
Int J Softw Tools Technol Transfer (2017) 19:409–426
DOI 10.1007/s10009-016-0444-z

FMICS 2015/2016

Require, test, and trace IT

Bernhard K. Aichernig1 · Klaus Hörmaier2 · Florian Lorber1 ·
Dejan Ničković3 · Stefan Tiran1

Published online: 29 November 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract We propose a framework for requirement-driven
test generation that combines contract-based interface the-
ories with model-based testing. We design a specification
language, requirement interfaces, for formalizing different
views (aspects) of synchronous data-flow systems from infor-
mal requirements. Various views of a system, modeled as
requirement interfaces, are naturally combined by conjunc-
tion. We develop an incremental test generation procedure
with several advantages. The test generation is driven by a
single requirement interface at a time. It follows that each
test assesses a specific aspect or feature of the system, speci-
fied by its associated requirement interface. Since we do not
explicitly compute the conjunction of all requirement inter-
faces of the system, we avoid state space explosion while

The research leading to these results has received funding from the
ARTEMIS Joint Undertaking under grant agreements Nos. 269335
and 332830 and from the Austrian Research Promotion Agency (FFG)
under grant agreements Nos. 829817 and 838498 for the
implementation of the projects MBAT, Combined Model-based
Analysis and Testing of Embedded Systems and CRYSTAL, Critical
System Engineering Acceleration.

B Florian Lorber
florber@ist.tugraz.at

Bernhard K. Aichernig
aichernig@ist.tugraz.at

Klaus Hörmaier
Klaus.Hoermaier@infineon.com

Dejan Ničković
Dejan.Nickovic@ait.ac.at

Stefan Tiran
stiran@ist.tugraz.at; stefan.tiran.fl@ait.ac.at

1 Graz University of Technology, Graz, Austria

2 Infineon Technologies Austria AG, Villach, Austria

3 AIT Austrian Institute of Technology, Seibersdorf, Austria

generating tests. However, we incrementally complete a test
for a specific feature with the constraints defined by other
requirement interfaces. This allows catching violations of
any other requirement during test execution, and not only
of the one used to generate the test. This framework defines
a natural association between informal requirements, their
formal specifications, and the generated tests, thus facilitat-
ing traceability. Finally, we introduce a fault-based test-case
generation technique, called model-based mutation testing,
to requirement interfaces. It generates a test suite that cov-
ers a set of fault models, guaranteeing the detection of any
corresponding faults in deterministic systems under test. We
implemented a prototype test generation tool and demon-
strate its applicability in two industrial use cases.

Keywords Model-based testing · Test-case generation ·
Requirements engineering · Traceability · Requirement
interfaces · Formal specification · Synchronous systems ·
Consistency checking · Incremental test-case generation ·
Model-based mutation testing

1 Introduction

Modern software and hardware systems are becoming
increasingly complex, resulting in new design challenges.
For safety-critical applications, correctness evidence for
designed systems must be presented to the regulatory bodies
(see the automotive standard ISO 26262 [33]). It follows that
verification and validation techniques must be used to provide
evidence that the designed system meets its requirements.
Testing remains the preferred practice in industry for gain-
ing confidence in the design correctness. In classical testing,
an engineer designs a test experiment, i.e., an input vector
that is executed on the system under test (SUT) to check

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by TUGraz OPEN Library

https://core.ac.uk/display/162582935?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-016-0444-z&domain=pdf

410 B. K. Aichernig et al.

whether it satisfies its requirements. Due to the finite number
of experiments, testing cannot prove the absence of errors.
However, it is an effective technique for catching bugs. Test-
ing remains a predominantly manual and ad-hoc activity that
is prone to human errors. As a result, it is often a bottleneck
in the complex system design.

Model-based testing (MBT) is a technology that enables
systematic and automatic test-case generation (TCG) and
execution, thus reducing system design time and cost. In
MBT, the SUT is tested for conformance against its spec-
ification, a mathematical model of the SUT. In contrast to
the specification, that is a formal object, the SUT is a phys-
ical implementation with often unknown internal structure,
also called a “black-box”. The SUT can be accessed by the
tester only through its external interface. To reason about the
conformance of theSUT to its specification, one needs to rely
on the testing assumption [48], that the SUT can react at all
times to all inputs and can be modeled in the same language
as its specification.

The formal model of the SUT is derived from its informal
requirements. The process of formulating, documenting, and
maintaining system requirements is called requirement engi-
neering. The requirements are typically written in a textual
form, using possibly constrained English, and are gathered
in a requirements document. The requirements document
is structured into chapters describing various different views
of the system, as, e.g., behavior, safety, timing. Intuitively,
a system must correctly implement the conjunction of all its
requirements. Sometimes, requirements can be inconsistent,
resulting in a specification that does not admit any correct
implementation.

In this paper, we propose a requirement-driven MBT-
framework of synchronous data-flow reactive systems. In
contrast to classical MBT, in which the requirements’ docu-
ment is usually formalized into one big monolithic specifica-
tion, we exploit the structure of the requirements and adopt
a multiple-viewpoint approach.

We first introduce requirement interfaces as the formal-
ism for modeling system views as subsets of requirements.
It is a state-transition formalism that supports compositional
specification of synchronous data-flow systems by means of
assume/guarantee rules that we call contracts. We associate
subsets of contracts to requirement identifiers to facilitate
their tracing to the informal requirements from which the
specification is derived. These associations can, later on, be
used to generate links between the work products [4], con-
necting several tools.

A requirement interface is intended to model a specific
view of the SUT. We define the conjunction operation that
enables combining different views of the SUT. Intuitively, a
conjunction of two requirement interfaces is another require-
ment interface that requires contracts of both interfaces to
hold. We assume that the overall specification of the SUT

is given as a conjunction of requirement interfaces model-
ing its different views. Requirement interfaces are inspired
by the synchronous interfaces [23], with the difference that
we allow hidden variables in addition to the interface (input
and output) variables and that the requirement identifiers are
part of the formal model. The conjunction operator was first
defined in [25] as shared refinement, while [13] establishes
the link of the conjunction to multiple-viewpoint modeling
and requirement engineering.

We then formally define consistency for requirement
interfaces and develop a bounded consistency checking pro-
cedure. In addition, we show that falsifying consistency is
compositional with respect to conjunction, i.e., the conjunc-
tion of an inconsistent interface with any other interface
remains inconsistent. Next, we develop a requirement-driven
TCG and execution procedure from requirement interfaces,
with language inclusion as the conformance relation. We
present a procedure for TCG from a specific SUT view, mod-
eled as a requirement interface, and a test purpose. Here, the
test purpose is a formal specification of the target state(s) that
a test case should cover. Such a test case can be used directly
to detect if the implementation by the SUT violates a given
requirement, but cannot detect violation of other require-
ments in the conjunction. Next, we extend this procedure by
completing such a partial test case with additional constraints
from other view models that enable detection of violations
of any other requirement.

Then, we develop a tracing procedure that exploits the nat-
ural mapping between informal requirements and our formal
model. Thus, inconsistent contracts or failing test cases can
be traced back to the violated requirements. We believe that
such tracing information provides precious maintenance and
debugging information to the engineers.

Finally, we show how to apply fault-based test genera-
tion to requirement interfaces. The used technique, called
model-based mutation testing [2], is applied to automatically
generate a set of test purposes. The corresponding test suite
is able to provide fault coverage for a specified set of fault
models, under the assumption of a deterministic SUT. The
approach includes the following steps: first, we define a set of
fault models for requirement interfaces. These are applied to
all applicable parts of the contracts in the requirement inter-
face, generating a set of faulty models, called mutants. We
then check whether the mutated contract introduces any new
behavior. This check is encoded as a test purpose, so we can
simply pass it to the previously defined test generation. If
the mutation introduces new behavior that deviates from the
reference model, it will generate a test; otherwise, the test
purpose will be unreachable, and the mutant is considered
equivalent.

We illustrate the entire workflow of using requirement
interfaces for consistency checking, testing, and tracing
in Fig. 1, where the test purpose may be produced by

123

Require, test, and trace IT 411

Fig. 1 Overview of using
requirement interfaces for
testing, analysis, and tracing

Consistency
Check

Test Case
Generation

Requirements Document

consistent test
Test Suite

Test Case

System
Under Test

Execution

Violated ReqsInconsistent
Trace to

Reqs

inconsistent

Behavioral View Power Cons. View Timing View

purpose /
e.g., model−based mutation testing

· · ·

Trace fail to

· · · · · · · · ·

fail

pass

A1

Requirement Interface Requirement Interface
A2

Requirement Interface
A3

Requirement Interface A = A1 ∧ A2 ∧ A3

Req1 Reqk Reqk+1 Reqm Reqm+1 Reqn

T1 Tn

model-based mutation testing, or any arbitrary other tech-
nique.

Parts of this paper have already been published in the
proceedings of the Formal Methods for Industrial Critical
Systems 2015 workshop [5]. The current paper improves on
that, by adding the theory for model-based mutation testing
of requirement interfaces, proofs of all theorems, a second
industrial case study and various improvements throughout
the paper.

The rest of the paper is structured as follows: first, we
introduce requirement interfaces in Sect. 2. Then, in Sect. 3,
we present how to perform consistency checks and test-case
generation from requirement interfaces, and how to trace the
involved requirements from consistency violations or test
cases. Next, Sect. 4 gives the theory for applying model-
based mutation testing to requirement interfaces. Then, in
Sect. 5, we present results of our test-case generation on
our running example and on the two industrial case studies.
Finally, we discuss related work (Sect. 6) and conclude our
work (Sect. 7).

2 Requirement interfaces

We introduce requirement interfaces, a formalism for speci-
fication of synchronous data-flow systems. Their semantics
is given in the form of labeled transition systems (LTS). We
define consistent interfaces as the ones that admit at least
one correct implementation. The refinement relation between
interfaces is given as language inclusion. Finally, we define
the conjunction of requirement interfaces as another interface
that subsumes all behaviors of both interfaces.

2.1 Syntax

Let X be a set of typed variables. A valuation v over X is
a function that assigns to each x ∈ X a value v(x) of the

appropriate type. We denote by V (X) the set of all valuations
over X . We denote by X ′ = {x ′ | x ∈ X} the set obtained by
priming each variable in X . Given a valuation v ∈ V (X) and
a predicate ϕ on X , we denote by v |� ϕ the fact that ϕ is
satisfied under the variable valuation v. Given two valuations
v, v′ ∈ V (X) and a predicate ϕ on X ∪ X ′, we denote by
(v, v′) |� ϕ the fact that ϕ is satisfied by the valuation that
assigns to x ∈ X the value v(x), and to x ′ ∈ X ′ the value
v′(x ′).

Given a subset Y ⊆ X of variables and a valuation v ∈
V (X), we denote byπ(v)[Y], the projection ofv toY . We will
commonly use the symbol wY to denote a valuation projected
to the subset Y ⊆ X . Given the sets X , Y1 ⊆ X , Y2 ⊆ X ,
w1 ∈ V (Y1), and w2 ∈ V (Y2), we denote by w = w1 ∪ w2

the valuation w ∈ V (Y1 ∪Y2), such that π(w)[Y1] = w1 and
π(w)[Y2] = w2.

