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Abstract: 
Several modal analysis techniques are widely used to study the dynamic characteristics 

of a structure byidentifying the modal parameters. This paper presented a comparison 

between anExperimental Modal Analysis (EMA) test and an Operational Modal 

Analysis (OMA) test and an Order Based Modal Analysis (OBMA) applied on a 

recirculating energy planetary gear. TheOMA and OBMA offer a test of the planetary 

gear under its realboundary conditions, whereas the EMA is based on the frequency 

response function estimation. Using the different techniques, the back to back planetary 

gearmodal parameterswereidentified. In afirst step, the experimental results determined 

by EMA and OMA were correlated to the numerical results model obtained by athree-

dimensional lumped parameter model. In asecond step,the OBMA estimated modal 

parameters were compared to those of the EMA. 

According to the obtained results, OMA cannot excite all the modes. However,it was 

noticed that there is no significant differencebetween the modal parameters obtained by 

the EMA and theOBMA.The natural frequencies and damping ratios were deviating by 

11% and 2.43%, respectively. 

Highlights 
 Planetary gear natural frequencies and damping ratios wereidentified with three

different modal analysis techniques.

 FRF, Cross Power Spectral Density, Order Function, Mode shapes,modal

assurance criterion and stability diagram were presented.

 Modal analysis under rotating excitation is different from the conventional

modal analysis.

 Validation by three-dimensional lumped parameter model.

Keywords Planetary gear, Operational, Orderanalysis, Modalanalysis, Three-

dimensional model 
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P2 Planet 2 

P3 Planet 3  

Krp The ring-planet mesh stiffness 

Ksp The sun-planet mesh stiffness 

kcf The carrier 's shaft flexural stiffness 

ksf The sun 's shaft flexural stiffness 

kct The carrier 's shaft torsional stiffness 

kst The sun 's shaft torsional stiffness 

kca The carrier 's shaft axial stiffness 

ksa The sun 's shaft axial stiffness 

wi Natural pulsations 

φi Vibrations modes 

q  Degree of freedom vector 

M Global mass matrix 

Kb Bearing stiffness matrix 

Ke(t) Time varying mesh stiffness matrix 

Kc Coupled matrix 

C Damping matrix 

F(t) External force 

ψr Ring-planet pressure angle  

ψs Sun-planet pressure angle  

αi Planet i angular position  

αs The sun pressure angle  

αr The ring pressure angle 

Rbr The rings base radius  

Rbs The suns base radius  

Rbp The planets base radius  

mij Masses of component i of gear j 

Iij Inertia of component i of gear j 

kijk 

fs 

Bearing stiffness of component i of gear j in k direction 

Sampling frequency 

subscripts 

i=r,c,s,p1,p2,p3 Denotes respectively ring, carrier, sun, planet1, planet2, planet3 

j= r,t Denotes respectively reaction gear and test gear  

k= u,v,w,ф,Ψ,θ Denotes axis direction 

 

Introduction: 

Nowadays, planetary gear transmissions are widely used in different mechanical 

applications such as cars, wind turbine and a lot ofrotating machinery. These systems 

are characterized by complex kinematic and dynamic compositions. The diagnosis of 

these systems could be a very important task for research. Many 

developmentswereachieved to characterize these systems. The modal properties 

determination is one of the main investigated issues. 

The different available modal analysis kinds are the Experimental Modal Analysis 

(EMA), Operational Modal Analysis (OMA)and Order Based Modal Analysis(OBMA). 

EMA techniques are based on impact test,and an excited mechanical structure by means 

of ahammer or shaker. The frequency response functions are determined, and modes as 

well as modal dampingare estimated. TheEMAhas three critical drawbacks:firstly, the 

impact test needs to be repeated to accurately understand the dynamic 



behaviour.Secondly, in many engineeringapplications, and under real operating 

conditions the obtainedresults may differ significantly from those achieved in lab testing 

with an artificial excitation.Thirdly, the use of shakercan be an additional load for 

structures and may lead to erroneous results. 

Many researchersimplementedthistechnique to study the dynamic properties of 

planetary gears. Hammamiet al[1] studied a modal analysis of back to back planetary 

gear. They validated their experimental results using those issued from thelumped 

parameters model.Ericson and Parker [2] applied anexperimental modal analysis to 

characterize the dynamic behaviour of two spur planetary gears. They validated the 

experimental results by those obtained fromboth of thefinite elements model and 

lumped parameter model. 

Kahraman [3] proposed a simplified rotational lumped-parameter model, providing 

closed-form expressions for the torsional natural frequencies in terms of system 

parameters. Zhang et al[4], however, established a translational-rotational coupled 

dynamic model of a two-stage planetary gear set to anticipate natural frequencies and 

vibration modes. 

Lin and Parker [5] used a two-dimensionalplanetary gear modelwith equal planet 

spacing to explain the unique modal properties. The compound planetary gears 

vibration modes were studied by Kiracofe and Parker [6] and Guo and Parker [7]. 

The second technique is theOMA also known asan output-only modal analysis. It is 

based on the determination of the modal proprieties under operational tests.It is widely 

used for the rotating machinery to characterize their modal proprieties. Chauhan et al[8] 

studied the dynamic characterization of a wind turbine gearbox. They identified its 

modes shapes through the finite element modeland correlated the numerical modes 

shapes with those obtained experimentally.Bajrićet al[9] evaluated thedamping of a 

wind turbine and proposed an automated procedure to determine damping under 

operating conditions.Gadeet al[10] applied the operational modal analysis to a wind 

turbine gearbox. They identified natural frequency, modal damping and mode 

shapesexperimentally.Di Lorenzo et al [11] used the OMA techniques for a wind 

turbine gearbox, determining the modal parameters in different load conditions 

experimentally by measuring the accelerations in different locations. 

The third technique, known as OBMA is characterized by the scarcity of its 

experimental studies. It is a relatively new technique based on the extraction of modal 

proprieties during run up or run-down test, andimplemented by Di Lorenzo et al [12]. 

