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Abstract

Energy management is an important concept that has come to the forefront in recent

years under the smart grid paradigm. Energy conservation and management can help

defer some capacity addition requirements in the long-term, which is very significant in

the context of continuously growing demand for energy. It can also alleviate the adverse

environmental impacts of commissioning new generation plants. Therefore, there is a

continuous need for the development of appropriate tools to ensure efficient energy usage

by existing and new loads and the efficient integration of distributed energy resources

(DER).

There is a need for energy conservation in the industrial sector as it accounts for the

largest share of energy consumption among all customer sectors. Also considering their

high energy density, industrial facilities have significant potential for participating in de-

mand side management (DSM) programs and help in reducing the system peak demand

by reducing or shifting their load in response to energy price signals. However industrial

demand response (DR) is typically constrained by the operational requirements such as

process interdependencies and material flow management.

An EMS framework is proposed in this thesis for optimal load management of industrial

loads which includes improved load estimation technique and uncertainty mitigation using

MPC. The framework has been applied to a water pumping system (WPS) where an

equipment level load modeling is implemented using a NN-based model. Another EMS

framework is proposed for an oil refinery process. The refinery EMS is developed based

on power demand modeling of the oil refinery process, considering an on-site cogeneration

facility. A joint electrical-thermal model is proposed for the cogeneration units to account

for the electricity and steam production costs.

In addition to load management, DR for industrial loads is investigated as another

energy management application. However since DR requires interaction between the en-

ergy supplier and the customer, this thesis considers DR from both the local distribution

company’s (LDC) and industrial customer’s perspectives. From the LDC’s perspective,
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the objective is to reduce the network operational costs by minimizing peak demand and

flattening the load profile for better utilization of system resources. From the industrial

customer’s perspective, the objective is to minimize the energy cost using both load man-

agement decisions and DR signals sent by the LDC. While the developed EMS models are

used to represent the industrial customer’s operations, a distribution optimal power flow

(DOPF) model is developed to represent distribution system operations.

The DR strategy proposed in this thesis is based on effective communication between

the customer’s EMS and the LDC’s operations using a day-ahead contractual mechanism

between the two parties, and a real-time operational scheme to mitigate the uncertainties

through improved forecasts for energy prices and power demand. Two types of DR signals

are proposed; a desired demand profile signal and a retail price signal, which are developed

by the LDC and sent to the customer to achieve the desired DR in a collaborative manner.

In the retail price based control approach, the signal is produced by a retail pricing model

which is designed based on customer’s historical data collected by the LDC.
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Chapter 1

Introduction

1.1 Motivation

Energy management is an important concept that has come to the forefront in recent

years, with the advent of the smart grid. Energy conservation and management can help

defer some capacity addition requirements in the long-term, which is very significant in

the context of continuously growing demand for energy. It can also alleviate the adverse

environmental impacts of commissioning new generation plants. Therefore, there is a

continuous need for the development of appropriate tools to ensure efficient energy usage

by existing and new loads and the efficient integration of distributed energy resources

(DER).

There is a high need for energy conservation in the industrial sector as it accounts for

the largest share of energy consumption among all customer sectors. In 2015, industrial

systems accounted for 51% of the total energy usage in Canada [1], and such large energy

consumption calls for energy management by the industrial facilities to improve their en-

ergy efficiency. When these facilities are equipped with DERs, higher efficiency can be

achieved through the effective management of energy production and storage. Also, the

large industrial loads have significant potential for participating in demand side manage-
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ment (DSM) programs and help in reducing the system peak demand. Industrial customers

can play an important role in DSM by reducing or shifting their load in response to energy

price signals [2]. In addition to the aforementioned benefits to the power system, there

are economic benefits to industrial customers for implementing demand response (DR)

controls under dynamic pricing schemes [3]. However, industrial DR is often constrained

by the operational requirements of these systems such as process interdependencies and

material flow management.

The growing deployment of smart grid technologies, such as smart metering and process

automation, in industrial systems, is encouraging the development of advanced algorithms

for optimum load control. Compared to residential loads where controls are applied on

aggregated or selected loads, it is possible to control individual industrial loads through

existing process controls [3]. Therefore, there is a higher degree of load controllability in

the case of industrial loads, which provides wider space for energy management system

(EMS) applications, and provides the industrial facility with tools for system monitoring

and analysis.

As EMS is introduced in industrial facilities, the diversity of load types would require

good load modeling techniques to capture the characteristics of these loads and how their

operations and conditions affect energy consumption. The monitoring capability of EMS,

capturing real-time measurements of power system quantities, encourages the application

of measurement based load fitting techniques with different load model structures; such as

polynomial and neural network (NN) models [3, 4]. These models represent the relationship

between power system quantities and industrial process control variables under different

operating conditions. As the models improve in precision and accuracy, further operational

and economic efficiency can be achieved by the optimization model within the EMS.

Another factor affecting the performance of the EMS is the uncertainty in forecasted

variables. Since the optimization horizon of an EMS is for a future time period, inputs

are obtained using forecasting algorithms which vary in accuracy, which renders the ex-

pected benefits of EMS decisions to be uncertain. To this effect, uncertainty management
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techniques such as model predictive control (MPC) can be applied in EMS to reduce the

impact of uncertainty in optimization results.

The aforementioned developments have motivated the present research to propose and

develop an EMS and DR frameworks for industrial facilities for optimal load management

in the smart grid environment.

1.2 Literature Review

This section presents an overview of previous research works reported in the literature

on the topics related to this research, including; industrial load management, and DR of

industrial customers.

1.2.1 Industrial Load Management

The purpose of industrial load management (ILM) is to improve the energy consumption

behavior of the industrial facility and hence reduce its energy costs. The reduction in

energy costs can be attributed to reduction in demand charges, decreased power losses,

efficient utilization of equipment [5], and optimized operational schedules. An ILM model

was proposed in [6] with the objective of minimizing the energy cost while satisfying the

operational and material flow constraints for a flour mill facility. Process constraints were

modeled to ensure proper sequence of equipment operation. The facility’s peak power

demand was not considered for minimization but it was limited below a certain value using

a constraint.

An optimal ILM model was proposed in [7] for an electrolytic process. A mixed-integer

non-linear programming (MINLP) optimization problem was formulated with the objec-

tives of minimizing the energy costs and peak demand charge. The industrial load models

developed in [6] and [7] were implemented at the processing unit level with the assumption

of a linear relationship between process energy consumption and production rate. To this

3



effect, the production rate of each process, as a percentage of rated production capacity,

was used to determine the percentage loading of all processing devices at each operat-

ing time interval in the optimization horizon. The integration of DER within industrial

facilities premises was not considered in these works.

An optimal ILM model was proposed in [3] for optimizing the processes schedule of

a flour mill and a water pumping system (WPS). The optimization was formulated as

an MINLP problem with the objective of minimizing the energy cost and peak demand

charge under process operation and material storage constraints. Different types of process

interdependencies were modeled such as sequential, interlocked, and parallel processes and

the model combined industrial load control and distribution feeder voltage optimization.

First and second-order polynomials were used to model the active and reactive power

consumption of industrial equipment as a function of terminal voltage and process control

variables. Historical measurements were used to estimate the polynomial model parameters

using the least square error method. However, the work did not consider the integration

of DER such as renewable energy sources (RES) and energy storage systems (ESS) within

the industrial facility’s premises.

An optimal ILM was formulated in [8] as a mixed integer linear programming (MILP)

model with the objective of maximizing the profit for a steel mill facility. The work con-

sidered energy and material flow management simultaneously since there is a trade-off

between material production revenues and the facility’s energy cost. The steel mill pro-

cesses were classified into batch or continuous process; the batch process received the input

material at the beginning of each processing cycle and output the products at the end of

the cycle, while a continuous process received the input material and outputs the prod-

ucts continuously. The energy consumption by batch processes was considered controllable

while continuous processes were considered as uncontrollable loads. The energy consump-

tion by controllable loads was modeled as a function of the amount of processed material

using polynomial load models. It was noted that it is better to increase the optimization

horizon to multiple days due to industrial process interdependencies, which will however

result in higher computational complexity.
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A generic framework was developed in [4] for optimal energy management of an in-

dustrial customer using voltage varying approach. The proposed framework comprised an

NN-based load model developed using historical data relating the active power demand

with process output and voltage. This load model was incorporated in the optimal energy

management model to determine the optimal voltage profile for minimizing the energy con-

sumption and load tap changer (LTC) operations while meeting the process constraints.

The performance of the proposed framework was compared with two non-optimized strate-

gies namely, fixed voltage operation and controlled voltage reduction (CVR). The results

showed potential reduction in energy consumption by applying the voltage optimization

decisions. Monte Carlo simulation approach was used to validate the expected savings

from the proposed framework under different process profiles. However, the work did not

consider process schedule optimization since the focus was on voltage optimization, and

a simple forecast was used instead. Considering process scheduling would allow for load

shifting and improve the voltage optimization capability. However, it would require more

detailed modeling of the industrial process power demand as a function of the process

control variables.

An optimization model was proposed in [9] for scheduling of water-cooled chillers in

an automotive manufacturing plant in Ontario, Canada, with the objective to minimize

energy and peak demand costs. Polynomial load models were developed using the regres-

sion technique for the chillers to estimate the active power demand as a function of inlet

temperature, outlet temperature, and water flow rate where actual measurement data was

used to estimate the load model parameters. In addition to operational scheduling, a plan-

ning problem was also considered for the optimal sizing of chiller tank storage. However,

this work did not consider the uncertainties in process cooling demand and in energy price,

in the proposed energy management model.

The equipment level load modeling considered in the reviewed papers for ILM were

based on polynomial models which have limited capability in estimating higher-order load

models, making the parameter identification problem challenging. Therefore, an improved

load estimation approach need be considered to enhance the ILM optimization perfor-
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mance. The reviewed papers, furthermore, did not consider the forecasting uncertainties

associated with the ILM model inputs such as energy price, demand, and RES generation.

Although good forecasting algorithms reduce the margin of errors significantly, they are

still prone to deviations from actual values. Considering these deviations, as the ILM op-

timization decisions are implemented, which are based on forecasted inputs, the expected

benefits may not be achieved as the industrial facility’s actual operation will be subjected

to actual values. Therefore uncertainty management techniques need to be considered in

order to reduce the impact of uncertain inputs on the ILM optimization decisions. These

techniques include stochastic programming, Monte Carlo simulations, and MPC.

1.2.1.1 Water Pumping System Load Management

Multi-objective optimization of the operation of a WPS was proposed in [10] which con-

sidered four objectives namely; minimizing electric energy costs, minimizing peak demand

charges, minimizing the number of on/off operations of the pumps, and minimizing the

difference between the initial and final water levels in the storage reservoir. The pumps

were equipped with fixed speed drives so they could only be switched on or off in the

optimization problem. While, rotational speed variation was considered in the modeling

of WPS pumping load in [3], the mechanism for varying the pumps speed in the load sim-

ulations was not explained. In practice, variable speed drives (VSD) are commonly used

for controlling the rotational speed of motor driven pumps in order to control the water

flow rate.

VSD based pumps allow a wider window for speed variability and hence a greater

flexibility for WPS water flow optimization by the EMS. A comparative study presented

in [11] with three speed control options- fixed speed, variable speed with VSD shared by

multiple pumps, and variable speed with dedicated VSD per pump, showed that, dedicated

VSD per pump is the best option from the perspective of efficiency, reliability, and life cycle

assessments. In addition to energy savings, VSDs improve the controllability of the process

and enhances their reliability [12]. The reliability enhancement is achieved via minimizing
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the number of pump on/off switching operations which improves the pumps life cycle and

reduces maintenance costs [13].

1.2.1.2 Oil Refinery Load Management

Only a few works reported in the literature have focused on electrical load management

of petrochemical industries. Most of the energy management research for oil refineries do

not consider the electrical demand management of the facility. Production scheduling opti-

mization studies were reported in [14, 15, 16, 17] with the objective of maximizing refinery

production; however, none of them considered electrical energy costs in the analysis. In

[18], an optimal strategy for ILM was proposed based on the integration of a cogeneration

system into a petrochemical facility. A joint electrical-thermal model was developed for the

cogeneration system where electric power output was modeled as a function of input fuel

flow rate using a second-order polynomial. The strategy considered the exchange of power

between the cogeneration equipped petrochemical facility and the power utility, with the

petrochemical facility having a pre-defined load profile. Since the industrial load was not

modeled as a function of process control variables, load control could not be implemented

in the process optimization.

An optimization model for ILM of an oil refinery was proposed in [19] with the objective

of minimizing electrical energy costs. The model considered process interdependencies,

process interruptibility, processing times, and operational sequences. A fixed electricity

consumption per time interval was assumed for the processing units, therefore the model

did not consider the relationship between the amount of processed material and energy

consumption. It was assumed that several processing units, such as liquefied petroleum

gas (LPG) recovery and vacuum distillation units, can have a delayed start after being fed

from preceding processing units. It was also assumed that some units, such as hydrofiners,

are interruptible. Both of these assumptions are not practical, considering that a refinery

need to maintain a continuous-flow operation [20], which means that all processing units

must operate simultaneously to arrive at a steady-state operation where every unit pro-
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cesses its incoming feed continuously. Processing can only be delayed or interrupted during

emergencies where limited capacity storage tanks are utilized for storing unprocessed in-

termediate flow temporarily. These tanks cannot be used for ILM as process contingency

practices require keeping them half-full all the time in preparation for interruptions in

upstream or downstream processing units.

From a review of the literature it is noted that the electrical energy management of

oil refinery was not considered in a comprehensive manner. None of the works considered

mass flow based modeling of the refinery electricity demand. Also cogeneration facility

operation optimization in conjunction with refinery load management was not examined.

Furthermore, the potential of refinery participation in DR provisions was not studied.

Therefore, there is a need to examine the above issues under dynamic electricity pricing

scheme.

1.2.2 Industrial Load Demand Response

Researchers have examined DR provisions from industrial facilities from the local distribu-

tion company’s (LDC’s) perspective where the objective is to minimize the peak demand,

and from the customers’ perspective where the objective is to minimize their energy costs

[21]. A battery energy storage system (BESS) aided DR strategy was proposed in [22] from

an industrial facility’s perspective, seeking to minimize its energy cost and hence optimize

the energy exchange with the utility in the presence of RES. Assuming a fixed-load facility

equipped with BESS, the strategy optimized the charging and discharging schedule of the

BESS taking into account the non-linear behaviour of rechargeable batteries.

Another DR scheme from an industrial customer’s perspective, with the objective of

minimizing its energy cost, was proposed in [2] to shift the facility’s demand from peak to

off-peak periods under day-ahead hourly prices. The DR problem included constraints for

process limits and in-facility distributed energy resource (DER) operation. The case study

carried out on an oxygen generation facility demonstrated the effectiveness of the scheme

in shifting the load and reducing the energy costs.
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A DR scheme for industrial facilities was proposed in [23] from the utility’s perspective,

based on a strategy that generated different pricing signals for different classes of industrial

customers to prevent excessive load shifting as a result of their simultaneous responses.

Customer behavior was modeled based on deep communication with the utility which was

used for price optimization. However, these prices did not incorporate customer feedback of

potential demand changes at the day-ahead stage. A cooperative scheme for industrial DR

was proposed in [24] which minimized two conflicting objectives, the customer’s electricity

cost and the discomfort cost; the solution so obtained was a trade-off between the two

objectives. The cooperative DR problem was solved using game theory to maximize the

customers’ payoffs while applying a punishment mechanism to render the problem stable

in the presence of non-cooperative customers.

A DR scheme was proposed in [25] based on virtual power plant (VPP) structure

comprising customers and RES, wherein the customers sent their proposed load curves,

ranked by their preference, to a centralized DR aggregator which determined the optimal

combination of load curves for customers’ operation based on system cost minimization

and customers’ benefit maximization objectives. The DR aggregator participated in the

wholesale market for DR and energy transactions and managed an internal market for

VPP participants. The scheme was applied to residential, commercial, and industrial load

profiles, submitted day-ahead, by customers.

A demand response (DR) scheme was proposed in [26] which considered the perspectives

of both the local distribution company (LDC) and residential customers. The proposed

scheme was based on a new modeling framework considering price-responsive and LDC

controlled loads in a three-phase unbalanced distribution network. In the case of price-

responsive loads, the customers were assumed to be equipped with home energy manage-

ment systems (HEMS) which responded to price changes by changing the power demand

of the customer. The price-demand relationship was modeled using linear and exponential

functions whose parameters could be estimated using historical data sets. The optimiza-

tion objectives considered were minimizing the energy drawn by LDC and minimizing

feeder losses. However, this case did not consider any active communication between the
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customer’s HEMS and the LDC; the LDC only collects load data using smart meters to

estimate the price-demand relationship. In the case of LDC controlled loads, it was as-

sumed that the customers provided the LDC with information on the amount of shiftable

loads based on a peak demand cap for the system that is communicated by the LDC to the

customers. In addition to minimizing the LDC energy drawn and feeder losses, minimizing

the customers’ energy costs was also considered as a third optimization objective in this

case. However no retail pricing was considered in calculating customers’ energy costs which

was calculated using the market prices instead.

From a review of the literature it is noted that very few works have considered all the

issues of DR for industrial facilities in a comprehensive manner. Several of them have

not considered peak demand minimization, or uncertainties in RES, or have examined the

problem from one perspective only. Furthermore, most works have considered a dynamic

pricing signal to activate the DR actions of the loads, which act independently, without

taking into account the operational characteristics of the load facility processes. There is

a need to develop a framework which addresses the above issues, and formulate a real-

time price signal to activate the DR actions, which is based on two-way communication

between the LDC and the industrial facility. Moreover, there is also a need to examine the

operational time-frames of such DR mechanisms for actual implementation.

1.3 Research Objectives

The main goal of this research is optimal energy management of industrial loads which

accounts for the largest portion of total electricity consumption in Canada. Specifically

in this research, the focus will be on two major industrial load types; a utility sector load

represented by a municipal WPS, and an energy sector load represented by an oil refining

process. Accordingly, the main objectives of this research are outlined as follows:
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• Propose EMS frameworks for optimal load management of different types of industrial

loads. The frameworks will consider facilities equipped with DER such as RES

and ESS. Also, as the industrial facility’s daily operation is subject to variations in

demand, energy price, and RES generation, the proposed framework will consider

the uncertainty associated with forecasting these variables in order to reduce their

impact on EMS decisions by applying the MPC technique.

