
Dynamic Evaluation Forms using Declarative
Modeling

Rasmus Strømsted1, Hugo A. López2,3, Søren Debois2, and Morten Marquard3

1 Exformatics A/S
ris@exformatics.com

2 IT University of Copenhagen, Denmark
{hual,debois}@itu.dk
3 DCR Solutions A/S

{hual,mm}@dcrgraphs.net

Abstract. This paper reports preliminary experiences using the Dy-
namic Condition Response (DCR) graphs declarative process notation
to specify dynamic evaluation forms, and using an execution engine for
that notation to subsequently “run” the form. The DCR notation was
able to express all the patterns of behaviour necessary for a real case:
a post-hoc evaluation form for a Danish arbitration court, “Voldgift-
snævnet for Anlæg og Byggeri”. However, some patterns were somewhat
cumbersome to express.

Keywords: forms, declarative process model, Dynamic Condition Re-
sponse, DCR, process execution

1 Introduction

This paper presents a preliminary experience report using the DCR Solutions
declarative process engine [4, 3, 2] as a mechanism for implementing dynamic
web forms [7] in Exformatics ECM. We investigate the question whether the
Dynamic Condition Response (DCR) graph process language is flexible enough
to model the requirements of a real-life evaluation form example, by applying
the methodology to an evaluation form commissioned by the Danish arbitration
court “Voldgiftsnævnet for Anlæg og Byggeri” (VBA).

Related work Forms have strong similarities with declarative process notations
explored [7]: (1) The order of execution is flexible: the user may fill in the form
in whatever order he prefers, and (2) forms have constraining rules, e.g. “If field
A is filled in, then also field B must be filled in”.

The premiere extant commercially/freely available services for constructing
on-line evaluation forms are provided by SurveyMonkey and Google Forms. Both
products emphasize ease-of-use, both for the form constructor and the end-user.

A SurveyMonkey form is specified as a list of fields. Each field has a type
(e.g., multiple choice, number, text, etc.), and the form designer may choose
the ordering of fields. Both SurveyMonkey and Google Forms offer dynamically

F. Casati et al. (Eds.): Proceedings of the Dissertation Award and Demonstration, Industrial Track
at BPM 2018, CEUR-WS.org, 2018. Copyright c© 2018 for this paper by its authors. Copying
permitted for private and academic purposes. This volume is published and copyrighted by its
editors.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/162581757?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


R. Strømsted et al.

changing behaviour: 1. SurveyMonkey has so-called “skip page logic”. This fea-
ture allows the form designer to set conditions to control the sequence flow of
the form. In SurveyMonkey this is done by grouping questions in pages, and
using conditional statements on questions to control whether or not the group
of questions will be shown. 2. Randomized sequence features, which shuffles the
evaluation question 3. Dynamic labeling, which SurveyMonkey calls “Question
& Answer Piping”. This feature allows the form designer use text variables in
question labels; the value of the variable is set to the answer of a given previously
answered question.

2 DCR Graphs

In this section, we give a brief introduction to the Dynamic Condition Response
(DCR) graph process notation [1, 5]. A DCR graph is a directed multigraph
where nodes are activities, and edges are relations between activities. Each ac-
tivity has an associated state (i.e.: Executed, Included, and Pending). The “Ex-
ecuted” state indicates whether the activity was previously executed. The “In-
cluded” state indicates whether it is currently relevant for the workflow. Finally,
the “Pending” state indicates whether the activity must execute (or be made
not “Included”) before the workflow can be considered complete.

DCR is a declarative notation: processes are specified not by explicit sequence
flows, but by the rules (relations) governing which sequence flows are admit-
ted and which are not. Relations between activities indicate (1) constraints on
whether an activity may be executed depending on the states of other activities,
and (2) how executing one activity may affect the state of another.

E.g., suppose (a) that an activity “Payout” is constrained to not happen un-
less “Approve payout” happened first; and (b) that executing “Payout” changes
the state of itself to be “no longer relevant” (to prevent a second payout).

DCR Solutions provides an on-line process portal4, for creating and simulat-
ing DCR graphs [3]. DCR Graphs answer to the following graphical notation:

– Activities: First class citizens, they are denoted by grey boxes.

– Condition (Yellow arrow): A constraining relation, e.g., activity A has to be
executed before activity B.

– Response (Blue arrow): A follow-up relation, e.g., after activity A has been
executed activity B is set to ’Pending’, which means that B must happen or
be excluded for the workflow to complete.

– Exclude (Red arrow): Makes an activity irrelevant, e.g., if activity A is exe-
cuted, activity B is set to ’not included’. Irrelevant activities are disregarded
as conditions and cannot be executed.

– Include (Green arrow): Opposite of Exclude: re-instates an activity.

4 http://dcrgraphs.net



Dynamic Evaluation Forms using Declarative Modeling

3 DCR Forms

In order to use DCR Graphs to build a form, we interpret activities as fields in
the form, then we use relations to define the dynamic behaviour, e.g., to turn on
and off one form field/activity depending on the value of another field.

