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Abstract In this article we consider the surplus process of an insurance company
within the Cramér–Lundberg framework with the intention of controlling its per-
formance by means of dynamic reinsurance. Our aim is to find a general dynamic
reinsurance strategy that maximizes the expected discounted surplus level integrated
over time. Using analytical methods we identify the value function as a particular
solution to the associated Hamilton–Jacobi–Bellman equation. This approach leads to
an implementable numerical method for approximating the value function and optimal
reinsurance strategy. Furthermore we give some examples illustrating the applicability
of this method for proportional and XL-reinsurance treaties.
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1 Introduction

The determination of optimal insurance contracts is a classical topic in insurance
mathematics. The first results are stated in a static utility theoretic framework and
concern the relation between a risk facing individual and the insurer. The goal is the
construction of an optimal insurance arrangement for the first party with a certain
constraint stemming from the second party. Classical contributions in this context
are Kenneth (1973), Raviv (1979) and Borch (1974), where one finds a collection
of pioneering articles. A more recent paper by Guerra and Centeno (2008) studies
this problem for exponential utility and provides the link to the maximization of
the so-called adjustment coefficient which is the decay rate of the ruin probability for
increasing initial capital. The idea of using reinsurance for maximizing the adjustment
coefficient was introduced byWaters (1983), further studied by Centeno (1986, 2002)
and Schmidli and Hald (2004), and can be considered as the motivation for studying
optimal reinsurance.

The first paper to study dynamic optimal reinsurance in the classical risk model
for the minimization of the ruin probability is Schmidli (2001), who dealt with the
case of proportional reinsurance treaties. This approach was extended to excess of
loss contracts by Hipp and Vogt (2003). A general presentation on ruin probability
minimization by means of reinsurance in the classical and diffusion risk model can
be found in Schmidli (2008). Furthermore, this reference provides some asymptotic
studies of the behaviour of optimal strategies, which in certain situations coincide with
the ones maximizing the adjustment coefficient. Some additional results with a focus
on non-proportional reinsurance contracts are given in Hipp and Taksar (2010).

Using a different criterion to assess the performance of an insurance portfolio,
Eisenberg (2010) thoroughly covers a variety of capital injection minimization prob-
lems under both the classical risk model and its diffusion approximation where
the insurer has the possibility to dynamically reinsure its risk. The incorporation
of dynamic reinsurance to the classical problem of maximizing the dividend pay-
outs of an insurance company prior to ruin in a compound Poisson framework was
treated by Azcue and Muler (2005) for general reinsurance schemes and by Mnif and
Sulem (2005) for excess of loss reinsurance. In a diffusion setting, the corresponding
problem was studied by Højgaard and Taksar (1999) in the case of proportional rein-
surance. Combining dividend pay-outs maximization with proportional risk exposure
reduction, Schäl (1998) formulated a piecewise deterministic Markov model where
only jumps but not the deterministic flow can be controlled. In contrast to the afore-
mentioned references which deal with optimal reinsurance for continuous time risk
processes, Schäl (2004) investigates a discrete time insurancemodel controlled by rein-
surance and investments in a financial market with the intention to either maximize the
expected exponential utility or minimize the ruin probability. An analogous problem
was treated by Irgens and Paulsen (2004), where the authors examine the purpose of
maximizing the expected utility of terminal wealth by use of optimal investment and
reinsurance.

Finally, we would like to mention a new approach linking ruin theoretical concepts
with the framework of worst-case optimization theory explored by Korn et al. (2012).
Embedded in a differential game setup, the authors applied a worst-case scenario
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An optimal reinsurance problem in the Cramér–Lundberg model 181

approach to maximize the expected utility of the surplus of an insurance company at
some given deterministic terminal time by dynamic proportional reinsurance.

In this contribution, we will study the use of dynamic reinsurance for maximizing
a particular economic performance measure which for a diffusion risk model was
introduced by Højgaard and Taksar (1998a, b).

For its definition, let Xu = (Xu
t )t≥0 be a surplus process comprising a reinsurance

strategy u. The performance measure of this particular strategy is defined by

V u(x) = Ex

[∫ τux

0
e−δt Xu

t dt

]
, (1)

where δ > 0 denotes a discount or preference rate and τu is the time of ruin of Xu.
In Taksar (2000) this measure is motivated by the following arguments: the surplus of
the insurance company is kept on a bank account and interest gains are immediately
distributed as dividends, thus maximizing expected discounted dividend payments
is equivalent to maximizing (1). Another way to motivate this value function in a
Markovian environment is to introduce a random life time S ∼ Exp(δ) which is
independent of all other model ingredients. Then one observes

V u(x) = 1

δ
Ex

[
Xu
S1{S<τux }

]
, (2)

which tells that the performance measure is proportional to the expected surplus at a
random exponential time S. This means that a dynamic reinsurance strategy is used
for maximizing the surplus at some exogenous point in time. Cost functions of the
form (1), or more generally involving a running costs function l(Xt ), are also studied
by Cai et al. (2009) in an uncontrolled piecewise-deterministic compound Poisson
environment.

The structure of the manuscript is as follows. In Sect. 2, we give a precise math-
ematical formulation of the problem, introducing the controlled surplus process and
the value function. The analytical characterization of the value function is presented
in Sect. 3. It starts with a collection of basic properties and employs the dynamic pro-
gramming approach for achieving a final statement. Section 4 includes some comments
on the numerical procedure obtained from the analytical results and two illustrative
examples. Finally, a conclusion is stated in Sect. 5.

2 Problem statement

In the sequel, we will always work on a probability space (Ω,F , P) which carries all
stochastic quantities to be defined in the following. In the Cramér–Lundberg model
(also known as compound Poisson model or classical risk model), the surplus process
X = (Xt )t≥0 of a homogeneous insurance portfolio is modeled as

Xt = x + ct −
Nt∑
i=1

Yi . (3)
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182 A. Cani, S. Thonhauser

Startingwith an initial deterministic surplus X0 = x ≥ 0, the surplus process increases
linearly due to premiums that are collected continuously over time at a constant rate
c > 0. On the other hand, it decreases due to claims happening at the arrival times of a
homogeneous Poisson process N = (Nt )t≥0 with intensity λ > 0. The claims {Yi }i∈N
constitute a sequence of positive independently and identically distributed random
variables with a density function fY (·) and finite mean μ. Later on we will use Y
as a representative random variable from this distribution. In addition, the sequence
{Yi }i∈N and N are assumed to be independent. The flow of information is given by
the filtration {Ft }t≥0 which is generated by the surplus process X . In the remainder
of the manuscript, we will use the symbol E for the expectation with respect to the
probability measure P , for the conditional expectation E(· | X0 = x) we will use the
expression Ex .

