DeCP-Live: A Web-Interface for DeCP,
a Distributed High-Throughput CBIR System

Gylfi Pér Gudmundsson Christian Andreas Jacobsen
School of Computer Science School of Computer Science
Reykjavik University Reykjavik University
Reykjavik, Iceland Reykjavik, Iceland
gylfig@ru.is christianj15 @ru.is

Abstract—A vast number of algorithms and methods are
proposed and developed every year in the domain of indexing
and searching multimedia documents. Much of this work results
in published papers and some sources are made openly available,
but rarely will you find a fully working end-to-end system that
has been pre-installed, configured, and is ready-to-go on a virtual
machine available for download. In this paper we present such
a system, the DeCP-Live web interface, that is built on top of
the distributed, high-throughput, content-based image retrieval
algorithm DeCP. The virtual machine is ready-to-go as on it
we have pre-installed services, indexed openly available datasets,
binaries for DeCP and DeCP-Live as well as the source code.

Index Terms—content-based image retrieval, end-to-end sys-
tem, web-interface, open source, ready-to-go, virtual machine.

I. INTRODUCTION

Great progress has be made in image and video processing
in the last decade or so. Many innovative algorithms have
been proposed and the datasets have been growing rapidly.
To minimize variance, facilitate reproducibility, and make
comparisons to prior work possible, it is common to see eval-
uation of multimedia algorithms being done on pre-calculated
datasets such as the YLI-Corpus [7]. The downside to this
approach is that often a fully working end-to-end system is
not produced and thus a fully working demonstration cannot
be created. This limits the usefulness of the contribution to
the field of multimedia research, as an unnecessarily high
barrier is created for others that would like to compare to the
contribution, extend it, and build upon it. This is especially
true if the code base is made publicly available, as then it is
all the more tempting to extend it in some new way.

In this paper we highlight a ready-to-go virtual machine that
has been made available for download with a fully functioning
CBIR system that can do end-to-end search, using query
images as input and producing ranked results that can be
mapped into database images and displayed via a browser
interface. Not only are the binaries and all necessary services
pre-installed and configured but the source code has been made
publicly available and is also included on the virtual machine.

The remainder of this paper is constructed as follows: In
Section II-B we discuss DeCP and how it was extended into
a fully functioning end-to-end CBIR system. We then, in

Hilmar Tryggvason Bjorn Por Jonsson
School of Computer Science Computer Science Department
Reykjavik University IT University of Copenhagen
Reykjavik, Iceland Copenhagen, Denmark
hilmartry 15 @ru.is bjorn@itu.dk

Section III, describe DeCP-Live, the web-interface we built
on top of DeCP, followed by a short Section IV on how we
bundled everything in a ready-to-go virtual machine. Finally
we conclude in Section V.

II. DISTRIBUTED EXTENDED CLUSTER PRUNING (DECP)

DeCP is an distributed high-throughput content-based image
retrieval algorithms that is based on vectorial quantization
and approximate k-NN search. DeCP, and the non-distributed
variant eCP, have been implemented multiple times, using a
wide range of programming languages on multiple platforms
and configurations: Non-distributed in C++ [4]; Hadoop using
C++, Hadoop using Java [1]; and Spark using Scala and
Java [2], [3]. Each time it has been extensively evaluated, using
the largest datasets available, with the aim of ever pushing and
testing the scalability of the algorithm.

In [2], [3], DeCP was evaluated using the 43 billion SIFT
features of the YLI Feature Corpus [7], extracted from the 99.2
million still images of Yahoo’s YFCC100M dataset [6]. Not
only is this the largest publicly available dataset we know of
but DeCP used and index designed for a 10x larger collection.
The experiments were run on hardware from Amazon Web-
Services (AWS), using a total of 50 nodes that had a combined
total of 1600 virtual cores, 2.8TB of RAM and 30TB of
SSD storage, all harnessed using the automatically distributed
computing framework (ADCF) Apache Spark [5].

A. DeCP as an End-to-End CBIR System

In [2], DeCP is extended to be an end-to-end system that can
take image files as input queries and produce ranked results
of the most similar database images. Adding the SIFT feature
extraction is done with the Java-based vision library, BoofCV
(boofcv.org), that is placed as a pre-processing step in the
search pipeline. Additionally, a post-processing step converts
the k-NN results of each query vector from a given query
image into a ranked result of the most similar images from
the database. This process is in fact much like aggregating the
k-NN results and using TF-IDF to rank the most frequently
observed image identifier from the database images.

