.org. 

Pinard, J. (2007). Executive progress report for wind energy monitoring in six communities in the 

NWT. Inuvik, NWT: Aurora Research Institute. 

http://www.bcbc.com/content/581/2020_201004_Molinski_Electricity.pdf
http://www.turtleisland.org/resources/renewenergy.pdf
https://www.osler.com/en/resources/regulations/2014/tsilhqot-in-decision-the-sky-is-not-falling
https://www.osler.com/en/resources/regulations/2014/tsilhqot-in-decision-the-sky-is-not-falling


 

212 

Pinard, J. (2013). The Kluane Wind project. Building renewable energy future for First Nation 

communities. Community Energy Summit, Kluane Lake. 

Pinard, J. (2014). Update of wind measurement at the Kluane Wind Project site. Yukon College. 

Pinard, J., & Maissan, J. (2008). Colville Lake wind pre-feasibility analysis. Inuvik, NWT: 

Aurora Research Institute. 

Pneumatikos, S. (2003 ). Renewable Energy in Canada Status Report 2002. Office of Energy 

Research and Development, Natural Resources Canada, Ottawa, Ontario, Canada. 

Retrieved Dec. 16, 2016 from: http://publications.gc.ca/collections/Collection/M92-264-

2002E.pdf. 

Pohekar, S., & Ramachandran, M. (2004). Application of multi-criteria decision making 

tosustainable energy planning—A review. Renewable and Sustainable Energy Reviews, 

Vol. 8, 365-381. 

Poissant, Y., Thevenard, D., & Turcotte, D. (2004). Performance monitoring of the Nunavut 

Arctic College PV system: nine years of reliable electricity generation. Varennes, QC: 

CANMET Energy Technology Centre, Natural Resources Canada. 

Poole, S., van den Ven, H., Dooley, K., & Holmes, E. (2000). Organizational change and 

innovation processes: theory and methods for research. New York: Oxford University 

Press. 

Pope, J., Annandale, D., & Saunders, A. (2004). Conceptualising sustainability assessment. 

Environmental Impact Assessment Review, Vol. 24(6), 595-616. 

Public Policy Forum. (2006). Sharing in the Benefits of Resource Developments: A Study of First 

Nations-Industry Impact Benefits Agreements. Ottawa: Public Policy Forum. 

PWC. (2015). Wataynikaneyap Power Project-Socioeconomic Impact Analysis of Building Grid 

Connection to Ontario’s Remote Communities. PWC.  

QEC. (2002). Wind Power report. Qullic Energy Corporation. 

QEC. (2013). Qulliq Energy Corporation 2014/15 General Rate Application. Iqaluit, NU: Qulliq 

Energy Corporation. 

QEC. (2014). QEC-13th Annual report 2014-2015. Qulliq Energy Corporation. Retrieved from: 

http://www.qec.nu.ca/home/. 

QEC. (2015a, Dec. 28). Qulliq Energy Corporation Corporate Plan 2015-2019. Qulliq Energy 

Corporation.  

QEC. (2015b, Dec. 29). Billings Centre-Rates schedule effective May 1, 2014. Qulliq Energy 

Corporation. 

Rae, C., & Bradley, F. (2012). Energy autonomy in sustainable communities—A review of key 

issues. Renewable and Sustainable Energy Reviews, Vol.16, 6497–6506. 

Raisio, H. (2010). Embracing the wickedness of health care. Essays on Reforms, Wicked 

Problems and Public Deliberation. Odensee: Syddansk Universitet-Universitas 

Wasaensis. 

Rata, E. (2004). Neotribal capitalism and public policy. Political Science, Vol. 56 (1), 55-64. 

Raven, R. (2005). Strategic Niche Management for Biomass. A comparative study on the 

experimental introduction of bioenergy technologies in the Netherlands and Denmark. 

Eindhoven: Technische Universiteit Eindhoven- Eindhoven University Press. 

http://publications.gc.ca/collections/Collection/M92-264-2002E.pdf
http://publications.gc.ca/collections/Collection/M92-264-2002E.pdf
http://www.qec.nu.ca/home/


 

213 

Rayner, S. (2006). Jack Beale memorial Lecture on global environment wicked problems: clumsy 

solutions-diagnoses and prescriptions for environmental ills. Institute for Science, 

Innovation and Society, ANSW Sydney, Australia. 

RCAP. (1996). Restructuring the Relationship-Royal Commission on Aboriginal Peoples-Volume 

2, Chapter 5. Ottawa: Royal Commission on Aboriginal Peoples. 

Reiter, B. (2017). Theory and Methodology of Exploratory Social Science Research. Government 

and International Affairs Faculty Publications. 132. 

https://scholarcommons.usf.edu/gia_facpub/132. 

Reschny, J. (2007). Mining, Inuit traditional activities and Sustainable development: a study of 

the effects of winter shipping at the Voisey's Bay nickel mine. St. John, NFL: Memorial 

University of Newfoundland-Master's Thesis. 

Rezaei, M., & Dowlatabadi, H. (2016). Off-grid: community energy and the pursuit of self-

sufficiency in British Columbia's remote and First Nations communities. Local 

Environment: The International Journal of Justice and Sustainability, Vol. 21(7), 789-

807. 

Rheaume, G., & Caron-Vuatari, M. (2013). The Future of Mining in Canada's North. The 

Conference Board of Canada. 

Rhodes, R. (2000). Governance and the Public Administration. In J. Pierre, Debating 

governance. Authority, steering, and democracy (pp. 54-91). Oxford: Oxford University 

Press. 

Ribeiro, F., Ferreira, P., & Araújo, M. (2011). The inclusion of social aspects in power planning. 

Renewable and Sustainable Energy Reviews , Vol.15, 4361– 4369. 

Ribeiro, F., Ferreira, P., & Araujo, M. (2013). Evaluating future scenarios for the power 

generation sector using a Multi-Criteria Decision Analysis (MCDA) tool: The Portuguese 

case. Energy, Vol. 52, 126-136. 

Ribot, J., & Peluso, N. (2003). A Theory of Access. Rural Sociology, Vol. 68(2), 153-181. 

Richards, G., Noble, B., & Belcher, K. (2012). Barriers to renewable energy development: A case 

study of large-scale wind energy in Saskatchewan, Canada. Energy Policy, Vol. 42, 691-

698. 

Ritchey, T. (2013). Modelling Social Messes with Morphological Analysis. Acta Morphologica 

Generalis, Vol. 2(1), 1-8. 

Rittel, H., & Webber, M. (1973). Dilemmas in a general theory of planning. Policy Sciences, 

Vol.4, 155-169. 

RMA. (2014). 2014 NWY Energy Charette final report. Yellowknife: R. Marshall & Associates. 

Roberts, N. (2000). Wicked problems and network approaches to resolution. International Public 

Management Review, Vol. 1(1), 1-19. 

Roepke, I. (2004). The history of modern ecological economics. Ecological Economics, Vol. 50, 

293-314. 

Rogers, S. (2014). Hydro-Québec says Nunavik wind, underwater power projects “not 

profitable”. Retrieved from Nunatsiaq Online: Retrieved Jun. 15, 2016 from: 

http://www.nunatsiaqonline.ca/stories/article/65674hydro_quebec_says_wind_underwate

r_power_projects_not_profitable/. 

https://scholarcommons.usf.edu/gia_facpub/132
http://www.nunatsiaqonline.ca/stories/article/65674hydro_quebec_says_wind_underwater_power_projects_not_profitable/
http://www.nunatsiaqonline.ca/stories/article/65674hydro_quebec_says_wind_underwater_power_projects_not_profitable/


 

214 

Rogers, S. (2015, October 06). Manitoba-Nunavut hydro link is economically viable: study. 

Retrieved Oct. 05, 2017, from Nunatsiaq Online: 

http://www.nunatsiaqonline.ca/stories/article/65674manitoba-

nunavut_hydro_link_economically_viable_study/. 

Rohner, T. (2015, May 28). Peterson pulls the plug on Nunavut MLA’s green energy dreams. 

Retrieved from Nunatsiaq Online: 

http://www.nunatsiaqonline.ca/stories/article/65674peterson_pulls_the_plug_on_nunavut

_mlas_green_energy_dreams/. 

Rolland, S., & Glania, G. (2011). Hybrid mini-grids for rural electrification: lessons learned. 

USAID and Alliance for Rural Electrification (ARE). 

Ronson, J. (2014, Feb. 10). Old Crow pushes for renewable power. Retrieved from Yukon News: 

http://yukon-news.com/news/old-crow-pushes-for-renewable-power/. 

Rosenbloom, D. (2017). Pathways: An emerging concept for the theory and governance of low-

carbon transitions. Global Environmental Change, Vol. 43, 37-50. 

Rosenbloom, D., & Meadowcroft, J. (2014). The journey towards decarbonization: Exploring 

socio-technical transitions in the electricity sector in the province of Ontario (1885–2013) 

and potential low-carbon pathways. Energy Policy, Vol. 65, 670-679. 

Rotmans, J., Kemp, R., & VanAsselt, M. (2001). More evolution than revolution: transitions 

management in public policy. Foresight, Vol. 3(1), 15-31. 

Rowlands, I. (2007). The Development of Renewable Electricity Policy in the Province of 

Ontario: The Influence of Ideas and Timing. Review of Policy Research, Vol. 24, 185-

207. 

RWB. (2011). Iskut River Hydroelectric Development Project. Transboundary Watershed 

Conservation Briefing. Rivers Without Borders. 

Salomon, B., & Calvert , K. (2017). Introduction: energy and the geographical traditions. In B. 

Salomon, & K. Calvert, Handbook on the geographies of energy (pp. 1-8). Cheltenham: 

Edward Elgar Publishing Ltd. 

SCC. (2014). Tsilhqot'in Nation v. British Columbia, 2014 SCC 44. Supreme Court of Canada. 

Schot, J., & Geels, F. (2008). Strategic niche management and sustainable innovation journeys: 

theory, findings, research agenda, and policy. Technology Analysis & Strategic 

Management, Vol. 20(5), 537-554. 

Schulze, D. (2008). Comparative governace structures among aboriginal peoples in Canada. 

Vancouver, BC: The Scow Institute. 

Scrace, I., & Smith, A. (2009). The (non-)politics of managing low carbon socio-technical 

transitions. Environmental Politics, Vol. 18(5), 707-726. 

Senate Canada. (2014a). Powering Canada's Territories. Ottawa: Standing Senate Committee on 

Energy, the Environment and Natural Resources. 

Senate Canada. (2014b). Evidence-The Standing Senate Committee on Energy, the Environment 

and Natural Resources. Ottawa, Thursday, November 20, 2014: Senate Canada. 

Senate Committee. (2007). Sharing Canada's prosperity-A Hand Up, Not A Handout. Ottawa: 

Standing Senate Committee on Aboriginal Peoples. 

http://www.nunatsiaqonline.ca/stories/article/65674manitoba-nunavut_hydro_link_economically_viable_study/
http://www.nunatsiaqonline.ca/stories/article/65674manitoba-nunavut_hydro_link_economically_viable_study/
http://www.nunatsiaqonline.ca/stories/article/65674peterson_pulls_the_plug_on_nunavut_mlas_green_energy_dreams/
http://www.nunatsiaqonline.ca/stories/article/65674peterson_pulls_the_plug_on_nunavut_mlas_green_energy_dreams/
http://yukon-news.com/news/old-crow-pushes-for-renewable-power/


 

215 

Seyfang, G., & Smith, A. (2007). Grassroots Innovations for Sustainable Development: Towards 

a New Research and Policy Agenda. Environmental Politics, Vol. 16(4), 584-603. 

Shove, E., & Walker, G. (2007). Caution! Transitions Ahead: Politics, Practice, and Sustainable 

Transition Management . Environment and Planning A, Vol. 39, 763-770. 

Sisco, A., & Stewart, N. (2009). True to Their Visions: An Account of 10 Successful Aboriginal 

Businesses. Conference Board of Canada. 

Slattery, B. (1987). Understanding Aboriginal rights. The Canadian Bar Review, Vol. 66, 727-

783. 

Slattery, B. (2007). A taxonomie of aboriginal rights. In H. Foster, H. Raven, & J. Webber , Let it 

be done: Aboriginal title, the Calder case and the future of Indigenous rights (pp. 111-

128). Vancouver: UBC Press. 

Slattery, M., Johnson, B., Swofford, J., & Pasqualetti, M. (2012). The predominance of economic 

development in the support for large-scale wind farms in the U.S. Great Plains. 

Renewable and Sustainable Energy Reviews, Vol. 16, 3690-3701. 

Slocombe, S. (2008). Evidence of the Intervenor, Northwatch. Toronto: Willms and Shier, 

Environmental lawyers LLP. 

Slowey, G. (2008). Navigating neoliberalism: self-determination and the Mikisew Cree First 

Nation. Vancouver: UBC Press. 

Smith, A., & Raven, R. (2012). What is protective space? Reconsidering niches in transitions to 

sustainability. Research Policy, Vol. 41, 1025-1036. 

Smith, A., Stirling, A., & Berkhout, F. (2005). The governance of sustainable socio-technical 

transitions. Research Policy , Vol. 34, 1491-1510. 

Smith, L. (2001). Decolonizing methodologies. Research and Indigenous people. London, New 

York and Dunedin: University of Otago Press. 

Snyder, R. (2001). Scaling Down: The Subnational Comparative Method. Studies in 

Comparative International Development, Vol. 36(1), 93-110. 

Sorell, S. (2018). Explaining sociotechnical transitions: A critical realist perspective. 

Research Policy, Vol. 47, 1267-1282. 
Sosa, I., & Keenan, K. (2001). Impact Benefit Agreements between Aboriginal communities and 

mining companies: their use in Canada. Retrieved Oct. 31, 2017, from: 
http://www.cela.ca/publications/impact-benefit-agreements-between-aboriginal-

communities-and-mining-companies-their-use. 

Southcott, C., & Irlbacher, S. (2009). Changing Northern Economies: Helping Northern 

Communities Build a Sustainable Future. Northern Development Ministers Forum. 

Southcott, C., & Walker, V. (2009). A Portrait of the Social Economy in Northern Canada. The 

Northern Review, Vol. 30, 13-36. 

Sovacool, B. (2000). The Political Ecology and Justice of Energy. In T. Van deGraaf, B. 

Sovacool, A. Ghosh, F. Kern, & M. Klare, The Palgrave Handbook of the international 

political economy of energy (pp. 529-558). London: Palgrave Handbooks. 

Sovacool, B., & Brown, M. (2010). Competing Dimensions of Energy Security: An International 

Perspective. Annual Review of Environment and Resources, Vol. 35, 77-108. 

http://www.cela.ca/publications/impact-benefit-agreements-between-aboriginal-communities-and-mining-companies-their-use
http://www.cela.ca/publications/impact-benefit-agreements-between-aboriginal-communities-and-mining-companies-their-use


 

216 

Sovacool, B., & Dworkin, M. (2015). Energy justice: Conceptual insights and practical 

applications. Applied Energy, Vol. 142, 435-444. 

Sovacool, B. (2014). What are we doing here? Analyzing fifteen years of energy scholarship and 

proposing a social science research agenda. Energy Research & Social Science, Vol.1, 1-

29. 

Soytas, U., & Sari, R. (2003). Energy consumption and GDP: causality relationship in G-7 

countries and emerging markets. Energy Economics, Vol. 25, 33-37. 

St.Denis, G., & Parker, P. (2009). Community energy planning in Canada: The role of renewable 

energy. Renewable and Sustainable Energy Reviews, Vol. 13, 2088-2095. 

STAC. (2011). Additional Industrial Electricity Load Growth in BC to 2025. Steve Davis & 

Associates Consulting Ltd. 

Statistics Canada. (2011). Aboriginal Peoples in Canada: First Nations People, Métis and Inuit. 

National Household Survey, 2011. Retrieved Oct. 31, 2017, from 

http://www12.statcan.gc.ca/nhs-enm/2011/as-sa/99-011-x/99-011-x2011001-eng.pdf. 

Statistics Canada. (2012). Population by Census Subdivision (CSD)-Newfoundland and 

Labrador. 2011 Census. Newfoundland Labrador Statistics Agency: Retrieved Jun. 16, 

2016 from: 

http://www.stats.gov.nl.ca/Statistics/Census2011/PDF/POP_CSD_Alphabetical_2011.pdf 

Statistics Canada. (2016a). Profile for the NHS Special Collection for 13 Indian reserves and 

Indian settlements in Northern Ontario, 2011. Retrieved Oct. 31, 2017, from Statistics 

Canada: http://www12.statcan.gc.ca/nhs-

enm/2011/ref/no13reserves/index.cfm?LANG=E. 

Statistics Canada. (2016b). Aboriginal Peoples: Fact Sheet for Yukon . Retrieved Sep. 26, 2018 

from Statistics Canada: https://www150.statcan.gc.ca/n1/pub/89-656-x/89-656-

x2016012-eng.htm. 

Stebins, R. (2011). Exploratory research in the social science. Thousand Oaks: SAGE 

Publications. 

Stephen, J., Mabee, W., Probowo, A., Pledger, S., Hart, R., Tallio, S., & Bull, G. (2016). 

Biomass for residential and commercial heating in a remote Canadian aboriginal 

community. Renewable Energy, Vol. 86, 563-575. 

Sterling, L., & Landmann, P. (2011). The duty to consult Aboriginal peoples: Government 

approaches to unresolved issues. In D. Wright, & A. Dodek, Public Law at the 

McLachlin Court-The First Decade. Irwin Law Inc. 

Stern, D. (2011). The role of energy in economic growth. Annals of the New York Academy of 

Science, Vol. 1219, 26-51. 

Stewart, N. (2009, March 01). Renewable energy sparking hope for First Nations: several 

hydroelectric projects already underway. Northern Ontario Business. Retrieved Feb. 8, 

2015 from: 

http://www.thefreelibrary.com/Renewable+energy+sparking+hope+for+First+Nations%3

A+several...-a0195856784. 

Stokes, L. (2013). The politics of renewable energy policies: The case of feed-in tariffs in 

Ontario,Canada. Energy Policy, Vol. 56 , 490–50. 

http://www12.statcan.gc.ca/nhs-enm/2011/as-sa/99-011-x/99-011-x2011001-eng.pdf
http://www.stats.gov.nl.ca/Statistics/Census2011/PDF/POP_CSD_Alphabetical_2011.pdf
http://www12.statcan.gc.ca/nhs-enm/2011/ref/no13reserves/index.cfm?LANG=E
http://www12.statcan.gc.ca/nhs-enm/2011/ref/no13reserves/index.cfm?LANG=E
https://www150.statcan.gc.ca/n1/pub/89-656-x/89-656-x2016012-eng.htm
https://www150.statcan.gc.ca/n1/pub/89-656-x/89-656-x2016012-eng.htm
http://www.thefreelibrary.com/Renewable+energy+sparking+hope+for+First+Nations%3A+several...-a0195856784
http://www.thefreelibrary.com/Renewable+energy+sparking+hope+for+First+Nations%3A+several...-a0195856784


 

217 

Strunz, S., Gawel, E., & Lehmann, P. (2016). The political economy of renewable energy 

policies in Germany and the EU. Utilities Policy, Vol. 42, 33-41. 

STS. (2016, 03 16). Shibogama Technical Services (STS). Retrieved from Shibogama First 

Nations Council : http://www.shibogama.on.ca/?q=technicalservices. 

Suurs, R., & Hekkert, M. (2009). Cumulative causation in the formation of a technological 

innovation system: The case of biofuels in the Netherlands. Technological Forecasting & 

Social Change, Vol. 76, 1003-1020. 

Suurs, R., Hekkert, M., Kieboom, S., & Smits, R. (2010). Understanding the formative stage of 

technological innovation system development: The case of natural gas as an automotive 

fuel. Energy Policy, Vol. 38, 419–431. 

Swiderski, A. (1992). Development Planning and Aboriginal Rights: the Case of Northern 

Canada. Progress in Planning, Vol. 37, 1-82. 

Tan, Y., Meegahapola, L., & Muttaqi, K. (2014). A review of technical challenges in planning 

and operation of remote area power supply systems. Renewable and Sustainable Energy 

Reviews, Vol. 38, 876-889. 

TB-CEDC. (2013). Mining readiness Strategy: An Integrated Regional Economic Development 

Plan. Thunder Bay: Thunder Bay CEDC. 

TBS. (2016, June 02). Federal Contaminated Sites Inventory. Retrieved from Treasury Board of 

Canada Secretariat: http://www.tbs-sct.gc.ca/fcsi-rscf/home-accueil-eng.aspx. 

TCM. (2014). Arctic Human Development Report. Regional Processes and Global Linkages. 

Copenhagen: Nordic Council of Ministers. 

Tigabu, A., Berkhout, F., & van Beukering, P. (2015). The diffusion of renewable energy 

technology and innovation system functioning: Comparing bio-digestion in Kenya and 

Rwanda. Technological Forecasting and Social Change, Vol. 90, 331-345. 

Tobin, C. (2016, 02 26). First Nation delves into renewable energy in earnest . Retrieved from 

Whitehorse Daily Star: http://www.whitehorsestar.com/News/first-nation-delves-into-

renewable-energy-in-earnest. 

Tolmalsquim, M., & Livino, A. (2017). Brazil's energy outlook. In B. Salomon, & K. Calvert, 

Handbook on the geographies of energy (pp. 313-324). Cheltenham: Edward Elgar 

Publishing Ltd. 

Toman, M., & Jemelkova, B. (2003). Energy and economic development: an assessment of the 

state of knowledge. Energy Journal, Vol. 24, 93-112. 

Trutnevyte, E., Stauffacher, M., & Scholz, R. (2012). Linking stakeholder visions with resource 

allocation scenarios and multi-criteria assessment. European Journal of Operational 

Research, Vol. 219, 762–772. 

Tugliq Energy. (n.d.). Glencore RAGLAN Mine Renewable Electricity Smart-Grid Pilot 

Demonstration. Retrieved on Jan. 27, 2017 from: 

https://www.nrcan.gc.ca/energy/funding/current-funding-programs/eii/16662. 

Tukker, P. (2016, July 11). Old Crow looks to solar power to cut diesel use. Retrieved from CBC 

News: http://www.cbc.ca/news/canada/north/old-crow-solar-power-proposal-yukon-

1.3674277. 

http://www.shibogama.on.ca/?q=technicalservices
http://www.tbs-sct.gc.ca/fcsi-rscf/home-accueil-eng.aspx
http://www.whitehorsestar.com/News/first-nation-delves-into-renewable-energy-in-earnest
http://www.whitehorsestar.com/News/first-nation-delves-into-renewable-energy-in-earnest
https://www.nrcan.gc.ca/energy/funding/current-funding-programs/eii/16662
http://www.cbc.ca/news/canada/north/old-crow-solar-power-proposal-yukon-1.3674277
http://www.cbc.ca/news/canada/north/old-crow-solar-power-proposal-yukon-1.3674277


 

218 

Turner, B., & Robbins, P. (2008). Land-Change Science and Political Ecology: Similarities, 

Differences, and Implications for Sustainability Science. Annual Review of Environment 

and Resources, Vol. 33, 295-316. 

Ulsrud, K., Rohracher, H., Winther, T., Muchunku, C., & Palit, D. (2018). Pathways to electricity 

for all: What makes village-scale solar power successful? Energy Research & Social 

Science, Vol. 44, 32-40. 

UN. (2016, Dec. 15). Sustainable development goal 7. Retrieved from United Nations. 

Sustainable Development Knowledge Platform: https://sustainabledevelopment.un.org/. 

UNDP. (2000). Energy and the challenge of sustainability. New York, NY: United Nations 

Development Program. 

UNDP. (2004). Gender and energy for sustainable development, a toolkit and resource guide. 

New York: United Nation Development Program. 

UNDP-ESMAP. (2003). Energy and poverty: how can modern energy services contribute to 

poverty reduction? Proceedings of a multi-sector workshop. Addis Abeba: United Nation 

Development Program, ESMAP—Energy Sector Management Assistance. 

Unruh, G. (2000). Understanding carbon lock-in. Energy Policy, Vol. 28, 817-830. 

Usher, E., Jean, G., & Howell, G. (1994). The use of photovoltaics in a northern climate. Solar 

Energy Materials and Solar Cells, Vol. 34, 73-81. 

Usher, P., Duhaime, G., & Searles, E. (2003). The household as an economic unit in Arctric 

Aboriginal communities, and its measurement by means of a comprehensive survey. 

Social Indicators Research, Vol. 61, 175-202. 

UW. (2014, April 21). Bringing green energy to remote Canadian communities. Retrieved from 

University of Waterloo: https://uwaterloo.ca/stories/bringing-green-energy-remote-

canadian-communities. 

Valentine, S. (2010). A STEP toward understanding wind power development policy barriers in 

advanced economies. Renewable and Sustainable Energy Reviews, Vol. 14(9), 2796-

2807. 

Valkenburg, G., & Cotella, G. (2016). Governance of energy transitions: about inclusion and 

closure in complex sociotechnical problems. Energy, Sustainability and Society, 6, 20. 

Van den Bergh, J. (2001). Ecological economics: themes, approaches, and differences with 

environmental economics. Regional Environmental Change, Vol. 2, 13-23. 

van den Boesch, S., & Taanman, M. (2006). How innovation impacts society. Patterns and 

mechanisms through which innovation contribute to transitions. Conference paper. 

van den Bosch, S., & Rotmans, S. (2008). Deepening, broadening and scaling up. A framework 

for steeering transition experiments. Knowledge Centre for sustainable system 

innovations and transitions (KCT). 

VanAlphen, K., Hekkert, M., & VanSark, W. (2008). Renewable energy technologies in the 

Maldives. Realizing the potential. Renewable and Sustainable Energy Reviews, Vol. 12, 

168-180. 

VanAlphen, K., Ruijven, J., Kasa, S., Hekkert, M., & Turkenburg, W. (2009). The performance 

of the Norwegian carbon dioxide, capture and storage innovation system. Energy Policy, 

Vol. 37, 43-55. 

https://sustainabledevelopment.un.org/
https://uwaterloo.ca/stories/bringing-green-energy-remote-canadian-communities
https://uwaterloo.ca/stories/bringing-green-energy-remote-canadian-communities


 

219 

Vayda, A. (2006). Causal explanation of Indonesian forest fires: Concepts, applications, and 

research priorities. Human Ecology, Vol. 35, 615-635. 

Vayda, A., & Walters, B. (1999). Against Political Ecology. Human Ecology, Vol. 27(1), 167-

179. 

Veltmeyer, H. (2013). The political economy of natural resource extraction: a new model or 

extractive imperialism? Canadian Journal of Development Studies, Vol. 34(1), 79-95. 

Verbong, G., & Geels, F. (2007). The ongoing energy transition: Lessons from a socio-technical, 

multi-level analysis of the Dutch electricity system (1960–2004). Energy Policy, Vol. 35, 

1025-1037. 

Verbong, G., Christiaens, W., Raven, R., & Balkema, A. (2010). Strategic Niche Management in 

an unstable regime: Biomass gasification in India. Environmental Science and Policy, 

Vol. 13, 272-281. 

Verweji, M., & Thompson, M. (2006). Clumsy Solutions for a Complex World: Governance, 

Politics and Plural Perceptions. Palgrave Macmillan: New York. 

VGFN. (2002). Vuntut Gwitchin First Nation Strategic Energy Plan 2001-2005. Retrieved Oct. 

5, 2017 from: http://emrlibrary.gov.yk.ca/energy/vgfn_strategic_energy_plan.pdf. 

Vidican, G., McElvaney, L., Samulewicz, D., & Al-Saleh, Y. (2012). An empirical examination 

of the development of a solar innovation system in the United Arab Emirates. Energy for 

Sustainable Development, Vol. 16, 179-188. 

Vining, A., & Richards, J. (2016). Indigenous economic development in Canada: Confronting 

principal-agent and principal–principal problems to reduce resource rent dissipation. 