The authors developed a finite element model referred to an experimental test rig, and 

correlated experimental and theoretical results. Randall et al [13] studied the effects of 

variable speed harmonic orders in an operational modal analysis of a gearbox casing. 

They proposed two methods to remove variable speed harmonic order. Their achieved 

results were comparable with those of the hammer excitation. Hammami et al [14]used 

a torsional model of planetary gear to study the dynamic behaviour in run up and run-

down conditions. The natural frequencies are identified from the numerical results 

obtained by Short Time Fourier Transform and compared to those obtained by the 

impact test. Janssens et al [15] used this method to determine modal characteristic of an 

engine. They applied a poly-reference modal parameter estimation called Polymax 

method to the tracked engine order to identify the resonances.The Polymax modal 

parameter estimation was developed by B. Peeters et al [16],The method yields very 

clean stabilization diagrams, easing the problem of selecting the model order and the 

best structural system poles. It enables a very good identification behaviour for noisy 

data sets as well as for high order, highly damped structures which allowed PolyMAX 

to stand as a potential new standard. 



A comparison between OMA and OBMA was performed by Di Lorenzo et al [17]on a 

wind turbine gearbox.Only the natural frequencies are identified experimentallyfor the 

two techniques. It was observed that the natural frequencies are identified as intervals 

which weremissing for the OMA technique and were not studied by the EMA.  

Orlowitz and Brandt [18] studied an experimental comparisonbetween the EMA and the 

OMA on a simple Plexiglass plate. Tests are achieved under comparable boundary 

condition. They conclude that there is nosignificant difference in the estimated modal 

parameters obtained whether by theOMA and the EMA techniques. 

In this study, three modal analysis techniques were studied experimentally and 

numerically by determining the natural frequencies, modal damping and the mode 

shapes. It used the EMA, OMA and OBMA techniques and appliedthem to a complex 

system of aback to back planetary gear test bench. The modal parameters of each 

techniques were   extracted and compared. 

Thus, the boundary conditions of each test were different from each other. While the 

test with the EMA was achieved on a stopped motor, those with OMA and OBMA were 

carried out under a running motorwhichmay explainthe high damping in the OMA and 

OBMA. 

1-Experimental setup: 
1-1- Test bench description: 

A back to back planetary gear test bench was used in this research work. (Hammami et 

al[19]) and figure 1 shows its main components of this test bench. It consists of two 

identical planetary gears connected by two rigid shafts, supported by a rigid housing 

and an electrical motor. Each planetary gear set is made up of a ring, carrier sun and 

three identical planets. The first planetary gear set has a fixed ring and is called reaction 

gear while, the second one has a free ring and called test gear. 

The two-gear sets were connected through two rigid shafts linking the suns and carriers; 

the inner one is called sun shaft and the external one is called carrier shaft. 

A mass wasadded at the end of radial armand connected to the free ring so as toapply an 

external load. 

The reaction and test planetary gears are similar and have the same size and shape of the 

gear teeth, number of teeth, contact ratio, and number of planets. There are also similar   

masses and inertiamoments of the sun carrier ring and planet gears. 

Figure 1and table 1 show the experimental test bench and the basic 

dimensions,respectively. 

The layout of the test bench and the instruments used are displayed in figure 2. 

 
(a) 



 
 

 
 

 
 

(b) (c) (d) 

Fig.1.Experimental test bench : (a) general view (b) modal test application points (c) 

applied external load (d) planeraty gear 

 
Table1.Planetary gear basic dimensions 

 
Sun Planet (3) Ring Carrier 

Number of teeth 16 24 65 - 

Module 0.00423 0.00423 0.00423 - 

Pressure angle 0.4621        0.4621          - 

Base diameters 0.0614 0.0921 0.2494 0.1728 

Tip diameters 0.0699 0.1006 0.2579 0.1813 

1-2-Vibration response measurements 

The primary objective of applying the EMA to the transmission set was to measure the 

independent motion of each planetary gear component. 

 Many analytical and numerical models guess the dynamic motion of each gear 

constitution. The experiments must have identical details as the numerical model to 

make for the comparison between the numerical and experimental results possible and 

more credible.  

Tri-axial accelerometers are mounted in different locations to measure the rotational and 

translational vibration of the ring, carrier, sun and the three planets of the test gear.  

The impact test was carried out on the arm in order to excite the rotational mode and on 

the planets and the sun of the test gear in order to excite the translational mode. 

1-3-Excitation method: 

Fig. 2.Test bench instrument 
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1-3-1-Impact hammer excitation: 

A 1 mV/N impact hammer, PCB 086B03 model excites the system at the arm fixed to 

the ring of the reaction gear set (figure 1-b). A plastic tip with added mass yields the 

spectral dynamic response of less than 1000 Hzbecause this type of hammer canexcite 

only the less than 1300 Hz bandwidth mode. 

Impacts tests use standard techniques to calculate the frequency response from the 

measured time signals. The responses from ten hammer impacts are Root Mean 

Square(RMS) averaged to improve the data quality.  

The coherence function was used as a data quality assessment tool which identifies how 

much of the output signal is related to the measured input signal. 

A coherence close to 1 indicates that the measurements are repeatable; otherwise, they 

are not. 

In our case the coherence is close to 1 along the frequency bandwidth but it can go 

below 0.5-0.6 in particular zones. In these zones, we cannot confirm the presence of 

natural frequencies. In fact,it is obvious that the signal-to-noise ratio is very low at the 

anti-resonance level. Then the measurements at frequency peaks will be completely 

noisy. For this reason, we find a virtually zero coherence at these frequencies.  

In addition, the reduce of coherence can be explained by the complex path between the 

measurement point and the impact point. 
The sampling parameters were adjusted for each test depending on the target response 

bandwidth. A sampling frequency fs=1 kHz with N=1000 samples per average is used to target 

low-frequency modes below 1000 Hz (plastic hammer tip with added mass). A force window 

was applied to the signal immediately after the impulse; Figure 3 shows the coherence function 

and the input random force,respectively. 

