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Abstract. We give a concise definition of mitered offset surfaces for nonconvex polytopes in R3,
along with a proof of existence and a discussion of basic properties. These results imply the existence
of 3D straight skeletons for general nonconvex polytopes. The geometric, topological, and algorithmic
features of such skeletons are investigated, including a classification of their constructing events in the
generic case. Our results extend to the weighted setting, to a larger class of polytope decompositions,
and to general dimensions. For (weighted) straight skeletons of an n-facet polytope in Rd, an upper
bound of O(nd) on their combinatorial complexity is derived. It relies on a novel layer partition for
straight skeletons, and improves the trivial bound by an order of magnitude for d ≥ 3.

1. Introduction. Skeletal structures for geometric objects are an important
concept in diverse areas of science. Motivated by applicational needs, different types
of skeletons and their geometric and algorithmic properties have been studied, in
computational geometry and also in more practically oriented fields.

The most prominent and widely used skeletal structure is the medial axis. It
represents the set of centers of all multi-tangential circles (or spheres) inscribed to
the object. Defined by distances to the boundary, the medial axis keeps a strong
correspondence to the shape of the object; we refer the reader to [6, 8, 29] for an
account of properties and further literature. However, even when the object boundary
is piecewise linear (like for a polygon in the plane, or a polytope in 3-space), the medial
axis contains curved elements when the object is nonconvex. This is a drawback in
its computer construction and representation, and sometimes also in applications,
especially in three dimensions where the medial axis attains a complex topology and
a high algebraic degree. In fact, there have been several approaches to linearizing and
simplifying this concept.

The so-called straight skeleton of a polygon (or polytope) offers a potential al-
ternative. This structure is not defined via distances but rather in a procedural way,
by means of a mitered boundary offsetting process which shrinks the object in a
self-parallel way till it vanishes. In two dimensions, the shrinking process is combina-
torially trivial, and the geometry of the straight skeleton is well understood [3, 4]. It
is a unique graph whose leaf nodes are polygon vertices like with the medial axis, but
whose arcs stem from angle bisectors and thus are straight-line segments. Figure 1.1
gives an illustration and some further explanations.

The planar straight skeleton has proved useful in various areas, including CAD
(offset calculation and path generation), image processing (shape comparison and
manipulation), architecture (automatic roof design), GIS (terrain and city modeling),
and others; see e.g. [8, 16, 21, 32] and references therein. Still, designing fast and
simple construction algorithms has remained a challenge, though powerful tools like
motorcycle graphs [21] and gradient-based decompositions [16] have been developed,
which are of interest in their own right.

It is desirable to find appropriate generalizations of the straight skeleton to three
dimensions, as this would provide piecewise linear solutions for three main operations
on nonconvex 3D polytopes which the medial axis cannot offer: Offset calculation

∗Institute for Theoretical Computer Science, University of Technology, Graz, Austria. Work
supported by ESF Programme EuroGIGA-Voronoi: Project I 649-N18, and by Project I 1836-N15,
Austria Science Fund (FWF).

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by TUGraz OPEN Library

https://core.ac.uk/display/162582900?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Fig. 1.1. The boundary of the input polygon is translated inwards at unit speed (left). Thereby,
the vertices of the polygon move on angle bisectors and trace out a unique tree structure—the straight
skeleton (right). There are two kinds of ‘events’ that alter the polygon boundary combinatorially:
A polygon edge shrinks to length zero (the edge event), or a polygon vertex runs into a non-incident
polygon edge (the split event).

(a standard operation in CAD), the construction of a skeletal structure (that encodes
the shape of the polytope in a suitable manner), and decomposition (into a polyhedral
mesh with simple cells). However, the precise definition of the shrinking process in 3D
bears difficulties, and even the existence of a mitered offset surface which is continuous
and not self-intersecting is no longer trivial.

Surprisingly, not much attention has been paid in computational geometry to
these basic questions. Intuitively speaking, shrinking a given polytope means off-
setting its boundary surface in inward direction, in a self-parallel way and at unit
speed. Thereby the polytope facets ‘sweep out’ the cells of the 3D straight skeleton.
The polytope edges (which move in angle bisector planes), and the polytope vertices
(which move along trisector lines), trace out the sheets and the spokes of the skeleton,
respectively, which border its cells. The shrinking polytope undergoes changes of var-
ious kinds, purely geometrical, or of combinatorial nature (changes in the boundary
structure), or topological (appearance or merge of tunnels, or breaking apart).

Erickson (see [18]) observed the interesting fact that offset surfaces that arise in
this way may be ambiguous, leaving different choices for the shrinking process and
thus for the skeleton construction. Indeed, we encounter this problem already ‘in
the first moment’, when polytope vertices of higher degree have to be resolved into
several vertices with different incidence structure on the offset polytope surface: In
general, only polytope vertices of degree 3 behave like polygon vertices, in the sense
that they do not split when the object is shrunk infinitesimally. An elegant idea how
to reduce the vertex resolution problem to a two-dimensional problem is proposed
in Barequet et al. [12], using the combinatorial structure of the weighted1 straight
skeleton [7, 13, 21] in a sectional plane that cuts off the polytope vertex in question.
It remains unclear, though, how to generalize this method to vertices whose incident
polytope faces positively span 3-space (for example, saddle point type vertices), as the
use of more than one sectional plane leads to the necessity of merging planar straight
skeletons, which is an unsolved problem.

The present paper, which contains and extends material from the conference pa-
pers [9, 10], is further concerned with these questions. Necessary and sufficient condi-
tions for valid mitered offset surfaces of a nonconvex polytope are given (Section 3),
along with a proof of existence, and a discussion of their basic properties and ambigu-
ities. An (inevitably general) definition of nonconvex polytopes is stated in Section 2.

1In the weighted version, the polygon edges are shifted inwards at constant but individual speeds.
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We then revisit the two-dimensional reduction of the vertex resolution problem, and
generalize it for polytope vertices of arbitrary type (Section 4). This solves, at the
same time, the 3D straight skeleton construction problem for nonconvex polytopes
(Section 5), as polytope vertices of higher degree caused by the shrinking process can
be treated in the same uniform manner. In fact, for our vertex splitting algorithm,
the type of a skeleton construction event needs not be known in order to process the
event correctly. We gain further insight into the structure of 3D straight skeletons,
concerning their facial structure and topology in Section 5, and their geometry in
Section 6, where we also provide an enumeration and categorization of all events that
can take place in the generic case. A more general class of polytope decompositions is
introduced in Section 7, where certain members can be computed by a simple direct
method. The basic concepts and proofs in Sections 3 to 7 do not depend on the offset
speed, nor on the dimension, which allows for extending our results to the weighted
setting (Section 8), and to general dimensions (Section 9). We conclude the paper
with some experimental results obtained by implementing our 3D straight skeleton
construction algorithm (Section 10). Some potential applications are mentioned, like
flattening a polytope [19], decomposing a polytope [22] into small monotone cells, and
offsetting a polygonal mesh for the purpose of ε-thinning [34].

There are certain special cases where 3D straight skeleton algorithms have been
known. First of all for convex polytopes, where the straight skeleton coincides with
the medial axis, and can be interpreted as the (projected) lower envelope of n hyper-
planes in 4-space that correspond to the n polytope facets. The skeleton therefore
consists of convex cells whose overall size (combinatorial complexity) is Θ(n2) in the
worst case, and it can be computed in O(n2) time by any optimal 4D convex hull
algorithm; see e.g. [27]. Similarly, the straight skeleton for axis-aligned (or orthogo-
nal) polytopes is the medial axis in the L∞-metric, and has a quadratic behavior in
size as well; the computation time increases by a polylogarithmic factor [12, 25]. In
these particular settings, the straight skeleton is a unique structure. No algorithmic
results or nontrivial upper size bounds have been known for (more) general polytopes.
However, a super-quadratic lower bound of Ω(n2α2(n)) on the skeleton size exists [12].

We give an O(nd) upper bound on the combinatorial complexity of straight skele-
tons for arbitrary boundary-connected polytopes in d-space, including their positively
weighted versions. This improves the trivial bound by an order of magnitude. The
argument is based on a unique layer partition for straight skeletons and related cell
complexes, introduced in Section 7, which may be of interest on its own.

2. Polytope. Here we define the type of polytope we would like to work with,
and give some related definitions and explanations.

A convex polytope is the finite intersection of closed halfspaces of Euclidean three-
space R3, with nonempty interior. A polytope is a bounded subset of R3 which can
be expressed as the finite union of convex polytopes. This definition is quite general.
A polytope can have tunnels, voids, or even be disconnected. The boundary of a
polytope has a facial structure and consists of vertices (points of intersection of three
linearly independent supporting planes), edges (minimal closed2 subsets of intersection
lines bounded by two vertices), and facets (minimal closed subsets of supporting planes
bounded by edges). Note that polytope facets are connected, but are not required
to be simply connected. Moreover, there might exist so-called touching faces, for
example, a vertex or an edge touching the interior of a non-incident facet. That

2Topological notion like boundary, interior, etc. is meant relative to the dimension of the object.
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Fig. 2.1. A polytope Q with complex topology. Q contains a tunnel, a void, and three mutually
touching faces—a facet, an edge, and the vertex v. The bottommost facet is not simply connected.
Q is a connected polytope, but is neither interior-connected nor boundary-connected. The closed
complement Q of Q (in a suitable bounding volume) is a valid polytope as well. When Q is shrunk,
i.e., when Q is expanded, a complicated combinatorial change on the boundary takes place at vertex v.

is, the boundary complex of a polytope needs not be face-to-face. Polytopes with
boundary singularities of various kinds arise naturally during the shrinking process,
even for the simple setting where the input polytope is homeomorphic to a ball and
all its facets are triangles.

A polytope, Q, can have various types of vertices. It will turn out useful to draw
the following general distinction: A vertex v of Q is called a touching vertex if there
exists some ε > 0 such that each sphere, centered at v and having a positive radius
of at most ε, intersects the boundary of Q in a disconnected set. (In the polytope in
Figure 2.1, the vertex v is of the touching type, but the vertices u and w are not.)
A vertex is called non-touching, otherwise. Among the latter vertices, certain types
are particularly relevant. A vertex v is pointed if there exists an open (geometric)
disk whose intersection with Q is exactly v. A saddle vertex is incident to edges that
positively span 3-space.3 These two types are exclusive, but not exhaustive among the
non-touching vertices. If not already present in Q’s boundary, touching vertices and
saddle vertices will be created generically in the polytope offsetting process, including
such having coplanar facets, or some facet with a reflex angle.

An edge e of a polytope Q is called convex, reflex, or flat respectively, if the
dihedral interior angle spanned by e’s incident facets is smaller, larger, or equal to π.
If e is part of a boundary singularity of Q, then the definition is meant locally for
each respective part of Q. For instance, the edge uv in Figure 2.1 is flat in the left
part of the polytope, and convex in the right part. A non-touching vertex v of Q is
called convex if all edges incident to v are convex. Likewise, v is called reflex if all its
edges are reflex. Note that convex vertices are pointed, but reflex vertices are neither
pointed nor saddle vertices. A saddle vertex necessarily has edges of both convexity
types. The degree of a vertex v of Q is the number of edges of Q that are incident
to v. Vertex degrees have to be at least 3, because vertices come from intersecting
three or more planes.

We impose no general position assumption on a polytope, nor is this needed for
our structural and algorithmic results. For the ease of exposition, a generic behavior
of the facet offset planes will be assumed at certain places, though only temporarily.

3That is, the positive hull of the directed edges ~vw of a saddle vertex v is the entire R3.
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3. Valid offset surfaces. In this section, we give a characterizing definition of
mitered offset surfaces and a proof of their existence, along with a discussion of some
of their relevant properties.

3.1. Characterization. Let Q be a polytope as defined in Section 2. Consider
some vertex, v, of Q with degree m. We have m ≥ 3, but the degree of v can be
arbitrarily large, m ≤ n− 1, where n counts the number of facets of Q. To ease the
subsequent description we assume, here and in Section 3.2, that v is a non-touching
vertex; we will come back to the general situation (which is similar) in Section 4.2.

Let f1, . . . , fm be the facets of Q incident to v. Each such facet fi defines a
supporting plane Hi, and we denote with H∆

i the parallel offset of Hi by some fixed
value ∆ > 0, inward with respect to Q. Note that we may have H∆

i = H∆
j for i 6= j,

when two facets fi and fj are coplanar. Our interest is in the arrangement defined by
the offset planes H∆

1 , . . . , H
∆
m, that is, in the dissection of R3 induced by these planes.

This structure has to comprise all possible offset surfaces that may result (locally)
from resolving the vertex v. We denote this arrangement by A(v); its combinatorial
properties do not depend on ∆, provided this offset parameter is positive.

Now center a sphere, U , at the vertex v, sufficiently small to intersect only faces
incident to v. The intersection of U with the polytope Q is a spherical polygon, S,
which is simply connected because v is a non-touching vertex. Note that S is not
necessarily contained in a hemisphere of U (for example, when v is a saddle vertex). In
the following definition, the planes H∆

i serve as functions over the spherical domain S.
More precisely, H∆

i (x) measures the distance from v to H∆
i in the direction x ∈ S.

Definition 3.1. A valid offset surface for v is (the graph of) a radial function Σ
over S that satisfies the following three conditions.

(1) For every x ∈ S we have Σ(x) = H∆
i (x) for some index i.

(2) Σ(x) = ∞ holds for all x on the boundary of S.
(3) Σ is continuous.

A valid offset surface Σ for v thus is a radially visible4 polyhedral terrain over S,
expressible as the union of certain facets from the arrangementA(v), by conditions (1)
and (3), and locally fitting with its unbounded facets to the offset polytope surface by
condition (2). In particular, Σ has no self-intersections because Σ is a radial function.
Observe that Σ in the limit ∆ → 0 supports the facets of Q incident to v, because
then all planes H∆

i concur at v. These properties are sufficient to have an offset
polytope, Q∆, of Q defined after splitting the vertex v according to Σ. They are also
necessary, which is evident except for radial visibility that we give a closer look now.
(The existence of Q∆ is guaranteed by Theorem 3.3 in the next subsection.)

Lemma 3.2. Let Σ′ be the union of all facets of Q∆ that have changed combina-
torially, as a result of resolving the vertex v of Q. If Σ′ is not radially visible from v,
then Q∆ contains some facet offsetting toward the exterior of Q∆. The converse of
the statement holds, too.

Proof. Let r be an infinite ray originating at v and with r ∩ Σ′ 6= ∅. The ray r
can intersect Σ′ only transversely, because the offset planes H∆

i avoid v. Let p1 be
the first point of intersection, at facet f∆

1 , say. (Without loss of generality, r does not
intersect any edge of Σ′. We can alter r infinitesimally, otherwise.) For increasing ∆,
the planes H∆

i move away from v, such that the facet f∆
1 offsets toward the interior

4A subset X of R3 is called radially visible (from the center v /∈ X) if every ray emanating from v
intersects X in at most one point. Trivially, the graph of a radial function is radially visible.
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of Q∆. Now, if Σ′ is not radially visible with respect to v, then (and only then) a
second point, p2, of intersection of r with Σ′ exists such that the line segment p1p2
lies inside Q∆. But the facet touched by p1p2 at p2 will offset toward the exterior
of Q∆. The lemma follows.

Facets that shift in the ‘wrong’ direction contradict the polytope shrinking pro-
cess, in the sense that a sequence of polytopes Q∆, obtained when increasing the
offset parameter ∆, is not ordered by containment. In particular, there will exist
points inside Q which are swept over by the offsetting polytope boundary more than
once. This fact is intolerable for the construction of a 3D straight skeleton, if the
skeleton cells are supposed to partition the polytope Q.

There exist surfaces for v which are not radially visible but do not self-intersect;
see Figure 3.2 (middle). This shows that ruling out self-intersections is a condition too
weak for our purposes. On the other hand, Definition 3.1 offers maximal generality.
It conforms with the classical mitered offsetting process for polygons in the literature,
but enables additional offset combinatorics in certain situations. The interested reader
may consult Section 8.1 at this point, for a brief discussion of the planar case.

3.2. Existence and basic properties. The question of the existence of valid
offset surfaces arises. An affirmative answer follows from the results in [9, 10] de-
scribed in Section 4.2. We find it instructive to give an alternative (and dimension-
independent) proof, which is directly based on the offset plane arrangement A(v).

Theorem 3.3. A valid offset surface Σ as in Definition 3.1 always exists. More-
over, Σ can be chosen such that all its facets are unbounded.

Proof. Let K be the set of all unbounded cells of A(v) whose radial projection to
the sphere U lies in the function domain S. We claim that the boundary surface, F (K),
that results from the union of these cells constitutes a valid offset surface. Clearly,
F (K) is continuous and it satisfies condition (2). It remains to show that F (K) is radi-
ally visible from v. Assume that some ray r emanating from v intersects the boundary
of a (convex) cell C in K a second time. Then C has to be adjacent there to another
cell in K; otherwise, by the continuity of F (K), some offset plane H∆

i contributing to
F (K) would split C into a bounded and an unbounded part—a contradiction.

To get rid of the bounded facets of F (K) (if any), we now include into K, one
by one, cells adjacent to such facets. (These cells are all bounded; see Figure 3.2 for
an example of the cell adding process.) This process terminates, because the added
cells will enlarge the unbounded facets of F (K) to such an extent that no bounded
facets remain: For each unbounded facet of F (K), f∆

i , which is extendable in this
way, eventually some cells will be added that contain a facet from the same supporting
plane H∆

i . Upon termination, F (K) is a valid surface, as unbounded facets always
offset in the ‘right’ direction and thus do not violate radial visibility by Lemma 3.2.

Theorem 3.3 can be generalized to touching vertices (see Section 4.2) and is
of fundamental importance for our considerations. The existence of a mitered offset
boundary—and with it, the existence of a 3D straight skeleton—for general nonconvex
polytopes in R3 hinge upon its validity.

