
Evaluating Bluetooth Low Energy for IoT
Jonathan Fürst∗, Kaifei Chen†, Hyung-Sin Kim† and Philippe Bonnet∗

∗IT University of Copenhagen, †UC Berkeley
jonf@itu.dk, {kaifei, hs.kim}@berkeley.edu, phbo@itu.dk

Abstract—Bluetooth Low Energy (BLE) is the short-range,
single-hop protocol of choice for the edge of the IoT. Despite
its growing significance for phone-to-peripheral communication,
BLE’s smartphone system performance characteristics are not
well understood. As others, we experienced mixed erratic perfor-
mance results in our BLE based smartphone-centric applications.
In these applications, developers can only access low-level func-
tionalities through multiple layers of OS and hardware abstrac-
tions. We propose an experimental framework for such systems,
with which we perform experiments on a variety of modern
smartphones. Our evaluation characterizes existing devices and
gives new insight about peripheral parameters settings. We show
that BLE performances vary significantly in non-trivial ways,
depending on SoC and OS with a vast impact on applications.

I. INTRODUCTION

Bluetooth Low Energy (BLE) is popular as a building block
for the edge of the Internet of Things (IoT). IoT applications
rely on BLE for local, energy-efficient data exchange between
smartphones and resource constrained peripherals. Common
uses of BLE are iBeacon based localization [1], smart wrist-
bands/watches [2] and environmental sensors and actuators [3].
Most smartphones are readily equipped with BLE; This sets
BLE apart from other low power wireless technologies such
as ZigBee or Thread [4].

Our work is motivated by our own development experience
of several smartphone applications using BLE [5], [6]. We
observed that different smartphone models provide signifi-
cantly different BLE performance. As an illustration, Figure 1
depicts that BLE advertisement latencies vary by an order of
magnitude for different models. This variation can lead to non-
predictable application behavior without extensive testing on
all potential smartphone models in deployment.

0 2 4 6 8 10 12 14 16
Mean Time (s)

Asus Nexus 7
HTC One M9

LG G3
LG Nexus 4
LG Nexus 5

LG Nexus 5X
Motorola Moto G
Motorola MotoE2
Motorola Nexus 6

Samsung Galaxy S3

Fig. 1. BLE Advertisement Latency. Advertising interval is set to 1280ms
while smartphones scan in the default balanced mode. Smartphones are placed
in 2m distance. We perform 20 repetitions.

While others have experienced similar phenomena [7], we
could not find systematic studies of BLE characteristics on
smartphones in the literature. Most existing work focus on the
BLE performance of BLE SoCs [8], [9], [10], [11], [12], with-
out quantifying BLE performance in a smartphone context.
However, smartphones-peripheral systems represent a large set
of BLE applications in the wild [1], [2], [3]. In our work,
we thus focus on two questions: (1) Can we show systematic
variations in BLE application behavior across smartphone
models? (2) Can we define a model to characterize BLE
performance on smartphones, that could inform application
design?

We identify three major factors that could possibly impact
BLE performance on smartphones: (1) OS implementation that
provides BLE abstractions to applications, (2) SoC implemen-
tation that schedules how multiple wireless modules, such
as WiFi and BLE, share a single antenna and (3) hardware
components such as amplifier, antenna, and case.

We formulate hypotheses about the impact of these factors
on BLE performance, and we propose an open-source bench-
marking framework, called BLEva, to verify them. We use
BLEva to compare the performance of different BLE hardware
and software combinations. More specifically, we evaluate
BLE performance of ten different Android smartphone models
which have various SoCs and support a range of different
Android OS versions. Our results show that BLE provides
totally different performance in terms of packet reception ratio,
latency, and received signal strength indication (RSSI) on
different smartphone models. Because of the complexity and
number of combinations of the underlying impact factors, we
argue that these different performance characteristics cannot
be captured by a simple performance model.

We summarize our contributions as follows:
• We analyse the working of BLE on Android by tracing

high-level API calls down the OS stack (Section II).
• We design and implement a benchmarking framework to

easily perform and reproduce BLE related benchmarks
on Android (Section III).