• Develop load estimation models for industrial loads which can be incorporated into

the EMS framework. The load estimation of a WPS facility will be carried out

at the equipment level using the NN-based load modeling approach, which has the

capability to model high order nonlinear load characteristics with reasonable com-

putational complexity. The load estimation of the oil refining facility will be carried

out at processing unit level because of the large scale and complexity of the refining

processes.

• Develop a distribution optimal power flow (DOPF) model for distribution feeders

representing the power utility feeding the industrial facilities. The DOPF model will

consider unbalanced three-phase representation of the distribution feeder comprising

three-phase and single-phase loads. It will also include the load models of the in-

dustrial facilities developed earlier. The DOPF model will be used to investigate the

impact of industrial EMS decisions and load management on distribution feeders.

• Propose a DR strategy considering both the utility’s and customer’s perspectives for

reducing the system peak demand and minimizing the customers energy costs. The

strategy will consider two types of DR signals; desired demand profile signal and

retail pricing signal. It will also consider the uncertainties in RES and non-industrial

loads connected to the distribution feeder.
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1.4 Outline of the Thesis

The rest of this proposal is structured as follows: Chapter 2 presents a brief background to

the topics related to this research including; EMS, load modeling, MPC, WPS process, oil

refinery process, and DSM. Chapter 3 describes the developed EMS and load estimation

models for the WPS facility. Chapter 4 presents the proposed DR framework for the

industrial loads. Chapter 5 presents the proposed EMS model for the oil refinery based on

power demand modeling of the process. Finally, chapter 6 presents the main conclusions

and contributions of this thesis, and identifies some directions for future research work.
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Chapter 2

Background

2.1 Nomenclature

Indices

b Bus, b = 1, 2, ..., B

c Capacitor, c = 1, 2, ..., C

l Line, l = 1, 2,..., N.

p Phase, p = a, b, c

t Time interval, hours, t = 1, 2, ..., T

tc Load tap changer (LTC), tc = 1, 2, ..., TC

Parameters

Cap Maximum switched capacitor’s setting

Cap Minimum switched capacitor’s setting

IspL Load current at specified power, [A]

Tap Maximum setting of LTC

Tap Minimum setting of LTC

U3 Identity matrix of dimension 3x3
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V sp Specified nominal phase voltage, [V ]

V Maximum limit on phase voltage, [V ]

V Minimum limit on phase voltage, [V ]

∆Qc Step change in reactive power from switched capacitor, [kV AR]

∆S LTC voltage regulation step change, [%]

Variables

Cap Switched capacitor’s setting

I Phase current, [A]

IL Load’s phase current, [A]

Ir Receiving-end phase current, [A]

Is Sending-end phase current, [A]

PL Load’s active power, [kW ]

PLoss Feeder power losses, [kW ]

QL Load’s reactive power, [kV AR]

Tap LTC tap setting

V Bus phase voltage, [V ]

Vr Receiving-end phase voltage, [V ]

Vs Sending-end phase voltage, [V ]

Xc Capacitor’s reactive impedance, [Ω]

ZL Load’s impedance, [Ω]

θL Load’s phase angle, [rad]

2.2 Energy Management Systems

EMSs were introduced in the power system to provide the utility with the tools to manage

the system efficiently. With advances in software development during the 1990s, stan-

dardized EMSs started emerging, which could be applied to various customers with little

customization, and reduced the initial cost of integrating them [27]. As software advance-
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ments continued, present day EMSs are loaded with many decision support and control

modules with user friendly interfaces.

2.2.1 EMS Functions and Architecture

The basic functions of an EMS are [27]:

• System monitoring

• Decision support

• System control

Supervisory control and data acquisition (SCADA) monitoring system is an essential

element in EMS which collects measurement data periodically and sends it to the system

control center. These data include power flows, breaker status, and voltage levels which

are important for safe and reliable operations. Further analysis of power system data is

carried out by decision support tools to enable the system operator to take efficient and

reliable control actions. These tools include; power flow, contingency analysis, transient

stability, unit commitment, generation dispatch, voltage control, load forecasting, and

system reporting.

EMS decisions are used to control the power system operations in three different ways

[27]:

1. Closed-loop control: the EMS control actions are implemented automatically on

power system equipment, such as in automatic generation control (AGC) which ad-

justs the generation output for frequency regulation.

2. Supervised control: the control action is implemented by the operator through the

EMS as in remote breaker switching.
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3. Manual control: the control action recommended by EMS is implemented manually

in case the means of automatic control are not available.

The most important measure for assessing EMS performance is system availability.

This is considered from two aspects; first, the control actions of the EMS should prevent

prolonged outages, and second the EMS should be designed in a reliable manner to prevent

loss of communication with monitoring and control devices. Figure 2.1 [27] shows the EMS

architecture with high level of device and communication redundancy between the control

center and the remote terminal units (RTUs) used for collecting and transmitting data

at different power network locations. The redundant hardware and communication links

takes over in case of failures, to ensure EMS availability.

EMS A EMS B EMS C EMS D

Main Control Center Back-up Control Center

Remote Terminal Unit (RTU)

Front-end
Processors

Measurements
Control
Signals

Figure 2.1: EMS Architecture [27].
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2.2.2 Power System Operations

The efficiency of grid operations is improved through EMS applications, such as the op-

timal power flow (OPF), to find the optimal operation decisions. The OPF problem is

a generalized formulation of the economic load dispatch (ELD) problem which involves

adjusting the available controls to minimize an objective function subject to specified op-

erating and security requirements. The general formulation of the OPF problem is given

below where u represents the control variables and x represents the state variables of the

power system [27]:

Minimize f(x, u) (2.1)

Subject to h(x, u) = 0 (2.2)

and g(x, u) ≤ 0 (2.3)

Various objective functions can be considered for minimization in the OPF formulation,

such as:

• Cost of operation

• Real power losses

• Equipment installation cost

• Reactive power supply cost

• Total carbon emissions

Equality constraints represent the demand-supply balance considering both real and

reactive power flow equations. Inequality constraints include the system operational and

security requirements such as limits on power generation and bus voltage levels.
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2.2.3 Distribution Optimal Power Flow

The DOPF model determines the optimal operation decisions for the LDC distribution net-

work. An unbalanced three-phase representation of the distribution network is considered

for the development of the DOPF model; which comprises equations for loads, switched

capacitors, transformer load tap changers (LTCs), network equations, operating limits, and

feeder power loss equations. The models of the network components are developed based

on the work presented in [28].

2.2.4 Load Models

The loads are of constant impedance type, as given below.

Vb,p,t = ZLb,p,t
ILb,p,t

∀b,∀p,∀t (2.4)

ZLb,p,t
=

V sp2

b,p

PLb,p,t
+ jQLb,p,t

∀b,∀p,∀t (2.5)

2.2.5 Load Tap Changer Model

The LTC is modeled as a three-phase regulator connected in series with the distribution

transformers.

Vstc,p,t = AtVrtc,p,t ∀tc, ∀p, ∀t (2.6)

Istc,p,t = A−1
t Irtc,p,t ∀tc, ∀p, ∀t (2.7)

where

At = (1 + ∆StcTaptc,p,t)U3 (2.8)
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2.2.6 Switched Capacitor Model

This is modeled as a variable capacitive impedance with multiple settings at different

fractions of the total capacitance.

Vb,p,t = Xc,p,tIc,p,t ∀c,∀p, ∀t (2.9)

Xc,p,t =
−jV sp2

b,p

Capc,p,t∆Qc

∀c,∀p, ∀t (2.10)

2.2.7 Network Equations

These include voltage and current relationships between all components of the distribution

feeder. ∑
l

Irl,p,t =
∑
l

Isl,p,t +
∑
L

IL,p,t ∀b,∀p, ∀t (2.11)

Vrl,p,t = Vsl,p,t = Vb,p,t ∀b,∀p,∀t (2.12)

2.2.8 Operating Limits

These include allowable bus voltage deviations from the nominal values, and possible

switching positions for LTCs and switched capacitors.

Vb,p ≤ Vb,p,t ≤ Vb,p ∀b,∀p,∀t (2.13)

Taptc ≤ Taptc,p,t ≤ Taptc ∀tc,∀p,∀t (2.14)

Capc ≤ Capc,p,t ≤ Capc ∀c,∀p, ∀t (2.15)

2.2.9 Distribution Feeder Losses

Hourly power losses of the distribution feeder are calculated as follows:

PLosst =
∑
l,p

|Re(Vsl,p,t I∗sl,p,t − Vrl,p,t I
∗
rl,p,t

)| ∀t (2.16)
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2.3 Load Modeling

There are two main methods for load model estimation, component-based and measurement-

based [29]. In the component-based methods, models of individual components making up

the load are aggregated, this approach requires identifying the physical properties and

dynamic behaviors of the load components. In the measurement-based methods, power

demand data is collected using measurement devices and a suitable technique is used to

determine a closed-form relationship between the power demand and the control variables,

hence this method can be considered as an identification problem. Polynomial models and

NN-based models have been used widely as a load model structure in the measurement-

based approach, applying a regression or NN training for identification of model parameters.

2.3.1 Polynomial Models

Polynomial models are commonly used for single/multiple input, single-output data mod-

eling since interpolation polynomial is a basic mathematical technique. The general ex-

pression for a polynomial model of degree m with n number of inputs is given as:

y = a0 +
n∑

i=1

aixi +
n∑

i1=1

n∑
i2=i1

ai1,i2xi1xi2 +
n∑

i1=1

...
n∑

i2=im−1

ai1,...,imxi1 ... xim + e (2.17)

Nonlinear regression is used to identify the parameters of the polynomial model in (2.4),

a0, ai, ai1,i2 , and ai1,...,im while e denotes the error which represents the deviation between

the regression model estimates and actual measured values. The parameter identification

problem is solved by least squares technique after converting the nonlinear regression into

the following multiple linear regression model:

y = a0 +
n∑

i=1

aixi +
n∑

i1=1

n∑
i2=i1

ai1,i2xi1,i2 +
n∑

i1=1

...

n∑
i2=im−1

ai1,...,imxi1,im + e (2.18)
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where

xi1,i2 = xi1xi2 (2.19)

xi1,im = xi1xi2 ... xim (2.20)

The polynomial model gives higher approximation accuracy as the polynomial degree m

increases. However, the model complexity increases significantly with increase in m or

with increase in the number of inputs n. This increase in complexity makes the param-

eter identification problem practically infeasible for typical size problems due to the high

computational burden. Therefore polynomial models are usually used in conjunction with

a structure selection technique which reduces the degree of complexity by reducing the

number of terms and polynomial degree, which however reduces the modeling accuracy

[30].

2.3.2 Neural Network Model

The most important features of an NN are that it comprises large number of basic units

(neurons) that are highly parallel and strongly connected and can be trained using data

[30]. The universal approximation capability of NN makes it a commonly used tool for data

modeling. The universal approximation capability on NN means that it can approximate

any smooth function to a certain degree of accuracy [26]. Compared to polynomial models,

NN based models have better approximation capability for high-order load models [31]. The

neuron is the building block of the NN and its structure with n inputs is shown in Figure

2.2. The neuron inputs are multiplied by weights (w1,w2,...wn) and then the weighted

inputs are summed with a bias (b). The neuron activation function (fN) is applied to the

sum which results in the neuron output. There are two saturation type functions commonly

used as activation functions, the log-sigmoid (logistic) function given by:

fN(x) = logistic(x) =
1

1 + e−x
(2.21)
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and the tan-sigmoid (hyperbolic tangent) function given by:

fN(x) = tanh(x) =
ex + e−x

ex − e−x
(2.22)

∑ 

1w

b

Nf

nw

Neuron

2w

 
Figure 2.2: Single neuron structure.

The structure of a single hidden layer NN with n inputs and m outputs and k neurons

in the hidden layer is shown in Figure 2.3. The relationship between the NN inputs and

outputs, in terms of network weights and biases, is given below:

ym =
k∑

i=1

[ fi(w
in
1ix1 + ...+ win

nixn + bini ) wout
im ] + boutm (2.23)

The input and output data used for NN training are divided into three sets; training set,

validation set, and testing set. The NN training is carried out by varying the weights (w)

and biases (b) in order to reduce the error between the estimates and the actual values by

minimizing a performance index such as the mean squared error (MSE), the mean absolute

error (MAE), the sum of squared error (SSE), or the sum of absolute error (SAE) [32]. The

back propagation algorithm is commonly used to calculate the gradients of the network

output with respect to network parameters in order to identify the contribution of each

parameter to the error in output [30]. The network parameters are updated continuously

based on the gradients identified in the back propagation algorithm until the performance

index value applied to the validation set stops improving [32].
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Figure 2.3: NN structure with a single hidden layer.

2.4 Mathematical Programming

Mathematical programming refers to the formulation of an optimization problem and solv-

ing it using a suitable optimization method. Solving an optimization problem is achieved

by finding the set of values for decisions variables that will result in minimizing or maximiz-

ing a certain objective function subject to equality and inequality constraints. Depending

on the nature of the objective function and constraints, the problem can be classified as
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linear program (LP) or non-linear program (NLP). Also based on the type of decision vari-

ables, an optimization problem can be classified as continuous, integer, or mixed-integer

program (MIP). In this work, General Algebraic Modeling Systems (GAMS), which is a

commercial mathematical modeling platform, is used to formulate and solve the optimiza-

tion problems. GAMS is a high-level modeling system for mathematical optimization, that

utilizes various solvers to handle the different types of optimization problems.

LP problem consists of linear objective function and constraints. LP problem is clas-

sified as mixed integer linear program (MILP) when at least one decision variable is an

integer variable. The constraints of an LP problem forms a polyhedron of feasible solutions

where the optimal solution lies at one of its vertices. LP problems are typically solved using

the Simplex and Interior-point methods. The Simplex method is a systematic procedure

for evaluating the objective function value at the polyhedron vertices to find the optimal

solution [33]. While the interior point method the candidate solution traverses through

the interior of the polyhedron to arrive at the optimal solution [34]. Solving MILP prob-

lem is more challenging due to the presence of integer decision variables. The Complete

Enumeration method can be used to solve MILP problems but it becomes computationally

expensive in the presence of large number of integer variables [35]. More computationally

efficient methods are the Cutting Plane and and the Branch and Bound methods [36]. In

the Cutting Plane method, constraints are added to the problem until all the vertices of

the feasible space corresponds to integer solutions. While the Branch and Bound method

involves an intelligent enumeration of candidate solutions while discarding a large set of

useless candidates using upper and lower bounds that are determined though solving sub-

problems with smaller feasibility space [35].

An optimization problem is classified as NLP when the objective function or one of

the constraints is a non-linear function of the decision variables. In the presence of at

least one integer decision variable, the problem is classified as mixed integer non-linear

program (MINLP) problem. The most common NLP optimization methods are the Gra-

dient methods, and Interior-point methods [35]. In the Gradient methods, the slope of

the function is used to determine the direction of the search direction for optimal solution.
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The Interior-point methods traverse through the interior of the feasible space while using

barrier functions to arrive at the optimal solution [33]. The solver used in this work to

solve NLP problems is the IPOPT [37] solver which is an NLP optimizer which implements

the interior point method to solve large-scale models whose functions can be nonconvex.

The robustness of IPOPT solver relies on the used solver for linear barrier function. The

default linear solver used by IPOPT in GAMS is MUMPS which is a sparse symmetric

large-scale linear solver.

MINLP problems are generally solved using decomposition algorithm which involves

solving a series of NLP and MIP problems. The solution methods discussed earlier are

then used to solve the NLP and MIP problems. Decomposition-based solvers are compu-

tationally efficient in terms of solution time and required memory space. Also, Heuristic

methods are widely used for large MINLP problems that enormous amount of computa-

tional time [34]. These methods include Genetic Algorithm, Particle Swarm Optimization,

Ant Colony Optimization, Tabu Search, and Simulated Annealing methods [33]. the solver

used to solve MINLP problems is the DICOPT [38] solver which is an decomposition al-

gorithm that involves solving a series of NLP and MIP problems using selected NLP and

MIP solvers. The algorithm starts by solving the relaxed MINLP problem using the NLP

solver and if the resulting solution is an integer solution, then the search stops. Otherwise

the algorithm continues by searching for an integer point though solving an MIP master

problem. The integer variables are fixed for the next NLP solve and the algorithm contin-

ues alternating between NLP and MIP solves until the solution of the NLP subproblems

starts worsening. In this work, the selected NLP and MIP solvers for DICOPT are SNOPT

and CPLEX, respectively.

2.5 Model Predictive Control

MPC is an optimization-based strategy to deal with uncertainties in forecasted variables.

In MPC, the optimization problem is solved for a given horizon but the solution is im-
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plemented for the first time step only [39]. Then in the second iteration the optimization

horizon is moved forward and the problem is solved again and implemented at the second

time step, and so forth. Despite the computational burden, MPC is expected to yield

better optimization solutions since the uncertainty in variables is expected to reduce as

the solution horizon is shifted forward.

There are two types of MPC; rolling horizon MPC and receding horizon MPC. In

the rolling horizon MPC the length of the optimization horizon is fixed, as shown in

Figure 2.4(a), while the optimization problem is shifted forward by one time step every

iteration. In the receding horizon MPC, the last time step of the optimization horizon is

fixed as shown in Figure 2.4(b) while the length of the horizon shrinks with every iteration.

Receding horizon MPC is more suitable when a certain variable is required to be at a certain

level by the end of the optimization horizon in preparation for the next optimization cycle;

however, as the optimization window shrinks its capability to improve the solution may be

impacted [40].
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Figure 2.4: (a) Rolling-horizon MPC (b) Receding-horizon MPC.
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2.6 Water Pumping System

Water pumping stations account for the largest share of the energy consumed in a wa-

ter distribution system, and they typically comprise multiple pumps driven by induction

motors [11]. The pumps uplift the water to a number of elevated reservoirs. Water then

flows by gravity from the reservoirs to the municipal demand centers. Figure 2.5 [10] shows

a typical WPS comprising five centrifugal pumps supplying water to an elevated storage

reservoir.

The WPS is faced with continuously varying water demand and hence needs to have very

flexible water flow characteristics. Also the WPS operator has to ensure adequate water

level in the reservoir, meeting the capacity limits, under variable municipal water demand.

This necessitates variable water flow from the pumping station to the storage, which can be

achieved by controlling the operational status (ON/OFF) of pumps based on an optimized

schedule. Wider range of variability can be achieved by controlling both the operational

status of pumps and the water flow rate out of each pump. The water flow rate of pumps

can be varied using pressure control valves or by changing their rotational speed. Varying

the rotational speed is the energy efficient option since it reduces energy consumption

significantly [12]. For centrifugal pumps, the flow rate (q) is directly proportional to the

rotational speed (N) while the power demand (P ) is proportional to N3, according to the

affinity laws given below [41]. Therefore, large energy savings can be achieved by changing

N .

q ∝ N (2.24)

P ∝ N3 (2.25)
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Figure 2.5: Layout of a WPS facility [10].