Valid offset surfaces are not unique in general; see [18]. The smallest possible
example of ambiguity is for a saddle vertex of degree 4 whose edges alternate between
being convex and reflex [9], as in Figure 6.2. We use a bigger example to illustrate
how valid offset surfaces are obtained from the offset plane arrangement. Consider
the degree-7 vertex in Figure 3.1 (left). The displayed set of arrangement cells (right)
is the smallest set that yields a valid offset surface. All facets of this surface are,
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v

Fig. 3.1. A polytope vertex v of degree 7 (left), and the surface of the union of all unbounded
offset arrangement cells that radially project to the domain S (right).

by accident, unbounded. Still, we can add bounded cells while keeping the surface
radially visible, for instance, the cell C shown in Figure 3.2 (left). This creates a
surface vertex, u, of degree 6. Adding the cell D instead of C leads to a temporary
violation of radial visibility (middle). We have the peculiar situation that one offset
plane (marked with H) supports the surface with both sides now, such that one of
the two facets defined by H (the hidden triangular facet of D) would shift toward the
exterior of the polytope; cf. Lemma 3.2. This can be remedied by adding the cell C
next (right). In the resulting valid surface, all facets are unbounded again. No more
cells can be added in this example without destroying radial visibility beyond repair.

In conclusion, three valid solutions exist. In one of them, the vertex v gets resolved
into 8 surface vertices, rather than only 5 as in the other two cases. (Such vertices
are marked with ‘•’ in the figures.) Moreover, a degree-6 vertex u occurs there.

These phenomena may be unwanted in applications. Higher-degree surface ver-
tices complicate the resolution problem for future vertices that arise in the offsetting
process for the polytope Q, in a structural respect and also algorithmically when
the resulting combinatorial changes (later called events) have to be implemented.
Generally, offset surfaces of small combinatorial complexity seem desirable, also in
view of a 3D straight skeleton construction for Q. Bounded surface facets (we term
them orphan facets) trace out extraneous skeleton cells, such that the volume swept
over by an individual offset plane is not interior-connected any more; see Section 5.
For this reason, we may require that each offset plane defines a single (and then un-
bounded) facet in the surface, as it is the case when a convex vertex v of Q is resolved:

C
D

H

u

Fig. 3.2. Adding the cell C (left), or the cell D (middle), or both cells (right).
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The unique surface then is the radial lower envelope5 of the offset planes, and v splits
into vertices of degree 3 in the generic case, i.e., when no 4 offset planes pass through
the same point. Indeed, we can have similar positive features for arbitrary polytope
vertices v. (The case of touching vertices is covered in Corollary 4.4, see Section 4.2.)

Corollary 3.4. Let v be a non-touching vertex of the polytope Q, and let m
be the degree of v. There exists a valid (orphan-free) offset surface for v whose edge
graph is a forest with at most m − 2 inner vertices. In the generic case, all these
vertices have degree 3.

Proof. By Theorem 3.3, there exists a valid offset surface Σ for v such that all
facets of Σ are unbounded. The edge graph of Σ then has no cycles, and is a tree or a
forest if certain edges flatten out due to coplanarity of v’s polytope facets. To see that
Σ exclusively contains vertices of degree 3 in the generic case, we observe that surface
vertices of degree ≥ 4 then are necessarily incident to some orphan facet: Let w have
degree ≥ 4. Then w is incident to at least 4 facets and, because exactly 3 planes
in A(v) pass through w, at least 2 facets for w stem from the same plane, say H∆

i .
But H∆

i cannot define 2 unbounded surface facets incident to w (by Definition 3.1 (2);
points x with Σ(x) = −∞ would exist, otherwise), so at least one of them is an orphan
facet. The number of vertices of Σ is at most m − 2, the maximal number of inner
nodes in a tree with m leaves.

Even under the restrictions in Corollary 3.4, the offset surface is not unique, as
Figure 3.1 (right) and Figure 3.2 (right) show. We remark at this point that there
exist valid offset surfaces where all vertices are of degree 3, but orphan facets are
still present; see Figure 4.4 in Section 4.2. The reason is that facets which do not
share a vertex can arise from the same offset plane. With this observation, the degree
argument in the proof of Corollary 3.4 implies:

Lemma 3.5. Let v be a vertex of Q (of arbitrary type), and let Σ be some valid
offset surface for v. If Σ is orphan-free then all its vertices are of degree 3 in the
generic case. The converse is not true, in general.

Let us observe that the lower (or upper) envelope of two valid offset surfaces
for v is a valid offset surface as well. This directly follows from Definition 3.1. In
other words, the set X of valid offset surfaces for v is closed under taking envelopes.
This implies two partial orders on the elements in X , and the existence of two unique
extreme surfaces Σ−,Σ+ ∈ X . Extreme surfaces are not necessarily orphan-free, as
Figure 4.4 (middle) indicates: The maximum set of cells has been added to obtain Σ+.

The shrinking process for the polytope Q refers to the inner offset of its bound-
ary. In fact, the quest for an outer offset for Q, which may be relevant in certain
practical applications (and where we have ∆ < 0 for the offset planes H∆

i ) leads to an
equivalent problem: It can be viewed as an inner offset problem, when Q is replaced
by the polytope Q that results from taking the (closed) complement of Q in a suitable
enclosing box. As a consequence, all our results are applicable to outer offsets as well.

4. Reduction to two dimensions. For algorithmic purposes, it is of advantage
to reduce the vertex resolution problem to one dimension less. We will distinguish
two cases, depending on the type of the polytope vertex considered. More specifically,
we discuss a two-dimensional reduction for pointed polytope vertices first, and then
proceed to a generalization for arbitrary vertices, including the touching vertex type.

5For two radial functions ϕ and ψ over the same spherical domain, their lower (upper) envelope
is defined as the pointwise minimum (maximum) of the function values of ϕ and ψ.
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4.1. Pointed case revisited. Let us consider any pointed vertex v of the poly-
tope Q. Recall from Section 2 that v needs not be a convex vertex, that is, v can have
reflex incident edges. However, there exists a plane E that intersects all edges of Q
incident to v. Moreover, as v is a non-touching vertex by assumption, E intersects Q
(locally at v) in a simple polygon, which will be denoted by P in the sequel. If v is of
degree m then P has m edges, e1, . . . , em.

When the offset parameter ∆ increases in the shrinking process for Q, the poly-
gon P shrinks to the inside as well. More precisely, its edges ei ⊂ E ∩H∆

i move in a
self-parallel manner and at individual speeds wi =

1
sinαi

> 0, where αi is the dihedral

angle formed by E and the facet(s) of Q corresponding to the offset plane H∆
i . This

planar offsetting process traces out the so-called weighted straight skeleton [7, 13, 21]
of P with respect to the edge weights wi. Note that the particular position of the
sectional plane E influences both P and its weights wi, . . . , wm, in a way such that
the resulting skeleton, SK(v), remains combinatorially unaffected: A polygon ver-
tex u shared by edges ei and ej moves in an angle bisector plane, Bij , of H

∆
i and H∆

j

(which is independent of ∆ and E). Therefore, u traces out a skeleton arc along the
line Bij ∩ E. In fact, the skeletons obtained for different choices of E are radial pro-
jections of each other (with respect to the polytope vertex v, where all such bisector
planes Bij pass through).

Barequet et al. [12] proposed the interesting idea of using the incidence relations
of the weighted straight skeleton SK(v) to resolve the vertex v. We will elaborate on
the properties of this skeleton in some more detail here.

Weighted straight skeletons are not unique when degenerate conditions arise.
Edge events that involve parallel polygon edges can cause ambiguity; see e.g. [13].
(For unweighted polygons, both edge events and split events always yield a unique
offset boundary, at least in the classical setting.6) However, edge weights are not
independent in our case, which leads to the special property below that we will prove
first. Let us call a polygon vertex convex, reflex, or flat, respectively, if its incident
interior angle is smaller, larger, or equal to π. We observe that a vertex of our
sectional polygon P is convex (respectively, reflex) if and only if its defining edge in
the polytope Q is convex (respectively, reflex). In other words, the convexity status
of a vertex of P , or of any of its offset polygons, is not influenced by the particular
position of the sectional plane E.

Lemma 4.1. In the edge events that occur in the construction of SK(v), only
convex new vertices are created in the offset polygon(s).

Proof. Suppose that a nonconvex vertex, u, is created in an edge event; see
Figure 4.1 (left). Then some polygon edge e has to shrink to length zero, and the
offsets e∆1 and e∆2 of two other edges e1 and e2 get in touch at u, forming an interior
angle of at least π. Let us assume first that, before the event, e∆1 and the offset e∆

of e define a convex interior angle (as drawn in the figure). We fix the sectional
plane E orthogonal to the line segment uv, and such that uv is of unit length. Then
the supporting line ℓi of edge ei is at distance cotαi from u. Note that we have
α1, α2 <

π
2 . As ei shifts with speed 1

sinαi

, the line ℓi reaches u at time cosαi. But we

have α1 6= α2 in our case, by the existence of e∆ before the event. We conclude that
ℓ1 and ℓ2 cannot reach u at the same time, which is necessary for the occurrence of u
as an offset vertex. A similar argument for the nonexistence of u applies when the

6See Section 8.1 for a discussion of these issues, in the more general context of Definition 3.1.
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Fig. 4.1. The vertex u is not generated in the left and the right case, respectively. In the case
shown in the middle, the skeleton faces sharing the arc a continue in a monotone way.

offsets e∆1 and e∆ form a reflex interior angle (this case is not shown in the figure).
It remains to recall that the vertex structure of SK(v) is the same for all choices of
the plane E.

Note that when a (convex) vertex u is created in an edge event, then α1 = α2

holds for the position of E chosen above; see Figure 4.1 (middle). To be precise,
in the degenerate case where two or more edges vanish at the same time in the
event, rather than a single edge e, the vertex u may even be flat in order to have
α1 = α2; see Figure 4.1 (right). But then we must have ℓ1 = ℓ2, instead of mere
parallelism of these supporting lines, such that e∆1 and e∆2 merge into a single edge,
and u actually is not created as a polygon vertex. (Observe that u leaves no further
trace, but still represents a node of SK(v).) As a consequence, Lemma 4.1 still holds.
In particular, the afore-mentioned ambiguous case for parallel edges is excluded (where
we have ℓ1 6= ℓ2, hence α1 6= α2).

In summary, there is a unique way to proceed in the construction of SK(v) after
each event. That is, we have a similar behavior as in the unweighted case [3].

The inner arcs of SK(v) form a tree such that exactly one face gi for each edge ei
of P is present, unless the degenerate case above occurs and certain vertices in the
offset polygon ‘flatten out’. SK(v) then is a forest where some collinear edges of P
border the same skeleton face. Interestingly, the faces of SK(v) have the following
connectivity behavior, which we explain below: They are monotone polygons, in par-
ticular, the intersection of a face gi with any line normal to the defining edge ei is
connected. This property is well known for the unweighted straight skeleton [3], but
does not hold for weighted straight skeletons in general, unless the underlying polygon
is convex; see e.g. [7, 13].

Lemma 4.2. The weighted straight skeleton SK(v) is a unique structure (up to
radial projection from v). Moreover, its faces are monotone in the direction of their
defining polygon edges.

To see the monotonicity property, we observe that non-monotonicity always arises
in the neighborhood of skeleton nodes created by so-called sticking events ; see e.g. [31].
These are edge events where an arc incident to a reflex polygon vertex is involved.
However, when a node u of SK(v) is generated in a sticking event, then we must have
the situation in Figure 4.1 (middle), by Lemma 4.1. The skeleton construction then
continues with an arc a starting from u, in a way such that the two faces which share a
are monotone in the required directions.

By Lemma 4.2, the improvements in [15, 16] of the subquadratic-time algorithm
in [21] for constructing straight skeletons are applicable to SK(v); they are based on

monotone faces. As a consequence, SK(v) can be computed in (roughly) O(m
4

3 ) time,
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Fig. 4.2. The vertex v splits in a unique way.

when m is the degree of v. The next assertion, which has been stated informally
in [12], shows the relevance of SK(v) for resolving the pointed vertex v.

Lemma 4.3. There is a valid offset surface for v that radially projects to SK(v).

Proof. Clearly, the domain for such a surface Σ has to be the spherical polygon S
obtained by radially projecting the polygon P onto a sphere U centered at v. (S is
contained in an open hemisphere of U now, namely, in the radial projection of the
sectional plane E.) Consider an arbitrary point x ∈ S, and denote with x′ its radial
projection to P . We define the surface Σ by putting Σ(x) = H∆

i (x) if and only if
x′ lies in the unique (closed) face gi of SK(v) that is bordered by the edge ei of P .
It remains to prove that Σ satisfies the conditions in Definition 3.1. Obviously, Σ
is radially visible from v and fulfills (1) and (2) by construction. To see that Σ is
also continuous, (3), consider any inner arc a of SK(v), and let gi and gj be the two
skeleton faces incident to a. Arc a is contained in an angle bisector plane Bij of the
offset planes H∆

i and H∆
j , and Bij passes through the vertex v. This implies that

arc a radially projects to the line H∆
i ∩H∆

j . (Note that these two planes cannot be
identical, by the existence of a.) We conclude that for each x ∈ S with x′ ∈ a, we
must have H∆

i (x) = H∆
j (x), that is, the facets of Σ fit continuously.

Lemma 4.3 implies Corollary 3.4 in Section 3.2, for the special case of pointed
polytope vertices v. In particular, each polytope facet fi incident to v gives rise to a
single and unbounded facet f∆

i in the surface Σ above. In the degree-7 vertex example
discussed in Section 3.2, the orphan-free surface in Figure 3.1 (right) is the one of all
solutions that corresponds to SK(v).

We remark that Lemma 4.3—in conjunction with Lemma 4.2—puts some restric-
tion on valid offset surfaces. This is demonstrated in Figure 4.2. If the degree-5
vertex v (left) could be resolved in two different ways, then the two surfaces (middle,
left/right) were obtained. The former surface cannot come from SK(v), because the
face f is not monotone there. So it must be the latter one, which (unlike the former
surface) does not result from a self-parallel polygon offsetting process, not even for
arbitrary edge weights. We conclude that there is a unique solution, which is the one
shown in Figure 4.2 (right).

There is another and more well-known projection surface for weighted straight
skeletons of a polygon P , called the skeleton roof ; see e.g. [7, 21]. This surface does
not stem from any offset planes, but rather from the planes Li that result from lifting
each point x ∈ P vertically, by 1

wi
times the (signed) distance of x to the supporting

line ℓi of an edge ei of P .
The skeleton roof corresponding to SK(v), and the offset surface Σ for v in

Lemma 4.3, have the same convex/reflex structure of their edges: The convexity
status of a surface edge is uniquely determined by the interior angle formed by the
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Fig. 4.3. The skeleton roof (left) and its corresponding offset surface (right).

respective two edges of P . Figure 4.3 offers an illustration. Note that Lemma 4.1
implies that all valleys of this roof (i.e., reflex edges) have to start at the boundary
of P , a property that in the unweighted case is characterizing for the skeleton roof,
among all possible roofs for P ; see [3]. As a consequence, a similar restriction for
reflex edges can be used to distinguish the offset surface Σ from all other possible
solutions. We will see in Section 7 that a generalization of this property to one di-
mension higher (Lemma 7.4) leads to an alternative characterization of 3D straight
skeletons, equivalent to their procedural definition in Section 5.

We observe finally that when the edge weights cotαi (instead of 1
sinαi

) are used
for the sectional polygon P , then the resulting skeleton roof degenerates to a pyramid
with apex v and base P ; compare the proof of Lemma 4.1. This is the object we
obtain when we cut off the vertex v from Q with the plane E, because the planes Li

defining the roof are now the facet planes of v.

4.2. Bisector graphs. In this subsection, we discuss a two-dimensional reduc-
tion of the vertex resolution problem for arbitrary polytope vertices.

Non-pointed polytope vertices are more complicated to deal with. For example,
if a vertex v of the polytope Q is a saddle vertex, then a single sectional plane (like
in the preceding subsection) does not suffice to intersect all the edges incident to v.
Using two sectional planes leads to one or more unbounded polygons of intersection
with Q in either plane. If the degree of v is high, these polygons can be arbitrarily
complex, having a large number of convex and reflex vertices. Though the weighted
straight skeleton inside each such polygon can be defined and computed much like
in the (bounded) case before, we now face the task of combining several skeletons
that stem from two different planes. This inherits the problem of merging straight
skeletons, which is unsolved so far. In fact, a solution would imply a novel divide &
conquer method for computing straight skeletons.

This situation can be circumvented when a sectional sphere U as in Section 3
is used for a two-dimensional reduction. In the sequel, let v be an arbitrary vertex
of the polytope Q. We first consider the spherical polygon S = U ∩ Q, which may
have a more general shape now: The boundary of S stays connected as long as v
is non-touching (for instance, a saddle vertex), but it necessarily disconnects if v is
a touching vertex, and S needs not be simply connected any more, and even can
disconnect itself.

12
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Fig. 4.4. Bisector graphs with a tree structure (left), or containing cycles which correspond to
orphan facets (middle, dark gray). Embedding a different tree leads to crossing arcs (right).

Still, a valid offset surface for v always exists. In fact, Definition 3.1 and The-
orem 3.3 from Section 3 generalize directly to more general domains S. The only
difference introduced by a touching vertex v concerns the facet planes for v. In addi-
tion to the facets of Q that have v as a vertex, there exist facets fi of Q now which are
only touched by v, and whose offset planes H∆

i have to be taken into account for the
arrangementA(v) as well. Note that v may touch a facet fi singularly, or an edge or a
facet where v is a vertex may touch fi. In any case, the offset plane arrangementA(v)
is well defined, such that all the results from Section 3 can be extended.

Let now Σ be a valid offset surface for v. We observe that Σ can contain holes and
can be disconnected, if the same happens for the spherical polygon S. Our interest
is in the incidence structure of the edges of Σ, which is encoded in the set of non-
differentiability of the radial function over S whose image is Σ. This set defines a
geometric graph in the interior of S, which we term the bisector graph, Gv(Σ), for v
and Σ. Trivially, the arcs of Gv(Σ) pairwise do not cross, but rather partition S into
maximal subdomains (called regions) where the function Σ(x) is differentiable. In
geometric terms, the regions of Gv(Σ) are the radial projections of the facets of Σ.