• And finally, we evaluate BLE experimentally on a variety
of smartphone models (Section IV).

II. BLE SOFTWARE AND HARDWARE ABSTRACTIONS

To understand possible sources for BLE performance vari-
ance, we consider the question: “What happens in a smart-
phone when a BLE control command is executed?”—After
analysing various smartphone architectures and the Android

Application
Framework APIs

android.bluetooth

Main Bluetooth
Process

packages/apps/
Bluetooth

Binder
IPC

Hardware
Abstraction Layer

(HAL)Java Native
Interface

(JNI)

Bluetooth,
WiFi Signals

Smartphone OS (Android)

Bluetooth
Driver

SoC
(WiFi, Bluetooth,

FM)

Frontent
(amplifier,
directional
coupler)

AntennaCasing

Hardware Implementation

Fig. 2. Android BLE Stack: Tracing BLE down the software and hardware
abstractions.

source code [13], we get a rough answer as shown in Figure 2.
When an application executes a BLE command, it sequentially
passes through smartphone OS, BLE driver, SoC including
BLE chip, amplifier, smartphone antenna, smartphone cover,
and finally becomes a BLE wireless signal in a channel. We
now discuss how each of these components can impact BLE
behavior. This analysis provides a set of hypotheses that drives
our experiments in Section IV.

A. Smartphone OS (Android)

Android leverages modules from the Linux kernel for
several hardware components like memory and power man-
agement, audio, video, WiFi and also Bluetooth. However, a
developer is not able to directly access that native Bluetooth
stack (system/bt) on non rooted, off-the-shelf devices.
Further, device manufacturers implement their own proprietary
Bluetooth drivers and can make extensions to the default stack.

Developers access BLE through several abstraction levels
(see Figure 2) by calling the Bluetooth application framework
APIs (android.bluetooth). Internally this code then
calls a single, running Bluetooth process (packages/apps/
Bluetooth) through interprocess communication (Binder
IPC). The Bluetooth process then coordinates the different
requests by possibly multiple applications to the HAL layer us-
ing the Java Native Interface (JNI). Bluetooth events are com-
municated back using callbacks (e.g., an advertisement that
matches a filter is discovered). Even the Android source code
is available, manufacturer specific extensions are closed source
and specific Bluetooth hardware implementations are undoc-
umented. Another problem is that the preemptive scheduling
of the Linux kernel and Android OS specific energy saving
features might block an application process for up to 110ms
as shown in [14]. Besides that, Android OS versions in use are
highly segregated. BLE was introduced into Android in 2013
(API level 18). Since then, its API has iteratively evolved.

Hypothesis (1): BLE is accessed ‘indirectly’, through sev-
eral (partly hidden) abstraction layers and proprietary drivers,
which leads to unpredictable BLE behavior across smartphone
models with different OS versions.

B. Hardware Implementation

After passing through smartphone OS, we still have several
additional steps before transmitting a BLE wireless signal,

which are related to hardware. First, the BLE driver cannot
directly control the BLE chip but delivers a BLE command to
the SoC which includes the BLE module. Interestingly, most
modern SoCs in smartphones have other wireless modules,
such as WiFi, together with BLE in a single chip, and use only
a single antenna for all wireless modules. BLE must contend
with other wireless modules in the SoC to occupy the antenna;
(1) BLE operation can be affected by SoC implementation,
especially how to schedule many tasks for heterogeneous
wireless modules.

After a BLE task is executed, the next step is to pass
the BLE chip implementation, which depends on Bluetooth
version and chip manufacturer. (2) Each BLE chip has its own
way of frequency hopping, time synchronization, connection
management, and etc., resulting in different BLE behaviors.
The next step is passing through the amplifier and the antenna
to generate a BLE wireless signal, where (3) different am-
plifiers and antennas will give different transmission power.
Finally, the BLE wireless signal passes through the smartphone
cover as the first medium and enters into the air; (4) different
case designs may cause different signal attenuation.

