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Summary

Aging constitutes the key risk factor for age-related diseases such

as cancer and cardiovascular and neurodegenerative disorders.

Human longevity and healthy aging are complex phenotypes

influenced by both environmental and genetic factors. The fact

that genetic contribution to lifespan strongly increases with

greater age provides basis for research on which “protective

genes” are carried by long-lived individuals. Studies have consis-

tently revealed FOXO (Forkhead box O) transcription factors as

important determinants in aging and longevity. FOXO proteins

represent a subfamily of transcription factors conserved from

Caenorhabditis elegans to mammals that act as key regulators of

longevity downstream of insulin and insulin-like growth factor

signaling. Invertebrate genomes have one FOXO gene, while

mammals have four FOXO genes: FOXO1, FOXO3, FOXO4, and

FOXO6. In mammals, this subfamily is involved in a wide range of

crucial cellular processes regulating stress resistance, metabolism,

cell cycle arrest, and apoptosis. Their role in longevity determi-

nation is complex and remains to be fully elucidated. Throughout

this review, the mechanisms by which FOXO factors contribute to

longevity will be discussed in diverse animal models, from Hydra

to mammals. Moreover, compelling evidence of FOXOs as

contributors for extreme longevity and health span in humans

will be addressed.

Key words: aging; animal models; FOXO transcription

factors; insulin and IGF-1 signaling pathway; longevity.

Abbreviations

4E-BP 4E-binding protein

ADIPOQ adiponectin gene (structural homology to complement

factor C1q)

AGE-1 aging alteration 1

AFX acute leukemia fusion gene located in chromosome X

AKT human homolog of viral oncogene v-akt

AMP adenosine monophosphate

AMPK AMP-activated protein kinase

APG autophagy

APOE apolipoprotein E

aqp-1 aquaporin 1

ATP adenosine triphosphate

AUT10 autophagocytosis 10

bec-1 beclin 1

CHARGE cohorts for heart and aging research in genomic

epidemiology

CRM1 chromosome region maintenance 1

COQ7 coenzyme Q7 homolog

DAF dauer formation

dFoxO Drosophila FOXO

Dilps Drosophila insulin-like peptides

DNA deoxyribonucleic acid

DR dietary restriction

FIRKO fat-specific insulin receptor knockout

FKHR Forkhead in rhabdomyosarcoma

FKHRL1 Forkhead in rhabdomyosarcoma like protein 1

FOXA Forkhead box transcription factors of the class A

FOXO Forkhead box transcription factors of the class O

FOXS Forkhead box transcription factors of the class S

GFP green fluorescent protein

GH growth hormone

GWAS genomewide association scan

HSCs hematopoietic stem cells

HOMA homeostasis model assessment

HSF-1 heat-shock factor 1

IGF-1 insulin-like growth factor 1

IGF1R insulin-like growth factor 1 receptor

IIS insulin and IGF-1 signaling pathway

InR insulin-like receptor

Correspondence

Wolfgang Link, Regenerative Medicine Program, Department of Biomedical

Sciences and Medicine; and Centre for Biomedical Research (CBMR), University of

Algarve, Campus de Gambelas, 8005-139, Faro, Portugal; e-mail: walink@ualg.pt

Accepted for publication 27 October 2015

196 ª 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use,

distribution and reproduction in any medium, provided the original work is properly cited.

Aging Cell (2016) 15, pp196–207 Doi: 10.1111/acel.12427
Ag

in
g 

Ce
ll

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sapientia

https://core.ac.uk/display/162579846?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by/4.0/


Ins insulin-like peptide

JNK Jun N-terminal kinase

KRI-1 Caenorhabditis elegans orthologous to human Krev

interaction trapped 1 (KRIT1)

L1-L4 larval stages of C. elegans

MAF minor allele frequency

mTOR mammalian target of rapamycin

Nrf nuclear respiratory factor

PDK-1 3-phosphoinositide-dependent kinase-1

PHA-4 pharynx 4-cell embryo

PI3K phosphoinositide 3-kinase

PSMD11 proteasome (PSM), non-ATPase subunit (D) 11

PTEN phosphatase and tensin homolog

RNA ribonucleic acid

S6K1 ribosomal S6 protein kinase 1

SCL-1 SCP-like extracellular protein 1

SGK serum- and glucocorticoid-inducible protein kinase

SIRT1 sirtuin 1

sir-2.1 sirtuin 2.1

SKN-1 skinhead 1

SNPs single nucleotide polymorphisms

STACs sirtuin-activating compounds

TCER transcription elongation regulator

TOR target of rapamycin

VPS30 vacuolar protein sorting 30

Introduction

Aging can be generally defined has the functional deterioration of

physiological mechanisms which strictly depends on the passage of time.

This decline constitutes the key risk factor for age-related diseases such as

cancer and cardiovascular and neurodegenerative disorders. It is therefore

not surprising that humankind has put considerable efforts in understand-

ing the processes of aging (and how to delay them) since ancient times.

Human longevity and healthy aging are complex phenotypes influ-

enced by environmental (diet, physical activity, health habits, and

psychosocial factors) and genetic factors (Herskind et al., 1996;

Christensen et al., 2006; Bishop & Guarente, 2007). Heritability accounts

for �25% of lifespan in an average-lived population. The genetic

contribution of lifespan increases with greater age, particularly after the

age of 60, reaching estimates of 33% in women and 48% in men living

to at least 100 (Sebastiani & Perls, 2012; Brooks-Wilson, 2013).

Accordingly, longevity clusters within families as parents and siblings

of centenarians have an increased probability of reaching advanced age

(Perls et al., 2000, 2002; Atzmon et al., 2004; Willcox et al., 2006).