The arcs of Gv(Σ) are subsets of great circles bij of the form bij = Bij ∩U , where
Bij is the angle bisector plane through v of the offset planes H∆

i and H∆
j . Notice that

the arcs of S are not considered to be part of Gv(Σ). The nodes of S are therefore
of degree 1 in Gv(Σ), and will be called its leaves. The inner nodes of Gv(Σ) are of
degree 3 or higher, where a higher degree can occur for two reasons: the presence of
orphan facets in Σ as in Figure 3.2 (left), or because the offset arrangement A(v) is
not generic.

Figure 4.4 (left/middle) displays the bisector graphs for two valid offset surfaces
of a vertex v with degree 10. The domain S is a pentagonal star, sufficiently small
to be almost flat. Examples like this can be duplicated and combined, to show that
the number of possible valid offset surfaces is as large as 2Ω(m) in the worst case,
when v is of sufficiently high degree m. This is already true for surfaces having
the forest structure as in Corollary 3.4, that is, for bisector graphs without orphan
regions: In Figure 4.4, the regions g and g′ are already different. In such an example
of exponential behavior, v can either be a touching vertex, being the common apex
of Θ(m) pyramids with pentagonal stars as bases, or a pointed vertex when the stars
are joined into a connected spherical polygon. If orphan regions are allowed, then
there exist examples (based on Figure 8.1) where v splits into Θ(m2) surface vertices.
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The graph in Figure 4.4 (right) contains crossing arcs, and therefore is not a bisector
graph. Various (spherical) illustrations of bisector graphs are given in Section 6, along
with the events they represent in the construction of 3D straight skeletons.

Our next aim is an extension of Corollary 3.4 that includes the touching vertex
type. To this end, we call a bisector graph Gv(Σ) outerplanar (with respect to the
spherical polygon S for v) if all regions of Gv(Σ) are adjacent to the boundary of S.
Observe that Gv(Σ) is outerplanar if and only if Σ contains no orphan facets. The
graph then captures the features of an offset surface which are desirable for the reasons
mentioned in Section 3.2. Revisiting the proof of Corollary 3.4, we see that the
surface Σ considered there already yields a bisector graph Gv(Σ) with the required
properties. Denote with c ≥ 0 the number of elementary cycles in Gv(Σ).

Corollary 4.4. Let v be an arbitrary vertex of the polytope Q, and let m be
the number of facets that contain v. There exist (orphan-free) valid offset surfaces Σ
for v such that Gv(Σ) is an outerplanar graph with at most m+2(c− 1) inner nodes.
In the generic case, all these nodes have degree 3.

Cycles in outerplanar bisector graphs stem from the shape of the domain S and
from the sphere topology. Such graphs may also be disconnected, even within a single
connected component of S. In the illustrations given in Section 6, Gv(Σ) is always
outerplanar.

To obtain a canonical bisector graph for a polytope vertex v, the minimum
surface Σ− or the maximum surface Σ+ (defined at the end of Section 3.2) can
be utilized, or their orphan-free variants when outerplanarity is required. Another
unique bisector graph for v, which is always outerplanar, is the so-called spherical
skeleton, G∗

v, of S on the sectional sphere U , introduced in [9]. This skeleton is defined
by a carefully tuned shrinking process for S, based on the moving offset planes H∆

i .
The task of constructingG∗

v is somewhat involved, concerning the arising events which
are more numerous than in the case of planar straight skeletons. We decided not to
include the details here, and refer the interested reader to [9] for a description of this
material instead. The spherical skeleton G∗

v can be computed in O(m2 logm) time,
where m is the number of facets of Q that contain v.

Observe that the existence ofG∗
v implies a general proof of existence for valid offset

surfaces. In fact, G∗
v is a generalization to the sphere of the weighted straight skele-

ton SK(v) in Section 4.1. This shows G∗
v 6= Gv(Σ

+) in general, by Figure 3.1 (right)
that corresponds to G∗

v, and Figure 3.2 (right) that corresponds to Gv(Σ
+). There

also exist examples for G∗
v 6= Gv(Σ

−). In contrast to SK(v), the use of a sectional
sphere, rather than a sectional plane, obviates the need for weighting the arcs of the
obtained spherical polygon.

To select more than one bisector graph for v, the offset arrangement A(v) can
be used directly. A(v) contains Θ(m3) cells, which can be computed in optimal
Θ(m3) time [20]. This is also the worst-case time complexity for extracting the first
outerplanar bisector graph with the cell adding technique in Theorem 3.3: It is not
hard to find an example where a cubic number of cells have to be added. On the other
hand, A(v) implicitly encodes all possible solutions (which can be exponentially many
even when only outerplanar graphs are sought), thus providing all possible choices of
how to proceed in the offsetting process.

A computationally simpler and still flexible approach, and the one we have imple-
mented for the 3D straight skeleton construction, is the following. By Corollary 4.4,
we can enumerate all combinatorially different outerplanar graphs which are relevant,
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and check whether they are bisector graphs for the polytope vertex v under consid-
eration. Being easy to implement, this method is plausible when the degree m is a
constant, independent of the number n of facets of the input polytope. Indeed, most
solids can be approximated accurately by (boundary-meshed) polytopes with vertices
of small constant degree. Also, in the generic case, the shrinking process can only
create offset polytope vertices of degree ≤ 8, as it will turn out in Section 6.

The graph enumeration is facilitated by the following observations. Let S1, . . . ,St

be the connected components of the spherical polygon S for the vertex v to be resolved.
We can treat each component Sk separately, and moreover, adapt to the properties
of Sk. If the boundary of Sk is connected then Corollary 3.4 applies, and attention can
be restricted to graphs that are forests. The same can be done if v is a non-touching
vertex, where we also have only one connected component. Let nowmk be the number
of arcs of Sk, and consider the system (bij), 1 ≤ i < j ≤ mk, of great circles, obtained
by intersecting the sphere U with the angle bisector planes Bij associated with Sk.
The next lemma provides a criterion for recognizing whether a given candidate graph
is a bisector graph.

Lemma 4.5. Let G be an outerplanar graph for Sk. Then G is a bisector graph
for Sk and v if and only if (1) all inner nodes of G have degree ≥ 3, and (2) the arcs
and nodes of G can be embedded on the respective components of the circle arrange-
ment (bij) inside Sk without self-crossings.

Proof. If G fulfills conditions (1) and (2) then a valid offset surface with facets
from the offset planes H∆

1 , . . . , H
∆
mk

can be constructed, similar as in the proof of
Lemma 4.3. Conversely, any bisector graph has to fulfill (1), because the vertices of a
surface are of degree at least 3. Assume now that G does not embed inside Sk without
arc crossings, and refer to Figure 4.4 (right). We claim that the offset planes above
now give a surface for G that is not radially visible from v, implying that G cannot
be a bisector graph: Let two arcs in the embedding of G cross at the point x ∈ Sk.
Then the ray from v and through a suitable point in the neighborhood of x intersects
two surface facets (rather than only one) in their interiors.

Condition (2) in Lemma 4.5 can be tested in O(mk logmk) time, for example, by
using a generalized plane sweep algorithm for line segment intersection; see e.g. [17].
As a useful byproduct, the geometric embedding of G provides us with extra informa-
tion, such that only connected graphs with inner nodes of degree exactly 3 need to be
generated: Arcs of G missing in the corresponding bisector graph, and thus causing
its disconnectedness, reveal themselves by the identity of the respective offset planes.
(Sometimes two arcs of G which are incident to such a ‘flat’ arc have to be concate-
nated into a single arc of the bisector graph; this is reflected by their containment in
the same great circle bij .) Moreover, nodes of degree ≥ 4 in the bisector graph are
witnessed by arcs of G of length zero. These observations make the enumeration par-
ticularly easy when G is a forest, where it suffices to generate all labeled and unrooted
binary trees with mk leaves [26].

In summary, a universal engine for vertex resolution is obtained, which works for
arbitrary polytope vertices and in all degenerate cases. This ‘vertex splitter’ is useful
not only for initially splitting the higher-degree vertices of the input polytope Q,
but also for handling all the events that arise later during the offsetting process
for Q. Even any multiple event can be processed, i.e., a combination of events of
possibly different types, which take place at the same point in space, and which can
be arbitrarily complex. (For example, when we shrink the complement of the polytope
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shown in Section 2, the vertex v gives rise to a multiple event. See also Figure 8.1
in Section 8.) In fact, the type of an event needs not be known in advance in order
to process it correctly. Still, we will give a complete categorization of (non-initial)
events in Section 6, under the assumption that the offset planes behave generically.

5. Straight skeletons in three-space. After having settled some basic ques-
tions about mitered offset surfaces for general nonconvex polytopes, we can now return
to the main concern of this paper: the construction of 3D straight skeletons for such
input polytopes. We will maintain full generality in this section, to point out the gen-
eral validity of the results. In Section 6, we will have to introduce a generic condition,
to be able to categorize the skeleton construction events in a transparent way.

5.1. Construction process. Like in two-dimensions, the skeleton construction
complies with the shrinking process for the given polytope Q, and is driven by so-
called events. These are combinatorial changes in the boundary structure of the offset
polytope Q∆. Events take place only if there is a change in the number of offset
planes H∆

i that intersect in the same vertex of Q∆. This number is at least three; the
results in Section 3 ensure that only valid polytopes as defined in Section 2 are gener-
ated. When an event happens at vertex v, then four or more offset planes participate,
which when shifted further, constitute the respective offset arrangement A(v).

Initially, for infinitesimally small ∆, various events will have happened simultane-
ously in general, which split higher-degree vertices of Q into vertices of smaller degree.
(We will call such events the initial events, to distinguish them from the non-initial
events that occur later in the offsetting process for Q.) Then, when ∆ increases,
between any two consecutive events the boundary of Q∆ keeps its incidence structure
while offsetting. Each facet, edge, and vertex of Q∆ traces out a certain part of a
cell, or sheet, or spoke, respectively, as we shall name these skeleton components. The
edges of Q∆ move in angle bisector planes, and the vertices of Q∆ move along trisector
lines, which are the common intersections of three bisector planes. This implies that
a piecewise-linear structure is being constructed.

Every event is associated with a vertex v of Q∆ where the number of offset planes
that contain v undergoes a change. The vertex v becomes part of the skeleton in the
event, being an endpoint of certain skeleton spokes. We will call such endpoints the
corners of the skeleton. Note that events may happen simultaneously also for a fixed
value ∆ > 0, such that k ≥ 2 different vertices v1, . . . , vk of Q∆ are involved at the
same time in different events. Now, the way how each such vertex vi gets resolved
fixes the combinatorics and the geometry of the boundary of Q∆, for infinitesimally
increased ∆. This, in turn, uniquely determines how the skeleton construction for the
polytope Q will proceed for larger ∆, till the next event is encountered.

By the results in Sections 3 and 4, the resolution of a vertex vi is always possible
via its offset arrangement A(vi), but this may be an ambiguous process. This con-
cerns the initial events, but also the non-initial ones, especially when a non-generic
or multiple event occurs. (Recall that a multiple event refers to a single vertex, un-
like simultaneous events.) Still, Definition 3.1 guarantees that any possible (infinite)
sequence of offset polytopes Q∆, for ∆ growing from 0 to ∞, is totally ordered by
inclusion. Moreover, the boundary of Q∆ changes continuously with ∆, such that
each point x ∈ Q is swept over by the shrinking polytope boundary exactly once.
This implies that the offsetting process cannot ‘cycle’ or lead to overlapping skeleton
parts, and that Q∆ (which before might have disconnected into other components
having vanished already) eventually has to collapse to volume zero, in a final event.
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In summary, a piecewise-linear cell complex inside Q is constructed; see Figures 5.2
and 10.1 for illustrations. We are now ready to state a main theorem of this paper.

Theorem 5.1. Let Q be a polytope in R3 as defined in Section 2. Any of the (at
least one) mitered offsetting processes for Q as in Definition 3.1 terminates with the
construction of a piecewise-linear decomposition of Q.

5.2. Facial structure, topology, and size. In the decomposition a straight
skeleton defines for a polytope Q, the cells are nonconvex sets in general. Studying
their structure is therefore a nontrivial task.

We start by arguing that skeleton cells are always bordered by some polytope
facet. The skeleton cell of a facet fi of Q is defined as the total volume swept over by
the boundary part of Q∆ that comes from the offset plane H∆

i for fi. This volume
is a connected set, and the reason is that H∆

i contributes to the boundary of Q∆ in
a continuous way: By definition of the vertex resolution process, H∆+ε

i can yield a
facet in Q∆+ε only if H∆−ε

i did so in Q∆−ε, for infinitesimal ε with ∆ > ε > 0. In
particular, once having stopped contributing to the polytope boundary, an offset plane
cannot reappear, because it does not participate in any future vertex resolutions.

Observe that different (but then coplanar) facets of Q can border the same cell,
if they define the same offset plane. Similarly, a single offset facet can lose simple
connectedness or split into orphan pieces, as in Figures 3.2 and 4.4. The produced
skeleton cell, C, then can split into several interior-connected orphan cells, though C
still stays connected through the vertices that have been resolved. (Figure 8.1 offers an
illustration for the planar case.) Such probably undesirable artifacts can be avoided,
when abiding by the orphan-free offset surfaces in Corollary 4.4. Unavoidable is the
occurrence of tunnels in skeleton cells and of holes in skeleton sheets, e.g., when Q
has facets with holes. Simple examples exist in this case; see Figure 10.1.

In any case, the cells share another property which is helpful when using 3D
straight skeletons as a partitioning structure: Each cell C is monotone, in the sense
that the intersection of C with any line normal to its defining facet(s) ofQ is connected
or empty. This follows from Lemma 7.2 in Section 7, which covers a more general
class of cell complexes for Q introduced there. The monotonicity implies the absence
of voids in skeleton cells, even when the polytope Q itself is not void-free.

We now take a closer look at the facial structure present in a straight skeleton
for Q. The main fact determining the incidence structure is that, in the offset poly-
tope Q∆, all vertices are of degree at least 3 for any value of ∆. This implies that
each spoke has 3 incident sheets and cells, respectively, or more in non-generic cases
(which we do not discuss in detail here), but not possibly only 2.

Consult Figure 5.1. Let ℓ be the trisector line that supports a spoke s, and
consider an endpoint v of s which is an inner corner of the skeleton (that is, v is not
a vertex of Q). Another trisector line ℓ′ 6= ℓ has to pass through v. The six involved
bisector planes, one triple for ℓ and one for ℓ′, now can be pairwise different or not.
In the former case (left), v is incident to 6 sheets, 4 spokes that span 3-space, and 4
cells, like in a convex cell complex.

In the latter case (right), one plane in the triple for ℓ identifies with a plane in the
triple for ℓ′. (No other pair can identify, by ℓ′ 6= ℓ). This plane, call it B, contains the
lines ℓ and ℓ′, each of which defines two collinear spokes of v. These 4 spokes can span
only 2 diametral sheets contained in B, but they span 4 other sheets that stem from
the two bisector planes different from B in each triple. The latter sheets therefore
have v as a ‘flat’ corner. Again, 4 cells meet at v, but there are two cells, say C1
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Fig. 5.1. The two possible (generic) incidence structures at a straight skeleton corner v.

and C2, each of which is supported by both sides of the plane B, having a double-
adjacency there. Note that the resulting cell complex is still face-to-face, because v
is a corner in all participating faces. Therefore, this geometric anomaly implies no
inconsistency with the local incidence structure given in a convex face-to-face cell
complex. The events shown in Figures 6.2, 6.3, and 6.11 lead to such an interesting
constellation, in a generic way. In conclusion, from an implementation point of view,
any of the various available data structures for storing convex cell complexes can be
used for 3D straight skeletons.

Geometrically, when a skeleton cell is considered as a separate polytope, it can
have several kinds of vertices, including the reflex and the saddle type. Touching
vertices occur as well, namely, as corners that concatenate orphan parts of the same
skeleton cell. However, in the geometric degeneracy described above, the vertex v is
not a touching vertex for the cells C1 and C2.

Returning to topological issues, let us study the spoke graph of a 3D skeleton
next, i.e., the graph formed by its spokes and corners. Whereas skeleton cells are
always connected, this is not true for the spoke graph. Two examples can be found
in Section 6.1. They reflect that vertices of Q∆ which disappear in the interior of
a polytope facet or edge (in the events E6 and E5) are responsible, as they leave no
further trace. Such situations arise naturally, in contrast to the 2D case: The planar
straight skeleton cannot disconnect, unless geometric degeneracies are present in the
input polygon; see Figure 4.1 (right) and Section 8.1. As a comforting fact, we have:

Lemma 5.2. Consider any straight skeleton of the polytope Q. In the correspond-
ing spoke graph, each component is connected to Q’s boundary.

Proof. Suppose the contrary, and let I be some isolated component of the spoke
graph that is not connected to the boundary of Q. Then there exists some closed
surface which separates I from Q’s boundary, but does not intersect any spoke or
sheet in the straight skeleton for Q. Hence there must be a cell with a void which
entirely surrounds I, and the cells therein (whose existence is witnessed by the spokes
in I) are not bordered by the boundary of Q. These are contradictions to two of the
properties of a skeleton cell, mentioned at the beginning of this subsection.

By Lemma 5.2, graph connectedness is regained when the spoke graph is joined
with the graph formed by the edges ofQ, provided the latter graph is connected. (This
can always be achieved when Q has no voids, by triangulating the boundary of the
input polytope Q after the skeleton construction). We point out that this connectivity
property is not shared by the trisector arcs of the medial axis of Q, which has a more
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Fig. 5.2. The polytope ‘Pizza Box’ has a cross pattern of Θ(n) long notches (left). The cell of
the top facet is adjacent to the cell of the bottom facet in Θ(n2) skeleton sheets (middle). The offset
polytope splits into a quadratic number of pieces, thus having Θ(n2) facets (right).

complex topology; see e.g. [29]. This complicates the application of tracing algorithms
for computing 3D medial axes. We will address such algorithms in Section 7.

Naturally, the combinatorial complexity of a 3D skeleton is an interesting quantity.
It is defined as the total number of cells, sheets, spokes, and corners of the skeleton.
Let the polytope Q have n facets. The number of cells is at most n, as each facet
borders a unique connected cell. However, a cell can consist of various orphan cells
connected via corners. The number of corners is trivially bounded from above by
(

n
4

)

, because 4 offset planes have to concur in the event that constructs a particular
corner, and this can happen only once for each quadruple of planes. This implies a
bound of O(n4) on the size of any straight skeleton; the numbers of corners, spokes,
and sheets, respectively, are linearly related. (See also the result in Section 7.3.)