Fig. 1 provides an example of a form in DCR graphs. There are six activities.
The title of the activity corresponds to a field text question in the form. An
activity is executed with a green tick, and solid (resp. dashed) borders in an
activity denote whether it is included (resp. excluded). A pending activity has
a blue exclamation mark. Colored arrows denote relations in Sec. 2.

Fig. 1. Example of an evaluation form using DCR Forms.

Notice how states of activities are drawn in Fig. 1, with three activities
initially excluded. Two activities have pending states, indicating that they must
be executed or excluded in the form to be deemed complete.

Each activity has a role and a label onto it. The green relation arrow from
“Activity 2” includes a parent activity, including the nested activities “Activity 3
$(var)” and “Activity 4”. Relations may have guards, as exhibited in the arrows
between “Activity 4” and “Activity 5”. They are used to constrain behaviour
based on input.

Fig. 1 uses some modelling techniques for creating forms using DCR graphs:

1. Mandatory fields as pending activities: The pending state of “Activity
2” indicates that it must be executed before the workflow is complete. For
forms, we interpret this as the field “Activity 2” being mandatory: The form
cannot be submitted unless “Activity 2” has received a value.

2. Guarded inclusions/exclusions: Dual, guarded include/exclude arrows
from “Activity 4” to “Activity 5” represent a common pattern that includes
or excludes “Activity 5” in the workflow/form depending on the value of
“Activity 4”.

3. Self-responses as content-control: A self-response on “Activity 6” is
guarded by “Activity 6 = null”. Since “Activity 6” is already a mandatory
field because of the blue exclamation mark, it ensures that if the field is
filled, and it is cleared at a later stage, it goes back to a pending/mandatory
state.



R. Strømsted et al.

Fig. 2. The sequence editor (left) and form previews (right).

The following new features in the DCR process portal were useful for the devel-
opment of declarative forms:

Sequence Editor and Form Preview The DCR process portal allows setting se-
quencing and grouping fields by drag-and-drop order controls. Fig. 2 shows on
the left side the order of the sequence editor tool. When the form is shown in the
preview (right side), it simulates what the recipient will see. Notice that only
the included activities of Fig. 1 are shown.

Dynamic Labels. DCR process portal supports dynamic labels. In Fig. 1 the
activity “Activity 3” has label “Activity 3 $(var)”. At run-time this label will
evaluate the contents of variable “var”. This variable is bound to the input given
at “Activity 2”. The variable can be used for both roles and activity labels.

4 Evaluation Form for Voldgiftsnævnet’s Arbitration
Proceedings

We now report on using the above mechanisms to specify a real-life for the VBA
case. The initial requirements for VBA’s evaluation form were simple: After an
arbitration, VBA would send an evaluation form to the involved parties. The
evaluation questions included how satisfied parties were with VBA as arbitra-
tors, with the process followed, and with the outcome of the proceeding. The
exact questions were outlined by VBA, and Exformatics produced from this
specification a DCR graph to be interpreted as a web form.

The VBA specification actually called for evaluation of five different types of
arbitration proceedings, called (A), (G), (P), (Q), (C). An evaluation comprised
both a set of general questions and a set of type-specific questions. The (C) type
was a special case, and had choices which would include other proceeding types.
Some of the proceeding types shared specific questions e.g. (P) and (G).



Dynamic Evaluation Forms using Declarative Modeling

Fig. 3. DCR Graph of the VBA Evaluation Form structure.

4.1 VBAs Evaluation DCR Graph

The structure of the model is given in Fig. 35. Exformatics used roles to denote
the arbitration proceeding type, and colors to ease the readability of the graphi-
cal presentation. The choice of which evaluation form to present was made using
the guarded include/exclude pattern: A choice field allowed the user to pick a
type of proceedings, who will control the remaining content to be shown.

Exformatics and VBA filled the evaluation structure with the questions out-
lined, see Fig. 4. The model uses guards to impose the desired behaviour; e.g.:
activity C will be only included if the case type (“Sagstype” in Danish) required
is “C”, and will be excluded otherwise.

Robotic support: Activities in Fig. 4 that correspond to the ’Exformatics’ role
are executed automatically. The data required for such activities is collected from
the VBA database. The data was used to set variables for use as dynamic labels.

4.2 Adaptation

VBA intended to continuously improve the form after its initial development,
and they needed to collect statistics on the answers collected. It was therefore
vital that (1) the DCR graph could be accessed and modified by VBA staff; (2)
that VBA staff could in fact understand and modify the graph; and (3) that
VBA could have a data-extraction process that was stable under graph updates.

A key challenge was that VBA staff on the project did not have prior pro-
gramming experience. However, the staff quickly acquired basic modelling com-
petences, and contributed to model development. Nonetheless, understanding
elements of the DCR Graph remained cumbersome for some staff.

