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Abstract A sequence A of positive integers having the property that no element
ai ∈ A divides the sum a j + ak of two larger elements is said to have ‘Property
P’. We construct an infinite set S ⊂ N having Property P with counting function

S(x) �
√
x√

log x(log log x)2(log log log x)2
. This improves on an example given by Erdős and

Sárközy with a lower bound on the counting function of order
√
x

log x .

Keywords Sequences with Property P · Sums of two squares · Primes in arithmetic
progressions · Distribution of integers with given prime factorization

Mathematics Subject Classification 11B83 · 11N13

1 Introduction

Erdős and Sárközy [9] define a monotonically increasing sequence A = {a1 < a2 <

. . .} of positive integers to have ‘Property P’ if ai � a j +ak for i < j ≤ k. They proved
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566 C. Elsholtz, S. Planitzer

that any infinite sequence of integers with Property P has density 0. Schoen [15]
showed that if an infinite sequence A has Property P and any two elements in A
are coprime then the counting function A(x) = ∑

ai<x 1 is bounded from above by

A(x) < 2x
2
3 and Baier [1] improved this to A(x) < (3+ε)x

2
3 (log x)−1 for any ε > 0.

Concerning finite sequences with Property P, Erdős and Sárközy [9] get the lower
bound max A(x) ≥ � x

3 	+1 by just taking A to be the set A = {x, x−1, . . . , x−� x
3 	}

for x ∈ N.
Erdős and Sárközy also thought about large sets with Property P with respect to

the size of the counting function (cf. [9, p. 98]). They observed that the set A = {q2i :
qi the i-th prime with qi ≡ 3 mod 4} has Property P. This uses the fact that the square
of a prime p ≡ 3 mod 4 has only the trivial representation p2 = p2 + 02 as the sum
of two squares. With this set A they get

A(x) ∼
√
x

log x
.

Erdős has asked repeatedly to improve this (see e.g. [6, p. 185], [7, p. 535]) and in
particular, Erdős [7,8] asked if one can do better than an ∼ (2n log n)2. He wanted
to know if it is possible to have an < n2. We will not quite achieve this but we go a
considerable step in this direction. First, we observe that a set of squares of integers
consisting of precisely k prime factors p ≡ 3 mod 4 also has Property P. As for any
fixed k this would only lead to a moderate improvement, our next idea is to try to
choose k increasing with x . In order to do so, we actually use a union of several sets Si
with Property P. Together, this union will have a good counting function throughout
all ranges of x . However, in order to ensure that this union of sets with Property P still
has Property P, we employ a third idea, namely to equip all members a ∈ Si with a
special indicator factor. This seems to be the first improvement going well beyond the
example given by Erdős and Sárközy since 1970. Our main result will be the following
theorem.

Theorem The set S ⊂ N constructed explicitly below has Property P and counting
function

S(x) �
√
x√

log x(log log x)2(log log log x)2
.

We achieve this improvement by not only considering squares of primes p ≡ 3 mod 4
but products of squares of such primes. More formally we set

S =
∞⋃

i=1

Si . (1)

Here the sets Si are defined by

Si :=
{
n ∈ N : n = q4i ν

2
}

, (2)
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On Erdős and Sárközy’s sequences with Property P 567

where ν is the product of exactly i distinct primes p ≡ 3 mod 4 and we recall that
qi is the i-th prime in the residue class 3 mod 4. The rôle of the qi is an ‘indicator’
which uniquely identifies the set Si a given integer n ∈ S belongs to. Results from
probabilistic number theory like the Theorem of Erdős-Kac suggest that for varying
x different sets Si will yield the main contribution to the counting function S(x). In
particular for given x > 0 the main contribution comes from the sets Si with

log log
√
x

2
−

√

log log
√
x

2
≤ i ≤ log log

√
x

2
+

√

log log
√
x

2
.