It has become increasingly evident that lifespan is closely related to

health span and that long-lived individuals develop chronic illnesses (both

physical and cognitive) later in life, thereby confirming the compression of

morbidity hypothesis proposed by Fries in 1980 (Fries, 1980; Hitt et al.,

1999; Andersen et al., 2012). A study performed in centenarians revealed

that there is a progressive compression of disability andmorbidity such that

at the remarkable survival age of 110, subjects presentedwith age-related

diseases in the last 5.2% of their lives (vs. 17.9% in controls, 9.4% in

individuals 100–104, and 8.9% in individuals 105–109) (Andersen et al.,

2012). As extreme longevity appears to be a result of genetic factors more

than environmental ones, when compared to an average lifespan,

significant effort has gone into determining which genetic variants can

slow aging and diminish the risk for age-related diseases. Interestingly, the

Leiden Longevity Study showed that, by GWAS, genomes of nonagenar-

ians carry the same number of disease risk alleles for coronary artery

disease, cancer and type 2 diabetes as young controls (Beekman et al.,

2010). These results hint toward the perception that these long-lived

individuals could carry “protective genes” that may work in general

cellular defensemechanisms, for example, against oxidative stress. In fact,

several studies have consistently revealed APOE and FOXOs (FOXO1 and

FOXO3) as “longevity genes” (Willcox et al., 2006; Anselmi et al., 2009;

Flachsbart et al., 2009; Soerensen et al., 2010, 2015; Brooks-Wilson,

2013; Bao et al., 2014; Broer et al., 2015). Aging has long been

considered a process of degradation occurring in a random fashion that

would lead to the accumulation of cellular damage in a stochastic fashion

and, consequently, tissue decline and death. However, it is now known

that aging can be modulated by genetic pathways and biochemical

processes which are evolutionarily conserved (Kenyon, 2010b; Lopez-Otin

et al., 2013). According to the quasi-programmed theory, aging is not

programmed, but rather a consequence of genetic programs that

determine developmental growth early in life (Blagosklonny, 2013a,b).

Lopez-Otin et al. (2013) in an attempt to define commondenominators of

aging in different organisms have defined nine cellular and molecular

hallmarks of aging: genomic instability, telomere attrition, epigenetic

alterations, loss of proteostasis, deregulated nutrient sensing, mitochon-

drial dysfunction, cellular senescence, stem cell exhaustion, and altered

intercellular communication.

Among these hallmarks, the “deregulated nutrient sensing” was the

first to be described to influence aging in animals, through the insulin

and IGF-1 signaling pathway (IIS) (Kenyon, 2005). IGF-1 is produced by

several cells types (mainly hepatocytes) in response to GH release from

the anterior pituitary. IGF-1 has been shown to trigger the same

intracellular signaling pathways stimulated by insulin. The IIS pathway is

the most evolutionarily conserved pathway of aging, shown to modulate

lifespan in model organisms across a great evolutionary distance from

Caenorhabditis elegans to mice (Kimura et al., 1997; Tatar et al., 2001;

Fontana et al., 2010; Kenyon, 2010b; Mercken et al., 2013). Accord-

ingly, genetic polymorphisms/mutations that cause loss of function of

GH, IGF-1 receptor, insulin receptor or its downstream factors, have

been implicated in human longevity as in model organisms (Fontana

et al., 2010; Kenyon, 2010b; Tazearslan et al., 2011; Barzilai et al.,

2012; Milman et al., 2014). Dietary restriction is a well-known environ-

mental signal shown to expand lifespan in eukaryote species, from yeast

to primates (Colman et al., 2009; Fontana et al., 2010; Mattison et al.,

2012). The “longevity response” to dietary restriction is regulated by

several nutrient-sensing pathways: the kinase TOR, AMP kinase, sirtuins,

and the IIS (Kenyon, 2005).

FOXO transcription factors

FOXO proteins are the most important transcriptional effectors of the IIS

(Kenyon et al., 1993; Gottlieb & Ruvkun, 1994; Brunet et al., 1999;
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Dong et al., 2008). FOXOs represent a subfamily of the Forkhead family

of transcription factors. This family is characterized by a conserved DNA-

binding domain (the Forkhead box or FOX) and comprises more than

100 members in humans, from FOXA to FOXS (Zanella et al., 2010;

Genin et al., 2014). The FOXO subfamily is conserved from C. elegans to

mammals but, while invertebrates have only one FOXO gene, mammals

have four FOXO genes: FOXO1 (FKHR), FOXO3 (FKHRL1), FOXO4 (AFX),

and FOXO6 (Kaestner et al., 2000; Hannenhalli & Kaestner, 2009). In

mammals, this subfamily is involved in a wide range of crucial cellular

processes regulating stress resistance, metabolism, cell cycle arrest, and

apoptosis, but their role in longevity still remains to be elucidated. FOXO

proteins function mainly as transcriptional activators by binding the

consensus core recognition motif TTGTTTAC, and their activity is

inhibited by the IIS pathway (Biggs et al., 1999; Brunet et al., 1999;

Henderson & Johnson, 2001; Lin et al., 2001; Calnan & Brunet, 2008;

Zanella et al., 2010; Webb & Brunet, 2014). Briefly, insulin or IGF-1

triggers an intracellular pathway mediated by PI3K-AKT, allowing

phosphorylation of FOXO factors by the serine/threonine kinase AKT at

three conserved residues within the FOXO proteins. AKT-mediated

phosphorylation of FOXO leads to its nuclear exclusion and, in turn, to

suppression of FOXO-dependent transcription of target genes (Guo

et al., 1999; Murphy et al., 2003). Conversely, in the absence of growth

factor signaling or upon cellular stress, FOXOs translocate into the

nucleus and activate FOXO-dependent gene expression. A diverse set of

posttranslational modifications in addition to phosphorylation, such as

acetylation/deacetylation, methylation, or ubiquitination has been

shown to promote changes of subcellular localization, protein levels,

DNA binding, and transcriptional activity of FOXO factors (Calnan &

Brunet, 2008; Webb & Brunet, 2014) The combinatorial result of FOXO

posttranslational modifications has been proposed to lead to the

recruitment of specific FOXO-binding partners regulating different

FOXO-dependent gene expression programs (Greer et al., 2007b;

Calnan & Brunet, 2008; Hill et al., 2014). Several mechanisms of how

FOXO proteins promote longevity have been suggested.