Resources Policy, Vol. 49, 358-367. 

von der Porten, S. (2012). Canadian indigneous governace literature-a review. AlterNative: An 

International Journal of Indigenous Peoples, 1-14. 

Voss, J., & Bornemann, B. (2011). The politics of reflexive governance: challenges for designing 

adaptive management and transition management. Ecology and Society, Vol. 16(2), 9-31. 

Walker, G. (2008). What are the barriers and incentives for community-owned means of energy 

production and use? Energy Policy , Vol. 36, 4401-4405. 

Walker, G., & Devine-Wright, P. (2008). Community renewable energy: What should it mean? 

Energy Policy, Vol. 36, 497-500. 

Walker, G., Hunter, S., Devine-Wright, P., Evans, B., & Fay, H. (2007). Harnessing community 

energies: explaining and evaluating community-based localism in renewable energy 

policy in the UK. Global Environmental Politics, 64-82. 

Walker, P. (2005). Political ecology: where is the ecology? Progress in Human Geography, Vol. 

29(1), 73-82. 

Walker, P. (2006). Political ecology: where is the policy? Progress in Human Geography, Vol. 

30(3), 382-395. 

Walters, B. (2017). Explaining rural land use change and reforestation: A causal-historical 

approach. Land Use Policy, Vol.67, 608-624. 

Walters, B., & Vayda, A. (2009). Event Ecology, Causal Historical Analysis, and Human–

Environment Research. Annals of the Association of American Geographers, Vol. 99(3), 

534-553. 

http://emrlibrary.gov.yk.ca/energy/vgfn_strategic_energy_plan.pdf


 

220 

Wang, J., Jing, Y., Zhang, C., & Zhao, J. (2009). Review on multi-criteria decision analysis aid 

in sustainable energy decision-making. Renewable and Sustainable Energy Reviews, Vol. 

13, 2263-2278. 

Watkins, M. (1963). A Staple Theory of Economic Growth. The Canadian Journal of Economics 

and Political Science, Vol. 29 (2), 141-158. 

Watts, M. (1998). Petro-violence: some thoughts on community, extraction, and political 

economy. Working Paper 99. Institute of International Studies, University of Berkeley. 

WCED. (1987). Our Common Future-World Commission on Environment and Development. 

Oxford: Oxford University Press. 

Weber, E., & Khademian, A. (2008). Wicked Problems, Knowledge Challenges, and 

Collaborative Capacity Builders in Network Settings. Public Administration Review, Vol. 

68(2), 334-349. 

Weber, K., & Rohracher, H. (2012). Legitimizing research, technology and innovation policies 

for transformative change. Combining insights from innovation systems and multi-level 

perspective in a comprehensive ‘failures’ framework. Research Policy, Vol. 41, 1037-

1047. 

Weber-Pilwax, C. (2004). Indigenous researchers and indigenous research methods: cultural 

influences or cultural determinants of research methods. Pimatisiwin: A Journal of 

Aboriginal and Indigenous Community Health, Vol. 2(1), 77-90. 

Weingast, B., & Wittmann, D. (2015). The Reach of Political Economy. In D. Wittman, & B. 

Weingast, The Oxford Handbook of Political Economy (pp. 1-27). Oxford: Oxford 

Handbooks Online. 

Weis, T. (2006). Specific Issues Regarding First Nations and Wind Energy Development in 

Québec. Pembina Institute. 

Weis, T. (2011). Renewable North: policy considerations for wind diesel systems in Canada 

(PhD Thesis). Université du Québec à Rimouski. 

Weis, T. (2014). Implementation of wind energy projects in the autonomous networks and their 

coupling with diesel powered generators. Régie de l’énergie, R-3864-2013-Expert report. 

Weis, T., & Cobb, P. (2008). Aboriginal Energy Alternatives. The Pembina Institute. 

Weis, T., & Ilinca, A. (2008). The utility of energy storage to improve the economics of wind–

diesel power plants in Canada. Renewable Energy , Vol. 33, 1544–1557. 

Weis, T., & Ilinca, A. (2010). Assessing the potential for a wind power incentive for remote 

villages in Canada. Energy Policy, Vol. 38, 5504-5511. 

Weis, T., Ilinca, A., & Pinard, J. (2008). Stakeholder's perspectives on barriers to remote wind-

diesel power plants in Canada. Energy policy, Vol. 36(5), 1611-1621. 

WEL. (2009). Independent Power Producers (IPP) projects in British Columbia. Vancouver, BC 

V6J 2B3: West Environmental Law. 

Wellstead, A. (2007). The (Post) Staples Economy and the (Post) Staples State in Historical 

Perspective. Canadian Political Science Review, Vol 1(1), 8-25. 

Wesley-Esquimaux, C., & Calliou, B. (2010). Best Practices in Aboriginal Community 

Development: A Literature Review and Wise Practices Approach. Banff: The Banff 

Centre. 



 

221 

Widdowson, F. (2016). The Political Economy of Neotribal Rentierism: A Historical and 

Material Theory of Aboriginal-Non-Aboriginal Relations in Canada. University of 

Calgary: Paper Presented at the Annual Meeting of the Canadian Political Science 

Association, May 31-June 2, 2016. 

Wieczorek, A., & Hekkert, M. (2012). Systemic instruments for systemic innovation problems: A 

framework for policy makers and innovation scholars. Science and Public Policy, Vol. 

39, 74-87. 

Wieczorek, A., Hekkert, M., Coenen, L., & Harmsen, R. (2015). Broadening the national focus in 

technological innovation system analysis: The case of offshore wind. Environmental 

Innovation and Societal Transitions, Vol. 14, 128-148. 

Wilson, D., & Macdonald, D. (2010). The Income Gap between Aboriginal Peoples and the rest 

of Canada. Ottawa: Canadian Centre for Policy Alternatives. 

Wilson, S. (2001). What is indigenous research methodology? Canadian Journal of Native 

Education, Vol. 25(2), 175-179. 

Winfield, M. (2013). Understanding the Economic Impact of Renewable Energy Initiatives: 

Assessing Ontario’s Experience in a Comparative Context. Sustainable Energy Initiative, 

Faculty of Environmental Studies, York University. 

Winfield, M., Gibson, R., Markvart, T., Gaudreau, K., & Taylor, J. (2010). Implications of 

sustainability assessment for electricity system design: The case of the Ontario Power 

Authority’s integrated power system plan. Energy Policy , Vol. 38, 4115–4126. 

WN. (2014, May 02). Deer Lake celebrates ground-breaking solar power system. Retrived Jul. 2, 

2015 from Wawatay News: http://www.wawataynews.ca/home/deer-lake-celebrates-

ground-breaking-solar-power-system. 

Wohlin, C. (2014). Guidelines for snowballing in systematic literature studies and a replication in 

software enginnering. Proceedings of the 18th interantional Conference on Evaluation 

and Assessment in software engineering (EASE 2014) (Article 38). New York: ACM. 

Woolthuis, R., Lankhuizen, M., & Gilsing, V. (2005). A system failure framework for innovation 

policy design. Technovation , Vol. 25, 609–619. 

WP. (2012, Aug. 11). About Us. Retrieved Aug. 30, 2017, from Wataynikaneyap Power Web 

site: http://www.wataypower.ca/. 

WP. (2013a). New Transmission Line to Pickle Lake Project. Fact Sheet on the Corridor Routing 

Analysis. Wataynikaneyap Power. 

WP. (2013b). Project Benefits Study: Social, Environmental and Economic Analysis: 

Wataynikaneyap Power Project. Wataynikaneyap Power-Lumos Energy.  

Wuestenhagen, R., Wolsink, M., & Buerer, M. (2007). Social acceptance of renewable energy 

innovation: An introduction to the concept. Energy Policy, Vol. 35, 2683-2691. 

Yadoo, A., & Cruickshank, H. (2012). The role for low carbon electrification technologies in 

poverty reduction and climate change strategies: A focus on renewable energy mini-grids 

with case studies in Nepal,Peru and Kenya. Energy Policy, Vol. 42, 591-602. 

YE. (2011). Yukon Energy Charrette report. Whitehorse: Yukon Energy. 

YEC. (2015). Yukon Economic Outlook 2015. Yukon Government. Yukon Economic 

Development Department.  

http://www.wawataynews.ca/home/deer-lake-celebrates-ground-breaking-solar-power-system
http://www.wawataynews.ca/home/deer-lake-celebrates-ground-breaking-solar-power-system
http://www.wataypower.ca/


 

222 

YGESC. (2014). Yukon Government Solar Energy Pilot: Performance Monitoring. Yukon 

Government’s Energy Solutions Centre (YGESC). Whitehorse. Retrieved Oct. 22, 2015 

from: http://www.energy.gov.yk.ca/pdf/report_solar_pilot_monitoring_feb2014.pdf. 

Yi, H., & Feiock, R. (2014). Renewable Energy Politics: Policy Typologies, Policy Tools, and 

State Deployment of Renewables. The Policy Studies Journal, Vol. 42(3), 391- 415. 

Yin, R. (2003). Case study research: Design and methods. Thousand Oaks, California: Sage 

Publications. 

Yukon Energy. (2006). Proposed Carmacks-Stewart Transmission Project. May 2006 

Newsletter. Whitehorse, YK: Yukon Energy Corporation. 

Yukon Energy. (2011). Yukon Energy 20-year resource Plan: 2011-2030. Whitehorse, YK: 

Yukon Energy Corporation. 

Yukon Energy. (2012a). Overview of 20-year resource plan: 2011-2030. Whitehorse, Yukon: 

Yukon Energy Corporation. 

Yukon Energy. (2012b). Strategic Plan 2012-2013. Whitehorse, YK: Yukon Energy 

Corporation. 

Zimmerer, K. (2015). Methods and environmental science in political ecology. In G. B. Tom 

Perreault, The Routledge Handbook of Political Ecology (pp. 150-168). Abington: 

Routledge. 

Zimmerer, K., & Basset, T. (2003). Approaching Political Ecology. Society, Nature, and Scale in 

Human–Environment Studies. In K. Zimmerer, Political Ecology: An Integrative 

Approach to Geography and Environment-Development Studies (pp. 1-25). New York: 

Guilford Publications.  

Zografos, C., & Martinez-Alier, J. (2009). The politics of landscape value: a case study of wind 

farm conflict in rural Catalonia. Environment and Planning A, Vol. 41, 1726-1744 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.energy.gov.yk.ca/pdf/report_solar_pilot_monitoring_feb2014.pdf


 

223 

10 Appendices 

Appendix A 

Recent developments in renewable energy in remote aboriginal communities in Yukon, 

NWT, Nunavut, British Columbia, Ontario, Quebec, and Newfoundland and Labrador 

Appendix A consists of seven papers published in Papers in Canadian Economic Development. 

The papers are: 

Karanasios, K., & Parker, P. (2016a). Recent Developments in Renewable Energy in Remote 

Aboriginal Communities, Yukon, Canada. Papers in Canadian Economic Development, 

16, 29-40. 

Karanasios, K., & Parker, P. (2016b). Recent developments in renewable energy in remote 

aboriginal communities, NWT, Canada. Papers in Canadian Economic Development, 16, 
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1. Recent Developments in Renewable Energy in Remote Aboriginal 

Communities, Yukon, Canada 

 

Remote aboriginal communities in Canada’s Yukon Territory are undergoing a transition from 

carbon-intensive diesel-generated electricity to low carbon, renewable sources of electricity. 

Hydroelectricity is the main source of power in the territorial grid, so the extension of the grid and 

the addition of new hydroelectricity sources offers one path to low carbon electricity future for 

some communities. In more remote parts of the territory, wind, solar and smaller hydroelectric 

generation projects are considered to reduce diesel consumption and the associated greenhouse gas 

emissions. Yukon’s Climate Change Action Plan promotes cutting the carbon intensity of 

electricity. This paper reviews community electricity systems, past renewable electricity projects, 

as well as available renewable resources, generation alternatives, and policies, plans and proposed 

future projects that could help transform the supply of electricity in the remote communities. The 

transition to cleaner electricity systems also creates an opportunity for new investment models and 

development options where communities or private parties may replace public utilities as investors 

in new generation technologies. Government support for the transition of communities from 

greenhouse gas intensive diesel generation to low carbon renewable sources of electricity include 

the microgeneration and Independent Power Producer policies. Initial success with small 

renewable energy projects in the remote Yukon communities is leading to additional and larger 

projects being planned. 

 

Introduction 

Renewable energy (hydroelectricity) has a long tradition in the Yukon as the main source of 

electricity for Whitehorse and the local grid connected communities. New interest has arisen in the 

potential for renewable energy to displace diesel in Yukon’s remote aboriginal19 communities to 

achieve environmental, economic and social goals. The shifting of electricity generation from 

diesel to renewables is identified as an immediate step to reduce greenhouse gas emissions to help 

mitigate climate change (GY, 2015b). However, advocates for renewable energy in aboriginal 

communities argue that these projects can be part of broader changes to empower aboriginal 

communities and to build local capacity for community development (Henderson, 2013). Before 

reviewing recent climate and energy policies in the Yukon and identifying the communities with 

the greatest opportunities for investment in renewable energy, this paper sets the context by 

providing an overview of the population served in 23 remote communities, the capacity and type 

of current electricity generation systems, electricity price and rate structures, future demand 

expectations, renewable resource availability, as well as policies, plans and pilot projects to support 

renewables in the remote communities. 

                                                 
19 The term aboriginal community is used in this paper. It is recognized that some communities prefer the term indigenous 

community while others prefer aboriginal community and that both are used in the literature. 
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Population 

There are 23 remote communities in Yukon with a total population of approximately 37,000 people 

in 2014 (YBS, 2014). The majority of the population (approximately 28,000 people) is gathered in 

Whitehorse, with Dawson City and Watson Lake being the next largest communities with 

populations of 2,000 and 1,500 respectively.  The First Nation population in Yukon was estimated 

at 7,650 people, representing approximately 21% of the total population, of which 4,130 resided in 

Whitehorse and the rest in rural communities (YBS, 2014). There are five remote communities that 

are not connected to the territorial grid with a population of approximately 2,000 people (Table 1).  

Table 1: Remote Aboriginal communities, Yukon 
Nr Community name Population 

2014 

Diesel plant 

capacity 

(MW) 

Annual 

electricity 

demand 

(2012) (MWh) 

1 Destruction Bay/ Burwash Landing-Kluane 

FN
20

 

147 0.9 1,996 

2 Beaver Creek- White River FN 112 1.0 1,897 

3 Swift River 10 0.2 263 

4 Watson Lake 1,496 5.3 15,024 

5 Old Crow- Vuntut Gwitchin FN 254 1.1 2,083 

 Total 2,009 8.5 21,263 

Source: YBS (2014); YEC (2013, p. 114). 

 

Electricity system 

Electricity is supplied by the Yukon Energy Corporation (YEC), established in 1987 as a publicly 

owned business operating at “arm’s length” from the Yukon government.  Yukon Energy 

Corporation directly serves about 1,700 customers, most of whom live in and around Dawson City, 

Mayo and Faro, and provides power to many other Yukon communities through the Yukon 

Electrical Company Limited (YECL), recently renamed as ATCO Electric Yukon21 (Yukon 

Energy, 2015b).  ATCO Electric Yukon (AEY) is a private investor-owned utility and a member 

of the ATCO Group of Companies with head office and service centre in Whitehorse. ATCO 

Electric Yukon purchases power from YEC for distribution to 17,000 customers in 19 communities 

from south of the Yukon border to north of the Arctic Circle (ATCO, 2015).  

Yukon’s electricity system, presented in Figure 1, consists of one large hydroelectricity based grid 

called the Yukon Integrated System (YIS), and five isolated diesel powered communities (Watson 

Lake, Swift River, Destruction Bay/Burwash Landing, Beaver Creek, and Old Crow). Yukon 

Energy Corporation has the capacity to generate approximately 132 megawatts of power; 92 MW 

are provided by hydro facilities in Whitehorse, Mayo and Aishihik Lake (40 MW at Whitehorse, 

                                                 
20 Destruction Bay and Burwash Landing share the same generator in Destruction Bay. 
21 The Yukon Electrical Company Limited (YECL) or recently renamed as ATCO Electric Yukon. Figure 5 mentions YECL 

instead of ATCO Electric Yukon. 
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37 MW at Aishihik and 15 MW at Mayo), 39 MW by diesel generators (used currently only as 

back-up generators), and 0.8 MW by two wind turbines located on Haeckel Hill near Whitehorse 

(Yukon Energy, 2016). ATCO Electric Yukon owns and operates the 1.3 MW Fish Lake Hydro 

plant, on the outskirts of Whitehorse, and maintains 8 MW back-up diesel plants in Carmacks, 

Teslin, Haines Junction and Ross River in the event of a power interruption. Additionally, ATCO 

Electric Yukon serves five off grid communities with 8.4 MW of diesel generation (5.3 MW in 

Watson Lake, 2.0 MW in total for the Destruction Bay, Beaver Creek, and Swift River 

communities along the Alaska Highway, and 1.1 MW in Old Crow). All these communities are 

accessed by roads except the community of Old Crow, home of the Vuntut Gwitchin First Nation 

(ATCO, 2015; Yukon Energy, 2012). 

 

Figure 1: Yukon’s electricity system 

 
Source: Osler (2011, p. 22)-modified. 

 

Yukon’s total electricity generation in 2013 was 424,720 MWh from hydro (94.8%), 23,215 MWh 

from thermal plants (5.2%) and 277 MWh from wind generation (0.1%) (YBS, 2013). Total diesel 

electricity generation for the five communities in 2010 was 20,000 MWh, of which approximately 

70% was for Watson Lake (Yukon Energy, 2012). Since approximately 95% of Yukon’s electricity 

was provided from renewable resources, total diesel electricity generated GHG emissions in Yukon 

in 2010 were 30,726 tonnes, of which approximately 13,500 tonnes were from the diesel plants in 
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the five off-grid communities (Yukon Energy, 2012). Utility power generation in Yukon accounts 

for only about 3% of GHG emissions, while transportation and building heating account for over 

85% of GHG emissions (Yukon Energy, December 2011, p. 51). 

 

Electricity rates 

Yukon electricity rates are considered the lowest in Northern Canada due to the legacy hydro assets 

of Mayo, Aishihik and Whitehorse (Yukon Energy, April 2012). For residential consumers Yukon 

has a single rate zone with the same rate of 12.14 c/kWh22  for the first 1,000 kWh per month, and 

a high of 13.99 c/kWh for consumption over 2,500 kWh, except Old Crow which has a rate of 

30.77 c/kWh (Table 2). The same rates apply for residential government rates and general services 

rates (both non-government and municipal) with the highest rate being 41.45 c/kWh for residential 

government services in the community of Old Crow (Yukon Energy, June 2011). Residential 

consumption is subsidized through the Interim Electrical Rebate, which provides residential 

customers with a maximum rebate of $26.62 per month for the first 1,000 kilowatt hours of power 

used (Yukon Energy, 2015a).  In 2013 the average residential electricity consumption was 

approximately 10,200 kWh with an average consumer cost of 14.16 c/kWh, which is higher than 

the cost in Southern Canada, but low in comparison to the average cost in NWT and Nunavut  

(YBS, 2013).  

Table 2: Yukon residential electricity rates 2015 
Rate schedule All communities 

(except Old Crow) 

Old Crow Community 

For the first 1,000 kWh/month 12.14 c/kWh 12.14 c/kWh 

Between 1,001-2,500 kWh/month 12.82 c/kWh 12.82 c/kWh 

Over 2,500 kWh/month 13.99 c/kWh 30.77 c/kWh 

Source: Yukon Energy (2016). 

 

Recent grid extensions and future load growth  

Yukon’s energy development is subject to challenges associated with cyclical mining development 

and population growth. Yukon’s electricity system enhancements are to be designed with the 

following objectives: to secure ratepayers against financial risks and potential rate increases, to 

address sustainability issues, to reduce diesel generation and to meet its service criteria of 

affordability, reliability, flexibility and environmental responsibility (Yukon Energy, April 2012). 

Two major extensions of Yukon’s electricity infrastructure were undertaken in the last decade to 

address mining development and grid access, as well as power balance requirements between the 

previously separate Whitehorse-Aishihik-Faro and Mayo/Dawson power grids. First, the 2008 

                                                 
22 All prices in Canadian currency (CAD). 
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connection of Minto copper-gold mine to the Yukon electrical grid benefitted Little Salmon 

Carmacks First Nation, Selkirk First Nation and Na-Cho Nyak Dun First Nation along the path of 

the transmission line. The benefits of the grid extension for the communities included construction 

related employment, elimination of expenses for diesel purchases and increased sales of surplus 

hydroelectricity. The reduced electricity rates increased profit margins for the Minto mine leading 

to higher royalties and taxes for the Yukon Government and Selkirk First Nation (CMC, 2008). 

Second, the Carmacks Stewart Transmission project in 2011, was built to meet new demand by 

current and proposed mining projects located in the proximity of remote communities. It connected 

the Whitehorse-Aishihik-Faro and Mayo/Dawson power grids through a new 138 kV transmission 

line running generally along the Klondike Highway, providing grid electricity to the remote 

community of Pelly Crossing and encouraging economic development along the corridor (Yukon 

Energy, 2012; Yukon Energy, 2006).  

Yukon expects a significant power load increase in the next 40-year period. According to Yukon 

Energy (2012), diesel load is forecast to increase from 58 GWh in 2011 to 1,442 GWh in 2030 

mainly due to the increase of off-grid mine loads from 37 GWh to 1,337 GWh, which are expected 

to rely on diesel or LNG supply options. Non-industrial loads are forecast to increase a moderate 

2.26% over the same period. In the case of the five diesel powered communities, load growth is 

projected to rise from 20 GWh in 2011 to 22 GWh by 2030, and GHG emissions are expected to 

increase from 13,900 tonnes to 15,473 tonnes respectively. 

Yukon plans to address future power load growth mainly through enhancements of current 

hydroelectric facilities and the development of new hydroelectric projects, while other options 

include Demand Side Management (DSM) and Supply Side Management (SSM) programs, solar 

applications, natural gas developments and potential connection to the Alaska Highway Pipeline, 

as well as the option of extending the current grid and connect to the BC or Alaska electrical grid 

(Yukon Energy, 2012; Yukon Energy, April 2012).  

 

Availability of renewable energy sources in Yukon 

According to Yukon Energy (2012), Yukon plans to address future power demand mainly through 

hydroelectricity “short term” enhancements and new ‘long term” project developments; total 

potential supply is expected to exceed 6,800 GWh/year with estimated full utilization costs 

(including transmission) below 15 c/kWh (in 2009). It is assumed that the Yukon Integrated System 

(YIS) will be able to accommodate only one wind project at Mount Sumanik of approximately 20 

MW (Yukon Energy, 2012, p. 18), given the non-dispatchable character of wind and the higher 

costs, for which a feasibility assessment is already available (Yukon Energy, January 2009). 

Although solar photovoltaic applications are limited in Yukon, solar irradiance data are measured 

on three grid connected solar electric demonstration sites, namely a 4.0 kW installation at the 

Yukon government’s Main Administration Building and a 1.5 kW system at Yukon College, both 
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in Whitehorse, and a 4.4 kW system in Yukon’s Northern Lights Space and Science Centre located 

in the community of Watson Lake. The results indicate photovoltaic performance ranging between 

825-1,069 kWh/kWp.year, which combined with installation costs of approximately $ 5/Watt and 

modest predictions on diesel fuel increases, could result in competitive costs for solar electricity in 

the community of Old Crow, which has higher electricity rates (YGESC, 2014). 

 

Renewable energy policies and promotion  

In 2009 the Yukon Government released its Climate Change Action Plan (GY, 2009b) aiming to 

reduce GHG emissions from the government’s internal operations by setting a cap on GHG 

emissions in 2010, reducing GHG emissions by 20% by 2015 and becoming carbon neutral by 

2020. Mechanisms to achieve these targets include the reduction of emission intensity of on-grid 

diesel power generation by 20% by 2020, and the reduction of energy use through demand-side 

management programs by 5 GWh by 2016 (GY, 2015b).  

To achieve these targets, Yukon’s 2009 energy strategy promoted a target of 20% increase of 

renewable energy supply by 2020, the development of a policy framework for geothermal 

applications, support for projects in off grid diesel communities, and promotion of renewable 

sources for heating and transportation (GY, January 2009). The development of renewable energy 

projects was to be facilitated through the Independent Power Producers (IPP) purchase policy, the 

net metering policy for small producers (now called the microgeneration policy), and incentives 

for demand management (GY, November 2009). The IPP policy (GY, October 2015) promotes 

three approaches for renewable projects: the Call for Power (CFP) program, which applies to large 

IPP projects to be integrated into YIS, requires a government approval, and aims at addressing 

future electrical needs as previously described; the Standing Offer (SOP) program promotes the 

development of new, small projects (up to 10,000 MWh for the YIS and 2,100 MWh for the Watson 

Lake grid) that will sell electricity to Yukon Energy Corporation in the YIS and to ATCO Electric 

Yukon  in the diesel grid in Watson Lake; finally, the third approach of  Unsolicited Proposal 

covers projects that are larger than the SOP limits, which will be assessed based on the territory’s 

needs.  

Three diesel powered aboriginal communities (Old Crow, Beaver Creek and Destruction 

Bay/Burwash Landing) are encouraged to work in cooperation with ATCO Electric Yukon and 

develop their own community owned IPP projects to acquire economic benefits, improve self-

reliance and address environmental issues through the Unsolicited Proposal process, while projects 

up to 50 kW are eligible under the microgeneration policy. The microgeneration policy23 includes 

projects offsetting electricity consumption by connecting renewables to homes or businesses under 

all rates classes. In the case of communities connected to Yukon Integrated System the applicable 

                                                 
23 http://www.energy.gov.yk.ca/microgeneration.html 
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rate is $0.21/kWh, while the rate for diesel powered communities is $0.30/kWh (GY, October 

2013). 

 

Renewable projects in remote communities 

Yukon’s remote communities of Destruction Bay/ Burwash Landing, Beaver Creek, Swift River, 

Watson Lake and Old Crow are not connected to the local grid. Instead, they are powered by five 

diesel plants24 with a total capacity of 8.5 MW serving approximately 2,000 people in 2014. The 

power plants generate approximately 21,263 MWh/year, consume approximately 6 million 

litres/year of diesel fuel and contribute 17,000 tonnes/year in CO2,eq emissions25 (Table 1).  

Three of the five diesel powered communities in Yukon are considering the displacement of diesel 

through the development of renewable energy projects (Table 3). The community of Watson Lake 

has been monitoring solar resources and photovoltaic performance under the cold conditions since 

2011 through a 4.4 kW solar system installed on Yukon’s Northern Lights Space and Science 

Centre. It also examined local hydroelectricity options: a feasibility study conducted in 2014 

concluded that two potential sites could provide electricity at a cost of 0.18-0.21 $/kWh and create 

annual savings of $1.3- $2.4 million in comparison to the current diesel based electricity generation 

system (Morissette, 2014).  

Table 3: Renewable electricity projects in remote communities, Yukon 
 Community Hydro 

MW 

Wind 

kW 

Solar 

kW 

Year Source 

Existing projects  

1 Destruction Bay/ Burwash 

Landing 

- - 4.7 2012 Pinard (2013); Tobin (2016) 

2 Beaver Creek- White River FN - - -   

3 Swift River - - -   

4 Watson Lake - - 4.4 2011 YGESC (2014) 

5 Old Crow- Vuntut Gwitchin FN - - 3.6 

12.1 

2011 

2011 

Cherniak et al. (2015) 

See 
26

 

 Total   24.8   

Proposed projects  

1 Destruction Bay/ Burwash 

Landing 

- 300 42  Pinard (2013); Tobin (2016) 

2 Beaver Creek- White River FN  - -   

3 Swift River  - -   

4 Watson Lake 1.5 - -  Morissette (2014) 

5 Old Crow- Vuntut Gwitchin FN - - 330  Cherniak et al.(2015) 

 Total 1.5 300 372   

                                                 
24 Destruction Bay and Burwash Landing, home of the Kluane First Nation, are served by the same diesel generator in 

Destruction Bay. 
25 Assuming an average efficiency rate of 3.6 kWh/litre for the diesel engines and an average of 0.00080 tonnes CO2,eq/kWh, 
for direct carbon emissions (emissions resulting from diesel and natural gas combustion only). See HORCI (2012). 
26 kza.yk.ca/wp-content/uploads/2011/08/OldCrowResearch1.pdf. 
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The Kluane First Nation, based in the remote communities of Burwash Landing and Destruction 

Bay, is directly involved in renewable energy projects.  In addition to a 4.7 kW roof mounted solar 

project installed in 2012, they are planning the development 42 kW of solar panels on three 

community buildings to displace diesel under a “net metering” agreement (Tobin, 2016). 