Given a set X of variables, we denote by XI , XO , and XH

three disjoint partitions of X denoting sets of input, output,
and hidden variables, such that X = XI ∪ XO ∪ XH . We
denote by Xobs = XI ∪ XO the set of observable variables
and by Xctr = XH ∪ XO the set of controllable variables.1 A
contract c on X∪X ′, denoted by (ϕ � ψ), is a pair consisting
of an assumption predicate ϕ on X ′

I ∪ X and a guarantee
predicate ψ on X ′

ctr ∪X . A contract ĉ = (ϕ̂ � ψ̂) is said to be
an initial contract if ϕ̂ and ψ̂ are predicates on X ′

I and X ′
ctr,

respectively, and an update contract otherwise. Given two
valuations v, v′ ∈ V (X), and a contract c = (ϕ � ψ) over
X∪X ′, we say that (v, v′) satisfies c, denoted by (v, v′) |� c,
if (v, π(v′)[XI]) |� ϕ → (v, π(v′)[Xctr]) |� ψ . In addition,
we say that (v, v′) satisfies the assumption of c, denoted
by (v, v′) |�A c if (v, π(v′)[XI]) |� ϕ. The valuation pair
(v, v′) satisfies the guarantee of c, denoted by (v, v′) |�G c,
if (v, π(v′)[Xctr]) |� ψ).2

1 We adopt SUT-centric conventions to naming the roles of variable.
2 We sometimes use the direct notation (v,w′

I) |�A c and (v,w′
ctr) |�G

c, where wI ∈ V (XI) and wctr ∈ V (Xctr).

123

412 B. K. Aichernig et al.

Definition 1 A requirement interface A is a tuple 〈XI , XO ,

XH , Ĉ,C,R, ρ〉, where

– XI , XO , and XH are disjoint finite sets of input, output,
and hidden variables, respectively, and X = XI ∪ XO ∪
XH denotes the set of all variables;

– Ĉ andC are finite non-empty sets of the initial and update
contracts;

– R is a finite set of requirement identifiers;
– ρ : R → P(C ∪ Ĉ) is a function mapping requirement

identifiers to subsets of contracts, such that
⋃

r∈R ρ(r) =
C ∪ Ĉ .

We say that a requirement interface is receptive if in
any state, it has defined behaviors for all inputs, that is
∨

(ϕ̂�ψ̂)∈Ĉ ϕ̂ and
∨

(ϕ�ψ)∈C ϕ are both valid. A requirement
interface is fully observable if XH = ∅. A requirement
interface is deterministic if for all (ϕ̂ � ψ̂) ∈ Ĉ , ψ̂ has the
form

∧
x∈XO

x ′ = c,3 where c is a constant of the appro-
priate type, and for all (ϕ � ψ) ∈ C , ψ has the form∧

x∈Xctr
x ′ = f (X),3 where f is a function over X that has

the same type as x .

Example 1 We use an abstract N -bounded FIFO buffer
example to illustrate all the concepts introduced in the paper.
Let Abeh be the behavioral model of the buffer. The buffer
has two Boolean input variables enq, deq, i.e., Xbeh

I =
{enq,deq}, two Boolean output variables E, F, i.e., Xbeh

O =
{E,F}, and a bounded integer internal variable k ∈ [0 : N]
for some N ∈ N, i.e., Xbeh

H = {k}. The textual requirements
are listed below:

r0: The buffer is empty and the inputs are ignored in the
initial state.

r1: enq triggers an enqueue operation when the buffer is
not full.

r2: deq triggers a dequeue operation when the buffer is not
empty.

r3: E signals that the buffer is empty.
r4: F signals that the buffer is full.
r5: Simultaneous enq and deq (or their simultaneous

absence), an enq on the full buffer, or a deq on the
empty buffer have no effect.

We formally define Abeh as Ĉbeh = {c0}, Cbeh = {ci | i ∈
[1, 5]}, Rbeh = {ri | i ∈ [0, 5]} and ρbeh(ri) = {ci }, where

3 Here, we write XO /Xctr to denote the output/controllable variables
involved in that contract.

c0 : true � (k′ = 0) ∧ E′ ∧ ¬F′
c1 : enq′ ∧ ¬deq′ ∧ k < N � k′ = k + 1
c2 : ¬enq′ ∧ deq′ ∧ k > 0 � k′ = k − 1
c3 : true � k′ = 0 ⇔ E′
c4 : true � k′ = N ⇔ F′
c5 : (enq′ = deq′) ∨ (enq′ ∧ F) ∨ (deq′ ∧ E) � k′ = k.

2.2 Semantics

Given a requirement interface A defined over X , let V =
V (X) ∪ {v̂} denote the set of states in A, where a state v is
a valuation v ∈ V (X) or the initial state v̂ /∈ V (X). The
latter is not a valuation, as the initial contracts do not specify
unprimed variables. There is a transition between two states
v and v′ if (v, v′) satisfies all its contracts. The transitions are
labeled by the (possibly empty) set of requirement identifiers
corresponding to contracts for which (v, v′) satisfies their
assumptions. The semantics [[A]] of A is the following LTS.

Definition 2 The semantics of the requirement interface A
is the LTS [[A]] = 〈V, v̂, L , T 〉, where V is the set of states,
v̂ is the initial state, L = P(R) is the set of labels, and
T ⊆ V × L × V is the transition relation, such that:

– (v̂, R, v) ∈ T if v ∈ V (X),
∧

ĉ∈Ĉ (v̂, v) |� ĉ and R =
{r | (v̂, v) |�A ĉ for some ĉ ∈ Ĉ and ĉ ∈ ρ(r)};

– (v, R, v′) ∈ T if v, v′ ∈ V (X),
∧

c∈C (v, v′) |� c and
R = {r | (v, v′) |�A c for some c ∈ C and c ∈ ρ(r)}.

We say that τ = v0
R1−→ v1

R2−→ · · · Rn−→ vn is an execution
of the requirements interface A if v0 = v̂ and for all 1 ≤ i ≤
n−1, (vi , Ri+1, vi+1) ∈ T . In addition, we use the following

notation: (1) v
R−→ iff ∃v′ ∈ V (X) s.t. v

R−→ v′; (2) v → v′ iff

∃R ∈ L s.t. v
R−→ v′; (3) v → iff ∃v′ ∈ V (X) s.t. v → v′; (4)

v
ε�⇒ v′ iff v = v′; (5) v

w�⇒ v′ iff ∃Y ⊆ X s.t. π(v′)[Y] =
w and v → v′; (6) v

w�⇒ iff ∃v′,Y ⊆ X s.t. π(v′)[Y] =
w and v → v′; (7) v

w1·w2···wn������⇒ v′ iff ∃v1, . . . , vn−1, vn s.t.
v

w1�⇒ v1
w2�⇒ · · · vn wn�⇒ v′; and (8) v

w1·w2···wn������⇒ iff ∃v′ s.t.
v

w1·w2···wn������⇒ v′.
We say that a sequence σ ∈ V (Xobs)

∗ is a trace of A if
v̂

σ�⇒. We denote by L(A) the set of all traces of A. Given
a trace σ of A, let A after σ = {v | v̂

σ�⇒ v}. Given a state
v ∈ V , let succ(v) = {v′ | v → v′} be the set of successors
of v.

Example 2 In Fig. 2, we show the LTS [[Abeh]] of Abeh. For

instance, v̂
r0−→ v3

r1,3,4−−−→ v5
r3,4,5−−−→ v6 is an execution4 in

4 We use the notation r1,2,3 to denote the set {r1, r2, r3}.

123

Require, test, and trace IT 413

r3,4,5

r3,4,5r3,4,5

r3,4,5 r3,4,5

r3,4,5r3,4,5

r0
r3,4,5

r3,4,5

r2,3,4

r2,3,4

r1,3,4

r1,3,4

r3,4,5

r3,4,5

v9

v7v6v5

v4v3v2

v̂

v1

v12v11v10

v8

enq

¬deq
¬enq

enq enq
deq deq¬deq

¬enq
¬deq

¬enq

k = 1 k = 1 k = 1 k = 1

k = 2 k = 2 k = 2 k = 2
¬E
F

¬E
F

¬E
F

¬E
F

¬E ¬E ¬E ¬E

¬deq

¬F

deq

¬F¬F

deq
enq

¬F

enq

¬enq
¬deq
¬enq

¬deq

¬F
E

k = 0

deq

¬F
E

k = 0

¬F
E

k = 0

deq
enq

¬F
E

k = 0

¬enq

beh

Fig. 2 Labeled transition graph [[Abeh]] illustrating the semantics of
the bounded FIFO specification Abeh, where N = 2

[[A]], and the trace σ induced by the above execution is

(¬enq,¬deq, E,¬F)

σ = (enq,¬deq,¬E,¬F)

(enq,deq,¬E,¬F).

2.3 Consistency, refinement, and conjunction

A requirement interface consists of a set of contracts that
can be conflicting. Such an interface does not allow any cor-
rect implementation. We say that a requirement interface is
consistent if it allows at least one correct implementation.

Definition 3 Let A be a requirement interface, [[A]] its asso-
ciated LTS, v ∈ V a state, and C = Ĉ if v is initial,
and C otherwise. We say that v is consistent, denoted by
cons(v), if for all wI ∈ V (XI), there exists v′, such that
wI = π(v′)[XI], ∧

c∈C(v, v′) |� c and cons(v′). We say
that A is consistent if cons(v̂).

Example 3 Abeh is consistent, that is, every reachable state
accepts every input valuation and generates an output valu-
ation satisfying all contracts. Consider now replacing c2 in
Abeh with the contract c′

2 : ¬enq′ ∧ deq′ ∧ k ≥ 0 � k′ =
k − 1, that incorrectly models r2 and decreases the counter
k upon deq even when the buffer is empty, setting it to the

value minus one. This causes an inconsistency with the con-
tracts c3 and c5 which state that if k equals zero, the buffer
is empty, and that dequeue on an empty buffer has no effect
on k.

We define the refinement relation between two require-
ment interfaces A1 and A2, denoted by A2 � A1, as trace
inclusion.

Definition 4 Let A1 and A2 be two requirement interfaces.
We say that A2 refines A1, denoted by A2 � A1, if (1) A1

and A2 have the same sets XI , XO , and XH of variables; and
(2) L(A1) ⊆ L(A2).

We use a requirement interface to model a view of a
system. Multiple views are combined by conjunction. The
conjunction of two requirement interfaces is another require-
ment interface that is either inconsistent due to a conflict
between views, or is the greatest lower bound with respect
to the refinement relation. The conjunction of A1 and A2,
denoted by A1 ∧ A2, is defined if the two interfaces share the
same sets XI , XO , and XH of variables.

Definition 5 Let A1 = 〈XI , XH , XO , Ĉ1,C1,R1, ρ1〉 and
A2 = 〈XI , XH , XO , Ĉ2,C2,R2, ρ2〉 be two Their con-
junction A = A1 ∧ A2 is the requirement interface
〈XI , XH , XO , Ĉ,C,R, ρ〉, where

– Ĉ = Ĉ1 ∪ Ĉ2 and C = C1 ∪ C2;
– R = R1 ∪ R2; and
– ρ(r) = ρ1(r) if r ∈ ρ1 and ρ(r) = ρ2(r) otherwise.

Remark For refinement and conjunction, we require the two
interfaces to share the same alphabet. This additional con-
dition is used to simplify definitions. It does not restrict
the modeling—arbitrary interfaces can have their alphabets
equalized without changing their properties by taking union
of respective input, output, and hidden variables. Contracts in
the transformed interfaces do not constrain newly introduced
variables. For requirement interfaces A1 and A2, alphabet
equalization is defined if (X1

I ∪ X2
I) ∩ (X1

ctr ∪ X2
ctr) =

(X1
O ∪ X2

O) ∩ (X1
H ∪ X2

H) = ∅. Otherwise, A1 � A2 and
vice versa, and A1 ∧ A2 is not defined.

Example 4 We now consider a power consumption view of
the bounded FIFO buffer. Its model Apc has the Boolean
input variables enq and deq and a bounded integer output
variable pc. The following textual requirements specify Apc:

ra : The power consumption equals zero when no enq/deq
is requested.

rb: The power consumption is bounded to two units other-
wise.

123

414 B. K. Aichernig et al.

The interface Apc consists of Ĉpc = Cpc = {ca, cb},
Rpc = {ri | i ∈ {a, b}}, and ρ(ri) = {ci }, where:

ca : ¬enq ∧ ¬deq � pc′ = 0
cb : enq ∨ deq � pc′ ≤ 2.