2.7 Oil Refinery Process

An oil refinery is a complex processing facility for transforming crude oil to marketable

refined products by fractionating the crude stream through distillation and then improv-

ing the fractions quality using physical and chemical treatment processes. Various refined

products are produced by refineries around the world including; gasoline, kerosene, diesel,

lubricating oils, waxes, fuel oil, asphalt, and LPG. These products are used in transporta-

tion, lighting, heating, power generation, and paving of roads.

Figure 2.6 [42] shows the process flow of a general oil refinery. The first step in oil

refining is distillation of crude oil into boiling range fractions in the Crude Distillation Unit

(CDU). These fractions include wet gas, naphtha, distillates such as diesel and kerosene,

gas oil, and residue. As the CDU processes all crude oil input stream to the refinery,

the refinery capacity is usually expressed in terms of CDU processing capacity [20]. The

CDU output streams are further processed by different refinery processes. The wet gas

is processed in the gas recovery unit where LPG is recovered. The kerosene and naphtha
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are hydrotreated in the hydrogen treatment units which carry out chemical reactions for

removing the heteroatoms including sulfur, nitrogen, and heavy metals in order to meet the

clean fuel regulations. Another purpose of hydrotreating is to prevent catalyst deactivation

in some refining processes caused by heteroatoms [20].

The crude residue of the CDU is processed in vacuum distillation unit (VDU) for further

fractionation, producing vacuum oil, lube distillates, residual oil and asphalt stock. The

residual oil, the heaviest residue of distillation, is processed in delayed coking unit and

visbreaking unit. The coking process cracks the residual oil into light products including

fuel gases, gasoline, petroleum coke, and large volumes of coker gas oil [20]. The visbreaking

unit produces reduced viscosity gas oil through thermal cracking of residual oil. Lube

distillates are processed in the lube oil processing unit to produce lubricants and waxes

while the asphalt unit produces asphalt using the stock resulting from the VDU process.

Fluid catalyst cracking (FCC) is one of the most important processes in refining as it

accounts for up to 40% of total refinery products [20]. The FCC process uses catalytic reac-

tion at high temperature and low pressure to convert gas and vacuum oils from distillation

to light gases, gasoline blendstock, and diesel blendstock. The distillate hydroforming unit

is used to reduce the sulfur content of kerosene and diesel which results in the formation

of hydrogen sulfide (H2S) gas.

Another very important process in refining is the catalytic reforming unit. This unit

processes naphtha stream, mainly from CDU, using catalytic reactions to produce refor-

mate which is a high-octane gasoline blendstock. Large volumes of hydrogen gas (H2)

are produced as by-product of the reforming process which supplies the refinerys needs of

hydrogen [20]. The isomerization unit enriches the naphtha with saturated hydrocarbons

resulting in high-octane isomerate fuel [43]. The alkylation unit further processes the iso-

merate fuel from isomerization unit to produce high-octane gasoline blendstock (Alkylate).

The share of electrical energy for various processing units of the refinery, described in

Figure 2.6, is given in Table 2.2 [42]. Electricity demand of the refinery is typically supplied

either from the power grid or from on-site generation which accounted for about 27% of the
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electrical energy supply to the petrochemical industry in USA, in 2002. The vast majority

of on-site generation was from cogeneration facilities as they produce both electricity and

heat for refining processes yielding a very high energy efficiency of 60-80% [44].
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Figure 2.6: Process flow of oil refinery [42].
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Table 2.2: Share of Electrical Energy Demand of Various Processing Units

of the Refinery

Processing Unit Share Electrical Energy Demand (%)

Crude Distilation 13.8

Vacuum Distilation 2.3

Delayed Coking 1.2

Catalytic Cracking 26.5

Distillate Hydroforming 9.4

Lube Oil Processsing 4.6

Asphalt Processing 1.2

Visbreaking 2.1

Naptha Hydrogen Treatment 5.8

Catalyst Reforming 17.1

Isomerization 1.2

Alkylation 5.5

Gas Recovery 7.1

Kerosine Hydrogen Treatment 2.3
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2.8 Demand Side Management

DSM refers to the set of programs used by the power utility to encourage the customers

to change their power usage in terms of time of use, instantaneous power demand, and

total energy consumption. DSM programs can be classified into two main categories;

economic-based and stability-based programs [45]. Economic-based programs are designed

to minimize the price spikes during high demand periods by providing customers with

incentives to change their energy usage patterns. Stability-based programs are designed to

stretch the generation and transmission limits of power grids without investing in additional

infrastructure [45]. DSM programs promote power system efficiency and sustainability by

maximizing the utilization of existing infrastructure and reducing the carbon emission

levels, using smart pricing, monetary incentives, and government policies. However, it

requires sophisticated coordination between the power system operator and customers to

reduce the overall operational cost of the system [46].

There are three general approaches for customers’ DR; reducing energy consumption

during critical periods of peak demand on grid, continuous response to market energy price

changes, and utilizing on-site power generation or storage systems to reduce the demand

from power grid [47]. DR results in one of the following three outcomes [48]:

• Peak clipping- reducing peak energy consumption to prevent the load from exceeding

generation capacity or equipment thermal limits.

• Valley filling- encouraging off-peak energy consumption by customers and other en-

tities such as energy storage devices and plug-in electric vehicles.

• Load shifting- combination of the previous two outcomes where energy consumption

is shifted from on-peak period to off-peak period.

Based on the type of DSM signal, DR can be classified as physical DR and market

DR, which are used jointly to achieve efficient and safe operation of the power grid [49].
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In physical DR, the power utility sends a mandatory request to customers to participate

in DSM in case of events where grid limits are reached such as line congestions and out-

of-service equipment. Market based DR uses dynamic pricing and incentives to encourage

the customers to participate in DSM, and is classified into price-based DR programs and

incentive-based DR programs, respectively.

2.8.1 Price-based DR Programs

Price-based DR programs use dynamic pricing instead of the classical flat pricing to encour-

age customers to change their energy usage behavior. Traditionally, utilities have provided

highly reliable service with fixed energy rates that were determined well in advance. How-

ever, given the high level of uncertainty in present power systems, actual conditions can

become considerably different from those predicted at the time of energy price determina-

tion, which could result in extreme stresses on the power grid. As the cost of providing

electricity varies with time, location, system, and weather conditions, closer tracking of

these changes is needed by flexible pricing where energy prices are calculated and posted

close to the time of consumption, and are applied for shorter time horizon [50].

Dynamic pricing includes TOU, critical peak pricing (CPP), IBR, and real-time pricing

(RTP). TOU tariff applies different energy prices at different time intervals during the day,

where on-peak interval usage is charged a much higher price than off-peak interval usage

[48]. Figure 2.7 [51] shows Ontario TOU tariffs during weekdays for summer and winter

pricing schemes. In CPP, TOU pricing is generally implemented but a higher price is

applicable for a limited number of hours or days in the year when the system peak load is

very high and reliability is at risk [48]. IBR pricing is designed such that customers with

higher energy usage are charged a higher energy price, if they exceed a certain threshold

defined for each energy usage block [48]. In RTP, energy price varies at different time

intervals of the day, typically every hour of even shorter interval [48]. Applying dynamic

pricing is effective in shifting a significant portion of loads from on-peak to off-peak period,

thus reducing the overall system peak. However, it does not necessarily result in a reduction
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in overall energy consumption [49].

 

Figure 2.7: Ontario weekdays TOU tariff (a) summer pricing (b) winter pricing [51].

2.8.2 Incentive-based DR Programs

Incentive-based DR uses monetary incentives to encourage the customer to participate in

the following programs [48]:

• Direct load control: power utility has a direct control of customers equipment.

• Interruptible/curtailable load: power utility provides customers with incentive dis-

counts if they participate in load shedding programs.

• Demand bidding and buyback: large customers can respond to system contingencies

by load curtailment at specific bid price offered by the power utility in the capacity

market.
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• Emergency demand response: incentive payments for customers who voluntarily re-

spond to emergency DSM signals sent by power utility with short notice.

2.9 Summary

This chapter presented a brief background to the topics related to this research including;

EMS, load modeling, Mathematical Programming, MPC, WPS and oil refinery processes,

and DSM. EMS functions and architecture was discussed in the first section with emphasis

on power system optimization and OPF as one of the most important functions of the EMS,

in addition to DOPF mathematical models. The second section discussed polynomial

and NN-based load modeling techniques which are used to determine the relationship

between energy consumption and load control variables. A background about mathematical

programming was presented in the third section with emphasis on the optimization tools

and solvers used in this work. MPC was discussed in the forth section as an uncertainty

management technique. A description of the WPS and the oil refinery processes was

presented in the fifth and sixth sections. The last section discussed DSM and DR schemes

in practice.
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Chapter 3

A Controlled Load Estimator Based

Energy Management System for

Water Pumping Systems‡∗

3.1 Nomenclature

Indices

i Iteration, i = 1,2,...,I.

j WPS pump, j = 1,2,...,J

k NN hidden layer neuron, k = 1,2,...,K

t Time interval, hours, t = 1, 2, ..., T

‡Parts of this chapter have been published in: O. Alarfaj and K. Bhattacharya, ”A controlled load

estimator-based energy management system for water pumping systems,” IEEE Transactions on Smart

Grid, vol. 9, no. 6, pp. 6307-6317, 2018.
∗An earlier version of this work was presented in: O. Alarfaj and K. Bhattacharya, ”Power consumption

modeling of water pumping system for optimal energy management,” in Power and Energy Society General

Meeting (PESGM), 2016. IEEE, 2016, pp. 15.
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Parameters

bk Bias of NN hidden layer neuron

bout Bias of NN output layer neuron

Dt Municipal water demand, [m3/h]

DoD BESS depth of discharge, [p.u.]

ER BESS energy storage capacity, [kWh]

Lmin Minimum water storage volume, [m3]

Lmax Maximum water storage volume, [m3]

L0 Initial water storage volume, [m3]

M Large number

PR BESS charging/discharging power rating, [kWh]

PREt Power from renewable energy source (RES), [kW ]

qmin Minimum water flow rate out of WPS pump, [m3/h]

qmax Maximum water flow rate out of WPS pump, [m3/h]

SOC0 Battery energy storage system (BESS) initial state of charge (SOC), [kWh]

wk Weight of the connection between NN input layer and hidden layer neurons

wout
k Weight of the connection between NN hidden layer and output layer neu-

rons

x, y NN input, output

λp Peak demand coefficient, [$/kW ]

λdch BESS discharging efficiency, [%]

λch BESS charging efficiency, [%]

ρt Energy price, [$/kWh]

Variables

irt Storage water inflow rate, [m3/h]

ort Storage water outflow rate, [m3/h]

Pt,j Power demand of WPS pump, [kW ]

Pmax Peak power drawn by the WPS from LDC, [kW ]
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Pbt Active power discharge (+ve) or charge (-ve) from/to BESS, [kW ]

PLDCt Active power exchanged by the WPS with the local distribution company

(LDC), [kW ]

qt,j Water flow rate out of WPS pump, [m3/h]

slt Storage water volume, [m3]

SOCt SOC of BESS, [kWh]

stt,j Binary decision variable for operation status of a pump (1:ON, 0:OFF)

Tm Mechanical torque of a pump, [N.m]

ω Angular speed of a pump, [rad/s]

Zdcht Binary decision variable for discharging BESS (1: discharge, 0: do nothing)

Zcht Binary decision variable for charging BESS (1: charge, 0: do nothing)

3.2 Introduction

Water distribution systems are one of the most important industrial loads with significant

energy consumption, a major part being pumping stations typically comprising multiple

pumps driven by induction motors [11]. Optimizing the energy consumption of water

pumping systems (WPS) by investing in EMSs can result in large savings in energy costs,

in addition to alleviating the environmental impact of energy usage.

Load modeling is an essential part of EMS as it relates the power demand with the

process variables and operating conditions. As load models improve in precision and ac-

curacy, further operational and economic efficiency can be achieved by integrating them

in the optimization model within the EMS. Polynomial models and neural network (NN)

based models have been used in the literature as a load model structure. First and second-

order polynomials were used in [3] to model the active and reactive power consumption as

a function of the voltage and process control variables of a flour mill and a water pump-

ing facility. A polynomial model was used in [8] to estimate the energy consumption as

a function of the amount of processed material. NN-based load models are reported in
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[31, 52, 53, 54] utilizing the universal approximation capability of NN [31].

The EMS model for WPS implemented in this work is based on the optimal load

management model proposed in [3] for minimizing energy cost and demand charge for the

WPS facility. However, in order to improve the load modeling accuracy of the WPS load,

a novel Controlled Load Estimator (CLE) based EMS, shown in Figure 3.1, is proposed in

this work which comprises, a) a simulation of the WPS load, b) NN training, and c) the

EMS. The load simulation is used to construct the load data set under various operational

conditions. This data set is input to the NN to arrive at the functional representation of

the WPS load model, which is then integrated within the EMS to determine the optimal

control variables. Finally, these optimal variables are fed back to the load simulation

to arrive at updated simulations of power demand data. This process continues and an

efficient and smart control of the EMS is arrived at.

 
Figure 3.1: Architecture of the proposed CLE based EMS for WPS.

Another challenge facing the development of EMS is dealing with forecasting uncer-

tainties. Since the optimization horizon of an EMS is for a future time period, typically 24

hours ahead, inputs are obtained through forecasting algorithms which vary in accuracy.

Therefore, expected benefits from EMS decisions may not be attained as the system is
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subjected to actual inputs rather than forecasted inputs used in the EMS. Although good

forecasting algorithms reduce the uncertainty in inputs, they are still prone to deviations

from actual values.

For further uncertainty minimization, model predictive control (MPC) techniques are

being adopted into EMS formulations. The theoretical aspects of MPC are well estab-

lished and has proven its practicality in many control applications [39]. MPC is used in

[39, 39, 54, 55] for EMS applications of residential buildings and microgrids considering

uncertainties in energy price, power demand, and weather forecasts. This work applies

receding horizon MPC algorithm in order to reduce the impact of forecasting uncertainties

on the performance of EMS optimization. Three sources of uncertainty are handled using

MPC technique which are; water demand, energy price, and generation from RES.

With increasing awareness of environmental impacts, several industrial facilities are

considering investing in RES within their premises to supplement or substitute their energy

needs from conventional sources. In this work it is assumed that the WPS is equipped with

wind based generation. Moreover, because of the intermittent nature of the wind based

RES, a battery energy storage system (BESS) is used in conjunction in order to maximize

renewable energy utilization.

In view of the above discussions, the main contributions of this work are:

• A comprehensive EMS framework is proposed for a WPS considering various opera-

tional aspects including load management, water flow management, process control

technology, equipment operational limits, uncertainty mitigation, and carbon foot-

print alleviation. The proposed framework comprises a module for simulation of the

WPS load, a module for estimation of the WPS load using NN, and an EMS model

for determining the optimal schedules.

• A load simulation model is developed in PSCAD to compute the power demand of

the WPS under different operating conditions; the load dataset thus created, is used

to estimate the WPS load model using a NN-based approach.
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• An iterative CLE approach is proposed which comprises a feedback of the EMS op-

timal decisions to the WPS load simulation module, followed by NN re-training, and

re-solving the EMS model. This approach improves the accuracy of load estimation

at optimal operating points, and enables the EMS model to re-examine the optimality

of the reached solution considering other potential schedules. Eventual convergence

of the CLE leads to a smart and efficient control of the WPS.

• The uncertainties associated with forecasting of WPS load, energy price, and RES

generation are considered by reformulating the EMS problem using MPC technique

in order to reduce the impact of uncertainties on the model performance.

• The proposed CLE based EMS framework is extended to consider WPS equipped

with RES and BESS. To this effect the EMS model is appropriately extended to

include BESS constraints, and RES inputs.

The rest of the chapter is structured as follows: Section 3.3 describes the developed

load estimation model for the WPS considering modeling uncertainty. The EMS model for

WPS is described in Section 3.4. Case study results are reported and discussed in Section

3.5. Finally, Section 3.6 presents the conclusions of this chapter.

3.3 Water Pumping System Load Modeling

To the best of the authors’ knowledge, there are no reported works in the literature that

relate the electricity consumption of the variable speed pumps with their water output

flow rate. Instead pump manufacturers usually provide performance curves which are

constructed from field tests. However, these curves are not useful for the present application

as they don’t present a direct functional relationship between the power demand of the

pump and the water flow rate at various rotational speeds. Therefore measurement based

function fitting models are used in this work to estimate the relationship between the WPS

input power and output water flow quantities.
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Variable speed pumping is considered in this work through the development of a sim-

ulation model for the WPS considering VSD driven pumps. The power demand model of

the WPS is developed in two main steps. The first step is to develop a simulation model for

the WPS electrical load in PSCAD. The second step is to use the data generated from the

PSCAD simulations to train a NN in order to arrive at a closed-form relationship between

the WPS control variables and the associated power demand. The NN-based model is

selected since it provides a better approximation for high-order load models as compared

to other measurement based models reported in the literature. The advantage of using

a measurement based model for load estimation is the provision of training using actual

measurement data that can be collected during the operation of an actual WPS facility. A

simple feedforward NN with single hidden layer was sufficient in the present work to arrive

at a well fitted function model with reasonable accuracy and fast convergence.

Another approach which has been widely used for model estimation is the polynomial

curve fitting by regression. However, it has been reported in the literature that NN has

better capability of function fitting than the polynomial models, specially for higher order

functions [31]. A new analysis is carried out to compare the NN based function approxima-

tion versus the polynomial curve fitting approach for a single pump data set of the WPS, in

terms of the resulting mean squared error (MSE) for the two models, as shown in Table 3.1.

It is noted that the NN model results in significantly higher estimation accuracy, or lower

value of MSE, without increasing the complexity of the optimization problem, since both

models result in nonlinear programming (NLP) optimization models.