Additionally, the community wants to develop a 300 kW community owned wind project at Kluane 

Lake (Pinard, 2013; Pinard, 2014; Tobin, 2016) to generate and sell electricity to ATCO Electric 

Yukon under the IPP policy and a Power Purchase Agreement (PPA) (Tobin, 2016). The project 

is being developed using federal and provincial capital funding, as well as financial support from 

Bullfrog Power (GY, 2015a; BP, 2017).  

Similarly, the community of Old Crow, home of the Vuntut Gwitchin FN, wants to reduce its 

dependence on diesel and has installed solar panels on two of its community buildings (Vuntut 

Gwitchin First Nation, 2002; Ronson, 2014). Old Crow plans to develop a community owned 330 

kW solar-diesel-storage hybrid energy system27 that will displace approximately 98,000 liters of 

diesel annually and generate revenue for the community under a PPA agreement with ATCO 

Electric Yukon (Tukker, 2016).  

Finally, the commercial viability of solar applications in Yukon has been confirmed by private 

sector projects. Northwestel, a communications company, successfully deployed four 10 kW 

photovoltaic arrays in 2014 for the operation of its microwave sites in remote locations, and 

reduced its diesel consumption by 20,000 litres 28 (Northwestel, 2015; GY, 2015b). This 

combination of private and public success with initial projects is leading to proposals for larger 

renewable energy projects in remote Yukon locations. 

 

Conclusion 

Remote aboriginal communities in the Yukon are undergoing an energy transition from GHG 

intensive diesel generation to low carbon renewable sources of electricity. The transition is being 

achieved in two ways: grid expansion and local renewable energy projects. The community of 

Pelly Crossing has been connected to the territorial grid which is primarily supplied by 

hydroelectricity. In addition to the environmental benefits of lower GHG emissions, the community 

gains increased opportunities for economic and social development with lower electricity prices 

and increased supply capacity.  In the remote diesel powered communities, the Yukon Government 

has promoted investment in renewable energy with supportive policies including the 

microgeneration policy (<50kW) and Independent Power Producer policy to reduce diesel 

consumption and to encourage community participation and ownership of electricity generation 

                                                 
27 See also: www.arcticinspirationprize.ca/docs/2014-aip-laureates-en.pdf;  

http://www.yukon-news.com/news/old-crow-wants-to-build-yukons-largest-solar-plant/ 
28 See also: NorthwesTel Remote Station Solar/Diesel Hybrid Feasibility study, in 

http://www.energy.gov.yk.ca/publications.html. 

http://www.arcticinspirationprize.ca/docs/2014-aip-laureates-en.pdf
http://www.energy.gov.yk.ca/publications.html
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assets. Initial success with renewable energy projects in the remote Yukon communities is leading 

to additional and larger projects being planned. 
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2. Recent Developments in Renewable Energy in Remote Aboriginal 

Communities, NWT, Canada 

 

Remote aboriginal communities in Canada’s Northwest Territories are starting an energy transition 

from high cost, carbon-intensive diesel powered electricity to greater local reliance on renewable 

sources of electricity. This paper reviews 25 remote communities’ electricity systems, past 

renewable electricity projects, as well as provincial targets and policies for the introduction of 

renewable electricity alternatives. Besides small hydro-electricity projects and the future extension 

and interconnection of the two local grids, the transition to cleaner electricity systems is promoted 

through climate change policy emission targets and financial incentives focusing on solar 

photovoltaic applications (up to 20% of local generation capacity in the short term). The 

development of solar projects in 19 remote communities between 2009 and 2016, mainly under net 

metering agreements, in addition to two recent utility owned solar installations developed in 

cooperation with communities, and a community owned solar plant under a power purchase 

agreement with the local utility, represent successful deployment models that increase community 

benefits and improve environmental performance. Finally, the private sector has demonstrated the 

financial feasibility of commercial scale wind technology at the remote Diavik diamond mine, 

documented the diesel and carbon savings and enabled these lessons to be transferred to future 

developments. 

 

Introduction 

Remote aboriginal29 communities in the Northwest Territories (NWT) and the Territorial 

Government are looking to change their sources of electricity from fossil fuel (diesel and natural 

gas) based generators to renewable energy sources. The high dependence on fossil fuels in remote 

communities is contrasted with hydro-electricity as the main source of electricity for the larger 

Snare and Taltson grids. The NWT electricity system faces significant challenges due to the small 

number of customers, harsh winter conditions, isolated diesel fueled plants, and limited economies 

of scale resulting in high electricity costs (GNWT, 2009a). The extensive use of fossil fuels for 

remote electricity generation increased interest in introducing renewable alternatives to reduce 

greenhouse gas emissions to help mitigate climate change (NT Energy, 2013). Mini-hydro, 

biomass cogeneration, wind and solar applications under community ownership are considered as 

options to reduce electricity cost structures (GNWT, 2009a). Other potential benefits include 

improving environmental performance by reducing emissions and increasing local self-sufficiency. 

The next sections of this paper provide an overview of the population served in NWT remote 

communities, the capacity and type of current electricity generation systems, electricity price and 

rate structures, future demand expectations, renewable resource availability, as well as policies, 

plans and pilot projects to support renewable electricity generation in the remote communities. 

                                                 
29The term aboriginal community is used in this paper. It is recognized that some communities prefer the term indigenous 

community while others prefer aboriginal community and that both are used in the literature. 
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Table 4: Remote Aboriginal communities in NWT 
 Community name Population 

2014 

Diesel and 

natural gas 

plant capacity 

(MW) 

Annual 

electricity 

demand 

(2012)  

(MWh) 

1 Aklavik  691 1.280 2,890 

2 Colville Lake 158 0.240 406 

3 Deline 514 1.440 2,533 

4 Fort Good Hope 560 1.230 2,650 

5 Fort Liard 619 1.320 2,727 

6 Fort McPherson  792 1.825 7,636 

7 Fort Providence 815 1.480 2,942 

8 Fort Simpson 1,244 3.210 7,636 

9 Gameti 296 0.612 970 

10 Jean Marie River FN 71 0.230 248 

11 Inuvik 3,396 D:7.8, NG:7.7 28,327 

12 Kakisa-Kaagee Tu FN  4530 0.300 358 

13 Lutselk’e 299 0.820 1,460 

14 Nahanni Butte- Deh Cho FN 97 0.230 397 

15 Norman Wells 766 D & NG: 2.120 D:388, NG:8,402 

16 Paulatuk 304 0.840 1,385 

17 Sachs Harbour 128 0.795 929 

18 Trout Lake-Sambaa K’e Dene  104 0.397 447 

19 Tsiigehtchic 160 0.500 664 

20 Tuktoyaktuk 962 2.205 3,662 

21 Tulita 562 1.100 2,172 

22 Ulukhaktok (previously Holman) 465 1.160 1,833 

23 Wekweeti 142 0.380 610 

24 Whati 497 0.975 1,570 

25 Wringley- Pehdzeh Ki FN 146 0.781 642 

 Total 13,788 40.97 83,884 

Abreviations: D=Diesel, NG=natural gas 

Source: GNWT (2015); NT Energy (2013); AANDC and NRCan (2011). 
 

Population 

NWT’s 33 remote communities had a total population of 44,088 in 2015. There were 15 

communities with a population below 350, 12 communities with a population up to 1,000, and six 

communities with over 1,000 people. The total aboriginal population was estimated at 22,050, 

while there were 22,038 non-aboriginal residents. Yellowknife is the territorial capital and has a 

population of 20,637, of which approximately 15,000 are non-aboriginal (GNWT, 2015). There 

are 25 remote communities that are not connected to the two electricity grids with a combined 

population of approximately 14,000 people (Table 4). 

 

                                                 
30 Population for 2011: https://www12.statcan.gc.ca/census-recensement/2011/dp-

pd/prof/details/page.cfm?Lang=E&Geo1=CSD&Code1=6104005&Geo2=PR&Code2=01&Data=Count&SearchText=Kakis

a&SearchType=Contains&SearchPR=61&B1=All&Custom=&TABID=1 

https://www12.statcan.gc.ca/census-recensement/2011/dp-pd/prof/details/page.cfm?Lang=E&Geo1=CSD&Code1=6104005&Geo2=PR&Code2=01&Data=Count&SearchText=Kakisa&SearchType=Contains&SearchPR=61&B1=All&Custom=&TABID=1
https://www12.statcan.gc.ca/census-recensement/2011/dp-pd/prof/details/page.cfm?Lang=E&Geo1=CSD&Code1=6104005&Geo2=PR&Code2=01&Data=Count&SearchText=Kakisa&SearchType=Contains&SearchPR=61&B1=All&Custom=&TABID=1
https://www12.statcan.gc.ca/census-recensement/2011/dp-pd/prof/details/page.cfm?Lang=E&Geo1=CSD&Code1=6104005&Geo2=PR&Code2=01&Data=Count&SearchText=Kakisa&SearchType=Contains&SearchPR=61&B1=All&Custom=&TABID=1
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Electricity system 

Electricity in NWT is generated mainly from three sources: natural gas, hydro-electricity and diesel 

fuel. It is supplied by NT Hydro, a public agency established in 2007 under the Northwest 

Territories Hydro Corporation Act, and fully owned by the Government of the Northwest 

Territories (GNWT) (NTPC, October 2011). NT Hydro fully owns Northwest Territories Power 

Corporation (NTPC), which operates hydro-electric, diesel, natural gas, solar power generation 

facilities, and transmission systems to provide electricity services in the Northwest Territories. The 

NWT electrical system is presented in Figure 2. 

 

Figure 2: The electrical system in Northwest Territories 

 
Source: NT Energy (2013, p. iii). 

 

There are two main electrical grids, the Snare grid servicing Yellowknife, Dettah, N’Dilo and 

Behchokö, and the Taltson grid servicing Fort Resolution, Fort Smith, Hay River and Enterprise. 

Electricity in the two grids is generated mainly by hydroelectric plants backed by diesel generators. 

The rest of the communities use diesel-generated electricity, except Norman Wells and Inuvik, 

where both diesel and natural gas are used. Renewable energy projects are also deployed in NWT 

communities, as will be discussed in the next sections (NT Energy, 2013).  
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The generation and distribution structure of NWT electrical system is presented in Table 5. NTPC 

generates and distributes electricity to 25 of the 33 communities in NWT and supplies electricity 

on a wholesale basis to Northland Utilities (NUL) owned by ATCO (NT Energy, 2013). NTPC 

activities are subject to regulation by the Northwest Territories Public Utilities Board (PUB). 

NTPC owns almost all the electricity generation assets in NWT and distributes power to 

approximately 45% of the population. 

 

Table 5: NWT electricity service providers and generation source 
Service Provider Community Generation source 

NTPC Generation and distribution Dettah, Fort Resolution, Fort Smith, 

Behchokö Hydro-electricity (8 

communities) NUL Distribution Hay River, Hay River Dene Reserve, 

Enterprise and Yellowknife 

NTPC Generation and distribution Aklavik, Colville Lake, Deline, Fort Good 

Hope, Fort Liard, Fort McPherson, Fort 

Simpson, Jean Marie River, Lutselk’e, 

Nahanni Butte, Paulatuk, Gameti, Sachs 

Harbour, Tsiigehtchic, Tuktoyaktuk, Tulita, 

Ulukhaktok, Whati, Wrigley 

Diesel (23 

communities) 

NUL Generation and distribution Kakisa, Fort Providence, Trout Lake, 

Wekweètì 

NTPC Inuvik, Norman Wells Natural gas and diesel 

(2 communities) 

Source: adapted from GNWT (2008, p.4); GNWT (2009, p.99).  

 

NUL consists of Northland Utilities (Yellowknife) Ltd., which distributes hydroelectric power in 

Yellowknife (Hay River, Hay River Dene Reserve, Enterprise and Yellowknife), and Northland 

Utilities (NWT) Ltd., which generates and distributes diesel-electric power to four isolated 

communities in the South Slave (Kakisa, Fort Providence, Trout Lake, Wekweètì). NUL serves 

almost 55% of the population located in the largest NWT communities. Imperial Oil Ltd is a utility 

company that sells natural gas fired electricity to NTPC for distribution in Norman Wells (GNWT, 

2012a; GNWT, 2009a; GNWT, 2008).  

The total installed capacity of NWT power plants in 2012 was 148 MW, with hydro-electricity 

accounting for 54.8 MW, diesel 78.3 MW (of which 35 MW represent communities’ diesel 

generators and 43.3 MW industrial generators), and natural gas 14.5 MW.  Total community related 

generation for 2010 was 309 GWh (75% or 228.66 GWh hydroelectric, 17% or 52.53 GWh diesel, 

and 9% or 27.81 GWh natural gas), while the total NWT electricity generation including the 

industrial consumers was 722 GWh (GNWT, 2012a; NT Energy, 2013). Diesel electricity 

generation related emissions from communities and mines were 437,000 tonnes CO2,eq in 2010 and 

482,800 tonnes CO2,eq in 2011 (or 36% of total emissions of 1,220 kT CO2,eq in 2010 and 34% of 

1,420 kT CO2,eq in 2011 respectively) (GNWT, 2011a; GNWT, 2013). 
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Table 6: NWT residential electricity rates, 2015 
Community  

 

Zone  Residential Electricity Rate 

(¢/kWh)  

Actual cost 

Colville Lake, Nahanni Butte, Sachs 

Harbour, Jean Marie River, Gameti, 

Paulatuk, Wrigley, Tsiigehtchic, Tulita, 

Whati, Deline, LutselK’e, Fort 

McPherson, Ulukhaktok, Fort Good 

Hope, Tuktoyaktuk, Fort Liard, Fort 

Simpson, Aklavik, Inuvik  

NTPC 

Thermal  

For the first 1000 

kWh31 

29.73 c/ 

kWh 

Each additional 

kWh 

60.83 c/ 

kWh 

 
 

60.83 c/kWh 

Norman Wells  NTPC 

Norman 

Wells  

For the first 

1000 kWh 
29.73 c/ kWh 

Each additional 

kWh 

47.54 c/ kWh 

 
 

47.54c/kWh 

Fort Smith, Fort Resolution, Hay River  NTPC 

Taltson  

For the first 

1000 kWh 

21 c/ kWh 

 

Each additional 

kWh 

21 c/ kWh 

 
 

31.1 c/kWh 

Dettah, Behchoko, Yellowknife  NTPC 

Snare  

For the first 

1000 kWh 
29.73 c/ kWh 

Each additional 

kWh 

31.1 c/ kWh 

 
 

21 c/kWh 

Fort Providence, Dory Point/Kakisa, 

Wekweeti, Trout Lake 

NUL 

(NWT) 

Thermal  

47.39* 

 

Hay River, Hay River Reserve, 

Enterprise 

NUL 

(NWT) 

Hydro  

27.21* 

 

Yellowknife  NUL(YK)  23.72*  

* Indicates 2012 rates for the communities served by NUL32.  

Source: NTPC (2016); GNWT (2012a).  

 

Electricity rates 

Electricity costs in NWT are high due to the limited number of communities connected to the two 

local hydroelectric grids, high fixed and operating costs, and isolated diesel plants (GNWT, 2009a). 

Additionally, the communities’ small customer base, small size diesel plants and fuel imports 

reduce the possibility for economies of scale and increase electricity costs and rates (GNWT, 

2008). The 2010 Electricity Review changed the Territorial Power Subsidy Program (TPSP) and 

increased the applied subsidy from 700 kWh to 1,000 kWh per month during the winter months 

and 600 kWh in the summer months and equalized residential rates within these remote 

communities to Yellowknife’s rate. The residential electricity rates in NWT’s remote communities 

start at 29.73 c/kWh for the first 1,000 kWh, with additional charges for excess use depending on 

the electricity generation cost in each community (Table 6). 

                                                 
31 For the winter months (September to March). In the summer months (April to August) the rates apply for the first 600 kWh 

and above 600 kWh respectively.  
32 See GNWT (2012a). 
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Future power requirements and plans 

NWT’s electricity system has been the focus of numerous reviews aimed at addressing the primary 

northern related issues of reliability, affordability, environmental impacts, economic development 

and job creation, aboriginal involvement and energy self-sufficiency (GNWT, 2008; GNWT, 

2009a; GNWT, 2009b; NT Energy, 2013). Public consultation initiated between 2008 and 2010 

resulted in nineteen actions that changed the structure of the electrical system described in the 2010 

Electricity Review (GNWT, 2010); three of the main changes were the reduction of the number of 

rate schedules from 33 to seven (described previously), the advancement of conservation measures, 

and the promotion of alternative (natural gas) and renewable energy generation options.   

Electrical demand growth in NWT is driven by residential, commercial and industrial load 

increases (NT 2103). Residential electricity demand has increased due to population growth and 

increases in per capita household appliance use with approximately one-half (0.5) percent growth 

per year between 2007 and 2013. Future industrial load increases may result from oil exploration 

projects in the Sahtu region and mining activities in the North and South Slave regions, which 

currently host two of the four mines in operation in NWT, the Diavik and Ekati mines, while the 

Snap Lake mine was recently shut down33 (NT Energy, 2013). Both the Snare and Taltson grids 

can meet future demand in the case of future mine operation in the area34. In the case of diesel 

communities, the existing diesel plants are adequately sized to meet future community demands. 

Resource options to address electricity generation issues and future load growth include diesel, 

liquefied natural gas (LNG), solar, wind, biomass, hydro-electricity, expansion of the transmission 

system to connect the remote communities and mines to the grid35, and finally, the interconnection 

of the NWT transmission system with one or more of the Saskatchewan, Alberta or British 

Columbia provincial grids (NT Energy, 2013). A review of the costs and benefits of available 

options indicates that medium sized (10 MW scale) hydro-electric projects, such as the La Martre 

Falls, Snare Site 7, and the Taltson Expansion, together with the expansion and interconnection of 

the two local grids, represent the biggest options for the NWT electrical system to maximize 

provincial economic development by providing access to low cost hydro resources to support 

future industrial loads and the potential for exports in the case of potential interconnection(s) to the 

continental grids (NT Energy, 2013). 

 

Availability of renewable energy sources in NWT 

As mentioned, the available resources to offset diesel generation in NWT remote communities 

include solar, wind, and small hydro. NWT’s potential hydro-electric resources are estimated at 

11,000 MW, of which only 55 MW are developed (Snare and Taltson), and 69 MW (La Martre 

and Taltson expansion) are proposed for future development (GNWT, 2011a). Solar resources in 

NWT are considered good due to long hours of sunlight during the spring and summer months, 

                                                 
33 See http://www.cbc.ca/news/canada/north/snap-lake-shutdown-layoffs-1.3353295 
34 The proposed Tamerlane and Avalon mining projects (NT Energy, 2013). 
35 In this case the interconnected grid will be based on the Taltson and Snare grids. 
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providing electrical generation between 800 and 1,200 kWh/kW (GNWT, 2012b). Although wind 

resources are available in northern NWT communities, wind speeds are considered low, ranging 

from 5.4 m/s in Yellowknife to 6.5 m/s in Sachs Harbour and 6.7 m/s in Ulukhaktok (GNWT, 

2011a). Extensive wind studies in NWT communities have been conducted by the Aurora Institute 

(ARI, 2016), but the majority of the communities lack sites with wind potential of over 6-7 m/s, 

which is considered necessary for a financially viable project in the difficult conditions of the NWT 

arctic environment (Pinard, 2007). 

 

Renewable energy policy and promotion  

The installation of solar photovoltaic projects in NWT was initiated in the 1980s and some continue 

to operate thirty years later (Carpenter, 2013). The 2011 “Greenhouse Gas Strategy for the NWT 

2011-2015” (GNWT, 2011b) identified solar energy as a potential source to reduce communities’ 

GHG emissions. The “2012 NWT Solar Energy Strategy” (GNWT, 2012b) established steps and 

actions to increase solar project implementation to supply up to 20% of the average load of the 25 

diesel powered communities, and targeted a 10% displacement of annual diesel-generated 

electricity. As a result, there are more than 200 solar installations in NWT communities and 25 

grid connected solar photovoltaic systems, while it is estimated that the planned 1.8 MW of solar 

PV installations to be deployed over the next five years will displace 570,000 litres of diesel per 

year and reduce emissions by 1,660 tonnes CO2,eq per year36 (GNWT, 2012b). Finally, the NWT’s 

“2013 Energy Action Plan” focused on developing local renewable energy resources, such as 

biomass, solar and wind, to create sustainable communities, the interconnection of NWT local 

grids and linkages to mineral development, as well as hydro-electric developments and 

transmission projects in the communities of Whati, Kakisa and Fort Providence (GNWT, 2013; 

NT Energy, 2013). 

The promotion of solar projects is supported by incentives in the form of rebates and financial 

support. The first incentive program for solar photovoltaic applications in the NWT was the 

RETCAP (2001-2003) with the primary goal to displace diesel and reduce noise from generators. 

The program provided  a 50% rebate on panels and balance of system costs, and during its two-

year period led to the installation of 36 solar systems in off grid homes, houseboats and remote 

lodges, with a total of 204 kW in 16 communities, namely in Hay River, Yellowknife, Jean Marie 

River, Inuvik, Sachs Harbor, Wekweeti, Nahanni Butte, Behchoko, Paulatuk, Fort Smith, Norman 

Wells, Gameti, Whati, Edzo, Fort Good Hope and Fort Simpson (Carpenter, 2013). More recently, 

the Alternative Energy Technologies (AET) program, administered by the Arctic Energy Alliance 

(AEA)37, provides funding for communities, businesses and residents for the installation of 

renewable energy technologies, including solar, hot water heating systems, wind turbines, and solar 

photovoltaic panels, to reduce fuel consumption and lower the cost of their operations. The 

program is split into the Residential Renewable Energy Fund (RREF), the Business Renewable 

                                                 
36 This equals to 2.8X10-3 tonnes CO2,eq/ litre diesel or 0.0008 tonnes CO2,eq/kWh with an average diesel engine efficiency of 

3.6 kWh/litre diesel. 
37 See http://aea.nt.ca/programs/alternative-energy-technologies-program 
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Energy Fund (BREF) and the Community Renewable Energy Fund (CREF). The CREF assists 

with the installation of larger, community systems of renewable energy or the conversion of an 

existing conventional energy system to a system using an alternative energy technology. It provides 

up to one-half of the cost of a community-based alternative energy project, up to a maximum of 

$50,000 annually. Eligible community entities include aboriginal communities and governments, 

GNWT departments, boards and agencies, and non-profit organizations (GNWT, 2013).  

 

Renewable energy projects in remote communities 

NWT’s 25 remote communities are powered by isolated diesel generators (and natural gas plants 

in two communities) with a total capacity of 41 MW. The power plants generate approximately 

84,000 MWh/year, consume approximately 23,330,000 litres/year of diesel fuel and contribute 

67,000 tonnes/year CO2,eq emissions38 (Table 1).  

There is one 50 kW wind turbine, developed in 1998, and 29 solar photovoltaic installations in 19 

remote communities with a total renewable capacity of 524.3 kW (Table 7). Of these projects, 17 

have less than 10 kW capacity, 10 are larger than 10 kW but less than 20 kW capacity, and three 

have a capacity larger than 20 KW.  Most solar projects are deployed on community buildings 

reducing diesel consumption and expenses for the local governments.  

Five additional solar projects with a total capacity of 41 kW are planned for the communities of 

Aklavik, Fort Simpson, Jean Marie River, Norman Wells and Whati. The solar panels are to be 

deployed on community buildings under a net metering agreement39, and they will reduce diesel 

consumption and community electricity expenses40.  

Diavik mine also introduced renewables to reduce its combustion of diesel to generate electricity. 

The $31 million investment in four wind turbines (9 MW) resulted in savings of $5 million in 

reduced diesel purchases (4 million litres) in its first year of operation thereby reducing the 

expected payback period from 8 to 6 years (Varga, 2014). After the success of Diavik’s 9 MW 

wind hybrid system (DDC, 2014; CANWEA, 2014), a 1.8 MW wind project is considered for 

Storm Hills outside of Inuvik, which could meet approximately 18% of Inuvik’s annual electricity 

demand (Matangi, 2014). Finally, pilot projects are being developed for biomass in Dettah and 

geothermal technologies in Fort Liard (GNWT, 2013).  

 

 

 

                                                 
38 Assuming an average efficiency rate of 3.6 kWh/litre for the diesel engines and an average of 0.00080 ton CO2,eq for direct 

carbon emissions (emissions resulting from diesel and natural gas combustion only). See HORCI (2012). 
39 “Net metering” allows residential and commercial customers who generate their own electricity from renewable electricity 

technologies to feed excess electricity generated back into the grid. See, for example, http://www.ntpc.com/docs/default-

source/default-document-library/ntpc-net-metering-13-08-14.pdf?sfvrsn=2. 
40 http://aea.nt.ca/blog/2016/02/request-for-proposals-community-government-building-solar-projects 

 

http://www.ntpc.com/docs/default-source/default-document-library/ntpc-net-metering-13-08-14.pdf?sfvrsn=2
http://www.ntpc.com/docs/default-source/default-document-library/ntpc-net-metering-13-08-14.pdf?sfvrsn=2
http://aea.nt.ca/blog/2016/02/request-for-proposals-community-government-building-solar-projects
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Table 7: Renewable energy projects in remote communities. Northwest Territories 
 Community Hydro  

(MW) 

Wind 

(kW) 

Solar 

(kW) 

Year Source 

Existing projects  

1 Aklavik    15 2015  
2 Colville Lake   135.5 2014 Pembina (n.d. (a)); see also41 

3 Deline   -   

4 Fort Good Hope   5 2013  
5 Fort Liard   10.5 2014  

6 Fort McPherson    -   

7 Fort Providence   15 2013  
8 Fort Simpson   104 

5 

5 

2013 

2013 

2013 

See also42 

9 Gameti   5 

17 

2012 

2015 

 

10 Jean Marie River FN   1.3 2006 
2016 

 

11 Inuvik   5 

7 
1 

3.5 

10 
1.7 

2009 

2009 
2011 

2011 

2013 
2013 

Dignard, Martel, & Ross (1998) 

12 Kakisa-Kaagee Tu FN    -   

13 Lutsel’Ke   35 2015 AEA (2016); CBC (2016b) 
14 Nahanni Butte- Deh Cho FN   4.8 2011  

15 Norman Wells   4.8 2011 

16 Paulatuk   5 
1.7 

2011 
2011 

 

17 Sachs Harbour  50 4.3 1998 
2010 

Pinard & Weis (2003); Carpenter 
(2013) 

18 Trout Lake-Sambaa K’e Dene    -   

19 Tsiigehtchic   18 2015  
20 Tuktoyaktuk   -   

21 Tulita   10 2013  

22 Ulukhaktok   -   

23 Wekweeti   4.2 2010 Carpenter (2013) 

24 Whati   5 

16 

2012 

2015 

 

25 Wringley- Pehdzeh Ki FN   19 2015  

 Total  50 474.3   

Proposed projects  

1 Aklavik    10 2016 

For all proposed projects see43 

2 Fort Simpson   10 2016 

3 Jean-Marie River   6 2016 

4 Norman Wells   10 2016 

5 Whati   5 2016 

 Total - - 41   

Source: For all existing projects see Carpenter (2013); Cherniak, Dufresne, Keyte, Mallett, & Scott (September 2015); 

GNWT (2012b); Prieur (2015). 

