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Abstract 

Data analysis is essential to derive meaningful conclusions from proteomic data. This 

chapter describes ways of performing common data visualization and differential analysis 

tasks on gel-based proteomic datasets using a freely-available statistical software package 

(R). A workflow followed is illustrated using a synthetic dataset as example. 
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1. Introduction 

Correct inference from proteomic data depends not only on good experimental design and 

practice, but also on an adequate analysis of the results. There is extensive discussion on 

both theoretical and practical issues underlying the inference of biological conclusions from 

protein expression data, both in this book and elsewhere (e.g. see (1, 2) and references 

therein), and so this chapter focuses on illustrating a practical workflow for analysis of 

proteomic data using a standard and freely-available tool. 

The open-source statistical computing environment R is increasingly being used as the 

analysis tool of choice by the users of high-throughput profiling technologies (colloquially 

dubbed "omics"). This chapter guides the reader through a practical analysis workflow on 

R, using a synthetic 2DE dataset as example. 

A thorough discussion of the R language and its full range of capabilities is outside the 

scope of this chapter. Nevertheless, given the non-trivial learning curve of any 

programming language, we advise the reader to consult some of the many books (3, 4) and 

online tutorials on this language. 

 



2. Materials 

 

2.1. Dataset 

2DE gel scans are usually analysed using specialized image analysis software (see Note 1). 

Many software packages can be used for this purpose, each of them with a specific type of 

approach (5–7), but the end result is usually a table containing measurements for a common 

set of features (usually "protein spots") across all samples (i.e. gels). Though this chapter 

and the provided examples assume the user has a 2DE dataset with "protein spots" as 

features, its methods also generally apply to other types of multivariate "large p, small n" 

datasets, proteomic or otherwise (see Note 2). 

A common data format, and the one assumed in this chapter, is such that each row 

represents a sample (in this case, a 2DE gel) and each column represents a measured 

variable (in this case, a protein spot), as a plain text file (see Note 3). Furthermore, besides 

the dataset table, it is useful to have sample metadata and feature metadata tables, with 

additional information that can be used in the analysis. In the case of sample metadata, it is 

common to have information on the technical context of the 2DE gel (e.g. IEF and SDS-

PAGE batch), along with the relevant information on the corresponding biological sample 

(experimental factors and other co-measured variables). In the case of feature metadata, any 

available information on the protein spots (e.g. XY position in the gel image, mean spot 

area, estimated background, protein identity) should be included. 

The example files used throughout the chapter can be obtained at 

http://dx.doi.org/10.6084/m9.figshare.1284620 or at any of the two other mirrors 

(http://tomesilva.com/2DExample/ and http://tomessilva.github.io/2DExample/). 

http://dx.doi.org/10.6084/m9.figshare.1284620


 

2.2. Analysis software 

To follow the analysis workflow described in this chapter, you need to have a specific set 

of software packages installed on your computer: 

1. Install the latest version of R for your platform, either from the CRAN website 

(http://cran.r-project.org/bin/) or from your operating system's repositories; 

2. Install the latest version of RStudio for your platform 

(http://www.rstudio.com/products/rstudio/download/); 

3. Run RStudio and install the required R packages for this example (see Note 4), by 

running this code: 

install.packages(c("caret","klaR", "e1071", "effsize", 

 "pROC","pcaPP","mixOmics","fastICA","pheatmap","statmod")) 

source("http://bioconductor.org/biocLite.R") 

biocLite() 

biocLite(c("vsn", "qvalue", "limma")) 

http://cran.r-project.org/bin/
http://www.rstudio.com/products/rstudio/download/


3. Methods 

 

3.1. Importing protein expression data 

1. To import a dataset, either use the "Import Dataset" button (if using RStudio) or run 

one of the following commands: 

# if using period as decimal separator and TAB as field separator 

input.data <- read.delim(file.choose(),dec=".",sep="\t") 

# if using comma as decimal separator and TAB as field separator 

input.data <- read.delim(file.choose(),dec=",",sep="\t") 

  For illustrative purposes, we will use an example dataset, by running: 

input.data <- 

 read.delim("http://files.figshare.com/1860747/example_dataset.txt",dec=".") 

