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Abstract
Recent developments within memory-augmented neural net-
works have solved sequential problems requiring long-term
memory, which are intractable for traditional neural net-
works. However, current approaches still struggle to scale to
large memory sizes and sequence lengths. In this paper we
show how access to memory can be encoded geometrically
through a HyperNEAT-based Neural Turing Machine (Hyper-
ENTM). We demonstrate that using the indirect HyperNEAT
encoding allows for training on small memory vectors in a
bit-vector copy task and then applying the knowledge gained
from such training to speed up training on larger size mem-
ory vectors. Additionally, we demonstrate that in some in-
stances, networks trained to copy bit-vectors of size 9 can be
scaled to sizes of 1,000 without further training. While the
task in this paper is simple, these results could open up the
problems amendable to networks with external memories to
problems with larger memory vectors and theoretically un-
bounded memory sizes.

Introduction
Memory-augmented neural networks are a recent improve-
ment on artificial neural networks (ANNs) that allow them to
solve complex sequential tasks requiring long-term memory
(Sukhbaatar et al. 2015; Graves et al. 2016; Graves, Wayne,
and Danihelka 2014) . Here we are particularly interested in
Neural Turing Machines (NTM) (Graves, Wayne, and Dani-
helka 2014), which allow a network to use an external mem-
ory tape to read and write information during execution.
This improvement enables the ANN to be trained in fewer
iterations, for certain tasks, and also allows the network to
change behaviour on the fly.

However, scaling to large memory sizes and sequence
length is still challenging. Additionally, current algo-
rithms have difficulties extrapolating information learned on
smaller problem sizes to larger once, thereby bootstrapping
from it. For example, in the copy tasks introduced by Graves
et al. (2014) the goal is to store and later recall a sequence
of bit vectors of a specific size. It would be desirable that
a network trained on a certain bit vector size (e.g. 8 bits)
would be able to scale to larger bit vector sizes without fur-
ther training. However, current machine learning approaches
often cannot transfer such knowledge.

Recently, Greve et al. (2016a) introduced an evolvable
version of the NTM (ENTM), which did not rely on differen-

tiability and offered some unique advantages. First, in addi-
tion to the networks weights, the optimal neural architecture
can be learned at the same time. Second, a hard memory at-
tention mechanism is directly supported and the complete
memory does not need to be accessed each time step. Third,
a growing and theoretically infinite memory is now possible.
Additionally, in contrast to the original NTM, the network
was able to perfectly scale to very long sequence lengths.
However, because it employed the direct genetic encoding
NEAT, which means that every parameter of the network is
described separately in its genotype, the approach had prob-
lems scaling to copy tasks with vectors of more than 8 bits.

To overcome these challenges, in this paper we combine
the ENTM with the indirect Hypercube-based NeuroEvo-
lution of Augmenting Topologies (HyperNEAT) encoding
(Stanley, D’Ambrosio, and Gauci 2009). HyperNEAT pro-
vided a new perspective on evolving ANNs by showing that
the pattern of weights across the connectivity of an ANN can
be generated as a function of its geometry. HyperNEAT em-
ploys an indirect encoding called compositional pattern pro-
ducing networks (CPPNs), which can compactly encode pat-
terns with regularities such as symmetry, repetition, and rep-
etition with variation (Stanley 2007). HyperNEAT exposed
the fact that neuroevolution benefits from neurons that exist
at locations within the space of the brain and that by placing
neurons at locations, evolution can exploit topography (as
opposed to just topology), which makes it possible to corre-
late the geometry of sensors with the geometry of the brain.
While lacking in many ANNs, such geometry is a critical
facet of natural brains (Sporns 2002). This insight allowed
large ANNs with regularities in connectivity to evolve for
high-dimensional problems.

In the new approach introduced in this paper, called Hy-
perENTM, an evolved neural network generates the weights
of a main model, including how it connects to the external
memory component. Because HyperNEAT can learn the ge-
ometry of how the network should be connected to the ex-
ternal memory, it is possible to train a CPPN on a small bit
vector sizes and then scale to larger bit vector sizes without
further training.

While the task in this paper is simple it shows – for the
first time – that access to an external memory can be in-
directly encoded, an insight that could directly benefit indi-
rectly encoded HyperNetworks training through gradient de-
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scent (Ha, Dai, and Le 2016) and could be applied to more
complex problem by employing recent advances in Evolu-
tionary Strategies (Salimans et al. 2017).