Unfortunately, the details of these hardware implemen-
tations are mostly not open, which requires an extensive
experimental study to analyse their impact on BLE operation
in smartphones. As such, our hypotheses are:

Hypothesis (2): SoC and BLE chip implementations are
two major factors that lead to different BLE performance.

Hypothesis (3): Hardware components, such as amplifier,
antenna, and cover, impact BLE performance.

III. BLEVA

To test our hypotheses, we developed BLEva, a BLE bench-
marking framework for smartphone-peripheral systems.1

A. BLEva Overview

BLEva allows a simple and reproducible evaluation of BLE
on different smartphones (see Figure 3 for system overview).
We implement BLEva using the widely available BLED112
that uses TI’s CC2540 SoC. This chip is used in various
BLE products ([15]), and provides all Bluetooth 4.0 features
through a virtual serial port to the host while providing a
simple application interface, its retail price is roughly $10 [16].
All benchmark results are committed to a repository together
with the used configuration files.

Our implementation automatically maps JSON encoded
benchmark configuration instructions to native parameters
and function calls of Android and the BLED112/CC2540
programming interface. Each CC2540 is orchestrated through
a separate Python process. On Android we streamline the
differences between the APIs of Android 4.4, 5 and 6+
through an abstraction library that checks the device API,
selects the correct API call and potentially emulates newer
features for older devices (e.g., packet batching, filtering). This
is especially important considering the high fragmentation

1BLEva is open-source and can be found together with all experimental
data at http://github.com/jf87/BLEva

CC2540
Virtual

Serial Ports
BLE Devices (4)

Webserver Coordinator

Coordinator (3)

BLE
Devices

BLE

WiFi

 Configurations and Results (1)

Spawns

HTTP
(JSON)

Webserver

Phone (2)

SoC Control
Process(es)

Fig. 3. BLE Benchmarking Architecture with four Components. (1)
A repository that stores experiment configurations (these define the
setup and different steps of a benchmark for phone and peripheral(s)
in JSON) and benchmarking results. (2) The BLEva phone applica-
tion reads these configurations and coordinates the execution of a
benchmark through (3) a coordinator with (4) multiple BLE devices
(CC2450), that connect to a Linux box via virtual serial ports (USB).

of Android. Our Android implementation uses foreground
services to run multiple benchmarks reliably over an extended
time period without the need for user interaction.

IV. OPENING THE BLACK BOX

We now evaluate our three hypotheses through extensive
experiments. Several BLE metrics impact application perfor-
mance and will be used in our subsequent experiments:

• Advertisement Packets Latency. The time it takes to
receive the first peripheral advertisement packet.

• Advertisement Packets Reception Ratio (PRR). Per-
centage of peripheral advertisement packets received over
a fixed period.

• Advertisement RSSI. Received Signal Strength Indica-
tion of advertisement packets.

• BLE Characteristic Write/Read Latency. Latency of
writing/reading a BLE characteristic.

Note, that we do not evaluate throughput as it is not a major
design goal of BLE and not relevant for its applications [17].

A. Experimental Setup

We performed experiments on ten different Android models
from 2013 to 2016 and from different performance and price
ranges (see Table I). For the Nexus 7, Moto E2, Nexus 6 and
Nexus 5 we use two devices each, for the other models we
use one device. All models implement WiFi and Bluetooth
on the same SoC. If not mentioned otherwise, experiments
have been conducted in our lab where phones are placed
in 1m distance to a CC2540. Smartphones have been reset
to factory state before experimentation. We use our own
local WiFi network for communication (coordinating start
of experiments on multiple phones, publishing benchmark
results). RSSI related experiments for different distances have
been conducted in a ca. 50m long corridor where one of the
sides is adjacent to a wall with doors to classrooms and labs,
while the other side opens up to a ca. 30m wide atrium.
For RSSI, smartphones are placed on a movable tray and

TABLE I
SOCS FOUND ON DIFFERENT SMARTPHONE MODELS

BLE Chip Phone Models and API Versions

WCN3620 Motorola Moto G (API 22), Moto E2 (API 23)