The study of sequences with Property P is closely related to the study of primitive
sequences, i.e. sequences where no element divides any other and there is a rich
literature on this topic (cf. [10, Chapter V]). Indeed a similar idea as the one described
above was used byMartin and Pomerance [13] to construct a large primitive set.While
Besicovitch [3] proved that there exist infinite primitive sequences with positive upper
density, Erdős [4] showed that the lower density of these sequences is always 0. In
his proof Erdős used the fact that for a primitive sequence of positive integers the
sum

∑∞
i=1

1
ai log ai

converges. In more recent work Banks and Martin [2] make some
progress towards a conjecture of Erdős which states that in the case of a primitive
sequence

∞∑

i=1

1

ai log ai
≤

∑

p∈P

1

p log p

holds. Erdős [5] studied a variant of the Property P problem, also in its multiplicative
form.

2 Notation

Before we go into details concerning the proof of the Theorem we need to fix some
notation. Throughout this paper P denotes the set of primes and the letter p (with or
without index) will always denote a prime number.Wewrite logk for the k-fold iterated
logarithm. The functions ω and � count, as usual, the prime divisors of a positive
integer n without respectively with multiplicity. For two functions f, g : R → R

+ the
binary relation f � g (and analogously f � g) denotes that there exists a constant
c > 0 such that for x sufficiently large f (x) ≥ cg(x) ( f (x) ≤ cg(x) respectively).
Dependence of the implied constant on certain parameters is indicated by subscripts.
The same convention is used for the Landau symbolO where f = O(g) is equivalent
to f � g. We write f = o(g) if limx→∞ f (x)

g(x) = 0.

3 The set S has Property P

In this section we verify that any union of sets Si defined in (2) has Property P.
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568 C. Elsholtz, S. Planitzer

Lemma 1 Let n1, n2 and n3 be positive integers. If there exists a prime p ≡ 3 mod 4
with p|n1 and p � gcd(n2, n3), then

n21 � n22 + n23.

Proof Weprove theLemmaby contradiction. Suppose that n21|n22+n23. By our assump-
tion there exists a prime p ≡ 3 mod 4 such that p|n1 and p � gcd(n2, n3). Hence,
w.l.o.g. p � n2. We have

n22 + n23 ≡ 0 mod p

and since p does not divide n2, we get that n2 is invertible mod p. Hence

(
n3
n2

)2

≡ −1 mod p

a contradiction since −1 is a quadratic non-residue mod p. ��
Lemma 2 Any union of sets Si defined in (2) has Property P.

Proof Suppose by contradiction that there exist ai ∈ Si , a j ∈ S j and ak ∈ Sk with
ai < a j ≤ ak and ai |a j + ak . First suppose that either Si �= S j or Si �= Sk . Define
l ∈ {0, 2} to be the largest exponent such that qli | gcd(ai , a j , ak)where we again recall
that qi was defined as the i-th prime in the residue class 3 mod 4. Then

ai
qli

∣
∣
∣
∣
a j

qli
+ ak

qli
.

By construction of the sets Si , S j and Sk we have that qi
∣
∣ ai
qli

and w.l.o.g. qi �
a j

qli
. An

application of Lemma 1 finishes this case.
If Si = S j = Sk then�(ai ) = �(a j ) = �(ak). If there is some prime p with p| ai

q4i
and (p �

a j

q4i
or p �

ak
q4i
) we may again use Lemma 1. If no such p exists, then ai |a j and

ai |ak trivially holds. With the restriction on the number of prime factors we get that
ai = a j = ak . ��

4 Products of k distinct primes

In order to establish a lower bound for the counting functions of the sets Si in (2)
we need to count square-free integers containing exactly k distinct prime factors p ≡
3 mod 4, but no others, where k ∈ N is fixed. For k ≥ 2 and πk(x) := #{n ≤ x :
ω(n) = �(n) = k} Landau [11] proved the following asymptotic formula:

πk(x) ∼ x(log2 x)
k−1

(k − 1)! log x .
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On Erdős and Sárközy’s sequences with Property P 569

We will need a lower bound of similar asymptotic growth as the formula above for the
quantity

πk(x; 4, 3) := #{n ≤ x : p|n ⇒ p ≡ 3 mod 4, ω(n) = �(n) = k}.