The conjunction Abuf = Abeh ∧ Apc is the requirement inter-
face where Xbuf

I = {enq,deq}, Xbuf
O = {E,F,pc}, Xbuf

H =
{k}, Ĉbuf = {c0, ca, cb}, Cbuf = {c1, c2, c3, c4, c5, ca, cb},
Rpc = {ri | i ∈ {a, b, 0, 1, 2, 3, 4, 5}}, and ρ(ri) = {ci }.

We now show some properties of requirement interfaces.
The conjunction of two requirement interfaces with the same
alphabet is the intersection of their traces.

Theorem 1 Let A1 and A2 be two consistent requirement
interfaces defined over the same alphabet. Then, either A1 ∧
A2 is inconsistent, or L(A1 ∧ A2) = L(A1) ∩ L(A2).

A proof of the theorem can be found in the appendix.
The conjunction of two requirement interfaces with the

same alphabet is either inconsistent, or it is the greatest lower
bound with respect to refinement.

Theorem 2 Let A1 and A2 be two consistent requirement
interfaces defined over the same alphabet, such that A1 ∧ A2

is consistent. Then, A1 ∧ A2 � A1 and A1 ∧ A2 � A2, and
for all consistent requirement interfaces A, if A � A1 and
A � A2, then A � A1 ∧ A2.

A proof of the theorem can be found in the appendix.
The following theorem states that the conjunction of an

inconsistent requirement interface with any other interface
remains inconsistent. This result enables incremental detec-
tion of inconsistent specifications.

Theorem 3 Let A be an inconsistent requirement interface.
Then, for all consistent requirement interfaces A′ with the
same alphabet as A, A ∧ A′ is also inconsistent.

The proof follows directly from the definition of conjunc-
tion, which constrains the guarantees of individual interfaces.

3 Consistency, testing, and tracing

In this section, we present our test-case generation and exe-
cution framework and instantiate it with bounded model
checking techniques. For now, we assume that all variables
range over finite domains. This restriction can be lifted by
considering richer data domains in addition to theories that
have decidable quantifier elimination, such as linear arith-
metic over reals. Before executing the test-case generation,
we can apply a consistency check on the requirement inter-
face, to ensure the generation starts from an implementable
specification.

3.1 Bounded consistency checking

To check k-bounded consistency of a requirement interface
A, we unfold the transition relation of A in k steps, and
encode the definition of consistency in a straight-forward
manner. The transition relation of an interface is the con-
junction of its contracts, where a contract is represented as
an implication between its assumption and guarantee predi-
cates. Let

θ̂ =
∧

(ϕ̂�ψ̂)∈Ĉ
ϕ̂ → ψ̂

and

θ =
∧

(ϕ�ψ)∈C
ϕ → ψ.

Then, the k-bounded consistency check for A corresponds to
checking the satisfiability of the formula

∀X0
I .∃X0

ctr . . . ∀Xk
I .∃Xk

ctr. θ0 ∧ θ1 ∧ · · · ∧ θk where

θ0 = θ̂ [X ′\X0] and θ i = θ [X ′\Xi , X\Xi−1], 1 ≤ i ≤ k.
To implement a consistency check in our prototype, we

transform it to a satisfiability problem and use the SMT solver
Z3 to solve it.

The first step is to construct a symbolic representation of
the initial contracts and the transition relation.

The transition relation is then unfolded for each step
by renaming the occurrence of each variable, such that it
is indexed by the corresponding step. In each step i , the
undecorated variables are indexed with i − 1, while the dec-
orated variables are indexed with i , thus keeping the relation
between the valuations of each step. Given a set X of vari-
ables, we denote by Xi the copy of the set, in which every
variable is indexed by i .

The conjunction of all instances up to a certain depth is
an open formula, leaving all variables free. The consistency
check is bounded by a certain depth.

3.2 Test-case generation

A test case is an experiment executed on theSUTby the tester.
We assume that the SUT is a black-box that is only accessed
via its observable interface. We assume that it can be modeled
as an input-enabled, deterministic5 requirement interface.
Without loss of generality, we can represent theSUT as a total

5 The restriction to deterministic implementations is for presentation
purposes only, and the technique is general and can also be applied to
non-deterministic systems.

123

Require, test, and trace IT 415

sequential function SUT : V (XI) × V (Xobs)
∗ → V (XO).

A test case TA for a requirement interface A over X takes
a history of actual input/output observations σ ∈ L(A) and
returns either the next input value to be executed or a verdict.
Hence, a test case can be represented as a partial function
TA : L(A) → V (XI) ∪ {pass, fail}.

We first consider the problem of generating a test case
from A. The test-case generation procedure is driven by a
test purpose. Here, a test purpose is a condition specifying
the target set of states that a test execution should reach.
Hence, it is a formula Π defined over Xobs.

Given a requirement interface A, let φ̂ = ∨
(ϕ̂�ψ̂)∈Ĉ ϕ̂ ∧

∧
(ϕ̂�ψ̂)∈Ĉ ϕ̂ → ψ̂ and φ = ∨

(ϕ�ψ)∈C ϕ ∧ ∧
(ϕ�ψ)∈C ϕ →

ψ . The predicates φ̂ and φ encode the transition relation of
A, with the additional requirement that at least one assump-
tion must be satisfied, thus avoiding input vectors for which
the test purpose can be trivially reached due to under-
specification. A test case for A that can reach Π is defined
iff there exists a trace σ = σ ′ · wobs in L(A), such that
wobs |� Π . The test purpose Π can be reached in A in at
most k steps if

∃X0, . . . , Xk . φ0 ∧ · · · ∧ φk ∧
∨

i≤k

Π [Xobs\Xi
obs],

where φ0 = φ̂[X ′\X0] and φi = φ[X ′\Xi , X\Xi−1] repre-
sent the transition relation of A unfolded in the i-th step.

Given A and Π , assume that there exists a trace σ in L(A)

that reaches Π . Let σI be a projection to inputs, π(σ)[XI] =
w0

I · w1
I · · ·wn

I . We first compute ωσI ,A (see Algorithm 1),
a formula6 characterizing the set of output sequences that A
allows on input σI .

Algorithm 1 OutMonitor
Input: σI = w0

I · w1
I · · ·wn

I , A
Output: ωσI ,A

1: ω0
σI ,A

← θ̂ [X ′
I \w0

I , X
′
ctr\X0

ctr]
2: for i = 1 to n do
3: ωi

σI ,A
← θ [XI \wi-1

I , X ′
I \wi

I , Xctr\Xi-1
ctr , X

′
ctr\Xi

ctr]
4: end for
5: ω∗

σI ,A
← ω0

σI ,A
∧ · · · ∧ ωn

σI ,A

6: ωσI ,A ← qe(∃X0
H , X1

H , . . . , Xn
H .ω∗

σI ,A
)

7: return ωσI ,A

Let θ̂ = ∧
(ϕ̂�ψ̂)∈Ĉ ϕ̂ → ψ̂ and θ = ∧

(ϕ�ψ) ϕ → ψ .

For every step i , we represent by ωi
σI ,A

the allowed behav-
ior of A constrained by σI (Lines 1–4). The formula ω∗

σI ,A
(Line 5) describes the transition relation of A, unfolded to
n steps, and constrained by σI . However, this formula refers

6 The formula ωσI ,A can be seen as a monitor for A under input σI .

to the hidden variables of A and cannot be directly used to
characterize the set of output sequences allowed by A under
σI . Since any implementation of hidden variables that pre-
serve correctness of the outputs is acceptable, it suffices to
existentially quantify over hidden variables in ω∗

σI ,A
. After

eliminating the existential quantifiers with strategy qe, we
obtain a simplified formula ωσI ,A over output variables only
(Line 6).

Algorithm 2 TσI ,A

Input: σI = w0
I · · ·wn

I , A, σ = w0
obs · · ·wk

obs
Output: {pass, fail}
1: ωσI ,A ← OutMonitor(σI , A)

2: for i = 0 to k do
3: wi

O ← π(wi
obs)[XO]

4: end for
5: ω

0,k
σI ,A

← ωσI ,A[X0
O\w0

O , . . . , Xk
O\wk

O]
6: if ω

0,k
σI ,A

= true then
7: return pass
8: else if ω

0,k
σI ,A

= false then
9: return fail
10: end if

Let TσI ,A be a test case, parameterized by the input sequence
σI and the requirement interface A from which it was gen-
erated. It is a partial function, where TσI ,A(σ) is defined if
|σ | ≤ |σI | and for all 0 ≤ i ≤ |σ |, wi

I = π(wi
obs)[XI],

where σI = w0
I · · ·wn

I and σ = w0
obs · · · wk

obs. Algorithm 2
gives a constructive definition of the test case TσI ,A. It starts
by producing the output monitor for the given input sequence
(Line 1). Then, it substitutes all output variables in the mon-
itor, by the outputs observed from the SUT (Lines 2–5). If
the monitor is satisfied by the outputs, it returns the verdict
pass; otherwise, it returns f ail.

Incremental test-case generation So far, we considered
test-case generation for a complete requirement interface A,
without considering its internal structure. We now describe
how test cases can be incrementally generated when the inter-
face A consists of multiple views,7 i.e., A = A1 ∧ A2. Let
Π be a test purpose for the view modeled with A1. We first
check whether Π can be reached in A1, which is a sim-
pler check than doing it on the conjunction A1 ∧ A2. If Π

can be reached, we fix the input sequence σI that steers
A1 to Π . Instead of creating the test case TσI ,A1 , we gen-
erate TσI ,A1∧A2 , which keeps σI as the input sequence, but
collects output guarantees of A1 and A2. Such a test case
steers the SUT towards the test purpose in the view modeled
by A1, but is able to detect possible violations of both A1

and A2.

7 We consider two views for the sake of simplicity.

123

416 B. K. Aichernig et al.

We note that test-case generation for fully observable
interfaces is simpler than the general case, because there is
no need for the quantifier elimination, due to the absence
of hidden variables in the model. A test case from a deter-
ministic interface is even simpler as it is a direct mapping
from the observable trace that reaches the test purpose—
there is no need to collect constraints on the output, since
the deterministic interface does not admit any freedom to the
implementation on the choice of output valuations.

Example 5 Consider the requirement interface Abeh for the
behavioral view of the two-bounded buffer, and the test pur-
pose F. Our test-case generation procedure gives the input
vector σI of size 3, such that

(enq,deq)

σI = (enq,¬deq)

(enq,¬deq).

The observable output constraints for σI (which are
encoded in OutMonitor) are E ∧ ¬F in Step 0, ¬E ∧ ¬F in
Step 1, and ¬E∧F in Step 2. Together, the input vector σI and
the associated output constraints form the test case TσI ,beh.
Using the incremental test-case generation procedure, we can
extend TσI ,beh to a test case TσI ,buf that also considers the
power consumption view of the buffer, resulting in output
constraints E ∧ ¬F ∧ pc ≤ 2 in Step 0, ¬E ∧ ¬F ∧ pc ≤ 2
in Step 1, and ¬E ∧ F ∧ pc ≤ 2 in Step 2.

Algorithm 3 TestExec
Input: SUT, TσI ,A
Output: {pass, fail}
1: in : V (XI) ∪ {pass, fail}
2: out : V (XO)

3: σ ← ε

4: in ← TσI ,A(σI , A, σ)

5: while in /∈ {pass, fail} do
6: out ← SUT(in, σ)

7: σ ← σ · (in ∪ out)
8: in ← TσI ,A(σI , A, σ)

9: end while
10: return in

3.3 Test-case execution

Let A be a requirement interface, SUT a system under test
with the same set of variables as A, and TσI ,A a test case gen-
erated from A. Algorithm 3 defines the test-case execution
procedure TestExec that takes as input theSUT and TσI ,A and
outputs a verdict pass or fail. TestExec gets the next test input
in from the given test case TσI ,A (Lines 4, 8), stimulates at
every step the system under test with this input, and waits for
an output out (Line 6). The new inputs/outputs observed are

stored in σ (Line 7), which is given as input to TσI ,A. The test
case monitors if the observed output is correct with respect
to A. The procedure continues until a pass or fail verdict is
reached (Line 5). Finally, the verdict is returned (Line 10).