Fundamental quantities in this framework are the time of ruin

τx = inf{t ≥ 0 | Xt < 0 and X0 = x},

and the probability of ruin

ψ(x) = P (τx < ∞) ,

for initial capital x ≥ 0. In some of the proofs below we will compare pathwise, i.e.,
we fix an ω ∈ Ω , processes starting at different initial values x and y. Therefore it will
be necessary to add the initial value in the definition of the time of ruin, for example
Ex (Xτy ) denotes the expected value of the surplus started at x stopped at the time of
ruin as if the surplus would have started in y (x > y) (thinking along the same path).
Certainly, we have, using θ = inf{t ≥ 0 | Xt < x − y},Ex (Xτy ) = Ex (Xθ ), but we
believe that out of the context our notation will be more intuitive.

It is well known, that for avoiding almost sure ruin, it is necessary to choose a
premium intensity fulfilling the net-profit condition c > λμ. Therefore, based on the
expected value premium principle we set c = (1+ η)λμ with a safety loading η > 0.
For further details on classical problems in risk theory and related topics we refer to
Asmussen and Albrecher (2010).

Assume now that in order to reduce the risk exposure of the portfolio, the insurer
(cedent) has the possibility to take reinsurance in a dynamic way. Namely, at each
time t , the insurer transfers a portion of the premium income to a reinsurer, who in
turn commits to cover a part of the occurred claims. The dynamic reinsurance setup
we are going to use follows the presentation from Schmidli (2008).

Formally, a reinsurance scheme is given by a monotone increasing function r :
[0,∞) → [0,∞) which fulfills 0 ≤ r(y) ≤ y. Then r is the retention function with
the meaning that for a claim of size Y , the amount r(Y ) is paid by the insurer and
Y − r(Y ) is taken by the reinsurer. For introducing a control possibility a family of
available schemataR is parameterized by a control parameter u from a compact setU ′.
This means that for u ∈ U ′ the chosen reinsurance contract is given by r(·, u) ∈ R,
where r : [0,∞) × U ′ → R

+ with 0 ≤ r(y, u) ≤ y. In addition we assume that
r(y, u) is continuous in both arguments. After fixing the familyR, the set of available
reinsurance schemes is given by
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An optimal reinsurance problem in the Cramér–Lundberg model 183

R = {r(·, u) ∈ R |u ∈ U ′, 0 ≤ r(y, u) ≤ y, r continuous, and increasing in y}.

For later use we denote by ρ(y, u) the generalized inverse of r(y, u) in the
y−component, which due to monotonicity exists. Naturally, when employing reinsur-
ance there are premiums to be paid. We assume that the reinsurer uses a deterministic
premium function π : L1(Ω, P) → [0,∞), such that when fixing u ∈ U ′ the
premium is based on π(Y − r(Y, u)). From an aggregated risk perspective, if the
insurer chooses reinsurance u ∈ U ′ at time t , the premium at rate λ π(Y − r(Y, u))

is paid to the reinsurer. Consequently the premium income of the insurer reduces to
c(u) = c − λ π(Y − r(Y, u)). In the sequel, we shall always assume that c(u) is con-
tinuous and that full reinsurance leads to a negative premium income, i.e., c < λπ(Y ).

The premium function π may be based on the expected value principle,

π (Y − r(Y, u)) = (1 + θ)E [Y − r(Y, u)] ,

where θ > η denotes the safety loading of the reinsurer, or on the variance principle,

π (Y − r(Y, u)) = E [Y − r(Y, u)] + α Var [Y − r(Y, u)] ,

for αVar [Y ] > ημ.
Possible concrete choices for R and U ′ are the classical situations of proportional

reinsurance and excess-of-loss reinsurance. In the first case we have r(y, u) = uy and
u ∈ U ′ = [0, 1], in the second case r(y, u) = min(y, u) and u ∈ U ′ = [0,∞]. Notice,
that in the latter case, an infinite retention level is equivalent to no reinsurance. In the
following wewill restrict the set of control parameters to the setU = {u ∈ U ′ | c(u) ≥
0} for avoiding a negative premium rate. Since U ′ is supposed to be compact and c(·)
is continuous we have that U is compact.

Remark 1 The idea of a dynamic reinsurance strategy can be explained as follows.
At each time instant t , the insurer chooses a control parameter u = ut ∈ U which
specifies a reinsurance scheme r(·, u) from an available set of schemes. The choice of
u simultaneously determines the extent to which the insurer wants to reduce its risk
exposure and the additional cost this protection incurs, taking the form of a reinsurance
premium.Namely, if a claim occurs at time t , the insurer pays r(Y, ut ) and the reinsurer
pays the rest, i.e. Y − r(Y, ut ). In exchange of this risk transfer, the insurer pays to the
reinsurer a reinsurance premium at a rate λπ (Y − r(Y, ut )).

Let u = (ut )t≥0 be a U-valued stochastic process which is {Ft }t≥0 previsible and
called a reinsurance strategy. Then the dynamics of the controlled surplus process
Xu = (Xu

t )t≥0 are described by

Xu
t = x +

∫ t

0
[c − λπ(Y − r(Y, us))] ds −

Nt∑
i=1

r(Yi , uTi ). (4)

Remark 2 FromRogers andWilliams (1994, p.182) we can deduce that the previsibil-
ity of u induces the fact that it is progressively measurable and thus also measurable
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184 A. Cani, S. Thonhauser

as a function in time. Since the premium rate c(·) is assumed to be continuous and
bounded by c, the integral

∫ t
0 c(us) ds exists at least in the Lebesgue sense. Because

jumps of the process Xu occur according to the fundamental Poisson process and
behaves continuously between jump times, the process Xu is right continuous with
existing limits from the left, i.e., cádlág. Consequently, Xu is progressively measur-
able as well and for fixed ω, Xu(ω) is measurable in t . Again, integrals of the form∫ t
0 Xs ds certainly do exist in the Lebesgue sense.

The time of ruin τux denotes the time the controlled surplus process Xu first becomes
negative,

τux = inf{t ≥ 0 : Xu
t < 0 | Xu

0 = x}.

From now one we call a stochastic process u = {ut }t≥0 admissible reinsurance strat-
egy if it fulfills all the previously made assumptions. In this context the previsibility
is crucial. That is, at claim time Ti , the reinsurance parameter is chosen based on the
information up to time Ti−. The previsibility of the reinsurance strategy is a natural
assumption in this setting, otherwise the insurer could change the reinsurance para-
meter to full reinsurance at the claim occurrence time. The reinsurer would then pay
all claims while all premiums would be collected by the insurer. Let U denote the set
of admissible reinsurance strategies. Associated to an admissible reinsurance strategy
u and an initial reserve x ≥ 0, we define its performance criterion as the expected
cumulative discounted surplus process until ruin,

V u(x) = Ex

[∫ τux

0
e−δs Xu

s ds

]
,

with δ > 0 a discount or preference rate. In the sequel, we will refer to V u(x) as the
return function. The optimization problem then consists of finding the optimal return
function, or value function, defined as

V (x) = sup
u∈U

V u(x), (5)

and an optimal admissible reinsurance strategy u leading to the value function, i.e. a
strategy which delivers the maximal return function (5).