  
(a)                                                           (b) 

Fig.3. (a) Coherence function (b) force window of the hammer  

1-3-2-Dynamic excitation: 

An electric motor was connected to the sun's shaft to rotate both gear sets. The motor 

was controlled by a frequency inverter through starter software. The characteristics of 

the motor are shown in table 2. 

Table 2.Motor characteristics 

Voltage (V) Frequency (HZ) Current (A) Power (Kw) Speed (tr/min) 

400Δ 50 29.5 15 1460 

690Y 50 17.1 15 1460 

1100. 0 Frequency (Hz) 

2 

° 

1000 0 Frequency (Hz) 
0 

/ F 

1.00 

A
m

p
lit

u
d
e

 

-180 

0.3e-3 

180 

2.2e-3 

P
h
a
s
e

 
A

m
p
lit

u
d
e

 (N
/H

z
) 



The operational measurements are divided into two parts: a stationary condition for an 

operational modal analysis and a run up condition for the order based modal analysis. 

1-4-Data acquisition and processing: 

Accelerometers were used to measure the vibrations in the different components.The 

acquired signals were processed with the software “LMS Test. Lab 15A impact testing” 

to obtain the frequency response functions. 

The kinematic orientation of the planetary gear and the locations where the 

accelerometers were mounted are known and constant. The sensors wereequallyspaced 

by 180° intervals for the different components except for the ring gear body where they 

are equally spaced by 90°, figure (4). 

To measure the angular acceleration of the fixed ring. Four accelerometers are mounted 

and equally spaced (90 between two successive accelerometer). The tangential 

accelerations of all accelerometers are recorded. They are denoted by aa,r,ab,r,ac,r and ad,r 

respectively. Then, the angular accelerations are computed according to equation (1). 

To measure the angular acceleration of the carrier, sun and the three planets. Two 

accelerometers are mounted, and equally spaced (180 between two successive 

accelerometer). The tangential accelerations of all accelerometers are recorded. They 

are denoted by aa,r,ab,rrespectively.Then, the angular accelerations is computed 

according to equation (1).Figure 5 displays the instruments layout. 

We focused on the tangential components of the acceleration because the radial 

components cancel each other [20], [21]. 

  
(a) (b) 

Fig.4. Accelerometers mounted (a) on the ring gear (b) on the sun and planets of the test 

ring 

 
(a) 

 
(b) 

Fig.5.Instruments layout (a) on the ring (b) on the sun 



The angular acceleration r   of the ring gear body was collected by averaging the four 

accelerometer signals and dividing by the mounting ring's radius ,m rr  giving: 
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The angular accelerations i
  of the other gear components (sun, planets, and 

carrier) i werecollected by averaging the two accelerometer signals and dividing by the 

mounting radius  imr ,  giving: 

im

ibia

i
r

aa

,

,, 
  

1-5-Modal parameter estimation: 

The estimated Frequency Response Functions (FRF), Cross Correlation Functions 

(CCF) and Order Functions (OF) were processed bya poly-reference modal parameter 

estimation method called PolyMAX. This method is a further evolution of the least-

squares complex frequency-domain (LSCF) estimation methodand a poly-reference 

version of the LSCF method[16]. The main benefits of this method are the facts that 

thesingular value decomposition SVD step to decompose the residues can be avoided 

and that closely spaced poles can be separated. 

The PolyMAX method needs (FRFs) or (CCF) or (OF) as primary data and after that 

identifies a right matrix-fraction model. 

    
1

( ) ( ) ( )H B A  


  (3) 

 ( )H  is the FRF matrix containing the FRFs between all m inputs and all l outputs. 

The numerator row-vector polynomial of output O and the denominator matrix 

polynomial are defined as: 
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(5) 

WhereΩr(ω) are the polynomial basis functions and p is the polynomial order. 

βor and αr are two polynomial coefficients 

In this approach, the participation factors are available when constructing the 

stabilization diagram(Eq.6). From the rig right matrix-fraction model and after reducing 

the normal equations, the poles and modal participation factors are retrieved as the 

eigenvalues and eigenvectors of their companion matrix. 

 
   *

* 2
1

( )
i

HT
n

ii i

i i i

ll LR
H UR

j j




    

   
 

  

 

(6) 

 

where n is the number of modes; •∗ is the complex conjugate of a matrix;  i  are the 

mode shapes; 
T

il are the modal participation factors and  i are the poles, which occur 

in complex-conjugated pairs and are related to the eigenfrequencies ωi and damping 

ratios ξi as follows: 
* 2, 1i i i i i ij         (7) 

(1) 

(2) 



LR, UR are respectively the lower and upper residuals modelling the influence of the 

out-of-band modes in the considered frequency band. 

 This procedureallows constructing a stabilization diagram for increasing the model 

orders and using stability criteria for natural frequencies, damping ratios and modal 

participation factors. 

The mode shapes were calculated from the eigenvectors corresponding to the selected 

poles. 

2-Analytical lumped-parameter model 

The planetary gear sets used in these experimentsare spur gears. These have motion in 

all degrees of freedom, so a three-dimensional model is appropriate to model. While 

some models consider only the gear rotational motion, others include the translation 

motion, as well. Kahraman[3] used a rotational lumped-parameter model planetary gear 

to provide the expressions of natural frequencies. Lin and Parker [5] consider a two-

dimensional model with rotations and translations and investigate the modal properties 

of planetary gears. 

To obtain a good correlation between the numerical and experimental results a three-

dimensional model was adopted. 

The test bench numerical model is presented in figure 6.  

The model is divided into twoblocks (reaction planetary gear(r) and test planetary gear). 

Each block consists of a ring (r) a carrier (c), a sun (s) and three planets (p1, p2, p3). 

These components are considered as rigid bodies with mass mij and inertiaIij. Each 

component is defined by 6 degrees of freedom.3 translation uij,vij,wij and 3 rotations 

фij,Ψij,θij (i=c, r, s, p1, p2, p3; j=r,t). 