Proposition 1 Let A, TσI ,A, and SUT be arbitrary require-
ment interface, test case generated from A, and a system
under test, respectively. Then, we have

1. if I � A, then TestExec(SUT, TσI ,A) = pass;
2. if TestExec(SUT, TσI ,A) = fail, then SUT � A.

Proposition 1 immediately holds for test cases gener-
ated incrementally from a requirement interface of the form
A = A1 ∧ A2. In addition, we notice that a test case TσI ,A1

generated from a single view A1 of A does not need to be
extended to be useful, and can be used to incrementally show
that a SUT does not conform to its specification. We state the
property in the following corollary that follows directly from
Proposition 1 and Theorem 2.

Corollary 1 Let A = A1 ∧ A2 be an arbitrary requirement
interface composed of A1 and A2, SUT an arbitrary system
under test, and TσI ,A1 an arbitrary test case generated from
A1. Then, if TestExec(SUT, TσI ,A1) = fail, then SUT �

A1 ∧ A2.

Algorithm 4 SUT: a 3-place-buffer implementation.
Input: enq, dec
Output: E, F, pc
1: wait for inputs
2: k ← 0; E ← true; F ← false
3: if ¬enq ∧ ¬dec then
4: pc ← 0
5: else
6: pc ← 1
7: end if
8: while true do
9: wait for inputs
10: if enq ∧ ¬dec ∧ k < 3 then
11: k ← k + 1
12: else if ¬enq ∧ dec ∧ k > 0 then
13: k ← k − 1
14: end if
15: if ¬enq ∧ ¬dec then
16: pc ← 0
17: else
18: pc ← 1
19: end if
20: if k = 3 then
21: F ← true; E ← false
22: else if k = 0 then
23: F ← false; E ← true
24: else
25: F ← false; E ← false
26: end if
27: end while

123

Require, test, and trace IT 417

Example 6 Consider as an SUT the implementation of a 3-
place-buffer, as illustrated in Algorithm 4. We assume that
the power consumption is updated directly in a pc variable.
Although SUT is correctly implementing a 3-place-buffer, it
is a faulty implementation of a 2-place-buffer. In fact, when
SUT already contains two items, the buffer is still not full,
which is in contrast with requirement r4 of a 2-place-buffer.
Executing tests TσI ,beh and TσI ,buf from Example 5 will both
result in a fail test verdict.

3.4 Traceability

Requirement identifiers as first-class elements in requirement
interfaces facilitate traceability between informal require-
ments, views, and test cases. A test case generated from
a view Ai of an interface A = A1 ∧ · · · ∧ An is natu-
rally mapped to the set Ri of requirements. In addition,
requirement identifiers enable tracing violations caught dur-
ing consistency checking and test-case execution back to the
conflicting/violated requirements.

Tracing inconsistent interfaces to conflicting requirements
When we detect an inconsistency in a requirement interface A
defining a set of contractsC , we use QuickXPlain, a standard
conflict set detection algorithm [36], to compute a minimal
set of contractsC ′ ⊆ C , such thatC ′ is inconsistent. Once we
have computedC ′, we use the requirement mapping function
ρ defined in A, to trace back the set R′ ⊆ R of conflicting
requirements.

Tracing f ail verdicts to violated requirements In fully
observable interfaces, every trace induces at most one exe-
cution. In that case, a test case resulting in fail can be traced
to a unique set of violated requirements. This is not the case
in general for interfaces with hidden variables. A trace that
violates such an interface may induce multiple executions
resulting in fail with different valuations of hidden variables,
and thus different sets of violated requirements. In this case,
we report all sets to the user, but ignore internal valuations
that would introduce an internal requirement violation before
inducing the visible violation.

We propose a tracing procedure TraceFailTC, presented
in Algorithm 5, that gives useful debugging data regarding
violation of test cases in the general case. The algorithm takes
as input a requirement interface A and a trace σ /∈ L(A). The
trace σ that is given as input to the algorithm is obtained from
executing a test case for A that leads to a fail verdict. The
algorithm runs a main loop that at each iteration computes a
debugging pair that consists of an execution τ = π(σ)[Xobs]
and a set failR ⊆ R of requirements.8 The execution τ com-
pletes the faulty trace with valuations of hidden variables that
are consistent with the violation of the requirement interface

8 We assume that the trace does not violate initial contracts to simplify
the presentation. The extension to the general case is straightforward.

in the last step. The set failR contains all the requirements
that are violated by the execution τ . We initialize the algo-
rithm by setting an auxiliary variable C∗ to the set of all
update contracts C (Line 3). In every iteration of the main
loop, we encode in φ∗

obs all the executions induced by σ that
violate at least one contract in C∗ (Lines 6 and 7). In the next
step (Line 8), we check the satisfiability of the formula φ∗

obs
(sat(φ∗

obs)), a function that returns b = true, and a sequence
(model) of hidden variable valuations w0

H , . . . , wn
H if φ∗

obs is
satisfiable, and (b = false, σH = ε) otherwise. In the former
case, we combine σ and σH into an execution τ (Line 10).
We collect in failR all requirements that are violated by τ and
remove the corresponding contracts from C∗ (Lines 11–16).
The debugging pair (τ, failR) is added to debugSet (Line 16).
The procedure terminates and returns debugSet when either
C∗ is empty or σ cannot violate any remaining contract in
C∗, thus ensuring that every requirement that can be violated
by σ is part of at least one debugging pair in debugSet.

Algorithm 5 TraceFailTC

Input: σ = w0
obs · · ·wn

obs, A
Output: debugSet
1: debugSet ← ∅
2: failR ← ∅
3: C∗ ← C
4: b ← true
5: while b do
6: φ∗

obs ← φ0 ∧ . . . ∧ φn−1

∧(
∨

(ϕ,ψ)∈C∗ (ϕ ∧ ¬ψ)) [X\Xn−1, X ′\Xn]
7: φ∗

obs ← φ∗
obs[X0

obs\w0
obs, . . . , X

n
obs\wn

obs]
8: ((w0

H , . . . , wn
H), b) ← sat(φ∗

obs)

9: if b then
10: τ ← (w0

obs ∪ w0
H) · · · (wn

obs ∪ wn
H)

11: for all c = (ϕ, ψ) ∈ C do
12: if (wn−1

obs ∪ wn−1
H , wn

obs ∪ wn
H) |� ϕ ∧ ¬ψ then

13: failR ← failR ∪ {r | c ∈ ρ(r)};
14: C∗ ← C∗\{c}
15: end if
16: end for
17: debugSet ← debugSet ∪ {(τ, failR)}
18: failR ← ∅
19: end if
20: end while
21: return debugSet

Example 7 Consider the execution trace

(enq,deq,E,¬F)

σ = (enq,¬deq,¬E,¬F)

(enq,¬deq,¬E,¬F)

that results in a fail verdict when executing the test TσI ,beh.
The tracing procedure gives as debugging information the
set debugSet = {(τ1, {r4}), (τ2, {r1, r3})}, where τ1 and τ2

correspond to the following executions that can lead to vio-

123

418 B. K. Aichernig et al.

lations of requirements r4 and r1, r3, respectively.

(enq,deq, k = 0,E,¬F)

τ1 = (enq,¬deq, k = 1,¬E,¬F)

(enq,¬deq, k = 2,¬E,¬F)

(enq,deq, k = 0,E,¬F)

τ2 = (enq,¬deq, k = 1,¬E,¬F)

(enq,¬deq, k = 0,¬E,¬F).

Requirements r0 and r5 cannot be violated in the last step
of this test execution. We note that accessing the faulty 2-
buffer implementation I from Algorithm 4, the debugging
pair (τ1, {r4}) would allow to exactly localize the error and
trace it back to the violation of the requirement r4.

For requirement interfaces with hidden variables, the
underlying implementation is only partially observable. The
best that the tracing procedure can do when the execution of
a test leads to the fail verdict is to complete missing hidden
variables with valuations that are consistent with the par-
tial observations of input and output variables. It follows
that the debugSet consists of “hints” on possible violated
requirements and the causes of their violation. We note
that Algorithm 5 attempts at finding the right compromise
between minimizing the amount of data presented to the
designer, while still providing useful information. In par-
ticular, it focuses on implementation errors that occur at the
time of the failure, for both the hidden and the output vari-
ables. We note that in some faulty implementations, errors
in updating hidden variables may not immediately result in
observable faults. For instance, in the execution

(enq,deq, k = 1,E,¬F)

τ3 = (enq,¬deq, k = 1,¬E,¬F)

(enq,¬deq, k = 1,¬E,¬F)

the requirement r0 is immediately violated in the initial step,
but the implementation errors are only observed in the last
step of the test execution. Algorithm 5 does not give such
executions as possible causes that lead to a fail verdict. It is
a design choice—we believe that choosing hidden variables
without any restriction would result in executions that are too
arbitrary and have little debugging value.

4 Model-based mutation testing

In this section, we apply a fault-based variant of model-based
testing to requirement interfaces. In MBT, test cases are gen-
erated according to predefined coverage criteria, producing
test suites that, e.g., cover all states in the specification model,
or, in the case of a contract-based specification, enable all
assumptions at least once.

Similar to that, we generate a test suite covering a set of
faults. The faults are specified via a set of mutation operators
that apply specific faults to all applicable parts of the model.
When applied to requirement interfaces, we mutate one con-
tract at a time. Then, we check for conformance between
the original requirement interface and the mutated one. If
the mutated requirement interface can produce controllable
variable values that are forbidden by the original, the con-
formance is violated. In that case, we produce a test case
leading exactly to that violation. If that test case is executed
on a deterministic SUT and passes, we can guarantee that the
corresponding fault was not implemented. Thus, by generat-
ing all tests for all fault models, we can prove the absence of
all corresponding faults in the system.

Definition 6 We define a mutation operator μ as a function
μ : C → 2C , which takes a contract c = (ϕ � ψ) ∈ C
and produces a set of mutated contracts Cμ ⊆ C , where a
specific kind of fault is applied to all valid parts of ψ . We
only consider mutations in the guarantee, as the fault models
should simulate situations where the system produces wrong
outputs, after receiving valid inputs.

We currently consider the following fault models:

1. Off-by-one Mutate every integer constant or variable,
both by adding and subtracting 1,

2. Negation Flip every boolean constant or variable,
3. Change comparison operators Replace equality opera-

tors by inequality operators, and vice versa; replace every
operator in {<=,<,>,>=} by every of the operators in
{<=,<,==,>,>=}.

4. Change and/or Replace every and operator by an or
operator and vice versa,

5. Change implication/bi-implication Replace every impli-
cation by a bi-implication and vice versa;

Definition 7 A mutant cm = (ϕ � ψm) ∈ Cμ is an inten-
tionally altered (mutated) version of the contract c = (ϕ �
ψ). A mutant is called a first-order mutant, if it only contains
one fault. This paper only considers first-order mutants.

If a mutation does not introduce new behavior to the
requirement interface, it is considered an equivalent muta-
tion. If it leads to an inconsistency, it is considered an
unproductive mutation .

Given the contract (ϕ � ψ) ∈ C , we denote by C̄ the set
of the other contracts in the requirement interface, i.e., C̄ =
C \{(ϕ � ψ)}, byCμ the set of mutants obtained by applying
all mutation operators to (ϕ � ψ) and by cm = (ϕ � ψm)

one single mutant in Cμ.
cm is a non-equivalent mutation, if there exist two valua-

tions v, v′, so that:

123

Require, test, and trace IT 419

– v is reachable from v̂

– (v, v′) |� ϕ

– ∀(ϕ̄�ψ̄)∈C̄ (v, v′) |� (ϕ̄ � ψ̄)

– (v, v′) |� (ϕ � ψm) ∧ ¬(ϕ � ψ).