3 Main results

In this section, we first derive some elementary bounds, which allow for a rough char-
acterization of the value function. In a next step, we are able to prove the existence
of a solution to an integro-differential equation which is closely related to the prob-
lem’s Hamilton–Jacobi–Bellman equation. Finally, a verification argument provides
the bridge between these analytical results and the stochastic optimization problem of
interest.
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3.1 Some elementary bounds

Proposition 1 For x ≥ 0, the value function V (x) admits the following bounds:

(a) V (x) ≤ x
δ

+ c
δ2
,

(b) V (x) ≥ x
δ

− λπ(Y )−c
δ2

[
1 − e

−δx
λπ(Y )−c

]
.

Proof Let u = {ut }t≥0 be an arbitrary admissible strategy. Since c(us) ≤ c for all
s ≥ 0, we get from (4) that

Xu
t ≤ x + ct,

holds for all t ≥ 0. Since δ > 0, this implies that,

V u(x) ≤
∫ ∞

0
e−δt (x + ct)dt = x

δ
+ c

δ2
.

Taking the supremum over all admissible strategies u shows that the value function
V (x) satisfies inequality (a).

It remains now to validate inequality (b). The choice of the admissible strategy u0
which corresponds to buying continuously full reinsurance until the time of ruin leads
to a deterministic reserve Xu0

Xu0
t = x + (c − λπ (Y )) t,

with negative drift. As a consequence, the time of ruin τu
0

x can be explicitly computed,
that is, τu0

x = x
λπ(Y )−c . The underlying return function V u0(x) is given by

V u0(x) = x

δ
− λπ (Y ) − c

δ2

[
1 − e

−δx
λπ(Y )−c

]
.

The following result presents bounds on increments of the value function and also
provides its continuity.

Proposition 2 For x > y ≥ 0, the value function satisfies:

(a) V (x) − V (y) ≤ x−y
δ

+C(x, y) V (x − y), where C(x, y) → 0 as | x − y | → 0,
(b) V (x) − V (y) ≥ x−y

δ+λ
.

Proof For given x > 0 and given ε > 0, consider an admissible ε-optimal strategy u
such that

V (x) ≤ Ex

[∫ τux

0
e−δt Xu

t dt

]
+ ε.

Since u is also admissible for initial capital y with x > y ≥ 0 (up to time τuy ), we
have

V (x) − V (y) ≤ Ex

[∫ τux

0
e−δt Xu

t dt

]
− Ey

[∫ τuy

0
e−δt Xu

t dt

]
+ ε, (6)
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186 A. Cani, S. Thonhauser

where Ex , Ey indicate the starting value of the corresponding process. Now we are
going to use a pathwise argument, let E = {ω ∈ Ω | τux (ω) = τuy (ω)}. Notice that
on E the paths (for fixed ω) of the reserves started in x and y move parallel with a
distance x − y > 0 and get ruined at the same point in time. Therefore, we can rewrite
the above inequality in the following way,

V (x) − V (y) ≤ Ex

[∫ τuy

0
e−δt Xu

t dt

]
− Ey

[∫ τuy

0
e−δt Xu

t dt

]

+ Ex

[
1E c

∫ τux

τuy

e−δt Xu
t dt

]
+ ε

≤ (x − y)

δ
+ Ex

[
1E c

∫ τux

τuy

e−δt Xu
t dt

]
+ ε

≤ (x − y)

δ
+ E [1E c ] V (x − y) + ε. (7)

The first inequality is just a restatement of (6). It incorporates the fact that the two
values, the values of the strategy u for surplus processes started in x and y, only differ
on E c. This difference is given by the third expectation, in which Ex indicates that
the surplus within the integral is started at x . The second inequality follows from the
observation that

Ex

[∫ τuy

0
e−δt Xu

t dt

]
− Ey

[∫ τuy

0
e−δt Xu

t dt

]
= E

[∫ τuy

0
e−δt (x − y)dt

]

≤
∫ ∞

0
e−δt (x − y)dt.

The last inequality uses Xu
τuy

≤ x− y for the reserve started in x and that consequently

the corresponding expectation is smaller than V (x − y). Define θ = inf{t ≥ 0 | Xu
t <

x − y} and C(x, y) := E [1E c ] = P(τuy < τux ) = Px (θ < τux ). Observing that
C(x, y) → 0 if | x − y | → 0 yields (a).

Let us now prove inequality (b). Let y ≥ 0 and ε > 0 be given, consider an
admissible strategy ū such that V ū(y) + ε ≥ V (y). For x > y, we have,

V (x) − V (y) ≥ Ex

[∫ τ ūx

0
e−δt X ū

t dt

]
− Ey

[∫ τ ūy

0
e−δt X ū

t dt

]
− ε.

Again, let E = {τ ūx = τ ūy } and let T1 be the time of the first claim occurrence. We can
write

V (x) − V (y) ≥ Ex

[∫ τ ūy

0
e−δt X ū

t dt

]
− Ey

[∫ τ ūy

0
e−δt X ū

t dt

]

+ Ex

[
1E c

∫ τ ūx

τ ūy

e−δt X ū
t dt

]
− ε ≥ E

[∫ T1

0
e−δt (x − y)dt

]
− ε = x − y

δ + λ
− ε.
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From the arbitrariness of ε > 0, we get the result.

Additionally, we can derive the following.

Lemma 1 The value function V is locally Lipschitz continuous.

Proof For given x > 0 and ε > 0, consider an admissible strategy u = (uxt )t≥0 such
that

V (x) ≤ Ex

[∫ τux

0
e−δt Xu

t dt

]
+ ε.

Let u ∈ U such that the net drift of the surplus is positive, i.e., c(u) > λE(r(Y, u)) > 0.
Furthermore, we set θx = inf{t ≥ 0 | Xu

t ≥ x with Xu
0 = y}. Now we can define

an admissible strategy uy = (uy
t )t ≥ 0 for initial capital y, with 0 ≤ y ≤ x , by

uy
t = u for 0 ≤ t < θx and uy

t = uxt−θx
for t ≥ θx . Notice, if the first claim occurs at

T1 >
x−y
c(u)

, then level x is directly reached from level y. We have,

V (y) ≥ Ey

(∫ τu
y

y

0
e−δt Xuy

t dt

)

≥ P

(
T1 >

x − y

c(u)

)(∫ x−y
c(u)

0
e−δt [y + c(u)t] dt + e−δ

x−y
c(u) (V (x) − ε)

)
.

Finally, after explicitly evaluating the last estimate we derive for x > y ≥ 0,

0 ≤ V (x) − V (y) ≤ V (x)
(
1 − e−(δ+λ)

x−y
c(u)

)

− e−λ
x−y
c(u)

(
c + δy − (c + δx)e−δ

x−y
c(u)

δ2

)
+ ε

= V (x)

(
δ + λ

c(u)
(x − y) + O(x − y)2

)

+ x

c(u)
(x − y) + O(x − y)2 + ε.