FOXO and autophagy

Webb & Brunet (2014) have recently unveiled the role of FOXOs as

prolongevity factors through the maintenance of protein homeostasis

(proteostasis) (Morley et al., 2002; Hsu et al., 2003). In fact, it has been

shown that FOXO factors participate in the regulation of genes

responsible for two main mechanisms of intracellular clearance:

autophagy and the ubiquitin-proteasome system (Webb & Brunet,

2014). Defects in autophagy, the process of degradation and recycling of

cytoplasmic proteins and organelles in response to starvation have been

associated with premature aging and age-related disorders (Hara et al.,

2006; Komatsu et al., 2006; Jung et al., 2008; Pickford et al., 2008;

Masiero et al., 2009; Lee et al., 2010). FOXOs affect the expression of

genes involved in autophagy and mitophagy (muscle-specific autophagy)

in muscle cells from flies (dFOXO) to mammals (FOXO3), allowing

adaptation of the tissues to starvation (Zhao et al., 2007; Sengupta

et al., 2009; Demontis & Perrimon, 2010). Additionally, FOXO1 and

FOXO3 activate autophagy mechanisms in diverse cell types: neurons,

cardiomyocytes, renal tubular cells, and HSCs (Webb & Brunet, 2014). As

mentioned, FOXOs are involved in the proteasome system degradation

of short-lived and regulatory cytosolic proteins. Aging is associated with

a decreased proteasomal activity, leading to excess of damaged proteins

in muscle, liver, and heart (Conconi et al., 1996; Petropoulos et al.,

2000; Bulteau et al., 2002; Husom et al., 2004). Moreover, pathogen-

esis of neurodegenerative disorders such as Parkinson’s, Alzheimer’s, or

Huntington’s disease is generally related to an abnormal ubiquitin-

proteasome mechanism as either a primary cause or secondary conse-

quence (Ciechanover & Brundin, 2003; Kikis et al., 2010; Webb &

Brunet, 2014). FOXOs act on both the upregulation of ubiquitin ligases

and by controlling the composition of the proteasome (Bodine et al.,

2001; Sandri et al., 2004, 2006; Stitt et al., 2004; Vilchez et al., 2012).

However, the direct effect of FOXO-mediated proteostasis in mammals

remains to be understood.

FOXO and resistance to oxidative stress

One of the most significant functions of FOXO proteins is their role in

cellular responses to oxidative stress. As accumulation of damage caused

by ROS (reactive oxygen species) was postulated to be causative for

aging, it has been hypothesized that FOXO factors influence aging and

age-related diseases by increasing the antioxidant capacity of cells (Kops

et al., 2002; Storz, 2011). ROS play an important role as second

messengers of cellular signaling and can lead to oxidative stress when

cellular detoxification activity is decreased. As high and very low levels of

ROS lead to impaired cellular functions, maintaining intracellular ROS

homeostasis is essential to prevent pathological processes including

cancer and other age-associated diseases. FOXOs are regulated by

oxidative stress via changes in upstream FOXO regulatory pathways or

directly sensing the cellular redox status through reversible oxidation and

reduction of cystein residues (Essers et al., 2004; Eijkelenboom &

Burgering, 2013; Putker et al., 2013). FOXO factors regulate the

expression of the key detoxification enzymes MnSOD (manganese

superoxide dismutase), catalase, and GADD45 (Kops et al., 2002;

Nemoto & Finkel, 2002). Accordingly, inactivation of Foxo factors has

been shown to lead to intracellular accumulation of ROS promoting

accelerated atherosclerosis, proliferation of transformed cells, and

compromising long-term proliferative potential of normal stem cells

(Tothova et al., 2007; Tsuchiya et al., 2013).

FOXO and stem cells

There is accumulating evidence that FOXO factors play an important role

in stem cell biology and tissue homeostasis. During aging, the balance of

removal and regeneration of cells in tissues becomes disturbed mainly

due to a decrease in the regenerative potential of adult stem cells.

Conditional deletion of Foxo1/3a/4 in the adult hematopoietic system of

mice leads to apoptosis of HSCs preventing the repopulation of these

stem cell populations. Similarly, aged mice in which Foxo3a was deleted

display reduced regenerative potential (Miyamoto et al., 2007). Foxo-

deficient HSCs in these animals are thought to be driven out of

quiescence into cell cycle, resulting in depletion of the stem cell pool

(Tothova & Gilliland, 2007). Interestingly, the treatment of Foxo-deficient

mice with the antioxidant N-acetylcysteine restores the HSC compart-

ment, suggesting that the accumulation of ROS disturbs stem cell

function. This observation is in line with the idea that decreased function

of adult stem cells involved in the onset of age-related diseases is

secondary to the accumulation of cellular stress (Boyette & Tuan, 2014).

The role of FOXO proteins in stem cell biology is not limited to adult stem

cells. FOXO1 has been shown to directly control the expression of OCT4

and SOX2 two transcription factors critically involved in stemness.

Accordingly, FOXO1 is necessary to maintain pluripotency of human ESC

and the ortholog FOXO1 exerts a similar function in mouse ESCs (Zhang

et al., 2011a).

In this review, we give an overview of the current evidence that

implicates FOXO transcription factors in human longevity. Although the
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precise mechanism by which FOXO factors influence human aging is not

understood, an overwhelming amount of data from several animal

models including Hydra vulgaris, C. elegans, Drosophila melanogaster,

and mice shed light on the critical functions of FOXO protein family

members in aging. We discuss the FOXO activities which might be

relevant for human longevity throughout this review organized by

species (Fig. 1).

Population studies

The understanding that the genetic contribution to lifespan strongly

increases with greater age provides basis for research on which genetic

differences distinguish centenarians from average-lived individuals (Her-

skind et al., 1996; Hjelmborg et al., 2006; Murabito et al., 2012;

Sebastiani & Perls, 2012; Brooks-Wilson, 2013). Accordingly, longevity

clusters within families as parents and siblings of centenarians present an

increased probability of reaching advanced age (Perls et al., 2000, 2002;

Atzmon et al., 2004; Willcox et al., 2006). Alleles which are enriched in

centenarians most likely represent genes that are significant for longevity

and therefore a significant number of studies have been done in the

quest for these alleles/genes.

Willcox et al. (2008) first reported that genetic variation in FOXO3A

was strongly associated with human longevity. In a long-lived population

of male Americans of Japanese ancestry (mean attained age = 97.9 vs.

control group = 78.5), a nested-case–control study of five candidate

genes (ADIPOQ, FOXO1A, FOXO3A, SIRT1, and COQ7) was performed.

