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The world has experienced phenomenal growth in data production and storage in recent years, much of
which has taken the form of media files. At the same time, computing power has become abundant with
multi-core machines, grids and clouds. Yet it remains a challenge to harness the available power and move
towards gracefully searching and retrieving from web-scale media collections. Several researchers have ex-
perimented with using automatically distributed computing frameworks, notably Hadoop and Spark, for
processing multimedia material, but mostly using small collections on small computing clusters. In this
paper, we describe a prototype of a (near) web-scale throughput-oriented MM retrieval service using the
Spark framework running on the AWS cloud service. We present retrieval results using up to 43 billion SIFT
feature vectors from the public YFCC 100M collection, making this the largest high-dimensional feature
vector collection reported in the literature. We also present a publicly available demonstration retrieval
system, running on our own servers, where the implementation of the Spark pipelines can be observed in
practice using standard image benchmarks, and downloaded for research purposes. Finally, we describe a
method to evaluate retrieval quality of the ever-growing high-dimensional index of the prototype, without
actually indexing a web-scale media collection.

1. INTRODUCTION
The advent of smart-phones has re-written the rulebook for media generation, while
Internet-based “social” services for storing and sharing this media have completely changed
media distribution. Today avid collectors can easily gather hundreds of thousands of image
and video files, resulting in terabytes of media. The YFCC100M collection [Thomee et al.
2016] has almost 100 million images and close to a million videos. The Europeana collec-
tion hosts 50+ million digitised artworks and other artefacts, while DeviantArt hosts a few
hundred million born-digital artworks. And, last but not least, Facebook hosts hundreds of
millions of media items. This increased growth of media collection will not stop anytime
soon.

The growth of media collections is accompanied by the corresponding growth of multi-
meda feature collections. Emerging applications shrinking the semantic gap are multimodal,
which in turn increases the variety and the size of the features sets that must be stored and
processed. With the popularity of deep learning, gigantic multimedia collections are needed
as input for high-quality learning, and the semantic features produced by deep-learning
based classifiers grow in complexity. In short, there is ever growing need for storage and
computing power for multimedia applications.
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1.1. Cloud Computing
Cloud computing addresses such needs, both in term of storage and computing power.
Processing multimedia in the cloud is challenging, however, especially for media indexing
and retrieval. Indexes must be partitioned across the distributed infrastructure, which is
likely to be very heterogeneous, and care must be taken to prevent any storage and/or load
balancing problems. In addition, such large distributed settings are failure prone, which
calls for employing data redundancy. But, since multimedia collections are extremely large,
such redundancy puts high pressure on storage. Furthermore, to ensure proper operation
of the cluster, the many nodes involved in the distributed computation must be monitored,
which is difficult and costly.

To tackle these difficulties and to fully leverage the computing power of multi-core ma-
chines, grids and cloud computing, the data management community has seen a strong
trend towards “big data” technologies, such as the automatically distributed computing
frameworks (ACDFs) Hadoop and Spark. Such frameworks transparently handle data re-
dundancy, load balancing, failures, communication between nodes, and are very versatile:
they have been used to implement a large variety of big data analytics tasks.

Recently, several researchers have experimented with using ADCFs, notably Hadoop, to
implement a variety of multimedia-related tasks, including search and retrieval tasks against
multimedia material, but mostly using small collections on small computing clusters. But
what media applications are Hadoop and Spark suitable for?

1.2. Throughput-Oriented Media Services
Multimedia applications can be broadly divided into two categories depending on their pri-
mary performance metric. One category of applications focuses on the interactive response
time of the system; such systems are typically user-facing and based on media retrieval of
some sort. A typical method for implementing such system is to deal with the distributed
processing by simply extending the single node approach to multiple servers (e.g., the M-
tree [Batko et al. 2010]). Scaling such user-facing applications is difficult, as many machines
must typically be involved in answering each query, and coordinating the machines (espe-
cially in the face of failures) is challenging.

The second category of applications focuses on the throughput of the processing pipeline—
how many items can be processed per second—rather than the response time. Examples
of such throughput-oriented service arise on web-scale content sharing sites, where many
background processes could be run, such as: a service that checks copyright for detecting
violations or monetizing content; a service to process and re-format content; and a service
to automatically classify newly uploaded content, e.g., with face recognition or classifiers for
automated tagging. And there are yet more application domains, where large-scale batch-
processing of multimedia is important.

As ADCFs do not provide the response time required to implement interactive services
for large multimedia collections, they are only suitable for background tasks, such as batch
processing and indexing. Given the growth of media and feature collections described above,
however, we believe that it is of significant interest to the multimedia community to study
the engineering process and requirements for a throughput-oriented web-scale multimedia
service.

1.3. Contributions
In [Moise et al. 2013a] we showed that Hadoop is fundamentally not suitable for implement-
ing large scale search and retrieval tasks. In a nutshell, the execution model for Hadoop is
too rigid and it has memory management policies that are incompatible with the needs of
large scale indexing and retrieval tasks. This is extensively described below, in Section 2.
The objective of this study is to evaluate how effectively the Spark framework can be used
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to implement a throughput-oriented service. This paper therefore presents a prototype im-
plementation of a large-scale copyright violation detection service using Spark. We make
the following contributions:

(1) We present detailed pipelines for prototypical index construction and query processing
algorithms in Section 4. We show that the Spark pipelines required for indexing and
batch processing are not overly complex, and can be easily extended for state of the art
multimedia techniques.

(2) We evaluate the performance of the Spark pipelines running on the Amazon Web Service
in Section 5. We use a feature vector collection of 43 billion SIFT feature vectors,
the largest experimental collection of high-dimensional feature vectors reported in the
literature. Our results show that both index creation and batched retrieval scale well
and excellent throughput can be achieved.

(3) The scalability of the service raises the question of how the retrieval quality evolves
as the collection and the corresponding index grow. In Section 6, we show that it is
possible to evaluate the impact of the index on the quality of feature retrieval without
indexing the feature collection. Such a methodology allows estimating result quality for
arbitrarily large collections in a fraction of the time it would take to actually index the
collections.

(4) We have implemented a publicly available copy detection service prototype, described
in Section 7, where the functionality of the Spark pipelines can be observed in practice
using standard image retrieval benchmarks. All the Spark code will be publicly available
via this prototype system.

This article is an extended version of a paper presented in the “Best Paper Session” at the
2017 Multimedia Systems (MMSys) conference [Guðmundsson et al. 2017]. The additions
are as follows:

— In Contribution (1), we present additional details of (i) two Spark pipelines needed to
implement a full-fledged service, and (ii) a BoW-based indexing pipeline available in the
online prototype.

—Contributions (3) and (4) are new contributions in this article.

2. BACKGROUND
A large proportion of the growth in data creation and storage requirements consists of media
files, such as images and videos. For example, Facebook claims to store more than 250 billion
images, while Youtube users collectively upload more than 300 hours of video content every
minute. As a result, there has been significant interest in the scalability of content-based
multimedia retrieval [Chang 2011; Jégou et al. 2012; Sivic and Zisserman 2003; Jégou et al.
2011; Sun et al. 2013].