The high-throughput DeCP search process sacrifices low
response time for high throughput by batching hundreds, or

even thousands, of query images into a single search. The
primary reason for this is that DeCP was designed with the
assumptions that all the feature data should be kept and that
the feature collection would be so large that it must reside on
disk. For a single query image, only a tiny subset of the whole
dataset is relevant during search but retrieving it would result
in many random I/Os that are hugely expensive. The two main
advantages of batching are 1) that overlapping requests for the
same cluster can be merged and 2) that the data can be read
in sequential order, taking full advantage of prefetching and
simplify the I/O access pattern.

B. Input to the DeCP Search Engine

The search engine is implemented in Scala and Java and
runs as a job submitted to the Spark framework. When the
DeCP engine is launched the initialization process loads the
index, and the indexed database (RDD), as well as checking
a specific folder for new images to added, see Section 4.2.3
in [3] for full details. After the initialization, the search engine
runs an infinite loop on the Spark master, awaiting queries.

To keep things as flexible as possible we chose to use text-
based files as the input to our engine. The format of the text
file is a single header line, with colon separated query settings,
followed by a path to the query images, one image per line.
The header has three search parameters: b : k : m, where b
is the search expansion, i.e. how many clusters to scan per
query vector; k is the size of the k-NN created for each query
vector and m is the maximum number of images in the ranked
result list produced per query image. Further information and
example input files can be found in the github repository for
DeCP.

The batch is then submitted for searching by writing a .batch
file into a specific input folder called queries that the search
engine is monitoring.

C. Output from the DeCP Search Engine

Once the search has been completed, the query.batch file
is deleted from the queries folder and the results written to
a specific output folder called results. As there may be many
query images in each query batch, a folder is created for the
results of each batch. In this folder we will find a batch.res
file that contains a header line as well as a list of all the
query image result files. The header is a copy of the .batch
header with two additions: b : k : m : n : t, where n is the
number of query images in the batch and ¢ is the total time
in seconds that it took to process the batch.! The subsequent
lines, following the header, are the names of each image result
file that have also been created and written to the batch result
folder. The result file for each query image has no header
line with parameters. Instead each line is a path to an image,
followed by a number that is separated by a colon. The first
line is the path to the query image, followed the number of
SIFT features extracted from the image. The subsequent lines

'Note that the number of query images in the results may not match the
number of lines of the input file. An example would be images where no
SIFTs could be extracted or where the path to the input image was broken.

are the m ranked results of database images, with the most
similar image listed first. The colon separated value after the
image path is the number of features that matched the query
image.

D. Interfacing with the DeCP Search Engine

In Section III we describe the web-based interface we built
for DeCP that we call DeCP-Live. As DeCP is designed for
running large query batches we do realize the limitations of
our graphical interface however and the potential tediousness
of manually selecting thousands of images for a large query
batch. We will therefore highlight here the flexibility the text-
based file format and demonstrate how a large batch can easily
be created in Linux command line.

Let us assume that we have a large number of query images

at the following path /uploads/bigbatch and that we
would like to create a .batch file using no search expansion
(b=1) keep 20 neighbors for each query feature (k=20) and
retaining only the 10 most similar images for each query
image (m=10). To create the header line, the simples way
would be to use echo and redirect the output:
$ echo "1:20:10" > bb0l.batch.
This will create an .batch with the search parameters but
missing are still the query images with a full path. To add
the missing information we use the Is command and do:
$ 1s /uploads/bigbatch/+.Jjpg >> bb0l.batch.
We need to make sure to use >> to append the image paths
to the .batch file as well as using an absolute path with a
wild-card ("*’) in the Is command. What that does is make Is
append the full path to each image file, just as we require.
This way we have created a query.batch file with thousands
of images in just a few seconds and all that remains is to
copy the file to the input directory of the DeCP engine to
start the search process.

III. DECP-LIVE: THE WEB-INTERFACE

On top of the DeCP engine we have built a web-interface,
called DeCP-Live, that allows users to graphically create batch
queries and view all existing batch-query results. The web
interface is written in Angular, using Materialize, and runs
on Apache HTTP Server with additional content served by a
Nodel]S server.

In the web-interface we have a menu at the top of the page,
right hand side. In it we find three options: 1) Admin, for the
administration menu; 2) Query, allows users to create a new
batch query and 3) Results, that allows the user to browse the
existing query-batch results.

The administration menu has only two options: 1) save
the current state of the indexed database (RDD) to disk,
see Section 4.2.3 in [3], and 2) halt the search engine by
terminating the Spark job. Below we describe the Query and
Results options.