 

 

 

                                                 
41 https://www.ntpc.com/smart-energy/how-to-save-energy/colville-lake-solar-project 
42http://www.skyfireenergy.com/solar-commercial/grid-tied-electric-systems/104kw-diesel-offset-solar-photovoltaic-

system-fort-simpson-northwest-territories/ 
43 http://aea.nt.ca/blog/2016/02/request-for-proposals-community-government-building-solar-projects 

 

https://www.ntpc.com/smart-energy/how-to-save-energy/colville-lake-solar-project
http://www.skyfireenergy.com/solar-commercial/grid-tied-electric-systems/104kw-diesel-offset-solar-photovoltaic-system-fort-simpson-northwest-territories/
http://www.skyfireenergy.com/solar-commercial/grid-tied-electric-systems/104kw-diesel-offset-solar-photovoltaic-system-fort-simpson-northwest-territories/
http://aea.nt.ca/blog/2016/02/request-for-proposals-community-government-building-solar-projects
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Conclusion 

The 25 remote aboriginal communities in NWT are undergoing an energy transition through the 

introduction of mainly solar photovoltaic installations into the diesel powered electrical systems, 

new small hydro-electricity projects, and the future extension and interconnection of the two local 

grids. The Government of NWT has established provincial targets and supported investment in 

photovoltaic systems with financial incentives to reduce diesel consumption and encourage 

community participation in electricity generation. As a result, 28 solar photovoltaic projects were 

deployed in 19 remote communities between 2009 and 2016. Most of the projects were developed 

under net metering agreements that reduced community electricity expenses while displacing 

diesel. The success of two community scale projects developed by NTPC in cooperation with 

communities, as well as Lutselk’e’s community owned and operated solar installation under a PPA 

agreement, provide successful models for future deployment of renewable electricity in remote 

communities with increased community benefits, reduced costs and improved environmental 

performance.  
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3. Recent Developments in Renewable Energy in Remote Aboriginal 

Communities, Nunavut, Canada 

 

Remote aboriginal communities in Nunavut are entirely dependent on diesel powered electricity. 

This paper reviews the electricity systems in 25 remote communities, past renewable electricity 

projects and available renewable resources. Despite past efforts to introduce renewable energy into 

these communities, alternative energy generation is limited to a few district heating installations, 

and wind and solar demonstration projects. The high cost of deployment of renewable technologies 

in Nunavut’s isolated locations and limited government financial resources hinder communities’ 

participation in renewable electricity generation. However, growing demand and the necessity for 

diesel plant replacements or upgrades in 17 of the 25 communities, combined with recent decreases 

in the cost of solar and battery storage technologies, provide an opportunity for communities with 

high wind resources to integrate wind and solar projects into their electricity systems and to reduce 

dependence on fossil fuels. 

 

Introduction 

Each of Nunavut’s 25 communities is remote and isolated with no road or electricity grid 

connecting them. They are entirely dependent on diesel-generated electricity with diesel delivered 

in the summer and stored in tanks for use throughout the year. The result is a high cost, carbon-

intensive system. Efforts have been made to introduce renewable energy in the past (Ah-You & 

Leng, 1999), but renewable electricity generation is limited to a few wind and solar demonstration 

projects (Senate Canada, 2014a). System efficiency has been improved with district heating 

systems in ten communities that use residual or waste heat from the diesel plants (Senate Canada, 

2014a). Although there are hydroelectricity resources capable of reducing Nunavut’s diesel 

consumption, the necessity of upgrading the outdated diesel generators and the Government of 

Nunavut’s limited financial resources restrict the deployment of renewable electricity projects 

(Senate Canada, 2014a). However, the need for change is recognised and new interest has arisen 

in the potential for renewable resources to displace diesel through the integration of wind, solar 

and battery storage in the local systems as old diesel plants are upgraded (Das & Canizares, 2016). 

The next sections provide an overview of the population served in Nunavut’s remote aboriginal44 

communities, the capacity and type of current electricity generation systems, electricity price and 

rate structures, future demand expectations, renewable resource availability, as well as policies, 

plans and pilot projects to support renewable electricity generation in the remote communities. 

 

 

 

                                                 
44 The term aboriginal community is used in this paper. It is recognized that some communities prefer the term indigenous 

community while others prefer aboriginal community and that both are used in the literature. 
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Population 

Nunavut has 25 communities45 with a 2014 population of approximately 36,500 (Table 8), of which 

approximately one third (or 11,389 people) is under the age of 15. Nunavut’s population increased 

at an average annual growth rate of 2.3% from 2006 to 2014. The capital Iqaluit has a population 

of 7,542 and the communities of Arviat and Rankin Inlet follow with populations of 2,611 and 

2,820 respectively (NBS, 2014).  

 

Table 8: Remote aboriginal communities, Nunavut 
 Community name Population 

2014 

Diesel plant 

capacity 

(MW)46 

Annual electricity 

demand 

(2013) in MWh 

1 Arctic Bay (Ikpiarjuk) 875 1.07 3,008 

2 Arviat  2,611 2.24 8,028 

3 Baker Lake (Qamanittuaq) 2,164 2.24 8,938 

4 Cambridge Bay (Ikaluktutiak)  1,684 3.11 9,144 

5 Cape Dorset (Kinngait) 1,508 1.80 6,110 

6 Chesterfield Inlet (Igluligaarjuk) 387 0.81 2,002 

7 Clyde River (Kangiqtugaapik) 1,039 1.35 3,681 

8 Coral Harbour (Sallit) 961 1.31 3,367 

9 Gjoa Haven (Uqsuqtuuq) 1,370 1.65 5,009 

10 Grise Fiord (Aujuittut) 163 0.465 1,250 

11 Hall Beach (Sanirajak) 895 1.345 3,257 

12 Igloolik  2,007 1.74 6,183 

13 Iqaluit  7,542 15.10 56,888 

14 Kimmirut  481 0.93 2,.062 

15 Kugaaruk (formerly Pelle Bay) 953 0.835 2,653 

16 Kugluktuk (Qurluqtuq) 1,591 2.22 5,576 

17 Pangnirtung (Pangniqtuuq) 1,613 2.22 6,477 

18 Pond Inlet (Mittimatalik) 1,673 2.25 5,993 

19 Qikiqtarjuaq (formerly Broughton Island) 526 1.305 2,531 

20 Rankin Inlet (Kangiqiniq) 2,820 3.55 17,396 

21 Repulse Bay (Naujaat) 1,068 0.99 3,584 

22 Resolute (Qausiuttuq) 247 2.05 4,778 

23 Sanikiluaq  924 1.2 3,483 

24 Taloyoak (Talujuaq) 998 1.5 3,418 

25 Whale Cove (Tikirarjuaq) 456 0.75 1,753 

 Total 36,556 54.03 174,507 

Source: AANDC (2012b); NBS (2014); QEC (2013).  

 

 

Electricity system 

Electricity generation in Nunavut was the responsibility of Northern Canada Power Commission 

(NCPC) from 1949-1988, followed by Northwest Territories Power Corporation (NTPC) until 

                                                 
45 AANDC (AANDC, 2012) mentions 26 communities and includes the community of Bathurst Inlet (Kingoak), which 

currently has zero population, see https://www12.statcan.gc.ca/census-recensement/2011/dp-

pd/prof/details/page.cfm?Lang=E&Geo1=CSD&Code1=6208065&Geo2=PR&Code2=01&Data=Count&SearchText=Bath

urst%20Inlet&SearchType=Begins&SearchPR=01&B1=All&GeoLevel=PR&GeoCode=6208065&TABID=1 
46 https://en.wikipedia.org/wiki/List_of_generating_stations_in_Nunavut and the Nunavut power archives, such as 

http://web.archive.org/web/20040829121348/http://www.nunavutpower.com/communities/chester.html in the case of 

Chesterfield inlet for example. See also AANDC and NRCan (2011). 

https://www12.statcan.gc.ca/census-recensement/2011/dp-pd/prof/details/page.cfm?Lang=E&Geo1=CSD&Code1=6208065&Geo2=PR&Code2=01&Data=Count&SearchText=Bathurst%20Inlet&SearchType=Begins&SearchPR=01&B1=All&GeoLevel=PR&GeoCode=6208065&TABID=1
https://www12.statcan.gc.ca/census-recensement/2011/dp-pd/prof/details/page.cfm?Lang=E&Geo1=CSD&Code1=6208065&Geo2=PR&Code2=01&Data=Count&SearchText=Bathurst%20Inlet&SearchType=Begins&SearchPR=01&B1=All&GeoLevel=PR&GeoCode=6208065&TABID=1
https://www12.statcan.gc.ca/census-recensement/2011/dp-pd/prof/details/page.cfm?Lang=E&Geo1=CSD&Code1=6208065&Geo2=PR&Code2=01&Data=Count&SearchText=Bathurst%20Inlet&SearchType=Begins&SearchPR=01&B1=All&GeoLevel=PR&GeoCode=6208065&TABID=1
https://en.wikipedia.org/wiki/List_of_generating_stations_in_Nunavut
http://web.archive.org/web/20040829121348/http:/www.nunavutpower.com/communities/chester.html
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2001 (NTPC, 2016). Following the creation of the new territory, new arrangements were made 

with power generation being provided by Qulliq Energy Corporation (QEC), a corporation owned 

by the Government of Nunavut (QEC, 2015a). QEC generates, transmits and distributes electricity 

through 26 stand-alone diesel plants in 25 communities (there are two diesel plants in Iqaluit) and 

approximately 275 km of distribution lines, with a total installed capacity of 54 MW, serving 

approximately 14,400 electrical customers (Figure 3) (GN, 2015a).  

Diesel-generated electricity in Nunavut was 176,850 MWh in 201347 and was projected to increase 

by 2.3% to 187,610 kWh in 2014/2015. Electricity generation in 2013 was fueled by approximately 

48 million liters of diesel resulting in an average efficiency of 3.69 kWh/liter, at an average cost 

of 0.91 $/lit (QEC, 2013). Diesel fuel is shipped in bulk during the summer and stored in fuel tank 

facilities in each community (QEC, 2014; GN, 2015a). Electricity related greenhouse gas 

emissions for 2013 were estimated at approximately 116,000 tonnes CO2eq, while total emissions 

(electricity, heating and transportation) were 473,813 tonnes of CO2eq , an increase of 14,941 

tonnes since 2009 (GN, 2015a). 

 

Figure 3: Electricity system in Nunavut: communities with diesel generators 

 
Source: QEC (2013). 

 

Electricity rates 

The cost of electricity in Nunavut depends on the community and the rate class, which in turn is 

based on the distinction between residential, government and commercial customers. Residential 

                                                 
47 QEC 2014/2015 General Rate Application, Vol 1, p.45/372. 
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rates in 2014 ranged from 62.23 c/kWh in Rankin Inlet to as high as 114.16 c/kWh in Kugaaruk or 

144.80 c/kWh for government accounts in Whale Cove (QEC, 2015b) (Table 2). Residential and 

small commercial consumption are subsidized through the Nunavut Electricity Subsidy Program. 

For small commercial enterprises subsidization applies to the first 1,000 kWh of monthly 

consumption, while residential customers are subsidized for the first 1,000 kWh during the October 

to March period and the first 700 kWh during the April to September period; in this case all 

consumers pay the same rate, which is 50 percent of Iqaluit’s base rate, or 30.15 c/kWh (GN, 

2015b; CBC, 2014). Excess consumption is billed at the electricity rate of each community 

presented in Table 9. 

 

Table 9: Qulliq Energy Corporation (QEC) electricity rate schedule, May 2014 
 Community Domestic Commercial 

  Non-

government 

c/kWh 

Government Non-

government 

c/kWh 

Government 

1 Arctic Bay (Ikpiarjuk) 87.87 87.87 78.97 78.97 

2 Arviat  79.14 79.14 74.03 74.03 

3 Baker Lake (Qamanittuaq) 70.31 70.31 66.09 66.09 

4 Cambridge Bay (Ikaluktutiak)  76.06 76.06 66.07 66.07 

5 Cape Dorset (Kinngait) 68.59 71.87 64.47 71.87 

6 Chesterfield Inlet (Igluligaarjuk) 97.54 97.54 91.14 91.14 

7 Clyde River (Kangiqtugaapik) 78.19 78.67 69.66 69.66 

8 Coral Harbour (Sallit) 94.66 94.66 87.11 87.11 

9 Gjoa Haven (Uqsuqtuuq) 89.45 92.28 85.96 85.96 

10 Grise Fiord (Aujuittut) 92.09 110.79 105.92 105.92 

11 Hall Beach (Sanirajak) 89.03 92.32 85.91 85.91 

12 Igloolik  63.23 63.23 58.35 58.35 

13 Iqaluit  60.29 60.29 50.68 52.04 

14 Kimmirut  103.74 103.51 87.70 88.13 

15 Kugaaruk (formerly Pelle Bay) 114.16 114.16 101.77 101.77 

16 Kugluktuk (Qurluqtuq) 93.32 98.68 87.19 87.19 

17 Pangnirtung (Pangniqtuuq) 65.74 70.13 58.66 64.26 

18 Pond Inlet (Mittimatalik) 89.95 97.29 82.88 82.88 

19 Qikiqtarjuaq (formerly Broughton Island) 77.92 88.71 74.06 88.71 

20 Rankin Inlet (Kangiqiniq) 62.23 62.23 55.04 60.64 

21 Repulse Bay (Naujaat) 85.06 85.06 75.30 75.30 

22 Resolute (Qausiuttuq) 101.35 103.15 96.81 96.81 

23 Sanikiluaq  82.25 82.25 79.01 79.01 

24 Taloyoak (Talujuaq) 98.36 106.46 96.78 96.78 

25 Whale Cove (Tikirarjuaq) 90.42 144.80 111.18 122.71 

Source: QEC (2015b). 

 

Future power requirements and plans 

Electricity load growth is forecasted for all Nunavut communities due to new housing, territorial 

and federal government driven major projects, and exploration activities in the mining sector 

(QEC, 2015a). Load growth for Iqaluit is forecasted to average 3-4% annually. Rapid growth is 

expected in Cambridge Bay due to the creation of the Canadian High Arctic Research Station 

(CHARS) campus, which will be responsible for a 75% increase in the community’s electricity 

demand. Although QEC aims to participate in mining driven generation projects, its main objective 
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remains the affordable and reliable supply of electricity to residential and commercial customers 

(QEC, 2015a).  

The need for an energy strategy in Nunavut was first examined in the Ikuma report (GN, 2001) and 

outlined in Ikummatiit (GN, 2007). Nunavut’s goal was (a) to reduce diesel consumption that 

reached approximately 172 million liters in 2006, of which 40% was accounted for by 

transportation, 37% for heat and hot water and 23% for electricity generation, and (b) to develop 

alternative forms of energy such as hydroelectricity, wind power and solar power, complemented 

with energy efficiency measures. In the case of electricity generation, the strategic plan included 

the development of studies for renewable energy generation and the creation of an Independent 

Power Purchase Policy to encourage the private sector to undertake renewable energy projects and 

then sell surpluses to QEC (GN, 2007).  

Recent reports and discussions focus on the urgent need for replacement and updates of QEC diesel 

plants, since 17 out of 25 facilities have reached the end of their designed service life48  (Senate 

Canada, 2014b; Bell, 2015). There is also a need for infrastructure investments in hydroelectricity 

projects to power Nunavut’s potential mining operations and to reduce diesel consumption (Senate 

Canada, 2014a; Windeyer, 2015).  

Hydroelectricity investment studies have focused on a project outside of Iqaluit, which could 

address increasing loads and infrastructure upgrades issues, as well as replacing 15 million liters 

of diesel fuel (GN, 2015a; Senate Canada, 2014b). The project has been postponed due to its high 

projected cost ($250 to 500 million) and the limited ability of Nunavut government to add 

additional debt (Rohner, 2015). Other renewable options include run-of-the-river facilities at 

locations near Iqaluit, at Akulikutaq, Tungatalik and Qairulituq (GN, 2007; NWT, 2011; Northern 

Vision, 2014). Finally, although past wind projects in Kugluktuk, Cambridge Bay and Rankin Inlet 

exhibited high costs and limited performance49 (Weis, Ilinca, & Pinard, 2008; George, 2012), a 

wind-hydrogen-diesel project has been examined for Cape Dorset (Northern Premiers Forum, 

2014; Senate Canada, 2014b). 

Another option is the proposed connection of the five Nunavut communities (Arviat, Whale Cove, 

Rankin Inlet, Chesterfield Inlet and Baker Lake) in the Kivalliq region to Manitoba’s electrical 

grid (Senate Canada, 2014b). A recent study estimated the cost of the 1,000 km transmission line 

at approximately 900 million with potential savings of $40 million a year from the replacement of 

diesel with clean hydroelectric power, and additional benefits of future load growth coverage (from 

38 GWh to 185 GWh by 2035), lower electricity costs (from an average of 75 c/kWh to 13 c/kWh), 

reduced emissions, and the foundation for fibre-optic infrastructure (Rogers, 2015) . 

 

 

                                                 
48http://www.nunatsiaqonline.ca/stories/article/65674senate_study_nunavuts_power_generation_system_unsustainable/ 
49http://www.nunatsiaqonline.ca/stories/article/65674wind_power_for_nunavut_dont_hold_your_breath_qec_boss_says/ 

 

http://www.nunatsiaqonline.ca/stories/article/65674senate_study_nunavuts_power_generation_system_unsustainable/
http://www.nunatsiaqonline.ca/stories/article/65674wind_power_for_nunavut_dont_hold_your_breath_qec_boss_says/
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Availability of renewable energy sources in Nunavut 

Alternatives to diesel fueled electricity examined for Nunavut include locally discovered resources 

of oil and gas, renewable resources, grid connection, and small nuclear power plants (Senate 

Canada, 2014b). Solar potential in Nunavut is estimated to range from 567 - 691 kWh/kWp in 

Iqaluit (Poissant, Thevenard, & Turcotte, 2004) to 1,158 kWh/kWp in Chesterfield Inlet (GN, 

2015a), while average wind speeds in the area of communities range from 5 m/s in Coral Harbour 

to 7.7 m/s in Whale Cove. Wind resources with average wind speeds higher than 7 m/s are present 

in the communities of Arviat, Chesterfield Inlet, Clyde River, and Whale Cove (Weis & Ilinca, 

2008; Weis & Ilinca, 2010). A recent study indicates that significant savings in diesel consumption 

and operation and maintenance costs could be achieved through the introduction of wind and solar 

applications into local diesel systems for the communities of Sanikiluaq, Iqaluit, Rankin Inlet, 

Arviat, and Baker Lake (Das & Canizares, 2016). 

 

Renewable energy policies and promotion 

Although renewable energy projects are technically viable in Nunavut, there is a lack of territorial 

programs supporting such high capital cost alternatives due to limited financing  (McDonald & 

Pearce, 2012). At the federal level the program ecoENERGY for Aboriginal and Northern 

Communities Program (EANCP), established with the objective to support renewable energy 

projects for greenhouse gas emissions reductions, attracted five applications during the 2007-2011 

period and six applications during the 2011-2014 period from Nunavut, in comparison to seven 

and twelve applications respectively from Northwest Territories (AANDC, 2014b). Recent federal 

budget commitments of $10.7 million over two years for developing renewable projects in northern 

aboriginal communities could assist Nunavut’s communities to examine RETs applications for 

diesel displacement (DFC, 2016; CBC News, 2016). 

The 25 remote communities of Nunavut are powered by diesel generators with a total capacity of 

54 MW, generated approximately 174,000 MWh in 2013 (Table 10), and consumed 48,000,000 

litres of diesel, resulting in the emissions of approximately 116,000 tonnes CO2eq (QEC, 2014; GN, 

2015a). Starting in the 1987 a number of renewable energy technologies in the form of solar 

photovoltaics, solar water heating, and wind turbines have been installed (Table 3). Projects 

included a 3.2 kW solar photovoltaic system on the Arctic College in Iqaluit in 1995 (INAC, 2004; 

Poissant, Thevenard, & Turcotte, 2004), solar photovoltaics in 1998 and a 66 kW wind turbine in 

2000 in Rankin Inlet  (INAC, 2004; Dignard, Martel, & Ross, 1998), a 80 kW wind turbine in 

Cambridge Bay in 1994, and two 80 kW turbines in Kugluktuk installed in 1996 (QEC, 2002; 

INAC, 2004). The three wind projects encountered equipment malfunctions and maintenance 

issues so were decommissioned (GN, 2016).  
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Table 10: Renewable electricity projects in remote communities, Nunavut  
 Community Hydro 

MW 

Wind 

kW 

Solar 

kW 

Year Source 

Existing projects  

1 Arctic Bay (Ikpiarjuk)      

2 Arviat       

3 Baker Lake (Qamanittuaq)      

4 Cambridge Bay 

(Ikaluktutiak)  

 100 

80 

 1987 

1994 

Ah-You & Leng (1999); Weis & Ilinca (2008) 

5 Cape Dorset (Kinngait)      

6 Chesterfield Inlet 

(Igluligaarjuk) 

     

7 Clyde River 

(Kangiqtugaapik) 

     

8 Coral Harbour (Sallit)      

9 Gjoa Haven (Uqsuqtuuq)      

10 Grise Fiord (Aujuittut)      

11 Hall Beach (Sanirajak)      

12 Igloolik   20  1988 Ah-You & Leng (1999); Weis & Ilinca (2008) 

13 Iqaluit    3.2 1995 Poissant, Thevenard, & Turcotte (2004); INAC 

(2004) 

14 Kimmirut       

15 Kugaaruk (formerly Pelle 

Bay) 

  4 2014 See50 

16 Kugluktuk (Qurluqtuq)  160  1996 Ah-You & Leng (1999); Pinard & Weis (2003) 

17 Pangnirtung (Pangniqtuuq)      

18 Pond Inlet (Mittimatalik)      

19 Qikiqtarjuaq (formerly 

Broughton Island) 

     

20 Rankin Inlet (Kangiqiniq)  50  1998 Ah-You & Leng (1999); Weis & Ilinca (2008) 

21 Repulse Bay (Naujaat)      

22 Resolute (Qausiuttuq)      

23 Sanikiluaq       

24 Taloyoak (Talujuaq)      

25 Whale Cove (Tikirarjuaq)      

 Total  410 7.2   

Proposed projects  

1 Arviat   10  See51 

2 Iqaluit   2.86  Murray (2015) 

 Total   12.86   

Source: Nunavut Power (n.d.); Ah-You & Leng (1999). 

 

Future renewable electricity applications include a 4 kW photovoltaic system to be installed on the 

local hockey arena in Kugaaruk to reduce the electricity consumption of community’s freezer 

during the summer months (Rogers, 2014), a 2.86 kW solar  system to be installed in Qulliq Energy 

Corporation's Iqaluit plant (Murray, 2015), and a 10 kW solar photovoltaic system to be installed 

on the Arviat recreation center (Table 3) (GN, 2015a). 

 

                                                 
50 http://www.nunavutenergy.ca/en/Nunavuts_Energy_System; http://www.nnsl.com/frames/newspapers/2014-

08/aug11_14ae.html 
51 http://www.nunavutenergy.ca/en/Nunavuts_Energy_System 

http://www.nunavutenergy.ca/en/Nunavuts_Energy_System
http://www.nnsl.com/frames/newspapers/2014-08/aug11_14ae.html
http://www.nnsl.com/frames/newspapers/2014-08/aug11_14ae.html
http://www.nunavutenergy.ca/en/Nunavuts_Energy_System
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Conclusion 

Remote communities in Nunavut are entirely dependent on diesel fuel for electricity, heating and 

transportation. The Government of Nunavut, Qulliq Energy Corporation and the communities are 

interested in renewable energy to reduce diesel dependence and to increase local self-reliance. 

However, the high cost of deployment of renewable technologies in Nunavut’s isolated locations 

and limited government financial resources restrict communities’ investment in renewable 

electricity generation. Local interest in renewables is supported by external groups. For example, 

the environmental group, World Wildlife Fund – Canada (WWF), is promoting a shift to 

renewables in Nunavut and supported the pre-feasibility study by Das and Canizares (2016) that 

found renewables to be financially feasible in selected communities (WWF, 2016). Given, recent 

decreases in the cost of solar technology and battery storage applications combined with the 

necessity for diesel plant replacements or upgrades in 17 of the 25 communities, an opportunity 

has arisen to consider the potential for renewables to be integrated into the electricity systems of 

Nunavut’s remote communities, to build local capacity and to reduce the communities’ dependence 

on fossil fuels. 
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4. Recent Developments in Renewable Energy in Remote Aboriginal 

Communities, British Columbia, Canada 

 

Hydroelectricity has a long tradition in British Columbia, provides approximately 95% of the 

province’s electricity supply, and powers the electrical systems of several remote aboriginal 

communities. However, diesel generators remain in 23 remote aboriginal communities and a 

transition from fossil fuels to renewables is desired. This transition has been promoted through a 

series of Energy Plans from 2002 and the 2010 Clean Energy Act. One of the goals of the Act is to 

encourage economic development of First Nation and rural areas through the development of clean 

and renewable energy projects. The stage of development of these clean energy projects varies 

among communities and insights can be gained by reviewing progress to date. This paper reviews 

current community electricity systems, past renewable electricity projects, as well as available 

renewable resources, generation alternatives, and supportive targets and policies in British 

Columbia.  The results show that two communities recently connected to the newly constructed 

Northwestern transmission line, and that 15 out of the 23 remote aboriginal communities 

participate, or plan to participate, in renewable electricity generation to reduce diesel dependence 

and greenhouse gas emissions, and to increase self-sufficiency. 

 

Introduction 

Renewable energy (hydroelectricity) has a long tradition in British Columbia and provides 

approximately 95% of the province’s electricity supply. However, the electricity system in 23 

remote aboriginal52 communities was typically based on diesel generators. A transition from fossil 

fuels to renewables in these communities has been promoted through a series of Energy Plans from 

2002 and the 2010 Clean Energy Act. One of the goals of the Act is to encourage economic 

development of First Nation and rural areas through the development of clean and renewable 

energy projects (BC Hydro, 2013f). The stage of development of these clean energy projects varies 

among communities and insights can be gained by reviewing progress to date. Some of the larger 

communities, serviced by BC Hydro, are powered by hydro-electricity projects owned by 

communities or Independent Power Producers (IPP). In some cases, communities have completely 

displaced diesel while achieving socio-economic benefits by having the community own run-of-

river hydroelectric plants. The remaining diesel powered communities that independently operate 

their own systems are participating in hydroelectricity, solar or biomass proposals to reduce 

greenhouse gas emissions and increase local self-sufficiency. Before reviewing these renewable 

energy projects, the next sections of this paper will provide an overview of the population served 

in British Columbia’s remote aboriginal communities, the capacity and type of current electricity 

generation systems, electricity price and rate structures, future demand expectations, renewable 

                                                 
52The term aboriginal community is used in this paper. It is recognized that some communities prefer the term indigenous 

community while others prefer aboriginal community and that both are used in the literature. 
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resource availability, as well as policies, plans and future projects to support renewable electricity 

generation in remote aboriginal communities. 