The rotations фij,Ψij and θijare replaced by their corresponding translational gear mesh 

displacements as in[22]: 

ρijx =Rbij.фijρijy =Rbij.Ψijρijz=Rbij.θij( i=c, r, s, p1, p2, p3; j=r,t ). (8) 

Where:Rbij is the base circle radius for the sun, ring, planet, and the radius of the circle 

passing through the planet centres for the carrier. 

Each component is supported by a bearing with a stiffness kijkwherei=c, r,s,p1,p2, p3; 

j=r,tin direction k=u,v,w,ф,Ψ,θ. 

 The sun and the ring arerespectively connected to the planets by the gear mesh stiffness 

Krpr1, Krpr2,Krpr3 and Kspr1,Kspr2,Kspr3 in the reaction gear set and by the gear mesh 

stiffness Krpt1, Krpt2,Krpt3 and Kspt1,Kspt2,Kspt3 in the test gear set. The two planetary gear 

sets are connected through the sun shaft and the carrier shaft. Each shaft is characterized 

by an axial stiffness ksa, kca; flexural stiffness ksf,kcfand torsional stiffness kst,kct. 



 

Fig.6. Model of planetary gear 

Following the procedure given in [22], it is possible to write the equation of motion as:  

)())(( tFqtKKqCqM eb    (9) 

Where q is the vector degree of freedom defined as  
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qris the degree of freedom vector of the reaction gear set (r) and qt is the degree of 

freedom vector of the test gear set (t). 
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M denotes the mass matrix,Kbis the bearing and shaft stiffness matrix,Ke(t) is the time 

varying stiffness matrix and F(t) denotes the external force vector applied to the system.  

The planet sets are modelled as identical and equally spaced.  

All the matrices are defined in the appendix of [23]. 

C denotes the proportional damping matrix expressed by: 
C M K    (10) 

Where and are two constants [24]. 

Table 3shows the lumped-parameters of the studied planetary gear test bench.  

 

 

 

 

 

 

Table 3. Planetary gear and shafts parameters. 



Reaction gearset 

Component Sun Planet (3) Ring Carrier 

Mass [Kg] 0.485 1.225 28.1 3.643 

Moment of inertia [Kgm2] 356 · 10−6 2045 · 10−6 697767 · 10−6 21502 · 10−6 

Bearing stiffness [N/m] 
Ksrx=ksrz=1.5.108 kprx=kpry=1.1.108 Krrx=krry=8.108 Kcrx=kcrz=1.108 

Ksrz=3.108 kprz=3.108 Krrz=10.108 Kcrz=5.108 

Torsional stiffness [Nm/rd] ksrф=ksrᴪ=6.109 kprф=kprᴪ=6.109 krrф=krrᴪ=1.5.109 kcrф=kcrᴪ=6109 

Mesh stiffness[N/m] 3.5.108 4.5.108 - 

Test gear set 

Component Sun Planet (3) Ring Carrier 

Mass [Kg] 0.485 1.225 28.1 3.643 

Moment of inertia [Kgm2] 356 · 10−6 2045 · 10−6 697767 · 10−6 21502 · 10−6 

Bearing stiffness [N/m] 
Kstx=kstz=1.5.108 kptx=kpry=1.1.108 Krtx=krty=8.108 Kcrx=kcrz=1.108 

Kstz=3.108 kptz=3.108 Krtz=10.108 Kctz=5.108 

Torsional stiffness [Nm/rd] kstф=kstᴪ=5.109 kptф=kptᴪ=6109 
krtф=krrᴪ=5109 

krtθ= 7.9 · 106 
kctф=kctᴪ=5109 

Mesh stiffness[N/m] 3.5.108 4.5.108 - 

Shaft stiffness 

 Flexural[N/m] Torsional[Nm/rd] Tractional[N/m] - 

Sun 4.9 · 105 3.73 · 104 4.85108 - 

Carrier 1.1 · 107 8.38 · 105 1.25109 - 

 

3-Results: 

In this section, the experimental and numerical results of the EMA, OMA and OBMA 

techniques were investigated and compared. 

The EMA test was performed when the motor was in stopping situation but OMA and 

OBMA tests were achieved when the motor was running. 

The experiments were carried out with the same load level used for EMA (300N.m) 

For each technique, the modal parameters in the frequency range below 1000 Hz were 

extracted. The natural frequencies and modal damping were determined using the 

stabilization diagram. 

In Figure 7, an example of stabilization diagram from the EMA test is shown together 

with an averaged frequency response function as a simple mode indicator function. 

Only stable poles are selected on the diagram before building an auto Mac matrixin 

ordertoinvestigate the real mode.  

The Modal Assurance Criterion (MAC) was usedto correlate the experimental with 

numerical mode shapes. 

To compute the MAC, one degree of freedom per element was considered in the 

numerical model and experimental data. 
 
 
 
 

Not stable pole   Stable pole 



 
 

 

Fig.7. Stabilization diagram  

The stabilization diagram should contain a good FRF and a mode indicator function 

(MIF) (green) is more helpful at identifying resonances.  

The use of criteria for selecting stable pole is as follow:  

The model size is increased until poles stabilize. Then, the 2nd or 3rd "s" are selected 

after the stabilization of the pole. 

The selected pole yields the determination of mode. Then, the auto Mac matrix is 

obtained. Based on auto Mac matrix and other criterion such as MPD (modal phase 

deviation), MPC (modal phase collinearity) and the scatter, we can conclude to the real 

mode. 

3-1-Experimental modal analysis: 
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3-1-1-Frequency response function: 

The impact hammer testing provides sufficient excitation throughout the fixture mode 

frequency range, and the impact locations are available to excite these modes. 

The impacts were achieved by the hammer on the arm to excite the rotational modesand 

on the horizontal directions of the sun and planets to excite the translational modes. 

The EMA test was performed with a stopped test bench but the lateral plate which 

supports the sun's shaft is mounted when the excitations were on the arm and 

dismounted when the excitations were on the planets and the sun. 

The natural frequencies were identified in the different component such as sun, ring, 

planets and carrier. 

The obtained modes were estimated by using the stabilization diagram as well as 

thedamping and natural frequencies. 