In 2011, Jégou et al. proposed an indexing scheme based on the notion of product quan-
tization and evaluated its performance by indexing 2 billion feature vectors [Jégou et al.
2011]. Also in 2011, Lejsek et al. described a version of the NV-tree that indexes 2.5 bil-
lion local feature vectors [Lejsek et al. 2011]. In 2015, Babenko and Lempitsky used the
inverted multi-index to index the BIGANN dataset, containing 1 billion features [Babenko
and Lempitsky 2015]. Finally, in 2014, Amsaleg reports results using the NV-tree to index a
collection of 28.5 billion local features [Amsaleg 2014]. All these approaches are centralized,
however, and focus on the response time of the retrieval.

In 2007, Liu et al. reported the earliest distributed work indexing more than a billion
high-dimensional feature vectors, but two thousand workstations were used to index the 1.5
billion vectors [Liu et al. 2007]. More recently, Sun et al. rely on the aggregation scheme
proposed by [Jégou et al. 2012], indexing 1.5 billion feature vectors from as many images,
but using 10 servers [Sun et al. 2013]. The first example of implementing multimedia tasks
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on Hadoop is the work of Zhang et al. [Zhang et al. 2010]. Since then multiple similar
systems have been proposed, but mostly working with relatively small collections (e.g.,
see [Gu and Gao 2012; Premchaiswadi et al. 2013; Grace et al. 2014; Yao et al. 2014]).
ImageTerrier [Hare et al. 2012] used the largest collection of these, indexing 10.9 million
images using BoW features based on about 10 billion SIFT feature vectors [Lowe 2004].
Such systems have also seen some use in the medical image retrieval domain, again with
relatively small collections [Grace et al. 2014; Yao et al. 2014; Jai-Andaloussi et al. 2013].
The largest experiments on Hadoop indexed and searched around 100M images, or about
30 billion SIFT feature vectors, using a cluster of 100+ machines [Moise et al. 2013a].

Hadoop and Spark have also found use in other domains related to multimedia. Bran-
dyn et al. used Hadoop to implement various computer vision tasks [White et al. 2010],
experimenting with the k-means algorithm clustering about 200GB of data. More recently,
Wang et al. proposed a library for Spark to improve performance of image retrieval [Wang
et al. 2015]. While only k-means is described in detail, the library contains multiple al-
gorithms for descriptor creation, image retrieval and result processing. Their experiments
focus on small collections of less than 500 million descriptors. The KeyStoneML project
(http://keystone-ml.org/) includes various machine learning algorithms implemented on
top of Spark; one is a pipeline for object recognition using Fisher Vectors and SVM. In
other recent projects, ADCFs were used for the training phase of deep learning processes,
where massive collections feed the network to determine its parameters [Ooi et al. 2015;
Moritz et al. 2015]. None of these libraries solve the fundamental problem we address, but
as discussed in Section 4.4 some of the algorithms could be used in combination with the
pipelines described here to add functionality to the prototype. Note also that, unlike these
works, our goal is not to develop a library of algorithms, but rather to study the engineering
process of constructing a large-scale multimedia service prototype.

2.1. Requirements for ADCFs
By studying the state-of-the-art in the literature and observing the needs of various multi-
media services, we have gathered the following five common requirements that we believe
an ADCF should meet in order to form a good basis for implementing web-scale multimedia
services:

R1: Scalability. Ability to scale out with additional computing resources as more and
more data is handled.
R2: Computational flexibility. Ability to carefully balance system resources as needed.
R3: Capacity. Ability to gracefully handle data that vastly exceeds main memory stor-
age capacity.
R4: Flexible pipelines. Ability to easily implement variations of the indexing and/or
retrieval process.
R5: Simplicity. Efficient use of implementer time through simplicity of code.

In the remainder of this paper, we discuss how well the Hadoop and Spark ADCFs satisfy
these requirements.

Note that in [Guðmundsson et al. 2017], the ability to update data structures was identi-
fied as the sixth important requirement. We have chosen to omit updates from the discussion
here for two reasons. First, there is a trend in the big data literature to architect analy-
sis systems in such a way that updates to data structures are not needed; instead the data
structures are always re-computed from scratch and the dynamic additions to the collections
are handled separately [Marz and Warren 2015]. According to proponents of this method-
ology, support for updates to large-scale data structures is not important. Second, we have
observed that Hadoop has no support for updates [Moise et al. 2013a] and Spark only has
limited support [Guðmundsson et al. 2017]. Since we have limited space to present our work
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here, we therefore choose to omit updates. Interested readers are referred to Guðmundsson
et al. [2017].

2.2. Map-Reduce and Hadoop
The Map-Reduce framework was first applied to large-scale distributed computing by
Google [Dean and Ghemawat 2008]. It exploits data independence through the Map and
Reduce user-level functions. Input data is split into blocks stored on the participating nodes
using a distributed file system such as HDFS [Shvachko et al. 2010]. The framework fa-
vors processing data locally, transparently handles the scheduling of tasks, and deals with
communications when nodes send/receive records to process.

Previous work, however, has shown that while Hadoop is good for solving a particular
type of big data problems, it fails at adequately solving the issues that multimedia systems
raise [Moise et al. 2013a]. For example, there are no facilities for updating the feature vector
collection, the pipeline is very simple and rigid, and the code required to implement even
elementary retrieval processes is complicated. Thus, Hadoop does not satisfy all of the five
requirements listed above: Hadoop does scale out to an extent (requirement R1 ), but it fails
with all the other requirements.

Let us consider these drawbacks in more detail. Hadoop forces systems to use only a
single input source: the HDFS data blocks. Many multimedia services use two sources of
data, however, such as systems which need a codebook at indexing time, in addition to the
data that must be indexed. Hadoop allows mappers to load distributed variables at launch
time, so one such variable can store the codebook. But since mappers on the same physical
node cannot share the main memory allocated for that variable, the codebook must be
loaded again and again by each mapper, even when running on the same node. Hadoop
thus only partially supports requirements R1 through R3 .

The inflexible two-step Map-Reduce architecture is also causing troubles. It is extremely
difficult to run iterative or recursive processes such as a k -means which is often used to create
codebooks. Workarounds require embedding Hadoop tasks inside high-level wrapping code
repeatedly invoking Hadoop [Owen et al. 2011]. Having multiple sources or levels of codes
leads to complications and poor performance. Hadoop thus does not statisfy requirements
R4 and R5 .

2.3. Spark
Central to Spark is the notion of a Resilient Distributed Dataset (RDD) [Zaharia et al.
2012; Zaharia et al. 2010], a distributed data structure on disk or in memory. Spark facili-
tates transforming and manipulating RDDs in order to meet application needs and allows
chaining operations in arbitrarily deep and complex pipelines. Spark defines many opera-
tors to manipulate the RDDs; the most common operators are listed in Table I, which also
introduces a graphical notation for the operators used in the remainder of this paper.

Spark typically uses HDFS as its file system. Data in an RDD is thus typically partitioned
and spread out over the computing cluster machines and Spark manipulates the data where
it resides. Spark allows the programmer to choose to persist RDDs to various storage-levels
(e.g., RAM or secondary storage). Keeping RDDs in RAM preserves the performance of
algorithms with iterative/recursive access patterns repeatedly scanning data.

Spark uses a Master-Worker workflow where the main code base is executed on the master
and the distributed executions operating on an RDD flow out to the workers. Spark uses
a lazy execution model where operations on RDDs are chained together until it becomes
necessary to instantiate the data. Lazy execution facilitates optimizations.

A major goal of our study is to determine how well Spark satisfies the five requirements
above; this is discussed in Sections 4 and 5.
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Table I. Common RDD operators in Spark.