This implies that V is locally Lipschitz continuous.

Finally,we can summarize the following elementary properties of the value function
V (x). Notice that absolute continuity follows from the local Lipschitz continuity
mentioned in the previous Lemma.

Corollary 1 The value function V is strictly positive, linearly bounded, monotone
increasing and absolutely continuous.
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Remark 3 Suppose we assume in the proof of part (a) of Proposition 2, that for all
u ∈ U the randomvariable r(Y, u) admits a boundeddensity f ur . Then,we can formally
derive

P(τuy < τux ) =
∫ ∞

0
P(τuy < τux | Xu

τuy − = w)P(Xu
τuy − = w)dw

=
∫ ∞

0
P(w < r(Y, uτuy

) ≤ w + x − y)P(Xu
τuy − = w)dw

=
∫ ∞

0

∫ w+x−y

w

f
uτuy
r (z)dz P(Xu

τuy
= w)dw ≤ (x − y) fr ,

where fr denotes a bound of fr . Since P(τuy < τux ) = E [1E c ], we get from (7) that
the value function is globally Lipschitz continuous. For example, this case appears
when dealing with proportional reinsurance.

For further investigations, we need to improve on the lower bound from Proposition 1.
When dealing with a contraction operator later on, the refined bound will allow us to
describe the growth behaviour of the value function in a more precise way.

We start with showing that for

g(x) =
{ x

δ
, x ≥ 0,

0, x < 0,

Lg(x) − δg(x) + x > 0 holds for all x ≥ 0, where Lg(x) := cg′(x) +
λ

(∫ x
0 g(x − y)dFY (y) − g(x)

)
is the infinitesimal generator of the uncontrolled

process X . For that purpose, we define

H(x) : = Lg(x) − δg(x) + x = x + c

δ
− (δ + λ)

x

δ
+ λ

∫ x

0

x − y

δ
dFY (y),

which can be rewritten as

H(x) = c

δ
+ λ

δ
(x(FY (x) − 1)) − λ

δ

∫ x

0
y dFY (y).

From H ′(x) = λ
δ
(FY (x) − 1) ≤ 0 for all x ≥ 0, we have that H(x) is

monotone decreasing. Determination of the boundary values, H(0) = c
δ

> 0 and

limx→∞ H(x) = c−λμ
δ

> 0, implies that it is strictly positive as well.

Lemma 2 The value function V is bounded from below by x
δ

+ c−λμ
δ(δ+λ)

, i.e.,

V (x) ≥ x

δ
+ c − λμ

δ(δ + λ)
. (8)
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Proof Since g(x) is differentiable we can apply Dynkin’s formula and get

Ex
(
e−δt∧τ g(Xt∧τ )

) = g(x) + Ex

(∫ t∧τ

0
e−δs [Lg(Xs) − δg(Xs)] ds

)
.

From above, we already know that Lg(Xs) − δg(Xs) ≥ −Xs + c−λμ
δ

, using this
estimate, we arrive at,

Ex
[
e−δt∧τ g(Xt∧τ )

] + Ex

[∫ t∧τ

0
e−δs Xs ds

]
≥ g(x) + Ex

[∫ t∧τ

0
e−δs c − λμ

δ
ds

]

≥ g(x)+Ex

[∫ t∧T1

0
e−δs c−λμ

δ
ds

]
,

where T1 denotes the time of the first claim occurrence. Using linear boundedness of
g(Xt∧τ ) in t and monotone convergence, we arrive at

Ex

[∫ τ

0
e−δs Xs ds

]
≥ g(x) + c − λμ

δ(δ + λ)
.

From its definition, we get

V (x) ≥ Ex

[∫ τ

0
e−δs Xs ds

]
≥ x

δ
+ c − λμ

δ(δ + λ)
.

Remark 4 By well known methods, as outlined in Asmussen and Albrecher (2010,
Ch.I.4, Ch.IX.3), f (x) := Ex

[∫ τ

0 e−δs Xs ds
]
can be computed explicitly for Erlang

distributed claims.

3.2 Characterization of the value function

Based on the elementary properties of the value function which are collected in
Corollary 1, we can work out the dynamic programming approach for solving the
optimization problem.
We start with observing that V fulfills the dynamic programming principle, that is, for
every Ft -adapted stopping time S ≥ 0 the following relation is valid:

V (x) = sup
u∈U

Ex

[∫ τ ux ∧S

0
e−δt Xu

t dt + e−δ(τ ux ∧S)V
(
Xu

τ ux ∧S

)]
. (9)

The proof of this fact is mainly based on the continuity of V and follows standard
arguments from the corresponding literature, see for instance the proof of Azcue and
Muler (2014, Prop.2.3).
The following Lemma shows that at least in some weak sense V fulfills the associated
Hamilton–Jacobi–Bellman equation.
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Lemma 3 The value function V defined in (5) is a.e. a solution to:

0 = sup
u∈U

{x + c(u)V ′(x) − (δ + λ)V (x) + λ

∫ ρ(x,u)

0
V (x − r(y, u)) dFY (y)}.

(10)

Proof In a first step we show that (10) is smaller equal to zero. Fix x > 0, h > 0 and
let u ∈ U . Define ũ = (ut )t≥0 such that ut = u for t ∈ [0, h] and ut = ũt−h for t > 0
for some ũ ∈ U. If necessary, we choose h small enough such that x + c(u)h > 0.
Let T1 denote the time of the first claim occurrence and set S = min{T1, h}. Then, (9)
yields

0 ≥ Ex

[∫ S

0
e−δt (x + c(u)t) dt + e−δS V

(
X ũ
S

)
− V (x)

]
. (11)

Since u is a constant control which applies on the time horizon [0, S] we can apply
Rolski et al. (1999, Th.11.2.2) and get that V ∈ D(Au), i.e., V lies in the domain of
the generator. In the present situation the generator Au of the constantly controlled
process Xu is given by

Aug(x) = c(u)g′(x) − λg(x) + λ

∫ ρ(x,u)

0
g(x − r(x, y))dFY (y).

The particular result from Rolski et al. (1999, Th.11.2.2) applies, because the map
t 
→ V (x + c(u)t) is absolutely continuous, the so-called active boundary is empty
and the bounds from Proposition 1 and Proposition 2 guarantee the asked for integra-
bility condition. Therefore we can apply Dynkin’s formula, identifying V ′ with the
measurable density of V , and can rewrite (11) to

0 ≥ Ex

[∫ S

0
e−δt (x + c(u)t) dt

+
∫ S

0
e−δt

(
c(u)V ′(x + c(u)t) − (δ + λ)V (x + c(u)t)

+ λ

∫ ρ(x+c(u)t,u)

0
V (x + c(u)t − r(y, u))dFY (y)

)
dt

]
.