Among these, only the rs2764264, rs13217795, and rs2802292

FOXO3A SNPs stood out as they were found to be associated with

longevity and healthy aging (Willcox et al., 2008). These long-lived men

had lower prevalence of cancer and cardiovascular disease better self-

reported health as well as high physical and cognitive function, even

though they were in average 11 years older than controls. Homozygosity

for the G allele of FOXO3A rs2802292 was shown to confer a significant

protection considering the prevalence of congestive heart disease. The

same allele was associated with markedly lower insulin, log insulin, and

HOMA (homeostasis model assessment) score in the control group

(Willcox et al., 2008).

Anselmi et al. (2009) validated the association of these FOXO3

polymorphisms with extreme longevity in males from the Southern

Italian Centenarian Study. In particular, rs2802288, a proxy of

rs2802292, showed the best allelic association-MAF (minor allele

frequency). These results were confirmed in the German population

(Flachsbart et al., 2009). An extensive collection of 1762 German

centenarians/nonagenarians and younger controls evidenced FOXO3A

polymorphisms with the ability to reach exceptional old age. This

association was substantially stronger in centenarians than in nonage-

narians, highlighting the importance of centenarians in genetic longevity

research (Flachsbart et al., 2009). Furthermore, the variation in FOXO3A

was replicated by both case–control and longitudinal data in Danish

population (the oldest-old vs. middle-aged individuals) (Soerensen et al.,

2010). Among the fifteen SNPs analyzed, they found association of eight

SNPs with longevity: four previously reported (rs13217795, rs2764264,

rs479744, and rs9400239) and four novel SNPs (rs12206094,

rs13220810, rs7762395, and rs9486902) (Soerensen et al., 2010).

Li et al. (2009) analyzed six SNPs from FOXO1A and FOXO3A genes

by comparing 761 centenarians and 1056 younger individuals (control

group) of the Han Chinese population. They found two SNPs of FOXO1A

to be negatively associated with longevity in women, rs2755209 and

rs2755213. On the other hand, all three SNPs studied for FOXO3A

(rs2253310, rs2802292, and rs4946936) were positively associated with

longevity in both genders (Li et al., 2009). They have concluded that as

FOXO1A is more strictly associated with human female longevity, the

genetic contribution to longevity trait may be affected by genders (Li

et al., 2009). Also in the Han Chinese population, Zeng et al. analyzed

InsulinDILPsHILPs ILPs

HTK7 DAF-2 dInR InR

IRS

dPI3K PI3KAGE-1PI3K

AKT AKT AKT AKT

dPTENPTEN DAF-18 PTEN
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PDK dPDK-1 PDK-1PDK-1
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IRSchicoIST-1

Fig. 1 The key components of the PI3K

signal transduction pathway are well

conserved throughout evolution. The

corresponding orthologues for these

components in Hydra, Caenorhabditis

elegans, Drosophila melanogaster and

mammals are illustrated. It is important to

note, that there is a single gene for many

components, in Hydra, C. elegans and D.

melanogaster whereas mammals have

several isoforms of these components with

the exception of PTEN. AGE-1, ageing

alteration 1; AKT, v-akt murine thymoma

viral oncogene homologue 1; DAF-2,

abnormal dauer formation-2; FOXO,

forkhead family of transcription factor; INR,

insulin receptor; IRS, substrate; IST-1,

insulin receptor substrate (IRS)-like adaptor;

PDK, phosphatidylinositide-dependent

protein kinase 1; PTEN; phosphatase and

tensin homologue.
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the independent and joint effects of the FOXO1A and FOXO3A SNPs on

long-term survival. These authors found substantial gender differences in

the independent effects and showed that the positive effects of FOXO3A

and negative effects of FOXO1A largely compensate each other,

although FOXO3A has a stronger impact (Zeng et al., 2010). Others

have also revealed the importance of genetic variations in the IIS

pathway in long-lived individuals from Italian, Japanese, Ashkenazi

Jewish, or Dutch ethnicity (Arai et al., 2001; Bonafe et al., 2003; Kojima

et al., 2004; Kuningas et al., 2007; Suh et al., 2008; Pawlikowska et al.,

2009). A meta-analysis comprising 11 independent case–control studies

and 5241 cases from different ethnic groups revealed five FOXO3A

polymorphisms as associated with longevity: rs2802292, rs2764264,

rs13217795, rs1935949, and rs2802288 (Bao et al., 2014). Moreover,

rs2802292 and rs2764264 polymorphism are male-specific longevity

polymorphisms that may potentially identify long-lived men. FOXO3A

along with APOE has consistently been associated with longevity in

multiple independent studies (Wheeler & Kim, 2011; Brooks-Wilson,

2013). Accordingly, Broer et al. (2015) conducted a meta-analysis of

GWAS with 6036 longevity cases (age ≥ 90 years) and 3757 controls

(CHARGE consortium). Among the ~2.5 million SNPs analyzed, only the

APOE and FOXO3 variants confirmed a significant association with

longevity (Broer et al., 2015). Recent work by Soerensen et al. (2015)

compared aging-related traits (cognitive function, hand grip strength,

activity of daily living, and self-rated health) with 15 FOXO3A SNPs in

Danish oldest-old individuals. Gene-based testing revealed a significant

increase in activity of daily living and reduced bone fracture risk for

carriers of the minor alleles of 8 and 10 FOXO3A SNPs, respectively

(Soerensen et al., 2015). In summary, gathered evidence from Japanese

Americans, Han Chinese, Californians, New Englanders, Ashkenazi Jews,

Danish, Germans, and Italians shows that FOXO3A SNPs are associated

with exceptional longevity. Although there is compelling evidence that

FOXO3 gene sequence variants influence longevity, it remains to be

determined how these variations translate into phenotypic characteristics

that enable a long lifespan. FOXO3A alleles associated with longevity are

intronic and not linked to known coding SNPs (Donlon et al., 2012;

Murabito et al., 2012; Brooks-Wilson, 2013), suggesting that these SNPs

will most likely affect FOXO3A expression rather than protein activity.