.map

The .map() operator is a 1-to-1 transformation of each element into
a new RDD of equal size. Example use cases: type conversions (int to
long or text to number) or re-keying a key-value pair RDD.

.flatmap

The .flatmap() operator is a 1-to-many transformation as each element
invocation can return a list of new elements that are flattened into a
new RDD. Example use case: splitting lines of text into words.

.groupByKey

The .groupBy() operator invokes a shuffle of the RDD to group the
elements. The .groupByKey() operator does the same for key-value pair
RDDs, returning an RDD where each value is an iterator of the key’s
elements.

.reduceByKey

The .reduce() operator reduces all elements of an RDD into a single in-
stance. The .reduceByKey() operator is the key-value RDD equivalent,
reducing all elements with the same key into a single value. Example
use case: summing numeric values.

.collectAsMap

The content of an RDD can be collected as an Array from the workers
to the master with the .collect() operator or as a hierarchical map
structure with .collectAsMap().

.persist

The .persist(storage-level) operator is used to tell Spark where to keep
an RDD after instantiation. The storage level defaults to in-memory.

3. DESIGN CHOICES
In this study, we are primarily interested in understanding the pros and cons of using Spark
and cloud-based processing to implement (near) web-scale multimedia services. To that end,
we decided to implement a multimedia task for the study with i) a feature vector collec-
tion of tens of billions of feature vectors, and ii) a workload representing both background
processing and an on-line multimedia service.

3.1. Choice of Multimedia Tasks
Many throughput-oriented media tasks can be distributed relatively easily. Video encoding
or compression, for example, can be scaled by assigning each video (or part of a video)
to its own worker; as no coordination is needed, using ADCFs to scale these applications
is straight-forward. We have therefore chosen to focus on more demanding indexing and
retrieval tasks.

The only application in the literature handling tens of billions of feature vectors is the
DeCP algorithm, which is a prototypical multimedia retrieval system applied to copy detec-
tion using a collection of 30 billion local feature vectors using Hadoop [Moise et al. 2013a].
This algorithm has a number of useful features for our study:

—The implementation and performance of DeCP has been studied extensively, including
the impact of solid state disks, multi-core machines, and distributed processing (with
Hadoop).

— It is a simple clustering and retrieval algorithm that is easily explained, understood, and
implemented; yet is efficient and distributes well.

—The DeCP algorithm has both a pre-processing task (creating the clustered index) and
a subsequent online task (batched image retrieval), and is thus representative of many
different types of multimedia services.

—While the algorithm is simple, it can easily be extended to work with state of the art
methods, such as BoW. In Section 4.4, we show how to implement such pipelines.
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—The DeCP algorithm has been shown to give results of high quality for the copy detection
case, even at a scale of 30 billion feature vectors.

As discussed in Section 2, the Hadoop implementation of DeCP highlighted some of the
shortcomings of Hadoop for multimedia tasks. Since the aim of Spark was to address some of
those shortcomings, it is also interesting to implement DeCP on Spark to study whether the
intended benefits of Spark materialize for this multimedia retrieval algorithm. We therefore
focus on implementing DeCP on Spark.

3.2. Choice of Feature Vector Collection
As our target is to study processing of a feature collection containing tens of billions of
feature vectors, the only realistic choice is to use SIFT. The SIFT feature vectors use a
Difference of Gaussian (DoG) detector to find a large number of interest points in an image,
and then encode the image gradients and their orientations around each of the points into
a 128-dimensional histogram. While deep learning feature vectors have surpassed SIFT for
some multimedia tasks, SIFT remain very competitive for partial copy detection. Most
importantly, however, since a typical image yields hundreds of SIFT vectors, millions of
images can yield billions of vectors. As we only have access to millions of images, this is the
most important criterion for the feature vector collection.

Since the DeCP algorithm was developed in the context of the Quaero project, the feature
vector collection from [Moise et al. 2013a] is not publicly available. The largest experimental
image collection available now is the recently developed YFCC100M collection; fortuitously
the YLI collection of SIFT feature vectors computed from the YFCC100M collection was
made available just in time for our study. The YLI collection contains about 43 billion
feature vectors, which require almost 7TB of storage; this is sufficient to truly exercise the
capabilities of the Spark system.

As it turned out, the SIFT feature vectors for YFCC100M were extracted using an im-
plementation of SIFT that differs from the ones used when extracting local descriptors from
existing ground-truth such as Holidays [Jégou et al. 2008a], Copydays [Jégou et al. 2008b],
Oxford5k [Philbin et al. 2007], Paris6k [Philbin et al. 2008] or other well established bench-
marks. As a result, we can unfortunately not report quality metrics in this study. However,
the DeCP algorithm has already been shown to yield results of good quality, even at a
comparable scale. Furthermore, various versions of SIFT exist and have been compared.
They all prove to be quite equivalent and very stable in terms of recognition capabilities
across implementations. We are therefore confident that the quality results obtained with
DeCP and reported in [Moise et al. 2013a] would not radically differ when using the YFCC
collection as distractors, instead of the unavailable Quaero set of distractors.

Note, however, that we discuss a methodology for measuring the impact of the index on
retrieval quality as the collection size grows in Section 6. For the study in Section 6, we
can use a consistent set of SIFT features, based on standard benchmarks, thus avoiding the
problems discussed above with the SIFT features from YFCC100M.

3.3. Choice of Experimental Environment
We are interested in using cloud processing for multimedia tasks. As the workplace of two
of the authors (at the time) had an agreement with Amazon that provided Amazon Web
Services (AWS) credits, it was an obvious choice to use AWS for our experiments (and, in
fact, the only available choice). This choice has both benefits and drawbacks. The benefits
include the fact that the YFCC100M collection and the associated YLI set of SIFT feature,
were made available on AWS, reducing storage requirements.

The main drawbacks involved difficulties obtaining diverse and reliable performance mea-
surements:
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—First, since we were using the YLI collection, which was stored in the relatively small
West Coast data center, we had a limited selection of machine types to choose from,
which impacted our ability to study multiple machine configurations. In particular, since
our data required more than 20 TB of disk space (at replication factor 3), the limited
availability of local disks restricted our choices significantly.

— Second, since we had to use a low-price resource allocation policy, experiments were
frequently cut short due to pricing peaks. Furthermore, as our experiments required a
substantial portion of the computing capacity of the data center, running experiments
sometimes generated pricing peaks, which then cut the experiments short. Based on this
experience, we can recommend using a large data center for such large-scale experiments.

—Third, as the grant period for the project came to an end, the computing resources
became unavailable, and further experiments could not be performed.

3.4. Choice of (No) Baseline Comparisons
Aside from the previous work on DeCP using Hadoop, there are no existing studies at this
scale to compare to. As our collection is larger and the computing hardware is radically
different, we can only discuss (in Section 5.4) the differences between our results and those
of [Moise et al. 2013a].

3.5. Research Questions
We are primarily interested in understanding the pros and cons of using Spark and cloud-
based processing to implement (near) web-scale multimedia services. To that end, we are
specifically interested in the following research questions:

(1) What is the complexity of the Spark pipelines for typical multimedia-related tasks?
(2) How well does background processing scale as collection size and resources grow?
(3) How does batch size impact throughput of an online service?

In the next two sections we answer these questions for the particular case of DeCP run-
ning on Spark. It is our belief that since the application is quite representative for many
multimedia-related tasks, as discussed above, our conclusion will generalize to many other
multimedia tasks.