WCN3660 LG Nexus 4 (API 22), Asus Nexus 7 (2013) (API 23)

BCM4339 LG Nexus 5 (API 23), LG G3 (API 21)

BCM4356 Motorola Nexus 6 (API 24), HTC One M9 (API 23)

QCA6174 LG Nexus 5X (API 25)

BCM4330 Samsung Galaxy S3 (API 19)

we perform experiments simultaneously (all smartphones scan
at the same point in time) to ensure that we have similar
environmental conditions for each run. We conduct latency
and packet reception ratio (PRR) related connection-less and
connection-oriented experiments sequentially to avoid mutual
interference2.

B. Impact of OS Implementation

We first investigate Hypothesis (1): Does smartphone OS
implementation impact BLE performance? To this end, we
installed four different Android versions (API version 19, 22,
23, and 24) in the same smartphone to exclude other impact
factors (Hypotheses (2) and (3)). Version 19 was published in
2013 and version 24 in 20163. The experiment is run on Asus
Nexus 7, LG Nexus 5 and Motorola Nexus 6.

Figure 4 plots advertisement PRR with various Android OS
versions. Smartphones use balanced scan mode with scan
period of 30 s and the CC2540 uses an advertising interval
of 160ms. Each result is based on 20 repetitions. First of
all, Asus Nexus 7 (with Qualcomm SoC) shows substantial
different PRR from the other two (with Broadcom SoC) even
with the same API version. This is because a single API
version has different BLE driver implementations for each
SoC, especially depending on its vendor; The same API call
can result in different BLE behaviors based on its SoC.
Specifically, we confirmed that the Android BLE driver for
Asus Nexus 7 (Qualcomm SoC) provides only one advertising
packet for all API levels during the whole scan period, while
other drivers (Broadcom SoC) provide all received packets.
This causes extremely low PRR for the Asus Nexus 7 and
reveals that even a recent Android OS implementation fails to
abstract various BLE chips for application developers.

Furthermore, when looking at LG Nexus 5 and Motorola
Nexus 6 which have Broadcom SoCs, we observe that the
same smartphone exhibits varying performance with different
OS implementations. Surprisingly, API 19, the oldest one,
achieves much higher PRR (∼100%4) than other versions. The

2Android devices can not passively scan for advertisement packets, but
always scan actively (requesting a scan response packet from advertisers).

3We test 3 API versions for each model since none supports all 4 versions.
4Note that we define a successful packet reception when BLE receiver

receives one out of the three packets sent out during an advertising interval
on the three different channels.

0 25 50 75 100
Mean PRR (%)

19

22

23

24

AP
I V

er
si

on

0.59

1.04

2.53

Not Available

Asus Nexus 7

0 25 50 75 100
Mean PRR (%)

Not Available

LG Nexus 5

0 25 50 75 100
Mean PRR (%)

Not Available

Motorola Nexus 6

Fig. 4. Advertisement Packet Reception Ratio (PRR) for the Same Smart-
phone on Various OS Versions: OS versions (and BLE driver implementations)
significantly impact BLE performance.

0 20 40 60 80 100
Mean PRR (%)

Samsung Galaxy S3
LG Nexus 5X

Motorola Nexus 6
HTC One M9

Motorola MotoE2
Motorola Moto G

LG Nexus 4
Asus Nexus 7

LG Nexus 5
LG G3 BCM4330

BCM4339
BCM4356
QCA6174
WCN3620
WCN3660

Fig. 5. Advertisement PRR of Phone Models: SoC significantly impacts PRR.
Phones with the same SoC exhibit similar performance, except for LG G3
because of highly customized OS.

reason is that API 19 always scans the channel as a default
(the behavior of low_latency scan mode). Newer API
versions (22, 23, and 24) support a differentiated operation for
each scan mode. This sacrifices PRR of balanced mode for
saving battery, but Android gradually improves the PRR per-
formance as its API version is upgraded. Overall, smartphone
OS implementation significantly impacts BLE performance.