Very recentlyMeng [14] used tools from analytic number theory to prove a generaliza-
tion of this result to square-free integers having k prime factors in prescribed residue
classes. The following is contained as a special case in [14, Lemma 9]:

Lemma A For any A > 0, uniformly for 2 ≤ k ≤ A log log x, we have

πk(x; 4, 3) = 1

2k
x

log x

(log log x)k−1

(k − 1)!
×

(

1+ k−1

log log x
C(3, 4)+ 2(k−1)(k−2)

(log log x)2
h′′

(
2(k−3)

3 log log x

)

+OA

(
k2

(log log x)3

))

,

where C(3, 4) = γ + ∑
p∈P

(
log

(
1 − 1

p

)
+ 2λ(p)

p

)
, γ is the Euler-Mascheroni con-

stant, λ(p) is the indicator function of primes in the residue class 3 mod 4 and

h(x) = 1

	
( x
2 + 1

)
∏

p∈P

(

1 − 1

p

)x/2 (

1 + xλ(p)

p

)

.

We will show that Lemma A with some extra work implies the following Corollary.

Corollary 1 Uniformly for log log x
2 − 1 ≤ k ≤ log log x

2 +
√

log log x
2 we have

πk(x; 4, 3) � 1

2k
x

log x

(log2 x)
k−1

(k − 1)! .

Proof In view of Lemma A and with k ∼ log log x
2 we see that it suffices to check that,

independent of the choice of k and for sufficiently large x , there exists a constant c > 0
such that

1 + C(3, 4)

2
+ 1

2
h′′

(
2(k − 3)

3 log log x

)

≥ c. (3)

Note that the left hand side of the above inequality is exactly the coefficient of themain

term 1
2k

x
log x

(log2 x)
k−1

(k−1)! for k in the range given in the Corollary. The constant C(3, 4)
does not depend on k. Using Mertens’ Formula (cf. [16, p. 19: Theorem 1.12]) in the
form

∑

p∈P
p≤x

log

(

1 − 1

p

)

= −γ − log log x + o(1)
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570 C. Elsholtz, S. Planitzer

we get

C(3, 4) = γ +
∑

p∈P

(

log

(

1 − 1

p

)

+ 2λ(p)

p

)

= 2M(3, 4),

where M(3, 4) is the constant appearing in

∑

p∈P

λ(p)

p
= log log x

2
+ M(3, 4) + O

(
1

log x

)

,

which was studied by Languasco and Zaccagnini in [12].1 The computational results
of Languasco and Zaccagnini imply that 0.0482 < M(3, 4) < 0.0483 and hence
allow for the following lower bound for C(3, 4):

C(3, 4) = 2M(3, 4) > 0.0964. (4)

It remains to get a lower bound for h′′
(

2(k−3)
3 log log x

)
, where the function h is defined as

in Lemma A. A straight forward calculation yields that

h′ =
∏

p∈P

(

1 − 1

p

)x/2 (

1 + xλ(p)

p

)

×
	

( x
2 + 1

) (∑
p∈P 1

2 log
(
1 − 1

p

)
+ λ(p)

p+xλ(p)

)
− 1

2	
′ ( x

2 + 1
)

	
( x
2 + 1

)2

and

h′′(x) = f (x)
∏

p∈P

(

1 − 1

p

)x/2 (

1 + xλ(p)

p

)

,

where

f (x) =
(∑

p∈P 1
2 log

(
1 − 1

p

)
+ λ(p)

p+xλ(p)

)2

	
( x
2 + 1

) − 	′′ ( x
2 + 1

)

4	
( x
2 + 1

)2 −
∑

p∈P
λ(p)

(p+λ(p)x)2

	
( x
2 + 1

)

−
	′ ( x

2 + 1
) (∑

p∈P 1
2 log

(
1 − 1

p

)
+ λ(p)

p+xλ(p)

)

	
( x
2 + 1

)2 + 	′ ( x
2 + 1

)2

2	
( x
2 + 1

)3 .