2. You should check whether the dataset was correctly imported: 

View(input.data) 

head(input.data) # alternative way 

3. It is also necessary to import any eventual metadata available on the samples (e.g. 

experimental factors). For this simple example, metadata consists simply of a binary 

variable denoting class-membership of the samples: 

input.metadata <- 

 read.delim("http://files.figshare.com/1860748/example_sample_metadata.txt", 

 dec=".") 

head(input.metadata) # check if it was correctly imported 

treatment <- input.metadata$treatment 

 



3.2. Normalizing and transforming protein expression data 

Normalization refers to scaling of protein abundance estimates so that comparisons across 

gels are possible. This step is required due to technical factors (e.g. different protein load 

per gel, different staining intensity per gel, different dye efficiencies) that make direct 

comparisons inadequate (see Note 5). Many methods have been proposed to normalize 

2DE protein abundance data, from simple ones (total gel volume, total spot volume, 

quantile normalization) to more specialized ones (VSN method, LOESS normalization). As 

part of the normalization process, it is common to transform the data (using e.g. log, arsinh, 

power transforms), for variance stabilization purposes. Extensive discussion on the 

different normalization and transformation approaches is available elsewhere (8). 

1. Check the distribution of abundance values for each gel and any dependence of the 

standard deviation with the mean: 

boxplot(t(input.data)) 

require(vsn) 

meanSdPlot(t(input.data)) 

2. If you get a trend similar to Fig. 1 (i.e. standard deviation increases dramatically for 

high-abundance spots), then you probably have raw data. A quick way of normalizing 

and transforming the data (using the VSN method) is: 

require(vsn) 

norm.data <- t(justvsn(t(as.matrix(input.data)))) 

3. You can confirm that the norm.data variable contains your normalized dataset, using the 

same approach as in step 1: 

boxplot(t(norm.data)) 

require(vsn) 

meanSdPlot(t(norm.data)) 



  As can be seen in Fig. 2, the mean and the standard deviation of each spot have 

become decorrelated, making the assumption of heteroscedasticity (required by many 

regression approaches and hypothesis tests) more plausible. 

   

3.3. Visualizing protein expression data 

Data visualization should be seen as an essential step in a proteome analysis workflow, as it 

allows the researcher to assess data quality and to detect any unexpected heterogeneities 

that can compromise the validity of downstream statistical tests. 

As with other type of multivariate datasets, the classical tools for data visualization (e.g. 

scatterplots) are inadequate for protein expression data unless some sort of dimensionality 

reduction step is applied. 

While the most popular approach here consists in performing a Principal Component 

Analysis (PCA), many other approaches can be undertaken using R. A typical analysis 

workflow could include steps such as: 

1. Perform PCA with scaled variables to confirm whether the experimental factor is the 

main source of variability in terms of protein expression (see Fig. 3): 

results.pca <- prcomp(norm.data,scale=TRUE,retx=TRUE) 

plot(results.pca) # scree plot 

cumsum((results.pca$sdev)^2) / sum(results.pca$sdev^2) 

biplot(results.pca) # biplot of scores and loadings (not very clear) 

plot(results.pca$x[,1],results.pca$x[,2],col=1+treatment, 

 xlab="PC1",ylab="PC2",pch=15) 

legend("top",c("class 0","class 1"),col=1:2,pch=15) 



2. As an alternative, plot samples according to their similarity in terms of a scale-

independent measure (such as Kendall's tau correlation), using Multidimensional 

Scaling (MDS): 

require(pcaPP) 

inter.gel.distances <- as.dist(1 - cor.fk(t(norm.data))^2) 

results.mds <- cmdscale(inter.gel.distances) 

plot(results.mds,col=1+treatment, 

 xlab="Dimension 1",ylab="Dimension 2",pch=15) 

legend("top",c("class 0","class 1"),col=1:2,pch=15) 

3. You can also perform Independent Component Analysis (ICA) to confirm that the 

direction of maximum non-Gaussianity is orthogonal to the hyperplane that separates 

samples from the two groups (i.e. that most observed non-Gaussian variation can be 

attributed to the experimental factor): 

require(fastICA) 

results.ica <- fastICA(norm.data,2) 

plot(results.ica$S,col=1+treatment,xlab="IC1",ylab="IC2",pch=15) 

legend("top",c("class 0","class 1"),col=1:2,pch=15) 

