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INTRODUCTION

Seagrass decline is a worldwide phenomenon. Al-
though natural disturbances are recognized, most
declines are attributed to anthropogenic disturbances
(Short & Wyllie-Echeverria 1996). Direct mechanical
damage reported to disturb seagrasses include dredg-
ing (Zieman 1982, Phillips 1984, Thayer et al. 1984,
Coles et al. 1989), propeller scarring (Zieman 1976,
Walker et al. 1989, Dawes et al. 1997), boat mooring
and anchoring (Williams 1988, Walker et al. 1989,
Creed & Amado Filho 1999), and docks (Burdick &
Short 1999). Fishing gear practices (Ardizzone et al.
2002, Orth et al. 2002, Uhrin et al. 2005) and fishing
techniques associated with clam harvest and clam cul-

ture (Peterson et al. 1983, 1987, Fonseca et al. 1984,
Everett et al. 1995, Boese 2002, Neckles et al. 2005)
have also been shown to negatively impact seagrasses,
including declines in seagrass cover and failure of sea-
grass restoration in the Dutch Wadden Sea (De Jonge
& De Jong 1992). 

Sporadic and continuous mechanical damage results
in partial or complete removal of plants from the sub-
stratum (Short & Wyllie-Echeverria 1996). As a result
of plant removal, secondary effects like decreased sea-
grass cover, productivity, and biodiversity and in-
creased habitat fragmentation, sediment resuspension,
erosion, and alteration of physical processes (e.g.
water currents) may result in long-term effects such as
community restructuring (Hemminga & Duarte 2000).
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The Ria Formosa lagoon, southern Portugal, is a
highly productive ecosystem dominated by the inter-
tidal seagrass Zostera noltii. Z. noltii is a small species
that develops extensive meadows sustaining high gross
primary production (Santos et al. 2004). These mead-
ows play an important role in the bivalve recruitment
(A. H. Cunha & R. Santos unpubl. data) and biodiversity
of Ria Formosa lagoon, including economically impor-
tant species such as cephalopods, crustaceans, and fish.
Clam harvest and clam culture are the main commer-
cial activities of the lagoon, representing more than
90% of national clam production (Direcção Regional
das Pescas e Aquicultura do Sul pers. comm.). These
activities take place along the intertidal areas, where Z.
noltii meadows develop. The most common technique
used by local clam harvesters consists of manually dig-
ging and tilling the sediment using a modified knife
with a large blade. This technique severs shoots and
rhizomes and causes plant burial. 

The main objectives of this study were to (1) analyze
the effects of clam harvesting, as it is performed by
local fishermen, on Zostera noltii population density
and biomass through the comparison of disturbed and
undisturbed meadows; (2) test the effects of clam har-
vesting on Z. noltii density and its recovery through in
situ experimental manipulation; and (3) determine the
effects of physical damage caused by clam harvesting
technique in plant survival, growth, and production,
through the experimental manipulation of both rhi-
zome and shoot fragmentation at different modular
levels, i.e. altering the intact number of modular units.

MATERIALS AND METHODS

This study was conducted from June to November
2001 in the Ria Formosa lagoon, southern Portugal
(Fig. 1). The lagoon is a mesotidal system with a high