After regrouping and division by h we have

0 ≥ 1

h
Ex

[∫ S

0
e−δt

(
x + c(u)t − (δ + λ)V (x + c(u)t)

+ λ

∫ ρ(x+c(u)t,u)

0
V (x + c(u)t − r(y, u))dFY (y)

)
dt

]

+ 1

h
Ex

[∫ S

0
e−δt c(u)V ′(x + c(u)t)dt

]
.
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The integral in the first expectation can be interpreted in the Riemann sense, V is
continuous, such that sending h → 0 leads to

0 ≥ x − (δ + λ)V (x) − (δ + λ)V (x) + λ

∫ ρ(x,u)

0
V (x − r(y, u))dFY (y)

+ lim
h↘0

1

h
Ex

[∫ S

0
e−δt c(u)V ′(x + c(u)t) dt

]
.

The second limitation procedure needs a bit more care since the integrands as functions
in t are onlymeasurable and the respective integral is interpreted in theLebesgue sense.
For this purpose consider

lim
h↘0

1

h
Ex

[∫ S

0
e−δt c(u)V ′(x + c(u)t) dt

]

= lim
h↘0

e−λh 1

h

∫ h

0
e−δt c(u)V ′(x + c(u)t) dt

+ lim
h↘0

1

h

∫ h

0
λe−λs

∫ s

0
e−δt c(u)V ′(x + c(u)t) dt ds

= c(u)V ′(x) a.e.,

where in the second equality we used Lebesgue’s Differentiation Theorem fromWhee-
den and Zygmund (1977, Th.7.16) which applies since the measurable density V ′
certainly is locally integrable in the Lebesgue sense because of the bounds on the
function V and its increments. One may notice that

lim
h↘0

1

h

∫ h

0
λe−λs

∫ s

0
e−δt c(u)V ′(x + c(u)t) dt ds = 0 a.e.,

since the ds integrand equals zero for s = 0. The choice of the control parameter
u ∈ U was arbitrary, such that we have

0 ≥ sup
u∈U

{x + c(u)V ′(x) − (δ + λ)V (x)

+ λ

∫ ρ(x,u)

0
V (x − r(y, u)) dFY (y)} a.e.

We can turn to the second step, showing that (10) is also larger or equal to zero. Set
again S = min{T1, h} for some h > 0 and let the strategyu1 = (u1t )t≥0 be h2−optimal
for the right hand side of (9), that is

V (x) = sup
u∈U

Ex

[∫ S

0
e−δt (x +

∫ t

0
c(us)ds)dt + e−δSV (Xu

S)

]

< Ex

[∫ S

0
e−δt (x +

∫ t

0
c(u1s )ds)dt + e−δSV (Xu1

S )

]
+ h2 + ε h,
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where we added the term ε h with some arbitrary ε > 0 for achieving strict positivity.
In the above equation we can use T1 ∼ Exp(λ) and regroup a little bit to arrive at

0 <Ex

[∫ S

0
e−δt (x +

∫ t

0
c(u1s )ds)dt

]
+ (e−(δ+λ)h − 1)Ex

[
V (x +

∫ h

0
c(u1s )ds)

]

+ Ex

[∫ h

0
λe−λt

∫ ρ(x+∫ t
0 c(u

1
s )ds,u

1
t )

0
V (x +

∫ t

0
c(u1s )ds − r(y, u1t )dFY (y) dt

]

+ Ex

[
V (x +

∫ h

0
c(u1s )ds) − V (x)

]
+ h2 + ε h

=: A + B + C + D + h2 + ε h.

We kept Ex since u1 is still stochastic on the time interval under consideration. In the
following we divide A, B, C, D by h and study the limits as h tends to zero - for
interchanging limitation and expectationwewill repeatedlymake use of the dominated
convergence Theorem. We start with discussing B:

lim
h↘0

e−(δ+λ)h − 1

h
Ex

[
V (x +

∫ h

0
c(u1s )ds)

]
= −(δ + λ)V (x),

which follows from continuity of V . Next we deal with C :

lim
h↘0

1

h
Ex

[∫ h

0
λe−λt

∫ ρ(x+∫ t
0 c(u

1
s )ds,u

1
t )

0
V (x +

∫ t

0
c(u1s )ds − r(y, u1t )dFY (y) dt

]

= λ

∫ ρ(x,u10)

0
V (x − r(y, u10)dFY (y) a.e.,

which is derived by an application of Wheeden and Zygmund (1977, Th.7.16). For
part D we exploit a similar procedure together with the absolute continuity of V ,

lim
h↘0

1

h
Ex

[
V (x +

∫ h

0
c(u1s )ds) − V (x)

]

= lim
h↘0

1

h
Ex

[∫ ∫ h
0 c(u1s )ds)

0
V ′(x + y)dy

]

= lim
h↘0

1

h
Ex

[∫ h

0
c(u1t )V

′(x +
∫ t

0
c(u1s )ds)dt

]
= c(u10)V

′(x) a.e.

Part A is resolved in the same way and delivers

lim
h↘0

1

h
Ex

[∫ S

0
e−δt (x +

∫ t

0
c(u1s )ds)dt

]
= x .
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Finally we arrive at

0 ≤ x + c(u10)V
′(x) − (δ + λ)V (x)

+ λ

∫ ρ(x,u10)

0
V (x − r(y, u10)dFY (y) + ε a.e.,

which concludes the proof since ε was arbitrary.

At this point, we know that the value function is in some sense a solution to the
associated HJB-equation. What remains to be done for a complete analytical char-
acterization is a complement on uniqueness. For accomplishing such a result we are
going to rewrite (10) in a way similar Schmidli as (2008, p. 47) did, when transforming
equation (2.14) into (2.15).

Suppose x is meaningful in the sense that V ′(x) exists. Since the set U is compact
and all corresponding terms are continuous in u, a maximizer u(x) exists such that the
supremum equal to zero is attained. Replacing the supu by u(x) in (10) we have

0 = x + c(u(x))V ′(x) − (δ + λ)V (x) + λ

∫ ρ(x,u(x))

0
V (x − r(y, u(x))) dFY (y),

(12)

from which we can observe, using the lower bound (8) on V (x), that c(u(x))V ′(x) >

0 ⇒ c(u(x)) > 0. Hence, in the supremum we can replace the set U by the set
Ũ = {u ∈ U | c(u) > 0}. Since V (x) is monotone, we can rewrite (10) into the
equivalent form:

V ′(x) = inf
u∈Ũ

{
(δ + λ)V (x) − x − λ

∫ ρ(x,u)

0 V (x − r(y, u))dFY (y)

c(u)

}
. (13)

Formally, we know that a.e. V (x) is a solution to (13). In addition, for x such that
V ′(x) exists, we have the following,

V ′(x) = inf
u∈Ũ

{
(δ + λ)V (x) − x − λ

∫ ρ(x,u)