4. Finally, the use of a heatmap, where both variables and samples are ordinated using 

hierarchical clustering and expression levels are represented with colours, is also a 

popular way of visualizing proteomic datasets: 

require(pheatmap) 

pheatmap(t(norm.data),scale="row",show_rownames=FALSE) 

 

3.4. Differential analysis of protein expression data 

When the visualization step supports the hypothesis that a significant fraction of observed 

variation in protein expression is due to the experimental factor(s), the experimenter is 

usually interested in assessing which specific proteins are being affected (see Note 6). This 



step of "differential analysis" is usually centered on the use of univariate hypothesis testing 

approaches (e.g. Student’s t-test, ANOVA, Wilcoxon-Mann-Whitney U-test, Kruskal-

Wallis test) with some form of multiple comparison correction (in order to control the false 

discovery rate). 

Other forms of feature selection, often based on the use of classifiers, are also available 

within R. One should have into account, though, that a set of "useful features" (from a 

classification point-of-view) does not necessarily contain all "relevant features" (from a 

biological point-of-view), which is why the classical approach of (corrected) univariate 

hypothesis testing is the most widely used for the purposes of "differential analysis". 

1. A first step should be univariate hypothesis testing with multiple comparison 

correction, in this case using Smyth's moderated t-test (9) with Storey's q-value 

method (10) to control the FDR, a combination which has been shown to be adequate 

for the differential analysis of 2DE datasets (11). It is also important to know (and 

report) estimates of the effect size (e.g. fold-change or, in this case, Cohen's d): 

require(limma) 

require(qvalue) 

require(effsize) 

design.mtrx <- cbind(rep(1,length(treatment)),treatment) 

data.transposed <- t(norm.data) 

fit <- lmFit(data.transposed,design=design.mtrx,method="robust",maxit=1024) 

fit <- eBayes(fit,robust=TRUE) 

qval <- (qvalue(fit$p.value[,2],pi0.method="bootstrap"))$qvalues 

fx.size <- apply(norm.data,2, 

 function(d,f) cohen.d(d,f)$estimate,f=factor(treatment)) 

sig.spots <- names(qval[qval < 0.1])  # FDR < 10% 

n.sig.spots <- length(sig.spots)      # number of significant spots 

spot.class <- as.numeric(colnames(norm.data) %in% sig.spots) 



2. One of the assumptions of the t-test is that errors are normally distributed. It is 

therefore advisable to check if this assumption is plausible by looking at the 

distribution of the residuals. A few options are to either studentize the per-spot 

residuals, pool them all and compare the resulting distribution with a normal 

distribution via a Q-Q plot (Fig. 4) or to look at the skewness and kurtosis 

distributions of the per-spot residuals (Fig. 5): 

require(e1071) 

# pooled studentized residuals approach 

fit.residuals <- residuals(fit,data.transposed) 

fit.residuals.student <- as.vector(scale(fit.residuals)) 

qqnorm(fit.residuals.student) 

abline(0,1)  

# skewness/kurtosis approach 

set.seed(1) # make it reproducible 

skew2 <- function(x) skewness(x,type=2) 

kurt2 <- function(x) kurtosis(x,type=2) 

normal.variates <- 

 matrix(0,ncol=ncol(fit.residuals),nrow=nrow(fit.residuals)) 

for (i in 1:nrow(fit.residuals)) normal.variates[i,] <- 

 rnorm(ncol(fit.residuals),0,1) 

normal.skew <- apply(normal.variates,1,skew2) 

normal.kurt <- apply(normal.variates,1,kurt2) 

residual.skew <- apply(fit.residuals,1,skew2) 

residual.kurt <- apply(fit.residuals,1,kurt2) 

plot(NA,xlab="Skewness",ylab="Excess kurtosis", 

 xlim=c(min(c(normal.skew,residual.skew)),max(c(normal.skew,residual.skew))), 

 ylim=c(min(c(normal.kurt,residual.kurt)),max(c(normal.kurt,residual.kurt)))) 

points(normal.skew,normal.kurt,pch=".",cex=5,col="grey") 

abline(v=mean(normal.skew),col="grey") 

abline(h=mean(normal.kurt),col="grey") 



points(residual.skew,residual.kurt,pch=".",cex=5) 

abline(v=mean(residual.skew)) 

abline(h=mean(residual.kurt)) 

Both plots suggest that the distribution of the residuals is approximately normal, which 

supports the application of statistical tests that assume errors to be normally 

distributed (see Note 7). 