4. PROTOTYPE IMPLEMENTATION
We start with a brief description of the DeCP algorithm before presenting its implementation
on top of Spark. We then discuss using Spark to go beyond the prototypical algorithm
and implement alternative state-of-the-art indexing approaches. Finally, we summarize the
engineering effort of our project, and discuss how well Spark satisfies the requirements R1
through R5 .

4.1. The DeCP Algorithm
DeCP is quite representative of the core principles that are underpinning many unstructured
quantization-based high-dimensional indexing algorithms and its extremely simple search
procedure covers a large spectrum of existing approaches. For example, we later show how
DeCP can be modified to mimic not only the seminal VideoGoogle approach [Sivic and
Zisserman 2003], but also its descendants, with minimal changes to the Spark code.

DeCP uses a codebook learned over some data to guide the index construction. During
the indexing phase, each image feature vector is assigned to the closest codeword(s), thereby
forming clusters. The retrieval phase implements an approximate k -NN search process where
only a single matching cluster (or a few) is scanned.

To improve scalability by lowering the cost of identifying the matching cluster(s), DeCP
uses a multi-level hierarchy of codewords, as in many other approaches (e.g., [Nistér and
Stewénius 2006]). When indexing large feature vector collections with DeCP (say, a few
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billion feature vectors) best practice calls for creating a few million clusters, each grouping
about 15K features vectors (to utilize IO operations well), along with a codebook hierarchy
of 3 to 5 levels (to minimize CPU cost). The wider and deeper the index becomes the harder
it gets to find the correct cluster at search time. What we have is essentially a three-way
balancing act between 1) CPU cost of scanning, 2) CPU cost of traversing the index and 3)
search quality. As many other state of the art approaches, DeCP may use soft assignment
and multi-probing to increase the quality of results (see [Philbin et al. 2008]). Finally, DeCP
can easily process large batches of queries, searching up to a few million query vectors at
the same time, maximizing throughput at the expense of response time.

DeCP has been shown to return approximate results of good quality at very large scale.
It has been used to execute large batches of queries against extremely large image feature
collections (up to 30 billion SIFT feature vectors). The codebooks used were up to 6 million
clusters wide and 5 levels deep but to deal with a truly web-scale dataset of over 1 billion
images (400+ billion features) the width of the index would have to be in the tens of millions.
Such indices are studied in Section 6.

DeCP’s design principles, its architecture, some implementation details and extensive per-
formance results have been published in various venues [Moise et al. 2013a; 2013b; Shestakov
et al. 2013].

4.2. DeCP Index Construction
The feature vector collection must be stored on HDFS before the index construction can
start. The codebook for DeCP is created by randomly sampling the feature vectors using
the .take() command. The sampled vectors are organized top-down into a multi-level tree,
which is then pushed to persistent storage by writing it as a serialized object file.

Input RDD = N features

Codebook
.map

RDD(codewordID, feature)

.groupByKey

RDD(codewordID, feature iterator)

.map

RDD(codewordID, feature array)

Output RDD = C clusters

Fig. 1. Spark pipeline for indexing (quantization).

The pipeline for quantizing, i.e., as-
signing feature vectors to codewords, is
a rather straightforward chain of RDD
operators, shown in Figure 1. The code-
book is first broadcast to all workers, as
shown using the dashed arrow in the fig-
ure. The RDD with the feature vector
collection is then chained to a .map() op-
erator which i) reads the input data and
ii) traverses the codebook to determine
the codeword that is the closest to each
input feature vector. This first .map()
operator produces a new RDD made of
key-value pairs, where each pair is com-
posed of the codewordID as the key and
the current feature vector as the value,
thus representing the assignment of each
feature vector to a cluster. That RDD is
then chained to a .groupByKey() operator which groups the pairs according to the key, the
codewordID in this case, which essentially shuffles the data across the network in order to
prepare for the final cluster formation. As a technical detail, the .groupByKey() operator
produces a new key-value RDD where the value is an iterator, so a final .map() operator is
needed to convert the iterators into arrays such that the RDD can be serialized and stored
to disk. At that point, the feature vectors have been assigned to clusters which are in turn
distributed using HDFS.

When this pipeline is executed, the underlying distribution of the feature vector data
on HDFS is inherited by the initial RDD instantiation. Subsequent RDDs, resulting from
shuffling or other Spark operators, may be distributed differently. Recall that RDDs are
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Input RDD = Q features

Codebook
.map

RDD(codewordID, query feature)

.groupByKey

RDD(codewordID, query feature iterator)

.map

RDD(codewordID, query feature array)

.collectAsMap

Q2C table

Input RDD = C clusters

.flatmap

RDD(querypointID, k-NNs)

.reduceByKey

RDD(querypointID, k-NNs)

Output RDD = Q k-NNs

Fig. 2. Spark pipeline for batch k-NN search.

instantiated only when needed and are transient, unless persisting operators are used ex-
plicitly, so the whole pipeline is executed at the same time.

4.3. DeCP Batch Retrieval
The DeCP query pipeline starts by creating an RDD from all the query feature vectors in
the query batch. The codebook of the index is then loaded to identify the codeword that is
most relevant for each query vector. Once this is done, the queries can be grouped according
to their codewordID , which shows which query vector requires data from which cluster. This
is, again, the same pipeline as the one used in the initial steps of the index creation, albeit
with one difference. As many other state-of-the-art multimedia retrieval systems, DeCP
may use multi-probing at search time [Philbin et al. 2008]. With multi-probing, multiple
codewords are involved per query and multiple clusters must therefore be scanned, possibly
on different machines, each resulting in intermediate k-NN lists that must be merged and
consolidated to eventually form the final k-NN of the query.

Figure 2 shows the batch search pipeline. The start of the pipeline creates an RDD
that associates codewordID to queryID , resulting in an RDD which contains the query-
to-codeword table (Q2C , top half of Figure 2). Note that the RDD might contain several
entries for each queryID due to multi-probing. Entries in the Q2C table are grouped using
.groupByKey() according to the values of codewordID . This table is collected and broadcast
to all nodes (dashed arrow).

The bottom half of Figure 2 shows the remaining part of the pipeline. A .flatmap()
operator reads the indexed RDD, as well as the broadcast Q2C table, and determines the
k-NN of each query point for each codeword that is concerned by this query batch. This
is the main operation of the pipeline, where neighbors are matched with query features.
This creates another RDD of pairs with queryID as the key and the k-NN as the value.
Here again, multiple pairs with the same queryID key may exist due to multi-probing, so
the next step in the pipeline is to merge and consolidate the multiple intermediate k-NN
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lists that exist for each query. This is done using a .reduceByKey() operator that produces
a unique k-NN result list per query vector.

Note that Hadoop could not support multi-probing as there was no efficient way to
handle the two reduction steps that are required. To implement multi-probing in Hadoop,
it is required to push to HDFS all the intermediate k-NN lists, and then initiate a second
full MapReduce job to load these lists, perform the merge and consolidate the lists. In
addition to the costly launch overhead of Hadoop, the performance would suffer seriously
due to writing and then reading data on secondary storage. In contrast, this process is easy
and efficient with Spark as transformations of RDDs can be chained; RDDs remain in main
memory; and the whole pipeline is a single job.