0 V (x − r(y, u)) dFY (y)

c(u)

}

≤ (δ + λ)V (x) − x − λ
∫ x
0 V (x − y) dFY (y)

c

≤
(δ + λ)

(
x
δ

+ c
δ2

)
− x − λ

∫ x
0

x−y
δ

dFY (y)

c

≤
(δ+λ)c

δ2
+ λμ

δ
+ M(x)

c
, (14)
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where M(x) := λ
δ
x (1 − FY (x)). Clearly, M(x) ≥ 0 for all x ≥ 0. Moreover, we have

λ
δ
μ ≥ λ

δ

∫ ∞
x xdFY (z) = M(x), which can be used in (14), leading to

V ′(x) ≤
(δ+λ)c

δ2
+ 2λμ

δ

c
. (15)

Reinspecting (12) gives a positive lower bound on c(u(x)),

c(u(x))V ′(x) = (δ + λ)V (x) − x − λ

∫ ρ(x,u(x))

0
V (x − r(y, u(x))) dFY (y)

= δV (x) − x + λ

(
V (x) −

∫ ρ(x,u(x))

0
V (x − r(y, u(x))) dFY (y)

)

≥ c − λμ

δ + λ
,

where the last inequality is due to Lemma 2. Together with (15) we have

c(u(x)) ≥ c − λμ

δ + λ

(
(δ+λ)c

δ2
+ 2λμ

δ

c

)−1

=: L > 0.

As a consequence, we can redefine the crucial set for taking the supremum (resp. inf)
Ũ = {u ∈ U | c(u) ≥ L}. One may notice that in (13) the infimum is taken again over
a compact set and that the denominator is uniformly bounded away from zero.

The first step towards a unique characterization of the value function is given in the
following theorem the proof of which relies on the fixed point property of a certain
operator (inspired by a similar approach used in Azcue and Muler (2005, 2014)).

Theorem 1 Let f (0) > 0 be some given initial value, then there exists a unique a.e.
differentiable solution to

g′(x) = inf
u∈Ũ

{
(δ + λ)g(x) − x − λ

∫ ρ(x,u)

0 g(x − r(y, u)dFY (y)

c(u)

}
,

with g(0) = f (0).

Proof Let x0 ≥ 0 and a continuous function f : [0, x0] → R be given. Fix h > 0 and
set C = {g : [x0, x0 + h] → R | g is continuous and g(x0) = f (x0)}. The operator
T g(x) = f (x0)

+
∫ x

x0
inf
u∈Ũ

⎧⎨
⎩

(δ + λ)g(s) − s − λ
∫ ρ(s−x0,u)

0 g(s − r(y, u))dFY (y) − λ
∫ ρ(s,u)

ρ(s−x0,u)
f (s − r(y, u))dFY (y)

c(u)

⎫⎬
⎭ ds,

is defined on C and x ∈ [x0, x0 +h] and clearly T g ∈ C. Since for all s ∈ [x0, x0 +h]
all terms involving u are continuous in it and the infimum is taken over a compact set,
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we know that a minimizer u(s) exists.
Now let g1, g2 ∈ C and u1(s), u2(s) be the corresponding minimizers, we get

T g1(x) − T g2(x)

≤
∫ x

x0

(δ + λ)[g1(s) − g2(s)] − λ
∫ ρ(s−x0,u2(s))
0 [g1(s − r(y, u2(s))) − g2(s − r(y, u2(s)))]dFY (y)

c(u2(s))
ds

≤ h
(δ + 2λ)

L
sup

s∈[x0,x0+h]
| g1(s) − g2(s) |.

Interchanging the roles of g1 and g2 and choosing h = L
2(δ+2λ)

we get,

| T g1(x) − T g2(x) | ≤ 1

2
sup

s∈[x0,x0+h]
| g1(s) − g2(s) |, ∀ x ∈ [x0, x0 + h],

such that T is a contraction on C and that consequently an unique fixed point of it
exists. Since h and the contraction factor do not depend on x0, we can iterate this
procedure on the intervals [0, h], [h, 2h], . . .. Finally, we observe that these fixed
points, on the end points of the intervals [k h, (k + 1) h] continuously pasted, induce
an unique solution to (13) with given initial value f (0). By construction, this solution
is absolutely continuous on R

+, since one may alter the grid for the construction
procedure.

We are now able to finalize the analytical characterization of V .

Theorem 2 Suppose g : R → R with g(x) = 0 for x < 0 is linearly bounded by
x
δ

+ c
δ2

and an absolutely continuous solution to (13), then g(x) = V (x). The optimal
strategy u∗ = (u∗

t )t≥0 is induced by the pointwise minimizer u(x) of (13) such that
u∗
t = u(Xu∗

t−).

Remark 5 One can use verbatim the proof from Schmidli (2008, Lem.2.12) to show
that the function u defining the optimal strategy is measurable. Consequently the
process (u∗

t )t≥0 is previsible and constitutes an admissible strategy.

Proof Let t > 0 and u = (ut )t≥0 ∈ U, since the paths of (Xu
t )t≥0 are of bounded

variation, we can use the Stieltjes integral to obtain

e−δt∧τux g(Xu
t∧τux

) − g(x) =
∫ t∧τux

0
e−δs [−δg(Xu

s ) + c(us)g
′(Xu

s )
]
ds

+
∑

Ti≤t∧τux

e−δTi
[
g(Xu

Ti ) − g(Xu
Ti−)

]
. (16)

The process M = (Mt )t≥0 defined by

Mt =
∑
Ti≤t

e−δTi
[
g(Xu

Ti ) − g(Xu
Ti−)

]

−λ

∫ t

0
e−δs

[∫ ρ(Xu
s ,us )

0
g(Xu

s − r(y, us))dFY (y) − g(Xu
s )

]
ds,
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is a zero-mean martingale, due to compensation. Therefore, taking expectations in
(16) leads to

Ex

[
e−δt∧τux g(Xu

t∧τux
)
]

= g(x) + Ex

[∫ t∧τux

0
e−δs [−(δ + λ)g(Xu

s ) + c(us)g
′(Xu

s )

+ λ

∫ ρ(Xu
s ,us )

0
g(Xu

s − r(y, us))dFY (y)

]
ds

]
.

Remember that for g′(Xu
s ) we have (at least a.e.)

g′(Xu
s ) = inf

v∈Ũ
(δ + λ)g(Xu

s ) − Xu
s − λ

∫ ρ(Xu
s ,v)

0 g(Xu
s − r(y, v))dFY (y)

c(v)
,

which yields for the particular control parameter us ,

Ex

[
e−δt∧τux g(Xu

t∧τux
)
]

≤ g(x) − Ex

[∫ t∧τux

0
e−δs Xu

s ds

]
. (17)

From Schmidli (2008, Lem.2.9), we know that either ruin occurs or the controlled
surplus tends (linearly bounded) to infinity. Therefore, using bounded convergence in
(17) results in

Ex

[∫ t∧τux

0
e−δs Xu

s ds

]
≤ g(x),

hence, V (x) ≤ g(x). One observes that in (17) we have equality for the strategy u∗,
defined in the statement of the theorem, such that finally V (x) = g(x).

