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Abstract We start with a generic planar n-gon Q0 with veritices q j,0 ( j = 0, . . . , n−
1) and fixed reals u, v, w ∈ R with u + v + w = 1. We iteratively define n-gons Qk

of generation k ∈ N with vertices q j,k ( j = 0, . . . , n − 1) via q j,k := u q j,k−1 +
v q j+1,k−1 + w q j+2,k−1. We are able to show that this affine iteration process for
general input data generally regularizes the polygons in the following sense: There is
a series of affine mappings βk such that the sums �k of the squared distances between
the vertices of βk(Qk) and the respective vertices of a given regular prototype polygon
P form a null series for k −→ ∞.

Keywords Affine Iterations · Affine Regularization · Regular n-gons

Mathematics Subject Classification 51N10 · 51N20

1 Introduction

Ziv (2002) and Donisi et al. (2016) studied a geometric iteration process starting
with a generic planar polygon Q0 with n > 2 vertices {q0,0, . . . , qn−1,0} (q j,0 ∈ C).
This process places homothetic copies of a given fixed triangle XY Z on the sides of
Q0. This way the third point Z of XY Z gets them the points of a next generation
polygon Q1. Reapplying this process over and over again with the same triangle XY Z
creates a series of generations Qk . Surprisingly, this iteration process, in general, has
a regularizing effect on the polygon: The generation Qk approaches the shape of a
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regular n-gon—see Donisi et al. (2016) and Ziv (2002). A general cyclic iteration
process was introduced by Schoenberg (1950). He reports conditions and results on
the existence of a limit point of these iterations. We will show that a regularizing effect
generally shows up for affine iteration processes of this type. In order to prove this
surprising property we set up an appropriate definition of ‘affine regularization’.

2 The affine iteration process

We use complex numbers z ∈ C with z = x + i y (x, y ∈ R) to describe points of the
Euclidean plane R2 and start with a generic planar polygon Q0 with n > 2 vertices
{q0,0, q1,0, . . . , qn−1,0} with q j,0 ∈ C. Additionally, we choose a reference triangle
abc and a reference point z∗ := u a +v b+w c with fixed barycentrics (u, v, w) ∈ R

3

(u + v + w = 1) with respect to abc.
We now define the affine mappings α j,1 from the ordered vertex set abc of the

reference triangle to ordered triples of consecutive vertices q j,0, q j+1,0, q j+2,0 of
Q0 ( j ∈ N; j mod n). The point z∗ is mapped into points α j,1(z∗) := q j,1 =
u q j,0 + v q j+1,0 + w q j+2,0 ( j ∈ N, j mod n). These points form vertices of the
generation 1 polygon Q1. Iterations of this process yield affine mappings α j,k and
points

α j,k(z
∗) : z∗ = u a + v b + w c −→ α j,k(z

∗) := q j,k with

q j,k = u q j,k−1 + v q j+1,k−1 + w q j+2,k−1 (k ∈ N − {0}) (1)

( j ∈ N, j mod n) forming a series of polygons Qk := (q0,k, q1,k, . . . , qn−1,k)

called the kth generation polygons. This procedure generalizes the geometric iteration
process presented and discussed in Radcliffe (2016). In the sequel Qk also denotes
the vectors Qk := (q0,k, . . . , qn−1,k)

t ∈ C
n . Figure 1 shows an example of the first

iteration of procedure (1) for n = 5.
As we are interested in affine properties of the iteration process we describe affine

mappings of the plane R2 by complex numbers: With z = x + i y (x, y ∈ R, let the
conjugate number to z be named z̄ := x − i y) an affine mapping β : R2 −→ R

2 is
given by (x, y) −→ β(x, y) = (x∗, y∗) := (d1 + a1x − b2y, d2 + a2x + b1y) with
d1, d2, a1, a2, b1, b2 ∈ R.With the complex numbersd := d1+i d2, e := (a1+i a2)/2
and f := (b1 + i b2)/2 in C this yields

β : z −→ β(z) = d + z (e + f ) + z̄ (e − f ). (2)

We write β(Qk) := (β(q0,k), . . . , β(qn−1,k))
t . The affine mapping β is regular for

a1b1 + a2b2 �= 0 or, equivalently, e f̄ + ē f �= 0.