4.4. Beyond DeCP: Advanced Pipelines
Multimedia retrieval systems in real life typically include components that are not part of the
DeCP approach described above. Furthermore, state-of-the-art systems may use techniques
that slightly differ from the ones used in DeCP, which has been designed as a prototypical
retrieval system. In particular, a fully functional multimedia retrieval system must extract
feature vectors from the media file and we first show how external Computer Vision libraries
can be linked to Spark. We then describe how secondary similarity measures can be added
to DeCP in order to re-rank candidate images. This allows, e.g., the implementation of
a voting process or weak geometry verifications when dealing with local feature vectors.
Finally, we show how DeCP can be extended to imitate the high-dimensional indexing
strategies derived from the seminal Bag-Of-Words (BoW) paradigm [Sivic and Zisserman
2003].

Input RDD = M images

.map

RDD(imageID, feature array)

Output RDD = N features

.flatmap

Fig. 3. Integration of feature extraction
in Spark. The resulting feature collection
must be the input to the indexing and
search pipelines of Figures 1 and 2. If
needed, it could also be stored on disk using
a .persist operator.

4.4.1. Extracting Feature Vectors from Media. So far
we assumed that feature vectors were already ex-
tracted from the images and ready for indexing
and querying. It is possible, however, to extend the
pipelines sketched above to include a feature ex-
traction step. First, the multimedia material must
now be stored in HDFS. The next step is to run
the feature extraction code, in a distributed man-
ner, saving the resulting high-dimensional vectors
into a new RDD using .map(), and then we do a
.flatmap() to label each feature and flatten the struc-
ture. This step, shown in Figure 3, must be added
to the pipelines of Figures 1 and 2, but the pipelines
are otherwise identical to what was described before.

Connecting a Java library (e.g., BoofCV) to Spark
is trivial, but it is more complicated to connect a
C/C++ library. Spark can invoke legacy code with
the .pipe() operator but that only passes text via
std-in and std-out, which is not suitable for large volumes of high-dimensional features.
Another alternative is relying on JNI to wrap the legacy library, allowing invocations from
.map() or .flatmap() operators. Traditional computer vision libraries can thus be utilized
(such as OpenCV or VLFeat), allowing the extraction of state-of-the-art feature vectors such
as MFCC (for audio), SIFT, SURF, or the more sophisticated VLAD features [Arandjelovic
and Zisserman 2013]. This is, for example, done in the ML-Lib vision pipeline, where a JNI
wrapper allows using VLFeat to extract dense SIFT features [Vedaldi and Fulkerson 2010].

4.4.2. Secondary Similarity Measures. Various motivations have driven researchers to use sec-
ondary similarity measures in multimedia retrieval systems, including removing false pos-
itives, trying to defeat the curse of dimensionality, and compensating for the asymmetry
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of NN-based similarity. Typically, the traditional primary k-NN similarity creates a list of
candidates, which is then processed using a secondary similarity measure to re-rank the
candidates; the top elements of the re-ranked list are then returned to the user. It is possi-
ble to equip DeCP on Spark with such secondary similarity measures and in the following
we give two examples that are representative of techniques found in the literature.

The first example is a voting-based secondary similarity measure, for example needed
when using local features such as SIFT [Lowe 2004]. With local features, each image, in-
cluding the query, is described using many feature vectors. The similarity is established by
first identifying the k-NN of each query local feature vector and then making each identi-
fied local feature vector “vote” for the image it belongs to. Once all the query local feature
vectors have been used to probe the index, the images with the most votes are returned as
the most similar.

The vote aggregation process in Spark requires adding operators to the search pipeline in
order to transform the RDD that contains the consolidated k-NN lists. This RDD groups
the lists according to their queryID . It is necessary to read this RDD and reshuffle its data
according to the imageID using a .reduceByKey() followed by a .map() that will count the
number of votes each image receives from the collection. The resulting pipeline is shown
in Figure 4. Note that all the experiments described in the next section use this vote
aggregation secondary similarity measure.

Input RDD = Q k-NNs

RDD(querypointID, k-NNs)

.map

RDD(Q imageID, k-NNs)

.reduceByKey

RDD(Q imageID, ranked image-list)

.collectAsMap

Fig. 4. Integration of vote aggregation in Spark. The in-
put RDD is the output of the search pipeline of Figure 2.

The second example re-ranks the
candidate images according to an esti-
mate of the degree of geometric consis-
tency of angles and scales between the
query and the candidate images [Jégou
et al. 2008a]. Pushing consistent im-
ages up in the ranking, and inconsistent
images down, is easy as geometry and
scale information is integrated into the
feature vectors. Unlike most systems, a
costly re-extraction of the feature vec-
tor information from the candidate im-
ages is not needed as we can simply in-
clude the original feature vectors in the
search pipelines RDD with very mini-
mal code changes. The actual post-process of re-ranking can then be appended to the
pipeline using the necessary RDD transformations; for example, .flatmap() to compare ran-
domly chosen sets of feature vectors in the result to the corresponding sets of original query
features (already in memory in the Q2C table), and .reduceByKey() to gather the geometric
results per image and output the final re-ranked results. The Hamming embedding approach
discussed in [Jégou et al. 2008a] can also be implemented in a similar fashion.

4.4.3. Imitating BoW. The Bag-Of-Words (BoW) approach was originally proposed by Sivic
and Zisserman [Sivic and Zisserman 2003]. Many extensions and improvements have sub-
sequently been proposed, making the BoW approach a seminal contribution to the field of
high-dimensional indexing. BoW basically applies to images textual information retrieval
techniques where the words of the document collections are recorded in a vector model
with a cosine-based metric and a tf-idf -based secondary similarity measure. With images,
the local image features are turned into “visual words” using a visual codebook and feature
vectors are clustered with their closest codeword. Each local query feature vector votes for
all the images assigned with the closest codeword(s), so scanning the clusters to search for
the closest feature vectors is in fact not needed.
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Input RDD = C clusters

RDD(codewordID, feature array)

.map

RDD(codewordID, k-NN)

.cache in-memory

Fig. 5. Index creation for BoW search. In contrast
with DeCP indexing, the resulting index is small and
can be cached in memory.

This impacts the pipeline as some Spark
operators can be removed and the code
simplified. Early in the pipeline, it is not
necessary to create an RDD where the fea-
tures from the collection to index are kept;
instead it is only necessary to keep track
of which featureID gets assigned to which
codewordID . The resulting RDD is much
smaller (as the components of the feature
vectors are not needed) so it can potentially
remain in (the distributed) main memory,
thus enhancing performance. Stripping the
featureID from an existing indexed dataset can be done using a .map() operator. The
subsequent .flatmap() of the search pipeline in Figure 1 is also simplified, as the code for
scanning the selected cluster(s) is not needed anymore. The resulting pipeline is represented
in Figure 5.

4.5. Discussion
In this section, we have described the engineering process for a prototypical (near) web-scale
multimedia service implemented on top of Spark. We have described how we were able to
take advantage of the flexibility built into Spark, both with respect to the advanced resource
management and the flexible pipeline construction.

As an example of the former, Spark is able to use main memory very effectively, meaning
that with Spark the scalability of DeCP is only bound by the amount of RAM per machine
and not by the amount of RAM per core, as was the case in Hadoop. We believe that the
requirements of scalability, computational flexibility and capacity, R1 through R3 , can all
be satisfied quite well by Spark.