Backgorund
This section reviews NEAT, HyperNEAT, and Evolvable
Neural Turing Machines, which are foundational to the ap-
proach introduced in this paper.

Neuroevolution of Augmenting Topologies
The HyperNEAT method that enables learning from geom-
etry in this paper is an extension of the original NEAT algo-
rithm that evolves ANNs through a direct encoding (Stanley
and Miikkulainen 2002; Stanley and Miikkulainen 2004). It
starts with a population of simple neural networks and then
complexifies them over generations by adding new nodes
and connections through mutation. By evolving networks in
this way, the topology of the network does not need to be
known a priori; NEAT searches through increasingly com-
plex networks to find a suitable level of complexity.

The important feature of NEAT for the purpose of this pa-
per is that it evolves both the topology and weights of a net-
work. Because it starts simply and gradually adds complex-
ity, it tends to find a solution network close to the minimal
necessary size. The next section reviews the HyperNEAT ex-
tension to NEAT that is itself extended in this paper.

HyperNEAT
In direct encodings like NEAT, each part of the solution’s
representation maps to a single piece of structure in the final
solution (Floreano, Dürr, and Mattiussi 2008). The signif-
icant disadvantage of this approach is that even when dif-
ferent parts of the solution are similar, they must be en-
coded and therefore discovered separately. Thus this paper
employs an indirect encoding instead, which means that the
description of the solution is compressed such that informa-
tion can be reused. Indirect encodings are powerful because
they allow solutions to be represented as a pattern of pa-
rameters, rather than requiring each parameter to be repre-
sented individually (Bongard 2002; Gauci and Stanley 2010;
Hornby and Pollack 2002; Stanley and Miikkulainen 2003).
HyperNEAT, reviewed in this section, is an indirect encod-
ing extension of NEAT that is proven in a number of chal-
lenging domains that require discovering regularities (Clune
et al. 2009; Gauci and Stanley 2010; Stanley, D’Ambrosio,
and Gauci 2009). For a full description of HyperNEAT see
(Gauci and Stanley 2010).

In HyperNEAT, NEAT is altered to evolve an indirect
encoding called compositional pattern producing networks
(CPPNs (Stanley 2007)) instead of ANNs. CPPNs, which
are also networks, are designed to encode compositions of
functions, wherein each function in the composition loosely
corresponds to a useful regularity.

The appeal of this encoding is that it allows spatial pat-
terns to be represented as networks of simple functions (i.e.
CPPNs), which means that NEAT can evolve CPPNs just
like ANNs. CPPNs are similar to ANNs, but they rely on
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Figure 1: Hypercube-based Geometric Connectivity Pattern
Interpretation. A collection nodes, called the substrate, is
assigned coordinates that range from −1 to 1 in all di-
mensions. (1) Every potential connection in the substrate is
queried to determine its presence and weight; the dark di-
rected lines in the substrate depicted in the figure represent
a sample of connections that are queried. (2) Internally, the
CPPN (which is evolved) is a graph that determines which
activation functions are connected. As in an ANN, the con-
nections are weighted such that the output of a function is
multiplied by the weight of its outgoing connection. For
each query, the CPPN takes as input the positions of the two
endpoints and (3) outputs the weight of the connection be-
tween them. Thus, CPPNs can produce regular patterns of
connections in space.

more than one activation function (each representing a com-
mon regularity) and are an abstraction of biological devel-
opment rather than of brains. The indirect CPPN encod-
ing can compactly encode patterns with regularities such as
symmetry, repetition, and repetition with variation (Stanley
2007). For example, simply by including a Gaussian func-
tion, which is symmetric, the output pattern can become
symmetric. A periodic function such as sine creates segmen-
tation through repetition. Most importantly, repetition with
variation (e.g. such as the fingers of the human hand) is eas-
ily discovered by combining regular coordinate frames (e.g.
sine and Gaussian) with irregular ones (e.g. the asymmet-
ric x-axis). The potential for CPPNs to represent patterns
with motifs reminiscent of patterns in natural organisms has
been demonstrated in several studies (Secretan et al. 2008;
Stanley 2007).

The main idea in HyperNEAT is that CPPNs can natu-
rally encode connectivity patterns (Gauci and Stanley 2010;
Stanley, D’Ambrosio, and Gauci 2009). That way, NEAT
can evolve CPPNs that represent large-scale ANNs with
their own symmetries and regularities.