1 Note that our constant M(3, 4) corresponds to the constant M(4, 3) in the work of Languasco and
Zaccagnini.
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On Erdős and Sárközy’s sequences with Property P 571

Note that for x → ∞ and log log x
2 −1 ≤ k ≤ log log x

2 +
√

log log x
2 the term 2(k−3)

3 log log x gets

arbitrarily close to 1
3 . Hence wemay suppose that 99

300 ≤ 2(k−3)
3 log log x ≤ 101

300 and it suffices

to find a lower bound for h′′(x)where 99
300 ≤ x ≤ 101

300 . For x in this rangeMathematica
provides the following bounds on the Gamma function and its derivatives

0.9271 ≤ 	
( x

2
+ 1

)
≤ 0.9283, − 0.3104 ≤ 	′ ( x

2
+ 1

)
≤ −0.3058,

1.3209 ≤ 	′′ ( x
2

+ 1
)

≤ 1.3302.

Furthermore we have

∑

p∈P

λ(p)

(p + x)2
<

∑

p∈P

λ(p)

p2
<

∑

p∈P
p≤104

λ(p)

p2
+

∑

n>104

1

n2

< 0.1485 +
∫ ∞

x=104

dx

x2
= 0.1486.

Later we will use that

∑

p∈P

(
1

2
log

(

1 − 1

p

)

+ λ(p)

p + x

)

=
∑

p∈P

(
1

2
log

(

1 − 1

p

)

+ λ(p)

p

)

− x
∑

p∈P

λ(p)

p2 + px

>
∑

p∈P

(
1

2
log

(

1 − 1

p

)

+ λ(p)

p

)

− x
∑

p∈P

λ(p)

p2

= −γ

2
+ M(3, 4) − x

∑

p∈P

λ(p)

p2
> −0.2905,

and

∑

p∈P

(
1

2
log

(

1 − 1

p

)

+ λ(p)

p + x

)

<
∑

p∈P

(
1

2
log

(

1 − 1

p

)

+ λ(p)

p

)

= −γ

2
+ M(3, 4) < −0.2403.

Finally, using log(1 + x
p ) ≤ x

p , we get

0 ≤
∏

p∈P

(

1 − 1

p

)x/2 (

1 + xλ(p)

p

)

≤ exp

⎛

⎝x

⎛

⎝
∑

p∈P

(
1

2
log

(

1 − 1

p

)

+ λ(p)

p

)
⎞

⎠

⎞

⎠

= exp
(
x

(
−γ

2
+ M(3, 4)

))
< exp

(

− 99

300
· 0.2403

)

< 0.9238.
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572 C. Elsholtz, S. Planitzer

Applying the explicit bounds calculated above, for 99
300 ≤ x ≤ 101

300 we obtain:

f (x)≥0.24032

0.9283
− 1.3302

4 · 0.92712 − 0.1486

0.9271
−0.3104 · 0.2905

0.92712
+ 0.30582

2 · 0.92833 > −0.5315.

This implies for sufficiently large x :

h′′
(

2(k − 3)

3 log log x

)

> −0.492.

Together with (4) this leads to an admissible choice of c = 0.802 in (3). ��

5 The counting function S(x)

Proof of Theorem As in (1) we set

S =
∞⋃

i=1

Si

where the sets Si are defined as in (2). The set S has Property P by Lemma 2 and
it remains to work out a lower bound for the size of the counting function S(x).
For sufficiently large x there exists a uniquely determined integer k ∈ N such that
e2e

2k ≤ x < e2e
2(k+1)

hence

k ≤ log2
√
x

2
< k + 1. (5)

It depends on the size of x , which Si makes the largest contribution. For a given x

we take several sets Sk+2, Sk+3, . . . , Sk+l , l = �
√

log2
√
x

2 	, as the number of prime
factors p ≡ 3 mod 4 of a typical integer less than x is in

[
log2 x

2
−

√
log2 x

2
,
log2 x

2
+

√
log2 x

2

]

.