As an example of the latter, we have shown how Spark’s flexibility and deep pipelines
provide the tools necessary to implement a full-feature system seamlessly, and we have also
described how some common post-processing steps, such as re-ranking, can be added with
minimal overhead and code changes. None of this was considered remotely feasible with
Hadoop [Moise et al. 2013a]. This discussion thus shows that the requirements for flexibility
and simplicity of pipelines, R4 and R5 , are satisfied very well. The support for the last two
requirements is perhaps best articulated by the following three observations: a) we are able
to build a full-featured system with relatively easily explained pipelines; b) we can often
propose more than one way to solve the same task; and c) we have proposed numerous
extensions to implement more complex pipelines with very modest code changes.

We also learned that working with collections at this scale is a very time-consuming and
expensive process. As one example, converting the feature collection from text format to
binary format took weeks. This conversion process required using machines with large mem-
ory, as the vectors were stored in very large compressed text files and Spark does not allow
partial decompression of such files. Renting these machines was very expensive, and hence
only a few of them were used. These machines were not connected to large disks, however,
so remote writes were mandatory to store the output of the compression. It is that combi-
nation of costs, storage and network capacities that caused this phase to be so daunting.
As another example, storing the resulting compressed collection would cost hundreds of
dollars per month, and therefore the collections were removed after experimentation was
completed.

However, given the relative ease of implementing these pipelines, as well as the results
reported below, we conclude that Spark has very strong potential for implementing various
families of large-scale multimedia services.



1:14 G. Þ. Guðmundsson, B. Þ. Jónsson, L. Amsaleg, M. J. Franklin

5. EXPERIMENTS AND RESULTS
All experiments reported in this section were run on Amazon Web Services (AWS), using
C3.8xl nodes. Each node has 60GB of RAM, 640GB of SSD storage, an E5-2680 CPU at
2.8GHz with 32 virtual cores (vCores). Intel hyper-threading technology is used for half of
these vCores; this is known to perform worse than a true core. We have in all cases used 51
of these C3.8xl nodes to create the Spark cluster. The cluster is thus composed of 1 master
and 50 slaves, for a total of 1600 vCore workers. This configuration allows using 2.8 TB of
RAM and 30 TB of HDFS SSD storage in total. Recall, from Section 3.3, that we were using
a relatively small data center; as a result this was the smallest configuration that could fit
our data set on local disks, and due to difficulties with pricing peaks we could not run larger
configurations.

Our feature vector collection is the recent publicly available YLI corpus, which consists
of 42,949,150,170 SIFT feature vectors derived from 96,560,779 Creative-Commons-licensed
Flickr images [Thomee et al. 2016]. We converted the features to a binary format stored
as an RDD in our S3 bucket; in total the collection requires about 7TB of disk space. To
facilitate running experiments at various scales, we partitioned the 43 billion feature vector
collection into five roughly equals parts. Each of the five parts, referred to as a, b, c, d and
e respectively, contains approximately 8.5 billion SIFT vectors and occupies about 1.4TB
of disk space. We believe that we are reporting the first experiments using the full SIFT
collection of the YLI corpus, and hence the largest feature vector collection ever used in the
literature.

To index the collection (and the various sub-collections) we created a 5-level codebook
that defines 20 million codewords. We have intentionally used a large codeword hierarchy
which can accommodate much more than the YLI collection. With 43 billion feature vectors,
only about 2,100 feature vectors are assigned to each codeword on average (or about 425
for each of the five parts a through e), while it is good practice to fit between 15 and 50
thousand feature vectors per codeword [Moise et al. 2013b]. The codebook hierarchy used
here could thus gracefully, with absolutely no change, scale to indexing 500 billion to a
few trillion vectors with only a linear increase in the time required for quantization. Note
that the overhead for traversing this hierarchy and managing so many codewords negatively
impacts the index creation and search times that we report, as a 4-level codebook defining
2 to 4 million codewords would have been more appropriate for indexing 43 billion feature
vectors; the overhead is of course even worse when indexing smaller sub-collections.

Note that aside from basic Spark parameter tuning, we have not performed any optimiza-
tion. We run the Spark framework “out-of-the-box” and none of the authors are experts in
either Java or Scala. Furthermore, we deploy our cluster in AWS where accurate monitoring
of the environment is limited due to virtualization and concurrency.

5.1. Experiment #1A: Scaling Out Resources for Indexing
Table II. Experiment #1A: Scaling out index cre-
ation.

Indexing Relative Scaling
vCores Time (s) Observed / Optimal

400 5,931 — / —
800 3,510 0.59 / 0.50

1600 3,287 0.55 / 0.25

The first large scale experiment observes the abil-
ity of Spark to scale out; how the execution time
decreases in proportion to the increase in hard-
ware resources. We focus on the index construc-
tion (the most CPU intensive pipeline) of a rel-
atively small sub-collection (a). To measure the
ability to scale out, we set a Spark configuration
parameter (spark.cores.max) to limit the num-
ber of vCores to 400, 800 or all 1600 vCores. Recall that the first 800 vCores are true
hardware cores while the last 800 vCores are hyper-threading cores.

The performance of the index creation pipeline against these three AWS configurations
is summarized in Table II. Its second line is when hyper-threading cores are not used.
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Doubling the number of vCores in use nearly divides in half the time it takes to run the
index creation. The added overhead of using 800 true cores instead of 400 is 18% above the
optimal, see the Observed/Optimal column.

Above 800, the added cores are hyper-threading vCores. While the number of vCores is
doubled, the quantization time is only reduced by about 7% (third line of Table II). This is
caused by the poor performance of hyper-threading cores as indicated by Intel’s guide-lines
and observed in work on Hadoop [Moise et al. 2013a; Shestakov et al. 2013].

5.2. Experiment #1B: Scaling Up Collection for Indexing
This second experiment is intended to observe the ability of the system to scale up; how the
execution time evolves when indexing larger and larger collection with the same hardware.
For this experiment, we use the full 1600 vCores of the 50 C3.8xl AWS worker nodes. We
measure the wall clock time for running the index creation pipeline against five feature
collections of increasing size, ranging from a to the full collection of 43 billion descriptors.

The wall clock time for the indexing (quantization) is reported in Table III. It takes
3,287 seconds to complete the index creation pipeline when indexing the a sub-collection.
Indexing the full 43 billion features takes 19,749 seconds, or about six times longer. As the
last column of Table III indicates, the system scales up quite well with larger collections.

The indexing time for the largest collection is about 5.5 hours, which can be decomposed
into about 2.5 hours for assigning each feature vector from the collection to its appropriate
codeword and about 3 hours to achieve the shuffling process grouping the feature vectors
into clusters. Note that despite using as many as 1600 vCores, only 50 machines were used
and they had to shuffle about 7TB of data, which severely stresses the communication links.

5.3. Experiment #2: Scaling Batch Retrieval
Table III. Experiment #1B: Scaling up index creation.

Indexing Relative
Collection Descriptors Time (s) Scaling

a 8.5B 3,287 —
a− b 17.2B 5,030 1.53
a− c 26.0B 11,943 3.63
a− d 34.5B 14,192 4.31
a− e 42.9B 19,749 6.00

This last experiment examines the perfor-
mance of searching the full scale collection
with batches of query images. We have built
batches of queries by sampling the collec-
tion, resulting in up to 80,000 images in a
single batch, each having about 400 query
features, for a total of up to 32 million query
features in a single batch.