 

Population 

According to AANDC and NRCan (2011) in 2011 there were 86 remote communities in British 

Columbia (BC) with a total population of approximately 24,000 people, of which 25 were 

aboriginal communities with a population of approximately 8,000, and 61 were non-aboriginal 

communities with a population of 16,000 (AANDC and NRCan, 2011). Recent grid connections 

reduced the number of remote communities to 70 (Inglis, 2012). Of the 23 remote First Nation 

communities presented in Table 11 and Figure 4 only 12 communities have a population over 100, 

two communities have a population between 50 and 99 and seven communities have a population 

lower than 50.  
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Table 11: British Columbia’s non-integrated area serviced and independent aboriginal 

communities 
Nr Community Name First Nation name Popula- 

tion 

201153 

Diesel 

plant 

capacity 

kW 

Annual 

energy 

demand 

(2011) 

MWh54 

Service 

 

1 Anahim Lake Ulkatcho FN 355 2,650 4,990 

N
IA

 s
er

v
ed

 b
y
 B

C
 H

y
d

ro
- 

Z
o
n

e 
II

 

Communities 

with a 

population 

larger than 

100 people 

2 Atlin Taku River Tlingit FN 322 2,65055 4,400 

3 Bella Bella Heiltsuk FN 1095 8,750 10,147 

4 Bella Coola Nuxalk Nation FN 850 7,630 17,147 

5 Fort Ware Kwadacha FN 250 755 n/a 

6 Hartley Bay  Gitga't FN 15556 1,000 1,344 

7 Refuge Cove  Hesquiaht FN 80 150 438 

8 Kitasoo  Kitasoo FN 315 250 n/a 

9 Lower Post (Liard 

River) 

Liard FN 102 995 n/a 

10 Masset (Old Masset) Haida Nation 607 11,524 24,275 

11 Nemiah Valley 

(Chilco Lake and 

Lohbiee) 

Xeni Gwet'in FN 148 305 1,279 

12 Skidegate Landing Haida Nation 781 No data No data 

13 Finlay River  Tsay Keh Dene FN 105 500 No data 

14 Elhlateese Uchucklesaht FN 19 125 255 

Communities 

with a 

population 

less than 100 

people 

15 Sim Creek- Dead 

Point  

Da'nawda'xw FN 2057 No data No data 

In
d

ep
en

d
en

t 

16 Chenahkint Ehattesaht 70 50 No data 

17 Good Hope Lake Dease River 32 1,230 613 

18 Hopetown Gwawaenuk Tribe-

/Kwa-wa-aineuk 

14 40 No data 

19 Sundayman's 

Meadow  

Kluskus- Lhoosk’uz 

Dene FN 

3258 20 260 

20 Gwayasdums Kwicksutaineuk-ah-

kwaw-ah-mish- 

Haxwa'mis FN  

50 225 No data 

21 Katit Oweekeno- 

Wuikinuxv FN 

65 1,050 1,168 

22 Hope Island  Tlatlasikwala 29 70 No data 

23 Quaee Tsawataineuk -

Dzawada'enuxw FN 

90 900 1,208 

 Total  5,586 40,869 67,524   

 

 

 

 

                                                 
53 http://pse5-esd5.aadnc-aandc.gc.ca/fnp/Main/Search/FNPopulation.aspx?BAND_NUMBER=540&lang=eng 
54 According to AANDC and NRCan (2011), unless otherwise noticed. 
55 The Atlin community is currently powered by hydroelectricity. 
56 Census population in 2006. 
57 Registered population in December 2015. 
58 AANDC and NRCan (2011) based on the 2006 census. 

http://pse5-esd5.aadnc-aandc.gc.ca/fnp/Main/Search/FNPopulation.aspx?BAND_NUMBER=540&lang=eng
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Figure 4: Map of remote aboriginal community locations, British Columbia  

 
Source: AANDC and NRCan (2011); AANDC (2016)59. 

Electricity system 

British Columbia’s electrical system is part of the North American western interconnected 

electricity system, with BC Hydro providing power to 1.9 million customers, or approximately 95 

percent of the population, through 31 hydroelectric plants and three thermal plants, with a total 

capacity of 12,000 MW (BC Hydro, 2013a; BC Hydro, 2014). Renewable electricity from BC 

Hydro’s hydroelectric plants and from Independent Power Producers’ (IPPs) owned hydroelectric 

generation projects meet approximately 95% of the electricity demand, with the remaining 

electricity generated using natural gas and other renewables (BC Hydro, 2014; OPC, 2010). British 

Columbia’s transmission and generation system is presented in Figure 5. 

 

 

                                                 
59 See https://www.aadnc-aandc.gc.ca/eng/1100100021015/1100100021021 

https://www.aadnc-aandc.gc.ca/eng/1100100021015/1100100021021
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Figure 5: BC Hydro’s generation and transmission system, July 2015. 

 
Source: https://www.bchydro.com/content/dam/BCHydro/customer-portal/documents/corporate/accountability-

reports/financial-reports/annual-reports/bch-system-map-Jul-2015.pdf. 

 

In 2012 British Columbia used 57,000 GWh of electricity, of which 10,900 GWh were produced 

by IPPs. Approximately 25% of the IPPs contribution was hydro generation, and this is forecast to 

increase over the next 20 years to approximately 25% of the total supply (BC Hydro, 2014; BC 

Hydro, 2012b; BCBC, 2013). Due to its hydroelectricity generation assets, the total emissions for 

electricity generation were 631,000 tonnes CO2,eq in 2012 and 730,000 tonnes CO2,eq in 2013, 

leading to average emission intensities of 18.5 tonnes CO2,eq/ GWh (or 18 gr CO2,eq/ kWh) (BC 

Hydro, 2014; BC Hydro, 2015c). 

Most of British Columbia’s communities are connected to the main grid within the integrated 

electrification area. The communities that are not connected to the main grid are either within BC 

Hydro’s non-integrated area or outside it. Within the non-integrated area, BC Hydro either owns 

the electricity generation assets or buys electricity from IPPs and resells the electricity to the 

communities at similar rates to those in the integrated areas. Remote communities outside the non-

integrated area may receive services from BC Hydro through the Remote Community 

Electrification (RCE) Program, or they may choose to operate their own electricity systems (BC 

Hydro, 2015a; ISIS, 2011). The remote aboriginal communities in the non-integrated area, the 

https://www.bchydro.com/content/dam/BCHydro/customer-portal/documents/corporate/accountability-reports/financial-reports/annual-reports/bch-system-map-Jul-2015.pdf
https://www.bchydro.com/content/dam/BCHydro/customer-portal/documents/corporate/accountability-reports/financial-reports/annual-reports/bch-system-map-Jul-2015.pdf
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communities that are part of the RCE program, as well as the communities that could participate 

in the RCE program in the future are presented in Figure 6. 

 

Figure 6: Remote aboriginal communities by type of BC Hydro program 

 
Source: Modified from BC Hydro (2010, p.4); AANDC and NRCan (2011). 

 

Within the non-integrated area there are four local grids that are served by hydroelectricity and 

diesel generators, namely the Bella Bella and Bella Coola local grids in mainland BC, and the 

Masset and Sandspit local grids in Haida Gwaii. The Bella Coola grid provides electricity to 

approximately 2,000 people. It is powered by diesel generators established in 1955 in the Ah-Sin-

Heek station and hydroelectricity through the Clayton Falls60 run-of-river facility built in 1962 and 

updated to 2 MW in 1991 (BC Hydro, 2016a). The Bella Bella communities of Waglisla (home of 

the Heiltsuk First Nation) and Shearwater receive their electricity from the Central Coast Power 

Corporation (CCPC). The IPP provides electricity - to the Bella Bella non-integrated area that is 

generated mainly by the Ocean Falls hydroelectricity plant, while the diesel plants in Shearwater 

provide approximately 1% of the communities’ annual electricity demand  (BC Hydro , 2007). In 

                                                 
60 https://www.bchydro.com/community/recreation_areas/clayton_falls_recreation_site.html 

https://www.bchydro.com/community/recreation_areas/clayton_falls_recreation_site.html
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Haida Gwaii, BC Hydro provides electricity through the northern grid that serves Old Masset, 

Masset and Port Clements using a diesel generating facility in Masset. The southern grid serves 

Skidegate, Queen Charlotte City, Tlell and Sandspit and receives power from the private 6 MW 

hydroelectric plant in Queen Charlotte with a backup BC Hydro diesel generation station available 

in Sandspit (BC Hydro, 2012a).  

 

Figure 7: British Columbia’s electricity rate system zones 

 
Source: BC Hydro (2015b, p. 50).  

 

Electricity rates 

Electricity rates in British Columbia are set through a public hearing process and, despite recent 

increases (9% in 2014 and 6% in 2015), are some of the lowest electricity rates in Canada (OPC, 

2010, p. 32), as a result of the large hydroelectric facilities on the Peace and Columbia rivers (OPC, 

2010; BC Hydro, 2015d). As the original BC electrical system (consisting of diesel generators and 

hydroelectric plants) transformed to the integrated BC system with Zone I rates, the communities 

outside the system formed the non-integrated areas with the Zone II rate system, which include the 

districts of Anahim Lake, Atlin, Bella Coola, Dease Lake, Elhlateese, Fort Ware, Haida Gwaii, 

Hartley Bay, Telegraph Creek, Toad River and Tsay Keh (Figure 7), while a number of smaller 

aboriginal communities are served by IPPs or community energy systems (see Table 11).   
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In BC Hydro’s non-integrated area serviced remote communities under Zone II rates, residential 

customers pay similar rates to residential customers under Zone I (9.55 c/kWh in comparison to 

7.97 c/kWh) for the first 1,500 kWh/month, while for consumption beyond 1,500 kWh/month a 

higher rate is charged to discourage electric space heating from diesel-generated electricity (Table 

12) (BC Hydro, 2015b). Small general service customers and general service customers in Zone II 

also pay similar rates to Zone I. According to BC Hydro (2015b) very few residential customers 

under Zone II exceed the 1,500 kWh /month threshold, therefore electricity costs are comparable 

between Zone I and Zone II residential customers61.  

Table 12: Residential rates for Zone I and Zone II communities 
2016 Rates Residential Zone I RIB 

Rate (RS 1101) 

Residential Zone II Rate 

(RS 1101) 

Base Charge/day (cents) 17.64 18.82 

Consumption threshold (kWh/month) 675 1500 

Rate for consumption below threshold (c/kWh) 7.97 9.55 

Rate for consumption above threshold (c/kWh) 11.97 16.41 
Source: BC Hydro (2015b  p. 22).  

 

Since the total cost for the generation of electricity in the non-integrated area zones is higher than 

the revenue generated, the non-integrated area customers are subsidized by the ratepayers of Zone 

I. In 2014 under-recovered costs in Zone II equalled approximately $31.5 million and are 

forecasted to increase to approximately $34 million in 2015 and $35 million in 2016 (BC Hydro, 

2015b).  

 

Future power requirements and plans 

BC hydro forecasts an electricity demand growth of 23,000 GWh, or more than 40% of the current 

(2012) 57,000 GWh, over the next 20 years, due to increasing population, residential demand, 

economic activity and mining and liquefied natural gas developments (BC Hydro, 2013a). BC 

Hydro’s Integrated Resource Plan under the Clean Energy Act of 201062, addressed future demand 

through a combination of conservation measures, supply from major projects (such as the Site C 

on the Peace River), and supply from smaller renewable (biomass, run-of-river hydro and wind) 

projects. These projects are to be developed in cooperation with Independent Power Producers 

(IPP), who currently operate 81 clean and renewable power generation plants that are funded 

through Electricity Purchase Agreements providing about 20% of the BC Hydro’s electricity (BC 

Hydro, 2013a; BC Hydro, 2013b).  

                                                 
61 https://www.bchydro.com/accounts-billing/rates-energy-use/electricity-rates/residential-rates.html 

https://www.bchydro.com/about/planning_regulatory/2015-rate-design/resources.html#2015rda 
62 http://www.bclaws.ca/EPLibraries/bclaws_new/document/ID/freeside/00_10022_01#section3 

https://www.bchydro.com/accounts-billing/rates-energy-use/electricity-rates/residential-rates.html
https://www.bchydro.com/about/planning_regulatory/2015-rate-design/resources.html#2015rda
http://www.bclaws.ca/EPLibraries/bclaws_new/document/ID/freeside/00_10022_01#section3
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Electricity demand in BC Hydro’s non-integrated area’s thirteen remote communities represented 

approximately 0.2% of BC Hydro’s total, or 103 GWh in 2012. Demand grew at an average of 

0.4% per year over the last four years and is forecast to increase by 2%, 1.2% and 0.7% annually 

over the next 5, 11 and 21 years due to anticipated growth in residential and commercial consumers 

(BC Hydro, 2012b). There are no available data on forecast future electricity demand for the ten 

smaller independent aboriginal communities. In 2014 the communities of Eddontenajon and 

Telegraph Creek were connected to the provincial grid by the newly constructed Northwestern 

Transmission line (BC Hydro, 2016b; RWB, 2011). 

 

Availability of renewable energy sources in British Columbia 

The identified potential of BC’s renewable resources allows for successful demand coverage, as 

well as the achievement of provincial objectives of self-sufficiency, support for clean energy and 

economic development, and reduced greenhouse gas emissions (BC Hydro, 2014). The 2013 

Resource Options Report assessed demand-side management options and resource options for 

generation and transmission for the next 20-30 years and identified solutions consistent with the 

2010 Clean Energy Act (BC Hydro, 2013b). Options included biomass, wind, geothermal, run-of 

river, combined cycle gas turbine and cogeneration, as well as limited capacity from wave, tidal, 

and solar resources (BC Hydro, 2013c).  

A complete list of available renewable energy options for the province is provided in BC Hydro 

(2013e) and OPC (2009). Supply options include 4,271 MW of onshore wind, 3,819 MW of 

offshore wind, 1,189 MW of run-of-river, and 1,100 MW from Site C, with costs ranging from 8 

c/kWh to 1.17 $/kWh (BC Hydro, 2013c). Evaluation of the available renewable energy options 

included, besides impacts on provincial GDP, revenues, and employment from construction and 

operations (BC Hydro, 2013e), future potential electricity purchase agreements for IPPs, which are 

tied to specific impact benefit agreements signed with First Nation communities, therefore 

supporting aboriginal economic development (BC Hydro, 2013d). For example, bioenergy 

electricity purchase agreements have broad economic benefits for forestry and transportation 

besides construction and operation of facilities (BC Hydro, 2013d, p. 17). 

 

Renewable energy policies and promotion  

During the 2002-2012 period, British Columbia emphasized a shift towards clean energy through 

the introduction of the 2002 Energy Plan, the 2007 Energy Plan, and the 2010 Clean Energy Act. 

First, the 2002 Energy Plan introduced the private sector and IPPs for development of new 

electricity generation, with BC Hydro undertaking “improvements of existing plants” and the 

development of Site C (GBC, 2002, p. 9; BC Hydro, 2013f). Second, the 2007 Energy Plan 

proposed a policy framework promoting energy self-sufficiency, 90% renewable energy electricity 
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generation and the creation of a market for renewable energy through a Standing Offer Program 

(OPC, 2010; BC Hydro, 2013f; GBC, 2007). Alternative energy policies were established through 

the Innovative Clean Energy Fund for the promotion of renewable energy technologies, the 

creation of a provincial bioenergy strategy, and the support of renewable fuels and hydrogen and 

fuel cell technologies63. Finally, the 2010 Clean Energy Act (CEA)64 introduced British 

Columbia’s 16 energy objectives, including the goals of generating 93% of electricity from “clean 

or renewable resources and to build the infrastructure necessary to transmit that electricity”65, 

reducing GHG emissions in communities, introducing conservation measures, and encouraging 

economic development of First Nation and rural areas through the development of clean and 

renewable energy projects (BC Hydro, 2013f).  Since the Energy Plan 2002 there have been eight 

power acquisition processes and a number of bilateral agreements for the creation of a renewable 

energy market, presented in Table 13, resulting in 87 electricity purchase agreements, of which 41 

are in operation representing 5,300 GWh/year and 46 projects representing an additional 7,100 

GWh/year are in the development stage (BC Hydro, 2013f) (BC Hydro, 2010). 

The 2010 CEA also gave the ability to BC Hydro to implement feed-in-tariffs for specific 

renewable energy technologies66 and provided for the creation of the First Nations Clean Energy 

Business Fund (FNCEBF). The FNCEBF promotes aboriginal community participation in the 

clean energy sector within their asserted traditional territories and treaty areas. The fund provides 

(a) revenue sharing agreements with First Nations where there are provincial water and/or land 

rentals from renewable energy projects undertaken in their territory, (b) capacity funding for the 

implementation of project feasibility studies and financial analysis of potential projects, 

community energy planning or engaging with project proponents, and (c) funding for financially 

viable renewable energy projects through an electricity purchase agreement.  

 

Table 13: BC Hydro power acquisition processes since 2002 
Acquisition process Launch date 

Green Power Generation Call October 2002 

F2006 Open Call for Power December 2005 

Standing Offer program (SOP) April 2008 

Bioenergy Phase 1 Call, Request For Proposals  February 2008 

Clean Power Call June 2008 

Integrated Power Offer Mid-2009 

Community-Based Biomass Power Call Request for Expressions of Interest  April 2010 

Bioenergy Phase 2 Call Request For Proposals  May 2010 

Bilateral Agreements (e.g. Forest Kerr, Waneta Expansion) Various 

Source: BC Hydro (2013f, p. 4). 

 

                                                 
63http://www2.gov.bc.ca/gov/content/industry/electricity-alternative-energy/innovative-clean-energy-solutions/innovative-

clean-energy-ice-fund 
64 http://www.bclaws.ca/EPLibraries/bclaws_new/document/ID/freeside/00_10022_01#section3 
65 http://www.bclaws.ca/EPLibraries/bclaws_new/document/ID/freeside/00_10022_01#section3 
66http://www.pembina.org/reports/pembina-assessment-of-the-clean-energy-act-final.pdf 

http://www2.gov.bc.ca/gov/content/industry/electricity-alternative-energy/innovative-clean-energy-solutions/innovative-clean-energy-ice-fund
http://www2.gov.bc.ca/gov/content/industry/electricity-alternative-energy/innovative-clean-energy-solutions/innovative-clean-energy-ice-fund
http://www.bclaws.ca/EPLibraries/bclaws_new/document/ID/freeside/00_10022_01#section3
http://www.bclaws.ca/EPLibraries/bclaws_new/document/ID/freeside/00_10022_01#section3
http://www.pembina.org/reports/pembina-assessment-of-the-clean-energy-act-final.pdf
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The development of clean and renewable energy projects by British Columbia’s remote and grid 

connected aboriginal communities is supported by regional, provincial and federal programs, as 

well as programs for non-governmental organizations and programs specifically tailored to assist 

First Nation communities67.  

At the federal level, the Aboriginal and Northern Climate Change Program (ANCCP), the 

Aboriginal and Northern Community Action Program (ANCAP), the ecoENERGY for Aboriginal 

and Northern Communities Program (EANCP) and the Climate Change Adaptation Program 

(CCAP) covered both remote and on-grid aboriginal communities and provided funding for 

project’s initial costs, community energy planning and capacity building (AANDC, 2014d). 

Aboriginal Affairs and Northern Development Canada (AANDC) and Aboriginal Business Canada 

(ABC) delivered the Aboriginal Business & Entrepreneurship Development (ABED) program that 

aimed to support both individuals and community related projects68.  

At the regional level, the Remote Community Implementation (RCI) program, which ran until 

March 2013, provided funding related to renewable energy69 for both aboriginal and non-aboriginal 

remote communities. Finally, at the utility level, the Remote Community Electrification Program70, 

established by BC Hydro in 2005, supported the electrification of the independent remote 

communities by BC Hydro. The program prioritized the inclusion of renewables in the 

communities’ electricity mix and provided different financing options for community participation 

(BC Hydro, 2015a; BC Hydro, 2010)71. 

 

Renewable electricity generation in remote communities 

The 23 remote aboriginal communities in British Columbia are powered by local diesel generators 

and hydroelectricity. There are approximately 41 MW of installed diesel capacity, which generated 

approximately 67,500 MWh in 2011, consumed 18,750,000 liters/year of diesel fuel, and 

contributed 54,000 tonnes CO2,eq/year in CO2,eq emissions72 (Table 1). 

Hydroelectricity generation in remote aboriginal communities has a total capacity of 29.2 MW 

(Table 4) and nine of the 23 remote aboriginal communities are involved in renewable electricity 

generation. The electrical systems of Atlin, Bella Bella, Bella Coola, Kitasoo and Skidegate 

                                                 
67 See “Support Program Guide for First Nation & Civic Community Energy Efficiency & Clean Energy Projects, updated 

May 2015” in http://www2.gov.bc.ca/assets/gov/farming-natural-resources-and-industry/electricity-alternative-

energy/community_energy_funding_and_support_guide_-_update.pdf. 
68https://www.aadnc-aandc.gc.ca/eng/1100100032796/1100100032800 
69 http://www.fraserbasin.bc.ca/ccaq_rci.html. 
70 https://www.bchydro.com/energy-in-bc/our_system/remote_community_electrification.html 
71 The threshold for a community’s consideration under BC Hydro’s Remote Community Electrification (RCE) program is a 

community with at least ten residences (Inglis, 2012).  
72 Assuming an average efficiency rate of 3.6 kWh/litre for the diesel engines and an average of 0.00080 tonnes CO2,eq/kWh, 
for direct carbon emissions (emissions resulting from diesel and natural gas combustion only). See HORCI (2012). 

http://www2.gov.bc.ca/assets/gov/farming-natural-resources-and-industry/electricity-alternative-energy/community_energy_funding_and_support_guide_-_update.pdf
http://www2.gov.bc.ca/assets/gov/farming-natural-resources-and-industry/electricity-alternative-energy/community_energy_funding_and_support_guide_-_update.pdf
https://www.aadnc-aandc.gc.ca/eng/1100100032796/1100100032800
http://www.fraserbasin.bc.ca/ccaq_rci.html
https://www.bchydro.com/energy-in-bc/our_system/remote_community_electrification.html
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Landing are powered by a total of 26 MW of hydroelectric plants backed up by diesel generators. 

The remote communities of Atlin and Kitasoo completely displaced diesel through community 

owned small run-off-river plants and increased economic benefits through employment during 

construction and operations, subcontracting opportunities, and revenue generation to be used for 

further community business investment (Kirby, 2009). The Taku River Tlingit FN’s Pine Creek 

(Atlin) project exports excess electricity (Morrin, 2016; Kirby, 2009), while the Kitasoo FN hydro 

plant powers the community owned seafood production facility that employs most of the 

community members (Sisco & Stewart, 2009). A solar-diesel minigrid was developed in Nemiah 

Valley in 2007 that displaces 26,000 liters of diesel annually (or 25% of the electricity generated) 

(Pelland, Turcotte, Colgate, & Swingler, 2012). The installation of a smart grid in Hartley Bay in 

2008 led to the reconfiguration of the diesel engine dispatch strategies and displaces 77,000 litres 

of diesel fuel annually (NRCan, 2016). Finally, a hybrid hydro-hydrogen-storage system was 

installed in Bella Coola in 2010 to store excess energy generated, reduce diesel consumption by 

200,000 litres, and cut down emissions by 600 tonnes CO2,eq annually (Fuel Cells Bulletin, 2010).  

Future projects include a 3.4 MW extension of the Atlin project (Morin, 2015), and hydroelectricity 

plants for five communities (Masset, Lower Post, Hesquiant, Oweekeno, and Elhlateese). A 28 kW 

solar plant is planned for Kitasoo, while a wood based biomass powered plant is considered for the 

community of Anahim Lake (see Table 14).  
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Table 14: Renewable electricity projects in remote communities, British Columbia 
 Community Other Hydro 

MW 

Wind 

kW 

Solar 

kW 

Year Source 

Existing projects  

1 Anahim Lake       

2 Atlin  2.1   2009 Kirby (2009) 

3 Bella Bella  15   1980 OPC (2009); BC 

Hydro(2007) 

4 Bella Coola Hydrogen 2   1992 Fuel Cells Bulletin (2010) 

5 Fort Ware      See73 

6 Hartley Bay  DRS    2008 NRCan (2016) 

7 Refuge Cove        

8 Kitasoo   1.1   2006 GEA (2016) 

9 Lower Post (Liard River)       

10 Masset (Old Masset)       

11 Nemiah Valley     28 2007 Pelland, et al.(2012) 

12 Skidegate Landing  6   1992 Ah-You & Leng (1999) 

13 Finlay River     Solar 2011 See74 

14 Elhlateese       

15 Sim Creek- Dead Point        

16 Chenahkint       

17 Good Hope Lake  3   1997 Ah-You & Leng (1999) 

18 Hopetown       

19 Sundayman's Meadow        

20 Gwayasdums       

21 Katit       

22 Hope Island        

23 Quaee       

 Total  29.2  28   

Proposed projects  

1 Atlin  3.4    Morin (2015) 

2 Elhlateese  1    See75 

3 Kitasoo     28 See See76 

4 Masset (Old Masset)      See77 

5 Katit (Oweekeno)      See78 

6 Annahim Lake      See79 

7 Refuge Cove (Hesquiaht 

FN) 

     See80 

8 Lower Post (Liard River)      See81 

 Total  4.4  28   

                                                 
73 https://www.ceaa-acee.gc.ca/050/documents_staticpost/63919/85328/Vol5_Appendix-Kwadacha.pdf 
74 Solar powered airfield. 
75 https://www.bchydro.com/content/dam/hydro/medialib/internet/documents/community/aboriginal/Elhlateese_bch_service.pdf. 
76 http://nationtalk.ca/story/bullfrog-power-and-b-c-s-kitasooxaixais-first-nation-partner-on-school-solar-project 
77 http://www.canadianenergylawblog.com/2013/03/12/bc-hydro-launches-the-haida-gwaii-request-for-expressions-of-interest-rfeoi/ 
78 https://www.aadnc-aandc.gc.ca/eng/1334855478224/1334856305920 
79http://www.bchydro.com/content/dam/hydro/medialib/internet/documents/planning_regulatory/acquiring_power/2010q3/20100706_cbb_s

ch_7.pdf 
80 http://www.firstpowercanada.ca/files/HesquiahtBrochure.pdf 
81 http://www.kaskadenacouncil.com/kaska-nations/dease-river-first-nation/44-kaska-dena/213-dease-river-development-corporation 

 

https://www.ceaa-acee.gc.ca/050/documents_staticpost/63919/85328/Vol5_Appendix-Kwadacha.pdf
https://www.bchydro.com/content/dam/hydro/medialib/internet/documents/community/aboriginal/Elhlateese_bch_service.pdf
http://nationtalk.ca/story/bullfrog-power-and-b-c-s-kitasooxaixais-first-nation-partner-on-school-solar-project
http://www.bchydro.com/content/dam/hydro/medialib/internet/documents/planning_regulatory/acquiring_power/2010q3/20100706_cbb_sch_7.pdf
http://www.bchydro.com/content/dam/hydro/medialib/internet/documents/planning_regulatory/acquiring_power/2010q3/20100706_cbb_sch_7.pdf
http://www.firstpowercanada.ca/files/HesquiahtBrochure.pdf
http://www.kaskadenacouncil.com/kaska-nations/dease-river-first-nation/44-kaska-dena/213-dease-river-development-corporation
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Remote communities may also connect to the provincial grid and end their remote classification as 

they gain access to much larger supply systems. The cooperation of aboriginal communities, 

hydroelectricity developers and BC Hydro led to the development of the Northwest Transmission 

line in 2014, which provided electricity for eleven potential mining projects from newly 

constructed hydroelectricity projects in the area, connected the remote communities of 

Eddontenajon and Telegraph Creek, and led to the generation of socioeconomic benefits for the 

Tahltan First Nation (RWB, 2011; BC Hydro, 2016b). According to the Tahltan Central Council, 

the impact benefit agreement signed with Alta Gas with respect to the Forrest Kerr Hydroelectric 

Project82 includes contracting, training and employment opportunities during construction and 

operation of the project, and financial benefits of $1.8 billion over the projected life of the project 

(RWB, 2011, p. 3). 

 

Conclusion 

Remote aboriginal communities in British Columbia are undergoing an energy transition from 

diesel generation to low-carbon renewable sources of electricity. The transition is being achieved 

through grid expansion and local hydroelectricity, solar and biomass projects. The remote 

communities of Eddontenajon and Telegraph Creek were recently connected to the provincial grid 

and benefit from large hydroelectricity generation within their territories. Nine remote 

communities are involved in large and small hydro projects within the non-integrated areas and 

generate and sell electricity to BC Hydro. One community plans to expand its hydroelectric plant 

and five remote communities are considering new community owned hydroelectricity generation. 