C. Impact of OS/SoC Implementations

We now look at Hypotheses (1) and (2) together. Note that
it is impossible to nullify the OS impact on BLE performance
(by installing the same OS on all smartphones) because most
smartphones have their own, customized and closed sourced
Android OS implementations and do not allow any change.

a) Connection-less and Connection-based Services:
Figure 5 plots advertisement PRR of the ten smartphone
models in observer role with balanced scan mode and 30 s
scan period.5 The CC2540, located 1m from the smartphones,
uses an advertising interval of 1280ms, all three advertising
channels and a transmission power of 3 dBm. It shows that
SoC significantly impacts advertisement PRR. Performance
varies across SoC vendors, and Soc models of a same vendor.

Conversely, different smartphone models with the same
SoC exhibit similar performance. An exceptional case is the
pair of LG G3 and LG Nexus 5 that have BCM4339 SoC:
their PRR varies by around 50%. LG G3 provides quite
different performance from other smartphones with Broadcom
SoCs. We suspect that LG G3’s OS implementation is largely

5Android implements balanced scan mode with a window size of 2 s
and a scan interval of 5 s.

0 5 10 15 20 25
OS Timestamp (s)

LG G3
LG Nexus 5

Asus Nexus 7
LG Nexus 4

Motorola Moto G
Motorola MotoE2

HTC One M9
Motorola Nexus 6

LG Nexus 5X
Samsung Galaxy S3

BCM4330
BCM4339
BCM4356
QCA6174
WCN3620
WCN3660

Fig. 6. Advertisement Latency of Phone Models: Advertising latency varies
with both SoC vendor and SoC model of a same vendor.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Write Latency (s)

LG G3
LG Nexus 5

Asus Nexus 7
LG Nexus 4

Motorola Moto G
Motorola MotoE2

HTC One M9
Motorola Nexus 6

LG Nexus 5X
Samsung Galaxy S3

Connected Services Discovered Write

BCM4330
BCM4339
BCM4356
QCA6174
WCN3620
WCN3660

Fig. 7. Write Latency of Phone Models: Write latency is SoC-bound, but
varies significantly across SoCs.

customized from the standard API 21 and provides similar
behavior as BLE drivers for Qualcomm Soc do (i.e., returning
only one advertising packet on APIs).

With the same setup, Figure 6 plots advertisement latency
(the time until a smartphone received the first advertisement
after starting to scan). We observe that advertising latency
varies with both SoC vendor and SoC model of a same
vendor. It seems that PRR and latency are inversely correlated.
Furthermore, it turns out that current Android OS poorly
supports Qualcomm SoCs since they provide both significantly
longer latency and lower PRR than Broadom SoCs. On the
other hand, Android OS implementation for Broadcom SoCs
provides low and stable advertising latency regardless of its
API version: even the oldest API at Samsung Galaxy S3
provides low latency. Only LG G3 behaves differently and
more similar to Qualcomm SoCs.

Lastly, we performed connection-based experiments, where
the CC2540 chip takes the peripheral role with advertising
interval of 160ms and requests a connection interval of 20ms
when a smartphone connects to it. We disable slave latency
and use a supervision timeout of 300ms. Then, a smartphone
triggers a write operation to change a BLE characteristic of
the CC2540 chip, which requires to (i) connect, (ii) discover
services, and (iii) exchange data with the CC2540 chip given
that it has already discovered the peripheral.

Figure 7 shows the latency for each of the three steps.
Interestingly, the write latency is SoC-bound. Smartphones
with same SoC show nearly the same latency values. However,
the write latency varies significantly across SoCs. For example,
HTC One M9 and Motorola Nexus 6 (BCM4356) are more

0 20 40 60 80 100
Mean PRR (%)

LG G3

LG Nexus 5

Asus Nexus 7

LG Nexus 4

Motorola Moto G

Motorola MotoE2

HTC One M9

Motorola Nexus 6

LG Nexus 5X

Samsung Galaxy S3

WiFi Idle

0 20 40 60 80 100
Mean PRR (%)