We considered a mutant k-equivalent to the original
requirement interface, if it is equivalent up to a bound k.

The test purpose Π for detecting (ϕ � ψm) can be encoded
by the formula

Π = ϕ ∧ ψm ∧ ¬ψ ∧
∧

(ϕ̄�ψ̄)∈C̄
(ϕ̄ → ψ̄).

The reachability formula for such a test purpose differs
from the one presented in Sect. 3.2 in two details: in the step
of the test purpose, the transition relation does not hold, as we
require the original contract to be violated. In addition, a test
purpose is a relation over primed and unprimed variables.

A test purpose Π can be reached in step k, if

∃X0, . . . , Xk . φ0 ∧ · · · ∧ φk−1 ∧ Π [X\Xk−1, X ′\Xk],

where, as in Sect. 3.2, φ0 = φ̂[X ′\X0] and φi =
φ[X ′\Xi , X\Xi−1] represent the transition relation of A
unfolded in the i-th step. If the test purpose is reachable,
the mutation is not k-equivalent.

Remark 1 In this paper, we consider weak mutation testing
[35]. This means that wrong behavior of internal variables
is already considered a conformance violation. In contrast,
strong mutation testing also requires that an internal fault
propagates to an observable failure. The encoding of the
reachability of the mutation as a test purpose, without altering
the step relation, is only possible for weak mutation testing.
Strong mutation testing would require the step relation to use
the mutated contract in all steps, and then detect the failure in
the last step. Due to considering weak mutation testing, we
also weaken the definition of a test purpose compared with
the definition in Sect. 3, allowing it to use internal variables.

Contrary to the previously defined test purposes, the test
purposes in model-based mutation testing lead to negative
counter examples, that is, counter examples steering towards
an incorrect state. However, as defined in Sect. 3, we only
extract the input vector σi , which is then combined with the
correct requirement interface, to form a positive test case.

Often, different mutations of a contract will generate dif-
ferent negative counter examples, but those tests will then
combine into the same positive test case. However, if the dif-
ferent mutations require different inputs to be enabled, they
will also produce different positive test cases.

Example 8 Consider the requirement interface Abeh for the
behavioral view of the 2-bounded buffer. Let c2,m : ¬enq′ ∧

deq′ ∧ k > 0 � k′ = k − 2 be a mutant of c2, where
k′ = k − 1 was mutated to k′ = k − 2. The test purpose to
detect this mutation is

Π = ϕc2 ∧ ψc2,m ∧ ¬ψc2 ∧
∧

i∈{0,1,3,4,5}
(ϕci → ψci).

The test purpose is not valid in the initial state, as the assump-
tion requires k to be greater than 0. Thus, a corresponding test
case needs to execute at least one enqueue operation, before
the mutated dequeue functionality can occur. The shortest
vector σ̄ leading to the test purpose is

(enq,deq, k = 0, E,¬F)

σ̄ = (enq,¬deq, k = 1,¬E,¬F)

(¬enq,deq, k = −1,¬E,¬F).

We extract the input vector σI , so that

(enq,deq)

σI = (enq,¬deq)

(¬enq,deq)

Now, we can build the positive test case, by applying the
correct step relation, thus gaining

(enq,deq, k = 0, E,¬F)

σI = (enq,¬deq, k = 1,¬E,¬F)

(¬enq,deq, k = 0, E,¬F).

As a second mutant, consider c3,m : true � k′ =
0 ⇔ ¬E′, where E ′ is mutated to ¬E ′. In this case, the test
purpose is not reachable, as the initial contract c0 requires
both k′ = 0 and E ′, which causes an inconsistency with the
mutated contract. This makes c3,m an unproductive muta-
tion, as it does not generate a test case. However, consider
another mutant of c3, c3,m′ : true � k′ = 0 �⇒ E′
that changes the bi-implication to an implication. In this
case, the mutated contract can be enabled after an enqueue
in the first step, when k′ = 1, and thus, the left hand
side of the implication is f alse, allowing E ′ to take any
value. Thus, any vector of length two that starts with an
enqueue operation, e.g., σ̄ [0] = (enq,deq, k = 0, E,¬F),
σ̄ [1] = (enq,¬deq, k = 1, E,¬F) detects the mutation.
This example shows, that for different mutations on the same
contract, the test generation results in different outcomes.

5 Implementation and experimental results

In this section, we present a prototype that implements our
test-case generation framework introduced in Sects. 3 and 4.
The prototype was added to the model-based testing tool

123

420 B. K. Aichernig et al.

family MoMuT9 and goes by the name MoMuT::REQs. The
implementation uses the programming language Scala 2.10
and Microsoft’s SMT solver Z3 [40]. The tool implements
both monolithic and incremental approaches to test-case gen-
eration. All experiments were run on a MacBook Pro with
a 2.53 GHz Intel Core 2 Duo Processor and 4 GB RAM.
We will demonstrate the tool on the buffer example and two
industrial case studies.

5.1 Demonstrating example

To experiment with our algorithms, we model three variants
of the buffer behavioral interface. All three variants model
buffers of size 150, with different internal structures.Buffer 1
models a simple buffer with a single counter variable k.
Buffer 2 models a buffer that is composed of two internal
buffers of size 75 each, and Buffer 3 models a buffer that is
composed of three internal buffers of size 50 each. We also
remodel a variant of the power consumption interface that
created a dependency between the power used and the state
of the internal buffers (idle/used).

All versions of the behavior interfaces can be combined
with the power consumption view point, either using the
incremental approach or doing the conjunction before gen-
erating test cases from the monolithic specification.

Incremental consistency checking To evaluate the consis-
tency check, we introduce three faults to the behavioral and
power consumption models of the buffer: Fault 1 makes deq
to decrease k when the buffer is empty; Fault 2 mutates an
assumption resulting in conflicting requirements for power
consumption upon enq; and Fault 3 makes enq to increase k
when the buffer is full. The fault injection results in 9 single-
faulty variants of interfaces.

We compare monolithic consistency checking to the con-
sistency checking of individual views. We first note that the
consistency check is coupled with the algorithm for finding
minimal inconsistent sets of contracts. We set the range of the
integer values to [−2 : 152] and we bound the search depth
to 3. In the monolithic approach, we first conjunct all view
models and then check for consistency. In the incremental
approach, we first check the consistency of individual views,
and then, if no inconsistency is found, conjunct them one
by one, checking consistency of partial conjunctions. How-
ever, in the current example, as we knew which view was
faulty, we always started with the faulty view. As the incon-
sistency was detectable by examining only one view, we did
not need to conjunct the second view. Table 1 summarizes
and compares the time it takes to find an inconsistency and
to compute the minimal inconsistent set of requirements in
the requirement interface of a single view and in the mono-
lithic interface that is the conjunction of both views. It gives

9 http://www.momut.org.

Table 1 Runtime in seconds for checking consistency of single and
conjuncted interfaces

Fault 1 (behavior) Fault 2 (power)

Single Monolithic Single Monolithic

Buffer 1 0.7 3.6 1.0 7.3

Buffer 2 5.3 13.4 1.0 26.7

Buffer 3 7.2 13.8 1.0 13

Table 2 Runtime in seconds for incremental and monolithic test-case
generation

Contracts # Variables tinc tmon Speed-up

Buffer 1 6 6 10 16.8 1.68

Buffer 2 15 12 36.7 48.8 1.33

Buffer 3 20 15 69 115.6 1.68

a very nice expression on how separating the different views
helps decreases the complexity, and thus the runtime, of the
consistency checks. E.g., for Fault 2 in the second buffer, it
reduces the runtime of the consistency check from 26 to 1 s.
Fault 3 is omitted in the table, as neither approach was able
to find an inconsistency. This is caused by the fact that the
fault lies to deep in the system, and cannot be detected with
the given search depth.

The bounded consistency checking is very sensitive to
the search depth. Setting the bound to 5 increases the run-
time from seconds to minutes—this is not surprising, since
a search of depth n involves simplifying formulas with alter-
nating quantifiers of depth n, which is a very hard problem
for SMT solvers.

Test-case generation We compare the monolithic and
incremental approach to test-case generation, by generating
monolithic tests for the conjunction of the buffer interfaces
and the power consumption interface, and incrementally, by
generating tests only for the buffer interfaces, and complet-
ing them with the power consumption interface. The tests
were generated according to manually defined test purposes
that required the buffer to be full. Thus, the according test
cases needed to perform 150 enqueue operations, and were
of length 150. Table 2 summarizes the results, presenting the
number of contracts and variables of the requirement inter-
faces, the runtime of the incremental test case generation, and
the runtime of the monolithic approach. For the incremental
approach, the runtime includes the test-case generation using
only the behavioral view and the completion of the test case,
according to the power consumption. The three examples
diverge in complexity, expressed in the number of contracts
and variables. Our results show that the incremental approach
outperforms the monolithic one, resulting in speed-ups from
1.33 to 1.68.

123

http://www.momut.org

Require, test, and trace IT 421

Table 3 Results for model-based mutation testing on depth 150

Mutants (equiv.) # Unique tests [min] tmbmt

Buffer 1 44 (0) 29 4.7

Buffer 2 138 (20) 52 44.0

Buffer 3 240 (46) 115 128.1

Model-based mutation testing We applied the model-
based mutation testing technique on all three variants of the
buffer. For these experiments, we did not consider the power
consumption, which could be added incrementally after gen-
eration of the tests. We used all mutation operators defined
in Sect. 4. Table 3 shows the results of the approach, giving
the number of mutants, the number of k-equivalent mutants,
the number of unique test cases that were produced, and the
total time for applying the complete approach to all mutants.
The bound k for the equivalence check was set to 150. The
reported times include mutation, generation of according test
purposes, test-case generation, conversion into positive test
cases, and detecting the unique test cases. Buffer 2 and Buffer
3 are more complex and create more mutants, and thus have
a longer runtime. Yet, they also generate more unique tests,
and thus a more thorough test suite.

5.2 Safing engine

As a first industrial application, we present an automotive use
case supplied by the European ARTEMIS project MBAT,10

that partially motivated our work on requirement interfaces.
The use case was initiated by our industrial partner Infineon
and evolves around building a formal model for analysis
and test-case generation for the safing engine of an airbag
chip. The requirements document, developed by a customer
of Infineon, is written in natural (English) language. We iden-
tified 39 requirements that represent the core of the system’s
functionality and iteratively formalized them in collaboration
with the designers of Infineon. The resulting formal require-
ment interface is deterministic and consists of 36 contracts.

The formalization process revealed several
under-specifications in the informal requirements that were
causing some ambiguities. These ambiguities were resolved
in collaboration with the designers. The consistency check
revealed two inconsistencies between the requirements. Trac-
ing the conflicts back to the informal requirements allowed
their fixing in the customer requirements document.

We generated 21 test cases from the formalized require-
ments that were designed to ensure that every boolean
internal and output variable is at least activated once and that
every possible state of the underlying finite-state machine
is reached at least once. Thus, the test suite provides state

10 https://mbat-artemis.eu.

and signal coverage. The average length of the test cases was
3.4 and the maximal length was 6, but since the test cases
are synchronous, each of the steps is able to trigger sev-
eral inputs and outputs at once. The test cases were used to
test the SIMULINK model of the system, developed by Infi-
neon as part of their design process. The SIMULINK model
of the safing engine consists of a state machine with seven
states, ten smaller blocks transforming the input signals, and
a MATLAB function calculating the final outputs accord-
ing to the current state and the input signals. To execute the
test cases, Infineon’s engineers developed a test adapter that
transforms abstract input values from the test cases to actual
inputs passed to the SIMULINK model. We illustrate a part
of the use case with three customer requirements that give
the flavor of the underlying system’s functionality:

r1: There shall be seven operating states for the safing
engine: RESET state, INITIAL state, DIAGNOSTIC
state, TEST state, NORMAL state, SAFE state, and
DESTRUCTION state.

r2: The safing engine shall change per default from RESET
state to INIT state.

r3: On a reset signal, the safing engine shall enter RESET
state and stay, while the reset signal is active.