123



Beitr Algebra Geom (2017) 58:69–79 71

,q0,0

,,1,0q1,0
,,02,02 0qq2,0

,033,03q 0q3,0

,,04,0q4,0

qq ,q0,1

11qqqq1,1

q ,2,1q2,1

3 1133,1qqqq3,1

qqq ,q4,1

Q0
Q1

a b

c

z∗

Fig. 1 The case n = 5: the polygon Q0 and the first generation polygon Q1 for z∗ = u a + v b + w c

3 The iteration process and regular n-gons

Formula (1) can formally be written as

⎛
⎜⎝

q0,k
...

qn−1,k

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

u v w 0 . . . 0
0 u v w . . . 0
...

...
. . .

. . .
. . .

...

0 . . . u v w

w 0 . . . . . . u v

v w 0 · · · 0 u

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎝

q0,k−1
...

qn−1,k−1

⎞
⎟⎠ ⇔

Qk = M . Qk−1

(3)

with the n×n- matrix M ∈ R
n,n . As M is a so-called circulant matrix, discrete Fourier

transformations and the nth roots of unity ζ j := exp(i 2 jπ
n ) = cos 2 jπ

n + i sin 2 jπ
n

( j ∈ Z) play a pivotal role for us (see Pech 2002, Schoenberg 1950 and Ziv 2002).
For them we have ζ j = ζ j mod n, ζ̄ j = ζn− j ( j ∈ Z). We define the vectors

Pj := (ζ 0
j , . . . , ζ

n−1
j )t j ∈ Z. (4)

We have Pt
n− j M = (u ζ 0

j + v ζ 1
j + w ζ 2

j )Pt
n− j and M Pj = (u ζ 0

j + v ζ 1
j + w ζ 2

j )Pj

for all j ∈ J := {0, . . . , n − 1}. Therefore the vectors Pt
n− j and Pj are left and right

eigenvectors of the matrix M to the same eigenvalue

λ j := u ζ 0
j + v ζ 1

j + w ζ 2
j ( j ∈ J). (5)

Owing to (u, v, w) ∈ R
3 we have λ̄ j = λn− j for all j ∈ J.
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Fig. 2 The case n = 8: the regular octogons P1, . . . P4 of first, second, third and forth kind

Remark 3.1 For j ∈ J
∗ := {1, . . . , n − 1} the elements of Pj can be interpreted as a

collection of n points ζ k
j (k ∈ J) equally distributed on the unit circle. They determine

vertices of a so-called ’regular n-gon of j th kind’. The regular n-gon of (n − j)th
kind Pn− j is the reflection of Pj in the real axis y = 0 and is affinely equivalent to Pj .
If j and n are relatively prime the polygon Pj is either a regular n-gon or an n-sided
regular star. If j is a divisor of n with n = j m the polygon Pj either is a regular
m-gon or a regular star with m vertices on the unit circle which has to be counted j
times. For j ∈ J

∗ these regular n-gons Pj of j th kind share the origin 0 as their center
of gravity. Figure 2 displays the situation for n = 8: The regular octogons P7, P6, P5
coincide with P1, P2, P3, but have opposite orientation.

4 The normal form of the matrix representation

We define two matrices

L := 1√
n

(Pn, Pn−1, . . . , P1) and R := 1√
n

(P0, P1, . . . , Pn−1) . (6)

Both matrices, L and R, are symmetric and regular for n > 1 (see Pech 2002, Schoen-
berg 1950 and Ziv 2002). Moreover, we have L = R̄ and L · R = In,n with the n ×n-
unit matrix In,n ; the matrices L and R are unitary n × n-matrices in C

n×n . This way
we have

L · M · R = D(λ0, . . . , λn−1) (7)

with the diagonal matrix D(λ0, . . . , λn−1) containing the eigenvalues λ j of M as
elements of the main diagonal. We now have

L · Qk = D(λ0, . . . , λn−1) · L · Qk−1 and
L · Qk = D(λ0, . . . , λn−1)

k · L · Q0 (k ∈ N − {0}). (8)

For the j th component of the vectors in (8) this can be written as

n−1∑
m=0

ζ n−m
n− j qm,k = λk

j

n−1∑
m=0

ζ n−m
n− j qm,0 = (uζ 0

j + vζ 1
j + wζ 2

j )
k

n−1∑
m=0

ζ n−m
n− j qm,0 (9)
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for all k ∈ N−{0} and j ∈ J. The element j = 0 yields λk
0 = (u+v+w)k = 1 ∀k ∈ N

and therefore
∑n−1

m=0 qm,k = ∑n−1
m=0 qm,0 for all k ∈ N − {0}. Thus, all polygons Qk

have the same center of gravity (k ∈ N). Without loss of generality, we put this center
of gravity into the origin 0 of our coordinate system. Thus, we assume that the initial
polygon Q0 has its center of gravity in 0:

1

n

n−1∑
m=0

qm,0 = 0. (10)

As the matrix L is regular the initial polygon Q0 can be explicitly recovered from the
vector

B := L Q0 with B = (0, b1, . . . , bn−1)
t ∈ C

n−1. (11)

Under our assumption (10) the first coordinate of the vectors in (8) is 0. Thus, we do
not alter the recursion if we replace the matrix D(λ0, . . . , λn−1) in (8) by the diagonal
matrix D∗ := D(0, λ1, . . . , λn−1). With that and (11) in mind, the iteration process
is described by

L · Qk = D∗k · B ⇔ Qk = 1√
n

∑
j∈J∗

λk
j b j Pj (k ∈ N). (12)

5 Definition of affine regularization

Just like the iterations defined in Donisi et al. (2016) and Ziv (2002), iteration (1) also
seems to regularize ‘in a way’ for certain (u, v, w) ∈ R

3 independent of the choice
of the initial polgon Q0. In order to discuss this interesting property we compare the
n-gons Qk with a regular prototype n-gon Pj of kind j .

Definition 5.1 We call the procedure (1) affinely regularizing of kind j ∈ J
∗ if, for

general input data (initial polygon Q0), there exist affine mappings βk transforming
Qk = (q0,k, . . . , qn−1,k)

t into polygons βk(Qk) with the property that for all k ∈ N

the series �k of sums of the squared distances of the points of βk(Qk) to the regular
prototype polygon Pj (4) of kind j is a null series.

Thus, the iterative processes (1) is affinely regularizing of kind j if there exist affine
mappings βk with:

�k :=
n−1∑
m=0

dist2(βk(qm,k), ζm
j ) = (Pj − βk(Qk))

t · (Pj − βk(Qk)) (13)

has the property lim
k−→∞ �k = 0.

Remark 5.2 – It is important to note that definition 5.1 does not require the existence
of a limit polygon Qk for k −→ ∞. In general for the iterative processes (1) such
a limit polygon will not exist. ‘Affinely regularizing’ in our sense is a property of
the affine shape of the series Qk alone.
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– In order to be able to measure the sum of the squared distances in Definiton 5.1
we need the Euclidean structure of the plane.

– Our definiton makes use of affine mappings βk transforming Qk ‘close to some
regular prototype polygon’ Pj of fixed size. In order to define the regulization
of the iteration process it would not be enough to do it the other way round: the
existence of affine mappings γk transforming the prototype polygon Pj close to
the polygons Qk (again with sums of squared distances forming a null series) falls
short of our requirements. The following counterexample demonstrates that fact:
Given a series of polygons Qk := (1/2)k Q0 that are homothetic copies of an initial
polygon Q0. For any j ∈ J

∗ the affine mappings γk(Pj ) := (1/2)k Pj yield sums
of squared distances of corresponding vertices of Qk and γk(Pj ) forming a null
series independent from the input data Q0. As Qk is homothetic to a polygon Q0
‘of general shape’ this process, in general, is far from being affinely regularizing.

6 The affine shape of Qk

The shape of the polygons Qk depends on the input data set Q0 and the barycentric
corordinates (u, v, w) of the point z with u +v+w = 1. (u, v, w) uniquely determine

the diagonal matrix D∗ = D(0, λ1, . . . , λn−1). We compute the norms n j :=
√

λ j λ̄ j

of the eigenvalues λ j for j ∈ J
∗ and have

n2
j = λ j λ̄ j = u2 + v2 + w2 + v(u + w)(ζ j + ζ− j ) + uw(ζ 2

j + ζ 2− j )

= u2 + v2 + w2 + 2 v(u + w) cos(2π j/n) + 2 uw cos(4π j/n) (14)

( j ∈ J
∗). The spectral radius of the matrix D∗ is the maximal value N :=

max {n1, . . . , nn−1} of the norms of the eigenvalues λ j for j ∈ J
∗. We assume that

the barycentrics (u, v, w) with u + v + w = 1 are chosen generally in the sense that
not all λ1, . . . , λn−1 vanish.

It is easy to see that the exceptional case λ1 = · · · = λn−1 = 0 can only occour in
the case where n = 3 and, additionally, (u, v, w) = (1/3, 1/3, 1/3). Therefore, this
case in general yields iterated series of ‘degenerate triangles’ Qk that are formed by
the center of gravity 0. This trivial case shall be excluded from now on by putting
n > 3.