Two more communities are planning a solar photovoltaic project and a biomass based power plant, 

increasing the number of communities that will be using renewable resources for electricity 

generation to 15 out of the 23 remote aboriginal communities. The communities’ transition from 

diesel-generated electricity to renewable resources is promoted through provincial targets and 

programs, and financially supported by IPP policies and electricity purchase agreements, in 

cooperation with BC Hydro, so that both communities within the non-integrated areas and 

independent communities can own renewable electricity assets, reduce their dependence on diesel 

and increase community revenues. 

 

 

 

                                                 
82  The Forest Kerr Project received a 60-year electricity purchase agreement from BC Hydro, see 

http://www.farris.com/images/uploads/BAN__ALH_-_2010_-_Tahtlan_Nation_Sign_Precedent.pdf. 

http://www.farris.com/images/uploads/BAN__ALH_-_2010_-_Tahtlan_Nation_Sign_Precedent.pdf
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5. Recent Developments in Renewable Energy in Remote Aboriginal 

Communities, Ontario, Canada 

 

Northern Ontario’s 25 remote aboriginal communities are looking to introduce renewable 

electricity sources into their diesel-powered systems. This paper reviews community electrical 

systems, past renewable electricity projects, as well as available renewable resources, generation 

alternatives, and supportive targets and policies for community owned renewable electricity 

generation in Northern Ontario. Communities are transforming their electrical systems by 

introducing renewable electricity into their electrical systems and participating directly in the 

proposed transmission line that would connect 21 of the 25 communities to the provincial grid. 

Renewable projects are financially supported by federal and provincial programs and take the form 

of small-scale applications under “behind the meter” agreements, or community scale projects 

under power purchase agreements with HORCI, the utility that services 15 remote communities. 

Under the long-term option of the interconnection to the provincial grid, communities are expected 

to be supplied with low carbon, reliable and affordable electricity, and to be able to participate in 

the development of larger scale community owned renewable electricity generation assets. The 

model of increased aboriginal community decision making authority is used to increase their 

socioeconomic benefits and self-sufficiency and may serve as a valuable model for other 

community assets and service delivery in the future. 

 

Introduction 

Ontario’s 25 remote aboriginal83 communities are highly dependent on diesel for electricity 

generation and are looking to introduce renewable electricity sources into their electrical systems. 

Diesel-generated electricity is responsible for direct (combustion) and indirect (e.g. transport, 

including delivery by airplane in some cases) greenhouse gas emissions, fuel spills and fuel tank 

leakages during transportation and storage, as well as limitations to economic development due to 

imposed load restrictions (GY, November 2009). Although some of Ontario’s early utility owned 

renewable electricity projects experienced performance issues (Weis & Ilinca, 2008), there is 

renewed interest in hydroelectricity, wind, solar and biomass cogeneration applications to address 

emission, cost, reliability and self-sufficiency issues. Community ownership or partnership is 

encouraged to build local capacity and to increase local socio-economic benefits. The next sections 

of this paper provide an overview of Ontario’s remote aboriginal communities, the capacity and 

type of current electricity generation systems, electricity price and rate structures, future demand 

expectations, renewable resource availability, as well as policies, plans, and existing and future 

projects to support renewable electricity generation in the remote communities. 

                                                 
83The term aboriginal community is used in this paper. It is recognized that some communities prefer the term indigenous 

community while others prefer aboriginal community and that both are used in the literature. 
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Population 

There are 37 remote communities in Ontario, of which 25 are aboriginal communities with a 

population of approximately 15,00084. The communities are isolated and accessed only by winter 

roads and air, while the community of Fort Severn is additionally accessed by barge85, 86 (OPA, 

2014). There are only two communities with a population over 1,200 and 11 communities have a 

population between 300 and 800 (Table 1). Most of the communities are members of the 

Nishnawbe Aski Nation (NAN), a political territorial organization representing 49 northern 

Ontario First Nation communities with an estimated total membership (on and off reserve) of 

around 45,000 (NAN, 2014). The communities are also grouped by Tribal Council (Windigo First 

Nations Council, Wabun Tribal Council, Shibogama First Nations Council, Mushkegowuk 

Council, Matawa First Nations, Keewaytinook Okimakanak, and Independent First Nations 

Alliance) based on certain regional, ethnic or linguistic characteristics (NAN, 2014).  

 

Electricity system 

Northern Ontario’s remote communities are serviced by Hydro One Remote Communities Inc. 

(HORCI), and Independent Power Authorities (IPAs) (Table 15 and Figure 7). HORCI, a Hydro 

One subsidiary company, distributes electricity to 21 remote communities in Northern Ontario, of 

which 15 are aboriginal communities (Hydro One, 2013; Service Ontario, 2013). HORCI services 

3,332 customers and generates electricity from 18 generation stations using 55 generators, two 

hydroelectric stations (in Deer Lake and Sultan), and four wind demonstration projects (two in 

Kasabonika Lake FN, one in Fort Severn and one in Big Trout Lake) (Hydro One, 2012; COGUA, 

2013; HORCI, 2012). 

IPAs, established in the 1970s, are community owned and operated utilities servicing 11 northern 

Ontario remote aboriginal communities (Hydro One, 2012; OEB, 2008). IPAs currently operate 10 

stations and 34 generators87, and service 1,462 customers (1,287 residential, 52 general service and 

113 governmental customers) (OEB, 2008). IPA communities’ members mention certain benefits 

from running their own power systems, namely local control (which directly affects rate settings 

according to community needs), support for members facing poverty issues, opportunities for local 

job creation, and a source of community pride (NAN, 2014a; OEB, 2008). 

 

 

                                                 
84 2011 National Household Survey. Released November 13, 2013.http://www12.statcan.gc.ca/nhs-

enm/2011/ref/no13reserves/table-tableau.cfm?Lang=E&CSD_UID=3560085 (accessed January 31, 2014). 
85 http://www.mndm.gov.on.ca/en/northern-development/transportation-support/northern-ontario-winter-roads 
86 http://www.hydroone.com/OurCommitment/RemoteCommunities/Pages/home.aspx 
87 The communities of Keewaywin and Koocheching are served by the diesel plant in Keewaywin. 

http://www.mndm.gov.on.ca/en/northern-development/transportation-support/northern-ontario-winter-roads
http://www.hydroone.com/OurCommitment/RemoteCommunities/Pages/home.aspx
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Table 15: Remote aboriginal communities, Ontario 
Nr Community name Other name Population 

201188 
Diesel 

plant 

capacity 

kW89 

Annual 

energy 

demand 

(2011) 

MWh90 

Member- 

ship 
Utility 

1 Bearskin Lake FN  400 825 2,826 

NAN 

HOR

CI 

2 Deer Lake FN  722 825 5,018 

3 Fort Severn FN  477 550 2,420 

4 Kasabonika Lake FN  890 825 4,114 

5 Kingfisher Lake FN  415 825 2,370 

6 Marten Falls Ogoki Post 234 610 1,438 

7 Neskantaga FN Lansdowne 240 705 1,795 

8 North Caribou Lake FN Weagamow, 

Round Lake 

810 825 4,480 

9 Sachigo Lake FN  420 550 2,847 

10 Sandy Lake FN  1,954 3,250 11,290 

11 Wapekeka FN Angling 

Lake 

371 550 2,535 

12 Webequie FN  670 825 2,737 

13 Whitesand FN  Armstrong 262 1,400 4,104 

Other 

First 

Nation 

14 Kiashke Zaaging 

Anishinaabek FN 

Gull Bay, 

Gull River 

218 550 1,282 

15 Kitchenuhmaykoosib 

Inninuwug FN 

Big Trout 

Lake 

971 2,600 6,059 

16 Kee-Way-Win FN Niska 337 350 2,364 

NAN IPAs 

17 North Spirit Lake FN  275 420 2,085 

18 Wawakapewin FN Long Dog 22 55 n/a 

19 Pikangikum FN  2,280 1,250 5,033 

20 Poplar Hill FN  495 600 2,189 

21 Muskrat Dam Lake FN  267 650 2,116 

22 Nibinamik FN Summer 

Beaver 

335 705 1,996 

23 Weenusk FN Peawanuck, 

Winisk 

234 400 2,249 

24 Wunnumin Lake FN  516 1,115 2,213 

25 Eabametoong FN Fort Hope, 

Ebanetoong 

1,085 1,565 3,400 

 Total  14,900 22,825 78,960   

Source: AANDC and NRCan (2011); (HORCI, 2012); OEB (2008). 

 

 

 

 

 

 

 

 

                                                 
88 See also: http://pse5-esd5.aadnc-aandc.gc.ca/fnp/Main/Search/FNPopulation.aspx?BAND_NUMBER=540&lang=eng.  
89 According to AANDC and NRCan (2011) and OEB (2008).  
90 According to AANDC and NRCan (2011), unless otherwise noticed. 

http://pse5-esd5.aadnc-aandc.gc.ca/fnp/Main/Search/FNPopulation.aspx?BAND_NUMBER=540&lang=eng
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Figure 7: Remote communities of Northern Ontario and their electricity providers 

 
Source: HORCI (2012, p.7). 

 

Electricity rates 

Electricity rates in HORCI’s communities are differentiated between the Standard-A and the non-

Standard-A rate. Residential and commercial customers pay the Non-Standard-A subsidized rates, 

which are equivalent to customers who are connected to the main Ontario grid. Federal, provincial 

and community buildings pay the Standard-A rate, which equals the cost of electricity generation 

in the remote communities (0.92 $/kWh in 2013), and is applicable to all accounts paid directly or 

indirectly out of federal and/or provincial government funding. Electricity costs in IPAs are 

estimated to be approximately 2% higher than HORCI electricity costs, due to the lack of 

economies of scale in fuel purchasing and equipment maintenance (OPA, 2010; OEB, 2008). 
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HORCI’s residential customers’ rates are subsidized mainly by AANDC and Ontario’s Rural or 

Remote Rate Protection (RRRP) funding mechanism. IPAs receive subsidies from AANDC to 

support residential consumers but rates are significantly higher for general service and 

governmental accounts (see Table 16), due to the lack of the RRRP subsidy, since IPAs are not 

licensed by the Ontario Energy Board (OEB, 2008).  

 

Table 16: Electricity rates in Ontario’s remote communities 
Rates type HORCI electricity rates for 2013 IPAs electricity rates 

Non-Standard-A Energy charge first 1000 kWh…......0.08 $/kWh 

Energy charge next 1500 kWh…......0.11 

$/kWh 

Energy charge all additional kWh ....0.17 

$/kWh 

Residential…. 0.18 $/kWh -0.25 $/kWh 

Business……. 0.18 $/kWh-0.90 $/kWh 

Government…0.90 $/kWh-1.90 $/kWh 

 

Non-Standard-A General 

Service 

Energy charge first 1000 kWh…......0.08 $/kWh 

Energy charge next 1500 kWh…......0.11 

$/kWh 

Energy charge all additional kWh ...0.17 $/kWh 

Standard-A Residential Energy charge first 250 kWh…0.56-0.84 

$/kWh 

Energy charge all additional….0.64-0.92 $/kWh 

Standard-A General 

service 

|Energy charge………………...0.64-0.92 

$/kWh 

Source: Hydro One (2012, p.748); OEB(2008).  

 

Future power requirements and plans 

Electricity generation in the HORCI operated communities increased at an average 2% annually 

from approximately 24,500,000 kWh in 1990 to approximately 59,000,000 kWh in 2011, due to 

population, dwelling and community building increases (HORCI, 2012). Similarly, electricity 

generation for the IPA communities increased an average of 2% annually between 2004 and 2011 

(OEB, 2008). Future electricity load is forecast to increase due to community population growth 

and new resource development projects within Nishnawbe Aski Nation territory connected with 

the discovery of significant deposits of nickel and copper in the Ring of Fire area (Burkhardt, 

Rosenbluth, & Boan, n.d.; NRCan, September 2012). Under these resource development 

projections, OPA (2010) and OPA (2014) anticipate a load increase from 18 MW to 85 MW and 

generation needs from 84,000 MWh to 394,000 MWh between 2013 and 2053 (Table 17).  
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Table 17: Forecast peak demand for Ontario’s 25 remote aboriginal communities 

Description 
Forecast Peak Load for the 25 remote communities 

2013 2023 2033 2043 2053 

Peak Load (MW) 18 27 38 57 85 

Energy consumption (MWh) 84,000 122,000 179,500 266,000 394,000 

Source: OPA (2010, p.23). 

 

Additionally, Ontario’s 25-year economic plan for Northern Ontario (Ministry of Infrastructure, 

2011) identifies renewable energy generation as an emerging priority economic sector. Ontario’s 

Long-Term Energy Plan targets 20,000 MW of renewable energy generation by 2025, or 

approximately half of the provincial installed capacity, with 10,700 MW being wind, solar and 

bioenergy, and 9,300 MW being hydroelectric power (OME, 2013). Provincial targets for 

electricity generation also call for increased participation by aboriginal communities in clean 

electricity generation based on local resources, to address pressing socioeconomic and 

environmental issues (OME, 2013; AECOM, 2012).   

 

Availability of renewable energy sources in northern Ontario 

A total of 1,500 MW of potential hydroelectricity capacity has been identified for Northern Ontario 

(SNC Lavalin, 2006), of which approximately 270 MW are in the proximity of 20 of the 25 remote 

aboriginal communities (NAN, 2014b; Hatch, 2013). Aboriginal communities have also examined 

the creation of a transmission line in cooperation with industrial proponents to connect 

communities and future mining projects with the provincial grid, and access 155 MW of 

hydroelectricity potential that are within 30 km from the proposed Wataynikaneyap transmission 

line (OWA, 2014b; WP, 2012). These resources can produce renewable electricity at a lower cost 

than the current diesel plants (Table 4)91 (OWA, 2014b; Hatch, 2013; WP, 2012). Wind resources 

of 6-7 m/s are available at Deer Lake FN, Fort Severn FN and Weenusk FN, while the rest of 

communities have wind speeds of about 4 m/s (at 50 m height), which is considered low for the 

development of wind projects, under current capital and electricity generation costs (Weis & Ilinca, 

2010; Maissan, 2006a; Weis & Ilinca, 2008; ARI, 2003). Finally, solar resources in northern 

Ontario’s remote communities are considered sufficient, with average direct solar radiation in the 

range of 2.81-3.81 kWh/m2.day (Table 18). 

 

 

 

                                                 
91 The Levelized Unit Electricity Cost (LUEC) presented does not include transmission costs.  
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Table 18: Available renewable energy resources in Ontario’s remote aboriginal 

communities 
Renewable resource Wind Solar Hydroelectricity [3] 
Community name Average 

wind 

speed 

(m/sec) 

[1] 

Average 

wind 

speed 

(m/sec) 

[2] 

Monthly 

Aver. 

Normal 

Radiation 

(kWh/m2.. 

day) [2] 

Size 

 

 

MW 

Energy 

 

GWh/y 

Capacity 

factor 

Capital 

cost 

 

$million 

LUEC92 

 

 

$/kWh 

Bearskin Lake FN 6 4.07 3.62 5.6 24.4 0.5 36 0.086 

Deer Lake FN 5.5 6.11 2.81 5.4 23.8 0.5 32 0.08 

Fort Severn FN 7 5.20 3.51 - - - - - 

Kasabonika Lake FN 5 4.0 3.79 6.9 30.4 0.5 50 0.091 

Kingfisher Lake FN 5 4.1 3.57 2.4 13.9 0.44 16 0.108 

Marten Falls - 4.15 3.68 4.3 19 0.5 24 0.078 

Neskantaga FN - 4.17 3.70 23 114 0.56 123 0.059 

North Caribou Lake FN 5.5 4.12 3.61 - - - - - 

Sachigo Lake FN 5.5 4.05 3.63 5.3 23.4 0.5 36 0.089 

Sandy Lake FN 5 4.03 3.59 15.5 76.1 0.56 86 0.062 

Wapekeka FN 6.5 4.10 3.61 6 26.3 0.5 54 0.109 

Webequie FN 5.5 4.21 3.62 23 114 0.56 142 0.066 

Whitesand FN (Armstrong) - 4.23 3.60 - - - - - 

Kiashke Zaaging Anishinaabek FN 6 4.42 3.81 2.2 9.5 0.5 11.5 0.083 

Kitchenuhmaykoosib Inninuwug FN 6.5 4.10 3.61 5.5 24.1 0.5 36 0.089 

Kee-Way-Win FN 5.5 4.05 3.59 24.1 119 0.56 140 0.063 

North Spirit Lake FN 5.5 4.07 3.60 2.6 9.9 0.44 16 0.104 

Wawakapewin FN 5 4.10 3.58 4.3 18.9 0.5 37 0.109 

Pikangikum FN - 4.03 3.61 8.2 36.1 0.5 44 0.071 

Poplar Hill FN - 4.00 3.67 11.8 57.8 0.56 65 0.064 

Muskrat Dam Lake FN - 4.07 3.59 38 185 0.56 196 0.056 

Nibinamik FN - 4.16 3.64 17 85.3 0.56 96 0.062 

Weenusk FN 7 6.97 3.33 4.1 18 0.5 22.6 0.078 

Wunnumin FN 5.5 4.14 3.64 13.5 66.5 0.56 83 0.068 

Eabametoong FN - 4.20 3.67 26 129 0.56 141 0.059 

Source: [1] Weis & Ilinca (2010), [2] NASA surface meteorology and solar energy-available Tables93; [3] Hatch, 

(2013). 

 

Renewable electricity policies and promotion  

Support for renewable energy projects in Ontario was strengthened with Ontario’s Green Energy 

and Green Economy Act (GEGEA) in 2009. The Act provided financial support for renewable 

energy projects and access to transmission and distribution for proponents (OME, 2012). The Act 

was criticized for its high incentives and their subsequent consequences on the global adjustment 

portion of electricity bill increases and, therefore, its effects on the provincial economy; positive 

effects of job generation were offset by losses due to the closing of conventional electricity 

facilities (Auditor General, 2011; Angevine, Murillo, & Pencheva, 2012; Winfield, 2013). 

Although renewables were blamed for the increases in electricity rates, the larger share of the extra 

costs in the global adjustment portion of electricity bills were the result of long term contracts with 

nuclear and gas plants (IESO, 2016). For example, between October 2011 and September 2012 the 

                                                 
92 LUEC= Levelized Unit Electricity Cost  
93 https://eosweb.larc.nasa.gov/cgi-bin/sse/grid.cgi?email=skip@larc.nasa.gov 

https://eosweb.larc.nasa.gov/cgi-bin/sse/grid.cgi?email=skip@larc.nasa.gov
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contribution of nuclear and natural gas contracts to the global adjustment were 42% and 26% 

respectively versus a contribution of 17% by renewable contracts, including hydroelectric 

generation (Navigant Cons., 2014). 

Within the Green Energy Act, aboriginal participation in on-grid renewable energy projects is 

possible through the Feed-In-Tariff (FIT) and microFIT programs or through the generation 

procurement for projects of 500 kW or more, which includes the Hydroelectric Standard Offer 

Program (HESOP), the Large Renewable Procurement (LRP), and the Combined Heat and Power 

Standard Offer Program (CHPSOP 2.0) (IESO, 2015). Aboriginal participation is encouraged by 

providing priority points (when an aboriginal community has greater than a 15% economic interest 

in the project), while financial assistance is provided through reduced security payments ($ 5/kW 

regardless of the renewable fuel type), and price adders for addressing increased development 

costs. Access to capital is facilitated through the Aboriginal Loan Guarantee Program (ALGP), 

administered by the Ontario Financing Authority (OFA), for transmission projects and wind, solar 

and hydroelectric generation projects (OFA, 2016). Ontario’s Aboriginal Energy Partnerships 

Program (AEPP), which includes the Aboriginal Renewable Energy Fund (AREF), the Aboriginal 

Community Energy Plan (ACEP) and the Education and Capacity Building (ECB) Program, 

address both the financial barrier of high renewable energy initial capital costs and technical 

support for renewable project development (AEPP, 2016). Implementation of these programs led 

to aboriginal participation in approximately 240 projects with over 1,000 MW of clean electricity 

capacity connected to the main grid (OME, 2013).  

Besides provincial support, remote communities in Ontario and other provinces and territories 

benefitted from federal programs that supported capital expenses for renewable electricity 

generation. Programs launched by the federal government between 2001 and 2016 included the 

Aboriginal and Northern Climate Change Program (ANCCP), the Aboriginal and Northern 

Community Action Program (ANCAP), the ecoENERGY for Aboriginal and Northern 

Communities Program (EANCP) and the Climate Change Adaptation Program (CCAP), and 

covered both remote and non-remote aboriginal communities. Additionally, the ANCAP provided 

funding for community energy planning and capacity building (AANDC, 2014a; AANDC, 2014b; 

AANDC, 2014d). Finally, at the community level, HORCI supported diesel displacement and 

emissions reductions through technological upgrades, fuel switching, demand side management, 

“behind the meter”94 and “net metering”95 arrangements, and the Renewable Energy INovation 

DiEsel Emission Reduction (REINDEER) program, which provided a local FIT tariff for the 

connection of renewable electricity projects in HORCI serviced communities (HORCI, 2012).  

                                                 
94 “On-site, behind the meter”: electricity generation connected to consumer’s side of the meter that provides power to offset 

electricity purchased form the utility. Since behind the meter electricity generation offsets retail kWh purchased, the benefit 

received is superior to a negotiated Power Purchase Agreement. See (Kildegaard & Myers-Kuykindall, 2006). 
95 “Net metering” allows customers that generate their own electricity from renewable electricity technologies to feed excess 

electricity generated back into Hydro One's distribution system for a credit towards your electricity costs. See: 

http://www.hydroone.com/Generators/Pages/NetMetering.aspx. 

http://www.hydroone.com/Generators/Pages/NetMetering.aspx
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Renewable electricity generation in remote communities 

The 25 remote aboriginal communities in Northern Ontario are powered by diesel generators and 

a limited number of renewable electricity projects. There are approximately 23 MW of installed 

diesel capacity, which generated approximately 79,000 MWh/year in 2011, consumed 22,000,000 

liters/year of diesel fuel, and contributed 67,000 tonnes CO2,eq/year in CO2,eq emissions96 (Table 

15). 

Remote communities in Northern Ontario investigate both participation in renewable electricity 

generation and direct connection to the provincial grid as means to reduce their dependence on 

diesel and to improve their socioeconomic conditions using renewable resources. In the case of 

connection to the provincial grid, and based on the experience from the development of Five 

Nations Energy Inc.97, communities anticipate increased electricity reliability, reduced 

environmental impacts and risks, and socioeconomic benefits, such as new residential sub-

divisions, new schools and recreational facilities, and electrically heated homes (Five Nations 

Energy Inc., 2006). The 21 remote communities participating in the development of the 

Wataynikaneyap transmission line, expect similar benefits to be associated with the electrification 

of resource developments in the Ring of Fire area through aboriginally owned renewable electricity 

generation and transmission (OME, 2013; WP, 2013c; WP, 2012). The ownership model proposed 

for the transmission line involves using some of the revenue generated by the transmission line to 

purchase an increasing equity share in the project from the private partner until it becomes 100% 

First Nation owned (WP, 2017; NOB, 2016; WP, 2016).  

“Our people's vision is to own, control and benefit from major infrastructure development in 

our homelands. Through this partnership, we are changing the landscape of how First Nations 

can do business into the future. Together we have reached a major milestone towards getting 

our communities off diesel generation, and improving the socio-economic situation for 

everyone's benefit.” Margaret Kenequanash, Chair of Wataynikaneyap Power (Ontario 

Newsroom 2015).  

Remote aboriginal communities are also gaining direct experience with small renewable electricity 

projects. Four of the first wind demonstration projects were installed in the communities of 

Kasabonika Lake FN, Fort Severn FN, Weenusk FN and Big Trout Lake (Kitchenuhmaykoosib 

Inninuwug FN) in 1997, and one of the first hybrid hydroelectricity-diesel systems was installed 

in Deer Lake in 1998 by Hydro One (Ah-You & Leng, 1999). These projects are owned by HORCI 

and reduce diesel consumption and greenhouse gas emissions in the communities (HORCI, 2012). 

Deer Lake’s 490 kW hydroelectricity plant achieves the highest emissions reductions displacing 

                                                 
96 Assuming an average efficiency rate of 3.6 kWh/litre for the diesel engines and an average of 0.00080 tonnes CO2,eq/kWh, 
for direct carbon emissions (emissions resulting from diesel and natural gas combustion only). See HORCI (2012). 
97 Five Nations Energy Inc. is the first aboriginal transmission line established in 2001 that connected three northern Ontario 

remote communities. The communities of Fort Albany and Kashechewan were connected in 2001 and Attawapiskat in 2003 

(Five Nations Energy Inc., 2006). 
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approximately 36% of community’s fuel consumption (HORCI, 2012) and the community 

examined further upgrades in cooperation with HORCI to improve performance and community 

benefits. Between 2013 and 2016 there have been 12 community owned solar photovoltaic projects 

with a total of 338 kW installed in energy intensive community facilities (such as the water and 

wastewater plant, schools and arenas) in 11 remote communities (Table 19). The projects were 

developed under a “behind the meter” agreement, and reduce facilities’ electricity consumption 

and, thus, electricity expenses paid from band council and government budgets, therefore allowing 

funds to be focused on other pressing community needs.  