Animal models

Hydra vulgaris

Hydra vulgaris is a freshwater radial-symmetric polyp of the phylum

Cnidaria, placed at the basal root of the animal life. Bridge et al. (2010)

first described the presence of a single FoxO gene in Hydra. These

authors found significant parallels in the regulation of FoxO between

Hydra and bilaterian animals, showing that FoxO transcriptional activity

is negatively modulated by the PI3K/AKT/SGK pathway and, accordingly,

nuclear localization of a FoxO-GFP fusion protein is significantly

increased by a PI3K inhibitor (Bridge et al., 2010). Lasi et al. (2010)

showed that transient expression of FoxO-GFP protein induced an

apoptosis rate of 20–60% in Hydra epithelial cells. Conversely, co-

expression of one of the Hydra insulin-like genes with the FoxO-GFP

protein was shown to decrease the rate of apoptosis in these cells. As

the IIS acts through the PI3K/AKT/SGK pathway, one can hypothesize

that the IIS reduces Hydra0s FoxO activity (Lasi et al., 2010).

Hydra presents itself as unique model to study longevity due to its

extraordinary regenerative abilities through the self-renewal and differ-

entiating capacities of its epithelial and interstitial stem cells. These

properties are thought to be related to the fact that these animals

routinely reproduce asexually (Wittlieb et al., 2006; Khalturin et al.,

2007; Bosch, 2009; Bellantuono et al., 2015). Three stem cell lineages

allow this continuous self-renewal: ectodermal and endodermal epithe-

liomuscular stem cells and interstitial stem cells (Bosch, 2009; Bosch

et al., 2010). The search for transcriptome-specific signatures enabling

the regulation of self-renewal and differentiation showed that FoxO is

highly expressed in the three stem cell lineages of Hydra (Boehm et al.,

2012). The overexpression of FoxO in the multipotent interstitial stem

cell lineages increases stem cell and progenitor cell proliferation and

activates expression of stem cell genes in terminally differentiated

somatic cells (Boehm et al., 2012). Conversely, silencing FoxO in

epithelial cells increased the number of terminally differentiated cells

(Boehm et al., 2012) Altogether, these results suggest a key role for

FoxO in Hydra’s apparent biological immortality, specifically affecting its

continuous self-renewal capacity (Bellantuono et al., 2015). In a recent

essay, Schaible and Sussman hypothesized that whereas FoxO is

exclusively devoted to life-prolonging cell renewal in Hydra, the

evolutionary diversification of FoxO functions in multicellular eukaryotes

that manifest aging resulted in a dilution of FoxO’s rejuvenating capacity

(Schaible & Sussman, 2013).

Caenorhabditis elegans

Caenorhabditis elegans is a free-living unsegmented pseudocoelomate

member of the phylum Nematoda that has an average lifespan of about

2–3 weeks. It has two sexes: a self-fertilizing hermaphrodite and a male.

The life cycle of C. elegans is comprised of the embryonic stage, four

larval stages (L1–L4), and adulthood. If the environmental conditions are

not favorable (absence of food, high temperature, or presence of a

pheromone indicating high population density), L1 worms develop into

alternative larval form called the dauer larva (Fielenbach & Antebi, 2008).

The role of the IIS pathway in aging was first discovered in C. elegans

through mutations that extended lifespan. Mutations in DAF-2 (dauer

larvae formation-2), a hormone receptor similar to insulin and IGF-1

receptors, doubled the lifespan of the worm (Kenyon et al., 1993;

Kimura et al., 1997). This lifespan extension caused by DAF-2 mutations

required the activity of DAF-16, which encodes the single FoxO homolog

in C. elegans (Kenyon et al., 1993; Lin et al., 1997; Ogg et al., 1997).

DAF-16 is inactivated via its nuclear export by the evolutionary conserved

signaling pathway downstream of DAF-2 receptor (Henderson &

Johnson, 2001; Lee et al., 2001; Lin et al., 2001). HSF-1, the C. elegans

heat-shock transcription factor, is also required in DAF-2 mutants to

extend lifespan. HSF-1, along with DAF-16, promotes longevity by

activating specific longevity genes, including genes that encode small

heat-shock proteins (Garigan et al., 2002; Hsu et al., 2003; Walker &

Lithgow, 2003; Morley & Morimoto, 2004). The importance of DAF-18/

PTEN tumor suppressor in longevity and dauer larva formation, through

the regulation of the IIS pathway, has been established in the late 1990s

by several research groups (Ogg & Ruvkun, 1998; Gil et al., 1999;

Mihaylova et al., 1999; Rouault et al., 1999). DAF-18/PTEN has been

shown to regulate L1 arrest in the germ line, and insulin-like signaling

appears to be transduced by AGE-1/PI3K during L1 arrest (Weinkove

et al., 2006; Zhang et al., 2011b).

DAF-16 functions as the major target of the IIS pathway (Kenyon

et al., 1993; Gottlieb & Ruvkun, 1994). DAF-16/FoxO has been shown to

regulate hundreds of genes in C. elegans including those related to

stress response, antimicrobial activity, and metabolism, unveiling DAF-

16/FoxO as a central player of a complex network involving multiple

upstream pathways and downstream target genes (Lee et al., 2003;

McElwee et al., 2003; Murphy et al., 2003). The lifespan expansion
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effect accomplished by DAF-16/FOXO is most likely due to two isoform

variants DAF-16a and DAF-16d/f (Kwon et al., 2010; Chen et al., 2015).

Diverse approaches including different dietary regimens or using

compounds that mimic dietary restriction have been employed to

investigate the effect of dietary restriction on lifespan extension in

C. elegans (Kenyon, 2010b). Chronic food limitation increases lifespan

by downregulating TOR activity, which increases autophagy and

diminishes translation, probably through PHA-4/FOXA transcription

factor and S6 kinase, respectively, in a DAF-16/FoxO-independent

manner (Kaeberlein et al., 2005; Hansen et al., 2007; Pan et al., 2007;