Formally, CPPNs are functions of geometry (i.e. loca-
tions in space) that output connectivity patterns whose nodes
are situated in n dimensions, where n is the number of di-
mensions in a Cartesian space. Consider a CPPN that takes
four inputs labeled x1, y1, x2, and y2; this point in four-
dimensional space also denotes the connection between the
two-dimensional points (x1, y1) and (x2, y2), and the output
of the CPPN for that input thereby represents the weight of
that connection (Figure 1). By querying every possible con-
nection among a pre-chosen set of points in this manner, a
CPPN can produce an ANN, wherein each queried point is



a neuron position. Because the connections are produced by
a function of their endpoints, the final structure is produced
with knowledge of its geometry.

In HyperNEAT, the experimenter defines both the loca-
tion and role (i.e. hidden, input, or output) of each such
node. As a rule of thumb, nodes are placed on the sub-
strate to reflect the geometry of the task (Clune et al. 2009;
Stanley, D’Ambrosio, and Gauci 2009). That way, the con-
nectivity of the substrate is a function of the task structure.
How to integrate this setup with an ANN that has an ex-
ternal memory component is an open question, which this
paper tries to address.

Evolvable Neural Turing Machines (ENTM)

Based on the principles behind the NTM, the recently intro-
duced ENTM uses NEAT to learn the topology and weights
of the ANN controller (Greve, Jacobsen, and Risi 2016a).
That way the topology of the network does not have to be
defined a priori (as is the case in the original NTM setup)
and the network can grow in response to the complexity
of the task. As demonstrated by Greve et al., the ENTM
often finds compact network topologies to solve a particu-
lar task, thereby avoiding searching through unnecessarily
high-dimensional spaces. Additionally, the ENTM was able
to solve a complex continual learning problem (Lüders et
al. 2017). Because the network does not have to be differen-
tiable, it can use hard attention and shift mechanisms, allow-
ing it to generalize perfectly to longer sequences in a copy
task. Additionally, a dynamic, theoretically unlimited tape
size is now possible.

The ENTM has a single combined read/write head. The
network emits a write vector w of size M , a write interpola-
tion control input i, a content jump control input j, and three
shift control inputs sl, s0, and sr (left shift, no shift, right
shift). The size of the write vector M determines the size of
each memory location on the tape. The write interpolation
component allows blending between the write vector and the
current tape values at the write position, where Mh(t) is the
content of the tape at the current head location h, at time step
t, it is the write interpolation, and wt is the write vector, all
at time step t: Mh(t) = Mh(t− 1) · (1− it) + wt · it.

The content jump determines if the head should be moved
to the location in memory that most closely resembles the
write vector. A content jump is performed if the value of the
control input exceeds 0.5. The similarity between write vec-
tor w and memory vector m is determined by: s(w,m) =∑M

i=1 |wi−mi|
M . At each time step t, the following actions are

performed in order: (1) Record the write vector wt to the
current head position h, interpolated with the existing con-
tent according to the write interpolation it. (2) If the content
jump control input jt is greater than 0.5, move the head to
location on the tape most similar to the write vector wt. (3)
Shift the head one position left or right on the tape, or stay
at the current location, according to the shift control inputs
sl, s0, and sr. (4) Read and return the tape values at the new
head position.

Approach: Hyper Neural Turing Machines
(HyperENTM)

In the HyperENTM the CPPN does not only determine the
connections between the task related ANN inputs and out-
puts but also how the information coming from the memory
is integrated into the network and how information is written
back to memory. Because HyperNEAT can learn the geom-
etry of a task it should be able to learn the geometric pattern
in the information written to and read from memory.

The following section details the HyperENTM approach
on the copy task, which was first introduced by (Graves,
Wayne, and Danihelka 2014). In the copy task the network
is asked to store and later recall a sequence of bit vectors.
At the start of the task the network receives a special input,
which denotes the start of the input phase. Afterwards, the
network receives the sequence of bit-vectors, one at a time.
Once the sequence has been fully passed to the network it
receives another special input, signaling the end of the input
phase and the start of the output phase. For any subsequent
time steps the network does not receive any input.

In summary, the network has the following inputs: Start:
An input that is activated when the storing of numbers
should begin. Switch: An input that is activated when the
storing should stop and the network must start recalling the
bit vectors instead. Bit-vector input: Before the switch input
has been activated this input range is activated with the bits
that are to be recited later. Memory read input: The memory
vector that the TM read in the previous time step.