We use the 51 C3.8xl nodes. The code-
book is the 5-level hierarchy organizing 20 million codewords. Each experiment is an end-
to-end batch-search job, where the wall clock running time of the entire job is measured.
Note that the wall clock time includes the time required to load the codebook at job launch
time, about 550 seconds, which is something a live system would only do once.

In this experiment, multi-probing is not used (as we are not studying retrieval quality, and
turning multi-probing off emphasizes the network connections) and the number of neighbors
collected for each query point is set to k = 20. In this discussion we focus on the time to
process the batch and the corresponding throughput.1

The time it takes to entirely process batches of queries are given by Figure 6. It takes
about 1,000 seconds to process the smallest batch, which contains 2,500 images, while it
takes close to 1,500 seconds to process the largest batch of 80,000 images. Multiplying the
size of the batch by 32 thus increases the response time only by a factor of 1.5: larger batch re-
quires relatively little more disk activity to read clusters, while utilizing CPUs much better.

1As discussed in Section 3, we do not report quality indicators here, as a) no ground truth is available for
the YLI feature collection and b) the DeCP algorithm has been shown to return good results at scale.
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Fig. 6. Experiment #3: Total running time.
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Figures 7 and 8 show the time
per image and throughput, re-
spectively, both with and with-
out the time required to load the
codebook. As the figures show,
the time required per image ini-
tially drops very fast as the batch
size is increased, with a corre-
sponding increase in throughput.
Furthermore, the figures show
that as the batch size increases,
the impact of loading the code-
book becomes smaller. The time
required to process one query im-
age from the batch drops from 0.39 seconds with the smallest image batch to 0.018 seconds
when processing the largest batch. This suggests that with small batches most of the CPUs
sit idle, waiting for data to arrive. With larger batches, in contrast, the CPUs are more
effectively used and the throughput of the system improves.

5.4. Discussion
One of the primary limitation of implementing even a basic multimedia service in
Hadoop [Moise et al. 2013a] was that scalability was bound by the RAM per core. As
the collection grows, larger data structures are typically needed for managing the collection
(the cluster index, in the case of DeCP), which in turn require more RAM memory. This is
not an issue with Spark, and in our experiments we even used a significantly larger index
than needed to emphasize this difference.

Also, in contrast to the Hadoop implementation reported in [Moise et al. 2013a], we
implemented a full-featured system using Spark. This was not originally planned, as it was
not until we started working with Spark that we realized how the various features of the
framework made it easy for us to accommodate the more complex pipelines. This is a clear
testament to the simplicity and flexibility of the Spark framework.

Our experimental results reinforce our conclusion that Spark supports large-scale
throughput-oriented multimedia services very well. We have investigated the performance
of index construction and batch search, and shown that Spark scales both out and up. Using
a grid of a hundred machines, DeCP on Hadoop needed more than half a second per image;
in these experiments, however, a large batch results in an average time per image of less
than 20 milliseconds! This is despite the fact the we are running experiments on heavily
under-sized clusters, due to the over-sized index.

6. EVALUATING RETRIEVAL QUALITY AT SCALE
An important question, when extending systems and applications towards web-scale, is
how the result quality evolves as the collection and the corresponding index grow. There
are two important use-cases. First, indexing a very large collection once is time-consuming
enough (and expensive, when using commercial cloud services), so repeatedly indexing the
collection with different index configurations is completely infeasible. Second, we may wish
to understand the evolution of result quality for collections much larger than those currently
available. In this section, we show that for a copy-detection application it is possible to
evaluate the impact of the DeCP index structure on quality, without actually indexing the
entire collection, thus reducing the work of quality evaluations significantly. We first outline
our approach, and then use it to evaluate the quality of the DeCP index as the size of the
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Fig. 7. Experiment #2: Search time per image.
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Fig. 8. Experiment #2: Batch search throughput.
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indexed (hypothetical) feature collection grows from roughly 10 billion features to 1,000
billion features.

6.1. Quality Evaluation for Single Feature Retrieval Benchmarks
Consider a ground truth for single feature retrieval, generated using a sequential scan over
a fixed collection, where the outcome is a set of query features fq

i , each with a matching
nearest neighbour fn

i that the approximate retrieval process should find. In an approximate
index, there are two possible reasons why a query for fq

i would not find the correct fn
i

within the k-nearest neighbours. First, the retrieval process might take a wrong turn inside
the index structure and arrive at a cluster (or leaf) that does not contain fn

i . When this
happens, the analysis of the cluster is guaranteed to be in vain. Second, when the index
guides search to the correct cluster, the analysis of its content might still be too approximate
and miss the feature fn

i .
For an algorithm, such as DeCP, that stores the entire feature within the cluster and

runs a full nearest neighbour search within the cluster, however, any retrieval for fq
i that

finds the cluster containing fn
i is then guaranteed to locate the correct answer. The central

observation behind our method is that to evaluate how well the index guides the retrieval
of fq

i towards fn
i , we only need the index hierarchy, not the actual clusters: if the index

hierarchy guides the search for both fq
i and fn

i to the same cluster, then the index structure
has done its job.

Note that this observation also extends to multi-probing, where a query retrieves b > 1
clusters: if the first cluster found for fn

i is one of the b clusters found for fq
i , then the cluster

index has done its job. And with soft assignment, where a feature is inserted into a > 1
cluster during indexing, it would be sufficient to find any of the top a clusters for fn

i within
the top b clusters for fq

i , to guarantee that a query for fq
i would retrieve fn

i . This method
for quality evaluation also applies to other approximate methods, such as BoW, although
for methods that use approximate processing inside the cluster (or leaf) the quality given
by our method represents an upper bound.

6.2. Quality Evaluation for Image Retrieval Benchmarks
While the quality of single feature retrieval is important, most of the available benchmarks
are defined at the image level. In an image benchmark, a set of query images Iqj and “original”
images Ioj are given. The query image is typically generated from the original image through
some standard image manipulations (cropping, resizing, compression, etc), but sometimes
the query image is in fact a different image with similar content. The originals can be
embedded in a large collection of “distracting” images, to make the problem harder. The
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Table IV. Index structures evaluated.

Index Size Collection Size Index Shape
Clustering (clusters) (billion features) (depth) (branching)

HIKM-200K 200,000 3–10 3 58

DeCP-200K 200,000 3–10 3 59
DeCP-2M 2,000,000 30–100 4 38
DeCP-20M 20,000,000 300–1,000 5 29

goal of the image retrieval system is then to query for the query images Iqj and retrieve the
“originals” Ioj .

Using image benchmarks complicates the evaluation of quality for unknown feature col-
lections. For a pair of images (Iqj , I

o
j ), there is no longer a clear connection between the

features generated from each. First, the images may be so different that some features from
the original have no counterpart of the query image, and some features in the query image
have no counterpart in the original image. Second, even when features do correspond, they
may be so different that even a sequential scan would not identify the original in a k-nearest
neighbor retrieval for the original query feature fq

i . Third, two features from different parts
of the images may be very similar by pure happenstance. All of this makes it difficult to
produce (fq

i , f
n
i ) pairs of ground truth features, and an approximation is needed.

To evaluate the quality of the index structure, using our methodology defined above, we
propose to select, for each feature fq

i from the query image Iqj , the most similar feature fn
k

from the original image Ioj :

fn
i := fn

k |min
k

(d(fq
i , f

n
k ))

Note that this is in fact exactly the feature from the original image that a sequential scan
would be most likely to find.