The combination of the statement of the last theorem with the uniqueness result and
the properties of the value function enables us to state a complete characterization.

Corollary 2 The value function V is the unique solution to (10) in the set of absolutely
continuous function g : R → Rwith g(x) = 0 for x < 0which are bounded by x

δ
+ c

δ2
.

In particular just the initial value V (0) for equation (13) allows for a solution g(x)
with the property limx→∞ g(x)

x = 1
δ
.

4 Numerical examples

In this section, we will illustrate the theoretical results and sketch a numerical solution
method bymeans of two examples. Furthermore, for the particular case of proportional
reinsurance and a reinsurer using the expected value premium principle, we can refine
the analytical results and state the asymptotic behaviour of the optimal strategy as the
initial capital tends to infinity. Since an explicit solution to (10) is unfortunately out
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of reach, for deriving a solution one needs to rely on a numerical method. Luckily,
the theoretical characterization stated in Theorem 2 and Corollary 2 constitutes an
implementable procedure.

These results tell that an iterated application of the operator T , defined in the proof
of Theorem 1, on some linear function g(x) = x

δ
+ g0 leads to an approximation

of the value function if and only if g0 = V (0) is correctly chosen, cf. Corollary 2.
Consequently, the first step in the procedure asks for a good guess of g0, which can
(and needs) to be improved in later steps. For determining ameaningful approximation
of g0, we exploit the idea of policy improvement, see for instance Bäuerle and Rieder
(2011).

The starting point is the value V sr (x) corresponding to the situation of no reinsur-
ance, which in our parameter setting can be explicitly determined. Based on this value
V sr , we compute a strategyu1 = {u1t }with u1t = u1(Xu

t ) from the HJB-equation (10)
via

u1(x) = argmaxu∈Ũ

{
x + c(u)

∂

∂x
V sr (x) − (δ + λ)V sr (x)

+ λ

∫ ρ(x,u)

0
V sr (x − r(y, u)) dFY (y)

}
.

In a next step we determine a good approximation for V u1
(0), which can be done

by using the Monte-Carlo method with direct simulations of the controlled surplus
process from (4).

Now we know that V u1
(0) corresponds to an admissible strategy but does not

necessarily equal V (0). But with V u1
(0) at hand we can determine V u1

(x) for x ≥ 0
either by an iteration of an operator, similar to T but without the infimum in its
definition, or by a finite-difference method. We use this value V u1

as the starting point
of iterations of T . After a number of iterations, one can improve the initial value again
by using the same method as illustrated above, but with the function obtained from
the iterations as basis for the policy improvement step. This newly obtained value V u2

then serves as the basis for new iterations of T .

Remark 6 Alternatively, one can execute a policy iteration procedure on the basis of
the original HJB-equation (10). Our experience showed that the obtained strategies
are very close to the ones determined via the first method. Unfortunately, the quality
of the simultaneously generated return functions is not always trustworthy, a fact
which originates from the presence of the control parameter in front of the sensitive
derivative term and inside the integral. Nevertheless, the use of these strategies allows
for a considerable acceleration of the whole procedure.

In thiswaywe create, by the use of policy iterations at intermediate steps, an increasing
sequence of initial values and also determine candidates for a fixed point of T . To
decide whether an initial value is significantly too small one can check the behaviour
of the function obtained from the corresponding iterations of T . If an initial value is
far away from V (0) we observe a violation of the lower bound from Lemma 2 for
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Table 1 Set of parameters for
proportional reinsurance

γ η θ λ δ

0.2 0.1 0.11 1 0.1

relatively small values of x . We can accept an initial value V ∗(0) as a good guess for
V (0) if the function V ∗ obtained from iterations stays within the theoretically given
bounds. If additionally V ∗ matches the value of the implicitly given strategy, we can
accept it as an valid approximation of the value function.

Remark 7 Instead of starting the iteration procedure always at predetermined values
V u, we can also start with g(x) = x

δ
+V u(0) and all previously stated arguments still

apply.
Our experience showed that this procedure leads to trustworthy results and rep-

resentative illustrations of our theoretical findings. Certainly, a theoretical numerical
analysis would be necessary and highly interesting but this is out of the scope of this
publication.

4.1 Example: proportional reinsurance

In the following, we are going to use the model parameters given by: Yi
iid∼ fY (y)

with fY (y) = γ 2y e−γ y , i.e. Gamma(2, γ ) distributed claim amounts. The insurer’s
premium rate is determined via the expected value principle and reads as c = (1+η)λμ

with μ = 2
γ
and η > 0. For the reinsurer, we assume the same premium principle but

with a safety loading θ > η. The concrete numbers are given in Table 1.
The considered reinsurance schema is r(y, u) = u y for a control parameter u ∈

(u, 1] with u = inf{u ∈ [0, 1] | c(u) > 0}, as discussed before the statement of
Theorem 1.

For deriving numerical approximations to the value function and to the optimal
strategy, we implemented the program we have illustrated in the introduction to this
section. In contrast to the case of excess of loss reinsurance, the proportional situation
turned out to be numerically demanding, requiring lots of computational efforts for
arriving at passably satisfying results.

The strategy obtained from 20 policy iterations steps, starting from V sr , is depicted
in Fig. 1. In the remark following below, the shape of this strategy is discussed in
some detail. Figure 2 contains the graphs of V sr (dotted line), V 1 (dashed line) and
V 20 (full line). V 1 is computed from 30 iterations of T starting with g and an initial
value g0 = 212 corresponding to the strategy obtained from 1 policy improvement
step based on V sr . The function V 20 is derived from 30 operator iterations, but using
the initial value g0 = 226.436 associated to the strategy from Fig. 1.

In Table 2, we present some exemplary function values from the iterations of T
towards the computation of V 20.

Remark 8 We would like to discuss limx→∞ u∗(x), which by the numerical compu-
tations is suggested to be one. Here, we exclusively deal with the case of proportional
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Fig. 1 Numerically obtained proportional reinsurance strategy

Fig. 2 Iteration procedure in the proportional case

Table 2 Function values
obtained from the application of
T n

x0 = 10 x1 = 30 x2 = 50 x3 = 70

n = 0 326.4 526.4 726.4 926.4

n = 5 471.2 809.4 996.9 1153.4

n = 10 471.3 904.9 1215.3 1428.2

n = 20 471.3 909.8 1271.5 1583.9

n = 30 471.3 909.8 1271.6 1584.7

reinsurance and the expected value premium principle for both insurer and reinsurer,
c(u) = λμ(u(1+ θ) − (θ − η)) for safety loadings θ > η. From the definition of the
value function, we have
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V (x) ≥ Ex

(∫ τ

0
e−δt Xt dt

)

= Ex

(
x

δ
(1 − e−δτ ) + λμη

∫ τ

0
t e−δt dt +

∫ τ

0
e−δt Mtdt

)
.