The centrifugal pumps are modeled in PSCAD as a three-phase induction machine

supplied from the grid through a VSD, as shown in Figure 3.2. The machine is started

initially in speed control mode and then after it reaches its rated speed of 0.97 pu and

the transients die out, the machine is switched over to torque control mode to model the

mechanical loading imposed by water pumping. In the torque control mode, the output

mechanical torque is assumed to be equal to the square of the rotational speed according

to centrifugal pumps torque characteristics given by:
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Tm = ω2 (3.1)

In the PSCAD simulation model, Figure 3.2, The VSD rectifies the grid ac voltage using

a bridge rectifier and then inverts it to ac supply with controllable frequency and voltage

using a PWM inverter. The control strategy used for varying the machine speed is based

on V-f control in which the ratio of the supplied voltage magnitude to its frequency is kept

constant when operating at less than the rated frequency. This control strategy ensures a

constant torque characteristic for the machine at speeds lower than its rated speed.

The NN toolbox in MATLAB is used for fitting the data with the network topology

shown in Figure 3.3. The relationship between the NN inputs and outputs in terms of

network weights (w) and biases (b) is given below, where set k represents the index for

hidden layer neurons in the NN model and fk is the activation function used in the hidden

layer of the network, which is a tan-sigmoid function.

y =

[
K∑
k=1

(fk(wkx+ bk)wout
k )

]
+ bout (3.2)

where

fk(n) = tanh(n) =
en + e−n

en − e−n
(3.3)

Uncertainty in the load model may arise from data acquisition and NN modeling errors.

Data acquisition errors are not considered in this work since the data set is developed

through PSCAD simulations, and are immune to noise and measurement errors. The

modeling errors are handled by the novel CLE proposed in Figure 3.1 and described in

the flowchart in Figure 3.4. In the proposed CLE, the power demand model of the WPS

is estimated using the load simulation module and the NN module, and included in the

EMS to find the optimal WPS schedules. These are then feedback to re-train the load

simulation and NN to improve the accuracy of the estimated WPS load model. This

process is repeated until a certain stopping criterion is achieved.
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Table 3.1: Comparison of Estimation Performance of Function

Approximation Models

Model MSE

2nd order polynomial 2.57E-04

3rd order polynomial 1.35E-05

4th order polynomial 1.32E-05

NN 2.06E-07
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Figure 3.2: Simulation model for VSD driven pumps.

44



  

  

  

1w

2w

k
w

1b

2b

kb

1f

2f

kf

  

out

1
w

out
2w

o
u
t

k
w

out
b

yx

 

Figure 3.3: Neural network topology.
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Begin

Generate power demand data set of the WPS as a function of 

water flow rate using PSCAD based simulations

Determine a closed-form relationship between power demand and 

water flow rate by training a NN using the generated data set 

Incorporate NN-based load model into the EMS optimization 

problem to arrive at optimal pump operation schedules
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Figure 3.4: CLE based EMS flowchart for the WPS
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3.4 Energy Management System of WPS

The proposed EMS model carries out a load scheduling optimization in order to minimize

the energy consumption cost and demand charge for the WPS facility.

3.4.1 Objective Function

The objective function minimizes the energy cost and demand charge of the WPS, over a

period of time, and is given as follows:

Min. Z =
∑
t

ρt PLDCt ∆t+ λp Pmax (3.4)

The first term in (3.4) represents the total energy cost based on hourly energy prices.

The second term in (3.4) represents the demand charge to the WPS facility where the peak

demand cap (Pmax) is used to constrain the hourly power drawn from the local distribution

company (LDC), as given below:

PLDCt ≤ Pmax ∀t (3.5)

3.4.2 Load Model

The WPS load is modeled as a relationship between the water flow rate out of a pump

(qt,j) and its power demand (Pt,j), based on the NN model obtained in (3.2).

Pt,j =
∑
k

[fk,j(qt,jwk,j + bk,j)w
out
k,j ] + boutj ∀t,∀j (3.6)

3.4.3 Power Balance

The power balance relationship for the WPS load and generation is given below, where

PLDCt is positive when the WPS purchases power and negative when selling. BESS power
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is also bidirectional where Pbt is positive during BESS discharging and negative during

charging. ∑
j

Pt,j = PLDCt + PREt + Pbt ∀t (3.7)

3.4.4 Water Flow Constraints

The water flow management for the WPS is modeled using the following equations:

slt = L0 +
∑
x≤t

irx∆t−
∑
x≤t

orx∆t ∀t, xεt (3.8)

irt =
∑
j

qt,j ∀t (3.9)

ort = Dt ∀t (3.10)

qmin stt,j ≤ qt,j ≤ qmax stt,j ∀t,∀j (3.11)

Lmin ≤ slt ≤ Lmax ∀t (3.12)

slt = L0 t = T (3.13)

The water storage volume (slt) is calculated in (3.8) in terms of water inflow rate (irt),

water outflow rate (ort), and initial water storage volume (L0). The water inflow rate,

in (3.9) is the sum of water flow rates out of all pumps, where the water outflow rate is

determined from the forecasted demand in (3.10). Limits on pump water flow rate and

storage water volume are imposed by (3.11) and (3.12), respectively. A recovery of the

initial storage volume L0 by the end of the optimization period is enforced by (3.13).

3.4.5 Distributed Energy Resources

The DER considered in the EMS formulation are RES and BESS. The RES output power

(PREt) is modeled as a negative load using forecasted data for a typical day. The BESS is

modeled by the following equations:
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Pbt∆t

λdch
Zdcht + Pbt∆tλchZcht = SOCt−1 − SOCt ∀t, t 6= 1 (3.14)

Pbt∆t

λdch
Zdcht + Pbt∆tλchZcht = SOC0 − SOCt t = 1 (3.15)

SOCt = SOC0 t = T (3.16)

− PR ≤ Pbt ≤ PR ∀t (3.17)

(1−DoD)ER ≤ SOCt ≤ ER ∀t (3.18)

−MZcht ≤ Pbt ∀t (3.19)

MZdcht ≥ Pbt ∀t (3.20)

Zcht + Zdcht ≤ 1 ∀t (3.21)

Equations (3.14) and (3.15) define the relationships between the BESS charging and

discharging power and its SOC considering charging and discharging efficiencies. The SOC

of BESS at the end of the optimization horizon is constrained by (3.16) to be equal to the

initial SOC. Equations (3.17) and (3.18) define the power and energy capacity constraints

respectively, which are determined based on BESS characteristics in terms of its type and

size. Equations (3.19)-(3.21) are coordination constraints for BESS charging/discharging

status using the big M method [56].

In order to improve the optimization programs computational performance, equations

(3.14) and (3.15) can be replaced by a set of linearized equations formulated using the

big M method. This will result in two equations for the charging state and another two

equations for the discharging state, as follows:

Charging state:

MZdcht + Pbt∆tλch ≥ SOCt−1 − SOCt ∀t (3.22)

MZdcht − Pbt∆tλch ≥ SOCt − SOCt−1 ∀t (3.23)
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Discharging state:

M(Zcht − Zdcht+1) +
Pbt∆t

λdch
≥ SOCt−1 − SOCt ∀t (3.24)

M(Zcht − Zdcht+1)−
Pbt∆t

λdch
≥ SOCt − SOCt−1 ∀t (3.25)

3.4.6 Model Predictive Control

The WPS is subject to several uncertainties over its daily operation cycle. Such uncertain-

ties may jeopardize the expected benefits of the EMS as the actual inputs deviates from

the forecasted profiles used in the optimization problem. In this work, the MPC technique

is used to deal with energy price, water demand, and wind generation uncertainties. The

receding horizon MPC is applied in order to meet the operational requirement of main-

taining a certain water volume in the WPS storage at the end of the optimization horizon.

Using MPC, the EMS problem is reformulated as follows:

Min. Zi =
T∑
t=i

ρt PLDCt ∆t+ λp Pmax ∀i (3.26)

s.t. Equations (3.4)− (3.24) ∀i, t = i, ..., T (3.27)

ρt = ρupdatedt ∀i, t = i, ..., T (3.28)

Dt = Dupdated
t ∀i, t = i, ..., T (3.29)

PREt = P updated
REt

∀i, t = i, ..., T (3.30)

At each time interval (iteration), (3.26)-(3.30) are solved over an optimization horizon

but the solution is implemented for the first time interval only. The forecasted energy price

(ρt), water demand (Dt), and RES generation (PREt) are updated at each iteration and

(3.28)-(3.30) are updated with recent forecasted data.
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3.5 Case Studies and Discussions

The WPS used in the case studies is based on the facility shown in Figure 2.5 [10]. The

power and water flow ratings of the pumps are given in Table 3.2. The minimum, maximum,

and initial capacities of the storage are Lmin = 2, 400m3,Lmax = 18, 200m3, and L0 =

7, 800m3.

The load models of the five pumps are estimated by executing PSCAD simulations of

4.16 kV VSD driven induction machines, where the mechanical torque is assumed to be

equal to N2 according to a centrifugal pump’s torque characteristic [57]. The reference

frequency (f) for VSD inverter control loop is varied between 0.5 and 1 p.u. in steps of

0.01 p.u., to generate 51 readings of power demand. The pump flow rate (q) is proportional

to N , with rated flow rate occurring at rated N .

The generated data set of power demand and flow rate of each pump is used to train

a NN with one hidden layer comprising 10 neurons. A single layer NN model was selected

to ensure an acceptable level of accuracy while also considering the model computational

aspects. In the process of developing the NN load models of the five pumps of the WPS,

the accuracy of the NN was examined with different number of neurons (K) in the hidden

layer. Using a trial-and-error approach, the best accuracy was noted at K = 10 for three

of the five pumps, and at K = 11 for the other two pumps. Therefore K = 10 was selected

for all the pumps in order to avoid higher complexity.

The data set is divided into training set (60%), validation set (20%), and testing set

(20%) using Dividerand function of MATLAB NN toolbox which divides the data set

using random indicies. The MSE criterion is considered as the performance function for

NN training and the resulting errors for the five pumps are shown in Table 3.3.

Figure 3.5 shows the schematic of the proposed CLE for the WPS where power demand

and pump output rate datasets are generated using PSCAD simulations and used for

NN training. Then the power demand model acquired from NN training is used in the

EMS optimization problem to find the optimal pump flow rate schedules. These optimal
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schedules are used to regenerate NN training datasets resulting in improved power demand

estimation model. The stopping criterion used in this work for CLE convergence is a

difference in EMS objective function value of less than 1% for two successive iterations.

Table 3.2: Power and Flow Ratings of Pumps

j 1 2 3 4 5

Power (kW ) 595 445 260 260 595

Flow (m3/h) 1,800 1,440 828 828 1,800

Table 3.3: Neural Network Training Performance

j 1 2 3 4 5

MSE 2.06E-07 8.30E-07 3.25E-05 3.25E-05 2.06E-07

The EMS optimization problem is formulated as a mixed integer nonlinear programming

(MINLP) problem and solved using the DICOPT solver [38] in GAMS with a 0.01 MIP

optimality tolerance. Three case studies are presented; Case 1 corresponds to the optimal

scheduling of the WPS without DER, Case 2 corresponds to the optimal scheduling of the

WPS with the wind energy source, and Case 3 corresponds to the optimal scheduling of

the WPS equipped with a wind energy source and a BESS. Three scenarios are constructed

for each case study as follows:

• Scenario-1: EMS without the proposed CLE

• Scenario-2: CLE based EMS

52



• Scenario-3: MPC technique applied to CLE based EMS under demand, price, and

RES generation uncertainties.

The energy price in the case studies is assumed to follow the Hourly Ontario Energy

Price (HOEP) of October 26, 2015, shown in Figure 3.6 [58] and the demand charge is

assumed to be 7.0 $/kW. Figure 3.6 also shows the forecasted energy price profile considered

for MPC analysis. Figure 3.7 and Figure 3.8 present the actual and forecasted water

demand and wind generation profiles respectively. The actual water demand profile is

taken from [10] while the actual wind generation profile is based on wind speed data

extracted from [59] for a typical day in Toronto area. The forecasted profiles in Figure

3.6-Figure 3.8 are generated by adding an increasing random error to the actual profiles

assuming a normal distribution for the error with the mean equal to the actual value and

the standard deviation increasing with time.
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 Figure 3.5: CLE schematic of the WPS.
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Figure 3.6: Actual and forecasted energy price profiles.

 
Figure 3.7: Actual and forecasted water demand profiles.
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 Figure 3.8: Actual and forecasted wind generation profiles.

3.5.1 Case 1: WPS without DER

In this case study the WPS buys the needed energy from the LDC. Therefore, the hourly

power demand need be optimized to minimize its energy costs and demand charges while

meeting the demand and the WPS operational constraints. Two sources of uncertainty are

considered in this case which are, energy price and municipal water demand. Summary

results are presented in Table 3.4 and hourly power exchanges of the WPS with the LDC

are shown in Figure 3.9.

It is noted from the results that neither Scenario-1 nor Scenario-2 is able to maintain the

final water volume in the storage facility at the desired volume of L0 (Figure 3.10). There

is a deviation of 2,178 m3 from the desired volume of L0 = 7, 800m3 for both Scenarios

1 and 2. This is because the actual water demand deviates from the forecasted demand,

which is used in the EMS optimization model. On the other hand, it is noted that with

the application of the MPC technique in the CLE based EMS, the final water volume is

precisely maintained at L0. Non-maintenance of final water volume in storage gives rise

to many indirect costs to the WPS, which are not captured through the energy cost and

demand charge only. Therefore, a final water volume penalty is assumed, of 0.005 $/m3 of

deviation from L0 in order to account for the effective cost to the WPS, which is different

from the energy related costs.
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It is noted from Table 3.4 that the CLE based EMS resulted in 2% reduction in total

costs, while when MPC technique is applied on the CLE based EMS, the cost savings

increased to 5.2%; when final water volume penalty charge is considered, this savings in

Scenario-3 increases to 10.5%. The main contributors to this saving are the reductions in

demand charges and in final water volume penalty charges. As shown in Figure 3.9, the

power demand profile in Scenario-3 is more flattened than Scenarios 1 and 2 resulting in

12.9% reduction in demand charges (Table 3.4).

Table 3.4: Case 1 Results

Scenario-1 Scenario-2 Scenario-3

(Base) (CLE) (CLE + MPC)

Net Energy Drawn from LDC

(kWh/day)
5,038 4,833 (-4.1%) 4,754 (-5.6%)

Peak Power Drawn from LDC (kW) 254 251.6 (-0.9%) 221.2 (-12.9%)

Energy Costs ($/day) 124.4 121.4 (-2.4%) 122.5 (-1.5%)

Demand Charges ($/day) 59.3 58.7 (-0.9%) 51.6 (-12.9%)

Total Cost to WPS ($/day) 183.7 180.1 (-2%) 174.1 (-5.2%)

Final Water Volume Penalty Charges

($/day)
10.9 10.9 0

Total Effective Costs ($/day) 194.6 191 (-1.9%) 174.1 (-10.5%)
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Figure 3.9: Power exchange by the WPS with LDC for Case 1.

 
Figure 3.10: Storage water volume for Case 1.
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3.5.2 Case 2: WPS with Wind Energy Source

In this case, the WPS is considered to be equipped with a wind energy source, where the

actual and forecast wind generation profiles are shown in Figure 3.8, with actual total

wind generation of 2,690 kWh and a forecasted total generation of 2,675 kWh over the

24-hour horizon. Therefore, wind generation is considered as a third source of uncertainty

in addition to energy price and water demand. Summary results are presented in Table 3.5

and hourly power exchanges between the WPS and the LDC are shown in Figure 3.11.

It is noted that the WPS sells power during the first hour in all the three scenarios as

a result of high wind generation and low water demand at this hour. Scenario-3 resulted

in the lowest peak demand of 158.8 kW at hour 24 (Figure 3.11). Notice also that peaks

occurred in Scenarios 1 and 2 between hours 16 and 19 because of low energy price forecast

during this period with a very high deviation from the actual price profile, while in Scenario-

3 the peak did not occur during this period because of the continuous updates of forecasted

prices.

The 3.8% reduction in total costs, resulting from the use of CLE in Scenario-2, is mainly

from the 6.3% reduction in energy costs. Scenario-3 resulted in 17.8% reduction in total

effective costs due to 9.4% decrease in energy costs, 9.9% decrease in demand charges, and

eliminating the final water volume penalty charges. Comparing the results of Case 2 with

Case 1, it is noted that there is a large reduction in energy cost because of the presence

of the wind energy source. An economic study to assess the feasibility of integrating wind

generation with the WPS should include the capital and running cost of the wind source.

In addition to the energy cost savings, social cost of emission reduction should be included

in the analysis. However, such analysis is beyond the scope of this work, and it is simply

assumed that the WPS has already gone through such studies to equip itself with the wind

resource.
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Table 3.5: Case 2 Results

Scenario-1 Scenario-2 Scenario-3

(Base) (CLE) (CLE + MPC)

Net Energy Drawn from LDC

(kWh/day)
2,410 2,334 (-3.2%) 2,242 (-7%)

Wind Generation (kWh/day) 2,675 2,675 2,690

Total Energy Consumption by WPS

(kWh/day)
5,085 5,009 (-1.5%) 4,932 (-3%)

Peak Power drawn from LDC (kW) 176.3 175.2 (-0.6%) 158.8 (-9.9%)

Energy Costs ($/day) 67.8 63.5 (-6.3%) 61.4 (-9.4%)

Demand Charges ($/day) 41.1 40.9 (-0.6%) 37.1 (-9.9%)

Total Cost to WPS ($/day) 108.9 104.4 (-4.1%) 98.5 (-5.7%)

Final Water Volume Penalty Charges

($/day)
10.9 10.9 0

Total Effective Costs ($/day) 119.8 115.3 (-3.8%) 98.5 (-17.8%)
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 Figure 3.11: Power exchange by the WPS with LDC for Case 2.

3.5.3 Case 3: WPS with Wind Energy Source and BESS

In addition to the wind energy source, the WPS is considered to be equipped with a BESS

(Table 3.6) in this case. Summary results are presented in Table 3.7 and hourly power

exchange profiles are shown in Figure 3.12 and Figure 3.13. It is noted in Figure 3.12

that there is a high variability in energy consumption profiles between the three scenarios

because of the flexibility provisions from the BESS. The WPS sells the maximum amount

of energy to the LDC in Scenario-1 but this scenario results in the highest peak of 191.1

kW and a low level of power exchange with the BESS (Figure 3.13).