Using Corollary 1 as well as the fact that the i-th prime in the residue class 3 mod 4
is asymptotically of size 2i log i for given 2 ≤ j ≤ l we get

Sk+ j (x) �
√

x
16(k+ j)4 log4(k+ j)

log

(√
x

16(k+ j)4 log4(k+ j)

)

︸ ︷︷ ︸
F1

·

(

log2
√

x
16(k+ j)4 log4(k+ j)

)k+ j−1

2k+ j (k + j − 1)!
︸ ︷︷ ︸

F2

. (6)
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On Erdős and Sárközy’s sequences with Property P 573

We deal with the fractions F1 and F2 on the right hand side of (6) separately. With the
given range of j and (5) we have that

F1 �
√
x

log x(log2 x)2(log3 x)2
.

It remains to deal with F2. Using the given range of k and j we have that k + j ≤
log2

√
x and, again for sufficiently large x , for the numerator of F2 we get

logk+ j−1
2

√
x

16(k + j)4 log4(k + j)
� (log(log

√
x − log 4 − 2 log3

√
x − 2 log4

√
x))k+ j−1

� (log(log
√
x − 5 log3

√
x))k+ j−1

=
(

log2
√
x + log

(

1 − 5 log3
√
x

log
√
x

))k+ j−1

�
(

log2
√
x − 10 log3

√
x

log
√
x

)k+ j−1

�
(

1 − 10 log3
√
x

log
√
x log2

√
x

) log2
√
x

2 +
√

log2
√
x

2 −1

logk+ j−1
2

√
x

� logk+ j−1
2

√
x .

Here we used that

lim
x→∞

(

1 − 10 log3
√
x

log
√
x log2

√
x

) log2
√
x

2 +
√

log2
√
x

2 −1

= 1

and that for 0 ≤ y ≤ 1
2 we certainly have that log(1 − y) ≥ −2y. To deal with the

denominator of F2 we apply Stirling’s Formula and get

(k + j − 1)! �
(
k + j − 1

e

)k+ j−1 √
k + j − 1

�
(
log2

√
x + 2( j − 1)

2e

)k+ j−1 √
log2 x

� (log2
√
x + 2( j − 1))k+ j−1

√
log2 x

2k+ j−1e
log2

√
x

2 + j−2

� (log2
√
x + 2( j − 1))k+ j−1

√
log2 x

2k+ j−1e j−2
√
log x

.
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574 C. Elsholtz, S. Planitzer

Altogether we get

F2 �
√
log x

√
log2 x

e j−2
(

log2
√
x

log2
√
x + 2( j − 1)

)k+ j−1

�
√
log x

√
log2 x

e j−2
(

log2
√
x

log2
√
x + 2( j − 1)

)
log2

√
x

2
+ j−1

.

(7)

Since

(
log2

√
x

log2
√
x + 2( j − 1)

) log2
√
x

2

∼ 1

e j−1

it suffices to check that for any x > 0 and for our choices of j there exists a fixed
constant c > 0 such that

(

1 + 2( j − 1)

log2
√
x

)1− j

≥ c. (8)

For j ≥ 2 we have that
(
1 + 2( j−1)

log2
√
x

)1− j
is monotonically decreasing in j and get

(

1 + 2( j − 1)

log2
√
x

)1− j
≥

⎛

⎝1 + 2
√

log2
√
x

2
log2

√
x

⎞

⎠

−
√

log2
√
x

2

=
⎛

⎝1 + 1
√

log2
√
x

2

⎞

⎠

−
√

log2
√
x

2

≥ 1

e
.

Therefore for j ≥ 2 the constant c in (8) may be chosen as c = 1
e for sufficiently

large x . Together with (7) this implies

F2 �
√
log x

√
log2 x

.

Altogether for the counting function of any of the sets Si with � log2
√
x

2 	 + 2 ≤ i ≤
� log2

√
x

2 	 + �
√

log2
√
x

2 	 we have

Si (x) �
√
x

√
log x(log2 x)

5
2 (log3 x)2

.

Summing these contributions up we finally get

S(x) �
√
x√

log x(log2 x)2(log3 x)2
.

��
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