Sheaffer et al., 2008). AMPK (AMP kinase), an energy sensor for cellular

AMP/ATP ratio that enables catabolic reactions for energy gain, has been

shown to respond to dietary restriction by increasing stress resistance

and extending longevity in C. elegans in a DAF-16/FOXO-dependent

manner (Apfeld et al., 2004; Greer et al., 2007a). AMPK directly

phosphorylates and activates DAF-16/FoxO (Greer et al., 2007a). Dietary

restriction with every-other-day feeding is likely to promote C. elegans

longevity via downregulation of the IIS pathway (Honjoh et al., 2009). In

C. elegans, overexpression of sirtuin gene sir-2.1 activates DAF-16/FoxO

by interacting with 14-3-3 proteins (Berdichevsky et al., 2006). The

ability of sirtuins to directly deacetylate DAF-16/FoxO together with the

fact that IIS pathway mutants do not need sir-2.1 to promote longevity,

suggests that sirtuins act on DAF-16/FoxO independently of the IIS

pathway (Kenyon, 2010b). Interestingly, whereas high levels of ROS led

to premature death, low concentrations caused a prolongation of

lifespan and this extension is dependent on both daf-16 and sir-2.1

genes (Heidler et al., 2010). Kim et al. (2014) have recently shown that

antioxidant treatment can extend the lifespan of C. elegans through the

phosphorylation and cytoplasmic retention of DAF-16/FoxO, involving

3-phosphoinositide-dependent kinase-1 (PDK-1).

Lee et al. showed that adding 2% glucose to bacterial diet of

C. elegans shortened the lifespan by inhibiting the activity of DAF-16/

FoxO and heat-shock factor HSF-1. This effect involves the downregu-

lation of an aquaporin glycerol channel, aqp-1, which is also inhibited by

glucose in mammals. Moreover, when 2% glucose was provided to

C. elegans insulin/IGF-1 receptor mutants, their lifespan extension was

nearly completed repressed (Lee et al., 2009). The expression of

components of the insulin/IGF-1 longevity pathway in subsets of cells

can affect the rate of aging of the entire organism, implying an active

coordination of the aging rates between the different tissues to establish

homeostasis. Murphy et al. (2007) reveal that in C. elegans, this

communication between the tissues is mediated by INS-7 (an insulin-

like peptide), which is regulated by DAF-16/FoxO activity in the intestine,

and that this regulation allows DAF-16 activity in the intestine to

influence DAF-16 activity in other tissues. But insulin-like peptides may

not be the only signals that act downstream of DAF-16/FoxO to influence

lifespan. In daf-16; daf-2 double mutants, the expression of DAF-16

specifically in one tissue (intestine/adipose tissue) can increase the worm

lifespan by 60% (Libina et al., 2003). As nonintestinal tissues do not

contain DAF-16/FOXO in these double mutant animals, it must influence

other downstream longevity signaling pathways in those tissues. The

secreted peptide SCL-1 is a candidate for such a downstream signal

(Ookuma et al., 2003).

Several reports indicate that FoxO induces autophagy acting in a non-

cell-autonomous manner, evidencing that proteostasis is beneficial for

longevity. Melendez et al. (2003) showed that autophagy is a cellular

pathway essential for dauer development and lifespan extension in

C. elegans (Melendez et al., 2003). Using daf-2 mutants, the authors

demonstrate that bec-1, the C. elegans ortholog of mammalian autop-

hagy gene APG6/VPS30/beclin1, is essential for normal dauer

morphogenesis and lifespan extension. Dauer formation is associated

with increased autophagy and requires autophagy genes APG1, APG7,

APG8, and AUT10 (Melendez et al., 2003). Accordingly, increased

autophagy is essential for lifespan extension in dietary restriction condi-

tions or TOR inhibition in C. elegans (Hansen et al., 2008). But, whereas

DAF-2 mutants require both autophagy and the transcription factor DAF-

16/FoxO to promote longevity, autophagy takes place in the absence of

DAF-16/FoxO. This may suggest that autophagy provides rawmaterial for

new macromolecular synthesis that requires the action of DAF-16/FoxO,

recycling thismaterial into cell-protective longevity proteins (Hansenet al.,

2008). In Salmonella-infected worms, inactivation of the autophagy

pathwaywas shown to increasebacterial intracellular replication, reducing

animal lifespan, culminating in an apoptotic-independent death (Jia et al.,

2009). Mutation of DAF-2 or overexpression of the DAF-16/FoxO

conferred pathogen resistance, which is precluded with the genetic

knockdown of autophagy genes (Jia et al., 2009).

Lifespan in C. elegans can also be modulated by its reproductive

system. The removal of the worm0s germ cells extends its life by 60%

(Hsin & Kenyon, 1999; Kenyon, 2010b). Germ line loss stimulates

nuclear accumulation of DAF-16/FoxO and the expression of the

transcription elongation/splicing factor homolog TCER-1 in intestinal

cells. Although the precise mechanism of how the information about the

reproductive status is transferred to the intestine is unclear, it has been

shown that the intestinal adaptor protein KRI-1 is required to induce

DAF-16/FoxO target gene expression and extend lifespan (Berman &

Kenyon, 2006; Ganapathy et al., 2010). This pathway is apparently

independent of the IIS and, accordingly, in daf-2 mutants, the loss of

germ line acts additively with the IIS to expand the long lifespan of these

mutants. Wang et al. (2008) proposed that this lifespan expansion may

be related to lipid metabolism, by showing that C. elegans germ line

stem cells actively promote systemic lipolysis via induction of a specific

triglyceride lipase, identified as lipl-4. As DAF-16/FoxO upregulates this

triglyceride lipase in response to germ line removal, it has been

suggested it may be involved in the pathway that allows DAF-16/FoxO

activity in the worm’s intestine/adipose tissue to influence C. elegans

lifespan (Wang et al., 2008; Kenyon, 2010a).

