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Maximal Operator in Variable Exponent
Generalized Morrey Spaces on Quasi-metric
Measure Space
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Abstract. We consider generalized Morrey spaces Lp(·),ϕ(·)(X) on quasi-
metric measure spaces X, d, μ, in general unbounded, with variable ex-
ponent p(x) and a general function ϕ(x, r) defining the Morrey-type
norm. No linear structure of the underlying space X is assumed. The
admission of unbounded X generates problems known in variable expo-
nent analysis. We prove the boundedness results for maximal operator
known earlier only for the case of bounded sets X. The conditions for
the boundedness are given in terms of the so called supremal inequalities
imposed on the function ϕ(x, r), which are weaker than Zygmund-type
integral inequalities often used for characterization of admissible func-
tions ϕ. Our conditions do not suppose any assumption on monotonicity
of ϕ(x, r) in r.
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1. Introduction

Variable exponent function spaces is now an extensively developed field with
two books [8,10] having already appeared on variable exponent Lebesgue and
Sobolev spaces. Nowadays many problems for various operators of harmonic
analysis are solved in these spaces including a number weight problem. There
are also various advances for variable exponent Morrey function spaces, but
to a less extent than for Lebesgue spaces.

For classical Morrey spaces we refer to the books [15,28,34] and the
recent survey paper [32]; in the last reference an information on various ver-
sions of variable exponent Morrey function spaces may be found. The Morrey
spaces Lp(·),λ(·)(X) with variable exponents λ(·) and p(·) in the Euclidean
setting were introduced and studied in [3,12,25,26,31].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sapientia

https://core.ac.uk/display/162579834?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s00009-015-0561-z&domain=pdf


1152 V. S. Guliyev and S. Samko MJOM

General version Lp(·),ϕ(·)(Ω), of such Morrey spaces, Ω ⊆ R
n with vari-

able exponent were introduced and studied in [16]. In [17] the results of [16] on
the boundedness of maximal, singular and potential operators were extended
to unbounded sets in R

n.
A success in developing variable exponent analysis in the Euclidean

setting was naturally accompanied by generalizations of the case where the
underlying space was a quasi-metric measure space (X, d, μ) mainly with
doubling measure. A progress was achieved mainly for bounded sets in X.
With respect to variable exponent Lebesgue spaces on quasi-metric measure
spaces we refer to [4,5,13,14,20–22,24], see all references therein.

In particular, the maximal and singular operators were considered in
[21,24]. Results on potential operators and Sobolev embeddings may be found
in [4,5,13,14,20,22].

Variable exponent Morrey spaces on bounded spaces of homogeneous
type and maximal and singular operators in such spaces were studied in
[25,26].

Variable exponent Campanato spaces on bounded homogeneous spaces
were studied in [33], where there was proved their equivalence to variable
exponent Morrey spaces or variable exponent Hölder spaces in the under-
critical and overcritical cases, respectively.

Note that, contrast to the case of constant exponents, admission of
unbounded sets for variable exponents generate difficulties well known to
researchers in this topic. In the Euclidean case they were overcome for variable
Lebesgue spaces in [9] (see also more details in the books [8,10], and for
variable Morrey spaces in [17]).

Variable exponent Lebesgue spaces on unbounded quasi-metric measure
spaces were considered in [1,27]. They appeared in [27] where the weighted
maximal operator was studied when p(x) is constant at infinity. In the very
recent paper [1] the maximal operator was studied without weights but under
a more general decay condition at infinity.

In this paper, we prove theorems on the boundedness of the maximal
operator

Mf(x) = sup
r>0

1
μ(B(x, r))

∫
B(x,r)

|f(y)|dμ(y)

within the frameworks of variable exponent Morrey spaces Lp(·),ϕ(·)(X) on
unbounded quasi-metric measure spaces, which extends the corresponding
result of [17] obtained in the Euclidean case.

The paper is organized as follows. In Sect. 2 we provide necessary defin-
itions and tools from the theory of quasi-metric measure spaces. In Sect. 3 we
give necessary background from variable exponent Lebesgue spaces and prove
some auxiliary statements for such spaces on infinite quasi-metric measure
sets. Section 4 contains the definition of a generalized Morrey spaces adjusted
for underlying sets with general structure and some auxiliary results. Finally,
Sect. 5 contains the main statements and their proof.
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2. On Quasi-metric Measure Spaces

2.1. Basic Definitions and Some Properties

In the sequel, (X, d, μ) denotes a quasi-metric space with the (quasi) metric
d, satisfying the condition

d(x, y) ≤ k[ d(x, z) + d(z, y)], k ≥ 1 (2.1)

and Borel regular measure μ.
Everywhere in the sequel χE(x) stands for the characteristic function

of a set E ⊆ X and

� = diam X.