20 modes were identified: 16 rotational and 4 translational.For each mode, the modal 

damping and natural frequency were determined. 

The rotational modes are characterized by arotational motion of-ring, carrier and sun 

components and in-phase motion of planets. 

The translational modes are characterized by a translational motion of the sun, carrier 

and ring. 

While the number of planets is three, only two were observed (rotational and 

translational) and the third (planet mode) was remarqued to be missing [25]. 

The results obtained experimentally are compared to those issued from the lumped 

parameters model. 

Figure 8 shows the frequency response function measured on the sun carrier, the planet 

and the ring of the test gear. 
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Fig.8. Frequency response function measured on the: (a) Carrier (b) Planet 1(c) Ring (d) 

Sun 

As a result, we can notice that the dynamic response in various degrees of freedom is 

qualitatively and quantitatively different. 

Most of the natural frequencies appear on the ring which is the fixed element. 

3-1-2-Natural frequencies damping and modes: 

Table4displays the comparison between the natural frequencies determined from the 

experimental impact tests and the numerical model, the multiplicity of each mode (only 

for the analytical model) and the damping ratio. 
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Table 4: Modal properties obtained during thedynamic testing. 

Mode Multiplicity Type Experimental Numerical Error (%) Damping ratio (%) 

1 1   R  76 77 1,30 0.77 

2 1  R 136 154 11,69 1.36 

3 1  R 169 172 1,74 1.61 

4 1  R 195 197 1,02 1.49 

5 1  R 251 241 -4,15 1.06 

6 2  T 301 291 -3,44 1.57 

7 2  T 325 320 -1,56 1.41 

8 1  R 352 342 -2,92 0.38 

9 1  R 378 384 1,56 2.00 

10 1  R 406 413 1,69 2.04 

11 1  R 436 436 0,00 2.09 

12 1  R 466 - - 2.06 

13 2  T 526 531 0,94 2.16 

14 1  R 558 552 -1,09 0.08 

15 1  R 578 592 2,36 0.65 

16 1  R 604 618 2,27 2.19 

17 2 T 687 697 1,43 0,96 

18 1 R 755 720 -4,86 1.28 

19 1 R 783 - - 1.65 

20 1 R 803 815 1,47 1.57 

3-1-3- Modal assurance criterion: 

To estimate the quality of the obtained mode shapes, theModal Assurance Criterion 

(MAC) values were calculated. First of all, the auto Mac is computed separately from 

the numerical and experimental mode shape to investigate the validity of the estimated 

modes. Then, the MAC between both experimental and numerical is determined to 

compare two mode shapes obtained from two different modal parameter estimation 

processes” (numerical modal analysis and experimental modal analysis). The MAC 

between two mode shape vectors was defined as in[26]: 

   
   

       
* *
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ˆ( , )

ˆ ˆ( . )( . )

T T

lj

Tlj T

l lj j

D D

MAC MAC D D

D D D D

   (11) 

Where: 

   D̂ and D  are respectively the numerical and experimental mode shapes. 

The results for different mode sets combinations are displayed in Figure 9. The MAC 

values of MAC equal to 1meanthat the two modes are perfectly correlated; while a 

MAC valueof 0means the two vectors are perfectly orthogonal. 

Using the MAC, all the numerically and experimentallyobtainedmodes arecompared. 



The MAC computation was performed with the same degree of freedom in the 

numerical model and the experimental data. The determination of the angular 

acceleration using equations (1) and (2) for each component and the use of the torsional 

lumped parameter model allow the building of the modal shapes for all the modes. 

For the Mac indicators, we chose only the modes which are correlated. The other modes 

where the Mac is lower than 1 were neglected. 

Five out of the twenty modes were identified, and their mode shapes were drawn. 

 

Fig.9.MAC matrices from the mode shapes of the experimental and numerical modes 

3-1-4-Mode shapes  

Table5shows the  five first rotational modes validated by the Modal Assurance Criterion 

and the comparaison between the exprimental and numerical modes. 

The mode shapes are plotted on the test planetary gear where the measurement are 

taken. 

The experimental mode shapes were designed from each degree of freedommagnitude 

and phase in the impacts tests, while the analytical model provided the mode shapes 

directly from the eigenvalue problem. 

 

 

 

 

 

 

 

 

 



Table 5.Comparison between numerical and experimental mode shapes. 

Mode (Hz) Experimental Numerical Interpretation 

154 (R) 

  

Planets move in 

phase 

172 

 

  

Planets move in 

phase 

320 

  

Carriershave pure 

translation 

384 

  

Planets move in 

phase 

406 

  

Planets move in 

phase 

Based on the MAC criteria, five modes are correlated. four rotational modes (154 

Hz,172 Hz,384 Hz,406 Hz) and one translational mode (320 Hz) 
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The experimental and numerical mode shapes plotted are similar. We can notice that all 

the planets on the test gear set have the same modal deflexion and move in phase for the 

rotational modes. Besides, the carriers on the test gear set have a pure translation in the 

translational mode. 

3-2-Operational modal analysis: 
3-2-1-Measurement and Analysis System: 

The operational modal analysis method has become widely used for the 

rotatingmachinerytocharacterize their modal proprieties. 

The purpose of this procedure was to extract the modal frequencies, damping and mode 

shapes from data taken under operating conditions.For our gear transmission case, it 

wasunder the influence of its internal excitation caused by a time varying mesh 

stiffness. 

OMA is used specifically in applications where the inputs cannot be measured.It is 

available when using only responses like acceleration signals. In fact, in our study, the 

motor was running at 1498.5 rpm. 

For a planetary gearbox, the mesh frequency is computed according to the following 

equation: 

60

s r
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s r

Z Z N
f

Z Z



 (12) 

So,the structure is excited by the gear mesh frequency fm=320 Hz.The same conditions 

were used for the simulation. 

The sensors were mountedonly on fixed ring tomeasure the instantaneousacceleration. 

Figures 10 and 11showthe acceleration measured on fix ringsin both time and frequency 

domains. 