WiFi Active

BCM4330
BCM4339
BCM4356
QCA6174
WCN3620
WCN3660

Fig. 8. Advertisement PRR with Idle/Active WiFi: Antenna scheduling
performance is highly affected by SoCs but also by different OS versions
(BLE driver implementations).

than three times faster than Asus Nexus 7 and LG Nexus
4 (WCN3660). More specifically, latency for the connection
step is the longest among the three steps and shows the
highest variance (across models) of all steps. The reason
is that the connection step needs to be initiated as central
and peripheral are not time synchronised. Despite that, the
time for establishing a connection should be close to the
advertising interval (160ms). This is not the case for most
phones, especially for those with Qualcomm SoCs.

b) Antenna Sharing with WiFi: Next, we investigate
how OS and SoC implement antenna scheduling for multiple
wireless modules, such as WiFi and BLE, to share a single
antenna. We conduct a set of connection-less experiments
while WiFi radio is (i) idle or (ii) active to receive down-
link transmissions (from access point to smartphone). For
BLE operation, the CC2540 chip advertises with interval of
160ms and a smartphone uses scanning period of 30 s with
balanced mode. At the same time, a smartphone keeps
downloading a 1MB file using its WiFi module from a local
server. We perform 20 repetitions for each result.

Figure 8 shows the advertisement PRR results for our
ten different smartphone models. As expected, simultaneous
WiFi operations decrease PRR. Furthermore, in most cases,
performance trends among smartphone models when WiFi is
active is similar to those when WiFi is idle; different SoCs
give different results. This reveals that antenna scheduling
performance is highly affected by SoC. Surprisingly however,
different smartphones, with the same SoC, show highly dif-
ferent performance for antenna scheduling. For example, the
HTC One M9 and the Motorola Nexus 6 (with BCM4356)
have a PRR of > 50% when WiFi is idle. However, when
WiFi is active, PRR of the M9 drops under 10% while that
of the Nexus 6 is marginally degraded. Given that these two
smartphones have different Android API versions, we can
see that OS implementation also significantly impacts antenna
scheduling behaviors. Another interesting discovery was that
when a smartphone scans with low_latency mode, the
antenna can be fully occupied by BLE for scan period and
any WiFi operation is blocked (figures omitted for brevity).

D. Impact of OS/SoC/Hardware

We explore all the three hypotheses together. To this end,
we vary the distance between smartphone and CC2540 chip,

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Distance (m)

−95

−90

−85

−80

−75

−70

−65

R
SS

I (
dB

m
)

Asus Nexus 7
HTC One M9
LG G3
LG Nexus 4
LG Nexus 5
LG Nexus 5X
Motorola Moto G
Motorola MotoE2
Motorola Nexus 6
Samsung Galaxy S3

Fig. 9. Distance vs. Mean RSSI of Phone Models: The impact of the
smartphone model nullifies the impact of distance on RSSI in many cases.

and we measure RSSI, the key link quality metric for iBeacon
like localization systems.

a) Distance vs. Model: Figure 9 depicts the mean RSSI
of each smartphone with varying distance for all three adver-
tisement channels. We first observe that as distance increases,
the mean RSSI first decreases then increases again. This is
due to indoor channel environments that degrade localization
accuracy as discussed in [18]. More importantly, different
smartphones provide significantly different RSSI. Maximum
RSSI difference among smartphone models is around 20 dBm
for every distance. Also there is no simple mapping between
RSSI and smartphone models. Furthermore, different results at
1m imply that a single reference RSSI value of iBeacon can-
not be applied to all smartphones. In practice, unfortunately,
iBeacon provides only one reference RSSI (i.e., optimized for
a single smartphone model, e.g., the iPhone). As an extreme
case, the smallest RSSI values of LG Nexus 5 and LG Nexus
5X (at 10m) are even larger than the largest one of HTC One
M9 (at 1m): for these smartphones, the impact of smartphone
model nullifies the influence of distance on RSSI.

b) Link Fluctuation vs. Model: Based on the above
findings, we ask another question, “do the different RSSI
readings really come from different smartphone models rather
than fluctuating wireless links?” [19]. To seek an answer,
Figure 10(a) plots the mean RSSI values of each smartphone
model at 1m and 10m at four different times of day. Inter-
estingly, this figure shows that almost all smartphone models
provide consistent mean RSSI values even at different times.
We conjecture that these stable results come from frequency
hopping of BLE, which minimizes the impact of channel
fading or wireless interference on RSSI values. In contrast,
different smartphone models exhibit quite different mean RSSI
values, up to 20 dBm at the same distance.