Let now Bij be the bisector plane of the offset planes H∆
i and H∆

j . A single
trisector line ℓijk = Bij ∩Bjk can contribute at most n− 2 spokes to the skeleton,
because ℓijk contains at most one corner for each index different from i, j, k. By a
similar index count, a single bisector plane Bij contributes at most 1

2 (n
2 − 3n + 4)

sheets—the maximum number of planar faces in an arrangement of n− 2 lines. These
bounds are tight in order, as the example in Figure 5.2 shows. This implies that a
single cell can have a combinatorial complexity of Ω(n2), even without decomposing
into orphan cells. Figure 5.2 also reflects that the number of facets of the offset poly-
tope Q∆ can increase quadratically. However, the overall size of a straight skeleton
has a cubic upper bound, at least in the customary and probably most useful setting,
by the following theorem which we will prove in Section 7.2.

Theorem 5.3. Let Q be a boundary-connected polytope in R3 having n facets.
The combinatorial complexity of any straight skeleton for Q is O(n3), provided it has
been constructed with orphan-free vertex resolution.

Clearly, the result also holds when Q consists of several connected components.
Notice that Q may contain tunnels, but voids are disallowed. No assumptions of
non-degeneracy are required. Previously only the trivial upper bound O(n4) has been
known. We stress that the currently best result for the medial axis [28] is O(n3+ε).
Still, Theorem 5.3 leaves ample room for improvement, when compared to the lower
bound of Ω(n2α2(n)) in [12]. This kindles the hope for a smaller worst-case size of
straight skeletons.

Various different straight skeletons for a polytope Q can exist—at least exponen-
tially many by the results in Section 4.2, even for the setting in Theorem 5.3. On
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the other hand, there are canonical straight skeletons for Q, for example, the one ob-
tained by resolving each vertex with the spherical skeleton [9]. The variety of possible
solutions gives freedom for adapting to practical applications; we will come back to
this issue in Section 10.

6. Event classification. The information about all possible mitered offsets and
straight skeletons of a polytope is comprised in the structure of the individual events.
It is therefore of interest to provide a description and categorization of these events,
which is the purpose of this section. Though rich in detail and space consuming, this
task leads to several insights into the geometry and combinatorics of the offsetting
process, and its occasional peculiarities. Also, the presented material will be helpful
when an implementation different from ours is intended. (Our algorithm is based
on the largely event-independent vertex splitter in Section 4.2.) We supplement our
study with numerous illustrations.

A problem inherent to the given input conditions is that the initial events can
be arbitrarily complex. We therefore make no attempt to classify these events here,
although this is possible at least in an overall way following the material to come, for
example by referring to the vertex types.

By contrast, the non-initial events have a controllable structure for every input
polytope Q, if we limit attention to orphan-free offset surfaces. We adopt this re-
striction (which is commonly assumed implicitly in the literature) for the rest of this
section. The anatomy of the events then can be simplified, when the polytope offset
planes show a non-degenerate behavior in the following sense:

Definition 6.1. A polytope Q fulfills the generic condition if there is no value
∆ > 0 such that 5 among its offset planes H∆

1 , . . . , H
∆
n pass through the same point.

Identical offset planes (for coplanar facets of Q) are counted as a single plane.

We shall see in Section 6.3 that coplanar facets, if not already present in Q,
arise naturally in the offset polytope Q∆. Definition 6.1 implies, by the geometry
of planes in space, that each fixed quadruple of offset planes can share a point only
for a single value of ∆. Lemma 3.5 guarantees now that only offset surfaces with
vertices of degree 3 are created in an event. In fact, Q∆ is a simple polytope for all
but finitely many values of ∆. Moreover, the degree of a vertex v to be resolved in a
non-initial event is trivially limited to

(

4
2

)

· 2 = 12. Actually the maximum degree is 8,
by Lemma 6.4, such that the arising (degree-3) bisector graphs have at most 8 leaves,
and can be singled out quickly by graph enumeration. Being especially important, the
offset arrangement A(v) contains exactly 4 planes. Note that this also excludes any
multiple non-initial event. The generic condition can be enforced for any polytope Q,
by infinitesimally altering the offset speeds.

Concerning 3D straight skeletons, the condition guarantees that exactly
(

4
j

)

skele-
ton faces of dimension j are incident to each inner corner, for 1 ≤ j ≤ 3. This means
that a vertex v of Q∆, for ∆ > 0, can resolve into at most 4 vertices: Each of them
will trace out one skeleton spoke starting at the corner v, and the number of spokes
incident to a corner is

(

4
1

)

= 4. Corners which are vertices of the input polytope Q
can have a larger or a smaller number of incident spokes, sheets, and cells.

There are several meaningful ways to give a taxonomy of events: By the effect
they cause on the polytope, by the types of polytope faces that are interacting, or
by the ‘localness’ of the events. We decided to use the last approach, as it preserves
some of the features of the two-dimensional case, and also reflects the way how we
implemented the detection (though not the handling) of events.
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6.1. Edge (vanish) events. When constructing a straight skeleton in the plane,
one of the two possible (generic) events is the edge event [3]. A polygon edge shrinks
to length zero, and its two neighboring edges become adjacent. Occasionally, three
edges vanish at the same time, when a triangular component of the offset polygon
collapses to a point.

A generalization to three dimensions entails several events of this kind. One up
to six edges of the offset polytope Q∆ can vanish now at the same time, because
all six edges of a tetrahedron supported by four offset planes can be present on the
boundary of Q∆. We will adopt the term edge (vanish) events. Such events are totally
local and can be detected by the fact that some edge of Q∆ attains length zero. The
corresponding value of ∆, where the event will (possibly) take place, can be calculated
in O(1) time.

We start with the simplest edge event, which we denote with E1a and display in
Figure 6.1. (The number in the event index indicates how many edges are vanishing.)
A single edge e disappears (left) and is replaced by the edge e which borders facets
from two different offset planes (middle). In the moment when e ‘flips’ to e, a convex
vertex v of Q∆ with degree 4 is created (right). The bisector graph that resolves v
into two vertices of degree 3 is a unique binary tree. Concerning the 3D skeleton
construction, two spokes and a sheet are completed7 at corner v, and the construction
of two spokes spanning a new sheet in a different bisector plane starts at v. Also, four
already partially constructed sheets get extended further.

e

e
_

v

Fig. 6.1. The event E1a. One polytope edge e vanishes (left) and flips to the edge e (middle).
The corresponding bisector graph in the spherical quadrangle is drawn dashed (right).

The situation stays similar when the generated degree-4 vertex v is pointed but
nonconvex, or is a reflex vertex. However, there are events where exactly one edge
vanishes but with different characteristics, for instance when a saddle vertex is gener-
ated. Such edge events correspond to the sticking event in the polygon case [31], and
can arise in two different forms.

See Figure 6.2 for the first possibility, the event E1b. The created vertex v is
incident to two convex and two reflex edges (left). Remarkably, v can be resolved
in two different ways (middle left/right), where the vanished edge is either flipped
or not. This is the example of smallest vertex degree where the offset surface is
ambiguous; in fact, this is the only ambiguous event among the non-initial events (in
the generic and orphan-free case). The bisector graph Gv(Σ2) for the latter surface Σ2

is shown (right). The bisector graph Gv(Σ1) for the former surface Σ1, which is also
a tree, is obtained by prolonging the arcs a and b so as to cut off the arcs c and d.

7Strictly speaking, completed should read locally and maybe globally completed, because sheets
and cells need not be convex. We will leave out this distinction in the following.
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Fig. 6.2. In the event E1b one polytope edge vanishes and creates a saddle vertex v. This vertex
can be resolved in two different ways, by creating either a reflex edge r or a convex edge k.

Equivalently, in the three-dimensional setting, Σ2 is obtained from Σ1 by adding the
(single) tetrahedral cell of the offset arrangement; cf. Section 3.2. It is interesting to
note that the spherical skeleton (see Section 4.2) produces the surface Σ2, the one
having more convex edges.

The actions for the 3D skeleton dictated by event E1b are not unique, of course.
After the completion of a sheet at v, the construction may continue either with a
new sheet in a different, or in the same bisector plane. In the former instance, the
skeleton continues like for a convex vertex v. In the latter instance, the constellation
of the involved sheets and cells deserves particular attention. The completed sheet
and the starting sheet are coplanar and touch at v after the event. The four extend-
ing sheets also have v as a corner, but v sits between two collinear spokes on their
common boundary, being a ‘flat’ corner there. This is exactly the situation depicted
in Figure 5.1 (right) in Section 5.2: Two of the skeleton cells incident to v ‘wrap
around’ this corner, such that each of them is supported by both sides of a single
bisector plane. These cells are therefore adjacent in two sheets. Observe that the
offset polytope retains the incidence structure of its boundary in this event instance.

Figure 6.3 illustrates the second possibility of creating a saddle vertex v, which
is the event E1c. The difference to the event E1b is that v is incident to a facet
containing a reflex interior angle at v (right). In the shown polytope, the edge e of
the kite-shaped facet vanishes (left), and the edge e appears in the mirrored image
of this facet (middle). Again we have the peculiar fact that the edges e and e are

e
e
_

v

r

r

c

c

Fig. 6.3. The event E1c lets the polytope edge e vanish (left), and then reappear as the edge e
on the same offset line (middle). A saddle vertex v with a facet having a reflex angle is created
intermediately (right).
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parallel. They do not flip, because they separate the same two facet offsets (shown
shaded). Therefore the polytope retains its boundary incidence structure in the event,
though there is a switch in the orientation of the edges e and e. The bisector graph
is a unique binary tree, that is, this event is unique. The effect of the event on the
3D skeleton is the same as in the instance with the double-adjacency above: The
completed sheet and the starting sheet are coplanar, as they stem from the edges e
and e. This leads to the described geometric degeneracy in the cell structure.

We now turn to the description of edge events where more than one edge vanishes.
Let us treat the case of (exactly) 3 edges next. The respective event, denoted by E3, is
easy to imagine without a picture. A boundary triangle of Q∆ shrinks to a degree-3
vertex v, which henceforth stays a vertex of the offset polytope for a while. The
bisector graph is a 3-star. Three sheets, three spokes, and also one cell of the skeleton
get completed at corner v, and three already partially constructed sheets get adjacent
at a new spoke. This spoke has v as a starting point.

Going up by one dimension, 6 edges vanish in the event E6 (the maximum possible)
when an entire tetrahedron on the boundary of Q∆ collapses to a point v. Such a
tetrahedron can sit on top of some facet f of Q∆, or constitute an isolated part
such that a connected component of Q∆ disappears. The final event in the shrinking
process is of the latter form. Notice that a hole of f may collapse in the former case.
In both cases, four spokes and six sheets get completed at v, that is, all that can
be incident to a corner in the generic case. Three cells are completed in the former
case, and four in the latter. After that, v disappears as a vertex of Q∆ (but not as
a skeleton corner, of course). The skeleton does not continue with any new sheets
or spokes at v, though with the extension of the cell swept out by f in the former
case. As a remarkable fact, the skeleton spoke graph disconnects then, at least locally:
In the neighborhood of v, the current part of the spoke graph loses contact to the
shrinking boundary of the offset polytope. Note further that the bisector graph is
empty in both cases, because the spherical polygon is either void or a hemisphere.

In a similar event, E5, exactly 5 edges may vanish when the collapsing tetrahedron
has two vertices which are the endpoints of two collinear edges of a facet of Q∆, as in
Figure 6.4 (left). These collinear edges merge into a single edge (middle), at the point v
the tetrahedron shrinks into. The spherical polygon is a 2-gon in this event, formed
by two semicircular arcs. The bisector graph consists of a single arc a (right). Four
spokes, five sheets, and two skeleton cells get completed at v, which then disappears
fromQ∆. In particular, no new spokes start at v, that is, the spoke graph construction
does not continue there again (in spite of the fact that the bisector graph is connected
now). The skeleton continues with the extension of the partial sheet that corresponds
to the arc a, and the two incident cells.

v

a

Fig. 6.4. Five polytope edges vanish in the edge event E5.
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The last three events are the generalizations of the triangle collapse event in the
polygon case. Notably, in three dimensions some edges of Q∆ can vanish also in events
that topologically change the polytope or its non-vanishing facets. There are reasons
for not including such events into the class of edge events, which will become apparent
in Sections 6.5 and 7.2. We give a brief listing of these events below, but postpone
their detailed description to the subsections devoted to their classes. Detection still
can be done directly, by the collapse of edges of Q∆.

An example where one edge vanishes is the event in Figure 6.10 (right). No new
edge is produced, but an existing edge splits instead, and with it the entire polytope.
Events where two edges vanish are the one in Figure 6.9, and the inverses of the events
in Figures 6.6, 6.7, and 6.8. (Inverse events are explained in the next subsection.)
Facets of Q∆ merge in these events, or holes (e)merge. There is also a case where
three edges vanish, namely, the inverse of the piercing event in Section 6.4. A hole in
a facet vanishes now, and the offset polytope may split. The event where exactly four
edges vanish is the inverse of the kissing event in Section 6.4. As its specialities, the
polytope may split and the spoke graph construction does not continue locally.

This completes the enumeration of edge events. In retrospect, these events can
create all types of polytope vertices but the touching type, though only with degree
at most 4. The offset polytope does not change its topology in edge events, nor does
any of its facets, unless polytope pieces, facets, or holes in facets collapse entirely.
The spoke graph of the skeleton locally disconnects when 5 and possibly when 6 edges
vanish (in the events E5 and E6, respectively). We have also encountered an ambiguous
event, the saddle vertex example E1b. Collinearities forced by saddle vertices have led
to geometric degeneracies in the 3D straight skeleton (in E1c and possibly in E1b).

6.2. Inversion and ambiguity. Before proceeding with the description of event
types, let us focus on the feature that each event can be associated with its inverse
event. One way to interpret inverse events is by considering outer offsets, where the
offset parameter ∆ decreases. For example, the inverse of the edge event in Figure 6.1
transforms the polytope shown in the middle into the one on the left-hand side. The
inner and the outer offset problem are equivalent, by the argument at the end of
Section 3.2. This enables the following definition, which is also meant for the non-
generic case and for non-orphan-free vertex resolution. For a vertex v of Q∆, let A′(v)
denote the combinatorially unique offset plane arrangement for ∆′ < ∆. (Note that ∆′

is negative if Q∆ = Q.)

Definition 6.2. Let E be an event at the polytope vertex v with corresponding
spherical polygon S. The inverse event E−1 of E is obtained by applying to v all
possible bisector graphs for A′(v) inside the spherical polygon U \ S.

The event E−1 gives all the valid outer offset surfaces for v, and thus all possible
boundary structures of the polytope before the event E , that is, when Q∆ is expanded
infinitesimally. The identity (E−1)−1 = E is evident from the definition which is based
on taking complements, and from the fact that A′(v) is the reflection through v of
the arrangement A(v) in Section 3.

The valid offset surfaces defined by A′(v) and A(v), respectively, are combina-
torially different in general. This is due to the difference of the underlying spherical
polygons, which are complements but not reflections of each other. For example, the
bisector graph for the event in Figure 6.7 is connected, but disconnects for the inverse
event into the bisector graph shown in Figure 6.9. Nevertheless, inversion preserves
a structural similarity that makes the ambiguity of events ‘direction-insensitive’, at
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least in the setting we agreed on at the beginning of Section 6. Let us call an event
k-ary if exactly k valid and orphan-free inner offset surfaces exist for the respective
polytope vertex v.

Lemma 6.3. Let E be a generic non-initial event. Then E is at most 2-ary, and
if E is unary (respectively, binary) then so is E−1.

Proof. The arrangement A(v) for E is defined by 4 planes, and therefore contains
a single bounded cell T which is a tetrahedron. T may or may not participate in an
inner offset surface for v. So there are at most two such surfaces, and at least one of
them must be valid and orphan-free by Corollary 4.4.

The arity of events now depends on how v ‘sees’ the (opaque) tetrahedron T .
Clearly, if v lies inside T , then T cannot influence the offset surfaces at all, and E is
unary. E−1 is unary as well, because v then also lies inside the reflected tetrahedron T ′

in A′(v). Refer to Figure 6.5 now. If v sees a single facet of T , then T defines one or
three orphan facets in the inner offset surface, and T ′ leads to an outer offset surface
which is not radially visible (or vice versa). So neither T nor T ′ can be added to build
a valid and orphan-free surface. Therefore both E and E−1 are unary. Observe next
that v cannot see three facets of T , because all planes in A(v) are at the same distance
from v. So let v see exactly two facets of T . If the presence (or the absence) of T
defines two orphan facets in the inner surface or violates its radial visibility, then T ′

acts the same in the outer surface. E and E−1 are unary in these cases. Otherwise,
both T and T ′ may be used or not, and E and E−1 are binary events.

We conjecture that the arities of E and E−1 are the same also in the non-generic
case and for initial events. Note that unique events (i.e., events with only one valid
inner offset surface altogether) are unary, but not conversely. For example, the inverse
E−1
3 of the 3-edges-vanish-event E3 is unary, but has a second valid instance where the

triangle which collapsed in E3 is restored as an orphan facet; see Figure 6.5 (right).
This also shows that Lemma 6.3 cannot be extended to surfaces with orphan facets,
even not when only surface vertices of degree 3 are admitted. Several unary events
discussed in Section 6.3 also have a second inverse instance with orphan facets, though
surface vertices of degree 4 or degree 6 arise there.

On the other hand, it will turn out that generic non-initial events always define
unary inverse pairs (E , E−1), with one exception: One of the (already discussed) saddle
vertex events, namely E1b, and its inverse are binary. Consequently, four different pairs

Fig. 6.5. The offset surfaces for the 1-edge-vanish event E1a and its inverse (left), and for the
3-edges-vanish event E3 and its inverse (right). The resolved vertex • sees two tetrahedron facets
for E1a and E−1

1a
, and one tetrahedron facet for E3 and E−1

3
.
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of inverse event instances exist. For two such pairs, the exchanged polytope edges are
supported by offsets of the same line. The instances paired up there are self-inverse,
because they preserve the boundary structure of Q∆. A similar situation arises in the
unary saddle vertex event E1c in Figure 6.3.