Figure10showsa modulation of the signal measured on fixed ring on one period of 

rotation of carrier (Tc=0.2s), Inalpolat and Kahraman [27]. This modulation is 

explained by the modulated force due to the carrier rotation. Thesystem was excited by 

the mesh frequency (320Hz) and its harmonics. 
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Fig.10. Time response measured on fix ring (a) Experimental (b) Numerical 

 

 

 

 

 

 

 



(a) 
(b) 

Fig. 11. Spectra of acceleration on the fixed ring (a) Experimental (b) Numerical 

A clear modulation appears on figure 11 b, which is slightly different compared to 

figure 10.a. This figure which is noisy, and the modulation is concealed. They are 

explained also by the effect of the force due to the rotation of carrier which has a period 

Tc=0.2s and frequency fc=5 Hz. In addition, an individual effect of each planet on the 

accelerometer will be assumed for a duration Tc/N (N=3: number of planets). So, when 

a planet i approaches to the location of the accelerometer, its effect will increase for the 

first Tc/2N time period, reaching its maximum when a planet i approaches the location 

of the accelerometer and then is diminished to zero at the end of the next Tc/2N time 

period. This phenomenon repeated sequentially. In addition, the difference between 

curves can be noticed on the acceleration spectra. The accelerations spectra of the fixed 

ring (Fig.11.a) are clearly observed to be dominated by the mesh frequency (320 Hz) 

and its harmonics. Thus, some sidebands appear on these spectra on the 3.n.fc (n: 

integer). These sidebands can be explained by the force due to the carrier which was 

considered in the numerical model or by the presence of some mounting defects. 

Spectra on the m.fc (m: integer) appears only the experimental curves, these sidebands 

are related to the gravity of the carrier on the dynamic response planetary gear. The 

frequencies of the carrier appear in the response spectrum of the reaction ring along of 

the frequency axis which is neglected during simulation. However, only the mesh 

frequency appears on the numerical spectra (figure 11.b). 

3-2-2-Power spectral density function: 

After measuring the fixed rings time response, the OMA techniques wereapplied to 

extract the modal properties. 

For these OMA techniques, The PolyMAX method techniques were applied 

throughPower Spectral Density (PSD) functions. 

The PSDis defined as the Fourier transform of the correlation functions. The most 

popular non-parametric spectrum estimate is the so-called weighted averaged 

periodogram (also known as modified Welch's periodogram). This Welch's method can 

be determinedbycomputing theDiscrete Fourier Transforms DFT of the outputs [28]: 
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 (13) 

Where N is the length of yk. yk and Y(w) are the input signal and output signal 

respectively, wk: denotes the time window and t is the time increment. 

The cross-correlation between two responses y1 and y2 is the product of the complex 

conjugate of the discrete Fourier transforms DFT of y1, which is the reference, and the 
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DFT of y2 in the frequency domain.In fact, the inverse DFT of thisproduct produces a 

biased correlation function; Therefore, the correlations function between signal y1(t) and  

y2 (t) becomes [29]: 
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The Cross Power Spectral DensityCPSD functions were determined experimentally and 

numerically and the different modal parameters wee extracted using the stabilization 

diagram. 

Figures12a and bshow the CPSDon the fixed ringobtained by the experimental test and 

the numerical model,respectively. 

 

(a) 

 

(b) 

Fig.12. Cross power function determined on the fixed ring (a) Experimental (b) 

Numerical 

The harmonic (320Hz and multiples) appears on both experimental and numerical 

figure. 

Natural frequency peaks appear in both of experimental and numerical CPSD curves. 

The difference between these is noticed on amplitude explained by the difference 

founded on accelerations. For the frequency, the experimental CPSD contains many 

natural frequencies then the numerical CPSD. this due to different phenomena such as 

the white noise, the effect of temperature as well as the elastic coupling which links the 

motor shaft to the gear shaft.  
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3-2-3-Natural frequency damping and modes: 

Just like the previously used procedure in the experimental modal analysis (EMA), and 

by using the cross-power function, the modal properties were extracted. 

Thirteenmodes were extracted with the associated multiplicity, modal damping and 

natural frequencies. 

Some modes (f3, f4, f8, f9, f12, f14, f19) are missing because they could not be excited in a 

stationary condition and since the boundary conditions changed when we moved from 

EMA to OMA tests. 

The error percentages are lower than those of the experimental modal analysis. 

Table6 displays the different extracted modesas well as the natural frequencies and the 

modal damping. 

Table 6. Modal parametersduringrunning condition. 

Mode Multiplicity Experimental Analytical Error (%) Damping (%) 

1 1 74 75 -1,35 3,34 

2 1 129 132 -2,33 3 

3 1 248 260 -4,84 3,11 

4 2 298 300 -0,67 3,42 

5 2 322 323 -0,31 3,01 

6 1 394 391 0,76 3,27 

7 1 432 436 -0,93 3,51 

8 2 540 521 3,52 2,29 

9 1 570 592 -3,86 3,11 

10 1 629 618 1,75 3 

11 2 643 649 -0,93 3,12 

12 1 747 781 -4,55 2,85 

13 1 888 910 -2,48 3,07 

The results displayed in table 6prove accurately the value of the error for each mode. 

Thisphenomenon is caused by themesh stiffness variation on the modal proprieties. This 

fact was highlighted by Mbareket al[23] who investigated experimentally and 

numerically the influence of meshing stiffness variation on natural frequencies. 

Moreover, it can be noticed through the table that there aresome missing modes. This 

can be explained by the fact that there are some modeswhich arenot excited in stationary 

conditions. For this reason, another type of OMA has to be studied. 

3-3-Order based modal analysis: 
3-3-1-Order tracking: 

The second operational modal analysis type is the order based modal analysis technique. 

This technique allows the determination of modal proprieties during run up or run-down 

tests based on an order based Polymax. 

The variation of speed during run up is controlled by the frequency converter 

Micromaster 440 and by using a led tachymeter with encoder zebra. 

The encoder zebra or the strip bands contains 130 black bands which are all equally 

spaced. The strip bands are obtained through a macro. 

The encoder zebra may produce some error when we mounted it on the shaft. 