Scenarios-2 and 3 resulted in much lower peak demands because of the high level of

power exchange with BESS. However, it is noted from Table 3.7 that the charging/discharging

losses in BESS in Scenario-2 contributed to a 0.5% increase in the energy cost. Scenario-2

resulted in 5% reduction in total effective cost, accounted for by 14% decrease in demand

charge despite the 0.5% increase in energy cost. Scenario-3 resulted in a 20.7% reduction

in total effective cost due to 8% decrease in energy cost, 18.9% decrease in demand charge,

and eliminating the final water volume penalty charge.
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Table 3.6: BESS Characteristics

Type PbA

Capacity 500 kWh

Maximum Charging/Discharging Rate 100 kW

Charging/Discharging Efficiency 95%

Depth of Discharge (DoD) 0.8

Initial SOC 0.6

Table 3.7: Case 3 Results

Scenario-1 Scenario-2 Scenario-3

(Base) (CLE) (CLE + MPC)

Net Energy Drawn from LDC

(kWh/day)
2,330 2,323 (-0.3%) 2,175 (-6.7%)

Wind Generation (kWh/day) 2,675 2,675 2,690

Total Energy Consumption by WPS

(kWh/day)
4,995 4,979 (-0.3%) 4,838 (-3.1%)

Peak Power drawn from LDC (kW) 191.1 164.4 (-14%) 154.9 (-18.9%)

Energy Costs ($/day) 61.2 62.5 (+0.5%) 57.2 (-8%)

Demand Charges ($/day) 44.6 38.4 (-14%) 36.2 (-18.9%)

Total Cost to WPS ($/day) 105.8 100.9 (-4.6%) 93.4 (-11.7%)

Final Water Volume Penalty Charges

($/day)
10.9 10.9 0

Total Effective Costs ($/day) 116.7 111.8 (-5.0%) 93.3 (-20.7%)
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There is no significant difference in energy cost savings between Case 3 and Case 2;

therefore, integrating the BESS with the WPS may not be feasible, considering the high

capital and running costs of such an installation. Although a storage system generally

provides flexibility in buying and selling energy at optimal time periods, this flexibility did

not result in large energy savings for the WPS under study. This can be attributed to the

high controllability of the load which resulted in shifting the load to high wind generation

time periods rendering the flexibility provided by BESS not very useful.

 Figure 3.12: Power exchange by the WPS with LDC for Case 3

 
Figure 3.13: BESS power output for Case 3
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3.5.4 Computational Efficiency

The base scenario (Scenario-1) for the three case studies involves solving the EMS prob-

lem once for the entire optimization horizon. The solution times along with the number

of variables for the three cases are shown in Table 3.8. The computational efficiency of

Scenario-2 depends on the number of iterations needed the CLE algorithm to reach con-

vergence. Assuming that NN re-training time is negligible compared to the EMS problem

solution time, the solution time for Scenario-2 can be calculated as the number of iterations

needed, multiplied by the solution time of Scenario-1, shown in Table 3.9. In Scenario-3,

the MPC technique involves solving the EMS problem at each time interval (one hour) in

the optimization horizon (24 hours). Table 3.10 presents the total solution time for the

whole day and the maximum solution time for a single MPC iteration.

The NN training time is not considered in the evaluation of the computational efficiency

of the proposed EMS framework because the NN training completes in just few seconds

which is negligible compared to the EMS solution times shown in Table 3.8 - Table 3.10.

The NN training time is not long in this work due to the small size of training data used

to develop the power demand models of the pumps.

Table 3.8: Scenario-1 Solution Time

Case Number of Variables Number of Binary Variables Solution Time

1 1874 120 2 min

2 1898 120 2.5 min

3 1994 168 6.3 min
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Table 3.9: Scenario-2 Solution Time

Case Number of CLE Iterations Solution Time

1 4 8 min

2 7 17.5 min

3 4 25.2 min

Table 3.10: Scenario-3 Solution Time

Case Maximum Solution Time for One MPC Iteration Total Solution Time

1 10.2 min 53.3 min

2 20.6 min 75.4 min

3 31.8 min 157.3 min

3.6 Summary

This chapter presented an EMS application through the optimum load control of a WPS.

The optimization of energy utilization was achieved through the development of power

demand models for variable speed driven pumps. Simulation results showed potential

for daily savings on energy costs and demand charges as pumps’ operational schedules

and flow rates are optimized. The proposed CLE improved the load estimation accuracy

yielding better optimal solutions when the NN-based load model is incorporated into the

optimization problem. On the other hand, the receding horizon MPC technique improved

the forecasting accuracy of energy price, RES generation, and demand, resulting in notable

savings as the EMS problem uses more accurate data. Also the MPC approach allowed for

continuous adjustment of the operational schedules in order to maintain a certain water

volume in the storage of the WPS at the end of the optimization horizon.
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Chapter 4

Retail Pricing Controlled Demand

Response for Industrial Loads

Considering Distribution Feeder

Operations‡

4.1 Nomenclature

Indices

b Bus, b = 1, 2, ..., B

l Line, l = 1, 2,..., N.

p Phase, p = a, b, c

t Time interval, hours, t = 1, 2, ..., T

‡Parts of this chapter have been submitted as a paper for review in: O. Alarfaj and K. Bhattacharya,

Retail pricing controlled demand response for industrial loads considering distribution feeder operations,

IEEE Transactions on Smart Grid, 2018.
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Parameters

D
DA

IC Day-ahead industrial customer’s production demand

D
RT

IC Real-time industrial customer’s production demand

P1, ..., Pn Retail pricing power demand thresholds, [kW ]

Pmax
IC Industrial customer’s maximum load, [kW ]

pf Power factor of industrial load

P
DA

RE Day-ahead renewable generation by industrial customer, [kW ]

P
RT

RE Real-time renewable generation by industrial customer, [kW ]

V sp Specified nominal phase voltage, [V ]

ρ
DA

m Day-ahead market price, [$/kWh]

ρ
RT

m Real-time market price, [$/kWh]

λ1, ..., λ4 Retail pricing coefficients

λd Peak demand coefficient, [$/kW ]

Variables

d Industrial customer’s power demand deviation from P
∗
IC, [kW ]

I Phase current, [A]

Is Sending-end phase current, [A]

Ir Receiving-end phase current, [A]

J
DA

IC Objective function of industrial customer in day-ahead operation, [$]

J
RT

IC Objective function of industrial customer in real-time operation, [$]

J
DA

LDC LDC’s day-ahead objective, [kWh]

J
RT

LDC LDC’s real-time objective, [kWh]

P
DA

gap Day-ahead retail pricing power gap, [kW ]

P
RT

gap Real-time retail pricing power gap, [kW ]

P
DA

IC Day-ahead industrial customer’s active power demand, [kW ]

P
RT

IC Real-time industrial customer’s active power demand, [kW ]

PDA

IC Day-ahead industrial customer’s peak demand, [kW ]

PRT

IC Real-time industrial customer’s peak demand, [kW ]
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P
∗
IC Desired demand profile signal, [kW ]

P
max

IC Industrial customer’s total connected load, [kW ]

P
DA

LDC Day-ahead LDC’s power demand, [kW ]

P
RT

LDC Real-time LDC’s power demand, [kW ]

PDA

LDC Day-ahead LDC’s peak demand, [kW ]

PRT

LDC Real-time LDC’s peak demand, [kW ]

QIC Reactive power demand of industrial load, [kV AR]

V Bus phase voltage, [V ]

ZIC Industrial customer load’s impedance, [Ω]

ρ
DA

LDC Day-ahead retail price, [$/kWh]

ρ
RT

LDC Real-time retail price, [$/kWh]

ρDA

LDC Maximum day-ahead retail price, [$/kWh]

ρRT

LDC Maximum real-time retail price, [$/kWh]

λt Hourly retail pricing coefficient, [p.u.]

4.2 Introduction

DSM is an important concept in electric utilities that helps defer some capacity addition

requirements in the long-term, which is very significant in power systems with continuously

growing demand for energy. However, there is a need to develop new DSM strategies

for efficient energy usage by existing and new loads, and encourage the participation of

customers in DR programs. Industrial loads are important targets for DR programs because

of their high energy density, availability of automated controls at the equipment switching

level, and the presence of supervisory control centers. While automated controls facilitate

the implementation of load control strategies, the supervisory control centers allow for two-

way interaction with the energy provider and hence provides efficient energy management

for the benefit of both parties. When equipped with an EMS, an industrial facility can use

DR signals to optimize its energy utilization and communicate the EMS decisions to the

energy provider to achieve its DR targets in a collaborative manner.
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A novel framework is proposed in this chapter for industrial loads participating in DR

provisions, from the LDC’s and customer’s perspectives, simultaneously. In the context

of this work, the LDC is an entity that owns and operates the local distribution network

and also engages in the sale of retail electricity to customers. Optimization models are

developed for the LDC and the industrial customer, which are solved independently and

sequentially, using locally obtained data and data communicated by the other party. For

LDC’s operation, a distribution optimal power flow (DOPF) model is developed while

for the industrial facility, an appropriate EMS model is used. Also a retail pricing model

(RPM) is developed, using the customer’s historical load profiles, which produces a dynamic

price signal that is included in the customer’s EMS program to determine the optimal

DR decisions. The proposed framework also considers the uncertainty in energy prices,

RES generation, and industrial facility’s demand by applying the model predictive control

(MPC) technique in real-time operation of the industrial customer’s EMS model. The

main contributions of this work are:

• A novel and interactive DR framework is proposed for industrial customers, to be

implemented by the LDC in day-ahead and real-time operations. The main purpose

of the day-ahead DR strategy is to reach an agreement on the load shift to be carried

out by the industrial customer, while minimizing the peak demand of the distribution

system. At the real-time stage, the DR strategy seeks to minimize the deviations in

DR decisions from the day-ahead schedules, taking into account the uncertainties of

energy prices and energy demand of the customer.

• Two DR signals are proposed to influence the customer’s demand as part of the day-

ahead DR strategy, the first signal is based on a ”desired demand profile” and the

second is based on a retail pricing scheme. The performance of the DR strategy with

the two proposed DR signals is compared with a TOU based pricing scheme.

• The retail pricing based DR signal is derived from a novel RPM, designed to influence

the customer’s demand profile in order to achieve a desired load shifting and hence

68



reducing the peak demand of the distribution system. Customers historical load data

and demand schedules are used by the LDC to determine this price signal.

• Uncertainties arising at the customers end during real-time operations are mitigated

by the application of the MPC technique within its EMS, while those at the LDCs

end are mitigated through effective communication with the customer on updated

energy demand schedules and by revising the retail prices at the real-time stage using

the RPM.

The rest of the chapter is organized as follows: Section 4.3 describes the proposed DR

framework for industrial loads. The mathematical models of the DOPF are described in

Section 4.4. Case study results are presented and discussed in Section 4.5. Finally, Section

4.6 presents the conclusions of this work.

4.3 Proposed Demand Response Framework

The proposed DR framework for industrial loads considers both day-ahead and real-time

operations. At the day-ahead stage, the LDC seeks to minimize its peak demand while

the industrial customer seeks to minimize its energy cost and peak demand. At the real-

time stage, the decisions are adjusted so as to account for uncertainties arising from various

factors. In the proposed DR schemes, it is assumed that the industrial customer has entered

into a contractual agreement with the LDC to respond to its DR signal by incorporating

the DR signal within its EMS program in an appropriate manner and hence adjusting its

demand.

The proposed DR scheme is designed to be generic, for application to an industrial

facility, which accounts for a significant share of the local distribution system load. Different

industrial loads will have differing degrees of flexibility, in response to the DR signals, and

hence the magnitude of benefits realized from the DR programs will be different based on

the application.
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4.3.1 Day-Ahead Operations

At the day-ahead stage, an interactive process (Figure 4.1) is proposed where the industrial

customer executes its EMS model using day-ahead market price ρ
DA

m , production demand

D
DA

IC , and RES generation P
DA

RE forecast data. The initial objective for the customer’s EMS

is to minimize its energy cost and peak demand charge, given as follows:

J
DA

IC =
∑
t

ρDA

mt
P

DA

ICt
∆t+ λdP

DA

IC (4.1)

where peak demand is capped using the following constraint:

P
DA

ICt
≤ PDA

IC ∀t (4.2)

The optimized load profile P
DA

IC is communicated to the LDC. After receiving informa-

tion from the customer’s EMS, the LDC executes either DOPF1 or DOPF2 (see Figure

4.1) with the objective of minimizing the LDC’s peak demand and feeder losses, given as

follows:

J
DA

LDC = PDA

LDC +
∑
t

PLosst (4.3)

The loss minimization component is included so as to achieve improved system oper-

ation, such as reduced reactive power flows in the feeders and improved voltage profiles.

From the DOPF and RPM, the LDC obtains an appropriate DR signal which is commu-

nicated to the customer in order to shift some of its load to off-peak periods. Two types

of DR signals are proposed in this work:

• DR1: Desired demand profile signal. (Figure 4.1a)

• DR2: Retail price signal. (Figure 4.1b)

70



In
d

u
st

ri
a

l 
C

u
st

o
m

er

EMS

Min. JIC
DA (4.5)

DIC
DA

L
o

ca
l 

D
is

tr
ib

u
ti

o
n

 C
o
m

p
a
n

y

DOPF1

Min. JLDC
DA (4.3)

P
IC

D
A

P
IC

*

EMS

Min. JIC
DA (4.12)

DOPF2

Min. JLDC
DA (4.3)

P
IC

D
A

P
IC

D
A

RPM

ρLDC
DA

P
L

D
C

D
A

a) DR1 Signal b) DR2 Signal

ρm
DA

PRE
DAρm

DA DIC
DA

PRE
DAρm

DA

PLDC
DA

P
IC

D
A

In
d

u
st

ri
a

l 
C

u
st

o
m

er
L

o
ca

l 
D

is
tr

ib
u

ti
o
n

 C
o
m

p
a
n

y

 
Figure 4.1: DR in day-ahead operations.
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4.3.1.1 DR1: Desired Demand Profile Signal

In this approach, the LDC controls the industrial customer’s demand by sending a desired

demand profile signal P
∗
IC which is determined from DOPF1 model to be included by the

customer in its EMS program as an upper bound for its demand. To this effect, a new

constraint is included in the customer’s EMS for subsequent solutions in the day-ahead

interactive process, given as follows:

P
DA

ICt
≤ P

∗

ICt
+ dt ∀t (4.4)

Note that, while a peak demand constraint (4.2) is considered in the initial execution

of the customer’s EMS, constraint (4.4) is used instead, for all subsequent executions.

While (4.1) is used as the objective function in the first execution of the EMS model, it is

appropriately modified in all subsequent runs for the DR1 case, by replacing PDA

IC by the

sum of dt. The sum of dt is minimized to ensure that customer’s load profile is close to

that desired by the LDC. The modified objective function of the customer’s EMS is given

as follows:

J
DA

IC =
∑
t

ρDA

mt
P

DA

ICt
∆t+ λd

∑
t

dt (4.5)

In the proposed DR1 interactive process (Fig. 1a), the LDC executes DOPF1 model

after receiving the scheduled demand profile from the customer P
DA

IC to determine the

desired demand profile signal P
∗
IC which is communicated to the customer. The customer

includes this signal as an upper bound for its demand and re-executes its EMS program

using the objective function in (4.5) and submits a revised day-ahead demand schedule

to the LDC. Depending on how close is the customer’s revised load profile to the LDC’s

desired load profile, the LDC may re-execute DOPF1 and send a revised DR1 signal to

the customer. This process continues until there is no further reduction in peak demand of

the distribution system. Note that in the DR1 scheme the customers energy tariff is solely

based on the day-ahead wholesale market price, ρDA
m , that is included in (4.5).
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4.3.1.2 DR2: Retail Price Signal

In this approach, the LDC influences the customer’s load profile using a suitable retail

price signal, ρDA
LDC, to achieve a desired load shifting. To determine this price signal, a novel

RPM is proposed herein, which is based on the analysis of the scheduled demand profile of

the industrial customer P
DA

IC , and other loads connected to the distribution feeder. It uses

the peak demand of the feeder PDA

LDC, as a reference point for determining the retail price

signals.

Since the LDC seeks to minimize its peak demand, the retail price at each hour is

determined based on the expected feeder load proximity to PDA

LDC; therefore hourly power

gaps P
DA

gap are calculated using the following equation:

P
DA

gapt = PDA

LDC − (P
DA

LDCt
− PDA

ICt
) ∀t (4.6)

In order to minimize the LDC’s peak demand, high retail prices should be selected

for hours with low power gap, and vice versa. This is achieved by comparing the power

gap with a certain number of threshold values (P1, P2, ..., Pn) of the industrial customer

demand to determine pricing coefficients, λDA
t , for each hour using the following piece-wise

function:

λDA

t =



λ1 PDA
gap > P1

λ2 P2 < PDA
gap ≤ P1

λ3 P3 < PDA
gap ≤ P2

• • ∀t

• •

λn Pn < PDA
gap ≤ Pn−1

1 PDA
gap ≤ Pn

(4.7)
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where

0 < λ1 < λ2 < ... < λn < 1 (4.8)

Pn < Pn−1 < ... < P1 ≤ Pmax
IC (4.9)
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Figure 4.2: Retail pricing structure.

Figure 4.2 illustrates the proposed retail pricing structure considering n = 4 as the

number of levels in the staircase function (4.7). The hourly pricing coefficients, λDA
t , are

used to determine retail prices ρDA
LDCt

as given below:

ρDA
LDCt

= λDA

t ρDA

LDC ∀t (4.10)

where ρDA
LDC is determined to maintain the energy costs for the customer under retail

prices, equal to the costs associated with initially submitted demand profile under market

prices using the following equation:
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ρDA

LDC =

∑
t

ρDA

mt
P

DA

ICt∑
t

λDA

t P
DA

ICt

(4.11)

The number of levels, n, in the staircase function (4.7), the threshold values, P1, P2, ..., Pn,

and the retail pricing coefficients, λ1,λ2, ..., λn, are selected by analyzing the historical de-

mand profile of the industrial customer to determine the most probable power demand

levels. These parameters are determined in advance and are kept fixed during the execu-

tion of the interactive DR2 scheme.

In the proposed DR2 interactive process (Fig. 4.1b), the LDC executes DOPF2 model

after receiving scheduled demand profile from the customer P
DA

IC to determine the corre-

sponding distribution system demand profile P
DA

LDC and its associated peak demand PDA

LDC.