= Ex

(
x

δ
(1 − e−δτ ) + ηλμ

δ2

(
1 − e−δτ (1 + δτ)

) +
∫ τ

0
e−δt Mtdt

)
.

Above, we introduced the martingale M = (Mt )t≥0 which is the compensated com-
pound Poisson process:

Mt = λμt −
Nt∑
k=1

Yk, M0 = 0.

Now, we can regard
∫ τ

0 e−δt Mtdt pathwise as a Stieltjes integral and apply integration
by parts, Wheeden and Zygmund (1977, Th.2.21), to arrive at

Ex

(∫ τ

0
e−δt Mtdt

)
= Ex

(
−e−δτ

δ
Mτ− +

∫ τ

0

e−δt

δ
dMt

)
= Ex

(
−e−δτ

δ
Mτ−

)
.

(18)

In (18), the integral with respect to the martingale is itself a martingale, leading to the
second equality.

At the same time, using an ε−optimal strategy u∗ for initial capital x > 0, we have

V (x) − ε ≤ x

δ
+ Ex

(∫ τ u
∗

0
e−δt

(∫ t

0
λμ(u∗

s (1 + θ) − (θ − η))ds −
Nt∑
k=1

u∗
Tk Yk

)
dt

)

≤ x

δ
+ ηλμ

δ2
+ Ex

(∫ τ u
∗

0
e−δt M∗

t dt

)

= x

δ
+ ηλμ

δ2
− Ex

(
e−δτ u

∗

δ
M∗

τ u
∗−

)
. (19)

If we suppose that u∗ is a Markov control, then we certainly have that M∗
t =∫ t

0 λμu∗
s ds − ∑Nt

k=1 u
∗
Tk
Yk is a zero mean F X

t martingale and the same integration
by parts procedure as before applies. Consequently, we have for x large such that τ

and τ u
∗
(Mt is linearly bounded) are tending almost surely to infinity that:

V (x) ∼ x

δ
+ ηλμ

δ2
as x → ∞.

Now, we proceed with determining limx→∞ u∗(x). Here, u∗(x) denotes the pointwise
maximizer in u of the HJB-equation (10), which due to continuity exists. Plugging in
c(u) = λμ(u(1 + θ) − (θ − η)) and regrouping, we see that
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Fig. 3 Illustrative optimal strategy for exponentially distribted claims

u∗(x) = (δ + λ)V (x) − x + λμ(θ − η)V ′(x) − λ
∫ x

u∗(x)
0 V (x − u∗(x)y)dFY (y)

λμ(1 + θ)V ′(x)

≈ (≥)
(δ + λ)( x

δ
+ ηλμ

δ2
) − x + λμ(θ − η) 1

δ
− λ

∫ x
u∗(x)
0

[
x−u∗(x)y

δ
+ ηλμ

δ2

]
dFY (y)

λμ(1 + θ) 1
δ

≈ (≥)

λx
δ

(1 − FY (x/u∗(x))) + λμ
δ

(θ − η) + λu∗(x)
δ

∫ x
u∗(x)
0 ydFY (y)+(δ + λ)

ηλμ

δ2
− λ2μη

δ2
F(x/u∗(x))

λμ
δ

(1 + θ)
.

Wewrote “≈ (≥)” because in the integral, V (x−u∗(x)y) ≤ x−u∗(x)y
δ

+ ηλμ

δ2
, compare

with (19). But since we have more or less a similar lower bound if x → ∞, it becomes
“≈”.

If we now assume that limx→∞ u∗(x) = u∗ exists, it should fulfill

u∗ ≈ θ + u∗

1 + θ
,

which can be fulfilled only if u∗ = 1. The two plots in Figs. 3 and 4 illustrate the
sharp linear upper bound together with V (x) and f (x) = Ex

(∫ τ

0 e−δt Xt dt
)
for

exponentially ν distributed claims and the following set of parameters given in Table 3.

4.2 Example: XL-reinsurance

As a second example, we consider the case of dynamic XL-reinsurance with Exp(ν)

distributed claim amounts. The particular numbers chosen are close to the ones chosen
by Hipp and Vogt (2003) and can be found in Table 4.

The numerically determined approximative optimal strategy is displayed in Fig. 5.
The corresponding value function’s numerical approximation (full line) is shown in
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Fig. 4 The sharp upper bound for proportional reinsurance and expected value principle for premiums

Table 3 Set of parameters
ν η θ λ δ

1 0.6 0.61 1 0.01

Table 4 Set of parameters
ν η θ λ δ

1 0.5 0.65 1 0.01

Fig. 5 Numerical optimal XL strategy

Fig. 6 together with V 1 (dashed line). It is remarkable to observe that this strategy
consists of u(x) = ∞, i.e. buying no reinsurance, followed by taking exactly u(x) = x
and finally u(x) ≈ const. as the maximizing retention level for large initial capital x .
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Fig. 6 Value function for XL-reinsurance

Remark 9 (Comparison with ruin probability minimization)When numerically deter-
mining the approximative optimal strategies, one observes some similarities but also
differences to the situation of optimal dynamic reinsurance strategies for minimizing
ruin probabilities, see Schmidli (2008, Ch. 2.3.1) and Hipp and Vogt (2003). In both
situations, proportional and XL, the behaviour for small initial capital is similar, one
finds that for some x0 > 0 on [0, x0], it is optimal to take no reinsurance. From that
point on, a certain amount of reinsurance is bought. For larger x , the reinsurance choice
is either returning to the no reinsurance case (proportional) or converging towards a
constant level (XL).

Here, the proportional case is in contrast to the situation when minimizing the ruin
probability. There, for small claims the optimal reinsurance choice converges to a
finite value as x tends to infinity. This different behaviour may be explained by the
underlying performance measure which in the present framework is profit orientated.
Because of discounting, a ruin event late in time does not bother the insurer which
implies that above a certain surplus level (large enough for having early ruin just with
a low probability) one is focusing on the maximal drift and not buying reinsurance.
The question: “ why does the numerically optimal XL strategy behave differently?”
is interesting as a future research project on its own. The answer to this question may
be based on the comparison of solutions to integro-differential equations.

5 Conclusion

In this paper, we studied a dynamic optimal reinsurance problem which is derived
from an economical valuation criterion in risk theory. An interplay between analytical
and probabilistic arguments allowed us to characterize the associated value function
and finally the theoretical results were complemented by numerical examples. Based
on the alternative interpretation of the studied value function, which is given in (2),
we can state, that our results suggest that reinsurance can accelerate the process of

123



204 A. Cani, S. Thonhauser

building up a free reserve and that the use of reinsurance is beneficial in the economical
context.
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