6.3. Experiment
In this experiment we evaluate the (inevitable) quality loss that occurs due to the increased
index size (both index depth and branching factor) as the collection grows towards web-
scale. Using the SIFT1B feature collection as the source of centroids, we have built three
progressively larger indices for DeCP, with the largest designed to index 300–1,000 billion
features (15-50K features per cluster, on average). We have also used 2 million features
to create an index using the well known hierarchical k-means algorithm (HKM) from the
publicly available VLFeat library,2 to serve as a baseline. Note that creating the HKM index
took 5 hours, while even the largest DeCP index could be created in minutes. Table IV
presents these indices in more detail.

We then used the evaluation methodology described above to evaluate the retrieval quality
for the well-known CopyDays benchmark, which is a traditional copy-detection benchmark.3
It is known that a majority of the query features in CopyDays do not find a match, even
at a smaller scale, due to the sometimes extensive transformation of the images. At the
image level these matches add up, however, and the correct match is typically returned for
80–95% of the query images.

Figure 9 shows the quality for the three different DeCP index configurations, when re-
trieving b = 1 . . . 5 clusters. Due to the implementation of the VLFeat library, we could
only retrieve b = 1 cluster using HKM (and only for the smallest hypothetical collec-
tion, as noted in Table IV) and the quality of HKM is therefore shown as a flat line.

2http://www.VLFeat.org
3https://lear.inrialpes.fr/ jegou/data.php
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Fig. 9. Index retrieval quality for the CopyDays
benchmark.
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Figure 9 shows that, for the smallest in-
dex, DeCP yields nearly the same result
quality for the first cluster as HKM, with a
further 10% recall added for b = 5 clusters.
Note that previous results show that de-
tailed clustering algorithms, such as HKM,
typically have some very large and dense
clusters which are frequently retrieved as
the first cluster, leading to relatively high
cost of reading the first cluster and a poorer
quality over time trade-off than the simple
DeCP algorithm [Tavenard et al. 2011]. This is thus an excellent result for DeCP, as its
index is built in minutes compared to hours for HKM.

Figure 9 also shows that most of the matches are found in the first cluster. As DeCP
only selects additional clusters from the bottom branch the failure must lie higher in the
structure. In future work, we plan to study the effect of soft-assignment in more detail.

As expected, there is some degradation of quality as the DeCP index structure grows
deeper and wider. Overall, for b = 5, the 2M index retains 76.4% of the matches that the
200K index retrieved, and the 20M index retains 78.5% of the matched that the 2M index
retrieved. We expect that HKM would show a similar degradation of quality for 2M and
20M indices. Due to its prohibitive running time and memory requirements, however, we
could not confirm that expectation.

Considering that the 20M index has two additional levels in the index hierarchy, and
can fit 100 times more data, this is actually a surprisingly good result. Overall, the results
show that even with a collection that is roughly 20-30x larger than the one indexed in our
prior experiments with DeCP, the index retains more than half of its result quality. Most
importantly, however, we could make this estimate without the need to actually generate
and index a collection of 1,000 billion SIFT features.

7. OPEN SOURCE PROTOTYPE
To facilitate applying our results in research and industry, we make the following contribu-
tions: (i) make publicly available all the code necessary to implement the pipelines described
in this article; and (ii) create a virtual machine with DeCP search engine and web-interface
pre-installed. Both available at https://github.com/elgerpus/DeCP

7.1. The DeCP Search Engine
The prototype search engine is an end-to-end system taking images as its input and produc-
ing text-based ranked results. SIFT features are extracted with the open-source Java-based
BoofCV library (see Section 4.4). When the engine is started it is possible to temporarily
add new images to the indexed collection, by utilizing Spark’s ability to join two RDDs
(see [Guðmundsson et al. 2017]). Note that the new images will not become a permanent
part fo the index unless the new RDD is explicitly stored to disk.

To maximize flexibility, the search engine does not integrate the web-API but opts for
a text-based input/output system. The input folder is monitored for new requests in the
form of a .batch file. In such a batch file, the first line indicates colon-separated search
parameters, while the remaining lines contain paths to query images. Special input files can
be used as well, to halt the system a halt.batch is used and to save the current indexed RDD
a save.batch files is used.

The search results are also presented as text files written to a specific output folder. For
each query batch, a new sub-folder is created, containing a batch.res file with information on
search settings and search duration in the first line, while the remaining lines are paths to
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Fig. 10. Creating a batch in the web-interface. Fig. 11. Listing the batch results in Rows-mode.

individual search results for each query image in the batch. The result file for a query image
contains a path to the query image, and the number of SIFT features extracted from it, in
the first line. The remaining lines then contain a ranked list of the most similar database
images, along with the number of votes they received.

7.2. Browser-Based Search Interface
Figure 10 shows the web-interface for submitting batch queries. The user can supply arbi-
trarily many query images, as well as supply run-time settings for the search parameters k
(neighbors returned for each query feature), b (clusters examined for each query feature),
and the number of results per query image. Upon submitting the query images, a .batch
file is written to the input folder where it will be picked up by the search engine. As soon
as the search is done, the search results are written to the output folder, which in turn is
monitored by the web-application. As soon as new results are detected, regardless of how
the queries were submitted, the web-interface will notify the user that new search results
are available.

Through the web-interface the user can browse all search results in the engines output
folder, even those submitted by other means. In Figure 11 we see the interface after selecting
a batch from the list of available batch results. We can browse in two modes, Rows- or
Grid-mode, and the in the Rows-mode shown in the image we notice that in addition to
the expected batch information we get a sneak preview the top-five results for each query
image. The Grid-mode setting shows 16 query images per page.

Then, as the last result view, we have the result for each individual query image. In this
view we see the query image at the top of the page and how many SIFT features were
extracted from it. This view default to the Grid-mode with the larger thumps. However, to
provide maximal information, we show both the image ID and the #votes in an overlay on
each ranked result image.

The web-interface also has an administrative window where the user can submit the
special halt.batch, to halt the search engine, or the save.batch that will save the current
indexed RDD.

8. CONCLUSIONS
In this article, we have argued the advantages of using automatically distributed computing
frameworks (ADCFs) to implement throughput-oriented multimedia services, in order to
cope with today’s very large and ever growing multimedia collections. We have identified
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five requirements that such ADCFs should satisfy, in order to effectively support multimedia
services: Scalability; Computational flexibility; Capacity; Flexible pipelines; and Simplicity.

To the best of our knowledge, we have engineered the first (near) web-scale multimedia
service running on Spark: a full-featured off-line copy detection system (with multi-probing,
search-expansion and post-process re-ranking). We have detailed the Spark pipelines for in-
dex creation, batch search, and index maintenance, and also discussed how to implement
many advanced CBIR approaches and extensions using Spark. We have then measured
the performance of the prototype by conducting some of the largest experiments reported
to date, using 43 billion SIFT descriptors from the YFCC100M collection. Finally, we pro-
posed a new methodology for studying result quality at much larger scales, without actually
creating and indexing the feature collection.

Our experiments have have shown that Spark satisfies all five requirements identified for a
high-throughput web-scale multimedia service. We therefore argue that designers of scalable
multimedia services should strongly consider using Spark (or subsequent frameworks with
similar capabilities) as the basis for their systems. In order to support that work, we have
made all our code publicly available through a code repository, an open prototype, and a
ready-made virtual machine.
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