Eight more solar photovoltaic installations on community facilities are planned for Kingfisher Lake 

FN, Keewaywin FN, North Spirit FN, Wapekeka FN, Wunnumin Lake FN, Eabametoong FN, 

Sachigo Lake FN, and Webequie FN (Table 5). Furthermore, community scale solar installations 

under Power Purchase Agreements (PPA) with HORCI are being examined for Kasabonika Lake 

FN and Fort Severn (MNDM, 2015). Finally, the community of Whitesand FN in planning the 

generation of electricity and thermal power for community needs through a combined heat and 

power plant (CHP) plant (Neegan Burnside, 2013), increasing the number of Ontario’s remote 

communities involved in renewable electricity generation to seventeen. 
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Table 19: Renewable electricity projects in remote communities, Ontario 
 Community Hydro 

MW 

Wind 

kW 

Solar 

kW 

Year Source 

Existing projects 

1 Bearskin Lake FN      

2 Deer Lake FN 0.49   

152 

10 

1998 

2014 

2014 

Ah-You & Leng (1999) 

WN (2014); HORCI (2014) 

3 Fort Severn FN  n.d.  
20 

1980 
2015 

Ah-You & Leng (1999) 
See98 

4 Kasabonika Lake FN  30 

30 

 

 
10 

1997 

2013 
2015 

Ah-You & Leng (1999) 

 

5 Kingfisher FN   10 2013 See99 

6 Marten Falls FN      

7 Neskantaga FN       

8 North Caribou Lake FN   18 2016 See100 

9 Sachigo Lake FN      

10 Sandy Lake FN      

11 Wapekeka FN      

12 Webequie FN      

13 Whitesand FN      Neegan Burnside ( 2013) 

14 Kiashe Zaaging Anishinabek FN      

15 Kitchenuhmaykoosib Inninuwug  50  1997 Ah-You & Leng (1999) 

16 Keewaywin FN   20 2015 See101. See also102 

17 North Spirit Lake FN   20 2015 See103 

18 Wawakapewin FN   18 2013 Enermodal (2013) 

19 Pikangikum FN      

20 Poplar Hill FN,   20 2015 
See 104 

21 Muskrat Dam Lake FN   20 2015 

22 Nibinamik FN      

23 Weenusk FN   n.d.  

20 

1997 

2015 

Ah-You & Leng (1999) 

See105 

24 Wunnumin Lake FN      

25 Eabametoong FN       

 Total 0.49 110 338   

Proposed projects 

1 Fort Severn FN    300  MNDM (2015) 

2 Kasabonika Lake FN   250   

3 Kingfisher FN   n.d.  

See106 
 

n.d.=no data 

4 Wapekeka FN   n.d.  

5 Wunnumin Lake FN   n.d.  

6 Weenusk    n.d.  

7 Keewaywin    n.d.  

8 Eabametoong FN   n.d.  

9 Sachigo Lake FN   n.d.  

10 Webequie FN   n.d.  

 Total   550   

 

                                                 
98 http://www.daigroup.ca/keewaywin.html 
99 http://www.shibogama.on.ca/?q=node/103 
100 https://www.youtube.com/watch?v=Ypz3Ucb5yas 
101 http://www.bullfrogpower.com/wp-content/uploads/2015/09/Day1-Part1-CanadianSolar_09-16-2015.pdf.;  
102 http://www.daigroup.ca/keewaywin.html 
103 http://www.bullfrogpower.com/wp-content/uploads/2015/09/Day1-Part1-CanadianSolar_09-16-2015.pdf. 
104 http://www.daigroup.ca/diesel-offset-solar-projects.html 
105 http://www.daigroup.ca/diesel-offset-solar-projects.html 
106 EANCP: https://www.aadnc-aandc.gc.ca/eng/1334855478224/1334856305920#sect1 

http://www.bullfrogpower.com/wp-content/uploads/2015/09/Day1-Part1-CanadianSolar_09-16-2015.pdf
http://www.bullfrogpower.com/wp-content/uploads/2015/09/Day1-Part1-CanadianSolar_09-16-2015.pdf
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Conclusion 

Remote aboriginal communities in Ontario are transforming their electrical systems by introducing 

renewable electricity projects and participating in plans for the Wataynikaneyap transmission line 

that would connect most communities to the provincial grid. While early renewable electricity 

projects were developed by the local utility (HORCI), recent projects in 11 remote communities 

were owned by the communities and concentrated on solar photovoltaic applications connected to 

energy intensive community facilities. These projects operate under “behind the meter” agreements 

in cooperation with HORCI, displace diesel fuel, reduce greenhouse gas emissions, and reduce 

local electricity expenses. Projects were financially supported by federal and provincial programs 

and eight further solar plants based on this successful deployment model are proposed. These 

renewable energy projects provide some immediate benefits, but to date the scale is small. Deeper 

transitions from diesel to renewables are being studied. One long term option that is being planned 

is the creation of a transmission line that will connect 21 of the 25 remote communities to the 

provincial grid, supply communities with clean, reliable and affordable electricity, and provide the 

opportunity for the development of larger scale community owned renewable electricity generation 

assets. The model of community ownership of assets has been demonstrated with some of the small 

renewable energy generation projects and is being proposed for the transmission line with multiple 

First Nations collaborating as partners and co-owners. The model of increased aboriginal 

community decision making authority is used to increase their socioeconomic benefits and self-

sufficiency and may serve as a valuable model for other community assets and service delivery in 

the future. 
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6. Recent Developments in Renewable Energy in Remote Aboriginal 

Communities, Quebec, Canada 

 

Northern Quebec’s 14 remote aboriginal communities are dispersed through the land of Nunavik 

and are entirely reliant on diesel for their electricity needs. This paper reviews Nunavik 

communities’ electrical systems, past renewable electricity projects, as well as available renewable 

resources for electricity generation. One renewable project was installed in Kuujjuaq in 1986, but 

despite the availability of wind and hydroelectricity resources, there were no subsequent renewable 

electricity installations in Nunavik. However, the need for alternatives to diesel powered electricity 

is recognized and communities are examining two options: the potential connection to the 

provincial grid to access reliable and clean electricity and the integration of renewable applications 

into local community diesel systems. The success of the Mesgi’g Ugju’s’n wind farm partnership 

with Mi’gmaq communities in Gaspe, and the Raglan Mine community scale wind turbine, 

combined with falling storage prices and technological advancements in controller design, could 

provide an opportunity for the development of high penetration wind projects in locations with 

high wind regimes, including some of Nunavik’s aboriginal communities. 

 

Introduction 

There are 44 remote communities in Quebec served by autonomous electricity grids based on 

hydroelectric and thermal power plants. Northern Quebec’s 14 remote aboriginal107 communities 

are dispersed through the land of Nunavik and are entirely reliant on diesel for their electricity 

needs (AANDC, 2012). Although one of the first wind-diesel projects in Canada was installed in 

Kuujjuaq in 1986 (Ah-You & Leng, 1999; Hydro Quebec, 2016a) to reduce both the need for diesel 

and greenhouse gas emissions, and despite the availability of wind and hydroelectricity resources 

in the proximity of communities, there were no subsequent renewable electricity installations in 

Nunavik. However, the need for alternatives to diesel powered electricity is recognized and 

communities are examining the potential connection to the provincial grid to access reliable and 

clean electricity to improve their socioeconomic conditions. The next sections provide an overview 

of the population served in Nunavik’s 14 remote aboriginal communities, the capacity and type of 

current electricity generation systems, electricity price and rate structures, future demand 

expectations, renewable resource availability, as well as Quebec’s policies, and Nunavik’s plans 

to support community participation in renewable electricity generation. 

 

 

 

                                                 
107 The term aboriginal community is used in this paper. It is recognized that some communities prefer the term indigenous 

community while others prefer aboriginal community and that both are used in the literature.  
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Population 

According to AANDC and NRCan (2011), in 2011 there were 44 remote communities in Quebec 

with a total population of approximately 35,000, of which 25 are non-aboriginal communities with 

a population of approximately 20,000, and 19 are aboriginal communities with a population of 

approximately 15,000.  The community of Whapmagoostui FN is serviced by the diesel plant in 

Kuujjuaraapik and the community of Obedjiwan is part of the diesel grid of Haute Maurice. The 

community of La Romaine (home of the Innu Montagnais de Unamen Shipu) is part of the Basse-

Côte-Nord grid and powered by a 5.7 MW diesel generator. There are no data available for the 

communities of Rapid Lake and Grand Lac Victoria. The remaining 14 communities are the Inuit 

communities in Nunavik (Akulivik, Aupaluk, Inukjuak, Ivujivik, Kangiqsualujjuaq, Kangiqsujuaq, 

Kangirsuk, Kuujjuaq, Kuujjuaraapik, Puvirnituq, Quaqtaq, Salluit, Tasiujaq, Umiujaq) with a 

population of approximately 12,090 people in 2011 (CRC-CAC, 2015; RRSSSN, 2011) (Table 

20). 

 
Table 20: Remote aboriginal communities, Nunavik 

Source: AANDC (2012b); CRC-CAC (2015); Hydro Quebec (2002). 

 

Electricity system 

Hydro Quebec has an installed capacity of 36,912 MW from 87 generating stations and over 99% 

of its supply is hydroelectricity (Hydro Quebec, 2015). Hydro Quebec is the main distributor of 

electricity for the five autonomous grids in Quebec, namely the Îles-de-la-Madeleine, Haute-

Mauricie, Schefferville, Basse-Côte-Nord (including Anticosti Island), and Nunavik, which serve 

                                                 
108 http://pse5-esd5.aadnc-aandc.gc.ca/fnp/Main/Search/FNPopulation.aspx?BAND_NUMBER=540&lang=eng 
109 Hydro Quebec (2002, p.11). The 2011 AANDC and NRCan (2011) study features the same generators capacity. 
110 Hydro Quebec (2002, p.11) 

 
Community Name Population 

2011108 

Diesel plant capacity 

in 2000 

kW109 

Annual electricity 

demand in 2000 

MWh110 

1 Akulivik 615 850 2,016 

2 Aupaluk 195 550 1,020 

3 Inukjuak 1597 2,990 5,744 

4 Ivujivik 370 1,050 1,264 

5 Kangiqsualujjuaq 874 1,760 3,394 

6 Kangiqsujuaq 696 1,520 2,342 

7 Kangirsuk 549 1,050 2,349 

8 Kuujjuaq 2375 3,935 11,973 

9 Kuujjuaraapik 657 3,405 7,976 

10 Puvirnituq 1692 2,870 6,077 

11 Quaqtaq 376 1,045 1,448 

12 Salluit 1347 2,000 4,419 

13 Tasiujaq 303 850 1,493 

14 Umiujaq 444 1,050 1,643 

 Total 12,090 24,325 53,158 

http://pse5-esd5.aadnc-aandc.gc.ca/fnp/Main/Search/FNPopulation.aspx?BAND_NUMBER=540&lang=eng


 

293 

in total approximately 35,000 residents (Table 21 and Figure 8). Total power requirements for the 

isolated grids in 2012 were 93 MW, supplying 412 GWh to approximately 17,600 customers 

(Hydro Quebec, 2013). In 2015 there were 23 plants in off grid systems with a total capacity of 

131 MW (Hydro Quebec, 2015).  

 
Table 21: Quebec’s autonomous electrical grids 

 Autonomous electrical grids in Quebec Power plant type 

1 Îles-de-la-Madeleine Light/heavy diesel 

2 Haute-Mauricie Diesel plants 

3 Schefferville Menihek hydroelectric station in Labrador and 

diesel plants 

4 Basse-Côte-Nord (including Anticosti Island) Lac-Robertson hydroelectric station and diesel 

back-up 

5 Nunavik Isolated diesel power plants 

Source: Hydro Quebec (2013). 

 

Figure 8: Hydro Quebec’s electricity system and Nunavik’s remote communities 

 
Source: Hayeur (2001, p. 69). 
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The largest of Quebec’s autonomous grids is the Îles-de-la-Madeleine grid, serving approximately 

43% of all autonomous grid customers using two thermal power stations, one on Île-d’Entrée using 

light diesel, and one at Cap-aux-Meules using heavy fuel oil. In 2012 the power requirements were 

42.1 MW and electricity consumption was 187 GWh, while the 2012 annual emissions exceeded 

125,000 tonnes CO2, eq annually (Hydro Quebec, 2013).  The small grid of Haute-Mauricie 

comprises of the communities of Opiticiwan and Clova, each supplied by a diesel-fired thermal 

power station, which generate a total of 10.8 GWh. The Schefferville grid is powered by the 

Menihek hydroelectricity plant in Labrador, and serves the communities of Schefferville, 

Matimékush-Lac-John and Kawawachikamach, which consume approximately 43.4 GWh. The 

Basse-Côte-Nord grid is powered by the Lac-Robertson hydroelectric generating station with an 

installed capacity of 33.7 MW that provides approximately 80% of the grid, and two thermal power 

stations, 2.8 and 5.7 MW, installed in the Port-Menier and La Romaine communities respectively. 

The grid serves communities from La Romaine to Blanc-Sablon and the community of Port-Menier 

on Anticosti Island and its power requirements were 86.4 GWh in 2012 (Hydro Quebec, 2013). 

Nunavik’s isolated diesel communities are described in the next sections. 

 

Electricity rates 

Electricity rates in Quebec are currently the lowest in Canada, due to Quebec’s vast 

hydroelectricity resources (Hydro Quebec, 2015). Although the cost of electricity generation in 

Nunavik’s communities is significant and ranges between 65 c/kWh and 132.4 c/kWh (see Table 

22) (GQ, 2014; Cherniak, Dufresne, Keyte, Mallett, & Scott, 2015), electricity rates in remote 

communities are heavily subsidized to as low as 5.71 c/kWh for the first 900 kWh/month and 37.62 

c/kWh for any additional kWh (Hydro Quebec, 2016b).  
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Table 22: Electricity cost in Nunavik’s remote aboriginal communities  
Community Name Total electricity cost, 2013 

(c/kWh) 

1 Akulivik 109.7 

2 Aupaluk 119.4 

3 Inukjuak 77.7 

4 Ivujivik 132.4 

5 Kangiqsualujjuaq 78.8 

6 Kangiqsujuaq 85.2 

7 Kangirsuk 78.9 

8 Kuujjuaq 86 

9 Kuujjuaraapik 70.4 

10 Puvirnituq 66.2 

11 Quaqtaq 95.4 

12 Salluit 65 

13 Tasiujaq 90.6 

14 Umiujaq 95.9 

Source: GQ (2014, p. 16). 

 

Future power requirements and resources availability in Nunavik communities 

Electricity generation in the Nunavik communities increased at an average 3.6% annually from 

53,158 MWh in 2000 (Hydro Quebec, 2002) to approximately 82,400 MWh in 2012 (Hydro 

Quebec, 2013) and 85,500 MWh in 2013 (GQ, 2014). Hydro Quebec estimates future electricity 

demand increase for the fourteen Nunavik communities between 2% and 4% annually for the 

period 2005 to 2024, due to anticipated population, dwellings, and community building increases 

(Hydro Quebec, 2003). Local governments estimate that by 2025 the annual peak demand will 

reach 110 MW (NRBHSS, 2014; NRBHSS, 2013).  

The need to address future community load increases, provision of clean electricity, and economic 

development is examined in “Plan Nunavik” (KRG, 2012). The plan proposes the interconnection 

to Hydro Quebec’s provincial electricity grid as the main alternative for communities to reduce 

their dependence on diesel for both electricity and heating, and to improve their socioeconomic 

conditions through low cost, locally sourced, clean hydroelectricity. The transmission line to 

connect all 14 communities and the Raglan Mine is estimated to cost between $900 to $1,600 

million with a construction period of 6 to 14 years (KRG, 2012; George, 2011). Communities plan 

to use local resources for community owned, hydroelectricity generation and transmission facilities 

that will cover regional demand including the extensions of the Raglan and Nunavik Nickel mining 

sites, and attract future mining exploration projects in the area (GQ, 2006; KRG, 2012; NRBHSS, 

2014). Aboriginal governments identify Nunavik’s hydroelectricity resources as able to support 

from 6,300 to 7,200 MW of renewable electricity generation, and the existence of significant tidal 

power potential in the Ungava Bay. However, there is a lack of studies on the economic, technical 

and environmental potential of these resources (MC-KRG-GQ, n.d.; George, 2011).  
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Renewable energy policies and promotion in Nunavik communities 

Quebec’s 2006-2012 Action Plan included an energy strategy focused on the provision of low cost 

electricity to support industrial development and electricity exports through the addition of 4,500 

MW of hydroelectricity and the development of 4,000 MW of wind potential by 2015 (GQ, 2008). 

Communities (including aboriginal communities) are encouraged to participate in privately owned 

generating stations under 50 MW to promote social and economic development (GQ, 2006b; GQ, 

2015). To support the creation of aboriginal renewable generation assets and to help meet 

community socioeconomic needs, Hydro Quebec made available 250 MW of renewable electricity 

procurement and prioritized aboriginal consultation and the development of energy projects in 

cooperation with communities (GQ, 2016). The largest of these grids connected projects is the 150 

MW Mesgi’g Ugju’s’n (MU) Wind Farm, a 50-50 partnership between the three Mi’gmaq 

communities of Gesgapegiag, Gespeg and Listuguj and the independent renewable power 

producer, Innergex (MU, 2016a). The benefits to the Mi’gmaq communities include equal 

membership on the board of directors, direct employment (110 out of the 300 construction workers 

and four of the eight operational workers were from the communities), an indexed social 

development fund of $75,000/year and estimated profits of $200 million over the 20-year contract 

period (MU, 2016b). 

Table 23: Renewable energy projects in remote Nunavik communities  
 Community Hydro 

MW 

Wind 

kW 

Solar 

kW 

Year Source 

Existing projects  

1 Akulivik       

2 Aupaluk       

3 Inukjuak      

4 Ivujivik       

5 Kangiqsualujjuaq       

6 Kangiqsujuaq       

7 Kangirsuk       

8 Kuujjuaq   65  1986 INAC( 2004); Ah-You & Leng (1999). See 

also111. 

9 Kuujjuaraapik       

10 Puvirnituq       

11 Quaqtaq       

12 Salluit       

13 Tasiujaq       

14 Umiujaq       

 Total  65    

 

Τhe 14 northern communities of Nunavik are powered by isolated diesel generators with a total 

capacity of 24.325 MW, generated approximately 82,400 MWh/year in 2012, consumed 

approximately 23,000,000 litres/year of diesel fuel, and contributed 65,000 tonnes/year CO2,eq 

                                                 
111 http://www.hydroquebec.com/learning/eolienne/historique-eolien-hydro-quebec.html 

http://www.hydroquebec.com/learning/eolienne/historique-eolien-hydro-quebec.html
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emissions112 (Table 20) (KRG, 2012; Hydro Quebec, 2013). Although renewable electricity 

projects for Canadian remote communities were initiated in Quebec, starting with the first 230 kW 

wind turbine installed in Îles-de-la-Madeleine in 1976 (Adamek & Tudor, 2009), there has been 

only one 65 kW wind turbine installed in the Nunavik community of Kuujjuaq in 1986113 (Table 

23).  

The potential for wind-diesel projects in Nunavik’s communities was examined by the Institut de 

Recherche d’ Hydro-Québec (IREQ) (Krohn, 2005) and through the installation of wind 

measurement equipment in Inukjuak, Whapmagoostui, Akulivik, and Kangiqsualujjuaq by Hydro 

Quebec (Hydro Quebec, 2003; Hydro Quebec, 2007). Studies indicate wind resources higher than 

7 m/s for all 14 Nunavik communities (Weis & Ilinca, 2008; Weis & Ilinca, 2010; Krohn, 2005). 

Simulation studies, performed for all communities, indicated that wind-diesel projects, under 

certain assumptions, could be economically viable for the communities of Inukjuak, 

Kuujjuaraapik, Kangiqsualujjuaq, Kangirsuk, Kangiqsujuaq, Umiujaq, and Akulivik, with the 

greatest potential identified in the community of Inukjuak  (Hydro Quebec, 2007). An 8 MW 

hydroelectricity project was also examined for Inukjuak (George, 2011; Atagotaluuk, 2016). 

Despite the considerable number of wind studies for the 14 Nunavik communities conducted 

between 2003 and 2008 (see Maissan, 2006a; Krohn, 2005) and past announcement for 

governmental support for the development of wind-diesel projects in the autonomous grids 

(including Nunavik) to reduce the use of costly and greenhouse gas emissions intensive diesel 

generation (GQ, 2006) there has been no renewable electricity applications installed in Nunavik’s 

aboriginal communities. High deployment costs, communities’ vested interests in diesel 

generation, equipment availability, and resistance to change from Hydro Quebec are the main 

reasons identified as barriers to wind deployment in Quebec’s remote communities (Weis, 2014; 

GQ, 2014). Recent Hydro Quebec announcements state that wind and hydroelectricity projects are 

not financially viable under current economic conditions (Rogers, 2014).  

However, the installation of a wind-hydrogen-smart grid system at Nunavik’s Glencore’s Raglan 

Mine in 2016 signals the potential of community scale wind applications in remote locations. The 

project used an Arctic grade wind turbine, hydrogen storage technologies, an advanced controller, 

and low environmental impact foundations at a Canadian Arctic mine location, and displaced 3.4 

million liters of diesel and 10,200 tons of greenhouse gases within its first 18 months of operation, 

or 2.2 million liters of diesel per year (Tugliq Energy, n.d.; NRCan, 2017). The project’s successful 

deployment demonstrates the potential for wind power to displace diesel consumption in remote 

communities (NRCan, 2017). 

                                                 
112 Assuming an average efficiency rate of 3.6 kWh/litre for the diesel engines and an average of 0.00080 ton CO2,eq for direct 

carbon emissions (emissions resulting from diesel and natural gas combustion only). See HORCI (2012). 
113 The Kuujjuaq wind turbine is currently not operational and used for educational purposes at the Cégep de la Gaspésie et 

des Îles. See footnote 4. 
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Conclusion 

Remote communities in Nunavik are entirely dependent on diesel fuel for electricity, heating and 

transportation. Communities are examining the introduction of wind power into communities’ 

local diesel generation operations and potential connections to the provincial grid as alternatives 

to reduce diesel dependency and to improve socioeconomic conditions. The success of the Mesgi’g 

Ugju’s’n wind farm partnership with Mi’gmaq communities in Gaspe may provide valuable 

lessons for projects in the north. However, despite available wind resources and Hydro Quebec’s 

experience in wind-diesel hybrid systems, wind deployment is currently considered not financially 

viable for the Nunavik communities. Recent successful deployment of a community scale wind 

turbine in Raglan Mine, combined with falling storage prices and technological advancements in 

controller design, could enhance the feasibility of high penetration wind projects in locations with 

high wind regimes, including some of Nunavik’s aboriginal communities. An alternative pathway 

to clean, reliable electricity is the connection to the provincial grid that could also provide multiple 

benefits to the communities through local hydroelectricity or wind generation and transmission to 

existing and future mining development in Nunavik.  
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7. Recent Developments in Renewable Energy in Remote Aboriginal 

Communities, Newfoundland and Labrador, Canada 

 

An energy transition is being proposed for Labrador’s remote aboriginal communities that are 

currently serviced by diesel fueled electricity generators. The Nunatsiavut Regional Government 

(NRG) is concerned about electricity price increases, power outages and shortages that affect 

economic development in communities. The high cost of connecting the communities to the 

Labrador or Newfoundland interconnected grids restricts access to clean and affordable 

hydroelectricity provided by large projects in southwestern Labrador. Instead, the NRG proposed 

local renewable sources of electricity as the means to improve community wellbeing. This paper 

reviews the electrical systems, past renewable electricity projects, as well as available renewable 

resources for electricity generation in Labrador’s isolated communities. A transition from diesel-

generated electricity to less carbon intensive generation is promoted through utility scale run-of-

river projects in five of the 16 communities and wind and solar pilot projects to be developed by 

the Nunatsiavut Regional Government. A net metering policy encourages community participation 

in small-scale wind and solar applications to reduce their greenhouse gas emissions, high electricity 

expenses and increase development capacity. 

 

Introduction 

The remote aboriginal114 communities in Labrador are serviced by diesel fueled electricity 

generator systems operated by Newfoundland and Labrador Hydro, with the exception of one 

community that independently runs its diesel electric system. Despite the substantial operating 

costs of these diesel systems, the cost of connecting the communities to the Labrador or 

Newfoundland interconnected grids is prohibitively high, therefore limiting access to the 

renewable electricity provided by large hydroelectric projects in southwestern Labrador (GNFL, 

2007). Recently, the Government of Newfoundland and Labrador, in cooperation with 

Newfoundland and Labrador Hydro and Nunatsiavut’s Regional Government, have begun to 

examine the potential of integrating hydroelectricity, wind and solar into communities’ systems to 

reduce diesel consumption and greenhouse gas emissions (GNFL, 2015a). The next sections 

provide an overview of the population served in Labrador’s 16 remote aboriginal communities, the 

capacity and type of current electricity generation systems, electricity price and rate structures, 

future demand expectations, renewable resource availability, as well as provincial plans to support 

communities’ participation in renewable electricity generation. 

 

 

                                                 
114The term aboriginal community is used in this paper. It is recognized that some communities prefer the term indigenous 

community while others prefer aboriginal community and that both are used in the literature. 
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Figure 9: The 16 remote aboriginal communities in Newfoundland and Labrador 

 
Source: Nalcor Energy (2014, p.64), modified. 

 

Population 

There are 28 remote communities in Newfoundland and Labrador with a total population of 9,500 

in 2011. Eleven remote communities are non-aboriginal communities, while 16 out of the 17 

communities in Labrador are aboriginal communities with a population of approximately 5,700 

(AANDC and NRCan, 2011; Statistics Canada, 2012) (Figure 9).  

Fifteen of the aboriginal remote communities are serviced by Newfoundland and Labrador Hydro 

(NLH) and one community, the Natuashish-Mushuau Innu First Nation, runs its own electricity 

system as an Independent Power Authority (IPA). Four communities (Mud Lake, Norman Bay, 

Paradise River, and Williams Harbour) have a population below 100. The challenges faced by these 

small communities are illustrated by Williams Harbour where the residents voted to be relocated 

to other areas115, while Black Tickle116 is experiencing a steep decline in community services 

(Table 24). Eight communities have a population between 100 and 500, two communities have 

                                                 
115 http://www.cbc.ca/news/canada/newfoundland-labrador/williams-harbour-votes-96-in-favour-of-relocation-only-1-no-

vote-1.3213147 
116 http://www.cbc.ca/news/canada/newfoundland-labrador/why-black-tickle-s-residents-are-so-leery-about-moving-

1.3207617 

http://www.cbc.ca/news/canada/newfoundland-labrador/williams-harbour-votes-96-in-favour-of-relocation-only-1-no-vote-1.3213147
http://www.cbc.ca/news/canada/newfoundland-labrador/williams-harbour-votes-96-in-favour-of-relocation-only-1-no-vote-1.3213147
http://www.cbc.ca/news/canada/newfoundland-labrador/why-black-tickle-s-residents-are-so-leery-about-moving-1.3207617
http://www.cbc.ca/news/canada/newfoundland-labrador/why-black-tickle-s-residents-are-so-leery-about-moving-1.3207617


 

304 

approximately 550 people, and two communities, the Natuashish-Mushuau Innu First Nation and 

Nain, have population of approximately 1,000. 

 

Table 24: Remote Aboriginal communities, Newfoundland and Labrador 
Nr Community name Population 

2011 

Diesel 

plant 

capacity 

(2011)117 

kW 

Annual 

electricity 

demand 

(2011) 

MWh118 

Serviced by 

1 Black Tickle  138119 765 1,080 

NLH Hydro 

2 Cartwright  516 1,485 3,933 

3 Charlottetown 308 620 1,496 

4 Hopedale  556 1,840 2,673 

5 Makkovik  361 1,300 2,422 

6 Mary’s Harbour  383 1,300 3,110 

7 Mud Lake 60 Ɨ 180 221 

8 Natuashish-Mushuau Innu FN 931 695 No data IPA 

9 Nain  1188 2,920 5,142 

NLH Hydro 

10 Norman Bay  45120 No data No data 

11 Paradise River  14121 145 186 

12 Port Hope Simpson 441 1,390 2,186 

13 Postville  206 735 1,293 

14 Rigolet 306 870 2,064 

15 St. Lewis  207 695 1,923 

16 Williams Harbour 59 Ɨ 325 419 

 TOTAL 5,719 15,625 28,148  

Ɨ Population according to AANDC and NRCan (2011). 

Source: Statistics Canada (2012); NLH (2016).  

 

 

Electricity system 

Electricity generation and distribution in Newfoundland and Labrador is provided through 

Newfoundland Power and Newfoundland and Labrador Hydro (NLH), a subsidiary of the Crown 

Corporation Nalcor Energy since 2007 (GNFL, 2016).  NLH was established as Newfoundland 

Power Commission (NPC) in 1954 with the goal to extend electrification within the province to 

rural areas. NPC provided electricity, built transmission lines, and installed diesel plants between 

1958 and 1964, and in 1975 was incorporated into Newfoundland and Labrador Hydro (NLH) 

(Baker , 1990). Currently, NLH provides electricity to approximately 290,000 customers through 

hydroelectric, residual oil-fired, wind, biomass and diesel generation plants. Customers are 

                                                 
117 According to AANDC and NRCan (2011), unless otherwise noticed. 
118 According to AANDC and NRCan (2011), unless otherwise noticed. 
119 http://www.cbc.ca/news/canada/newfoundland-labrador/why-black-tickle-s-residents-are-so-leery-about-moving-

1.3207617 
120 http://www.southernlabrador.ca/home/norman_bay.htm 
121 http://www.southernlabrador.ca/home/paradise_river.htm 

http://www.cbc.ca/news/canada/newfoundland-labrador/why-black-tickle-s-residents-are-so-leery-about-moving-1.3207617
http://www.cbc.ca/news/canada/newfoundland-labrador/why-black-tickle-s-residents-are-so-leery-about-moving-1.3207617
http://www.southernlabrador.ca/home/norman_bay.htm
http://www.southernlabrador.ca/home/paradise_river.htm
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connected to the Island Interconnected System (IIS), the Labrador Interconnected System (LIS), 

and the various isolated diesel systems (PA-Hatch , 2015). NLH operates 25 thermal plants 

province-wide, with a total capacity of 35.8 MW (PA-Hatch , 2015, p. 39; NLH, 2016). 16 diesel 

plants are in Labrador’s remote communities and serve approximately 3,300 customers, consuming 

approximately 15 million litres of diesel annually (NLH, 2009; Nalcor Energy, 2014b) (Figure 10).  