Drosophila melanogaster

Drosophila melanogaster, or fruit fly, is an invertebrate of the taxonomic

order Diptera. It has a lifespan of about 30 days and a four-stage life

cycle: egg, larva, pupa, and adult. Since 2001, it is known that the

downregulation of IIS could extend lifespan in the fruit fly D.

melanogaster, establishing the evolutionary conserved role of this

pathway in aging (Clancy et al., 2001; Tatar et al., 2001). Mutation of

Drosophila InR (insulin-like receptor) homologous to mammalian insulin

receptors yields dwarf females with up to an 85% extension of adult

longevity and dwarf males with reduced late age-specific mortality

(Clancy et al., 2001; Tatar et al., 2001). Conversely, treating these long-

lived InR-mutated dwarfs with a juvenile hormone analog restores life

expectancy toward that of wild-type controls (Clancy et al., 2001; Tatar

et al., 2001). Drosophila gene chico (named after the small size of the

correspondent mutants) encodes an insulin receptor substrate that

functions in the IIS pathway. Mutation of this gene extends fruit fly

median lifespan by up to 48% in homozygotes and 36% in heterozy-

gotes (Clancy et al., 2001). Importantly, this lifespan extension was not a

result of impaired oogenesis in chico females nor was correlated with

increased stress resistance (Clancy et al., 2001).

dFoxO, the equivalent of nematode DAF-16/FoxO and mammalian

FOXO3A, has been shown to be a key transcriptional regulator of the
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insulin pathway that modulates growth and proliferation in D.

melanogaster (Puig & Mattila, 2011). Without ligand binding at the

insulin-like receptor, dFoxO remains unphosphorylated and translocated

to the nucleus, activating expression of factors that retard cell growth

and proliferation (Junger et al., 2003; Puig et al., 2003). On the other

hand, insulin treatment leads to dFoxO phosphorylation by dAKT,

leading to cytoplasmic retention and inhibition of its transcriptional

activity. Mutant dFoxO lacking dAKT phosphorylation sites does not

respond to insulin inhibition and is constitutively active in the nucleus

(Puig et al., 2003). dFoxO activation induces growth arrest and increases

the expression of two key players of the dInR/dPI3K/dAKT pathway: the

translational regulator d4E-BP and the dInR itself. Interestingly, targeted

expression of dFoxO in fly tissues regulates organ size by specifying cell

number with no effect on cell size (Puig et al., 2003).

As in the worm, the nervous system has been shown to be implicated

in the IIS-mediated extension of lifespan in Drosophila (Fontana et al.,

2010). Drosophila has seven genes encoding insulin-like peptides (dilps),

and ablation of the cells expressing only three of the seven dilps in

neuroendocrine cells of the brain is sufficient to increase longevity

(Broughton et al., 2008). dFoxO has also been shown to regulate

D. melanogaster aging when activated specifically in the adult pericere-

bral fat body. This limited activation of dFoxO reduces expression of the

peptide dilp-2 synthesized in neurons and represses the IIS pathway in

peripheral fat body. These findings suggest that autonomous and

nonautonomous roles of insulin signaling concomitantly contribute to

control aging (Hwangbo et al., 2004).

Dietary restriction has been shown to affect the expansion of lifespan

in flies mediated by both TOR and IIS pathways (Kenyon, 2010b). The fall

in nutrients leads to a diminished TOR activity, increasing lifespan by two

possible mechanisms: by inhibiting general translation and increasing

respiration or by enhancing autophagy (Kenyon, 2010b).

Interestingly, life extension through dietary restriction does not

require dFoxO (Giannakou et al., 2008). Nevertheless, the overexpres-

sion of dFoxO in the adult fat body and gut of Drosophila showed an

altered response to dietary restriction, behaving as partially dietary

restricted. The authors suggest that, although dFoxO is unnecessary to

extend lifespan of flies in response to dietary restriction, the presence of

active dFoxO modulates the response to dietary restriction (Giannakou

et al., 2008). This likely occurs by changing the expression of dFoxO-

target genes, indicating that dFoxO may mediate the normal response to

dietary restriction (Giannakou et al., 2008). Min et al. (2008) showed

evidence that the diet-dependent effects of dFoxO overexpression on

fly’s lifespan are associated with reduction of dilp2.

The stress-responsive JNK pathway also requires dFoxO to extend

lifespan in Drosophila (Wang et al., 2005). JNK has been shown to

antagonize IIS, promoting dFoxO nuclear localization, therefore inducing

expression of growth control and stress defense genes. Moreover, the

repression of IIS ligands by JNK and dFoxO in neuroendocrine cells

systemically downregulates the IIS pathway (Wang et al., 2005).

As in C. elegans, dFoxO can regulate autophagy in Drosophila at an

organismal level. Overexpression of dFoxO or the dFoxO-target 4E-BP

in the muscle reduces protein aggregation in other tissues (brain,

adipose tissue, and retina), delaying muscle functional decay

and extending lifespan (Demontis & Perrimon, 2010). Moreover,

dFoxO/4E-BP overexpression in muscle decreases feeding behavior and

the release of insulin, therefore delaying the age-related accumulation

of protein aggregates in other tissues. These results reveal a non-cell-

autonomous mechanism mediated by dFoxO/4E-BP signaling in the

coordination of organismal and tissue aging (Demontis & Perrimon,

2010).

Mammals

The family of mammalian FOXO transcription factors comprises four

members. FOXO1, FOXO3, and FOXO4 are highly related, share the

same DNA-binding motifs, present similar patterns of expression, and

seem to have overlapping functions (Anderson et al., 1998; Biggs et al.,

2001; Jacobs et al., 2003; Obsil & Obsilova, 2011). FOXO6 is mainly

expressed in the brain and has been shown to be regulated by distinct

mechanisms. Interestingly, knockouts of single Foxo genes in mice

present with very distinct outcomes: Foxo1 knockout mice die in utero

due to defects in vasculature (Furuyama et al., 2004; Hosaka et al.,

2004). Female Foxo3 knockout mice were found to be sterile due to

global primordial follicle activation with subsequent oocyte exhaustion

(Castrillon et al., 2003; Hosaka et al., 2004). In addition, depletion of

Foxo3 resulted in deficient development of regulatory T cells with

consequent organ inflammation by a mechanism also involving Foxo1

(Harada et al., 2010; Kerdiles et al., 2010). Foxo4 and Foxo6 knockout

mice present with only mild phenotypes (Zhu et al., 2011; Salih et al.,

2012). Accordingly, conventional genetic analysis did not reveal an overt

tumor-prone or hematopoietic phenotype for the deficiency of any one

of the Foxo family members. As closely related members of gene families

may mask individual gene functions in single knockout experiments,

conditional alleles for Foxo1, Foxo3, and/or Foxo4 have been generated.