Fixing a pair of inverse instances for resolving a vertex v uniquely determines
the structure of the 3D straight skeleton, in the entire neighborhood of the skeleton
corner v. A canonical way of defining such pairs is obtained, for example, by utilizing
the spherical skeleton (Section 4.2) for vertex resolution. This may be particularly
useful in the non-generic case, where most events have k-ary variants for k ≥ 2, but
nevertheless a canonical straight skeleton will be constructed.

We remark that, although the inverse of an event always exists, the polytopes
Q∆−t and Q∆+t can be combinatorially (but not geometrically) different in the
limit t→ 0. For example, when the event E3 takes place and lets a triangular facet
collapse, then Q∆−t in the limit still contains the isolated vertex v that results from
the collapse, whereas v is not present in Q∆+t. Still, the inverse event E−1

3 is capable
of restoring the vanished facet in one of its instances; see above. A similar situation
arises when a tetrahedron shrinks to a vertex, in the events E5 or E6.

This implies that for any given value ∆ > 0, the process which shrinks Q to Q∆

can be reversed by the application of inverse events, provided the event history has
been recorded. However, when only the information present in Q∆ is used, one will
in general not end up with the initial polytope Q when expanding Q∆ again, even
when all events so far have been unique: Some of the offset planes may have become
redundant in the shrinking process, and then cannot be restored any more. Such a
‘loss’ of planes can only happen for edge events, and there only for E3, E5, and E6,
where cells of the skeleton get completed. The inverse of a triangle collapse (where a
new triangle is born), or of a tetrahedron collapse (where a new tetrahedron is born),
thus do not occur in the shrinking process.

Observe finally that the inverse of each initial event for a polytope Q will occur
as a non-inverted event, when the given input polytope has a void in the shape of Q.
Such events can have an arity which is exponentially high in the degreem of a vertex v.
For example, we can combine Θ(m) small copies of the spherical 7-gon for the ‘binary’
vertex in Figure 3.1, to construct a spherical polygon for v with m arcs. This puts an
arity of 2Θ(m) on the event that resolves v.

6.3. Facet (boundary) events. So-called facet (boundary) events are charac-
terized by the property that either the boundaries of two coplanar facets of Q∆ get
into contact, or the boundary of a facet of Q∆ gets into self-contact. A facet splits,
or pinches off a hole on its boundary, or two facets or holes merge. Facet events can
be viewed as counterparts of the split event for planar straight skeletons [3], where
the boundary of the input polygon self-contacts and the polygon splits apart.

Detection of events in this class can still be done locally, either directly by ob-
serving the collapse of edges in Q∆, or by looking at the self-contacting facet f of Q∆.
The value of ∆ where the boundary of f (possibly) gets into self-contact can be cal-
culated directly in O(k2) time, when f has k edges. As an alternative, a weighted
straight skeleton for f can be used. Negative edge weights [13] may occur now, how-
ever, because f can have edges that shift toward its exterior. A simple and usually
fast implementation is by triangulating all the facets of Q beforehand, and detecting
facet changes by the collapse of triangles [4]. This works in O(h) overall time for all
facets per increase of ∆, when Q∆ has h facets and each of them is of constant size.
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Fig. 6.6. In the facet event Fi, the shaded facet splits in a vertex/edge contact.

Facets events show the richest forms, and they can be systematized by the dimen-
sion of the facet boundary pieces that get into contact. Most similar to the planar
case is the type vertex/edge contact, Fi, which is illustrated in Figure 6.6: A vertex of
the shaded facet runs into an opposite edge. A degree-5 vertex v of Q∆ is created by
this contact, and the shaded facet disconnects at v. Observe that v is non-touching,
but is neither a pointed vertex nor a saddle vertex. We may call v an almost pointed
vertex, because its spherical polygon S is contained in a closed hemisphere of U , but
not in any open one (as is required for being pointed); S is a pentagon where one arc
is a semicircle. The bisector graph is a binary tree with 3 inner nodes, which reflects
that v gets split into three degree-3 polytope vertices.

The same anatomy arises for a similar case of a vertex/edge contact, Fii, dis-
played in Figure 6.7. In particular, the bisector graph has the same combinatorial
tree structure in both cases, and is unique such that there exists only one valid offset
surface. Any other surface built from the same planes necessarily contains facets off-
setting toward the exterior of the polytope (cf. Lemma 3.2). Notice that—in contrast
to before—the vertical facet f extends now locally at v after the event. In the 3D
skeleton, a spoke ends at the corner v and three spokes start there. Also, four sheets
are extended, and two sheets are created.

There is another case of a vertex/edge contact, the facet event Fiii where the
offset polytope alters its topology. This is illustrated in Figure 6.8. The shaded facet
contains a hole (left), and its boundary gets in self-contact there, squeezing the hole
into two (middle). A vertex v of degree 5 is created intermediately (right), which is of
the touching type now: The boundary of the spherical polygon consists of two parts,
a triangle and a 2-gon. On the other hand, the spherical polygon is still connected,

f
f

v

Fig. 6.7. The vertex/edge contact Fii is similar to the facet event in Figure 6.6.
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v

Fig. 6.8. The facet event Fiii produces a tunnel in the vertex/edge contact.

and the bisector graph even has the same tree structure as in the events Fi and Fii.
This is interesting in view of the fact that a tunnel is created in the offset polytope
by this event. The actions for the skeleton are the same as above.

Consider Figure 6.9 next. The geometry of the shown polytope (which has sim-
ilarities to the polytope for the event E5 in Figure 6.4) generically enforces a facet
event, Fiv, of the type vertex/vertex contact. The two short edges of the shaded
facet simultaneously shrink to length zero (left). At the same moment, the object on
top of the adjacent facet, f , shrinks so as to touch the boundary of f at a vertex v
of Q∆, where two collinear edges merge now into one. The objects then drifts away
on top of the generated hole of f (middle). The vertex v has degree 5 and is of the
almost-pointed type. The spherical polygon is connected, but the bisector graph is
disconnected, being a forest consisting of a 3-star and a single arc. This graph has
only one inner node; accordingly, v is ‘resolved’ into only one vertex of the offset
polytope. That is, v does not split at all, but rather loses two collinear edges.

Actually, this event is the inverse of the facet event Fii in Figure 6.7, but in
the complementary setting (i.e., where the interior and exterior of the polytope are
exchanged). Therefore, the respective reverse actions take place in the skeleton. Note
at this point that the inverse of a facet event has to be a facet event again.

We also observe that the two contacting vertices have to move along the same
offset line. Another case where this happens is depicted in Figure 6.10. The char-
acteristics of this event, Fv, differ from the preceding one. Two vertices at the far
side of the shaded facet meet (left), such that a hole pinches off from the boundary of
this facet, and another one for the adjacent facet (middle). At the same moment, a
touching vertex v of Q∆ of degree 6 is generated. Vertex v resolves into only two offset

f

v

Fig. 6.9. The facet event Fiv gives rise to a vertex/vertex contact.
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Fig. 6.10. The vertex/vertex contact Fv shows different characteristics (left/middle). Its
inverse in the complementary setting (right) is the facet event Fvii, which splits the polytope.

vertices, because two collinear edges of the shaded facet merge into one. Thereby, a
tunnel is generated in the offset polytope. The spherical polygon is connected but
contains two holes (similar as in Figure 6.8). The bisector graph disconnects, however,
into a single arc and a binary tree with two inner nodes. In the skeleton, two spokes
arrive at corner v, and two are created. Five sheets continue, and one sheet is born.

The last distinguishable case of a vertex/vertex contact is when a saddle vertex
of Q∆ is generated, in the facet event Fvi. See Figure 6.11. The shaded facet splits,
and a hole is released from the boundary of an adjacent facet, with a small polytope
on its top. The created saddle vertex v is of degree 6 with two collinear edges, and the
spherical polygon is a hexagon. The bisector graph is a forest with two 3-stars, and v
resolves accordingly into two vertices. Again, two skeleton spokes arrive at corner v,
and two are born. However, six sheets arrive at v and all six extend. Interestingly,
the degenerate incidence structure shown in Figure 5.1 (right) occurs again, because
the two sheets that stem from the collinear edges of v are coplanar. Observe that
the contacting vertices do not span a polytope edge, nor do the new offset vertices
after v’s resolution. Consequently, a double-adjacency of cells arises.

Finally, there also exist facet events of mixed type, and a vertex/vertex/edge con-
tact may occur. This type, Fvii, is shown in Figure 6.10 (right). One may be tempted
to classify this event (and, similarly, also Fiv) as an edge event, as it causes some
edge e to vanish. However, the shaded facet splits at the created vertex v of Q∆, and
with it another facet, which settles the type of the event. Actually, this event repre-
sents the ‘pure’ generalization to three dimensions of the planar split event , because it

v

Fig. 6.11. A saddle vertex is created in the vertex/vertex contact Fvi. The dashed straight line
(left and middle) indicates the offset line that the contacting vertices are moving on.
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v

Fig. 6.12. The facet event Fviii with a vertex/edge/edge contact.

splits the polytope at v, at least locally. Note that v is a touching vertex of degree 6,
and resolves into only two vertices. The bisector graph and the spherical polygon
disconnect as well (but not the spoke graph), into two 3-stars and two spherical trian-
gles, respectively. This event is the inverse of the vertex/vertex contact event Fv, in
the complementary setting. In the skeleton, the respective reverse actions take place.

A facet event of the mixed type can also involve a vertex/edge/edge contact. Such
an event, Fviii, is depicted in Figure 6.12. The shaded facet pinches off a hole as
does its mirrored neighbor facet, when two of their common vertices meet at vertex v
of Q∆ (left). This creates an edge of Q∆ by merging, but another edge arrives there
at the same time and splits. Consequently, v is of degree 8 and has two pairs of
collinear edges (right). The degree of the constructed skeleton corner v is still 4 (as
in all other non-initial events), because v splits into only two vertices in the offset
polytope (middle). These vertices belong to two objects sitting on the two holes born
in the event. The spherical polygon is boundary-connected, but the bisector graph
is a forest with three components, two 3-stars and an isolated arc. Once more, two
skeleton spokes get completed and two created. Six already existing sheets concur at v
and extend, like in the event Fvi. But now v is of the almost-pointed type in Q∆,
and its degree is the maximum that can be attained in the generic case:

Lemma 6.4. For all ∆ > 0, the degree of the vertices of Q∆ is limited to 8.

Proof. Let v be some vertex of Q∆ for given ∆ > 0. The number of offset
planes passing through v is at most 4, and each plane can contribute at most 2 facets
of Q∆ incident to v. But the number of facets and edges incident to v must be the
same, because these faces correspond bijectively to the arcs and nodes of the spherical
polygon for v.

To convince ourselves that the enumeration of facet event types is complete, we
observe that the vertex/vertex/edge/edge contact has already been covered by the
event Fviii. Moreover, the concurrence of three non-neighboring vertices of Q∆, or
of three edges, respectively, is outruled by the generic condition in Definition 6.1: At
least five offset planes would have to pass through a common point, as can be seen
from the discussion of collision types in the next subsection.

In summary, all facet events are unary, as are their inverses by Lemma 6.3. Notice
that the latter mostly stem from coplanar constellations (e.g., F−1

i , F−1
vi , and F−1

viii)
but are still generic. Some facet events cause a topological change of the offset poly-
tope. However, facet events cannot disconnect the spoke graph: The singular vertex
created on the facet boundary cannot disappear without giving rise to new offset ver-
tices. Forced collinearities (in the event Fvi) may lead to a degenerate geometry of
straight skeleton cells, as with edge events, but not to deficiencies in the spoke graph.

30



6.4. Global (collision) events. It remains now to consider the class of global
(collision) events, where combinatorially unrelated faces of Q∆ collide. By the global
nature of such events, they can be recognized only by inspecting the entire polytope
boundary, unless an auxiliary data structure is used. In an implementation, one might
want to maintain a suitable volume partition of Q∆, for example a tetrahedrization
based on Steiner points in the interior of Q∆; see e.g. [14]. Events then can be
identified by keeping track of tetrahedra collapses in the partition, similar as in one
dimension lower for the facet events, whose detection is then automatically included.

By convention, we assign the inverse of a global event to the same class. All such
events are unique, because the resolved vertex v always lies inside the tetrahedron T
defined by the arrangement A(v); see the proof of Lemma 6.3. For the same reason,
global events cause a topological change of Q∆, and the boundary of the spherical
polygon is necessarily disconnected. As an interesting fact, the bisector graph has to
contain cycles now. Again, the distinction of event types can be done by the dimension
of the polytope faces that are interacting.

v

Fig. 6.13. In the piercing event, Gp, a polytope vertex touches the interior of a facet.

See Figure 6.13 for the first type, the vertex/facet collision. The front vertex
of a tetrahedral dent of the polytope approaches the shaded facet (left) and pierces
a triangular hole into its interior (middle), which suggests the name piercing event,
Gp, for short. In between, a touching vertex v of Q∆ is generated (right), which is
incident to three facets, and touches the interior of one facet. The spherical polygon
is connected but contains a hole. Its boundary consists of a spherical triangle and
a great circle, the latter stemming from the touched facet. The bisector graph is a
cycle of length 3, connected to its leaves in the spherical triangle. Conforming to this
graph structure, the vertex v resolves into 3 vertices that span a hole of the pierced
facet. This constructs a tunnel in the offset polytope. In the 3D skeleton, three sheets
get v as a corner and extend, but their common spoke is completed there. Three
spokes are born at v, along with three sheets spanned by them.

The inverse of the piercing event, G−1
p , lets 3 edges of the offset polytope vanish.

However, a tunnel disappears or (in the complementary setting) the offset polytope
splits locally—the reason why we classify G−1

p as a global event and not as an edge

event. Still, G−1
p can be detected directly, like the inverse of the following event.

The edge/edge collision or kissing event, Gk, has a similar anatomy that is dis-
played in Figure 6.14. The front edges of two reflex wedges of the polytope approach
each other (left). In the moment they contact at a point in their interiors, a touch-
ing vertex v of Q∆ of degree 4 is created, incident to two pairs of collinear edges
(right). The vertex v then resolves into 4 vertices spanning a nonplanar quadrangle
(middle), which opens a tunnel in the offset polytope. We recall from the beginning
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Fig. 6.14. In the kissing event, Gk, two polytope edges contact at a point in their interiors.

of Section 6 that 4 new offset vertices is the maximum that can be achieved under
generic conditions. The bisector graph consists of a 4-cycle connected to the spheri-
cal polygon boundary, which disconnects into two semicircular 2-gons. The spherical
polygon itself is connected. Interestingly, in the 3D skeleton, an isolated corner v with
four incident spokes is generated. Four sheets are initiated too, and the two sheets
traced out by the front edges of the colliding wedges are extended. This leads to a
(temporarily) isolated part of the spoke graph. However, this part stays connected
to the offset polytope boundary from the exterior, and will therefore connect to some
other part of the spoke graph in later events.

The inverse of the kissing event, G−1
k , is the only event where exactly 4 edges of

the offset polytope vanish. But the topological effect of this event is the same as for
the inverse piercing event, which hinders its inclusion into the class of edge events.

Combinatorially, there are six possibilities to pair up polytope faces of dimensions
0 to 2. Let us go over them systematically now. Two possibilities are (partially) ruled
out by our generic assumption: The type vertex/vertex collision leads to 6 or 5
offset planes passing through the same point, unless two pairs of identical planes are
present. In that case, the event shapes into the facet event Fv in Figure 6.10 (left).
Similarly, a vertex/edge collision yields 5 concurring offset planes, unless an identical
pair is involved. The resulting event is the facet event Fiii in Figure 6.8, but in the
complementary setting. The vertex/facet collision is the piercing event Gp.

By contrast, the type edge/edge collision is only partially covered by the kissing
event, because the contacting edges may be collinear. One or two pairs of coinciding
offset planes are involved then, but in the latter case the planes have differently-
oriented normal vectors in each pair. Such a collinear contact of edges, and also
the next type, the edge/facet collision, can be interpreted as limit cases of the type
facet/facet collision, the last possible combination. This event necessarily requires
two coinciding offset planes of different orientation.

These last three event types contain geometric degeneracies which are not ex-
cluded by the generic assumption. We observe that, in the moment of collision, more
than one new vertex can be created in the polytope Q∆. Still, such an event is not
a multiple event, as it does not take place at a single point in space. Rather, it can
be seen and treated as a collection of simultaneous events: Each new vertex v of Q∆

can be resolved individually, and the results assembled into the surface of the offset
polytope. The individual events are simple modifications of the piercing event and
the kissing event, respectively, and therefore are unique. Consequently, the combined
event is unique as well. We do not further elaborate on the details here.
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6.5. Concluding observations. The enumeration of the generic events is now
complete. In spite of their sometimes quite complex anatomy, all events but one are
unary. In the less obvious cases, this can be verified easily by using bisector graphs
as a tool. Another general observation is that events do not change class when being
inverted (which is partially due to the convention made for global events).

One can give a gross classification of events, based on whether or not the offset
polytope Q∆ or any of its non-vanishing facets experiences a boundary contact (or
loses such a one). For edge events this does not happen, whereas all the facet events
and global events involve an effect of that kind. This suggests to join the latter events
into the overall class of contacting events, as opposed to the contact-free edge events.
This distinction will turn out important in Section 7.2. We recall that contacting
events can neither complete the construction of a cell in the straight skeleton, nor
disconnect its spoke graph.

On the other hand, only the contacting events have the ability to alter the 3D
topology of the polytope. Tunnels may be created or destroyed, either locally like in
the facet event Fiii in Figure 6.8 and its inverse, respectively, or globally like in the
piercing event Gp and its inverse. Similarly, when the polytope splits, as for example
in the event Fvii in Figure 6.10 (right), then it does so either locally by destroying
a tunnel, or globally by incrementing the number of its connected components. The
latter change causes the polytope boundary to disconnect. As a remarkable fact—
which is already reflected in our event enumeration—this is the only way a boundary
disconnection can happen, also in the non-generic case:

Lemma 6.5. Let Q be an arbitrary polytope. In a valid offsetting process (ac-
cording to Definition 3.1) where Q shrinks to volume zero, no new voids can appear
in any offset polytope.