Hourly power gaps P
DA

gap are then calculated using (4.6) and used to determine a retail price

signal ρDA
LDC using equations (4.7), (4.10), and (4.11) of the RPM model. After that, the

retail pricing signal, ρDA
LDCt

, is communicated to the customer to be included in the EMS

objective function in place of ρDA
m as given below:

J
DA

IC =
∑
t

ρDA

LDCt
P

DA

ICt
∆t+ λdP

DA

IC (4.12)

The customer re-executes its EMS to obtain a revised day-ahead demand schedule us-

ing the modified EMS objective function (4.12), in place of (4.1), which considers that

the customer will be charged based on the retail price, and not the market price. When

the revised demand profile of the customer ρDA
LDC is communicated back to the LDC, it is

incorporated into the DOPF2 model to ensure that the distribution system’s peak demand

has reduced. This process continues until the retail price signal from the LDC and the ’re-

sponsive’ load profile of the customer reach steady-states, and there is no further reduction

in distribution system’s peak demand.
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The convergence of the interactive strategy is guaranteed because of the design of the

RPM where a power gap is calculated as a function of the peak demand and used to

determine the retail price; the retail price inversely varies with the magnitude of the power

gap. So with a small change in the peak demand indicating reduced flexibility in customer’s

response, the change in power gap will be very small and therefore the retail price will not

change as a result of the staircase function design used in the RPM. When the retail price

remains unchanged, the resulting demand profile of the customer will also not change and

as a result the peak demand of the distribution system will stop changing, indicating a

convergence of the interactive scheme.

4.3.2 Real-Time Operations

As the proposed DR scheme is implemented in the day-ahead operations, the attainable

benefits in real-time operations is also examined considering the impact of uncertainties

in energy prices and industrial costumer operations on real-time decisions. As a proof of

concept, only real-time operations associated with DR2 day-ahead scheme are considered.

After convergence of the day-ahead operations in DR2 scheme, the LDC and the customer

reaches a settlement on the desired load profile, which is considered to be the contracted

(or scheduled) load, and the final day-ahead retail price signal.

In real-time, the following objective function is used by the customer in its EMS, which

seeks to minimize the penalty for deviations in its real-time load from the scheduled day-

ahead load profile and also minimizing its real-time peak demand charge, as given below:

J
RT

IC =
∑
t

ρRT

LDCt
(P

RT

ICt
− PDA

ICt
)∆t+ λdP

RT

IC (4.13)

The real-time operations are affected by uncertainties such as deviations in energy mar-

ket prices from forecast, and process power demand from their day-ahead schedules. The

MPC technique is used to deal with these uncertainties and hence reduce the deviations in

the real-time load profile of the customer from the communicated (contracted) day-ahead
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profile. The MPC formulation is included as part of the industrial customer’s EMS model

to update the various uncertain parameters. At each time instant, i ε {1, T}, the follow-

ing receding-horizon MPC optimization problem is solved over the optimization horizon

{i, .., T}, but the solution is implemented for time interval, i, only:

Min. J
RT

ICi
=

T∑
t=i

ρRT

LDCt
(P

RT

ICt
− PDA

ICt
)∆t+ λdP

RT

IC (4.14)

s.t. ρ
RT

LDC = ρ
RTupdated

LDC For t = i, ..., T (4.15)

D
RT

IC = D
RTupdated

IC For t = i, ..., T (4.16)

P
RT

RE = P
RTupdated

RE For t = i, ..., T (4.17)

The real-time retail prices ρ
RT

LDC, production demand D
RT

IC , and renewable generation

PRT
RE are updated at each time interval with recently obtained data using (4.15)-(4.17). In

addition to updating its own parameters, the industrial customer communicates with the

LDC in real-time with updated demand profiles, as shown in Figure 4.3, which reduces

the uncertainty in its load demand, to the benefit of LDC’s real-time operation. Using the

updated load profile of the customer, the LDC executes the DOPF2 model on an hourly

basis using the following objective function:

J
RT

LDC = PRT

LDC +
∑
t

PLosst (4.18)

As the LDC’s demand profile is updated using the customer’s communicated demand

data, the RPM is used to revise the real-time retail price signal ρRT
LDC on an hourly basis to

influence the customer’s demand in order to reduce the peak demand of the distribution

system. Similar to the day-ahead retail price signal, the real-time retail price signal ρRT
LDC

is determined using the following equations:

P
RT

gapt = PRT

LDC − (P
RT

LDCt
− PRT

ICt
) ∀t (4.19)
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λRT

t =



λ1 PRT
gap > P1

λ2 P2 < PRT
gap ≤ P1

λ3 P3 < PRT
gap ≤ P2

• • ∀t

• •

λn Pn < PRT
gap ≤ Pn−1

1 PRT
gap ≤ Pn

(4.20)

ρRT
LDCt

= λRT

t ρRT

LDC ∀t (4.21)

ρRT

LDC =

∑
t

ρRT

mt
P

RT

ICt∑
t

λRT

t P
RT

ICt

(4.22)

4.4 DOPF Models of the LDC

This section presents the mathematical models developed for the LDC’s feeder operations;

the DOPF1 and DOPF2, which determine the optimal operations for the LDC distribution

network supplying the industrial load and other connected loads. An appropriate EMS

model is to be used for the optimal operation of the industrial customer’s facility assuming

the existence of a two-way communication facility between the LDC and the industrial

customer for proper coordination of the models.

4.4.1 Distribution System Equations:

These include the total power drawn by the distribution system from substation bus (b = 1),

and peak demand constraints for the distribution system.
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Figure 4.3: DR in real-time operations.
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PLDCt
=

∑
p

Real(V
b,p,t

Isl,p,t) For b = 1 (4.23)

P
DA

LDCt
≤ PDA

LDC ∀t (4.24)

P
RT

LDCt
≤ PRT

LDC ∀t (4.25)

4.4.2 Industrial Load Related Constraints:

The industrial load is included in the DOPF models, as a balanced load, at distribution

feeder bus i, using the following equations:

Vb,p,t = ZICb,p,t
IICb,p,t

b = i, ∀p,∀t (4.26)

ZICb,p,t
=

3V sp2

b,p

PICt
+ jQICt

b = i, ∀p,∀t (4.27)

Additional constraints for industrial load are included in the DOPF1 model only, to

determine the desired optimal load profile of the customer taking into account the LDC’s

contracts with the customer for energy and DR. These additional constraints are not in-

cluded in DOPF2 since it is solved with a fixed industrial load profile as an input to the

model.

P
∗

ICt
≤ PDA

IC ∀t (4.28)∑
t

P
∗

ICt
≥

∑
t

P
DA

ICt
(4.29)

QICt
= P

∗
ICt

√
1

pf2 − 1 ∀t (4.30)

Constraint (4.28) ensures that the desired load profile does not result in an increased

peak demand for the industrial customer which would increase its demand charges. Con-

straint (4.29) defines the load shifting relationship in the DR. The reactive power demand
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of the customer is calculated as a function of the active power demand using (4.30) based

on an agreed operating power factor of the industrial facility.

4.5 Case Studies and Discussions

The distribution feeder used in this work is a 41 bus practical test feeder reported in [28],

and shown in Figure 4.4. The non-industrial loads are modeled as constant impedance

loads with random 24-hour profiles generated using the procedure described in [28]. The

three-phase transformers at nodes 7, 15, and 40 are modeled with LTCs for regulating the

voltage at their secondary terminals.

The proposed DR framework is applied to a water pumping system (WPS) facility

reported in [10]; the power ratings of the pumps are scaled up to match the LDC’s connected

load ratings. The EMS model used in this work for the WPS facility is based on the model

proposed in Chapter 3. The EMS model is appropriately modified for implementing the

DR strategies discussed earlier. The WPS is assumed to be connected to node 3 of the

feeder, as shown in Figure 4.4. The total connected load of the WPS is 4.3 MW, while the

total connected non-industrial load is 15.2 MW. The WPS facility is assumed to maintain

a power factor of 0.9 lagging.

The Hourly Ontario Energy Prices (HOEP) of July 18, 2017 are used as day-ahead

market prices, and the demand charge λd is assumed to be 6.0 $/kW. The real-time market

prices are generated by adding an increasing random error to the day-ahead market prices

assuming a normal distribution for the error with a standard deviation that is increasing

with time.

The structure and parameters of the RPM are selected based on the historical demand

profiles of the WPS facility. These historical profiles are generated by executing the EMS

model of the WPS over many scenarios. HOEP data for 90 days, from January 1 to

March 31, 2017 [58], are used to obtain the various scenario simulations of the EMS.

Also, wind speed profiles are acquired for the same period, and are used to produce the
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generation profiles of the wind resource of the WPS facility. Furthermore, 90 randomized

water demand profiles of the WPS are produced, assuming a normal distribution of water

demand over the days (σ = 50m3).

By analyzing the WPS demand profiles, the number of levels in the staircase function

(4.7) is selected to be, n = 4, and the power demand thresholds and the pricing coefficients

are selected as shown in Table 4.1. The most probable power demand levels for customer’s

load are selected as the power demand thresholds since these levels are expected to represent

cost effective operating points for the WPS facility. The price coefficients are selected in

such a way that a large enough variation is attained between different price levels of the

RPM to influence the customer’s demand (either increasing or decreasing).

Table 4.1: Retail Pricing Model Parameters

P1 P2 P3 P4

4,310 kW 3,500 kW 2,204 kW 980 kW

λ1 λ2 λ3 λ4

0.1 0.325 0.55 0.775

4.5.1 Day Ahead Operations

The day-ahead operations involve solving the EMS, DOPF1 or DOPF2, and RPM models

as per the framework proposed in Figure 4.1. Solving the EMS model for the WPS facility

using the assumed day-ahead market prices resulted in an initial demand profile as shown

in Figure 4.5 with a total energy consumption of 39 MWh, peak demand of 2.2 MW, and

total energy cost of 617 $/day. Solving the DOPF model of the LDC with this WPS profile,

results in an initial feeder load profile shown in Figure 4.6, with a total energy demand of

308.8 MWh and peak demand of 15.13 MW.
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 Figure 4.4: 41-Bus practical test feeder.
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Three cases are considered for the DR strategy; in the first case TOU pricing scheme is

considered, where Ontario IESO’s TOU structure is used with some scaling by multiplying

the TOU price for all hours by a single factor that makes the cost for the customer initial

demand schedule equivalent to the cost associated with applying market prices. The other

two cases are considered as discussed earlier- DR1 and DR2; in DR1 the desired demand

profile is used, while in DR2 the retail price signal is used. The final results of the three

cases are tabulated in Table 4.2, and the final scheduled day-ahead load profiles for the

WPS facility and the distribution system for the three cases are shown in Figure 4.5 and

Figure 4.6, respectively.

The solution of TOU case did not result in reduction in peak demand for the distribution

network which actually increased slightly by 0.5% compared to the initial schedule. Also

the energy cost to the WPS increased by 2.1%. However, peak demand has decreased for

the WPS by 23.8%. The solution of DR1 is attained in three interaction cycles (Figure

4.7) and the distribution system’s peak demand is 14.2 MW, and total energy cost of the

WPS is $694.6. There is a 6.1% reduction in feeder peak demand with DR1 as shown in

Table 4.2. The solution of DR2 is attained in five interaction cycles (Figure 4.7) and results

in distribution system’s peak demand of 14.35 MW and total energy cost of the WPS of

$554.3. There is a 5.2% reduction in feeder peak demand as shown in Table 4.2, the final

day-ahead retail prices are shown in Figure 4.8.

DR1 resulted in a lower peak load for the distribution system as compared to DR2.

However, the energy cost for the WPS increased in DR1 while it slightly decreased in DR2

with the retail prices instead of market prices. In both DR1 and DR2 cases, some of WPS

demand is shifted from hours 10-15 to hours 18-21 where feeder demand is low. No WPS

demand is shifted to hours 1-7 because it would increase the peak demand, while the EMS

seeks to minimize the peak load of the WPS facility.
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Figure 4.5: Scheduled power demand profiles of WPS facility.
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Figure 4.7: Convergence of day-ahead DR controls.

Table 4.2: Day-ahead Operations Results

Initial

Schedule

Final Schedule

ToU DR1 DR2

Total Energy Consumption for

WPS [MWh/day]
39.0

39.1

(+0.3%)
39.0 (0%)

38.9

(-0.3%)

Energy Costs for WPS [$/day] 617
629.9

(+2.1%)

694.6

(+12.6%)

554.3

(-10.2%)

Peak Demand for WPS [kW] 2203.8
1678.5

(-23.8%)

2203.8

(0%)

2203.8

(0%)

Total Energy Consumption for

LDC [MWh/day]
308.8

308.9

(+0.03%)
308.8 (0%)

308.7

(-0.03%)

Peak Demand for LDC [MW] 15.13
15.21

(+0.5%)

14.20

(-6.1%)

14.35

(-5.2%)
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Figure 4.8: Day-ahead market and retail prices.

4.5.2 Real-Time Operations

The real-time operations involve solving the customer’s EMS and the LDC’s DOPF models

on an hourly basis. As the WPS operations deviate from the day-ahead schedules (Figure

4.5), its operating schedules are updated each hour and the EMS is re-executed to minimize

the impact of uncertainties on EMS decisions. Also, as the WPS updates its load demand

schedule in the MPC approach, the updated profile is sent to the LDC every hour, which

helps in its real-time operations.

Using the updated WPS power demand schedules, the LDC revises its real-time retail

price signal, which is sent to the WPS on an hourly basis. Two scenarios are considered for

the real-time problem; in Scenario 1 the customer does not send hourly updates to the LDC

and the retail price signal is not updated in real-time; while in Scenario 2 the operation is

carried out as proposed in Section 4.3.2. The results of both scenarios are compared with

final day-ahead results in Table 4.3. The power demand profiles of the WPS facility and

the distribution system are shown in Figure 4.9 and Figure 4.10 respectively.
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Implementing the proposed strategy in Scenario 2 resulted in lower peak demand for

the distribution system and the WPS facility compared to Scenario 1. Also Scenario 2

resulted in lower energy cost for the WPS with the application of the MPC technique. The

increased cost and energy consumption of the WPS facility in real-time, as compared to

the day-ahead schedule, is attributed to its increased total water demand as it deviates

from the day-ahead schedule (Table 4.3).

The increase in distribution system’s peak demand in Scenario 1 results from the in-

creased pumping requirement in the WPS at hour 18, due to depletion of stored water in

reservoir, as compared to day-ahead schedule. Although, this is prevented in Scenario 2

by additional water pumping at hour 9, it creates another peak, but lower than that in

Scenario 1.

Table 4.3: Real-time Operations Results

Day-ahead

Schedule
Scenario 1 Scenario 2

Total Energy Consumption of

WPS [MWh/day]
38.9 39.7 (+2%) 39.4 (+1.3%)

Energy Cost of WPS [$/day] 554.3 574.8 (+3.7%) 560.53 (+1.1%)

Peak Demand of WPS [kW] 2203.8 2405.9 (+9.2%) 2203.8 (0%)

Total Water Demand for WPS

[m3]
191,470 192,821 (+0.7%) 192,821 (+0.7%)

Total Energy Consumption for

LDC [MWh/day]
308.7 309.5 (+0.26%) 309.2 (+0.16%)

Peak Demand for LDC [MW] 14.35 14.53 (+1.3%) 14.44 (+0.6%)
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Figure 4.9: Real-time power demand profiles of WPS facility.
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Figure 4.10: Real-time demand profiles of distribution system.
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Figure 4.11: Real-time market and retail prices.

4.5.3 Solution Method and Computational Efficiency

The DOPF1 and DOPF2 models are formulated as nonlinear programming (NLP) problems

and solved using the IPOPT solver in GAMS environment [37]. The switching states of

LTCs are rounded to the nearest integers after the NLP solution is obtained. This approach

is adopted from [53] which showed that the differences in solutions are minimal when integer

variables are considered in the formulation compared to the solutions obtained by rounding.

The EMS model of the WPS facility is solved as a mixed integer nonlinear programming

(MINLP) problem using the DICOPT solver of GAMS. The computational times for the

DOPF and EMS models are detailed in Table 5.7.

The average computational times for one interaction cycle in DR1 and DR2 schemes

are 224 seconds and 180 seconds, respectively. In the presented case study, the number of

interaction cycles needed for DR1 and DR2 schemes were 3 and 5, respectively. Therefore,

the proposed schemes are easily implementable in the day-ahead stage. The real-time

scheme using the MPC approach works on an hourly basis in this work, and the average

time for one interaction cycle is 117 seconds, which can also be met within the considered
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time-frame, or even for small time granularities. Therefore, the proposed schemes can be

considered computationally efficient.

Table 4.4: Computational property of the mathematical models

Model
Average

Solution Time

Initial EMS 148 sec

DR1 modified EMS 163 sec

DR2 modified EMS 148 sec

Real-time EMS 85 sec

DOPF1 29 sec

DOPF2 32 sec

4.6 Summary

This chapter presented a novel DR framework for industrial customers considering LDC’s

operations. The framework proposed two types of DR signals; a desired demand profile

signal and a retail price signal, which were sent to the customer to achieve the desired DR in

a collaborative manner. In the retail price based control approach, the signal was produced

by an RPM which was designed based on customer’s historical data. The results showed

the capability of the proposed framework to reduce the peak demand of the distribution

system, without increasing the day-ahead scheduled energy costs for the customer. The

impact of uncertainties on DR was studied in the real-time operations stage, and it was

noted that hourly updates between the LDC and the customer enhanced the capability of

the DR strategy to achieve its targets.
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Chapter 5

Material Flow Based Power Demand

Modeling of an Oil Refinery Process

for Optimal Energy Management‡

5.1 Nomenclature

Indices

f Refinery feedstock or product, f = 1,2,...,F.

i Processing unit, i = CDU,VDU,...,GRU.

j Cogeneration unit, j = 1,2,...,J.

t Time interval, hours, t = 1,2,...,T.