3. The results of univariate hypothesis testing can be visualized using a volcano plot 

(Fig. 6) and written to a text file (see Note 8): 

spot.colours <- 

 as.numeric(colnames(norm.data) %in% names(qval[qval < 0.05])) + 

 1 + spot.class 

plot(fx.size,-log(qval)/log(10),col=spot.colours, 

 xlab="Effect size (Cohen's d)",ylab="Significance (-log10(q-value))", 

 pch=15,cex=0.7) 

legend("bottomleft",c("FDR > 10%","FDR < 10%","FDR < 5%"),col=1:3,pch=15) 

univariate.results <-  

 data.frame(spot.name=colnames(norm.data),p.value=fit$p.value[,2], 

 q.value=qval,effect.size=fx.size,significant=spot.class) 

write.table(univariate.results,"univariate_results.txt", 

 row.names=FALSE,sep="\t") 

4. An alternative method for feature selection is, for example, the application of a 

classifier with regularization, such as Sparse Partial Least Squares Discriminant 

Analysis (sPLS-DA) (12) (see Note 9): 

require(mixOmics) 

results.splsda <- mixOmics::splsda(norm.data, as.factor(treatment), 

 ncomp=2, keepX=c(n.sig.spots,n.sig.spots)) 

tmp.load <- ((results.splsda$loadings)$X)[,1] 

sig.spots.splsda <- names((tmp.load)[abs(tmp.load) > (.Machine$double.eps)]) 



5. Another possible alternative is to use Recursive Feature Elimination (RFE) with some 

classification method (in this case, with Naive Bayes classifiers) (13) (see Note 9): 

require(caret) 

require(klaR) 

require(e1071) 

rfeCtrl <- rfeControl(functions = nbFuncs,method = "LOOCV") 

results.rfe <- rfe(norm.data,factor(treatment), 

 sizes=n.sig.spots,rfeControl=rfeCtrl) 

sig.spots.nbrfe <- rownames(varImp(results.rfe))[(1:n.sig.spots)] 

6. It can be useful to compare the level of overlap between the different feature selection 

strategies using a Venn diagram: 

require(limma) 

all.spots <- colnames(norm.data) 

tmp.counts <- matrix(0, nrow=length(all.spots), ncol=3) 

for (i in 1:length(all.spots)) { 

  tmp.counts[i,1] <- all.spots[i] %in% sig.spots 

  tmp.counts[i,2] <- all.spots[i] %in% sig.spots.splsda 

  tmp.counts[i,3] <- all.spots[i] %in% sig.spots.nbrfe 

} 

colnames(tmp.counts) <- c("moderated t-test","sPLS-DA","RFE (Naive Bayes)") 

vennDiagram(vennCounts(tmp.counts)) 

  The results (shown in Fig. 7) demonstrate that, though each strategy selects a distinct 

set of spots, there is a high degree of overlap between these sets. 

7. A final summary of the results, showing the 22 spots of the consensus set, can be 

generated as a heatmap (Fig. 8): 

consensus.set <- 

 intersect(sig.spots,intersect(sig.spots.splsda,sig.spots.nbrfe)) 

require(pheatmap) 

pheatmap(t(norm.data[,consensus.set]),scale="row") 



4. Conclusion 

In this chapter, we demonstrated how to analyse a 2DE dataset from a simple one-factor 

experiment using R. Though real proteomic experiments often have more complicated 

experimental designs and richer metadata (i.e. more measured covariates for each 

sample/experimental unit), R can usually accommodate any type of analysis with relative 

ease, given its flexibility and the wide range of statistical tools available as R packages. 



5. Notes 

1.  Some of these software packages can generate datasets with missing values. Though we 

assume the analysis of datasets without missing values, R has functions to address such 

situations, namely through either single imputation (implemented in packages such as 

impute, yaImpute, pcaMethods, missForest, Amelia, VIM, rrcovNA, missMDA and 

softImpute) or multiple imputation approaches (implemented in packages mi and mice). 