A. Submitting a query

Figure 1 shows the Query interface, where users can create a
new batch-search and submit it to the DeCP search engine for

© 00 /@ necriie Gyl Thor

€ C O decplvenet/auery

DeCP Live

Admin Query Results

Query

Selected images: 3

S “

) 100
10: 200700 pg

B3 +567 > >l

Fig. 1. The Query page is used to create a batch query in the DeCP-Live
web-interface. First the search settings (b, k£ and m) for the batch are set.
Then images to include in the batch can be selected, indicated by a green
check-marker.

processing. On the page we find Selected images, that indicates
how many images have been selected for this batch, and
two buttons: Select all on page, that will select every image
currently displayed, and Clear, that will unselected all images
and reset the search parameters to the default values. Next, we
have the three parameters of the batch-search settings, b for
how many clusters to scan per query vector, k the size each
query vectors k-NN and m the number of similar images to
return for each query image. The user can then select images
to include in the search (indicated with the green check-mark
overlay) from the image grid. The grid is populated from a
folder on disk of available query images (agi), showing 16
images at a time. A paging menu is used to allow the user
to browse all the images in agi and the Select all on page
button allows the user to quickly select all the images on each
page. Once the user is happy with his batch-query, the Submit
button instructs DeCP-Live to generate and write a .query file
to DeCP’s queries folder.

For security reasons we decided not to allow users to upload
to agi via the web-interface. Adding new query images is
trivial however as writing images to agi and refreshing the
Query page will suffice to make them available for selection.

B. Displaying results

As was discussed in section II-C, the results of a query batch
will be written to a specific results folder by DeCP. The web-
interface monitors the result folder and notifies the user every
time a new result is available. In Figure 2 we see the layout
of the Results page on a system that has several query batch
results available. The primary content of this page is the results
list, populated by reading the header of each batch.res file

@ oecpive Gyl Thor

& O decplivenetresuite ax &0

DeCP Live Admin Query Resuhs

Results

Select a result

] B K Towlume Timeperimage Inages Timestamp stats

stssan 0 T s s00s 20180203 100331 .
ssstezion FEE TN 108 s 2180203095344 v
181748577116 1w e 040 8 2081201 125611 v
1817489576605 LR I 130 s 2018020112525 v
ST s om o w 0180201124834 v
187434806025 T ow 2008 4 e 214106 v

15173224178 1w e 1208 5 208013017174 v

Fig. 2. The Results page shows all the available results in DeCP’s results
folder regardless of where the query originated.

available. As we can see, DeCP-Live uses a timestamp value
to identify each query batch. In the result list we find a quick
overview of the statistics for each batch, such as the search
parameters b, k and m, the processing time, both total and per
image, the number of images in the batch, and when the search
was issued. The final marker, Status, indicates whether the
search has been completed or is still executing on the search
engine. The layout gives a clear overview of the statistics for
the various batch results available. The list is clickable and
each line of the list is a link to the Result - BatchID page,
see Figure 3. This page is populated from all of the content
of the batch.res file. The list has two modes: Rows and Grid.

0 ©owcrive

€ C O decplive.net/

7489771169 Q% &0

DeCP Live Admin Quey Rests

Result - 1517489771169

B K Total time Time per image
1 20 61s 0.48s
»
Select an image
image » Top resuts
e - E W n
o~ & m B =H ®
.
B e B B L
B oo B EBE W N B8
B o B ay BE O]
— — o p—, o —
DEEEE: s« 567 > >

Fig. 3. Batch results in Rows-view where each row is a query image in the
batch. Notice the sneak-peak preview of the top five results for each image.
This allows a visual overview of the image-level results of the whole batch.

® & @ opecrLive x Gyt Thor

€ C O decplivenet/results/1s

Q% O

Result - 1517489771169

Query image: Ocopydays_crops/30/207100jpg

Features extracted: 451

Image results °

Fig. 4. Query image result in the default Grid-view. Displayed at the top is
the query image as well as the number of features extracted and searched.
Overlaid on each result image is both the number of Votes as well as the ID
of the database image.

The Grid mode is much like that of the Query pages, with
large thumbnails of the images while the Rows mode is the
one displayed in Figure 3. In this mode we display a row in
a list for each query image. The list starts by showing a small
thumbnail of the query images followed by it’s ID. In addition
we find a sneak-peak preview of the top five most similar
database images (populated by reading the result file for this
query image). This gives us the ability to quickly preview
visually the image-level results without having to access each
image-level result file individually.