To take a deeper look, Figure 10(b) plots every RSSI sample
during the whole experiment period with a boxplot. The varia-
tion patterns of RSSI vary across models. For example, RSSI
values of LG Nexux 5X, Motorola Moto G, and Motorola
MotoE2 are relatively consistent at 1m but vary significantly
at 10m. On the other hand, LG Nexus 5 shows an opposite
behavior: its RSSI is fluctuating at 1m but stable at 10m.
The other smartphones provide diverse RSSI values for both
1m and 10m. These results reveal that RSSI fluctuation over
time highly depends on smartphone model. Furthermore, even
though Figure 10(b) plots all RSSI sample values, the RSSI

−100 −80 −60
RSSI (dBm)

LG G3
LG Nexus 5

Asus Nexus 7
LG Nexus 4

Motorola Moto G
Motorola MotoE2

HTC One M9
Motorola Nexus 6

LG Nexus 5X
Samsung Galaxy S3

Distance = 1 m
Morning
Noon
Afternoon
Night

−100 −80 −60
RSSI (dBm)

Distance = 10 m

(a) Mean RSSI value at each of four measurement times

−100 −80 −60
RSSI (dBm)

LG G3
LG Nexus 5

Asus Nexus 7
LG Nexus 4

Motorola Moto G
Motorola MotoE2

HTC One M9
Motorola Nexus 6

LG Nexus 5X
Samsung Galaxy S3

Distance = 1 m

−100 −80 −60
RSSI (dBm)

Distance = 10 m

BCM4330
BCM4339
BCM4356
QCA6174
WCN3620
WCN3660

(b) Every RSSI sample value during the whole experiment period

Fig. 10. RSSI of Each Phone Model at Different Distances and Time of day:
Smartphone model impact on RSSI is larger than the impact of wireless link
fluctuation.

readings are still distinguished among different smartphone
models. separated from that of LG Nexus 5X, Motorola Moto
G, and Motorola MotoE2; not even a single RSSI sample
value is overlapped together. Overall, Figures 10(a) and 10(b)
confirm that the impact of smartphone model on RSSI is larger
than that of wireless link fluctuation and should be addressed
first for accurate localization.

Another observation from Figure 10(b) is that when dif-
ferent smartphone models have the same SoC, their RSSI
readings become similar even with different OS implemen-
tations and hardware components (e.g., Motorola Moto G and
MotoE2). This reveals the impact of SoC on RSSI. A notable
exception is the case of LG G3 and LG Nexus 5 that have
BCM4339, which provide quite different RSSI values even
with the same SoC. It is not surprising because they also show
different behaviors in Figures 5 through 8. Compared to other
factors, it seems that hardware components (casing, antenna,
frontend) have less impact on BLE performance.

c) OS, SoC, Hardware, and Instance: Finally, we
compared the performance of two smartphones of the same
model. Figure 11 shows that their performance is similar, both
for RSSI and latency. This confirms that variations in BLE
performance come from different ‘smartphone models’ rather
than ‘smartphone instances’.

V. DISCUSSION AND CONCLUSION

Our experiments show that performance varies significantly
with OS version on a same smartphone model, and across
SoCs, while other hardware factors do not have any measur-
able impact. Put differently, our experiments tend to support
our first two hypotheses but not the third one.

−100 −80 −60
RSSI (dBm)

Asus Nexus 7

LG Nexus 5

Motorola MotoE2

Motorola Nexus 6

Distance = 1 m

0 10 20
OS Timestamp (s)

Scan Mode = balanced

Fig. 11. RSSI and iBeacon Latency for Different Phone Instances of the Same
Model: Different instances of the same model exhibit similar performance.