And following outputs: Bit-vector output: The bit vector
that the network outputs to the environment. During the in-
put phase this output is ignored. Memory write output: The
memory vector that should be written to memory. TM con-
trols: TM specific control outputs. Jump, interpolation, and
three shift controls (left, stay, and right).

Copy Task Substrate
The substrate for the copy task is shown in Figure 2. The
substrate is designed such that the bit-vector input nodes
share x-coordinates with the memory vector write nodes
and vice versa with memory vector read nodes and bit-
vector output nodes. Furthermore, the switch input shares
its x-coordinate with the jump output, thus encouraging the
network to jump in memory when it should start reciting.
In this paper, the size of the memory vector equals the
bit vector size. Furthermore, none of the substrates con-
tain hidden nodes as it has been shown that it is possible to
solve even large versions of the problem without any hidden
nodes (Greve, Jacobsen, and Risi 2016b).

Following Verbancsics and Stanley (2011), in addition to
the CPPN output that determines the weights of each con-
nection, each CPPN has an additional step-function output,
called the link-expression output (LEO), which determines
if a connections should be expressed. Potential connections
are queried for each input on layers y = 1 and y = −1
to each output on layers y = 1 and y = −1. The number
of inputs and outputs on the y = −1 layer (Figure 2b) are
scaled dependent on the size of the copy task bit vector. In
the shown example the bit-vector size is three. Neurons are
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Figure 2: The HyperENTM substrate for the copy task. All inputs are in z = 1 and all outputs in z = −1. Figure (a) shows
all nodes in y = 1 which is the start/switch inputs and the tm controls. Notably the x-coordinate is the same for the switch
input and the jump control output. Figure (b) shows the nodes in y = −1 which are the bit-vector and memory vector input and
outputs. Bit-vector input nodes share x-coordinates with memory vector write nodes, while memory vector read nodes share
x-coordinates with bit-vector output nodes.

uniformly distributed in the x interval [−1.0,−0.2] for bit
vector inputs and memory write vector and in the interval
[0.2, 1.0] for the memory read vector and bit vector output.

The CPPN has an additional output that determines the
bias values for each nodes in the substrate. These values
are determine through node-centric CPPN queries (i.e. both
source and target neuron positions xyz are set to the location
of the node whose bias should be determined).

Experiments
A total of three different approaches are evaluated on bit-
sizes of 1, 3, 5, and 9. HyperNEAT is compared to the di-
rect NEAT encoding, and a Seeded HyperNEAT treatment
that starts evolution with a CPPN seed that encourages lo-
cality on both the x- and y-coordinates (Figure 7a). A sim-
ilar locality seed has been shown useful in HyperNEAT to
encourage the evolution of modular networks (Verbancsics
and Stanley 2011). This locality seed is then later adjusted
by evolution (e.g. adding/removing nodes and connections
and changing their weights).

The fitness function in this paper follows the one in the
original ENTM paper (Greve, Jacobsen, and Risi 2016a).
During training the network is given a sequence of random
bit vectors, between 1 and 10 vectors long, and asked to re-
cite it. The network is tasked to do this with 50 random se-
quences and assigned a normalized fitness. The network is
evaluation the bit-vectors recited by the network are com-
pared to those given to it during the input phase; for every
bit-vector the network is given a score based on how close
the output from the network corresponding to a specific bit
was to the target. If the bit was within 0.25 of the target,
the network is awarded a fitness of the difference between
the actual output and the target output. Otherwise, the net-
work is not awarded for that specific bit: f = 1 − |x−xt|

0.25 if
|x−xt| < 0.2 and 0 otherwise. The fitness for any given bit-
vector is equal to the the sum of the fitness for each individ-
ual bit, normalized to the length of the bit-vector. Similarly,

the fitness for a complete sequence is the sum of the fitness
for each bit-vector normalized to the length of the sequence.
This results in a fitness score between 0 and 1. This fitness
function rewards the network for gradually getting closer to
the solution, but it does not actively reward the network for
using the memory to store the inputs.

Experimental Parameters

For the NEAT experiments, offspring generation propor-
tions are 50% sexual (crossover) and 50% asexual (muta-
tion). Following (Lüders et al. 2017), we use 98.8% synapse
weight mutation probability, 9% synapse addition proba-
bility, and 5% synapse removal probability. Node addi-
tion probability is set to 0.05%. The NEAT implementa-
tion SharpNEAT uses a complexity regulation strategy for
the evolutionary process, which has proven to be quite im-
pactful on our results. A threshold defines how complex the
networks in the population can be (here defined as the num-
ber of genes in the genome and set to 10 in our experiments),
before the algorithm switches to a simplifying phase, where
it gradually reduces complexity.