Proof. Assuming the contrary, let a corresponding event happen at the point v
in the offset polytope Q∆, for some value ∆. Denote with X the new void in the
polytope Q∆+ε, for sufficiently small ε. If point v lies on the boundary of Q∆ such
that the void was released from there, then there exists a ray emanating from v which
intersects the boundary of X at least twice. This contradicts the radial visibility
of the created offset surface. Otherwise, the void did appear in the interior of Q∆.
By the nature of the shrinking process, we must have v ∈ X, and the offset planes
supporting the facets ofX have collectively swept overX during the interval [∆,∆+ε],
starting from v. But prior to the resolution of v, these planes must have arrived at v.
Therefore, they have swept over points in X already earlier, for offset values smaller
than ∆. This cannot happen in a valid offsetting process.

Notice that, nevertheless, an event capable of creating a void in the interior of Q∆

exists, namely, the inverse E−1
6 of the 6-edges-vanish event E6 where a tetrahedron

collapses. By Lemma 6.5, the event E−1
6 does not occur in the shrinking process.

(Compare, in this context, the observations at the end of Section 6.2.) An event
where a void is released from the boundary of Q∆ is generally missing, because it
presumes an invalid shape of the offset surface.

This situation parallels the two-dimensional case. When the input polygon is
shrunk, no holes can be generated, neither in its interior nor at its boundary. It is
instructive to visualize that such planar hole generations do take place for the polytope
facets—in the piercing event and, for example, in the facet events of type vertex/vertex
contact, respectively. The intuitive explanation for the lack of the corresponding
events in the input dimension 2 (for a polygon) and 3 (for a polytope) is that an
additional dimension is needed to enable the generating boundary singularities.
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Event Fig contact deg v v-type bi-graph S compl. created spo topol inv

E1a 6.1 free 4 convex B4 b-c 2/1/0 2/1/0 c – ⋆
E1b 6.2 free 4 saddle B4 b-c 2/1/0 2/1/0 c – ⋆
E1c 6.3 free 4 saddle B4 b-c 2/1/0 2/1/0 c – ⋆
E3 – free 3 convex B3 b-c 3/3/1 1/0/0 c – /∈
E5 6.4 free 2 flat B2 b-c 4/5/2 0/0/0 n – /∈
E6 – free 0 flat ∅ b-c 4/6/3-4 0/0/0 n – /∈

Fi 6.6 v/e 5 a-pointed B5 b-c 1/0/0 3/2/0 c – ⋆

Fii 6.7 v/e 5 a-pointed B5 b-c 1/0/0 3/2/0 c – Fiv

Fiii 6.8 v/e 5 touching B5 b-d 1/0/0 3/2/0 c tunnel ⋆

Fiv 6.9 v/v 5 a-pointed B2 B3 b-c 3/2/0 1/0/0 c – Fii

Fv 6.10ℓ v/v 6 touching B2 B4 b-d 2/0/0 2/1/0 c tunnel Fvii

Fvi 6.11 v/v 6 saddle B3 B3 b-c 2/0/0 2/0/0 c – ⋆

Fvii 6.10r v/v/e 6 touching B3 B3 d 2/1/0 2/0/0 c split Fv

Fviii 6.12 v/e/e 8 a-pointed B2 B3 B3 b-c 2/0/0 2/0/0 c – ⋆

Gp 6.13 v/f 3 touching C3 b-d 1/0/0 3/3/0 c tunnel ⋆
Gk 6.14 e/e 4 touching C4 b-d 0/0/0 4/4/0 s tunnel ⋆

The variety of the skeleton construction events and their properties is admittedly
confusing, and an overview may be helpful. The table above summarizes the (generic
and orphan-free) events that can take place in the shrinking process for a nonconvex
polytope. We respect the order of classes and the notations established in the pre-
ceding subsections: edge events Ex, facet events Fx, and global events Gx. For each
event, the following information is displayed in the respective table row:

The generating type of contact, if any (indicated as vertex/edge/facet); the degree
and the type of the offset polytope vertex v created at this moment; the structure
of the bisector graph (we denote with Bk a binary tree with k leaves, and with Ck a
length-k cycle connected to k leaves); the connectivity behavior of the spherical poly-
gon S (boundary-connected, boundary-disconnected, or disconnected); the number
of spokes/sheets/cells completed and created in the straight skeleton being constructed
(the number of extending skeleton faces is the rest to 4/6/4); the local behavior in the
spoke graph construction (continuing, not continuing, or starting); the 3D topological
changes in the offset polytope, if any; and finally the inverse event (here F denotes
the event F in the complementary setting, ‘⋆’ indicates that the inverse event only
relates to itself, and /∈ means that the event exists but does not arise). The arity of
events is not included; we refer to the beginning of this subsection.

Global events of the collision types collinear-edge/edge, edge/facet, and facet/facet
are not listed; these simultaneous events can have a more complex structure. Apart
from that, the table represents a complete enumeration, as is also indicated by the
regularities of vertex degrees (Column 4) and of bisector graph structures (Column 6).

7. Roof complexes. Our main results on mitered offset surfaces and straight
skeletons are based on arrangements of planes in 3-space, and therefore can be gener-
alized naturally. We will address extensions in three different directions—which can
be combined—in the present section and in Sections 8 and 9, respectively. Arrange-
ments will play a double role, for resolving vertices of a polytope Q on the one hand,
and for defining piecewise-linear surfaces above Q, on the other.

It is well known that the straight skeleton of a polygon in the plane defines a
roof surface in three dimensions [3, 21]. We have mentioned this property already in
Section 4.1 and illustrated it (for the weighted case) in Figure 4.3. In short terms,
the straight skeleton is the vertical projection of the roof surface. Similar is the
situation in one dimension higher, which we will exploit now to define more general
cell decompositions for polytopes.
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7.1. Basic properties. Let Q be our polytope in R3. Every straight skele-
ton, SK, of Q defines a four-dimensional surface as follows. Let C1, . . . , Cn be the
cells that constitute SK, and denote with Hi the plane that supports the cell Ci at a
facet of Q. We identify R3 with the hyperplane W 0 : t = 0 of R4, where t stands for
the 4th coordinate. Now consider the hyperplanes

Li = {(x, t) ∈ R4 | t = δ(x,Hi)}

with δ(x,Hi) measuring the normal distance of a point x ∈W 0 to Hi (signed to be
positive on the side of Hi that contains Ci). Viewing Li as a linear function on W 0,
the skeleton roof for SK is defined as the piecewise-linear and continuous function
ϕ : Q → R with ϕ(x) = Li(x) for all x ∈ Ci and i = 1, . . . , n.

We can also define more general roofs for Q, by relaxing the condition that binds
roofs to straight skeletons.

Definition 7.1. Let ψ : Q → R by a continuous function with ψ(x) = 0 for all x
on Q’s boundary, and ψ(x) = Li(x) for at least one index i. We call the graph of ψ
a roof for the polytope Q, and the subset of Q where ψ is non-differentiable a roof
complex for Q.

Roof complexes are cell complexes inside Q, coming from vertically projecting
onto W 0 the faces of the piecewise-linear surface in R4 defined by a roof. Among
such decompositions of Q, there have to be all its straight skeletons. But also different
cell complexes are contained in this class, as is indicated (in one dimension lower) by
Figures 3.2 and 4.4. However, the local incidence structure in a roof complex has to
be the same as in a straight skeleton, as both structures are defined by the same type
of piecewise-linear functions.

Note the similarity between roof surfaces and offset surfaces in Definition 3.1.
In fact, offset surfaces can be seen as the roofs defined by a radial function ψU on
a sphere U in R3. Roof complexes on U then have bisector graphs as their spoke
graphs, and among them the spherical skeleton [9] takes the role of the skeleton roof
complex. This reflects the dimension-recursive structure of straight skeletons, which
we will make use of in Section 7.3 and Section 9.

One difference to straight skeletons is that a roof complex can contain additional
cells, namely, more than one connected cell for a given facet fi of Q. In particular, if
there exist orphan cells for fi, then they are not necessarily concatenated by corners
of the complex like in a straight skeleton; see Section 5.2. Only one of these cells is
bordered by fi. Nevertheless, the cells have a useful property even for roof complexes
which are not orphan-free.

Lemma 7.2. The union of cells in a roof complex for Q, defined by a fixed facet fi
of Q, is a point set which is monotone with respect to fi.

Proof. Let X be the point set in question, and let ψ be the function that in-
duces the roof complex for Q. We generalize the proof in [4] to one more dimension.
Take some line ℓ in the hyperplane W 0 and normal to the supporting plane Hi ⊃ fi,
and consider the restriction ψ|ℓ of ψ to ℓ. We have ψ|ℓ(x) = Li(x) if x ∈ X, and
ψ|ℓ(x) = Lj(x) < Li(x) for some index j 6= i if x ∈ Q \X, the inequality coming from
the fact that ℓ is normal to the plane Hi but not to the plane Hj . As a consequence,
if X is not monotone such that ℓ can be chosen to intersect X in a disconnected set,
then the function ψ|ℓ is discontinuous. But this is a contradiction, because ψ|ℓ is the
restriction of the continuous function ψ.
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u

v

Fig. 7.1. Roof-based shrinking process for a polygon. Interesting events arise at vertices u and v.

By the monotonicity property expressed in Lemma 7.2, no voids can exist in the
cells of a roof complex, even if Q itself has voids. This has the nice effect that the
proof of Lemma 5.2 in Section 5 generalizes, which is somewhat unexpected as roof
complexes are a much more general concept of cell complexes.

Lemma 7.3. The spoke graph of any roof complex for Q does not contain parts
which are isolated from Q’s boundary, and therefore has O(n) connected components.

Although not every roof corresponds to a straight skeleton, any fixed roof R
for Q encodes a unique shrinking process for Q. This has been discussed for the two-
dimensional case in [3]. Let W∆ stand for the horizontal hyperplane t = ∆ of R4,
for ∆ ≥ 0. (W∆ represents the ‘water level’ in the two-dimensional island model.)
Consider the intersection W∆ ∩R. This intersection bounds a polytope Q∆, which
shrinks for increasing ∆. As all roof hyperplanes have the same slope, the edges and
vertices of Q∆ move in angle bisector planes, and along trisector lines, respectively.
Clearly, this offsetting process traces out the roof complex for Q that corresponds
to R. Notice that the process respects Definition 3.1, because a valid cell complex
(without overlapping parts) is constructed. If R is a skeleton roof, then a particular
straight skeleton construction process for Q results, as in Section 5.

Figure 7.1 offers an illustration in one dimension less. We observe that events are
enabled now which do not occur in any straight skeleton construction process: At the
vertex u of R the inverse edge event E−1

3 takes place (in three dimensions), such that
a triangular facet of Q∆ is initiated. Moreover, when R contains a local minimum
(not shown in the figure) then the inverse edge event E−1

6 occurs, and a void in Q∆

is generated.

Note that a tetrahedron collapse E6 will take place at each local maximum of R.
(In particular, the polytope Q∆ vanishes in such an event when ∆ achieves a global
maximum.) There also are ‘switching-type’ events, which are not roof-specific but
come from non-orphan-free vertex resolution, like the point-symmetric exchange of
facets at the roof vertex v above.

The event E−1
3 initiates the construction of a cell in the roof complex D for R,

which is an orphan cell unless it merges later with a partially constructed cell bordered
by Q’s boundary. Likewise, E−1

6 and also E−1
5 initiate (up to four) cells in D which are

possibly orphan cells. Conversely, when these three inverse events are never induced
when W∆ is raised, then all cells of D stay connected to the boundary of Q (but
get possibly squeezed into orphan parts by switching events). More importantly,
the corresponding shrinking process then always can be realized by resolving the
vertices of Q∆, without explicit reference to R. This leads to the following alternative
characterization of straight skeletons in R3.
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Lemma 7.4. Let R be a roof for Q, and let D be its roof complex. D is a straight
skeleton for Q if and only if the inverse edge events E−1

3 , E−1
5 , and E−1

6 do not arise
in the shrinking process defined by R.

Being orphan-free is not a sufficient condition for a roof complex to be a straight
skeleton, as we recall from Figure 3.2 (right).

7.2. Layers in roofs and skeletons. For certain roof complexes, a canonical
partition of the corners into so-called layers can be specified. This structural property,
which we will describe now, leads to the first non-trivial upper bound on the size of
straight skeletons in R3, and also is of separate interest. For simplicity, we restrict
attention to straight skeletons constructed by orphan-free vertex resolution. The
results in this subsection can be extended to the class of orphan-free roof complexes.

Consider a polytopeQ with connected boundary, and let SK be a straight skeleton
for Q as above. We may assume that the cells of SK are topological balls: Cells are
interior-connected by the orphan-free construction of SK, and cells do not contain
voids because of their monotonicity (Lemma 7.2). Moreover, tunnels in cells can be
avoided by augmenting the polytope with flat edges, such that holes in facets connect
to the outer facet boundary. Such edges give rise to additional sheets in SK, but this
does not alter the remaining parts of the cell complex geometrically, except that flat
corners and spokes are introduced. The combinatorial complexities of SK and of the
unrefined complex are of the same order.

There exists an enumeration method for the sheets in SK, by a greedy process.
As all cells in SK are homeomorphic to balls, we have a topological structure like
for convex cells (apart from multiple adjacencies). Also, all cells are bordered by Q’s
boundary, which is connected by assumption. Therefore, the inner corners of SK can
be added one by one, in a way such that each corner completes one or more sheets
in SK adjacent to already completed ones. In particular, there exist triangular sheets
incident to the boundary of Q, to get the enumeration started. By Lemma 7.3, all
corners of SK can be accessed, and hence all sheets completed, in this process.

Each corner of SK corresponds to the event that constructs it. At this point,
we recall the notion of contacting events from Section 6.5. Global events and facet
events are contacting, and all edge events are contact-free. (In a more general roof
shrinking process, the events E−1

3 , E−1
5 , E−1

6 , and the switching-type events are also
contact-free, but they do not occur in the construction of SK; see Lemma 7.4.) The
above distinction of events into two classes induces a coloring on the inner corners
of SK. We color a corner v blue if its event is contact-free, and red, otherwise. The
∆-value where the event happens is called the time stamp of v.

The greedy process above can be guided by corner colors. In a first round, we
complete a maximal set of sheets by blue corners. We start with the triangular sheets,
and collect all accessed blue corners in a set Γ1. In a second round, we complete a set
of sheets by red corners, but only while the largest time stamp in Γ1 is not exceeded.
We collect these red corners in a set Γ2. This process is repeated by switching colors
until it terminates. We claim that a unique partition of the inner corners of SK into
subsets Γ1, . . . ,Γk is produced, which will be called the layers of SK.

The following interpretation of layers implies the correctness of the claim. Γ1 is
a maximal set of edge events which can be carried out correctly without using any
information about contacting events. Γ2 is a neighbored set of contacting events
which have been ignored meanwhile. Because we could not further enlarge Γ1 with
blue corners, Γ1 contains corners which are local maxima in the roof for SK, and the

37



���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

��������������
��������������
��������������

��������������
��������������
��������������

3

4

5
6

7

2

1

Fig. 7.2. A polygon with three layers {1, 2, 3}, {4, 5}, {6, 7} drawn as white, black, and grey
corners (left). The cells completed in the first and the second layer, respectively, are shaded and
hatched. On the right-hand side, the modified greedy order 1, 2, 3, 5,4, 6, 7 is simulated. The resulting
polylines Π(∆) and Π(∆′) after the first and the second layer are shown in bold style. Π(∆′) is a
simple (actually convex) polygon, because {4, 5} is the last red layer.

contacting events in Γ2 split Q∆ (at least locally) if we execute the events in Γ1 ∪ Γ2

in shrinking order, i.e., for ascending time stamps. This explains why we can continue
with the next blue layer after collecting Γ2, as triangular sheets with blue corners are
enabled again in the complex SK ∩ Q∆ unless Q∆ vanishes entirely.

We obtain a linear extension of the partial order in each layer Γi when sorting Γi

by time stamps. Concatenation of the sorted subsets now gives a unique total order
of the inner corners of SK, which we term the greedy order for SK. This order will
construct SK sheet by sheet, but differently from the shrinking order, in general.

Visualizing the situation for straight skeletons in two dimensions (Figure 7.2, left),
we see edge events correspond to blue corners, and split events to red corners. All red
corners are connected to the polygon boundary [3]. However, they cannot be collected
in a single layer, in general, and there can be linearly many layers.

Our next aim is to realize the greedy order of events in a different geometric
way, with the intention of analyzing their overall number. To this end, in the layer
partition for SK, we reverse the sorted order in each red layer. We then scan through
this modified greedy order v1, v2, . . . , vt of corners, and maintain a surface Π(∆) in R3

in the way described below (and illustrated in Figure 7.2 for the planar case).
Initially, Π(∆0) is the boundary surface of Q. For a currently processed blue

corner vj with time stamp ∆j , we construct Π(∆j) by offsetting Π(∆j−1) with the
amount ∆j −∆j−1 > 0, and performing the edge event for vj , which becomes a vertex
of the surface. Self-intersections resulting from missed contacting events are ignored.
That is, the parts of Π(∆j−1) inverted by self-intersections extend by sliding along
trisector lines, without combinatorial changes that come from contacts. Π(∆j) has
planar facets, because the offset vertices for a fixed facet of Q stay in the same offset
plane. Therefore, the original edge event at vj can be carried out correctly on Π(∆j).
In conclusion, Π(∆) is a connected, but in general self-intersecting, piecewise-linear
surface during the first blue layer (and each later layer).

For each corner vj in the subsequent red layer, a self-intersection of Π(∆j−1) gets
untangled at vj when the surface is offset, because ∆j −∆j−1 is now negative. The
point vj becomes a vertex of Π(∆j), and a wrongly oriented triangle or tetrahedron
on the surface disappears there. (Figure 6.5 shows two among several possible cases;
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an edge (left) or a triangle (right) of Π(∆j−1) vanishes, respectively.) As before,
shrinking parts—which are now inverted—and extending parts undergo edge events,
without interference from contacts, and Π(∆) stays connected and piecewise linear.

The philosophy behind this construction is that, because events are processed in
independent portions, they can be performed consistently on Π(∆) in the modified
greedy order. Thereby, all events for Q∆ are eventually transformed into contact-
free events for Π(∆). The polytope Q has to be boundary-connected, so that the
surface Π(∆) can capture the mutual boundary influence in Q∆.