Should applications adapt to the smartphone models they
run on? Our experiments suggest that introducing a different
reference RSSI for each smartphone model would improve
iBeacon localization accuracy. This illustrates the potential
benefits of BLE-conscious applications.

What does it take for applications to become BLE-
conscious? Our results do not provide conclusive evidence
that a simple performance model (based on SoC and Android
version) could represent BLE characteristics and thus inform
adaptive applications. We conjecture that new OS abstractions,
based on Quality of Service constraints, are needed to support
BLE-conscious applications. This is a topic for future research.

REFERENCES

[1] P. Martin, B.-J. Ho, N. Grupen, S. Munoz, and M. Srivastava, “An
ibeacon primer for indoor localization,” in BuildSys’14. ACM, 2014.

[2] “Fitbit,” https://www.fitbit.com, 2017.
[3] Eqiva, “Bluetooth smart radiator thermostat,” http://www.eq-3.com/

products/eqiva/bluetooth-smart-radiator-thermostat.html, 2017.
[4] Thread group, “Thread 1.1.1 specification,” 2017.
[5] J. Fürst, K. Chen, M. Aljarrah, and P. Bonnet, “Leveraging physical

locality to integrate smart appliances in non-residential buildings with
ultrasound and bluetooth low energy,” in IoTDI’16. IEEE, 2016.

[6] J. Fürst, A. Fruergaard, M. H. Johannesen, and P. Bonnet, “A practical
model for human-smart appliances interaction,” in BuildSys’16, 2016.

[7] J. Adkins and P. Dutta, “Monoxalyze: Verifying smoking cessation with
a keychain-sized carbon monoxide breathalyzer,” in SenSys, 2016.

[8] S. Kamath and J. Lindh, “Measuring bluetooth low energy power
consumption,” Texas instruments application note AN092, Dallas, 2010.

[9] M. Siekkinen, M. Hiienkari, J. K. Nurminen, and J. Nieminen, “How
low energy is bluetooth low energy? comparative measurements with
zigbee/802.15. 4,” in WCNCW’12. IEEE, 2012.

[10] J. Liu, C. Chen, Y. Ma, and Y. Xu, “Energy analysis of device discovery
for bluetooth low energy,” in Vehicular Technology Conference (VTC
Fall), 2013 IEEE 78th. IEEE, 2013, pp. 1–5.

[11] S. Silva, S. Soares, T. Fernandes, A. Valente, and A. Moreira, “Coex-
istence and interference tests on a bluetooth low energy front-end,” in
SAI’14. IEEE, 2014.

[12] T. Lee, M.-S. Lee, H.-S. Kim, and S. Bahk, “A synergistic architecture
for rpl over ble,” in SECON’16, June 2016.

[13] Google, “Android Source,” https://android.googlesource.com, 2016.
[14] M.-M. Moazzami, D. E. Phillips, R. Tan, and G. Xing, “Orbit: a

smartphone-based platform for data-intensive embedded sensing appli-
cations,” in IPSN’15. ACM, 2015.

[15] Texas Instruments, “Cc2540,” http://www.ti.com/product/CC2540, 2015.
[16] Bluegiga, “BLED112 Bluetooth Smart Dongle,” https://www.bluegiga.

com/en-US/products/bled112-bluetooth-smart-dongle/, 2015.
[17] R. Heydon, Bluetooth low energy: the developer’s handbook. Prentice

Hall Upper Saddle River, 2013, vol. 1.
[18] J. Paek, J. Ko, and H. Shin, “A measurement study of ble ibeacon

and geometric adjustment scheme for indoor location-based mobile
applications,” Mobile Information Systems, 2016.

[19] H.-S. Kim, H. Cho, M.-S. Lee, J. Paek, J. Ko, and S. Bahk, “Marketnet:
An asymmetric transmission power-based wireless system for managing
e-price tags in markets,” in SenSys’15. ACM, 2015.