To see the certainty level of the search engine, i.e. the
margin by witch the ranking of similar images was established,
we must click the query image in the list and open the Result
for Query image page, see Figure 4. The Result for Query
image page is populated by reading the full .res file for that
given query image. As we can see in Figure 4, the page
defaults to the Grid-view. We prefer this view as it shows the
larger image thumbnails, and retain the important information
as it can be overlaid onto the images.

The database images in the result are ranked by the number
of Votes, calculated by counting how frequently this database
image identifier was observed in the k-NNs of the query
features. The more Votes the more similar the images are.
We should keep in mind however that the number of features
extracted from each image varies greatly and thus very good
results may frequently be far from a 100% match. The relative
scale of the Vores between the top-ranked images is a much
better indicator of similarity.

IV. READY-TO-GO VIRTUAL MACHINE

To make our work as accessible as possible to others, we
have made the full code base to both DeCP and DeCP-Live
open source.” In the code repository you will also find a link
to a ready-to-to virtual machine (Oracle’s VirtualBox) that has
everything already installed and configured. After launching
the VM, the DeCP-Live interface can be accessed on the host
machine through http://localhost:9080, as port 80
has been forwarded to the host as port 9080. To be able to use
DeCP however the search engine must be started by running
a script on the VM, see instructions on the git repository.

Included on the VM are also two datasets: 1) HolyDays
that consists of 1491 images and 2) CopyDays that has 158
original images and 3075 augmented images.® The indexed
database uses a 200k wide, 3-level index, that has been used
to index the 1491 images of Holydays + the 158 originals
of the CopyDays. The 3075 augmented Copyday images are
used as the query images. Adding more images to either the
database or the query set is easy; for detailed instruction please
see the git repository for DeCP.

V. CONCLUSIONS

In this paper we have presented an end-to-end distributed
search engine for content-based image retrieval, a highly
flexible text-based communication protocol and a web-based
graphical interface. Not only is all of the code open source
but we have also been bundled it all into a demo and made a
ready-to-go virtual machine. We hope that this will make our
work accessible to the wider community and make it easier
for others to build upon it.

REFERENCES

[1] D. Moise, and D. Shestakov, and G. b. Gudmundsson, and L. Amsaleg,
“Indexing and Searching 100M Images with Map-Reduce,” Proc. of the
ACM Int. Conf. on Multimedia Retrieval (ICMR), pp. 17-24, 2013.

[2] G. P. Gudmundsson, and B. P. Jérnsson, and L. Amsaleg, M. J.
Franklin, “Prototyping a Web-Scale Multimedia Retrieval Service Using
Spark”, Accepted for publ. in ACM Trans. on Multimedia Computing
Communications and Applications, vol. 14, 2018.

[3] G.Pb. Gudmundsson, and B. b. Jérnsson, and L. Amsaleg, M. J. Franklin,
“Towards Engineering a Web-Scale Multimedia Service: A Case Study
Using Spark”, Proc. of ACM Multimedia Systems Conf. (MMSys), pp.
1-12, 2017.

[4] G. P. Gudmundsson, and B. P. J6rnsson, and L. Amsaleg, “A large-scale
performance study of cluster-based high-dimensional indexing”, Proc.
of the Int. workshop on very-large-scale multimedia corpus, mining and
retrieval (VLS-MCMR), pp. 31-36, 2010.

[5] Zaharia, M. and Chowdhury, M. and Franklin, M. J. and Shenker, S. and
Stoica, I., “Spark: Cluster computing with working sets”, Proc. of the
USENIX Conf. on Hot Topics in Cloud Computing, pp. 10-10, 2010.

[6] Thomee, B. and Shamma, D. A. and Friedland, G. and Elizalde, B. and
Ni, K. and Poland, D. and Borth, D. and Li, L.-J., “YFCC100M: The
New Data in Multimedia Research”, Communications of the ACM, vol.
59, 2016.

[7] J. Bernd, D. Borth, C. Carrano, J. Choi, B. Elizalde, G. Friedland, L.
Gottlieb, K. Ni, R. Pearce,D. Poland, K. Ashraf, D. A. Shamma, B.
Thomee, “Kickstarting the Commons: The YFCC100M and the YLI
Corpora”, Proc. of the Workshop on Community-Organized Multimodal
Mining: Opportunities for Novel Solutions (MMCommons), pp 1-6,
2015.

2 Available on github repositories https:/github.com/elgerpus/DeCP and
https://github.com/elgerpus/DeCP-Live
3 Available for download at http://lear.inrialpes.fr/~jegou/data.php