Note that Π(∆) cannot have more edges and facets than Q. No edge or facet
of Π(∆) ever splits, because all performed events are contact-free, and resemble the
assumed orphan-free vertex resolution for SK. In fact, the size of Π(∆) decreases
monotonically: Whenever a new surface edge is created, at least one edge vanishes in
the same event. Concerning the size and number of layers, the following holds.

Theorem 7.5. Let Q be a boundary-connected polytope in R3 with n facets, and
let SK be one of its orphan-free straight skeletons. For the layers Γ1, . . . ,Γk of SK
(in its tunnel-free refinement) we have k = O(n) and |Γi| = O(n2).

Proof. SK consists of interior-connected cells, by its orphan-free construction.
We now recall that each blue layer includes corners that correspond to local maxima
in the skeleton roof for SK. Therefore, at least one cell of SK gets fully completed, if
the events in this layer were performed in shrinking order. In the last blue layer, at
least 4 cells get completed when the offset polytope vanishes entirely. The number of
cells of SK is at most n, and we obtain k ≤ 2(n− 3).

For the cardinalities of layers we give the following arguments. While staying
within a fixed layer Γ, we offset Π(∆) in a fixed direction. Assume first that Γ is a
blue layer. For each corner v in Γ, an edge event takes place, and at least one edge e
on Π(∆) vanishes in this event. Consider the bisector plane Bij that contains the
edge e. We study the interplay on Bij while ∆ increases. Let e ⊂ ℓ = H∆

i ∩H∆
j , and

let H∆
k and H∆

m be the two offset planes that define the endpoints of e. The three
lines ℓ and ℓ′ = H∆

k ∩Bij and ℓ′′ = H∆
m ∩Bij arrive at v at the same time, causing e

to vanish. Edge e may reappear immediately, for example when v is a saddle vertex,
but this can happen only once. Otherwise, as no contacting events can hinder their
influence, at least one of ℓ′ and ℓ′′ will reach any further point x ∈ Bij earlier than ℓ.
This implies that Bij contributes at most two edges to Π(∆) while Γ is processed.
Hence at most two corners in Γ can be charged to Bij . From i < j ≤ n we conclude
that the cardinality of a blue layer does not exceed 2 ·

(

n
2

)

.
If Γ is a red layer, then its number of corners is bounded from above by the size

of the pattern of self-intersection on Π(∆). This size is O(n2), because Π(∆) has
only O(n) edges and facets.

From Theorem 7.5 an upper bound of O(n3) on the size of (orphan-free) straight
skeletons can be inferred. We have stated this result in Theorem 5.3 in Section 5.

The number of layers depends on the shape of the polytope Q. Let us call Q
near-convex if it allows for some straight skeleton with a single (blue) layer. That
is, no contacting events occur, hence the greedy order is identical to the shrinking
order. For example, convex polytopes are near-convex. Also, the surface Π(∆) is
intersection-free once the last red layer has been processed, and Π(∆) then bounds
a near-convex polytope; see Figure 7.2 again. Recognizing and characterizing near-
convex polytopes, or polygons, are interesting problems; an application is described
in Section 10.2. From Theorem 7.5 we obtain the following tight bound.

39



Corollary 7.6. If Q is a near-convex polytope then (at least) one of its straight
skeletons can be constructed with O(n2) edge events. No facet events or global events
are involved.

For general roof complexes for Q, the layer partition needs not exist: The shrink-
ing process can introduce voids in Q∆, and cells are not always bordered by Q’s
boundary. In case of its existence, the partition may consist of a super-linear number
of layers, if the complex contains a large number of orphan cells. Likewise, when ver-
tex resolution is not orphan-free in the straight skeleton construction, then cells get
locally but not necessarily globally completed in blue layers. Examples of size Θ(n3)
exist in these cases; see Section 8.

7.3. Computing roof complexes. From the algorithmic point of view, roof
complexes provide an alternative way of computing monotone decompositions of a
polytope Q, without resorting to straight skeleton algorithms.

The surface of a roof for Q consists of (the union of) faces from the arrangement,
L(Q), of the n roof hyperplanes L1, . . . , Ln in R4; see Section 7.1. As a consequence,
the combinatorial size of any roof complex is bounded from above by the combinatorial
size of L(Q), which is Θ(n4).

To construct a roof for Q, one can compute the arrangement L(Q) in O(n4) time
in a preprocessing step [20], and then apply the cell adding technique from Section 3.2
directly (rather than using it in one dimension lower for vertex resolution). We start
with the zone in L(Q) for the horizontal hyperplane W 0, that is, the collection K of
arrangement cells intersected byW 0. LetK be the union of the cells inK. As long as K
does not define a valid function on Q, we continue adding to K cells of L(Q) incident
to (three-dimensional) facets which violate this property. This process terminates
with a collection of cells whose boundary surface defines a roof for Q.

Depending on the kind of cell complex we are aiming at, we can continue the
process. For simplicity, let us assume that L(Q) is generic. As long as roof vertices
of degree larger that 4 exist, we can add respective cells, at the same time restoring
with additional cells (if necessary) the property that K defines a function. This yields
a roof complex D with inner corner degree 4.

Still, the complex D may contain orphan cells, which can be repaired by adding
cells incident to roof facets which do not intersect W 0. An orphan-free complex D∗

with at most n cells is obtained, where the requirement that K gives a valid roof is
then automatically fulfilled.

Lemma 7.7. Let Q be an (arbitrary) polytope with n facets. A decomposition D∗

of Q into n monotone polytopal cells and inner corner degree 4 can be computed in
O(n4) time.

The cell complex D∗ is not unique, but rather depends on the order in which cells
are added. To recognize whether D∗ is a straight skeleton for Q, we can inspect the
inner corners of D∗ concerning the event they embody. By Lemma 7.4, the answer is
affirmative if and only if the events E−1

3 , E−1
5 , and E−1

6 are not encountered.
It remains unclear how to specify an order on the cells of L(Q) that produces a

straight skeleton. Counterexamples exist, already in two dimensions [3], to the conjec-
tures that the minimal or the maximal orphan-free roof (seen as functions on Q) yield
a straight skeleton. The (overall) minimal roof R−, or maximal roof R+ respectively,
can contain orphan facets and thus seem less relevant in practical applications.

The following observations indicate that it may be hard to improve the upper
size bound of O(n4) for general roof complexes. By a result in [11], the combinatorial
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size of such a complex in R1 (which is a partition of a line segment) can already
be near-quadratic in n. Also, an attempt to apply the lower envelope bound for n
linear partial functions in R4, which is O(n3+ε) [28], is doomed to fail when only Q
is given, without additional knowledge about the roof complex. This is already true
in two dimensions [3]. Finally, the large size of k-levels in hyperplane arrangements
in R4 is discouraging. (The k-level is composed of all arrangement faces which lie
below exactly k − 1 hyperplanes, and the best known upper bound on its complexity
is O(n2k2−ε); see [1].) On the other hand, a roof can never be a subset of any k-level
for fixed k when Q is nonconvex: At each locally nonconvex part of Q, some of the
hyperplanes Li will transversely cut the roof surface, and the intersected roof faces
then belong to different levels. When Q is a convex polytope then the (n− 1)-level
of L(Q), which is the lower envelope of L1, . . . , Ln, constitutes the only existing roof.

The cell adding method is conceptually simple and flexible, and may construct
polytope decompositions of small size in many cases. For example, the size of orphan-
free 3D straight skeletons is bounded by O(n3) (Theorem 5.3), and tends to be sub-
quadratic in most examples (Section 10.1). This raises the question of whether a pos-
sible tracing algorithm, based on the enumeration method for sheets in Section 7.2,
can avoid the Θ(n4) time (and space) barrier in Lemma 7.7, and achieve an output-
sensitive runtime. The layer partition of corners for orphan-free roof complexes even
shows that their computation can in principle be parallelized; each layer is structured
only by a partial order, rather than by a total order. Unfortunately, it seems that
finding the layer partition requires prior knowledge of the roof complex.

8. Weighted setting. A concept already considered in [4, 21] is to individually
tune the speeds of the edges of a polygon in its shrinking process. Naturally, doing
the same for the facets of a polytope raises our interest. In practical applications,
such weighted mitered offset surfaces might be of particular interest, as they offer
additional flexibility for adapting to given needs.

8.1. (Weighted) polygons revisited. As a warm-up, we reconsider the poly-
gon case in the light of Definition 3.1. Let a polygon, P , be the two-dimensional
equivalent of a polytope as defined in Section 2. P may contain holes, and also touch-
ing vertices which then belong to more than two edges. We equip each edge ei of P
with an individual weight wi > 0, which represents its velocity in the shrinking pro-
cess. Polygon vertices move on weighted angle bisectors, which are straight lines such
that the weighted straight skeleton is a piecewise linear structure; see also Section 4.1.

For a given vertex v of P , its valid offsets are now given by the (dimension-
independent) conditions in Definition 3.1. Let A(v) be the respective arrangement of
offset lines. Like in the unweighted case, A(v) is combinatorially independent from
the offset parameter ∆. Note that A(v) may contain parallel (non-identical) lines h∆i
and h∆j now, which are at distances wi 6= wj from v. The spherical polygon becomes
a possibly disconnected circular domain; see Figures 8.1 (left) and 8.2 (left).

If no degeneracies occur in the shrinking process for P , then vertex offsets are
always unique: A(v) is defined by only two lines for initial events, and by three lines
for non-initial events. In the latter case, A(v) contains a single bounded (triangular)
cell t. It is easy to verify that t either must, or cannot, contribute to an inner offset
which is radially visible. That is, edge events and split events are unique.

For multiple events, Definition 3.1 offers more generality than the standard poly-
gon offsetting process. There is ambiguity caused by orphan edges, also for unweighted
polygons. As an example, see Figure 8.1 (left) for a multiple split event, which is also
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v

Fig. 8.1. A multiple split event for a weighted polygon (left). The vertex v resolves into up
to 6 vertices marked with ◦. The right-hand side shows a straight skeleton that contains a quadratic
number of orphan cells, because multiple split events are not resolved in an orphan-free way.

called a vertex event in the literature [21]. Edge events can occur multiply as well,
when two or more edges of P vanish at the same time. Such an event can be resolved
either as in Figure 4.1 (right), or as in Figure 7.1 (middle) where orphan cells of the
skeleton are created. The latter instance might be called a switching event, as a point-
symmetric exchange of edges takes place. Switching events have the advantage that
they keep the straight skeleton of P connected when parallel edges get merged, be-
cause no vertex of the offset polygon flattens out. Otherwise, the skeleton disconnects
into a forest, even in the unweighted case.

On the other hand, skeleton cells do not stay interior-connected when orphan
edges are allowed in events (but remain connected via the resolved vertex). In fact, a
fixed edge ei of P can trace out Ω(n) concatenated orphan cells when P has n edges;
see Figure 8.1 (right). Multiple events can lead to planar straight skeletons whose
combinatorial complexity is Θ(n2).

In the weighted case, ambiguity arises in a generic way in a new edge event: The
offsets of two parallel edges ei and ej of P with wi 6= wj can merge into one edge,
because the edge that separated them vanishes at vertex v. See Figure 8.2 for this

1

1

v3

2

3

v

v

v

Fig. 8.2. The situation for parallel polygon edges with weights 3 and 1. There are three valid
offsets for the sliding event at vertex v (left). Two of them are the horizontal lines shown in bold.
The third offset is drawn with dotted lines, and leads to a weighted skeleton with orphan cells (right).
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sliding event, its three radially visible offsets, and the different skeletons generated by
them. The sliding event does not disconnect the weighted straight skeleton. In the
offset line arrangement A(v), the triangular cell t degenerates to two slabs separated
by the third offset line. Therefore, this type of ambiguity cannot be fixed by ruling
out orphan edges owing to the more general definition of an offset boundary; the arity
of the sliding event is 2.

8.2. Weighted skeletons in 3-space. We now study the effect of weighting
on a polytope Q in R3. The discussion in the preceding subsection already indicates
that there are no substantial differences to the unweighted case.

Most importantly, Definition 3.1 extends to weighted offset surfaces in R3, also
in the case where the offset arrangement A(v) contains parallel planes that stem from
differently weighted parallel facets of Q. Moreover, the existence is guaranteed: The
proof of Theorem 3.3 generalizes straightforwardly, which also implies that weighted
offset surfaces have to exist in orphan-free form. Weighted straight skeletons for Q
therefore are well-defined cell complexes, for arbitrary positive facets weights.

The generic condition (Definition 6.1) now has to involve both weights and offset
plane positions. In particular, two parallel offset planes H∆

i and H∆
j with the same

orientation may identify for some value ∆ > 0 if wi 6= wj , and are counted as two
different planes. Note that a non-generic weighting can force three offset planes to
intersect in a common line for all values of ∆.

Weighting legitimates more offset surfaces, because for general weights new com-
binatorics for a polytope vertex can arise. This is also true for orphan-free vertex
resolution, which will be assumed in the sequel. For example, we can now obtain the
two surfaces in Figure 4.2 (middle), by assigning a weight w > 1 to the facet f of the
degree-5 vertex v, and weight 1 to its four other facets. Stated in different terms,
for such a weighting the arity of the initial event at v is upgraded from 1 to 2. The
spherical polygon for v stays the same, of course, but its bisector graphs change as
being defined by weighted angle bisector planes. The vertex splitter in Section 4.2 will
automatically recognize this situation, by checking the validity of candidate graphs
with respect to the altered spherical embedding; cf. Lemma 4.5.

As in two dimensions, new weighting-specific events related to parallelism arise
in R3. For example, when we resolve the apex of a pyramid based on the polygon P
in Figure 8.2 (right) in an initial event, we obtain the three offset surfaces shown, for
a fixed suitable set of facet weights. This is not possible when all weights have to be
the same, as we recall from Section 4.1.

Similarly, when the polygon P is a facet (or a hole in a facet) of the offset poly-
tope Q∆, then facet weights can be adjusted to let such a sliding edge event happen
at vertex v, as a non-initial event. Thereby, the two parallel edges of P arrive at v,
and in the orphan-free version they merge into a single edge. This edge can take
over the offset movement of either merged part, which results in two different offset
polytopes. In the weighted straight skeleton, three spokes are completed at v, and one
new spoke (among two possible collinear choices) is constructed in one go at time ∆.
Vertex v becomes a skeleton corner of degree 4, like for unweighted skeletons. The
spoke graph does not continue at v. This event is generic, belongs to the class of
edge events because one edge vanishes, and is of arity 2. Notice that A(v) contains
no parallel planes in this case, but three planes parallel to the same line.

There also exists a non-initial generic sliding facet event. It stems from two
parallel planes in A(v), and is the 3D analogue of the planar sliding event. This event
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resembles the facet/facet collision event in Section 6.4. However, the identifying offset
planes have the same orientation now, such that the event is not global. It can be
categorized as a facet event, because two polytope facets merge into a single facet
of Q∆. On the other hand, there is similarity to a simultaneous edge event, because
several polytope edges incident to the merging facets vanish at different vertices ofQ∆.
The event is binary, because the new facet might proceed with either speed of its
merged parts. For each vanished edge, a skeleton corner is generated where 4 spokes
are completed, such that the spoke graph construction does not continue at these
corners (like in the events E5, E6, and G−1

k ).

We recall from Section 6.3 that certain facet events, or their inverses, also merge
two parallel facets into one. If these facets carry different weights, then the event is
not generic any more, though the structure of the (now binary) event does not change.
By weighting other facets, however, a combinatorially different bisector graph can be
obtained for some facets events, which then stay generic and unary. For instance, this
happens for the inverse of the facet event Fv (but in its non-complementary setting).

No other new weighted events exist in the generic case. A(v) cannot contain 3 or 4
parallel planes, and 4 nonparallel planes which are parallel to the same line lead to
the global event of type collinear-edge/edge collision, in Section 6.4. Edge events
and global events where A(v) lacks all kinds of parallelism remain combinatorially
unaffected when weighted, and their arity is preserved. Global events with geometric
degeneracies do not change either.

In summary, the initial events can change when weighted, but generic non-initial
events do not, except possibly for facet events, albeit new event types are enabled.
The incidence structure of the produced weighted straight skeleton, SKw, of Q is that
of a cell complex as in Section 5.2. Generally, the properties of SKw are almost the
same as of an unweighted skeleton. All cells of SKw are bordered by Q’s boundary,
because weighted offset planes still contribute continuously during the construction
of SKw in the shrinking process. This property is important. It implies that there are
at most n interior-connected cells, when the construction obeys orphan-free vertex
resolution. Also, the property is needed for Lemma 5.2 to hold: The spoke graph
of SKw is connected to Q’s boundary. In fact, the layer construction in Section 7.2
extends (see also below), such that the O(n3) upper bound in Theorem 5.3 is valid
for the combinatorial complexity of weighted straight skeletons in R3.

When orphan facets may be produced in the resolution of vertices, then a cubic
lower bound exists. The construction in Figure 8.1 (right) can be generalized to R3

in an obvious way, which results in a straight skeleton of size Θ(n3) even when all
weights are put to 1.

The only larger difference to the unweighted case is the lack of monotonicity of the
skeleton cells (Lemma 7.2). For general facet weights for Q, only the cell of the facet
with smallest weight, which corresponds to the steepest roof hyperplane, is monotone.
In particular, this implies that the cells in SKw can have voids—but only if Q does
the same, similar to the two-dimensional case. Hence Lemma 7.3 still extends to the
spoke graph of weighted roof complexes without orphan cells.

No other proofs in earlier sections are based on the monotonicity property, such
that the respective results carry over to the weighted setting. For instance, if Q
is a boundary-connected polytope, then none of its offset polytopes contains voids
(Lemma 6.5), so that all cells in SKw are still void-free. (This is needed in the
derivation of the cubic size bound in Theorem 5.3.) Also, the computation of roof
complexes extends (Lemma 7.7), and works in O(n4) time for weighted roofs.
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In this context, let us mention an optimality property of weighted roofs for convex
polytopes Q, proved in [7]. Let Q have n facets and volume 1. For any positive
numbers λ1, . . . , λn with

∑

λi = 1, there exists a weighted roof complex for Q such
that its cells Ci have volumes λi. More precisely, facet weights w1, . . . , wn for Q can
be found, such that the resulting weighted roof complex for Q (which is now unique
and identical to SKw) decomposes Q into prescribed shares. This result does not
generalize to nonconvex polytopes, because SKw then can change discontinuously
with the weighting.