5 The full graph is accessible at http://www.dcrgraphs.net/tool/main/Graph?id=

da7c4489-578c-4b94-b17c-66ceb214692c



R. Strømsted et al.

5 Discussion

Unlike the previous use cases for DCR as declarative processes [7], evaluation
forms require further data field support. For instance, to express questions such
as “On a scale from 1 to 10, how much do you like...”. A ’slider’ field type was
added to the DCR Form, which lets the user drag a handle to on a scale set
by the form designer. In future work we would like to include further support
for additional field types, e.g.: Multi-checkbox, Star rating, Matrix scale, Image
choice, etc. This is, however, orthogonal to the behaviour of the form.

Mapping some standard behaviour of forms into DCR models proved to be
challenging. That was the case of mandatory fields: One must add a pending
activity combined with a self-response guarded by null, as discussed above. As
seen in Fig. 4 most activities use this technique. In further work, we will con-
sider adding process templates to the DCR portal to encapsulate this kind of
behaviour, especially for readability.

In the forms case, include/exclude relations tend to come in pairs correspond-
ing to the true and false branches of a condition. It would be helpful to express
such choices in a single relation. The image below (Fig. 5) illustrates how the
VBA evaluation graph might look had such a relation been available.

Fig. 4. Excerpt of actual model.
Note the pervasive green-red inclusion-
exclusion examples and blue self-
responses.

Fig. 5. Excerpt of hypothetically im-
proved model.

One of the main differences between DCR and SurveyMonkey is the control
of the sequence flow. Compared to DCR, SurveyMonkey offers only a limited ver-
sion of declarative conditional rules. SurveyMonkey only supports one condition
for each question and SurveyMonkeys “skip” logic is bound to page breaks, in
contrast to DCR which responds with change every time the user engage with a
field. The flexibility of DCR was in fact instrumental to satisfy the requirements
made by the customer. For instance, without the inclusion of DCR relations,
it would have been challenging in SurveyMonkey to model VBAs evaluation,
whereas this comes more naturally in DCR.



Dynamic Evaluation Forms using Declarative Modeling

The second difference was economy: by using DCR Graphs’s declarative no-
tation we were able to minimize the number of fields produced, enabling them
depending on the type of proceeding. As a consequence (1) From a maintenance
perspective, new changes to the forms have become agile; change is done to one
activity, not to several. (2) From a data analysis perspective, the data from the
different types were directly compatible on extraction, not having to merge data
from the different proceeding types.

As mentioned in Sec. 4.2, one of the challenges remaining is to bridge the
adoption gap between declarative models and users with no experience in declar-
ative modelling, for instance, lawyers. In future iterations we would like to ex-
plore how tools that maintain the correspondences between natural language
specifications and DCR graphs (i.e.: [6]) help us bridging such a gap.

6 Conclusion

The DCR graphs formalism successfully expressed the required dynamic be-
haviour of the VBA evaluation form. However, the modelling was not entirely
straightforward, as the addition of Dynamic Labels and new a field type was in-
troduced, and expressing dynamic behaviour via DCR relations remain in some
cases artificial. In the future, DCR Solutions will study the inclusion process
templates in order to facilitate abstraction and process reuse in the tool.

Acknowledgments Work supported by the Innovation Fund Denmark project Eco-
Know.org (7050-00034A). This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie
grant agreement BehAPI No.778233.

References

1. Debois, S., Hildebrandt, T.: The DCR Workbench: Declarative Choreographies for
Collaborative Processes. In: Behavioural Types: from Theory to Tools, pp. 99–124.
River Publishers (Jun 2017)

2. Debois, S., Hildebrandt, T., Marquard, M., Slaats, T.: Hybrid Process Technologies
in the Financial Sector: The Case of BRFkredit. In: Business Process Management
Cases, pp. 397–412. Management for Professionals, Springer, Cham (2017)

3. Debois, S., Hildebrandt, T.T., Marquard, M., Slaats, T.: The DCR Graphs Process
Portal. In: BPM Demo Track 2016. pp. 7–11 (2016)

4. Debois, S., Hildebrandt, T.T., Slaats, T., Marquard, M.: A Case for Declarative
Process Modelling: Agile Development of a Grant Application System. In: EDOC
’14. pp. 126–133. IEEE Computer Society (2014)

5. Hildebrandt, T., Mukkamala, R.R.: Declarative Event-Based Workflow as Dis-
tributed Dynamic Condition Response Graphs. In: Post-proceedings of PLACES
2010. EPTCS, vol. 69, pp. 59–73 (2010)

6. López, H.A., Debois, S., Hildebrandt, T.T., Marquard, M.: The process highlighter:
From texts to declarative processes and back. In: BPM Demo Track 2018 (2018)

7. Marquard, M., Debois, S., Slaats, T., Hildebrandt, T.: Forms are declarative pro-
cesses! (2016), presented at the BPM 2016 Industry track