These three informal requirements were formalized with
the following contracts with a one-to-one relationship
between these example requirements and the contracts:

c1: true � state’ = RESET ∨ state’ = INIT ∨ state’ =
DIAG ∨ state’ = TEST ∨ state’ = NORM ∨ state’
= SAFE ∨ state’ = DESTR

c2 : state = RESET � state’ = INIT
c3 : reset’ � state’ = RESET.

This case study extends an earlier one [4] with test-case
execution and a detailed mutation analysis evaluating the
quality of the generated test cases. We created 66 faulty
SIMULINK models (six turned out to be equivalent), by flip-
ping every boolean signal (also internal ones) involved in the
MATLAB function calculating the final output signals. Our
21 test cases were able to detect 31 of the 60 non-equivalent
faulty models, giving a mutation score of 51.6%. These num-
bers show that state and signal coverage is not enough to
find all faults and confirm the need to incorporate a more
sophisticated test-case generation methodology. Therefore,
we manually added TEN test purposes generating 10 addi-
tional test cases. The combined 31 test cases finally reached
a 100% mutation score. This means that all injected faults in
the SIMULINK models were detected.

Model-basedmutation testing In addition, we applied two
iterations of the model-based mutation testing approach, set-

123

https://mbat-artemis.eu

422 B. K. Aichernig et al.

ting the bound k to 6. In the first iteration, we generated 362
mutants, applying all mutation operators. We generated 165
negative tests—197 mutants were k-equivalent. From the 165
negative tests, we extracted 28 unique positive test cases.

The mutation score achieved by these 28 test cases on the
60 faulty SIMULINK models was surprisingly low, with only
49.2%. A closer investigation of the requirement interface
shows that many of the contracts work globally, without being
bound to a specific state of the state machine. For mutants
from these contracts, our approach only generates one test
case, even though the mutants generate multiple faults, in
several different states. Due to the decomposed structure,
even though we only insert one fault, our mutants are not
classic first-order mutants anymore.

There are two ways to deal with this problem. The first
one would be the generation of multiple test cases per mutant
that covers all possible faulty states. We already applied this
technique previously, in a different context [3]. However, this
technique might become very expensive, and impossible for
systems with infinite-state space.

The second approach is based on refactoring of the
contracts, splitting global contracts into multiple more fine-
grained ones. E.g., contract c3 could be refactored into several
state-bound contracts like

c3,1 : reset’ ∧ state = INIT � state’ = RESET
c3,2 : reset’ ∧ state = DESTR � state’ = RESET.

Applying this technique, we gained 17 new contracts. The
second run of our test-case generation produced 525 mutants
and 293 were detected as non-equivalent. This led to 61
unique test cases, which were able to detect 53 of the faulty
mutants, resulting in a mutation score of 88%.

This shows that the quality of model-based mutation test-
ing for requirement interfaces is severely depending on the
modeling style. However, while the fine-grained contracts
might slightly decrease the clarity of the requirement inter-
faces, they, in turn, increase the traceability and facilitate
fault detection.

5.3 Automated speed limiter

The second industrial case study is a use case provided by the
industrial partner Volvo in the ARTEMIS Project CRYSTAL.
It revolves around an automated speed limiter (ASL), which
adopts the current speed according to a desired speed limit.
It contains an internal state machine with three states: OFF,
LIMITING, and OVERRIDDEN. Upon activation, it either
takes the current speed as limit, or a predefined value. The
limit can then be increased and decreased manually, and a
kickdown of the gas pedal overrides the speed limiter for
some time threshold. Adjusting the speed, or setting it to
the predefined value, ends the overridden mode. Finally, the

speed limiter can be turned off again, both from overridden
and active mode.

The part of the ASL that was analysed within the project
was documented by 17 informal requirements. These were
refined to 26 formal requirements, collected in one require-
ments interface. The interface contains two input variables,
two output variables, and four internal variables. The exam-
ple below shows three characteristic contracts which serve as
an illustration of the functionality of the speed limiter, where
set and state are output variables, in and kickdown are input
variables,preset_value and timer are internal variables, and
preset and plus are enum values. Contract c1 switches the
ASL on, assigning the preset value as current limit. c2 adjusts
the current limit, increasing it by one. In addition, c3 activates
the overridden mode, in case of a gas pedal kickdown. It also
resets a clock variable for the automated timeout that would
lead back to limiting mode.

c1: state = OFF ∧ in’ = preset ∧ ¬kickdown’ �
state’ = LIMITING ∧ set’ = preset_value

c2 : state = LIMITING ∧ in’ = plus ∧ ¬kickdown’ �
state’ = LIMITING ∧ set’ = set+1

c3 : state = LIMITING ∧ kickdown’ �
state’ = OVERRIDDEN ∧ timer’ = 0.

Applying the mutation-based test generation to this case
study generates 291 mutants, using all mutation operators
introduced in Sect. 4 and setting the bound k to 4. Fifty
seven of the mutants are equivalent, leaving a total of 234
non-equivalent mutants. Ninety six of these mutants can be
detected within one step, sixty-four mutants are detected after
two steps, and seventy two after the third step. This reflects
very clearly the state-based structure that consists of three
states. An analysis of the test cases shows that 60 of the tests
are unique. Given that the model is deterministic, each of
the unique tests enables different contracts in the individual
steps. A further analysis of these 60 unique test cases shows
that 12 are of length one, 18 are of length two, and 30 are of
length three.

To evaluate the quality of the test cases, we implemented a
Java version of the ASL, and used the Major mutation frame-
work [37] to generate a set of 64 faulty implementations,
using all mutation operators supported by Major. By exe-
cuting our generated tests on these faulty implementations,
we could perform a classic mutation analysis: our test suite
was able to detect 48 of the faults. Further investigation of
the undetected faults revealed that 13 of the remaining Java
mutants were equivalent, and could thus not be detected by
any test case. Another two of the faults were introduced in
the conditions of if statements. The conditions correspond to
the assumptions of our interfaces, which we did not mutate
during the test-case generation.

123

Require, test, and trace IT 423

The last remaining fault was introduced in the timing
behavior of the Java implementation, which was simulated
via a tick method, indicating the passage of 1 s. In the require-
ment interface, it was modeled via a non-deterministically
increasing variable. The fault caused the implementation to
trigger the state change already after 9 s instead of 10 s. The
test driver was not sensitive enough to detect that, as the test
case only specified the behavior after 10 s, and did not specify
what the correct behavior after 9 s would be.

6 Related work

Synchronous languages were introduced in the 1980’s, and
mostly driven in France, where the most well-known three
synchronous languages were developed: Lustre [22], Signal
[27], and Esterel [17]. In 1991, the IEEE devoted a spe-
cial issue to synchronous systems, featuring, e.g., a paper by
Benveniste and Berry [11], discussing the major issues and
approaches of synchronous specifications of real-time sys-
tems. A decade later, Benveniste et al. [14] gave an overview
on the development of synchronous languages during that
decade, especially mentioning the rising tool support and
the industrial acceptance. They also mention globally asyn-
chronous, locally synchronous systems [47] as an upcoming
trend.

The main inspiration for this work was the introduction of
the conjunction operation and the investigation of its proper-
ties [25] in the context of synchronous interface theories [23].
While the mathematical properties of the conjunction in dif-
ferent interface theories were further studied in [12,30,43],
we are not aware of any similar work related to MBT.

Synchronous data-flow modeling [15] has been an active
area of research in the past. The most important synchronous
data-flow programming languages are Lustre [22] and SIG-
NAL [27]. These languages are implementation languages,
while requirement interfaces enable specifying high-level
properties of such programs. Testing of Lustre-like programs
was studied by Raymond et al. [42] and Papailiopoulou [41].
The specification language SCADE [16] supports graphical
representation of synchronous systems. Internally, SCADE
models are stored in a textual representation very similar to
Lustre. Experimental results for test-case generation were
presented by Wakankar et al. [49] for experiments where the
manually translated SCADE models to SAL-ATG models,
and used the SAL-ATG for the test-case generation.

The tool STIMULUS [34] allows the synchronous speci-
fication and debugging of real-time systems, via predefined
sentence templates, which can be simulated via a constraint
solver. As in our approach, this enables a tight traceability
between the natural language requirements, the formalized
requirements, and the outcome of the verification tasks. They
combine a user-friendly specification language with formal

verification via BDDs. The tool is evaluated on an automotive
case study.

Compositional properties of specifications in the context
of testing were studied before [7,18,24,38,44]. None of these
works consider synchronous data-flow specifications, and the
compositional properties are investigated with respect to the
parallel composition and hiding operations, but not conjunc-
tion. A different notion of conjunction is introduced for the
test-case generation with SAL [28]. In that work, the authors
encode test purposes as trap variables and conjunct them to
drive the test-case generation process towards reaching all
the test purposes with a single test case. Consistency check-
ing of contracts has been studied in [26], yet for a weaker
notion of consistency.

Our specifications using constraints share similarities with
the Z specification language [45] that also follows a multiple-
viewpoint approach to structuring a specification into pieces
called schemas. However, a Z schema defines the dynamics of
a system in terms of operations. In contrast, our requirement
interfaces follow the style of synchronous languages.

Brillout et al. [20] performed mutation-based test-case
generation on SIMULINK models. They implemented the
approach in the tool COVER, based on the model-checker
CBMC. He et al. [29] exploit similarity measures on mutants
of SIMULINK models, to decrease the cost of mutation-
based test-case generation. They provide experiments to
show the advantages of model-based mutation testing com-
pared with random testing, and compared with simpler
mutation-based testing approaches.

There exist several tools for test-case generation for syn-
chronous systems. The tool Lutess [19] is based on Lustre.
It takes the specification of the environment (specified in
Lustre), a test sequence generator, and an oracle and per-
formed online testing on the system under test according to
the environment and traces selected by the generator accord-
ing to several different modes. Another tool based on Lustre
is called Lurette [42]. Lurette only performs random test-
ing, but is able to validate systems with numerical inputs and
outputs. A third testing tool based on Lustre is called GATeL
[39]. It generates tests according to test purposes, using con-
straint logic programming to search for suitable traces.

The tool Autofocus [32] facilitates test-case generation
from time-synchronous communicating extended finite-state
machines that build a distributed system. It is based on
constraint logic programming, and supports functional, struc-
tural, and stochastic test specifications.

The application of the test-case generation and con-
sistency checking tool for requirement interfaces and its
integration into a set of software engineering tools was pre-
sented in [4]. That work focuses on the requirement-driven
testing methodology, workflow, and tool integration, and
gives no technical details about requirement interfaces. In
contrast, this paper provides a sound mathematical theory

123

424 B. K. Aichernig et al.

for requirements interfaces and their associated incremental
test-case generation, consistency checking, and tracing pro-
cedures.

Model-based mutation testing was initially used for
predicate-calculus specifications [21] and later applied to for-
mal Z specifications [46]. Amman et al. [8] used temporal
formulae to check equivalence between models and mutants,
and converted counter examples to test cases, in case of non-
equivalence. Belli et al. [9,10] applied model-based mutation
testing to event sequence graphs and pushdown automata.
Hierons and Merayo [31] applied mutation-based test-case
generation to probabilistic finite-state machines. The work
presents mutation operators and describes how to create input
sequences to kill a given mutated state machine.

Model-based mutation testing has already been applied to
UML models [1,3], action systems [2], and timed automata
[6].