9. Higher dimensions. The concepts of polytope, radial visibility, and arrange-
ment of planes generalize to Euclidean d-space Rd, for d ≥ 4. As a consequence, many
of the results in this paper are inherently dimension-independent, and have analogues
in higher dimensions. This section comments on some implications.

The proof of the existence of mitered offset surfaces for a polytope vertex v, being
based on its offset arrangement A(v), generalizes directly to arbitrary dimensions d.
This also includes the orphan-free case, and positively weighted surfaces. Straight
skeletons of nonconvex polytopes in Rd therefore are well-defined geometric struc-
tures, both in their weighted and unweighted form. In a suitably generalized generic
case (which we will assume below), straight skeletons are simple cell complexes, with
exactly

(

d+1
j

)

skeleton faces of dimension j incident to each inner corner v. In par-
ticular, exactly d+ 1 cells and spokes, respectively, meet at v. Geometric—but no
combinatorial—degeneracies can occur in the cell structure, due to doubly-adjacent
faces of various dimensions; cf. Section 5.2.

The regular structure of a straight skeleton stands in contrast to the incidence
structure of the medial axis of Q, and the high algebraic degree of its components
in Rd, unless the defining Euclidean metric for the medial axis is replaced by some
piecewise linear metric [2]. Note that a polytope Q in Rd with n facets can have

Ω(n⌊ d

2
⌋) vertices. On the other hand, the number of cells in a straight skeleton (and

also in the medial axis) of Q can be at most n, and the number of skeleton corners is
trivially bounded by

(

n
d+1

)

.

The structure of an event at a vertex v of Q in its shrinking process is determined
by the arrangement A(v). For non-initial events, A(v) contains d+ 1 hyperplanes
which define a single d-simplex as the only bounded cell. This implies that, inter-
estingly, such events are either unary or binary; there exist at most two resolution
surfaces for v, like in the three-dimensional case (cf. the proof of Lemma 6.3). Initial
events, of course, can be arbitrarily complex and have a high arity.

Our criteria for event classification are still meaningful. Concerning contacting
events, we have global events where combinatorially unrelated parts of the offset
polytope Q∆ collide, and facet events where the same happens within some facet
of Q∆. Edge events constitute the remaining class, where necessarily some edges
of Q∆ have to vanish, and where events are contact-free. Inverse events are well-
defined via outer offsets or, equivalently, by generalizing Definition 6.2. The class of
facet events may be further refined, by individually referring to face dimensions j,
for 2 ≤ j ≤ d− 1.

Clearly, the number of event types within each class increases with the dimension.
There are

(

d+1
2

)

potential edge events, according to the same number of edges of a
d-simplex. Also, there are (at least) quadratically many facet events and global events,
because contacting faces of different dimensions have to be paired up. This is probably
also the most suitable method for detecting these events, as higher-dimensional data
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structures tend to lose their efficiency in practice. However, all edge events (and all
events from other classes where some edges vanish) can still be detected directly.

As bisector graphs are not appropriate any more, the algorithm of choice for event
processing is the cell adding procedure using the arrangement A(v); see Sections 3.2
and 4.2. For non-initial events, A(v) contains exactly 2d+1 − 1 cells, such that the
(at most 2) valid offset surfaces of a vertex v can be found reasonably quickly for
small dimension d. Also for initial events, where O(md) cells have to be added, this
method is still plausible when polytope vertices are of constant degree m ≥ d. This
particularly concerns polytopes in R4, which might be the most interesting case. As
with the bisector-graph based algorithm in Section 4.2, the type of an event needs
not be known in advance, which makes a uniform treatment of events possible.

The concept of roofs and their complexes inside a polytope Q generalizes, and de-
fines a decomposition ofQ into polyhedral cells, which are monotone in the unweighted
case. Simple cell complexes as in Lemma 7.7 can be computed in O(nd+1) time, once
more by applying the cell adding technique, but now to the arrangement L(Q) of the
n roof hyperplanes in Rd+1. Again, the main part of the algorithm is the construction
of a hyperplane arrangement.

Finally, the sheet enumeration method from Section 7.2 extends to the 2-faces
in straight skeletons of any dimension (including the planar case). Skeleton cells can
be forced to be topological balls, by the augmentation of polytope facets with flat
faces. Then blue triangles generated by edge events always have to be present in an
orphan-free skeleton, and (j + 1)-sheets can be constructed by completing j-sheets, for
j ≥ 2. That is, the layer partition of corners and their greedy order exist. Simulating
the greedy order by maintaining a surface Π(∆) in Rd, we see that the number of
layers stays linear in n for (weighted) straight skeletons, because each blue/red pair
of layers can be charged to the construction of some skeleton cell again. The count
for corners per blue layer can be done with respect to the angle (d− 1)-sector planes
of the polytope Q (for example, the

(

n
3

)

trisector planes in R4). The same arguments
as in the proof of Theorem 7.5 apply, and lead to an upper bound of O(nd−1) for a
fixed layer. We obtain the following general theorem for the size of straight skeletons.

Theorem 9.1. Let Q be a boundary-connected polytope in Rd with n facets,
for arbitrary constant dimension d. Every (weighted or unweighted) straight skeleton
for Q is of combinatorial complexity O(nd) in the orphan-free setting.

Roof surfaces can be viewed as monotone terrains in (non-vertical) hyperplane
arrangements in Rd+1, which are generalizations of monotone paths in line arrange-
ments [11]. They range between zones and levels; see Section 7.3. As mentioned
there, monotone paths in R2 can be long, and the size of a k-level in an arrangement
of planes in R3 can be super-quadratic. But when only unbounded terrain facets
are present, then obviously the terrain size in R2 is 2, and O(n) in R3 because the
edges of the terrain form a planar graph with at most n faces. It remains unclear
what happens in higher dimensions. However, from the straight skeleton bound in
Theorem 9.1 we conjecture that monotone terrains composed of n unbounded facets
behave like zones, having a combinatorial complexity of O(nd) in Rd+1.

10. Practical issues. In this section, we report on some experimental results
and potential applications. Many more details concerning implementation aspects
and experiments are provided in [33].

10.1. Implementation. We have implemented an algorithm that computes
(weighted) straight skeletons in R3. To be able to accept input polytopes with ver-
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tices of higher degree, the algorithm also works in the non-generic case. This is eased
by the fact that once an event has been detected, its processing needs not be adapted
to its anatomy; all events are treated uniformly with the vertex splitter in Section 4.2.
Constant time per event suffices, when the degree of the resolved vertex is a constant.

The detection of events, on the other hand, is a notoriously difficult and time-
consuming task, as is well known from the planar case. We have mentioned some
possibilities for speed-up along with the event description. The problem is in find-
ing the contacting events, especially the global ones. It seems hard to capture the
interplay of the reflex faces of the polytope Q with a structure like the motorcycle
graph [21, 32], which reduces the worst-case runtime in two dimensions. In prac-
tice, a suitable volume tetrahedrization of Q should give a satisfactory detection
method, with output-sensitive behavior and sublinear average runtime per event for
most boundary-meshed polytopes. We have only implemented the straightforward
method, as our main interest here is in the structural and quantitative properties of
the computed skeletons. For facet events the detection is still fast, because facet sizes
can be considered a constant for most polytope data.

Figure 10.1 displays an example of the output. (In fact, most illustrations in
Section 6 have been produced automatically.) The polytope Q is a cube with three
pyramidal pits. It has 20 vertices which all have degree 3. Therefore, no initial
events need to be performed, and the straight skeleton is constructed with a total
of 49 non-initial events. The global events include 3 piercing events and 1 kissing
event, the latter leading to a merge of two tunnels. There are 22 facet events, where
11 split the offset polytope. The edge events list as 10 of type E3, 8 of type E6, and
only 5 where a single edge vanishes. Comparing the number of splits to the number
of tetrahedra collapses, we see that 1 + 11− 8 = 4 splits must be local and destroy
tunnels in the offset polytope. There are more contacting events than edge events,
due to the extreme shape of Q. The number of skeleton corners is vertices plus non-
initial events, which gives 69. The skeleton is unique in this case, because there are
no initial events, and the binary saddle vertex event E1b does not occur. Observe that
two facets of Q have holes (the topmost facet, and the one on the left side), and their
cells contain tunnels. Indeed, there is no greedy order of the events; its existence has
to be restored by adding three flat edges on the boundary of Q.

Fig. 10.1. The polytope ‘Spiky’ with its unweighted straight skeleton (left), and the two offset
polytopes after 7 and 16 events, respectively (right).
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We have tested various polytopes of different sizes, mostly boundary-triangulated
and modeling common shapes, but also polytopes of extreme shape, like the ones in
Figure 5.2 (ID: Pizza Box in the table below) and Figure 10.1 (ID: Spiky), and related
ones. One of our larger boundary-triangulated input polytopes (ID: Verwortakelt) is
displayed in Figure 10.2. Different straight skeletons for each polytope have been
computed, including weighted skeletons, and their corners/spokes/sheets counted,
along with the number L of layers if they exist. Except for extreme polytopes, the
number of corners always was a small multiple (less that 10) of the number of polytope
vertices. The (maximal) runtime is manageable for moderate polytope sizes. A brief
excerpt of our experiments is given in the following table.

ID/Vertices SK convex SK reflex SK weighted L sec

Spiky/20 69/108/70 69/108/70 42/54/46 - 0.5
Convex/24 60/84/61 60/84/61 44/52/45 1 0.1
Pizza Box/32 135/222/136 135/222/136 51/54/55 10 3.5
Pizza Cube/44 161/256/162 161/256/162 152/238/153 19 4.1
Asteroid/66 373/740/562 443/880/635 375/742/563 6 22.7
Verwortakelt/66 464/922/661 540/1074/749 468/930/661 9 50.5
Lion/89 501/996/760 566/1126/830 498/990/759 7 46.3
Creature/99 516/1026/810 596/1186/894 518/1030/812 6 47.4
Statue/142 946/1886/1372 1087/2168/1517 941/1876/1366 - 184.8
Bunny/152 919/1832/1371 961/1916/1416 931/1856/1383 - 162.7

Events with arity larger than 1 give choice among different (orphan-free) offset
surfaces, especially for initial events. For example, we can maximize the number of
convex edges, or reflex edges respectively, at each event. As can be seen from the
table (Columns 2 and 3), the former strategy led to fewer events, and thus to straight
skeletons of smaller combinatorial size, apart from the first four polytopes whose
skeletons are unique. This choice also tends to keep the volume large, whereas the
polytope is ‘slimmed down’ more quickly when reflex edges are maximized. However,
extreme volumes are not achieved; there exist counterexamples for initial events.

Of course, the volume can be maximized (or minimized) directly in each event.
Unfortunately, this local optimization strategy does not guarantee that the volume
of the offset polytope Q∆ is kept maximal (minimal) for all values of ∆. Similarly,
choosing fewer convex edges in some event can lead to later events which generate
a polytope with more convex edges. Concerning skeleton size, extreme volume gave
quite similar counts as extreme edge convexity, but none of these criteria produced
the smallest (respectively largest) skeleton in all examples.

The effect of weighting on the straight skeleton can be seen in Column 4. In the
respective polytope, all facets carry unit weight but one, whose weight was put to 10.
This can lead to a drastic reduction of the skeleton size (Rows 1 to 3), when the
heavy-weighted facet defines a large cell and extrudes many other facets which had
larger cells in the unweighted skeleton. The effect gets slightly stronger when convex
offset edges are maximized, wherefore we used this construction rule.

The layer count L in Column 5 shows that usually only a few layers are present,
unless the polytope has an extreme shape. Convex polytopes, like the one in Row 2,
have a single layer; see Corollary 7.6. For three test polytopes the greedy order does
not exist, because tunnels in skeleton cells arise. The number of layers tends to be
larger when reflex offset edges are maximized; we used this choice in the table.
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Fig. 10.2. The polytope ‘Verwortakelt’ has 66 vertices and a triangulated boundary. In the
construction of its straight skeletons, the number of edge events always by far dominates the number
of facet events and global events.

Fig. 10.3. As contacting events with topological changes occur rarely for the polytope in
Figure 10.2, its offset polytopes keep the approximate shape for a long time.

Concerning optimization criteria, let us mention a relation between the volume
of the offset polytope Q∆ and its surface area. Denote with Σ the union of all offset
facets created in Q∆+t when a vertex v of Q∆ is resolved. As Σ is radially visible,
the volume V (Σ) of the pyramid with base Σ and apex v is the sum of the volumes
of the respective pyramids based on Σ’s facets. That is, V (Σ) = A(Σ) · t

3 , when A(Σ)
is the area of Σ. Considering two offset surfaces Σ1 and Σ2 for v, the (local) volume
difference of the offset polytopes Q∆

1 and Q∆
2 therefore is −(A(Σ1)−A(Σ2)) ·

t
3 . This

implies that maximizing the volume of an offset polytope minimizes its surface area,
and vice versa.
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An interesting though probably hard problem is to find (or even characterize)
straight skeletons that require a minimal number of construction events. This question
is also practically relevant, as such skeletons realize a minimum number of corners.

10.2. Applications. Planar straight skeletons enjoy various applications, and
the same can be expected for their generalizations in three dimensions. We conclude
this paper with mentioning a few promising candidates.

The most direct application is offset calculation for triangular, or more generally,
polygonal meshes. This operation is important in CAD, for example, for the thinning
of solid objects and tool path generation. A suitable offset definition for the meshed
surface is usually problematic. Surfaces derived from the medial axis [29] are well-
defined, but they are not piecewise linear any more. Spherical and cylindrical patches
have to be dealt with, which arise in the neighborhood of reflex surface components.
For mitered and thus polygonal offset surfaces, many heuristics for locally repairing
and filling the mesh after its facet-based or vertex-based offsetting have been proposed;
see e.g. [24, 34].

Our method automatically produces a topologically correct mitered offset mesh
(which can be re-triangulated if desired), and also determines the largest allowable
offset threshold ∆. Optimization criteria as in Section 10.1 can be applied, possibly
combined with weighting strategies which are common in other offsetting approaches.
As a byproduct, our vertex resolution process can be used to convert a triangulated
input surface into a polygonal surface where all vertices have degree 3.

We say that a polytope Q can be flattened if Q can be collapsed by offsetting
without tearing the surface [19]. In other words, Q can be shrunk to volume zero
without the occurrence of any event that changes its topology. Clearly, Q must
not contain voids or tunnels. Near-convex polytopes (Corollary 7.6) always can be
flattened, because edge events do not cause topological changes, but there are also
facet events with this property (see the event table in Section 6.5). Our straight
skeleton algorithm will recognize when certain polytopes can be flattened, though we
face the problem that skeletons are not unique: Whether Q∆ stays a topological ball
for all ∆ may depend on the shrinking process the skeleton is based on. A plausible
heuristic is to resort to vertex resolution where the volume of Q∆ is maximized.

Having agreed on a particular skeleton for Q, the following strategy can be used.
Only edge events and facet events are performed, whose implementation is usually
fast. The latter events are tested directly whether they tear the surface. Possibly
arising global events are ignored, so that the obtained offset surfaces may self-intersect
(a situation similar to that in Section 7.2). This will be detected in later edge events,
though, when surface parts with a ‘wrongly’ oriented neighborhood get collapsed.

The two-dimensional case is much simpler. Exactly the near-convex polygons can
be flattened, and this property can be recognized by constructing a unique straight
skeleton. However, if weighting is allowed then no efficient method is known even in
the planar case. A discussion of several generalized notions of convexity for polygons
(being different from near-convexity) can be found in [5].

Every straight skeleton of a polytope Q, and more generally every roof complex
for Q, defines a decomposition of Q into polyhedral cells. These cells are monotone
in the unweighted case (Lemma 7.2), but can be of complex shape and large size.
The shrinking process offers a direct means to refine the cells into simple shape: We
can use the boundary surface of Q∆ for partitioning, after each event or in well-
spaced ∆-intervals. This will produce a volume mesh with node degree ≤ 6 that
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mainly consists of prismatic cells. When the boundary facets of Q are sufficiently
small (which is usually the case for boundary-triangulated polytopes obtained from
approximating solid objects), then the cells in the mesh will tend to be small as
well. Cells still unsuitable for a particular application, for example, in finite element
methods [23], can be further refined with sheets normal to the defining facets of Q,
because the monotonicity property is retained in such a volume mesh. Also, cell sizes
can be steered by assigning a smaller weight to facets of Q which extrude other facet’s
cells. The monotonicity then may get lost, though.

We recall that a suitable roof complex D for the polytope Q to be volume-meshed
may be computed beforehand, with the method in Section 7.3. Then the implementa-
tion of the shrinking process for D is much easier than that for any straight skeleton:
The arising events only need to be processed in increasing order of time stamps, rather
than also be detected, which is by far the more costly task. The time stamp ∆ of an
event is given by the normal distance of the respective inner corner v of D to the 4
supporting planes of Q whose ∆-offsets concur in v.

Like in two dimensions, a straight skeleton in R3 can attain a shape that reflects
little of the distance information to the boundary of the input polytope Q. This is
due to reflex boundary features of Q that form small exterior angles, and may be
undesirable in applications. A way to remedy this shortcoming [3], which has been
systematically applied in the polygon case [30], is to ‘mitigate’ reflex vertices and
edges of Q locally by introducing new facets. This can always be done, also when Q
contains saddle vertices, in the offset polytope Q∆ immediately after the initial events,
because Q∆ then is a simple polytope in the generic case (Section 6). We conjecture
that a convergence result similar to the one in [30] can be established, showing that the
skeleton of the truncated polytope approximates the medial axis of Q. However, the
(possibly high) arity of the initial events has to be taken into account. With a result of
this kind, straight skeletons could serve as an alternative to existing piecewise-linear
approximations of 3D medial axes; see e.g. [8].

Acknowledgements: We thank the anonymous referees for their various con-
structive comments. We would also like to thank Günter Rote for stimulating discus-
sions on the saddle vertex problem.
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