spring tide surface area of 84 km2 and an exposed
intertidal area of about 80% (Andrade 1990). The
lagoon is separated from the Atlantic Ocean by a sys-
tem of 5 sand barrier islands and 6 inlets. The tidal
amplitude ranges from 3.50 m on spring tides to 1.30 m
on neap tides. Sampling was performed in a Zostera
noltii meadow under clam harvesting disturbance and
in an adjacent undisturbed meadow. The disturbed
meadow is a free access area frequently used for com-
mercial clam harvest. The undisturbed meadow is part
of a private clam culture concession where trespassing
is not allowed. Clam harvest did not occur in this area
for several years. Five randomly distributed samples
were collected biweekly from each meadow, with a
12 cm diameter core. In each sample, the number of
shoots was counted to estimate shoot density. The total
biomass (above plus belowground material) of Z. noltii
was determined by drying the sample at 60°C for 48 h. 
The effects of clam harvest on Z. noltii population den-
sity and its recovery were assessed by in situ experimen-
tal manipulation. Fourteen permanent plots of 10 × 10 cm
were randomly placed in a homogeneous, undisturbed
Z. noltii meadow. Half of the plots were disturbed using
the same technique employed by the local clam har-
vesters, while the other half remained as control (undis-
turbed). After the plots were disturbed, the area was al-
lowed to settle for a day, so that the tidal currents would
flatten the sediment and remove the loose plants. Plots
were monitored the following day and every 2 wk there-
after for 5 mo, by counting all the shoots within each plot.

The physical impact of the clam digging on plant
survival, growth, and production was assessed by
experimental manipulation to varying degrees of rhi-
zome and shoot fragmentation. In the first experiment,
rhizomes were severed at increasing distances from
the apical meristem, creating 5 levels of modular units
(ramets) composed of 1, 2, 3, 4, or 5 rhizome internodes
and including the respective aerial shoots (Fig. 2A).
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Each treatment was independently applied to 10 repli-
cate plants. Plants were carefully collected, severed,
and immediately placed in perforated plastic contain-
ers filled with local sediment. Apex shoots were tagged
to distinguish new modular sets produced during the
experimental period. The containers were randomly
placed in the same meadow maintaining the local
sediment level. The experiment was initiated in
August 2003 and concluded after 30 d. Plant survival
was determined and plants were examined for the
number of new shoots and internodes produced to esti-
mate the shoot and internode production rates (no. d–1)
and for the length of newly developed rhizome to
calculate rhizome elongation rate (mm d–1). The new
internodes were dried at 60°C for 48 h, to estimate
rhizome production rate (g DW d–1). 

In a second experiment, shoots were cut at their
base, removing the basal meristem, to simulate dam-
age caused by clam digging. Four levels of shoot dam-
age, relative to shoot position on the rhizome, were
generated: no damage (control), 1 shoot cut off (the
closest to the apex shoot), 2 shoots cut off (leaving the
apex shoot only), and only the apex shoot cut off
(Fig. 2B). Each treatment was independently applied to

10 replicate plants consisting of 3 rhizome nodes and
associated shoots, including the apical shoot. Plants
with 3 modules were selected, as there were no signif-
icant differences in growth and production of plants
with 3, 4, or 5 modules and it is very difficult to find
intact plants with 5 modules. Plants were harvested,
severed, and immediately placed in perforated plastic
containers as described above. The experiment was
initiated in September 2003 and concluded after 30 d.
The plant parameters were analyzed as described
above. 

Prior to statistical analyses, data were tested for
homogeneity of variance and normality of distribution.
When necessary, data were log-transformed to fit
assumptions. Differences in shoot density and biomass
between disturbed and undisturbed meadows were
investigated using 2-way ANOVA with disturbance
and date as main effects. The recovery of shoot density
after experimental disturbance was compared with
controls using a Student’s t-test for each sampling
moment after data log-transformation. One-way
ANOVA was used to test the effects of experimental
damage of rhizomes and shoots on shoot and internode
production, and in rhizome growth and production.
When ANOVA indicated a significant difference,
Tukey’s multiple comparison test was applied to deter-
mine where significant differences occurred. Signifi-
cant differences were considered at a probability value
of p < 0.05 (Sokal & Rohlf 1995). 

RESULTS

The shoot density of the Zostera noltii meadow un-
der clam harvest disturbance was significantly lower
than the undisturbed meadow (Fig. 3A), except on 1
June, 1 July, 15 July, and 1 October. The biomass of the
disturbed meadow was 2 to 8 times lower during the
whole sampling period (Fig. 3B). Shoot density and
biomass showed no significant differences among
sampling dates.