7 Conclusions and future work

We presented a framework for requirement-driven model-
ing and testing of complex systems that naturally enable the
multiple-view incremental modeling of synchronous data-
flow systems. The formalism enables conformance testing of
complex systems to their requirements and combining partial
models via conjunction.

We also adapted the model-based mutation testing tech-
nique to requirement interfaces, and evaluated its applicabil-
ity for two industrial case studies.

Our requirement-driven framework opens many future
directions. We will extend our procedure to allow generation
of adaptive test cases. In the context of model-based mutation
testing, we will investigate strong mutation testing and muta-
tion of assumptions. We will investigate in the future other
compositional operations in the context of testing synchro-
nous systems, such as the parallel composition and quotient.
We intend on adding timed semantics to requirement inter-
faces, for a more thorough timing analysis. We will consider
additional coverage criteria and test purposes, and will use
our implementation to generate test cases for safety-critical
domains, including automotive, avionics, and railways appli-
cations.

Acknowledgements Open access funding provided by Graz Univer-
sity of Technology.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

Appendix-Proofs

Proof of Theorem 1

Proof Let A1 and A2 be two consistent requirement inter-
faces defined over the same alphabet. We first show that
A1 ∧ A2 can be inconsistent. For this, we choose A1 and
A2, such that X1

I = X2
I = {x}, X1

O = X2
O = {y},

X1
H = X2

H = ∅, Ĉ1 = {c1}, C1 = ∅, Ĉ2 = {c2}, and
C2 = ∅, where c1 = true � y′ = 0 and c2 = true � y′ = 1.
It is clear that both A1 and A2 are consistent—for any new
value of x , A1 (A2) updates the value of y to 0 (1). However,
A1 ∧ A2 is inconsistent, since no implementation can satisfy
the guarantees of c1 and c2 simultaneously (y′ = 0∧y′ = 1).

Assume that A1 ∧ A2 is consistent. We now prove that
L(A1 ∧ A2) ⊆ L(A1)∩L(A2). The proof is by induction on
the size of σ .
Base case σ = ε. We have that A1 ∧ A2 after ε =
A1 after ε = A2 after ε = {v̂}.
Inductive step Let σ be an arbitrary trace of size n, such
that σ ∈ L(A1 ∧ A2). By inductive hypothesis, σ ∈ L(A1)

and σ ∈ L(A2). Consider an arbitrary wobs, such that
σ · wobs ∈ L(A1 ∧ A2). Let V1∧2 = {v | v̂

σ�⇒ v}. By
the definition of a semantics of requirement interfaces, it fol-
lows that V ′

1∧2 = {v′ | v
wobs��⇒1∧2 v′ for some v ∈ V1∧2}

is non-empty. Let v′ be an arbitrary state in V ′
1∧2, hence we

have that v →1∧2 v′. Let Ci∗ = {(ϕ � ψ) | (ϕ � ψ) ∈
Ci and (v, π(v′)[XI]) |� ϕ} for i ∈ {1, 2} denote the
(possibly empty) set of contracts in Ai for which the pair
(v, v′) satisfies its assumptions. By the definition of con-
junction and semantics of requirement interfaces, we have
that (v, v′) |� ∧

(ϕ�ψ)∈C1∗ ψ ∧ ∧
(ϕ�ψ)∈C2∗ ψ . It follows

that (v, v′) |� ∧
(ϕ�ψ)∈C1∗ ψ , and (v, v′) |� ∧

(ϕ�ψ)∈C2∗ ψ ,
hence we can conclude that v →1 v′ and v →2 v′, hence
σ · wobs ∈ L(A1) and σ · wobs ∈ L(A2), which concludes
the proof that L(A1 ∧ A2) ⊆ L(A1) ∩ L(A2).

We now show that L(A1 ∧ A2) ⊇ L(A1) ∩ L(A2). The
proof is by induction on the size of σ .
Base case σ = ε. We have that A1 ∧ A2 after ε =
A1 after ε = A2 after ε = {v̂}.
Inductive step Let σ be an arbitrary trace of size n, such
that σ ∈ L(A1) and σ ∈ L(A2). By inductive hypothesis,
it follows that σ ∈ L(A1 ∧ A2). Let σ ′ = σ · v. Con-
sider an arbitrary wobs, such that σ · wobs ∈ L(A1) and
σ · wobs ∈ L(A2). It follows that v

wobs��⇒1 and v
wobs��⇒2.

Let Ci∗ = {(ϕ � ψ) | (ϕ � ψ) ∈ Ci and (v,wobs) |� ϕ}
for i ∈ {1, 2} denote the (possibly empty) set of contracts in
Ai for which the pair (v,wobs) satisfies its assumptions. By
the definition of conjunction and the semantics of require-
ment interfaces, we have that there exist v′ and v′′, such that
(v, v′) |� ∧

(ϕ�,ψ)∈C1∗ ψ , and (v, v′′) |� ∧
(ϕ�ψ)∈C2∗ ψ . By

the assumption that A1 ∧ A2 is consistent, we have that there

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Require, test, and trace IT 425

exists v′, such that (v, v′) |� ∧
(ϕ�ψ)∈C1∗ ψ ∧ ∧

(ϕ�,ψ)∈C2∗ ψ

and that σ · wobs ∈ L(A1 ∧ A2), which concludes the proof
that L(A1 ∧ A2) ⊇ L(A1) ∩ L(A2). ��

Proof of Theorem 2

Proof Assume that A1 ∧ A2 is consistent and consider an
arbitrary consistent interface A that shares the same alphabet
with A1 and A2. The proofs that A1 ∧ A2 � A1, A1 ∧ A2 �
A2, and that if A � A1 and A � A2, then A � A1∧A2 follow
directly from Theorem 1 and the definition of refinement.

��

Proof of Proposition 1

– Proof We first prove the loop invariant that if SUT � A,
then in �= fail and σ ∈ L(A). In Line 6, the next input
in is by definition of the test case TσI ,A the next valid
input in σI . The extended trace in Line 7 is a trace of
SUT. If SUT � A, this extended trace is by definition of
refinement also a trace of A. In this case, by definition
of the test case TσI ,A the next input in of Line 8 will be
either the pass verdict or the next input of σI . Hence, the
invariant holds. Consequently, when the loop terminates
the pass verdict is returned. ��

– Proof By negation, we obtain the proposition: if SUT �
A, then TestExec(SUT, TσI ,A) �= fail. This follows
directly from the loop invariant established above. ��

References

1. Aichernig, B.K., Brandl, H., Jöbstl, E., Krenn, W.: Efficient muta-
tion killers in action. In: Fourth IEEE international conference on
software testing, verification and validation, ICST 2011, Berlin,
Germany, March 21–25, pp. 120–129. IEEE Computer Society
(2011). doi:10.1109/ICST.2011.57

2. Aichernig, B.K., Brandl, H., Jöbstl, E., Krenn, W.: UML in action: a
two-layered interpretation for testing. ACM SIGSOFT Softw. Eng.
Notes 36(1), 1–8 (2011). doi:10.1145/1921532.1921559

3. Aichernig, B.K., Brandl, H., Jöbstl, E., Krenn, W., Schlick, R.,
Tiran, S.: Killing strategies for model-based mutation testing.
Softw. Test. Verif. Reliab. 25(8), 716–748 (2015). doi:10.1002/
stvr.1522

4. Aichernig, B.K., Hörmaier, K., Lorber, F., Nickovic, D., Schlick,
R., Simoneau, D., Tiran, S.: Integration of requirements engineer-
ing and test-case generation via OSLC. In: 2014 14th International
Conference on Quality Software, Allen, TX, October 2–3, pp. 117–
126. IEEE (2014). doi:10.1109/QSIC.2014.13

5. Aichernig, B.K., Hörmaier, K., Lorber, F., Nickovic, D., Tiran, S.:
Require, test and trace IT. In: Formal Methods for Industrial Critical
Systems—20th International Workshop, FMICS 2015, Oslo, Nor-
way, June 22-23, 2015 Proceedings, pp. 113–127 (2015). doi:10.
1007/978-3-319-19458-5_8

6. Aichernig, B. K., Lorber, F., Nickovic, D.: Time for mutants—
model-based mutation testing with timed automata. In: Veanes, M.,
Viganò, L. (eds.) Tests and Proofs—7th International Conference,
TAP 2013, Budapest, Hungary, June 16–20, 2013. Proceedings,

Lecture Notes in Computer Science, vol. 7942, pp. 20–38. Springer,
New York (2013). doi:10.1007/978-3-642-38916-0_2

7. Aiguier, M., Boulanger, F., Kanso, B.: A formal abstract frame-
work for modelling and testing complex software systems. Theor.
Comput. Sci. 455, 66–97 (2012)

8. Ammann, P.E., Black, P.E., Majurski, W.: Using model checking to
generate tests from specifications. In: In Proceedings of the Second
IEEE International Conference on Formal Engineering Methods
(ICFEM98), pp. 46–54. IEEE Computer Society (1998)

9. Belli, F., Beyazit, M., Takagi, T., Furukawa, Z.: Model-based
mutation testing using pushdown automata. IEICE Trans. 95-
D(9), 2211–2218 (2012). http://search.ieice.org/bin/summary.
php?id=e95-d_9_2211

10. Belli, F., Budnik, C.J., Wong, W.E.: Basic operations for generat-
ing behavioral mutants. In: MUTATION, pp. 9–. IEEE Computer
Society (2006). doi:10.1109/MUTATION.2006.2

11. Benveniste, A., Berry, G.: The synchronous approach to reactive
and real-time systems. In: De Micheli, G. , Ernst, R., Wolf, W. (eds.)
Readings in Hardware/Software Co-design, pp. 147–159. Kluwer
Academic Publishers, Norwell (2002). http://dl.acm.org/citation.
cfm?id=567003.567015

12. Benveniste, A., Caillaud, B., Ferrari, A., Mangeruca, L., Passerone,
R., Sofronis, C.: Multiple viewpoint contract-based specifica-
tion and design. In: de Boer, F.S., Bonsangue, M.M. , Graf,
S., de Roever, W.P. (eds.) Formal Methods for Components and
Objects, 6th International Symposium, FMCO 2007, Amsterdam,
The Netherlands, October 24–26, 2007, Revised Lectures, Lec-
ture Notes in Computer Science, vol. 5382, pp. 200–225. Springer
(2007). doi:10.1007/978-3-540-92188-2_9

13. Benveniste, A., Caillaud, B., Ničković, D., Passerone, R., Raclet,
J.B., Reinkemeier, P., Sangiovanni-Vincentelli, A., Damm, W.,
Henzinger, T., Larsen, K.G.: Contracts for System Design. Rap-
port de recherche RR-8147, INRIA (2012)

14. Benveniste, A., Caspi, P., Edwards, S.A., Halbwachs, N., Le Guer-
nic, P., De Simone, R.: The synchronous languages 12 years
later. Proc. IEEE 91(1), 64–83 (2003). doi:10.1109/JPROC.2002.
805826

15. Benveniste, A., Caspi, P., Guernic, P.L., Halbwachs, N.: Data-flow
synchronous languages. In: REX School/Symposium, LNCS, vol.
803, pp. 1–45. Springer, New York (1993)

16. Berry, G.: Scade: Synchronous design and validation of embed-
ded control software. In: Ramesh, S., Sampath, P. (eds.) Next
Generation Design and Verification Methodologies for Distributed
Embedded Control Systems: Proceedings of the GM R&D Work-
shop, Bangalore, India, January 2007, pp. 19–33. Springer, The
Netherlands (2007). doi:10.1007/978-1-4020-6254-4_2

17. Berry, G., Gonthier, G.: The esterel synchronous programming lan-
guage: design, semantics, implementation. Sci. Comput. Program.
19(2), 87–152 (1992)