For the HyperNEAT experiments the following parame-
ters are used. Elitism proportion is 2%. Offspring generation
proportions are 50% sexual (crossover) and 50% asexual
(mutation). CPPN connection weights have a 98.8% proba-
bility of being changed, a 1% change of connection addition,
and 0.1% change of node addition and node deletion. The
activation functions available to new neurons in the CPPN
are Linear, Gaussian, Sigmoid, and Sine, each with a 25%
probability of being added. Both NEAT and HyperNEAT ex-
periments run with a population size of 500 for a maximum
of 10,000 generations or until a solution is found. The code
is available from: https://github.com/kalanzai/
ENTM_CSharpPort.

https://github.com/kalanzai/ENTM_CSharpPort
https://github.com/kalanzai/ENTM_CSharpPort
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Figure 3: Mean champion fitness for the different treatments
and bit-sizes, averaged over 20 independent evolutionary
runs.

Results
Figure 3 shows the mean champion fitness over 10, 000 gen-
erations for each of the different approaches and bit vector
sizes. While NEAT performs best on smaller bit vectors, as
the size of the vector grows to 9 bits, the seeded HyperNEAT
variant outperforms both NEAT and HyperNEAT. The num-
bers of solutions found (i.e. networks that reach a training
score ≥ 0.999) in regards to the bit vector size are shown
in Figure 4. For bit size 1 all approaches solve the prob-
lem equally well. However, as the size of the bit vector is
increased the configurations using HyperNEAT and locality
seed performs best and the only method that is able to find
any solution for size 9.

Testing Performance. To determine how well the cham-
pions from the last generation generalize, they were tested
on 100 random bit-vector sequences of a random lengths
between 1 and 10 (Figure 5). On sizes 1 and 5 there is
no statistical difference between either treatment (follow-
ing a two-tailed Mann-Whitney U test). On size 3, NEAT
performs significantly better than the seeded HyperNEAT
(p < .00001). Finally, seeded HyperNEAT performs sig-
nificantly better than NEAT on size 9 (p < .00001). The
main conclusions are that (1) while NEAT performs best
on smaller bit vectors it degrades rapidly with increased bit
sizes, and (2) the seeded HyperNEAT variant is able to scale
to larger sizes while maintaining performance better.

Generalizing to longer sequences. We also tested how
many of the solutions, which were trained on bit sequences
of length 10, generalize to sequences of length 100. The
training and generalisation results are summarized in Ta-
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Figure 5: The mean performance of the champion networks
from the last generation. NEAT does well on smaller sizes,
but degenerates quickly as the size goes up.

ble 1, which shows the number of solutions for each of the
three approaches, how many of those solutions generalized
to sequences of length 100, and the average number of gen-
erations it took to find a solution. For all three methods, most
solutions generalize perfectly to sequences that are longer
than the sequences encountered during training.

Transfer Learning
To test the scalability of the Seeded HyperNEAT solutions,
champion genomes from runs which found a solution for
a given size were used as a seed for evolutionary runs of
higher sizes. The specific runs and which seeds were used
can be seen in Table 2, which also contains the number of
solutions found, how many solutions generalized, and the
average number of generations needed to find the solutions.
Seeds denoted X → Y refer to champion genomes from a
run of size Y which was seeded with a champion from a run
of size X .

Because the number of solutions found varied between the
different sizes (see Table 1), the scaling experiments were
not run exactly 20 times. Instead, the number of runs was



Table 1: Generalisation Results. Shown are the number of
solutions, the number of solutions that generalize, together
with the average number of generations it took to find a so-
lution and standard deviation.

Size #sol. #gen gens. sd.
Seeded 1 20 20 1055.8 1147.4

HyperNEAT 3 5 5 4454.8 3395.8
5 6 5 2695.5 2666.5
9 8 5 1523.25 2004.1

HyperNEAT 1 20 20 1481.45 1670.8
3 2 2 4395.5 388.2
5 0 0 N/A N/A
9 0 0 N/A N/A

NEAT 1 20 19 281 336.3
3 19 19 2140.5 1594.4
5 12 11 3213.4 2254.2
9 0 0 N/A N/A

Table 2: HyperNEAT Transfer Learning

Seed Size #sol #general gens. sd.
3 5 12/20 6 434.1 574.6
3 9 16/20 2 1150.3 2935.9
5 9 23/24 11 58.9 129.2