Experimental clam harvest significantly reduced the
density of Zostera noltii shoots until 15 d after the
digging event (Fig. 4). Immediately following distur-
bance, 43% of shoots were lost and 19% of the remain-
ing shoots had damaged leaves. Thirty days post-
disturbance, densities had recovered to non-disturbed
levels. From then on, no significant differences were
found between treatment and control plots (Fig. 4). 

Survival of experimentally damaged plants having
1 modular unit was much lower (10%) than plants with
2 to 5 modules (80 to 100%, Fig. 5A). This treatment
level was not considered in further statistical analysis
as only 1 plant had survived. Rhizome elongation and
rhizome production rates were lower in plants with
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1 and 2 internodes, compared to plants with 3 to
5 internodes, but no significant effects of rhizome frag-
mentation (2 to 5 modules) were found in shoot pro-
duction, internode production, rhizome elongation, or
rhizome production rates (Fig. 5). The shoot damage
experiment showed a negative effect of manipulation
on plant survival, as 20% of all plants did not survive
the initial cutting (Fig. 6A). No differences were found
in the survival of plants with 1 or 2 shoots severed.
Plant survival was lowest when the apex shoot was cut
off (20%). The effects of cutting the apex shoot on
shoot production, internode production, rhizome elon-
gation, and rhizome production rates were extreme as
practically no growth and production were observed
with this treatment (Fig. 6). On the other hand, no sig-
nificant effects were found when shoots other than the
apical were severed (Fig. 6). No rhizome branching
occurred during the experiment.

DISCUSSION

The Zostera noltii meadows of Ria Formosa, southern
Portugal, are heavily utilized by clam harvesters and
have a visually fragmented aspect and a lower sea-
grass cover. The results of this study provide both
descriptive and experimental evidence of the negative
effects of clam harvest activity on Z. noltii populations.
Both shoot density and total plant biomass were lower
in meadows described as disturbed, and experimental
harvest significantly reduced shoot density up to 15 d
post-harvest. Our results indicate that recovery of iso-
lated disturbances in Z. noltii meadows will occur for
approx. 1 mo, as suggested by experimental harvest
(Fig. 4). The high growth rates and production of
Z. noltii (Vermaat & Verhagen 1996, Marbà & Duarte
1998, Laugier et al. 1999) seem to buffer the long-term
effects of isolated disturbances. Besides the initial
reduction in shoot density (43%), shoot damage was
also found the day after the experimental disturbance.
However, no significant evidence of shoot damage was
found 15 d after disturbance and beyond, which illus-
trates the fast leaf growth of the species (Vermaat et al.
1987, 1993). Boese (2002) found slower recovery for
Z. marina subjected to experimental clam digging. Sig-
nificant declines in above- and belowground biomass
were observed for 1 mo post-digging, and persisted for
10 mo, although not significant. Recovery of disturbed
Z. noltii meadows may occur through vegetative devel-
opment, as long as modular units with at least 2 rhi-
zome internodes with the respective connected shoots
remain on the sediment (Figs. 5 & 6). This result can be
directly applied to the management of Z. noltii mead-
ows in Ria Formosa, allowing them to sustain the
impacts of local clam harvesting. A secondary effect of
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exploiting clams or other resources such as molluscs
within the Z. noltii meadows of Ria Formosa is the dis-
turbance caused by trampling. Negative impacts on
seagrass shoots and rhizomes as a result of repeated
trampling have been demonstrated elsewhere (Eckrich
& Holmquist 2000). 

The recovery of commonly disturbed seagrass mead-
ows depends not only on the level of disturbance but
also on its frequency (Short & Wyllie-Echeverria 1996).
The experimental manipulation of clam harvest in this
study consisted of isolated disturbances. Extrapolation
to the intertidal areas of Ria Formosa under frequent
and intense clam harvest activity must be done with
caution. A slower recovery of Zostera noltii shoot
density than that found here would be expected.