The encoder zebra was glued and rolled on the shaft (fig.13). This method may produce 

some error due to the fact that the both extremity of the encoder zebra are matched. 



The following figure shows a photo of zebra encoder mounted on the carrier shaft. 

 

 

Fig.13.Encoder zebra and tachymeter 

An order tracking method was used during this test. There are several order tracking 

methods such as Time Domain Sampling-Based Fast Fourier TransformOrder Tracking, 

angledomain, Vold-Kalman (VK) Filter-Based and Time Varying Discrete Fourier [30]. 

In our case, we used aspecial-order tracking method. The idea was to perform an 

OMAon tracked orders instead of considering the spectra. The angle domain was one of 

the techniques used during this experimental test.The very well-known order tracking 

method which is widely used in commercial software is based on angular resampling. 

Data are acquired with a uniform t  and then resampled to the angle domain using an 

adaptive digital resampling algorithm. The result of the technique is that the uniform t
data become uniformly spaced angle data. The amplitude and phase estimates of the 

orders were obtained by processing these data with a Discrete FourierTransform (DFT) 

instead of an FFT for computational flexibility in performing the transform without 

being restricted to a power of two numbers of samples. 

In order to perform the time domain data to angle domain data transformation, a 

reference signal has to be selected to define the time instant at which the uniform 

angular intervals have been spaced. Typically, this signal is considered to be the 

tachometer signal measured on a reference shaft of the operating machine. The kernels 

of the Fourier transform were reformulated as shown in Eqs. (13) and (14), where om is 

the order which is being analyzed: 
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3-3-2-Order based modal analysis 

The system dynamic behavior is simulated and compared to the experimental results 

issued from the test ring. 

For the run-up test, the mesh stiffness period decreases when the speed increase 

(Khabou et al., [31], Viadero et al., [32] Hammami et al. [14]). Figure (14) shows the 

evolution of ring-planet and sun-planets mesh stiffnesses. 

To determine the computation of the exact frequency for the orders of interest, an 

accurate tachometer signal is needed. 

Figure 15shows the tachometer signal determined during run-up. 

Encoder 

zebra 



 

(a) 

 

(b) 

Fig.14. Gear mesh stiffness function: (a) ring-planet (b) sun-planet 

This phenomenon is shown on the time response of the acceleration measured on the 

fixed ring through the increase of vibration with time (see figure (16)). 

During this test, the meshing stiffness function excites the system in non-stationary 

conditions and short time Fourier transform issuedto process the acceleration signals. 

Figure 17displays the Short Time Fourier Transform (STFT) obtained for the measured 

acceleration on the fixed ring gear.  
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Fig.15. Tachometer signal 
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(a) (b) 

Fig. 16. Acceleration of the fixed ring: (a) experimentaland (b) numerical 
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Fig.17.STFT on the fixed ring (a) experimental and (b) numerical 

The noticed inclined lines prove the meshing frequency increase during run up and the 

vertical line shows some natural frequencies.There are also some zoneswhere the higher 

amplitude corresponds to someof the system natural frequencies. 

The first and the second order were selected because the motor was running at 1300 

rpmduring the run up test. The frequency associated to this run up test is equal to 540 

Hz. 

The orders are shown on figure 18; the vertical lines indicate orders 1 and 2 with their 

harmonics. 

As mentioned, the frequency bandwidth associated to this run up test is equal to 540 Hz. 

The frequency at which a rotating system is operating can be calculated from an order 

and the rotational speed (expressed in rpm) via the Equation below: 
( ).

60

order rpm
Frequency   (17) 

Frequency and orders are really both the same:  a measure of events over an observation 

frame: 

 Frequency – Number of events per unit of time. 

 Order – Number of events per revolution. 

If the time and revolutions can be related for a rotating system, then the same 

phenomenon can be expressed as either a frequency or an order.  Thus, knowing the 
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revolutions per minute (rpm) of a rotating system allows frequency and order to be 

related to each other. 

The order is computing according to the following equation: 

s r

s

z z
gear ratio

z


  (18) 

speed In
speed out

ratio
  (19) 

. .

. .

freq rot In
Order

freq rot out
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Order response are 5,10,15,20,25… 

The order should be multiple.In our case, the tachymeter detects only 12.88 

corresponding to (15) and 25,25 corresponding to (25).  Due to the vibration issued 

from the test bench, the tachymeter can move and the accurateness of the encoder zebra, 

can make a variation on mesh order. 

Figure18showsthe order tracking map. 
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Fig.18. Order map 

The most interesting orders are highlighted from figure 15. They correspond to order 

12.88, which is the 1st gear mesh frequency and 25.25 which is the 2nd gear mesh 

frequency of the test gear. Then, the order tracking is presented by examining in detail 

this order and ignoring all the others. This phenomenon is called order tracking. 

The order resolution was set from 0.01 for a maximum order equal to 32. 

Figure 19shows the two first selected orders measured on the test gear ring. 
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(b) 

Fig.19.Order function (a) Order1 (b) Order2 

Figure 19shows the extracted order for the measurement which is the test ring during 

the run up test. 

While examining figure 19,some peaks can already be identified. Even the Polymax 

modal parameter estimation has been applied to these orders to extract the modal 

parameters. 

3-3-3-Natural frequency, damping and mode: 

The order based Polymax and stabilization diagram, the modal parameters are extracted. 

13 modes are identified: 10 rotational and 3 translational, 

Table 7 shows a comparison between the natural frequencies obtained numerically and 

experimentally during the run up test. There are some differences between the achieved 

experiments and the analytical model results. 

Table7.Modal properties during the run up test. 

Mode Experimental Analytical Error (%) Damping ratio (%) 

1 72 77 6,49 3,2 

2 125 154 18,83 3.6 

3 159 172 7,56 3,3 

4 191 197 3,05 3,7 

5 250 241 -3,73 3 

6 294 291 -1,03 3,41 

7 325 320 -1,56 3,13 

8 354 342 -3,51 3,5 

9 375 384 2,34 3,76 

10 404 413 2,18 3,7 

11 441 436 -1,15 3,29 

12 471 - - 3,15 

13 521 531 1,88 3,41 

The frequency error is low,and the modal damping is higher than those obtained by the 

EMA. 