3→5 9 23/24 8 588 1992
5 17 18/20 12 258.9 301.3
9 17 24/24 12 89.3 235.9

5→9 17 20/20 17 36.25 47.5
9 33 23/24 17 94 217

9→17 33 24/24 19 456.5 2002.4

the smallest number above or equal to 20 which allowed for
each champion to be seeded an equal number of times, e.g.
if there were 6 solutions 24 runs were made; 4 runs with the
champion from each solution. Figure 6 shows a compari-
son of HyperNEAT seeded with the locality seed and seeded
with champion genomes of smaller sizes on the size 9 prob-
lem. HyperNEAT yielded significantly better results when
seeded with size 5 and 3→5 champions compared to start-
ing with the locality seed (p < .001), but not when seeded
with the champion from size 3.

Scaling without further training
The champions from runs which found a solution were
tested for scaling to larger bit-vector sizes without further
evolutionary training (i.e. new input and output nodes are
created and queried by the CPPN; see copy task substrate
section for details). Each genome was tested on 50 se-
quences of 100 random bit-vectors of size 1,000. Some of
the champions found using only the LEO size 9 configura-
tion scaled perfectly to a bit-size of 1,000 without further
training, as seen in Table 3.

The main results is that it is possible to find CPPN that
perfectly scale to any size. The fact that evolution with Hy-
perNEAT performs significantly better, when seeded with a
champion genome which solved a smaller size of the prob-
lem, together with the fact that evolution sometimes finds
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Table 3: Scaling using LEO without further evolution

Size # of champions # which scaled to 1000
9 8 2
9→ 17 24 7†
† 6 of these can be traced back to the 2 champions

from size 9 which scaled perfectly.

solutions which scale without further training, demonstrates
that HyperNEAT can be used to scale the dimensionality of
the bit-vector in the copy task domain.

Solution Example
Here we take a closer look at one of the champion genomes
(trained on bit-vector size 9), which was able to scale per-
fectly to the size 1000 problem (Table 3). Figure 7 shows a
visualization of the champion genome, as well as the local-
ity seed from which it was evolved. The champion genome
does resemble the seed but also evolved several additional
connections that are necessary to solve the problem.

Figure 8 shows two different ANNs generated by the the
same CPPN, which is shown in Figure 7b. It can be seen
that for non-bias connections to be expressed, the source and
destination nodes have to be located in the same position on
both the x position and y layer in the substrate. These results
suggest that the locality encouraging seed works as intended.

To further demonstrate the scalability of this evolved
CPPN, memory usage for size 9 and 17 are shown in Fig-
ure 9. The output of the networks is shown at the top, fol-
lowed by the input to the network. Next follows the differ-
ence between the given input and the output, i.e. how well
the network recited the sequence given to it. The fourth sec-
tion of the recording shows a heat map of the fitness score
based on the bit-vector in that position, where red indicates
a high fitness while blue indicates a low fitness.

Next follows the output from the network to the TM con-
troller, followed by the interpolation output, and what was
written to the memory tape. Finally, the recording shows
the jump output from the network, the three different shift
outputs, what read from the tape, and the position of the
read/write head. As the recording shows, the network which
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Figure 7: (a) The CPPN seed that is used to promote locality
on the x and y axes. (b) A champion trained on the size 9
problem, which was able to scale without further evolution
to size 1,000. Blue connections have a positive weight, while
red connections have a negative weight.

solves the problem jumps exactly once when the switch in-
put neuron is activated.

Conclusion
This paper showed that the indirect encoding HyperNEAT
makes it feasible to train ENTMs with large memory vec-
tors for a simple copy task, which would otherwise be infea-
sible to train with an direct encoding such as NEAT. Further-
more, starting with a CPPN seed that encouraged locality, it
was possible to train solutions to the copy task that perfectly
scale with the size of the bit vectors which should be memo-
rized, without any further training. Lastly, we demonstrated
that even solutions which do not scale perfectly can be used
to shorten the number of generations needed to evolve a
solution for bit-vectors of larger sizes. In the future it will
be interesting to apply the approach to more complex do-
mains, in which the geometry of the connectivity pattern
to discover is more complex. Additionally, combining the
presented approach with recent advances in Evolutionary
Strategies (Salimans et al. 2017), which have been shown
to allow evolution to scale to problems with extremely high-
dimensionality is a promising next step.
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