 

Figure 10: Newfoundland and Labrador Hydro generation and transmission system  

 
Source: PA-Hatch (2015, p.33). 

 

Electricity rates 

Each of the five electricity systems in Newfoundland and Labrador (Island Interconnected, 

Labrador Interconnected, Island Isolated, Labrador Isolated, and the L’Anse de Loup system) has 

different electricity rates based on the different costs of electricity generation. Residential 
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customers on the isolated diesel systems receive the same rates as the customers in the 

interconnected systems. The 2015 electricity rates in diesel serviced areas for residential consumers 

were 10.573 c/kWh for the first block of kWh per month and 11.933 c/kWh for the second block 

(see Table 25). All kWh in excess of 1,000 kWh monthly were charged with 16.261 c/kWh. 

However, the application of the Northern Strategic Plan (NSP) subsidy in residential consumers 

decreases the rates to as low as 3.38 c/kWh for the first block of electricity consumption (Cherniak, 

Dufresne, Keyte, Mallett, & Scott, 2015). The general service rates were 16.82 c/kWh and rates 

for governmental residential and governmental general service accounts were 83.567 c/kWh and 

75.468 c/kWh respectively (NLH, 2015). 

 

Table 25: Residential rates for Newfoundland and Labrador communities in diesel serviced 

areas 
 Rates 

c/kWh 

Electricity consumption blocks, in kWh 

 Jan.  Feb.  Mar.  Apr.  May  Jun.  Jul.  Aug.  Sept.  Oct.  Nov.  Dec. 

First 

Block  
10.573 1000 1000 900 900 800 800 700 700 700 800 900 1000 

Second 

Block  
11.933 0 0 100 100 200 200 300 300 300 200 100 0 

Source: NLH (2015, p. 47). 

 

The cost for electricity generation in the isolated diesel powered communities is considerably 

higher, and approximately 75% of the cost is subsidized through the contributions of other 

ratepayers in the interconnected systems (GNFL, 2007; PA-Hatch , 2015). The provincial 

government provides additional subsidies (approximately $ 1.6 million for 2012) through the 

Northern Strategic Plan (NSP), established in 2007, for reducing electricity costs for residential 

customers in Labrador’s and Labrador Straits’ coastal aboriginal and non-aboriginal communities 

(NFL-AA, n.d.; Nalcor Energy, 2012).  

 

Future power requirements and plans 

Electricity demand in the Island Interconnected system is projected to increase at an annual rate of 

0.9% for the 2015 to 2032 period with the system peak increasing by approximately 0.8% annually 

for the same period (PA-Hatch , 2015). The annual electricity demand for the Labrador 

Interconnected system has decreased since 2009 due to reduced demand from mining and energy 

industries but is expected to recover to its previous levels by 2022. With the anticipated connection 

of the Labrador and Island grids, the new interconnected system is expected to have modest annual 

energy and peak growth requirements from 2017 to 2022 (PA-Hatch , 2015). Finally, electricity 

requirements in the isolated diesel systems have increased since 2007 at an annual rate of 3.4%, 

due to new connections and an increase in residential consumption (PA-Hatch , 2015). 
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The future requirements of Newfoundland and Labrador’s electricity system are related to 

increased exploration and development of mining and energy resources, and development of clean 

renewable electricity for domestic use and exports (Nalcor Energy, 2014a). Government plans also 

include targets for greenhouse emission reductions through the introduction of renewables, and the 

promotion of energy efficiency through the Residential Energy Efficiency Program (REEP), 

promoted by Newfoundland and Labrador Housing Corporation (NFL, 2011; GNFL, 2015a). One 

primary goal is the elimination of approximately 1.3 million tonnes of carbon emissions from the 

Holyrood thermal plant through the building of the Lower Churchill project and the development 

of the Labrador-Island Transmission link. Government targets in relation to Labrador’s remote 

aboriginal communities include the participation of aboriginal groups in natural resources projects, 

cooperation in areas where wind developments are subject to aboriginal treaties or land claims, and 

collaboration with aboriginal governments for the displacement of diesel fuel in community 

electricity systems (NE, 2014; GNFL, 2015a). 

 

Availability of renewable energy sources in NFL’s remote communities 

Renewable supply options for Newfoundland and Labrador’s future electricity demand include the 

development of the provinces hydroelectricity and wind resources. The Lower Churchill project, 

consisting of the 825 MW Muskrat Falls and the 2,250 MW Gull Island site developed downstream 

of the 5,428 MW Churchill Falls project, and the 1,100 km Labrador-Island link transmission are 

the main providers of clean, affordable hydroelectricity for the coverage of provinces’ residential, 

industrial and interprovincial trade needs (GNFL, 2015a). Additionally, Nalcor is examining the 

potential for the integration of large-scale wind projects, and currently has two Power Purchase 

Agreements for two 27 MW wind projects on Newfoundland to reduce demand (and greenhouse 

gas emissions) from the Holyrood thermal plant (GNFL, 2015a). 

 

Renewable energy policies and promotion in NFL remote communities 

The 16 aboriginal communities in Labrador are powered by diesel generators operated by NLH, 

except for the community of Natuashish-Mushuau Innu First Nation, which runs its own diesel 

powered electricity system. There are approximately 16 MW of installed diesel capacity, which 

generated approximately 28,000 MWh in 2011, consumed approximately 7,800,000 litres/year of 

diesel fuel, and contributed 22,400 tonnes CO2,eq/year in carbon emissions122 (Table 1). Only the 

community of Mary’s Harbour was involved in renewable electricity generation through a 175 kW 

hydroelectric project developed in 1987 (Table 26), but which has been inactive for the last seven 

years (Roberts, 2016).  

                                                 
122 Based on the assumption of an average efficiency of 3.6 kWh/lit diesel and emissions of 2.88 kg CO2/lit diesel. 
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Table 26: Renewable electricity projects, Newfoundland and Labrador 
 Community Hydro 

MW 

Wind 

kW 

Solar 

kW 

Year Source 

Existing projects  

1 Black Tickle       

2 Cartwright       

3 Charlottetown      

4 Hopedale       

5 Makkovik       

6 Mary’s Harbour  0.175   1987 Ah-You & Leng (1999) 

7 Mud Lake      

8 Natuashish-Mushuau Innu FN       

9 Nain       

10 Norman Bay       

11 Paradise River       

12 Port Hope Simpson      

13 Postville       

14 Rigolet      

15 St. Lewis       

16 Williams Harbour      

 Total 0.175     

 

The main priority of the Government of Newfoundland and Labrador remains the development of 

large-scale hydroelectricity and wind projects in cooperation with Nalcor Energy (GNFL, 2015a). 

Support for small-scale wind, solar power and micro-hydro as alternative technologies able to 

contribute to the province’s electricity supply was initiated with the “2007 Energy Plan” and a “net 

metering” policy to support small renewable generation developers (GNFL, 2007). Government 

support was provided for the introduction of renewable electricity into remote community systems 

by financing the development of the Ramea wind-diesel project (GNFL, 2015a). The Ramea123 

project was initiated as a medium penetration system with the connection of three 65 kW wind 

turbines to the community’s grid in 2004  (Oprisan, 2007). To increase system efficiency three 100 

kW wind turbines and a hydrogen energy storage system were added in 2010. The project has 

produced approximately 615,000 kWh of renewable electricity since 2010 and is used as a model 

for wind-hydrogen-diesel applications in the environment of Canadian remote communities 

(GNFL, 2015a).  

Additionally, since 2008 the provincial government has invested more than $3.5 million for the 

installation of equipment and data analysis of communities’ wind and hydroelectric potential 

(GNFL, 2015a). The potential for integration of solar, wind and small-scale hydroelectric facilities 

into communities’ diesel systems was assessed through an NFL Hydro study of Labrador’s larger 

communities (with annual load of more than 200 kW and generation in excess of 3,000 MWh) 

conducted in 2009 (NLH, 2009). According to the study, the communities of Hopedale, Makkovik, 

                                                 
123 Ramea is a non-aboriginal remote community located in Newfoundland. 
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Charlottetown, Port Hope Simpson, and Mary’s Harbour have sites for hydroelectricity generation 

that could lead to electricity costs lower than the current diesel generation cost, and interconnection 

points to connect hydroelectric facilities capable of powering two or three of the communities 

(NLH, 2009). The potential for wind power applications is limited for Cartwright, Charlottetown, 

Mary's Harbour, and Port Hope Simpson, while savings between 30-43% in diesel consumption 

can be realized for the communities of Hopedale, Makkovik, and Nain due to strong wind 

resources. The study also identifies a low solar potential for all communities due to limited 

insolation during the summer months. Additional support for small-scale renewable deployment is 

examined through a “net metering” policy that will assist residential and general service customers 

to offset their own electricity usage through individual renewable generation systems that will not 

exceed a maximum limit of 100 kW, while additional limits on total generation apply in the isolated 

diesel systems  (GNFL, 2015b).  

Finally, the Nunatsiavut Regional Government (NRG), expressing its concerns over electricity 

price increases and power outages and shortages that affect economic development in communities 

(Cherniak, Dufresne, Keyte, Mallett, & Scott, 2015), developed an energy strategy and plan to 

address energy security issues in remote aboriginal communities and improve the communities’ 

socioeconomic conditions (NG, 2016). The plan identified the installation of pilot projects, such 

as efficient heating stoves and district heating systems, the installation of new diesel generators 

that reduce diesel consumption and community expenses, the installation of a demonstration solar 

photovoltaic project on the Illusuak Cultural Centre in Nain, the installation of a small-scale wind-

diesel system in Hopedale, and feasibility studies for small hydro projects in Makkovik, Nain and 

Hopedale. The Nunatsiavut Regional Government aims to develop and implement these projects 

through the financial support of the Government of Newfoundland and Labrador, as well as 

industry contributions (NG, 2016).  

 

Conclusion 

The 16 remote aboriginal communities in Labrador rely on diesel fueled generators for their 

electricity needs while the high cost of connection to the main grid limits community access to a 

reliable and clean hydroelectricity supply from the Labrador Interconnected grid. The transition 

from diesel-generated electricity to renewable resources is promoted through utility scale   run-of-

river projects in five of the 16 communities supported by the Government of Newfoundland and 

Labrador and Newfoundland and Labrador Hydro, and wind and solar pilot projects to be 

developed by the Nunatsiavut Regional Government with government and industry financial 

support. The “net metering” policy could encourage the successful deployment of small-scale wind 

and solar applications by local governments as the cost of the technology decreases and positive 

experience is gained in other northern jurisdictions. This could enable communities to reduce high 

electricity costs, service interruptions and greenhouse gas emissions while improving socio-

economic conditions as desired by the Nunatsiavut Regional Government. 
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Appendix B 

List of interview questions 

 

1. I would like you to tell me about how the community and its electricity system have developed 

over time.  

a. Has the community, or Band Council, provided input into the investment decisions 

made regarding electricity supply and use? Has this changed over time? 

b. More broadly, has electricity and its changing uses affected the quality of life and 

personal well-being in the community? 

 

2. Does the community want to provide more input into decisions regarding electricity? 

a. (If yes) What motivations, reasons or factors are important for consideration in these 

decisions? 

 

3. Are there barriers that affect the ability of the community to influence the decision process 

regarding the electricity system?  

a. (If yes) What are the barriers? How can the barriers be removed? 

 

4. Does the community have concerns regarding diesel-generated electricity?  

 

5. Could you tell me about the renewable energy projects that have been undertaken in the 

community?  

 

6. How important is it to introduce renewable energy to the local electricity system? 

a. How important are the following reasons to promote renewable energy: 

i. reduction of diesel consumption  

ii. reduced emissions 

iii. increase harmony with nature 

iv. reduce risk of future diesel price rises 

v. increase energy security with local supplies 

b. How should renewable energy system assets be owned, operated and financed? 

 

7. Could renewable energy resources play an economic development role (generating income, 

employment and increasing self-sufficiency) for the community? 

a. What are the best economic development opportunities while the community relies on 

its local micro-grid for electricity? 

b. What are the best economic development opportunities if the community is connected 

to the provincial grid for electricity? 
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Appendix C 

Renewable electricity projects in Canadian remote indigenous communities 

 

Table 1: Renewable electricity projects in remote Canadian indigenous communities 
Nr Period/ 

 

Province/ 

Territory 

Year Name Type of 

RETs 

Capacity 

1 1st period: 

1974-1986 

BC 1980 Bella Bella- Heiltsuk FN Hydro 15 MW 

2 Quebec 1986 Kuujjuaq Wind  65 kW 

3 2nd period: 

1987-2000 

Nunavut 1987 Cambridge Bay  Wind 100 kW 

4 NFL 1988 Mary's Harbour Hydro  175 kW 

5 Nunavut 1988 Igloolik  Wind 20 kW 

6 BC 1992 Bella Coola- Nuxalk Nation FN Hydro 2 MW 

7 BC 1992 Skidegate Landing-Haida Nation Hydro 6 MW 

8 Nunavut 1994 Cambridge Bay  Wind 80 kW 

9 Nunavut 1995 Iqaluit  PV 3.2 kW 

10 Nunavut 1996 Kugluktuk  Wind 160 kW 

11 BC 1997 Good Hope Lake-Dease River Hydro 3 MW 

12 ON 1997 Kasabonika Lake FN Wind 30 kW 

13 ON 1997 Kitchenuhmaykoosib Inninuwug FN Wind 50 kW 

14 ON 1997 Weenusk FN  Wind n.d. 

15 ON 1997 Fort Severn Wind n.d. 

16 ON 1998 Deer Lake FN Hydro 490 kW 

17 Nunavut 1998 Rankin Inlet  Wind 50 kW 

18 NWT 1998 Sachs Harbour Wind 50 kW 

19 3rd period: 

2001-2008 

BC 2006 Kitasoo- Kitasoo FN Hydro 1.1 MW 

20 NWT 2006 Jean Marie River FN PV 1.3 kW 

21 BC 2007 Nemiah Valley- Xeni Gwet'in FN PV 28.0 kW 

22 BC 2008 Bella Coola- Nuxalk Nation FN Storage   

23 BC 2008 Hartley Bay DRS   

24 4th period: 

2009-2016 

BC 2009 Atlin-Taku River-Tlingit FN Hydro 2.1 MW 

25 NWT 2009 Inuvik PV 5 kW 

26 NWT 2009 Inuvik PV 7 kW 

27 NWT 2010 Sachs Harbour PV 4.3 kW 

28 NWT 2010 Wekweeti PV 4.2 kW 

29 BC 2011 Tsay Keh Dene FN PV n.d.  

30 NWT 2011 Nahanni Butte- Deh Cho FN PV 4.8 kW 

31 NWT 2011 Norman Wells PV 4.8 kW 

32 NWT 2011 Paulatuk PV 1.7 kW 

33 NWT 2011 Paulatuk PV 5 kW 

34 Yukon 2011 Watson Lake PV 4.4 kW 

35 Yukon 2011 Old Crow- Vuntut Gwitchin FN PV 3.6 kW 

36 Yukon 2011 Old Crow- Vuntut Gwitchin FN PV 12.1 kW 

37 NWT 2011 Inuvik PV 1.0 kW 

38 NWT 2011 Inuvik PV 3.5 kW 

39 Yukon 2012 Destruction Bay/ Burwash Landing-Kluane FN PV 4.7 kW 

40 NWT 2012 Gameti PV 5 kW 

41 NWT 2012 Whati PV 5 kW 

42 NWT 2013 Fort Good Hope PV 5 kW 

43 NWT 2013 Fort Providence PV 15 kW 

44 NWT 2013 Fort Simpson PV 5 KW 

45 NWT 2013 Fort Simpson PV 104 kW 

46 NWT 2013 Fort Simpson PV 5 KW 

47 NWT 2013 Inuvik PV 10 kW 
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48 NWT 2013 Inuvik PV 1.7 kW 

49 NWT 2013 Tulita PV 10 kW 

50 ON 2013 Kingfisher FN PV 10 kW 

51 ON 2013 Wawakapewin FN PV 18 kW 

52 ON 2013 Kasabonika Lake FN Wind 30 kW 

53 NWT 2014 Fort Liard PV 10.5 kW 

54 Nunavut 2014 Kugaaruk  PV 4 kW 

55 ON 2014 Deer Lake FN PV 152 kW 

56 ON 2014 Deer Lake FN PV  10 kW 

57 ON 2014 Kasabonika Lake FN PV 10 kW 

58 NWT 2015 Aklavik PV 15 kW 

59 NWT 2015 Colville Lake PV 135.5 kW 

60 NWT 2015 Gameti PV 17 kW 

61 NWT 2015 Lutsel’Ke PV 35 kW 

62 NWT 2015 Tsiigehtchic PV 18 kW 

63 NWT 2015 Whati PV 16 kW 

64 NWT 2015 Wringley- Pehdzeh Ki FN PV 19 kW 

65 ON 2015 Fort Severn PV 20 kW 

66 ON 2015 Keewaywin PV 10 kW 

67 ON 2015 North Spirit Lake PV 20 kW 

68 ON 2015 Poplar Hill FN PV 20 kW 

69 ON 2015 Muskrat Dam Lake FN PV 20 kW 

70 ON 2015 Weenusk PV 20 kW 

71 ON 2016 North Karibou Lake FN PV 18 kW 
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Appendix D 

Main events and events’ allocation to functions for the NWT and Ontario TIS 

 

Table 1: Main events and events’ allocation to functions for the NWT TIS 
Year Event Function 

1998 GNWT Official Statement on Climate (GNWT, 2008a) Guidance of the search 

1998 Establishment of Arctic Energy Alliance (AEA) Guidance of the search  

Knowledge development 

2001 Aboriginal and Northern Climate Change Program (ANCCP) (2001-2003) 

(AANDC 2014b; AANDC 2016) 

Resources mobilization 

2001 RETCAP (2001-2003): provincial program providing providing 50% rebates 

for equipment and system balance costs 

Resources mobilization 

2001 A Greenhouse Gas Strategy for the Northwest Territories (GNWT, 2011b) Guidance of the search 

2003 Aboriginal and Northern Community Action Program (ANCAP) (2003-2007) 

(AANDC 2014b; AANDC 2016)   

Resources mobilization 

2003 Feasibility studies for wind projects for Sachs Harbour, Tuktoyaktuk, 

Holman, and Paulatuk (ARI 2003) 

Knowledge development 

Guidance of the search 

2003 Feasibility studies for wing projects for Sachs Harbour, Ulukhaktok, 

Paulatuk, Tuktoyaktuk, Yellowknife, Inuvik (Pinard 2007) 

Knowledge development 

Guidance of the search 

Knowledge diffusion 

2006 Feasibility studies for wind projects for 31 communities in NWT (Maissan 

2006a; 2006b) 

Knowledge development 

Guidance of the search 

Knowledge diffusion 

2006 Jean Marie FN solar photovoltaic demonstration project Entrepreneurial activities 

2007-

2011 

ecoENERGY for Aboriginal and Northern Communities Program (EANCP) 

(Phase 1: 2007-2011) (AANDC 2014a; INAC 2017) 

Resources mobilization 

2007-

2016 

CREF (2007-todate) as part of the Alternative Energy Technologies (AET) 

program providing funding for RETs projects costs (Carpenter 2013) 

Resources mobilization 

2007 -Energy for the future- An Energy Plan for the Northwest Territories 

-A Greenhouse Gas Strategy for the Northwest Territories 2007-2011 

(GNWT 2007; GNWT 2011b) 

Guidance of the search 

2007 Remote Community Wind Energy Conference Tuktoyaktuk (NTPC 2007) Knowledge diffusion 

2007-

2016 

CREF (2007-todate) as part of the Alternative Energy Technologies (AET) 

program providing funding for RETs projects costs. 

Mobilization of resources 

2008 -2008: Energy priorities framework- Ministerial Energy Coordinating 

Committee (MECC) 

-2008: Review of Electricity Regulation, Rates and Subsidy Programs in the 

Northwest Territories (GNWT 2008a; GNWT 2008b) 

Guidance of the search 

2008-

2015 

Feasibility studies for wind and solar projects for Colville Lake, Deline, Jean 

Marie River, Trout Lake, and Fort Providence in NWT (Pinard and Maissan 

2008, ARI 2016) 

Knowledge development 

Guidance of the search 

Knowledge diffusion 

2008 Optimization studies for wind projects for 12 communities in NWT (Weis 

and Ilinca 2008) 

Knowledge development 

Guidance of the search 

Knowledge diffusion 

2008-

2015 

Community energy profiles: community energy planning activities by AEA 

(AEA 2016) 

Knowledge development 

Guidance of the search 

Knowledge diffusion 

2009 -Electricity review. A discussion with northerners about electricity Guidance of the search 
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-Creating a brighter future: a review of electricity regulation, rates and 

subsidy programs in the northwest territories (GNWT, 2009a; GNWT, 

2009b) 

2009 Inuvik: development of two small-scale solar photovoltaic projects Entrepreneurial activities 

2010 Efficient, Affordable and Equitable: Creating a Brighter Future for the 

Northwest Territories’ Electricity System. Response to the 2008 and 2009 

NTPC review (GNWT 2010) 

Guidance of the search 

2010 Optimization studies for wind projects for 12 communities in NWT (Weis & 

Ilinca, 2010) 

Knowledge development 

2010 Development of solar projects in Sachs Harbour and Wekweètì  Entrepreneurial activities 

2011 -NWT energy report. Report of Ministerial Energy Coordinating Committee 

(MECC) 

-2011: A Greenhouse Gas Strategy for the Northwest Territories 2011-2015 

(GNWT, 2011a; GNWT, 2011b) 

Guidance of the search 

2011 AEA: Publishing the “Best energy practices for remote facilities” guide 

(AEA 2011) 

Knowledge development 

Guidance of the search 

Knowledge diffusion 

2011 Development of solar projects in Nahanni Butte, Norman Wells, Paulatuk 

(two projects) and Inuvik (two projects) 

Entrepreneurial activities 

2011 AANDC and NRCAN publication: Status of remote communities (AANDC 

and NRCan 2011) 

Guidance of the search 

Knowledge diffusion 

2012-

2016 

ecoENERGY for Aboriginal and Northern Communities Program (EANCP) 

(Phase 2: 2012-2016) 2011) (AANDC 2014a) 

Mobilization of resources 

2012-

2015 

Community energy profiles: community energy planning activities by AEA 

(AEA 2016) 

Knowledge development 

Guidance of the search 

Knowledge diffusion 

2012 Development of solar projects in in Gameti and Whati Entrepreneurial activities 

2012 Northwest Territories Solar Energy Strategy 2012-2017 (GNWT, 2012a) Guidance of the search 

2012 NWT Energy Charette (GNWT, 2012)  Knowledge diffusion 

Guidance of the search 

2013 Development of solar projects in Fort Good Hope, Fort Providence, Fort 

Simpson (three projects), Inuvik (two projects), and Tulita 

Entrepreneurial activities 

2013 The NWT Energy Action Plan (GNWT 2013)  Guidance of the search 

2014 Development of a solar project in Fort Liard Entrepreneurial activities 

2014 NWT Energy Charette (GNWT 2014) Knowledge diffusion 

Guidance of the search 

2014 NTPC net metering (NTPC, 2016) Market formation 

2015 IPP policy and net metering policy for aboriginal community projects 

(NTPC, 2016) 

Market formation 

2015 2nd Renewables in Remote Microgrids conference (BP, 2016) Knowledge diffusion 

2015 GNWT response to the 2014 NWT energy charrette report (GNWT 2015) Knowledge diffusion 

2015 Development of solar projects in Aklavik, Colville Lake, Gameti, Lutselk’e, 

Tsiigehtchic, Whati, and Wringley- Pehdzeh Ki FN 

Entrepreneurial activities 

2016 NWT-Energy strategy discussion (GNWT 2016) Guidance of the search 

2016 CBC announcements for RET indigenous projects (CBC 2016a; 2016b; 

2016c; 2016d) 

Legitimization  

 

Table 2: Main events and events’ allocation to functions for the Ontario TIS 
2001 Aboriginal and Northern Climate Change Program (ANCCP) 

(2001-2003) (AANDC 2014b; AANDC 2016) 

Mobilization of resources 

2003 Aboriginal and Northern Community Action Program (ANCAP) 

(2003-2007 (AANDC 2014b; AANDC 2016) 

Mobilization of resources 
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2003 Governmental commitments for renewable electricity generation  Guidance of the search,  

2004-2005 Call for proposal and request for proposals for renewable electricity 

generation (Rowlands 2007) 

Mobilization of resources 

2006 RESOP, Feed-in-tariffs and Net metering policies for renewable 

electricity introduced (Rowlands 2007) 

Mobilization of resources 

2007-2011 ecoENERGY for Aboriginal and Northern Communities Program 

(EANCP) (Phase 1: 2007-2011) (AANDC 2014a; INAC 2017) 

Mobilization of resources 

2008 OEB (talks about the communities’ goals and the NAN) (OEB 

2008) 

Guidance of the search 

2009 GEGEA Act (Stokes 2013) Guidance of the search 

2009 Aboriginal Loan Guarantee Program (ALG) (OFA 2016) Mobilization of resources 

2009 Aboriginal Energy Partnerships Program (AEPP) (AEPP 2016) Mobilization of resources 

2010 2010 Ontario’s LTEP (OME, 2013) Guidance of the search 

2010 OPA: Draft technical report for the connection of remote 

communities (OPA 2010) 

Guidance of the search 

2010 Optimization studies for wind projects for 16 communities in 

Ontario (Weis and Ilinca 2008; 2010)  

Knowledge development 

2011 AANDC and NRCAN publication: Status of remote communities 

(AANDC and NRCan 2011) 

Guidance of the search 

Knowledge diffusion 

2012-2016 ecoENERGY for Aboriginal and Northern Communities Program 

(EANCP) (Phase 2: 2012-2016). (AANDC 2014b; AANDC 2016) 

Mobilization of resources 

2012 NAN Energy conference (NAN 2012) Knowledge diffusion 

2013 Optimization study for Kasabonika Lake First Nation (Arriaga, 

Cañizares and Kazerani 2013) 

Knowledge development 

2013 REINDEER program (a HORCI communities’ diesel displacement 

incentive) (HORCI, 2015) 

Market formation 

2013 2013 Ontario’s LTEP (OME, 2013) Guidance of the search 

2013 1st Remote Microgrids Conference in Toronto   Knowledge diffusion 

2013 Development of two solar projects in Kingfisher FN and 

Wawakapewin FN and one wind turbine project in Kasabonika 

Lake FN 

Entrepreneurial activities 

2014 2014 Northern Ontario First Nations Environmental Conference 

(NOFNEC)  

Knowledge diffusion 

2014 IESO programs launched: Aboriginal Transmission Fund (ATF), 

Remote Electrification Readiness Program, Education and Capacity 

Building (ECB) Program (IESO 2015) 

Mobilization of resources 

2014 Development of two solar projects in Deer Lake FN, and one solar 

project in Kasabonika Lake FN 

Entrepreneurial activities 

2014 Indigenous press on the development of a solar project in Deer 

Lake (WN, 2014) 

Legitimization 

2014 NCC press announcements on indigenous projects (NCC 2016) Legitimization 

2014 IESO: Draft technical report for the connection of remote 

communities (IESO, 2014) 

Guidance of the search 

2015 Development of solar projects in Fort Severn FN, Keewaywin FN, 

North Spirit Lake FN, Poplar Hill FN, Muskrat Dam FN, and 

Weenusk FN. 

Entrepreneurial activities 

2016 Development of a solar project in North Karibou Lake FN Entrepreneurial activities 

2016 Optimization study for Kasabonika Lake First Nation (Arriaga, 

Cañizares and Kazerani 2016) 

Knowledge development 

 