Parameters

a0j , ..., a3j Cogeneration unit electrical output constants

‡Parts of this chapter have been submitted as a paper for review in: O. Alarfaj and K. Bhattacharya,

Material flow based power demand modeling of an oil refinery process for optimal energy management,

IEEE Transactions on Power Systems, 2018.
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b0j , ..., b3j Cogeneration unit thermal output constants

di Production time of processing unit, [hours]

Fhv Fuel heat value, [kWh/m3]

M in0

i,fm,t Processing unit’s main feed initial mass rate, [kg/h]

Mmin
cr Minimum crude mass flow rate, [kg/h]

Mmax
cr Maximum crude mass flow rate, [kg/h]

M total
cr Total daily processed crude mass, [kg/day]

P elmin

cgj
Minimum cogeneration unit electrical power output, [kW ]

P elmax

cgj
Maximum cogeneration unit electrical power output, [kW ]

P el0

cgj
Initial cogeneration unit electrical power output, [kW ]

PRESt Renewable energy source output power, [kW ]

RUP
cgj

Cogeneration unit maximum ramp up rate, [kW/h]

RDN
cgj

Cogeneration unit maximum ramp down rate, [kW/h]

RUP
cr Crude feed maximum ramp up rate, [kg/h/h]

RDN
cr Crude feed maximum ramp down rate, [kg/h/h]

SPV PV panels surface area, [m2]

st0cgj Initial cogeneration unit operating status, (1: ON, 0: OFF)

TR
PV PV panels temperature rating, [°C]

T a
t Ambient temperature, [°C]

αi,f Mass flow coefficient

αSi
Steam demand coefficient

αPV PV panels temperature coefficient, [°C−1]

λPi
Electrical demand coefficient, [kWh/kg]

λS Steam thermal demand coefficient, [kWh/kg]

Φt Solar irradiance, [kW/m2]

ρmt Electricity market price, [$/kWh]

ρcgfuel Cogeneration fuel price, [$/m3]

ρbfuel Boiler fuel price, [$/m3]

ηb Boiler overall efficiency, [%]
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ηfccgj Cogneration fuel combustion efficiency, [%]

ηPV PV panels efficiency, [%]

Variables

FCcgj,t Cogeneration unit’s fuel consumption, [m3/h]

FCbt Boiler’s fuel consumption, [m3/h]

M in
i,f,t Processing unit’s input mass rate, [kg/h]

M out
i,f,t Processing unit’s output mass rate, [kg/h]

M in
i,fm,t Processing unit’s main feed mass rate, [kg/h]

M out
ip,f,t

Preceding processing unit’s output mass rate, [kg/h]

Pi,t Processing unit electrical demand, [kW ]

P th
bt

Boiler’s thermal power demand, [kW ]

P in
cgj,t

Cogeneration unit’s input power, [kW ]

P el
cgj,t

Cogeneration unit’s electrical power output, [kW ]

P th
cgj,t

Cogeneration unit’s thermal power output, [kW ]

PD Power exchanged by the refinery with the local distribution company

(LDC), [kW ]

P th
St

Thermal power demand for steam production, [kW ]

QD Refinery’s reactive power demand, [kV AR]

Sdt Refinery’s total steam demand, [kg/h]

Si,t Processing unit steam demand, [kg/h]

Wcgj,t Binary decision variable for cogeneration unit status (1: ON, 0: OFF)

TPf,t Total production rate of feedstock or product, [kg/h]

ρLDC Retail price, [$/kWh]

ρmax
LDC Maximum retail price, [$/kWh]
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5.2 Introduction

Oil refining is an energy intensive industry, often equipped with distributed generation

(DG) resources for the supply of base load or emergency power; a significant share of on-

site generation is from cogeneration facilities which produce both electricity and heat for

refining processes. Optimal energy management of the refinery’s load and its DG resources,

under a dynamic electricity pricing scheme, improves the facility’s electricity consumption

behavior and reduces energy costs.

An EMS model is proposed in this work for load management of an oil refinery consid-

ering an on-site cogeneration facility. The EMS includes a model for the electrical demand

considering the mass flow of processed materials and processing steam demand. The ob-

jective of the EMS is to minimize the cost of electrical and thermal energy consumption

of the refinery. The steam production cost is minimized as it is coupled with electricity

generation by the cogeneration units, which were represented by a joint electrical-thermal

model to account for the electricity and steam production. Also with the increasing regu-

lations for reducing the carbon footprint of industrial facilities, it is assumed in this work

the the Oil Refinery is equipped with a PV-based solar energy source to supplement or

substitute its energy needs from conventional sources.

The participation of refinery in DR provisions is examined by applying a DR strategy

that is based on effective communication between the refinery’s EMS and the operations

of the local distribution company (LDC). The main contributions of this work are:

• A comprehensive EMS framework is proposed for minimizing electricity consumption

costs of an oil refinery facility based on power demand modeling of the refinery

process.

• A cogeneration facility operation optimization is proposed using a joint electrical-

thermal model, considering both electricity and steam production costs associated

with its operation.
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• The developed EMS model is used as part of a DR strategy to illustrate the impact

of EMS decisions on distribution system operations.

The rest of the chapter is organized as follows: Section 5.3 describes the developed

model for power demand and the mass flow of the oil refinery process. The proposed EMS

model for the refinery is described in Section 5.4. The applied DR strategy is presented in

Section 5.5. Case study results are reported and discussed in Section 5.6. Finally, Section

5.7 presents the conclusions of this work.

5.3 Oil Refinery Model

5.3.1 Material Flow and Energy Demand Modeling

The material flow and energy demand in a processing unit of the refinery can be represented

by a schematic flow diagram as shown in Figure 5.1 [60]. Each unit processes the input

streams (X1 and X2) to produce the output streams (Y1, Y2, and Y3) which could be inputs

to another process or be the final products. The processing unit consumes Ep amount of

energy which could be in the form of fuel, steam, or electricity. An example schematic flow

diagram is shown in Figure 5.2 for the CDU processing unit.

As stated in [60], the energy consumption of processing units is usually proportional

to the amount of processed mass; hence the energy consumption and mass flow can be

modeled as a function of the amount of processed material for all processing units in the

refinery. The output mass stream M out
i,f,t, electric power demand Pi,t, and steam demand

Si,t are modeled as functions of the main input stream M in
i,fm,t of the unit, as given below:

M out
i,f,t = αi,fM

in
i,fm,t−di

∀i,∀f, ∀t (5.1)

Pi,t = λPi
M in

i,fm,t ∀i,∀t (5.2)

Si,t = αSi
M in

i,fm,t ∀i,∀t (5.3)
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Figure 5.2: Schematic flow diagram of CDU processing unit.
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The parameter αi,f in (5.1) is a mass flow coefficient that relates the processing units’

output stream mass flow with the main input stream mass flow, while parameter di rep-

resents the production time of the processing unit. In case of multiple input streams for

a processing unit, the higher mass flow rate stream is considered to be the main input

stream Mi,fm,t. The multiple input streams are designed to arrive simultaneously to the

processing unit. The parameters λPi
and αSi

, in (5.2) and (5.3), are electrical and steam

demand coefficients, respectively, relating the electricity and steam consumption of the

processing unit with the main input stream mass flow.

In this work, the refinery is considered to be maintaining a certain production mode

over the entire EMS optimization horizon, which is a 24-hour time window. When the

operating mode of the refinery is changed after several days of operation, the material flow

model would still be applicable to the new operations provided that mass flow coefficients,

αi,f , in (5.1) are adjusted for all processing units to match the new production schedules.

5.3.2 Cogeneration Facility Model

An on-site, gas-turbine based cogeneration facility, supplies the refinery processes with

electricity and steam. A joint electrical-thermal model is used for the facility to account

for the production of electricity and steam, where the steam is utilized locally in the

refinery while the electricity can either be consumed by the facility or exported to the grid.

The electrical and thermal outputs, P el
cgj,t

and P th
cgj,t

respectively, along with the associated

power input from fuel combustion, P in
cgj,t

, are modeled using the following equations [61]:

P in
cgj,t

= a3jP
el3

cgj,t
+ a2jP

el2

cgj,t
+ a1jP

el
cgj,t

+ a0jWcgj,t ∀j,∀t (5.4)

P th
cgj,t

= b3jP
in3

cgj,t
+ b2jP

in2

cgj,t
+ b1jP

in
cgj,t

+ b0jWcgj,t ∀j,∀t (5.5)

The fuel consumption, FCcgj,t , of a cogeneration unit is calculated as a function of its

input power as follows:
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FCcgj,t =
P in
cgj,t

ηfccgjFhv

∀j,∀t (5.6)

5.4 Energy Management System of Oil Refinery

5.4.1 Objective Function

The optimization objectives of the EMS is to minimize the refinery’s electricity consump-

tion cost, which includes the purchased energy from the external grid and that generated

within the facility from the cogeneration units. The cost of steam production is also

minimized because it is correlated with electricity production costs from the cogeneration

facility. The objective function is given as follows:

J =
∑
t

ρmtPDt∆t+ ρcgfuel
∑
t

FCcgt∆t+ ρbfuel
∑
t

FCbt∆t (5.7)

The first term in (5.7) represents the cost associated with energy exchanged with the

LDC, the second term represents the fuel consumption cost incurred by the cogeneration

facility, and the third term represents fuel consumption cost incurred by the refinery boiler.

5.4.2 Material Flow Constraints

The mass flow inside each processing unit of the refinery is determined using (5.1), while

the mass flow between the processing units is modeled using the following equations:
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M in
i,f,t = M out

ip,f,t ∀i, ∀f, ∀t (5.8)

TPf,t =
∑
i

Mi,f,t ∀f, ∀t (5.9)

Mmin
cr ≤M in

i,fm,t ≤Mmax
cr i = 1,∀t (5.10)∑

t

M in
i,fm,t∆t = M total

cr i = 1 (5.11)

M in
i,fm,t+1 −M in

i,fm,t ≤ RUP
cr ∆t i = 1,∀t (5.12)

M in
i,fm,t −M in

i,fm,t+1 ≤ RDN
cr ∆t i = 1,∀t (5.13)

M in
i,fm,t = M in0

i,fm,t i = 1, t = 1 (5.14)

Equation (5.8) relates the intermediate stream mass flows while (5.9) represents the

final product streams. Equation (5.10) represents the maximum and minimum crude feed

limits for the CDU, while (5.11) ensures that the entire scheduled amount of crude oil is

processed. Equations (5.12) and (5.13) are the ramping constraints limiting the rate of

change in crude feed to CDU, while (5.14) specifies the initial crude feed to the unit. While

(5.10) to (5.14) impose the limits on the crude feed to the CDU, no limits were imposed

on the inputs to the other processing units assuming that these are appropriately designed

to continuously process the feeds arriving at their inlets during normal operation.

5.4.3 Steam Demand Balance

The steam demand of each processing unit of the refinery is determined using (5.3), and

the total refinery steam demand is given by:

Sdt =
∑
i

Si,t ∀t (5.15)

The total thermal energy needed for steam production is a function of the total steam

mass Sdt , as given below:
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P th
St

= λSSdt ∀t (5.16)

The total thermal demand P th
St

is produced by two sources- the cogeneration facility,

and refinery boiler, as given below:

P th
St

=
∑
j

P th
cgj,t

+ P th
bt ∀t (5.17)

The thermal energy output P th
cgj,t

from the cogeneration unit is determined using the

cogeneration model described earlier, while the boiler thermal energy output P th
bt

is deter-

mined to satisfy the total energy need for steam production P th
St

considering fuel consump-

tion of the boiler, given by:

FCbt =
P th
bt

ηb Fhv

∀t (5.18)

5.4.4 Electrical Demand Balance

The electrical power demand of each processing unit is determined using (5.2). The total

electrical power demand is supplied by the cogeneration facility, P el
cgj,t

, the on-site renewable

energy resource PREt , and power from the LDC network PDt , as given below:

∑
i

Pi,t = PDt +
∑
j

P el
cgj,t

+ PRESt ∀t (5.19)

5.4.5 Cogeneration Constraints

Cogeneration constraints include limit on electrical output, ramping constraints, and the

initial value of electrical power output.
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P elmin

cgj
Wcgj,t ≤ P el

cgj,t
≤ P elmax

cgj
Wcgj,t ∀j,∀t (5.20)

P el
cgj,t+1

− P el
cgj,t
≤ RUP

cgj
∆t ∀j,∀t (5.21)

P el
cgj,t
− P el

cgj,t+1
≤ RDN

cgj
∆t ∀j,∀t (5.22)

P el
cgj,t

= P el0

cgj
∀j, t = 1 (5.23)

5.4.6 Renewable Energy Resource

The refinery is assumed to be equipped with an on-site PV facility that supplies solar power

PRESt , which can be expressed in terms of solar irradiance Φt and ambient temperature

T a
t , given by [62]:

PRESt = ηPV SPV Φt(1− αPV (T a
t − TR

PV )) ∀t (5.24)

5.5 Case Study and Discussion

The oil refinery process used as a case study is based on the benchmark process described

in [42]. The tabulated results of the energy analysis of the process in [42], are used to

determine the energy consumption (λPi
,αSi

) and products’ mass flow (αi,f ) coefficients for

each processing unit of the refinery with appropriate conversions of units. The processing

times for the units are assumed based on the production time delays given in [19]. The

crude processing capacity of the CDU is assumed as 33,000 ton/day, with a scheduled

processing amount of 29,700 ton/day.

The on-site cogeneration facility is considered to be equipped with three identical 5.47

MW generation units with the characteristics shown in Table 5.1. The cogeneration model

parameters in (5.4) and (5.5), shown in Table 5.3, are taken from [63] which are based on

manufacturer’s data fitting. The characteristics of the PV-based solar source are shown in
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Table 5.2, while the hourly data for the solar irradiance and ambient temperature of the PV

site are taken from [64]; the resulting output power forecast for the solar source is shown in

Figure 5.3. The natural gas price of 9.2346 ¢/m3 prevailing in Ontario since April 1, 2018

[65] is used to calculate the fuel cost of the cogeneration units. This rate doesn’t include

fuel transportation cost, assuming that the fuel is produced in the refinery. The HOEP of

March 21, 2018, shown in Figure 5.4 [58] is considered for the studies. The refinery EMS

optimization problem is formulated in GAMS as a MINLP problem and solved using the

DICOPT solver [38]. The simulations are carried out for one day of refinery operation with

equal time intervals of 15 minutes.

Table 5.1: Cogeneneration Unit Characteristics

Electrical Output 5,470 kW

Thermal Output 10,132 kW

Electrical Efficiency 28.16%

Thermal Efficiency 52.16%

Overall Efficiency 80.32%
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Table 5.2: Solar Source Characteristics

Rated Power 5 MW

Total PV surface area 31,850 m2

PV panel efficiency 15.7%

PV temperature coefficient 0.005

PV temperature rating 25 °C

PV solar irradiance rating 1000 W/m2
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Figure 5.3: Solar power generation profile.
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Figure 5.4: Electricity price profile.

Table 5.3: Cogeneration model parameters [59]

a0 a1 a2 a3

7.24103 2.33050 -0.08663 0.01239

b0 b1 b2 b3

1.41195 0.13609 0.02124 -0.00026

105



5.5.1 Refinery EMS Studies

To illustrate the benefits of the proposed EMS model, three scenarios are constructed as

follows:

• Scenario 1 (Base): Crude feed rate of the refinery is considered fixed over time, and

the electrical output of the cogeneration units is considered fixed at the rated value.

• Scenario 2: Crude feed rate is fixed while electrical output of cogeneration units is

variable.

• Scenario 3: Crude feed rate is considered variable, which enables the refinery’s load

shifting capability.

The resulting costs associated with 24-hour operation of the refinery, for the three

scenarios, are detailed in Table 5.4. The total cost in Scenario 2 reduced by 1.0% as a

result of optimizing the cogeneration units’ electrical output while considering the impact

of changes in thermal output on boiler fuel costs. An additional 1.4% reduction in total

cost resulted in Scenario 3 from the refinery load management executed by optimizing the

crude feed rate to the refinery over time. It is noted that the boiler fuel cost accounted for

more than 55% of the total costs in all scenarios. This is due to the fact that the thermal

energy demand for steam production in the refinery is much greater than the electrical

energy demand.

The hourly crude feed rates for the three scenarios are shown in Figure 5.5 and the

associated refinery total electrical demand is shown in Figure 5.6. It is noted that the total

demand in Scenario 3 follows the changes in crude feed with some time shift caused by the

propagation time of the processed material in the refinery process flow. Also it is noted

that the high crude feed rate periods coincide with low electricity price periods, and vise

versa. The reduction in crude feed rate occurring between hours 22 and 23, reduces the

power drawn from the LDC between hours 23 and 24 (Figure 5.7) when electricity price is

relatively high.
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The total cogeneration electrical output for the three scenarios is shown in (Figure 5.8).

Scenarios 2 and 3 exhibited similar cogeneration schedule where the electrical output is

kept at minimum during low electricity price periods, and is at maximum during high price

periods. The opposite is noticed for the power drawn from LDC (Figure 5.7), more power

is drawn at hours with low electricity prices, and vise versa. Figure 5.9 shows the steam

thermal demand balance for refinery in Scenario 3, where 10% of the thermal demand is

supplied by the cogeneration facility while the remaining 90% is supplied by the boiler.

It is to be noted that the electricity cost is not a very significant component of the

total cost of operation of an oil refinery. Consequently, the number of available controls,

which can be used to bring about energy cost minimization, are not too many. In such a

situation, it is evident that the proposed EMS results in only a limited amount of electricity

cost savings, which does not vary much across the scenarios. Nevertheless, as can be noted

from Table 5.4, there is a 1% and 2.4% savings in Scenarios 2 and Scenario 3, respectively,

as compared to Scenario 1; which effectively means an actual annual cost savings to the

order of $189,435 and $447,125 respectively, which is reasonable. The annual cost savings

are calculated assuming an average daily cost savings of $519 and $1,225 for Scenario 2

and Scenario 3 respectively as per the obtained results in Table 5.4.

5.5.2 Refinery DR Studies

The industrial customer’s demand response strategy described in Chapter 4 is applied to

the oil refinery facility used in the case study. The 41 bus distribution feeder reported in

[28] is used, assuming that the refinery load is connected at bus 3 with a total connected

load of 35 MW. The feeders connecting buses 1, 2, and 3 are re-sized in order to obtain

acceptable voltage drops considering the high electrical demand of the refinery. The non-

industrial loads are modeled as constant impedance loads with random 24-hour profiles

generated using the procedure described in [28], with a total connected load of 15.2 MW.

It was noted in the retail price based approach (DR2) that the proposed strategy works

well only when the refinery does not have dispatchable generators as it results in periods
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Table 5.4:

Energy Management Results

Scenario 1 Scenario 2 Scenario 3

Total refinery electrical demand

[MWh/day]
755.5 755.5 (0%) 753.2 (-0.3%)

Total cogeneration electrical energy

output [MWh/day]
393.8 164.1 (-58.3%) 168.2 (-57.3%)

Total energy drawn from LDC

[MWh/day]
333.2 563 (+68.9%) 556.6 (+67%)

Cost for energy drawn from LDC

[$/day]
7,121 10,352 (+45%) 9,610 (+35%)

Cogeneration units fuel cost [$/day] 15,907 7,472 (-53%) 7,638 (-52%)

Boiler fuel cost [$/day] 28,945 33,630 (+16.2%) 33,501 (+15.7%)

Total costs [$/day] 51,973 51,454 (-1.0%) 50,748 (-2.4%)

Per-year cost savings [$/year] 189,435 447,125
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Figure 5.5: Crude feed rate profile.
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Figure 5.6: Refinery total electrical demand profile.
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Figure 5.7: Power drawn from LDC profile.
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Figure 5.8: Total cogeneration electrical output profile.
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Figure 5.9: Steam thermal demand balance for Scenario 3.

with low prices that cause generators’ shutdown decision by EMS, rendering the DR2 based

strategy unable to achieve peak demand reduction similar to that achieved by DR1 based

strategy. Therefore, it is assumed that the cogeneration units are at continuous maximum

output in DR2. In practice, this can be negotiated by the LDC with the refinery since

maximizing the on-site generation will reduce the LDC’s peak demand. The parameters of

the RPM are selected based on generated load profiles of the refinery under different price

signals. The power thresholds and pricing coefficients resulting from load profiles analysis

are shown in Table 5.5.