In all other cases we have that N > 0. So we can define the two sets of indices

J1 := { j ∈ J
∗/

∣∣λ j
∣∣ = N } �= ∅ and J2 := J

∗ − J1. (15)

Note that, according to (5), for any j∗ ∈ J1 the index n − j∗ is also contained in J1
(only for even n and j∗ = n/2 these two indices are coincident) and we have

∣∣λ j
∣∣

N
= 1 ∀ j ∈ J1,

∣∣λ j
∣∣

N
< 1 ∀ j ∈ J2. (16)

Figure 3 shows the positions of λ j for n = 8 and the barycentrics (u, v, w) of z∗ with
respect to the triangle abc. For this special case we have J1 = {1, 7}.
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Fig. 3 The case n = 8: the eigenvalues λ j for n = 8 and z∗ = u a + v b + w c

Equation (12) yields

Qk = N k

√
n

⎛
⎝∑

j∈J1
(
λ j

N
)k b j Pj +

∑
j∈J2

(
λ j

N
)k b j Pj

⎞
⎠ . (17)

Independent of the input data b j the coefficients (
λ j
N )k b j of Pj in the second sum in

(17) form null series for all j ∈ J2 and k −→ ∞. The coefficients in the first sum are
finite complex numbers for all k ∈ N. Depending on the spectral radius N formula
(17) delivers three possibilities:

– For N < 1 the series Qk decreases for increasing k and tends towards the center
of gravity 0.

– For N = 1 the series Qk remains finite, but in general changes its position for
different k.

– For N > 1 the series Qk increases for increasing k and seems to explode.

For all these possibilities, though, the series Qk seems to be affinely regularizing.
This is to be discussed in three cases:

Case A The index set J1 contains exactly one element.
As stated before, this is only possible for even n and special barycentrics (u, v, w)

such that J1 = {n/2}, J2 = J
∗ − {n/2}. We have ζn/2 = −1, and therefore λn/2 =

u − v + w ∈ R. This yields
∣∣λn/2

∣∣ /N = (−1)s with s ∈ {0, 1} depending on the
sign of u − v + w. The only element in the first sum of (17) has the coefficient
c∗

k := (−1)s k bn/2. For a general input polygon Q0 we have bn/2 �= 0 and therefore
c∗

k �= 0. We can define the following affine image of the kth generation Qk :

βk(Qk) :=
√

n

c∗
k N k

Qk = Pn/2 + 1

c∗
k

∑
j∈J2

(
λ j

N

)k

b j Pj . (18)
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With (17) we compute the sum of squared distances of βk(Qk) from Pn/2 via

�k = n
(∑

j∈J2(
λ̄ j λ j

N2 )k b̄ j b j

)
/(b̄n/2 bn/2). (19)

As stated before, for all j ∈ J2 the value (
λ̄ j λ j

N2 )k decreases for increasing k and

limk−→∞(
λ̄ jλ j

N 2 )k = 0. Thus, according to our Definition 5.1 the iteration process in

CaseA for general input data is affinely regularizing of kind n/2. For large k generation
Qk will approach the shape of the degenerate regular n-gon Pn/2: It consists of two
points, each of them counted n/2 times.

Case B The index set J1 contains exactly two different elements: J1 = { j∗, n − j∗}
with j∗ �= n/2 (in Fig. 3 we have an example for n = 8 with j∗ = 1). We put
λ j∗ = Nei φ and λn− j∗ = Ne−i φ with some real angle φ ∈ [0, 2π). Then (17) yields

Qk = N k

√
n

⎛
⎝ei kφ b j∗ Pj∗ + e−i kφ bn− j∗ P̄j∗ +

∑
j∈J2

(
λ j

N

)k

b j Pj

⎞
⎠ . (20)

We define σ := b j∗ b̄ j∗ − bn− j∗ b̄n− j∗ (σ ∈ R). For general input data we have σ �= 0
and we can define affine images of the kth generation Qk :

βk(Qk) :=
√

n

σ N k
e−ikφ

(
b̄ j∗ Qk − bn− j∗ Q̄k

)

= Pj∗ + 1

σ
e−ikφ

∑
j∈J2

(
λ j

N
)k (b j b̄ j∗ − b̄n− j bn− j∗) Pj (21)

Now we compute the sum �k := (Pj∗ − βk(Qk))
t · (Pj∗ − βk(Qk)) of squared

distances of respective points of βk(Qk) and Pj∗ . Short computation yields

�k = n

σ 2

∑
j∈J2

(
λ̄ j λ j

N 2

)k

(b j b̄ j∗ − b̄n− j bn− j∗) (b̄ j b j∗ − bn− j b̄n− j∗). (22)

The only factors in (22) depending on k are (
λ̄ j λ j

N2 )k . For each j ∈ J2 these terms form
null series for k ∈ N. The finite sum�k of null series delivers a null series again andwe
have lim

k−→∞ �k = 0. Thus, the corresponding iteration process is affinely regularizing

of kind j∗.