The natural frequencies are identified in the frequency bandwidth [0-540 Hz] because 

the motor speed variation from 0 to 1300 rpm during the run up tests. 



4-Comparison between different modal analyses: 

The comparison between the different techniques is presented through contrastingthe 

natural frequency modal damping and the random error. 

Table8showsa comparison between the obtained natural frequencies and the modal 

dampingusing the three techniques. 

It can be observed that the natural frequency found inthe experimental modal analysis 

isalmostlikethat obtained by the order based modal analysis. However, some natural 

frequencies were remarked to be missing for the operational modal analysis. 

The natural frequencies change is due to the evolutionof temperature in the inner 

component as well as the variation of the boundary conditions and gear mesh stiffness 

[23]. 

The difference between the three methods is clearly noticeable for the modal damping. 

The modal damping increaseswhen moving or comparing the conventional modal 

analysis to the operational and the order based modal analysis. 

Table 8. Estimatednaturalfrequencies and the correspondent modal damping for the   

three techniques. 

Mode Analytical 

EMA 

Frequency 

Error (%) 

OMA 

Frequency 

Error (%) 

OBMA 

Frequency 

Error (%) fe (Hz) 
Damping 

ratio (%) 

fe 

(Hz) 

Damping 

ratio 

(%) 

fe (Hz) 
Damping 

ratio (%) 

1 77 76 0.77 1,3 74 3,34 -1,35 72 3.2 6,49 

2 154 136 1.36 11,69 129 3 -2,33 125 3.6 18,83 

3 172 169 1.61 1,74 - - - 159 3.3 7,56 

4 197 195 1.49 1,02 - - - 191 3.7 3,05 

5 241 251 1.06 -4,15 248 3,11 -4,84 250 3 -3,73 

6 291 301 1.57 -3,44 298 3,42 0,76 294 3.41 -1,03 

7 320 325 1.41 -1,56 322 3,01 -0,31 325 3.13 -1,56 

8 342 352 1.38 -2,92 - - - 354 3.5 -3,51 

9 384 378 2.00 1,56 - - - 375 3.76 2,34 

10 413 406 2.54 1,69 394 3,27 0,76 404 2.7 2,18 

11 436 436 2.09 0 432 3,51 -0,93 441 3.29 -1,15 

12 - 466 2.04 - - - - 471 2.15 - 

13 531 526 2.16 0,94 540 2,29 3,52 521 3.41 1,88 

 

In this case, the comparison between the three techniques is complex because some 

OMA method modes are missing. That is why, we opted to present another comparison 

between the EMA and OBMA. 

The damping estimates, see (table 9), show a smaller deviation between the two tests 

than for the natural frequencies.This was which isexpected since the inaccuracy of the 

frequency estimates are well known to be larger than the damping estimation. TheEMA 

tests results are, however, in a better agreement with each other than with the OBMA 

results. This variation is due to the system complex nonlinearity.  

Based on these results, we can conclude that the OBMA techniques can be more useful 

in the extraction of the modal proprieties than the EMA. 

Table9shows the difference of the natural frequencies, and modal damping between 

EMA and OBMA.  



Table 9. Difference between the results of EMA with respect to the OBMA test. 

Difference of EMA vsOBMA 

fn[%] dn[%] 

1 4 2.43 

2 11     2.24 

3 10     1.69 

4 4     2.21 

5 1     1.9 

6 7     1.8 

7 0     1.7 

8 -2     2.1 

9 3     1.7 

10 2     0.16 

11 -5     1.2 

12 -5     0.11 

13 5     1.25 

Conclusion: 

Thispaperpresenteda comparison between the Experimental Modal Analysis (EMA) test 

and the Operational Modal Analysis (OMA) and the Order Based Modal Analysis 

(OBMA) test achieved on acirculating energy planetary gear. Athree-dimensional 

lumped parameter model referred to as the test bench was developed. The comparison 

between the three techniques is achievedin four steps. Firstly, a complete EMA was 

determined, and the natural frequency, modal damping as well as mode shapes were 

identified and correlated with the numerical model using the modal assurance criterion 

and stabilization diagram. In asecond step, the natural frequencies and damping ratios 

from OMA were extracted experimentally and compared to the those achieved by the 

numerical model using the cross power spectral density. In a third step, the dynamic 

behaviour of the test bench was given experimentally and numerically using the order 

tracking function and stabilisation diagram. The natural frequencies and damping ratios 

were identified experimentally during the run-up by OBMA. Finally,a comparison 

between the three methods is carried out. 

It was noticed that the comparison is difficult because the OMA technique suffers from 

missing modes. This phenomenon is due to the fact thatsome modes cannot be excited 

during the stationary conditions. For this reason, a comparison between the EMA and 

the OBMA ispresented. 

The comparison was studied on [0-540 Hz] frequency bandwidth because run up test 

was carried out at 1600 rpm input speed. No significant differences were found between 

the modal parameters obtained by EMA and OBMA. The natural frequencies are 

deviated by less than 11% and those of the damping ratios by less than 

2.43%.Therefore, the OBMA results in many engineering applications would show 

higher damping values than the EMA test which is explained by the actual tests 

boundary conditions of the tests.  

In addition, OBMA is aninteresting technique allowing the identification of the modal 

proprieties because it works under real boundary conditions. Thus, the run-up speed 

should be increased to define a larger frequency bandwidth. 

Three important parameters can be determined in the modal analysis techniques.These 

are natural frequency, modal damping and modes shapes. As mentioned in the 



introduction, the system in our case is very complex, besides, under a running condition 

we cannot mount the sensors in the inner parts. Thus, the determination of mode shape 

as well as the building of the Mac criterion are difficult. Therefore, so only the 

comparison based on frequency and damping could be achieved. 

As a future perspective are planning to develop the inner parts instrument and we will 

also study the influence of load on the modal parameters for the OBMA. 
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