Two cases are considered, Case 1: DR1- which uses a desired demand profile signal,

and Case 2: DR2- which uses a retail price signal. The solution of Case 1 is attained

in four iterations and the distribution system peak demand is 25.9 MW, and day’s total

energy cost of the refinery is $51,683. There is a 41% reduction in peak demand with DR1

as shown in Table 5.6, which resulted mainly from operating the cogeneration units at

maximum output as shown in Figure 5.10. The final scheduled day-ahead load profiles for

the refinery facility and the distribution system are shown in Figure 5.11 and Figure 5.12,

respectively.
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The solution of Case 2 is attained in six iterations and results in a distribution system

peak demand of 27.9 MW and day’s total energy cost of the refinery of $51,220. There is a

36.5% reduction in feeder peak demand as shown in Table 5.6. The final day-ahead retail

prices are shown in Figure 5.13, and the final scheduled day-ahead load profiles for the

refinery and the LDC are shown in Figure 5.11 and Figure 5.12, respectively. DR1 (Case

1) resulted in a lower peak load for the LDC as compared to DR2 (Case 2). However, the

increase in energy cost for the refinery is lower for Case 2, as compared to Case 1, as a

result of applying the retail prices instead of market prices.

The increase in total refinery cost needs to be compensated by the LDC as part of an

incentive program that encourages customer’s participation in DR provisions. Incentive-

based DR programs are widely used by power utilities to encourage customers’ participation

in DR. In Ontario, DR incentives include monthly ”availability payments” which are paid to

customers who agree to curtail power during peak power events. Also, there is a ”utilization

payment” which is paid only if the customer responded to a DR event by curtailing its

load according to the agreement. [66]

The fluctuating load schedules in Figure 5.11 and Figure 5.12 are those based on the

initial schedule of the oil refinery, obtained using the proposed EMS, without DR. From the

LDC’s perspective, this creates periods of very high demand on the distribution system.

In order to circumvent such demand fluctuations, the novel DR scheme is proposed in this

work. As seen in Figure 5.11 and Figure 5.12, implementation of the proposed DR strategies

by the LDC, influences the EMS decisions and hence results in significant reduction in the

peak power drawn by the refinery from the LDC and consequently reduction in the LDC’s

peak demand, for both Case 1 and Case 2. However, by inclusion of DR signals in the

refinery EMS, the refinery’s operating cost would increase. It has been suggested in this

work that the LDC should cover this cost increase through an incentive for the refinery’s

participation in DR provisions. Therefore, the proposed DR would benefit both the LDC

and the refinery- the LDC will benefit through reduction of its peak demand and the

customer through the incentives received for participation in the DR program.
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Table 5.5:

Retail Pricing Model Parameters

P1 P2 P3 P4

19 MW 18 MW 15 MW 12 MW

λ1 λ2 λ3 λ4

0.1 0.325 0.55 0.775
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Figure 5.10: Total cogeneration electrical output profiles.
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Table 5.6:

Demand Response Results

Initial

Schedule

Final Schedule

Case 1 Case 2

Total Energy Consumption for

the Refinery [MWh/day]
753.2 755.1 (+0.2%) 754.5 (+0.2%)

Total Cogeneration Electrical

Energy Output [MWh/day]
168.2 393.8 (+134%) 393.8 (+134%)

Total Energy Drawn from LDC

[MWh/day]
556.6 332.8 (-40.2%) 332.2 (-40.3%)

Total Costs for the refinery

[$/day]
50,748 51,683 (+1.8%) 51,220 (+0.9%)

Total Energy Consumption for

LDC [MWh/day]
802.8 599.2 (-25.4%) 598.5 (-25.5%)

Peak Demand for LDC [MW] 43.9 25.9 (-41%) 27.9 (-36.5%)
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Figure 5.11: Refinery facility scheduled power demand profiles.
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Figure 5.12: LDC scheduled power demand profiles.
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Figure 5.13: Day-ahead market and retail prices.

5.5.3 Solution Method and Computational Efficiency

The refinery EMS optimization problem is formulated as a mixed integer nonlinear pro-

gramming (MINLP) problem and solved using the DICOPT solver [38] in GAMS environ-

ment, while the The DOPF model of the LDC is formulated as a nonlinear programming

(NLP) problem and solved using the IPOPT solver [37] in GAMS. The simulation in the

case study is carried out for 24-hours of refinery operation with equal time intervals of 15

minutes resulting in a total time slots of 96 slots. The computational times of the EMS

and DOPF models are detailed in Table 5.7. The proposed models are computationally

efficient as they can be solved within the considered time-frame, 15 minutes, or even for

smaller time granularities.

116



Table 5.7: Computational Property of The Mathematical Models

Model Solution Time

EMS Scenario 1 52.4 sec

EMS Scenario 2 58.6 sec

EMS Scenario 3 81.3 sec

DR1 DOPF 114.8 sec

DR2 DOPF 167.9 sec

5.6 Summary

This chapter presented a novel EMS application through the optimum load control of

an oil refining process. The optimization of energy utilization was achieved through the

development of an energy-based material flow model for the refinery. Also a joint electrical-

thermal model was developed for the on-site cogeneration system. The cost associated with

electrical generation was minimized along with the cost of buying electricity from the grid.

Simulation results showed potential for daily savings for the refinery on energy costs as

crude feed and cogeneration dispatch schedules were optimized. Also when participating in

DR provisions, the distribution system benefited from significant peak demand reduction

as the refinery responded to DR signals by revising its EMS decisions.
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Chapter 6

Conclusions

6.1 Summary

The research presented in this thesis focused on energy management and demand response

of industrial loads. Chapter 1 presented the motivation of this research, emphasising the

need for the development of smart tools for energy management and conservation in the

industrial sector, and the potential of industrial loads participating in DSM programs. A

literature review of related works, particulary on industrial load management and industrial

DR, was presented. This chapter also presented an overview of the research and the

expected contributions.

Chapter 2 presented a brief background to the topics related to this research including;

EMS, load modeling, MPC, WPS and oil refinery processes, and DSM. EMS functions

and architecture were discussed with emphasis on power system optimization and OPF as

important functions of the EMS. This chapter also discussed load modeling techniques such

as polynomial and NN-based models. MPC was discussed as an uncertainty management

technique. Also DSM and DR were discussed by outlining different types of DR programs.

Chapter 3 presented the development of an EMS model for a WPS facility. A con-

trolled load estimator (CLE) was developed for the WPS using the data generated from
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a PSCAD simulation model. A NN was trained, using the generated data, to estimate

the power demand of the WPS as a function of the control variables. This NN-based load

model was then incorporated into the EMS to determine the optimal operational schedules

of the pumps with the objective of minimizing the energy consumption costs and charges

associated with peak power demand. Modeling related uncertainties were captured through

a novel recursive mechanism for NN retraining, while operational uncertainties were ac-

counted for, by applying a receding horizon MPC technique.

Chapter 4 presented a DR strategy for industrial customers, to be implemented by

the LDC in day-ahead and real-time operations. The day-ahead problem involved peak

demand minimization for the LDC and the customer, while energy cost minimization

was considered for the customer only. The real-time problem minimized the deviations

in DR strategies from the day-ahead schedules, taking into account the uncertainties of

energy prices and energy demand of the customer. The strategy was based on a day-ahead

contractual mechanism between the two parties for a desired load profile, and a real-time

operational scheme to mitigate the uncertainties through improved forecast of energy price

and power demand, using the MPC technique.

Chapter 5 presented an EMS model for minimizing electricity consumption costs of an

oil refinery facility considering an on-site cogeneration capability. The energy management

is based on power demand modeling of the oil refinery process. A joint electrical-thermal

model is used for the cogeneration units to account for the electricity and steam production.

The potential for participating in DR was also studied by applying the DR framework

proposed in Chapter 4 to the refinery load which showed the impact of refinery’s EMS

decisions on distribution system operations.
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6.2 Contributions

The main contributions of this research are as follows:

• A comprehensive EMS framework was proposed for a WPS considering various oper-

ational aspects including load management, water flow management, process control

technology, equipment operational limits, uncertainty mitigation, and carbon foot-

print alleviation. The proposed framework comprised a module for simulation of the

WPS load which considered variable speed pumping as a means to control the water

flow output of the pumps. This energy efficient control was not considered in the

previous works discussed in the literature review section of this thesis.

• A novel iterative CLE approach was proposed which comprised a feedback of the

EMS optimal decisions to the WPS load simulation module, followed by NN re-

training, and re-solving the EMS model. This approach improved the accuracy of

load estimation at optimal operating points, and enabled the EMS model to re-

examine the optimality of the reached solution considering other potential schedules.

• A DR strategy was proposed for industrial loads, wherein the LDC used a retail price

signal to control the load energy consumption in a manner to reduce the distribution

system peak demand. The proposed DR strategy was based on effective commu-

nication between the customer’s EMS and the LDC’s operations which considered

unbalanced representation of the distribution feeder, supplying the industrial facility.

• A novel retail pricing model was proposed, which used customer’s historical load

data and day-ahead demand schedules to determine a price signal that influences

customer’s EMS decisions, seeking to shift some of the industrial load from peak to

off-peak periods.

• An EMS framework was proposed for optimal load management of an oil refining

process considering an on-site cogeneration facility. A load estimation model was de-
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veloped for the oil refinery process at the processing units’ level, and a joint electrical-

thermal model was developed for the cogeneration facility to account for electricity

and steam supplied to the refinery.

The main contents and contributions of Chapter 3 have been published in IEEE Trans-

actions on Smart Grid [67] and IEEE Power and Energy Society General Meeting [68].

The main contents of Chapter 4 is submitted to IEEE Transactions on Smart Grid [69],

and the main contents of Chapter 5 is submitted to IEEE Transactions on Power Systems

[70].

6.3 Future Work

Based on the work presented in this thesis, further research may be pursued in the following

topics:

• Investigate the impact of changing the industrial load connection node at the distri-

bution feeder on the performance of the proposed DR strategy.

• Develop a retail pricing based DR strategy for industrial customers that is less de-

pendent on the other loads connected to the distribution feeder, and more dependent

on industrial load’s characteristics.

• Study the current DR programs for candidate DR incentives to be considered by

LDC to encourage industrial customers participation in proposed DR strategy.

• Test the performance of the developed industrial loads DR strategy with other types

of industrial facilities such as chemical plants and data centers.

• Validate the developed material flow based power demand model of the oil refinery

using measurement data acquired from an actual facility. The acquired data can

also be used to develop a measurement-based demand model by regression or NN

training.
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• Study the performance of the EMS model for the oil refinery when an objective

function of minimizing peak demand is used instead of minimizing energy costs.

• Investigate the possibility of considering electrical energy consumption costs in the

oil refinery long-term production planning problem.
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[3] S. Paudyal, C. A. Cañizares, and K. Bhattacharya, “Optimal operation of industrial

energy hubs in smart grids,” IEEE Transactions on Smart Grid, vol. 6, no. 2, pp.

684–694, 2015.

[4] A. Madhavan, “An integrated voltage optimization approach for industrial

loads,” Master’s thesis, University of Waterloo, 2013. [Online]. Available:

http://hdl.handle.net/10012/7554

[5] S. Ashok and R. Banerjee, “Load-management applications for the industrial sector,”

Applied energy, vol. 66, no. 2, pp. 105–111, 2000.

[6] ——, “An optimization mode for industrial load management,” IEEE Transactions

on Power Systems, vol. 16, no. 4, pp. 879–884, 2001.

[7] C. Babu and S. Ashok, “Peak load management in electrolytic process industries,”

IEEE Transactions on Power Systems, vol. 23, no. 2, pp. 399–405, 2008.

123

https://www.neb-one.gc.ca/nrg/ntgrtd/mrkt/nrgsstmprfls/cda-eng.html?=undefined&wbdisable=true
https://www.neb-one.gc.ca/nrg/ntgrtd/mrkt/nrgsstmprfls/cda-eng.html?=undefined&wbdisable=true
http://hdl.handle.net/10012/7554


[8] A. Gholian, H. Mohsenian-Rad, and Y. Hua, “Optimal industrial load control in smart

grid,” 2014.

[9] J. F. Ordonez Giron, “Optimal load management application for industrial

customers,” Master’s thesis, University of Waterloo, 2015. [Online]. Available:

http://hdl.handle.net/10012/9564

[10] B. Barán, C. von Lücken, and A. Sotelo, “Multi-objective pump scheduling optimisa-

tion using evolutionary strategies,” Advances in Engineering Software, vol. 36, no. 1,

pp. 39–47, 2005.

[11] M. Neufeld, O. Ramirez, and A. Ustinovich, “A comparative study of fixed speed vs.

variable speed control of a series configured pipeline pumping application,” in 2014

IEEE Petroleum and Chemical Industry Technical Conference (PCIC). IEEE, 2014,

pp. 491–500.

[12] Variable Speed Pumping: A Guide to Successful Applications. Elsevier, 2004.

[13] G. M. Jones, B. E. Bosserman, R. L. Sanks, and G. Tchobanoglous, Pumping station

design. Gulf Professional Publishing, 2006.

[14] N. Wu, Y. Qian, M. Zhou, and F. Chu, “Issues on short-term scheduling of oil refinery,”

in 2006 IEEE International Conference on Systems, Man and Cybernetics, vol. 4.

IEEE, 2006, pp. 2920–2925.

[15] N. Wu, L. Bai, M. Zhou, F. Chu, and S. Mammar, “A novel approach to optimization

of refining schedules for crude oil operations in refinery,” IEEE Transactions on Sys-

tems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 42, no. 6, pp.

1042–1053, 2012.

[16] Y. Hou, N. Wu, and M. Zhou, “Scheduling crude oil operations in refineries with ge-

netic algorithm,” in 2016 IEEE 13th International Conference on Networking, Sens-

ing, and Control (ICNSC). IEEE, 2016, pp. 1–6.

124

http://hdl.handle.net/10012/9564


[17] Y. Hou, N. Wu, M. Zhou, and Z. Li, “Pareto-optimization for scheduling of crude oil

operations in refinery via genetic algorithm,” IEEE Transactions on Systems, Man,

and Cybernetics: Systems, vol. 47, no. 3, pp. 517–530, 2017.

[18] S. Ashok and R. Banerjee, “Optimal operation of industrial cogeneration for load

management,” IEEE Transactions on power systems, vol. 18, no. 2, pp. 931–937,

2003.

[19] A. Gholian, H. Mohsenian-Rad, Y. Hua, and J. Qin, “Optimal industrial load control

in smart grid: A case study for oil refineries,” in Proc. of IEEE PES General Meeting,

Vancouver, Canada. Citeseer, 2013.

[20] “An introduction to petroleum refining and the production of ultra low sulfur gasoline

and diesel fuel,” International Council on Clean Transportion (ICCT), Tech. Rep.,

2011.

[21] T. Remani, E. Jasmin, and T. I. Ahamed, “Load scheduling problems under demand

response schemes: A survey,” in Signal Processing, Informatics, Communication and

Energy Systems (SPICES), 2015 IEEE International Conference on. IEEE, 2015,

pp. 1–5.

[22] J. Leithon, T. J. Lim, and S. Sun, “Battery-aided demand response strategy under

continuous-time block pricing,” IEEE Transactions on Signal Processing, vol. 64, no. 2,

pp. 395–405, 2016.

[23] F. Y. Xu and L. L. Lai, “Novel active time-based demand response for industrial

consumers in smart grid,” IEEE Transactions on Industrial Informatics, vol. 11, no. 6,

pp. 1564–1573, 2015.

[24] K. Ma, G. Hu, and C. J. Spanos, “A cooperative demand response scheme using

punishment mechanism and application to industrial refrigerated warehouses,” IEEE

Transactions on Industrial Informatics, vol. 11, no. 6, pp. 1520–1531, 2015.

125



[25] A. Mnatsakanyan and S. W. Kennedy, “A novel demand response model with an

application for a virtual power plant,” IEEE Transactions on Smart Grid, vol. 6,

no. 1, pp. 230–237, 2015.
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[52] V. J. Gutierrez-Martinez, C. A. Cañizares, C. R. Fuerte-Esquivel, A. Pizano-Martinez,

and X. Gu, “Neural-network security-boundary constrained optimal power flow,”

IEEE Transactions on Power Systems, vol. 26, no. 1, pp. 63–72, 2011.
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Glossary of Terms

AGC Automatic Generation Control

BESS Battery Energy Storage System

CDU Crude Distillation Unit

CLE Controlled Load Estimator

CPP Critical Peak Pricing

CVR Controlled Voltage Reduction

DER Distributed Energy Resource

DG Distributed Generation

DOPF Distribution Optimal Power Flow

DR Demand Response

DSM Demand Side Management

ELD Economic Load Dispatch

EMS Energy Management System

ESS Energy Storage System

FCC Fluid Catalyst Cracking

GAMS General Algebraic Modeling System

HEMS Home Energy Management System

HOEP Hourly Ontario Energy Price

IBR Inclined Block Rate

IEEE Institute of Electrical and Electronic Engineers

ILM Industrial Load Management
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LDC Local Distribution Company

LTC Load Tap Changer

LPG Liquefied Petroleum Gas

MCS Monte Carlo Simulation

MILP Mixed Integer Linear Programming

MINLP Mixed Integer Non-linear Programming

MPC Model Predictive Control

MSE Mean Squared Error

NLP Non-linear Programing

NN Neural Network

OPF Optimal Power Flow

PSCAD Power System Computer Aided Design

PV Photovoltaic

PWM Pulse Width Modulation

RES Renewable Energy Source

RPM Retail Pricing Model

RTP Real-time Pricing

RTU Remote Terminal Unit

SCADA Supervisory Control and Data Acquisition

SOC State of Charge

TOU Time of Use

VDU Vacuum Distillation Unit

VPP Virtual Power Plant

VSD Variable Speed Drive

WPS Water Pumping System
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