18. van der Bijl, M., Rensink, A., Tretmans, J.: Compositional testing
with ioco. In: Petrenko, A., Ulrich, A. (eds.) Formal Approaches
to Software Testing, Third International Workshop on Formal
Approaches to Testing of Software, FATES 2003, Montreal, Que-
bec, Canada, October 6th, 2003, Lecture Notes in Computer
Science, vol. 2931, pp. 86–100. Springer, New York (2003). doi:10.
1007/978-3-540-24617-6_7

19. du Bousquet, L., Ouabdesselam, F., Richier, J.L., Zuanon, N.: Lut-
ess: a specification-driven testing environment for synchronous
software. In: Proceedings of the 21st International Conference on
Software Engineering, ICSE ’99, pp. 267–276. ACM, New York
(1999). doi:10.1145/302405.302634

20. Brillout, A., He, N., Mazzucchi, M., Kröning, D., Purandare, M.,
Rümmer, P., Weissenbacher, G.: Mutation-based test case genera-
tion for Simulink models. In: Revised Selected Papers of the 8th
International Symposium on Formal Methods for Components and

123

http://dx.doi.org/10.1109/ICST.2011.57
http://dx.doi.org/10.1145/1921532.1921559
http://dx.doi.org/10.1002/stvr.1522
http://dx.doi.org/10.1002/stvr.1522
http://dx.doi.org/10.1109/QSIC.2014.13
http://dx.doi.org/10.1007/978-3-319-19458-5_8
http://dx.doi.org/10.1007/978-3-319-19458-5_8
http://dx.doi.org/10.1007/978-3-642-38916-0_2
http://search.ieice.org/bin/summary.php?id=e95-d_9_2211
http://search.ieice.org/bin/summary.php?id=e95-d_9_2211
http://dx.doi.org/10.1109/MUTATION.2006.2
http://dl.acm.org/citation.cfm?id=567003.567015
http://dl.acm.org/citation.cfm?id=567003.567015
http://dx.doi.org/10.1007/978-3-540-92188-2_9
http://dx.doi.org/10.1109/JPROC.2002.805826
http://dx.doi.org/10.1109/JPROC.2002.805826
http://dx.doi.org/10.1007/978-1-4020-6254-4_2
http://dx.doi.org/10.1007/978-3-540-24617-6_7
http://dx.doi.org/10.1007/978-3-540-24617-6_7
http://dx.doi.org/10.1145/302405.302634

426 B. K. Aichernig et al.

Objects (FMCO 2009), Lecture Notes in Computer Science, vol.
6286, pp. 208–227. Springer, New York (2010)

21. Budd, T.A., Gopal, A.S.: Program testing by specification
mutation. Comput. Lang. 10(1), 63–73 (1985). doi:10.1016/
0096-0551(85)90011-6

22. Caspi, P., Pilaud, D., Halbwachs, N., Plaice, J.: Lustre: A declar-
ative language for programming synchronous systems. In: Con-
ference Record of the Fourteenth Annual ACM Symposium on
Principles of Programming Languages, Munich, Germany, Janu-
ary 21-23, 1987, pp. 178–188. ACM Press (1987). doi:10.1145/
41625.41641

23. Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Mang, F.Y.C.: Syn-
chronous and bidirectional component interfaces. In: Brinksma,
E., Larsen, K.G. (eds.) Computer Aided Verification, 14th Inter-
national Conference, CAV 2002, Copenhagen, Denmark, July
27-31, 2002, Proceedings, Lecture Notes in Computer Science,
vol. 2404, pp. 414–427. Springer, New York (2002). doi:10.1007/
3-540-45657-0_34

24. Daca, P., Henzinger, T.A., Krenn, W., Ničković, D.: Compositional
specifications for ioco testing: Technical report. Technical report,
IST Austria (2014). http://repository.ist.ac.at/152/

25. Doyen, L., Henzinger, T.A., Jobstmann, B., Petrov, T.: Interface
theories with component reuse. In: de Alfaro, L., Palsberg, J. (eds.)
Proceedings of the 8th ACM & IEEE International conference on
Embedded software, EMSOFT 2008, Atlanta, October 19-24, pp.
79–88. ACM (2008). doi:10.1145/1450058.1450070

26. Ellen, C., Sieverding, S., Hungar, H.: Detecting consistencies and
inconsistencies of pattern-based functional requirements. In: Lang,
F., Flammini, F. (eds.) Formal Methods for Industrial Critical
Systems—19th International Conference, FMICS 2014, Florence,
September 11–12, 2014. Proceedings, Lecture Notes in Computer
Science, vol. 8718, pp. 155–169. Springer, New York (2014).
doi:10.1007/978-3-319-10702-8_11

27. Gautier, T., Guernic, P.L.: SIGNAL: A declarative language for
synchronous programming of real-time systems. In: Kahn, G. (ed.)
Functional Programming Languages and Computer Architecture,
Portland, Oregon, USA, September 14–16, 1987, Proceedings,
Lecture Notes in Computer Science, vol. 274, pp. 257–277.
Springer, New York (1987). doi:10.1007/3-540-18317-5_15

28. Hamon, G., De Moura, L., Rushby, J.: Automated test generation
with sal. CSL Technical Note (2005)

29. He, N., Rümmer, P., Kröning, D.: Test-case generation for embed-
ded simulink via formal concept analysis. In: Proceedings of the
48th Design Automation Conference, DAC ’11, pp. 224–229.
ACM, New York (2011). doi:10.1145/2024724.2024777

30. Henzinger, T.A., Ničković, D.: Independent implementability of
viewpoints. In: Monterey Workshop, LNCS, vol. 7539, pp. 380–
395. Springer, New York (2012)

31. Hierons, R., Merayo, M.: Mutation testing from probabilistic
finite state machines. In: Testing: Academic and Industrial Con-
ference Practice and Research Techniques—MUTATION, 2007.
TAICPART-MUTATION 2007, pp. 141–150 (2007). doi:10.1109/
TAIC.PART.2007.20

32. Huber, F., Schätz, B., Schmidt, A., Spies, K.: AutoFocus: A tool
for distributed systems specification. In: Proceedings of the 4th
International Symposium on Formal Techniques in Real-Time and
Fault-Tolerant Systems (FTRTFT 1996), Lecture Notes in Com-
puter Science, vol. 1135, pp. 467–470. Springer, New York (1996)

33. ISO: ISO/DIS 26262-1 - Road vehicles—Functional safety—Part
1 Glossary. Tech. rep., International Organization for Standardiza-
tion/Technical Committee 22 (ISO/TC 22), Geneva, Switzerland
(2009)

34. Jeannet, B., Gaucher, F.: Debugging embedded systems require-
ments with stimulus: an automotive case-study. In: 8th European
Congress on Embedded Real Time Software and Systems (ERTS
2016) (2016)

35. Jia, Y., Harman, M.: An analysis and survey of the development of
mutation testing. Softw. Eng. IEEE Trans. 37(5), 649–678 (2011).
doi:10.1109/TSE.2010.62

36. Junker, U.: Quickxplain: Preferred explanations and relaxations for
over-constrained problems. In: AAAI, pp. 167–172. AAAI Press,
California (2004)

37. Just, R., Schweiggert, F., Kapfhammer, G.M.: MAJOR: An effi-
cient and extensible tool for mutation analysis in a Java compiler. In:
Proceedings of the International Conference on Automated Soft-
ware Engineering (ASE), pp. 612–615 (2011)

38. Krichen, M., Tripakis, S.: Conformance testing for real-time sys-
tems. Formal Methods Syst. Des. 34(3), 238–304 (2009)

39. Marre, B., Arnould, A.: Test sequences generation from LUSTRE
descriptions: GATEL. In: Automated Software Engineering, 2000.
Proceedings ASE 2000. The Fifteenth IEEE International Confer-
ence on, pp. 229–237 (2000). doi:10.1109/ASE.2000.873667

40. Moura, L., Björner, N.: Z3: an efficient smt solver. In: Tools and
algorithms for the construction and analysis of systems. LNCS,
vol. 4963, pp. 337–340. Springer, New York (2008). doi:10.1007/
978-3-540-78800-3_24

41. Papailiopoulou, V.: Automatic test generation for lustre/scade
programs. In: ASE, pp. 517–520. IEEE Computer Society, Wash-
ington, DC (2008). doi:10.1109/ASE.2008.96

42. Raymond, P., Nicollin, X., Halbwachs, N., Weber, D.: Automatic
testing of reactive systems. In: RTSS, pp. 200–209. IEEE Computer
Society (1998)

43. Reineke, J., Tripakis, S.: Basic problems in multi-view modeling.
Tech. Rep. UCB/EECS-2014-4. EECS Department, University of
California, Berkeley (2014)

44. Sampaio, A., Nogueira, S., Mota, A.: Compositional verification of
input-output conformance via CSP refinement checking. In: Bre-
itman, K., Cavalcanti, A. (eds.) Formal Methods and Software
Engineering, 11th International Conference on Formal Engineer-
ing Methods, ICFEM 2009, Rio de Janeiro, Brazil, December
9-12, 2009. Proceedings, Lecture Notes in Computer Science,
vol. 5885, pp. 20–48. Springer, New York (2009). doi:10.1007/
978-3-642-10373-5_2

45. Spivey, J.M.: Z Notation—a reference manual, 2nd edn. Prentice
Hall, Prentice Hall International Series in Computer Science (1992)

46. Stocks, P.A.: Applying formal methods to software testing. Ph.D.
thesis, Department of computer science, University of Queensland
(1993)

47. Teehan, P., Greenstreet, M., Lemieux, G.: A survey and taxonomy
of GALS design styles. IEEE Des. Test Comput. 24(5), 418–428
(2007). doi:10.1109/MDT.2007.151

48. Tretmans, J.: Test generation with inputs, outputs and repetitive
quiescence. Softw. Concepts Tools 17(3), 103–120 (1996)

49. Wakankar, A., Bhattacharjee, A.K., Dhodapkar, S.D., Pandya, P.K.,
Arya, K.: Automatic test case generation in model based software
design to achieve higher reliability. In: Reliability, Safety and Haz-
ard (ICRESH), 2010 2nd International Conference on, pp. 493–499
(2010). doi:10.1109/ICRESH.2010.5779600

123

http://dx.doi.org/10.1016/0096-0551(85)90011-6
http://dx.doi.org/10.1016/0096-0551(85)90011-6
http://dx.doi.org/10.1145/41625.41641
http://dx.doi.org/10.1145/41625.41641
http://dx.doi.org/10.1007/3-540-45657-0_34
http://dx.doi.org/10.1007/3-540-45657-0_34
http://repository.ist.ac.at/152/
http://dx.doi.org/10.1145/1450058.1450070
http://dx.doi.org/10.1007/978-3-319-10702-8_11
http://dx.doi.org/10.1007/3-540-18317-5_15
http://dx.doi.org/10.1145/2024724.2024777
http://dx.doi.org/10.1109/TAIC.PART.2007.20
http://dx.doi.org/10.1109/TAIC.PART.2007.20
http://dx.doi.org/10.1109/TSE.2010.62
http://dx.doi.org/10.1109/ASE.2000.873667
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1109/ASE.2008.96
http://dx.doi.org/10.1007/978-3-642-10373-5_2
http://dx.doi.org/10.1007/978-3-642-10373-5_2
http://dx.doi.org/10.1109/MDT.2007.151
http://dx.doi.org/10.1109/ICRESH.2010.5779600

	Require, test, and trace IT
	Abstract
	1 Introduction
	2 Requirement interfaces
	2.1 Syntax
	2.2 Semantics
	2.3 Consistency, refinement, and conjunction

	3 Consistency, testing, and tracing
	3.1 Bounded consistency checking
	3.2 Test-case generation
	3.3 Test-case execution
	3.4 Traceability

	4 Model-based mutation testing
	5 Implementation and experimental results
	5.1 Demonstrating example
	5.2 Safing engine
	5.3 Automated speed limiter

	6 Related work
	7 Conclusions and future work
	Acknowledgements
	Appendix-Proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Proposition 1

	References