Paik et al. (2007) showed that triple knockout mice prompted a

progressive cancer-prone condition characterized by thymic lymphomas

and hemangiomas which lead to early death. This study established

mammalian Foxo proteins as bona fide tumor suppressors and confirm-

ing the functional redundancy of Foxo family members. However, it still

remains to be determined why these animals did not present neoplastic

phenotypes in epithelial tissues. Alternative downstream arms of the

PI3K/AKT pathway might play a more prominent trumorigenic role in

epithelial compartments. Conditional deletion of Foxo1, Foxo3, and

Foxo4 in the adult hematopoietic system resulted in a marked context-

dependent increase in ROS in Foxo-deficient HSC compared with wild-

type HSC that correlated with changes in expression of genes that

regulate ROS. The number and the long-term repopulating activity of

HSC were found to be significantly reduced in these animals (Tothova

et al., 2007). These results highlight the importance of mammalian Foxo

proteins for the long-term regenerative potential of HCS (Tothova &

Gilliland, 2007). Ablation of the three Foxo proteins resulted in an

increase in oxidative stress in bone and osteoblast apoptosis and a

decrease in the number of osteoblasts, the rate of bone formation and

bone mass (Ambrogini et al., 2010). Moreover, the overexpression of a

Foxo3 transgene in mature osteoblasts decreased oxidative stress and

osteoblast apoptosis and increased osteoblast number, bone formation

rate, and vertebral bone mass. These authors concluded that Foxos

provide an oxidative defense mechanism to deal with the aerobic

metabolism of osteoblasts, being indispensable for bone mass home-

ostasis (Ambrogini et al., 2010). Numerous research groups have used

the same approach to conditionally delete Foxo1, Foxo3, and Foxo4 in

different tissues, but the effect in aged knockout mice has not been

examined. There is no doubt that in the near future experiments will

shed light on this central aspect of FOXO biology. Intriguingly, recent

studies show that the life-extending effect of dietary restriction requires

Foxo3 but not Foxo1 in mice (Yamaza et al., 2010; Shimokawa et al.,

2015). The mechanism(s) by which Foxo factors contribute to lifespan

remain elusive. As previously mentioned, decreased autophagy has been

related to premature aging and age-related associated disorders (Hara

et al., 2006; Komatsu et al., 2006; Jung et al., 2008; Pickford et al.,

2008; Masiero et al., 2009; Lee et al., 2010). Foxo factors have been
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shown to regulate autophagy in mouse muscle, particularly Foxo3,

which induces the expression of several autophagy genes and increases

autophagosome formation (Mammucari et al., 2007; Zhao et al., 2007;

Webb & Brunet, 2014). Foxo1 and Foxo3 overexpression also promotes

mitophagy (degradation of mitochondria by the autophagy–lysosomal

pathway) by upregulating the expression of the mouse mitochondrial E3

ubiquitin protein ligase 1 (Lokireddy et al., 2012). Remarkably, Foxos

have also been implicated in the autophagy and mitophagy of neurons.

FOXO3 has been shown to control the accumulation of human

a-synuclein, a protein known to participate in the development of

Parkinson’s disease (Pino et al., 2014). Mild FOXO3 activity protects

nigral neurons against the accumulation of human a-synuclein by

promoting its degradation. These results suggest a determinant role for

FOXO3 in Parkinson’s disease, via neuronal survival in the substantia

nigra (Kume et al., 2010). Furthermore, FoxO1 and FoxO3 factors have

also shown to promote autophagy in rat neonatal cardiomyocytes and

primary renal proximal tubular cells (Sengupta et al., 2009; Kume et al.,

2010).

Warr et al. (2013) demonstrated that mouse HSCs robustly induce

autophagy and identified Foxo3A as critically important for rapid

induction of autophagy upon starvation. Interestingly, these authors also

showed that old HSCs retain an intact Foxo3A-driven pro-autophagy gene

program and that autophagy is required to maintain energy homeostasis

and promote survival of the HSCs (Warr et al., 2013).

Aging is associated with a decreased proteasomal activity, leading to

excess of damaged proteins in muscle, liver, and heart (Conconi et al.,

1996; Petropoulos et al., 2000; Bulteau et al., 2002; Husom et al.,

2004). Foxo3 has been shown to be a transcriptional regulator of

muscle-specific E3 ubiquitin ligases, which are major effectors of protein

degradation in muscle (Sandri et al., 2004, 2006; Stitt et al., 2004). But

FOXOs can also affect the composition of the proteasome. In particular,

FOXO4 has been shown to be required for the expression of the

proteasome component PSMD11 in human embryonic stem cells

(Vilchez et al., 2012).

Conclusions

An exciting research area on FOXO transcription factors’ impacting on

longevity has arisen in recent years. Studies have been conducted to

address their upstream regulation, their downstream effectors, and

respective signaling pathways in various animal models. Consequently,

how these FOXO-mediated programs affect cellular or tissue function

and whether there is an effect at an organismal level, has also been

scrutinized. Several lines of evidence suggest that FOXOs affect longevity

in a pleiotropic fashion, influencing several cell-regulated activities such

as stress resistance, metabolism, cell cycle arrest, and apoptosis.

A myriad of future work can be envisioned at this time. The induction

of FOXO-mediated programs in tissues with distinct metabolic potential

such as brain, muscle, or adipose tissue and with different stages of

differentiation or metabolic conditions (nutrition, oxidative stress) will

enlarge our knowledge of how FOXO factors affect cellular/organismal

lifespan. To further comprehend how FOXOs affect longevity, it is of

high importance to understand how human FOXO sequence variants

(namely FOXO3A) affect protein expression, its structure, or transcrip-

tional activity. In order to see how these variants translate into

physiological profiles, future investigations should address how these

variants affect the level of FOXO proteins and their downstream

effectors in serum. This approach has been used successfully in patients

with vitiligo, in which FOXO3A levels were shown to be decreased when

compared with the control group (Ozel Turkcu et al., 2014).

Compression of morbidity relates to both extended lifespan and

delayed onset of age-related diseases, such as cancer and cardiovascular

disorders. The development of molecules targeting aging mechanisms

that underlie a number of age-related diseases is an exciting field that is

nowadays in its first steps. It is noteworthy that clinical trials to test

lifespan extension in humans would be challenging and require markers

that can detect difference in aging rate across a short time frame. But

given the potential of FOXO proteins to impact on numerous disorders

such as cancer, diabetes, neurodegeneration, or immune system

dysfunction, novel therapeutic modalities based on FOXOs will most

likely take place in the near future.
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