Case C The index set J1 contains more than two different elements j∗, j∗∗, n − j∗
with j∗∗ �= j∗ and j∗∗ �= n − j∗. According to (14) we have

v(u + w)(ζ j∗ + ζ− j∗ − ζ j∗∗ − ζ− j∗∗)

+ uw(ζ 2
j∗ + ζ 2− j∗ − ζ 2

j∗∗ − ζ 2− j∗∗) = 0. (23)
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In general this is the equation of a conic section in the plane of the triangle abc. For
these special choices of the barycentrics (u, v, w)we cannnot give any affinemappings
like in Cases A and B for general input polygon Q0 which deliver a null series for the
corresponding distance functions.

We have:

Theorem 6.1 For a general input polygon Q0 and general barycentrics (u, v, w) the
iteration process (1) is affinely regularizing.

Remark 6.2 In general, the shape of Qk gradually approaches that of an affinely trans-
formed regular n-gon Pj∗ of kind j∗. The kind j∗ of this affine regularization belongs
to those indices j∗ which determine the spectral radius N = ∣∣λ j∗

∣∣ of the transforma-
tion matrix D∗ = D(0, λ1, . . . , λn−1).

The exceptional cases are addressed in

Theorem 6.3 In the following exceptional cases the iteration process (1), in general,
fails to regularize:

– Case A We have even n, special barycentrics (u, v, w) and get case A with c∗
k = 0.

The initial polygon Q0 has a special shape with bn/2 = 0.
– Case B The input polygon Q0 has a special shape with σ := b j∗ b̄ j∗ −

bn− j∗ b̄n− j∗ = 0.
– Case C The input barycentrics (u, v, w) ∈ R

3 with u + v + w = 1 comply with
(23) for suitable triples ( j∗, j∗∗, n − j∗) consisting of three different indices from
the index set J1.

Remark 6.4 As long as we are not in the realm of the exceptional cases listed in
Theorem 6.3 the regularizing property of Theorem 6.1 remains valid, even if some of
the data points of the initial polygon Q0 or of some further generation are coincident.

Figure 4 shows an example for n = 7 with the barycentrics (u, v, w) =
(0.5,−0.2, 0.7) of z∗. We get (n2

1, n2
2, n2

3) ≈ (0.57, 0.51, 1.28) and therefore we
have J1 = {3, 4}. This way we have an example for case B. The figure shows Q0 and
the 10th generation Q10 which approaches the affine image of the regular star 7-gon
P3.

7 Generalisations

The considerations from above can be modified to obtain further affinely regularizing
iteration processes. Instead of the planar affine mappings used in (1) we can also use
affinemappings from an n-dimensional affine space with basic points in the vertices of
a simplex a0, . . . , an−1. A point z∗ := ∑n−1

μ=0 uμaμ with barycentrics (u0, . . . , un−1)

and
∑n−1

μ=0 uμ = 1 with respect to that simplex then is mapped to the plane of the
initial polygon Q0 via affine mappings
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Fig. 4 The case n = 7 with J1 = {3, 4}

α j,k(z
∗) : z∗ =

n−1∑
μ=0

uμaμ −→ q j,k with

q j,k :=
n−1∑
μ=0

uμq j+μ(mod n),k−1 ( j ∈ J; k ∈ N − {0}). (24)

Such an iteration process has been studied by Schoenberg (1950). The author did not
state results on the affine shape of Qk . In this case the eigenvalues λ j are given by

λ j :=
n−1∑
μ=0

uμ ζ
μ
j ( j ∈ J). (25)

These generalized iteration processes show the same behavior as that described in The-
orems 6.1 and 6.3. Again, for general input data Q0 and general uμ (μ = 0, . . . , n−1)
with

∑n−1
μ=0 uμ = 1 the corresponding iteration processes are still affinely regularizing.

Our results could be viewed as a nice add-on to I. J. Schoenberg’s paper (Schoenberg
1950).
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