 

2. While the provided example is a standard 2DE dataset, the described analysis approach 

can also be applied to multiplex 2DE (i.e. DIGE) datasets, even though the type of data is 

slightly different (abundance ratios rather than raw abundance values). 

 

3.  If the dataset does not have the required structure, R has specific functions that can help 

the user express his dataset in an appropriate form for analysis (e.g. function t(), to exchange 

rows with columns; functions melt() and acast(), from package reshape2, to convert datasets 

between formats). 

 

4.  If problems arise during this step due to operating system permission restrictions, the 

use of a local library is advised. Alternatively, this type of problem can often be bypassed 

on Windows by running R as administrator during package installation. 

 

5.  Most 2DE analysis software packages already perform some form of normalization. If 

you know that your analysis software performs adequate data normalization, you can skip 

this step. 



 

6. On the other hand, when the visualization step suggests that most of the variation is not 

due to the experimental factors, or otherwise shows some level of heterogeneity (e.g. each 

of the two experimental groups is seemingly separated in two sub-clusters), it is essential to 

determine this source of variation. Possible sources of variation can include both biological 

(e.g. male vs. female, subject weight, subject age) and technical factors (e.g. different 

IEF/SDS-PAGE runs, different technicians, different dyes in the case of DIGE), which is 

why it is important to have as much metadata as possible about each “statistical sample” 

(i.e. each single 2DE gel or each single DIGE channel) and the underlying biological 

sample (“experimental unit”). In order to accurately assess the effects of the experimental 

factors, it is important to have into account the concurrent effect of non-experimental 

factors. 

 

7. If a significant deviation from normality is observed, it suggests that there was either a 

problem with the data pre-processing (normalization and transformation) or that the 

classical linear models are not adequate to analyse the dataset. In the latter case, using more 

flexible models (e.g. generalized linear and generalized additive) or rank-based approaches 

(Wilcoxon-Mann-Whitney U-test, Kruskal-Wallis test) may be advisable. In either case, 

one should go back to the visualization step in order to determine a viable analysis strategy. 

 

8.  To determine the default location where R will write to, run the getwd() command. 

 



9.  This code has been adapted to select only the X most "relevant" spots, where X is the 

number of spots considered differentially expressed by the univariate hypothesis testing 

approach. 
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Figures

 

Fig. 1. Scatterplot of each spot’s standard deviation against the rank of its mean value, 

before dataset normalization. The red line indicates a running median. 

 



 

Fig. 2. Scatterplot of each spot’s standard deviation against the rank of its mean value, after 

dataset normalization. The red line indicates a running median. 

  

 

 

 



  

Fig. 3. PCA scores plot, showing the PC1 and PC2 values for each sample (i.e. gel). The 

colour of each square (black or red) denotes class membership. 

 



 

Fig. 4. Quantile-quantile plot (or Q–Q plot) that compares the quantiles of the distribution 

obtained by pooling all residuals (after studentizing them) against the theoretical quantiles 

of a standard normal distribution. The black line shows where the two agree (y = x). 

 

 

 

 

 

 



 

Fig. 5. Scatter plot of excess kurtosis vs. skewness, for the residue distributions of each 

protein spot model. Black points show actually observed residue distributions (with the 

black vertical and horizontal lines showing the mean value). Grey points represent draws of 

standard normal variates with the same number of degrees of freedom as the empirical 

residue distributions (with the grey vertical and horizontal lines showing the mean value). 

 

 

 

 

 

 



 

Fig. 6. Volcano plot, where effect significance (-log10(q-value)) is plotted against an 

estimate of effect size (Cohen’s d), for each spot. Green spots would be considered 

significant by taking “FDR < 5%” as selection criterion, while both green and red spots 

would be considered significant by taking “FDR < 10%” as selection criterion. 

 

 

 

 

 



 

Fig. 7. Venn diagram displaying the number of spots selected by each feature selection 

approach, along with the level of overlap between the approaches. 

 

 

 

 

 

 

 

 



 

Fig. 8. Heatmap displaying the expression of the 22 most relevant proteins using color-

coding (red for “high expression” and blue for “low expression”). Samples (i.e. gels) and 

variables (i.e. spots) were ordinated using agglomerative hierarchical clustering. 

 