Sexual reproduction of Zostera noltii may also con-
tribute to the recovery of disturbed meadows as indi-
cated by the higher reproductive effort of this species
under clam harvesting disturbance (Alexandre et al.
2005, this volume). The relevance of sexual reproduc-
tion to the species recruitment was demonstrated by
Diekmann et al. (2005), who found high genetic vari-
ability of Z. noltii meadows in Ria Formosa.

Rhizome fragmentation drastically reduced plant
survival when only 1 module remained connected to
the apical meristem (Fig. 5A). The damaged plants
were not observed to decay but instead disappeared
from the meadow, probably as a result of the buoyancy

of the leaves, which caused the limited root system of
the modules to disengage. Shoot production, internode
production, rhizome elongation, and rhizome produc-
tion rates were not significantly affected by rhizome
fragmentation (Fig. 5), even though growth and pro-
duction were lower when only 2 modules were left.
This indicates a low modular integration for Zostera
noltii compared with other seagrasses. Terrados et al.
(1997b) found negative effects on both rhizome and
leaf growth of the seagrass Cymodocea nodosa when
the horizontal rhizome was severed up to 11 intern-
odes away from the apical meristem. Marbà et al.
(2002) observed that the maximum translocation of
carbon and nitrogen along Z. noltii rhizomes was low-
est among seagrasses, about 9 cm, which is equivalent
to a maximum of 3 internodes. The low modular inte-
gration observed in Z. noltii suggests that the high rhi-
zome elongation and clonal growth rate for this species
do not depend much on accumulated reserves in the
rhizome. Rather, a direct and immediate investment of
photosynthates (soluble carbohydrates) in growth and
a low accumulation of insoluble carbohydrate reserves
(starch) are expected. In fact, this was observed in a
current investigation of the circadian and seasonal
variation of Z. noltii carbohydrates (J. Silva & R. Santos
unpubl. data). This strategy may constitute a valuable
feature of Z. noltii when withstanding physical distur-
bances such as those caused by clam harvest. 
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When shoots were severed at different positions along
the rhizome, a strong effect was found on shoot produc-
tion, internode production, rhizome elongation, and rhi-
zome production rates only when the apical shoot was
removed (Fig. 6). This supports the hypothesis that 
apical growth in Zostera noltii is mostly dependent on
apical shoot photoassimilates, contrary to what was
observed in other seagrasses that rely on internal
translocation of resources along the rhizome (Marbà et
al. 2002). Physiological integration between shoots
has been interpreted as an adaptive advantage for sea-
grasses, such that different modules can share resources
produced by neighboring modules and contribute to
vegetative spread by apical meristem growth (Marbà et
al. 2002). The Z. noltii strategy must differ from most sea-
grasses as it depends less on module integration yet is
more able to react to heavy physical disturbance that
fragment its clonal structure. In addition, no rhizome
branching occurred in Z. noltii within the time of the
experiment, indicating that apical dominance does not
occur in Z. noltii, at least within a 30 d response time.
Removal of the apical meristem in Cymodocea nodosa
not only promoted branching but also elongation of the
rhizome branches (Terrados et al. 1997b). A change in
the growth form of the closest vertical rhizome into
horizontal growth was also observed in C. nodosa as a
result of apical dominance (Terrados et al. 1997a). 

In conclusion, clam harvesting activity adversely
affects Zostera noltii populations, despite the great
recovery capacity of the species. Meadow recovery
may occur even if plants with only 1 or 2 modules,
including the apical shoot, remain on the sediment.
Clam harvesting in Ria Formosa may not allow the full
recovery of Z. noltii meadows due to high frequency
and intensity of disturbance, particularly during sum-
mer. Our results suggest that Z. noltii meadows may
sustain clam harvest disturbance provided that the
meadows are allowed to recover from isolated distur-
bance for about 1 mo. 
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