We refer to [11,23] for the basics on metric measure spaces. By

B(x, r) = {y ∈ X : d(x, y) < r}
we denote a ball in X. We assume that the following standard conditions are
satisfied:

1. all the balls B(x, r) are measurable,
2. the space C(X) of uniformly continuous functions on X is dense in

L1(X,μ).
The doubling condition

μB(x, 2r) ≤ Cdbl × μB(x, r), (2.2)

where Cdbl ≥ 1 does not depend on r > 0 and x ∈ X, is known to play
a big role in the theory of quasi-metric measure spaces. We will also refer
sometimes to the following counterpart of this condition:

μB(x, 2r) ≥ C × μB(x, r), r > 0 with C > 1 (2.3)

(uniformly in x and r).
The conditions

μ(B (x, r) < c1r
n. (2.4)

and

μB(x, r) ≥ c0 rN , (2.5)

imposed sometimes on the measure μ are known as the upper and lower
Ahlfors conditions; the first one is also referred to as the growth condition.
We find it important to emphasize that in the case of unbounded sets X, it is
natural to assume that Ahlfors conditions may hold with different exponents
for small and large r, in general. An illustrating example is

(X, d, μ) = (Rn, d, μ) with d(x, y) = |x − y| and

μ(E) =
∫

E

(1 + |x|)λdx, λ > 0.

In this case

μB(x, r) ≈ C(x)rn as r → 0,

but

μB(x, r) ≈ C(x)rn+λ as r → ∞.
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Thus, the following definition turns to be natural.

Definition 2.1. Let (X, dμ) be unbounded. We say that the measure μ satisfies
upper Ahlfors condition with the exponents n0 > 0, n∞ > 0, if

μ (B (x, r)) ≤ crn(r), r > 0, n(r) =
{

n0, if 0 < r ≤ 1
n∞, if r ≥ 1 . (2.6)

and lower Ahlfors condition with the exponents N0 > 0, N∞ > 0, if

μ (B (x, r)) ≥ crN(r), r > 0, N(r) =
{

N0, if 0 < r ≤ 1
N∞, if r ≥ 1 . (2.7)

Remark 2.1. In the estimates (2.6) and (2.7) one can obviously take arbitrary
bounded values of the exponents n(r) and N(r), when 0 < a ≤ r ≤ b < ∞, so
that one can replace the piecewise constant exponents, for instance in (2.6)
by an arbitrary bounded function n(r), stabilizing to n0 and n∞ as r → 0 and
r → ∞, respectively. This remains equivalent if n(r) stabilizes under the log-
decay condition. One can go even further and admit, at the least for the upper
Ahlfors condition, the exponents n(r) oscillating at infinity between two dif-
ferent positive constants. However, we do not touch such cases in this paper.

Sometimes we will use the following assumptions:

inf
x∈X

μB(x, r) > 0 (2.8)

and

sup
x∈X

μB(x, r) < ∞ (2.9)

for any fixed r > 0.

Lemma 2.1. If the property (2.8) holds, then

(2.2) =⇒ the lower Ahlfors condition (2.5) for r → 0

(with the exponent N = log2 Cdbl). In case X is infinite, if (2.9) holds, then

(2.2) =⇒ the upper Ahlfors condition (2.4) for r → ∞
(with the same exponent). Similarly, if (2.9) holds, then

(2.3) =⇒ the upper Ahlfors condition (2.4) for r → 0

(with the exponent n = log2 C). In the case X is infinite, if (2.8) holds, then

(2.3) =⇒ the upper Ahlfors condition (2.5) for r → ∞
(with the same exponent).

Proof. The statements of the lemma are in fact known. In the case of (2.2)
they follow from the known estimate

μB(x, �) ≤ C
(�

r

)N

μB(x, r), N = log2 Cdbl, (2.10)

for 0 < r ≤ �, where C > 0 does not depend on r, � and x, which is derived
from (2.2) by iteration. Similarly from (2.3) one can obtain that

μB(x, �) ≥ C
(�

r

)n

μB(x, r), n = log2 C, (2.11)

for 0 < r ≤ �, which yields the statements for (2.3). �
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3. Auxiliary Results for Variable Exponent Lebesgue Spaces

3.1. Preliminaries: Basic Definitions

Let p(·) be a measurable function on X with values in [1,∞). We assume
that 1 ≤ p− ≤ p(x) ≤ p+ < ∞, but in most cases suppose that 1 < p− ≤
p(x) ≤ p+ < ∞. By Lp(·)(X) we denote the space of all measurable functions
f(x) on X such that

Ip(·)(f) =
∫

X

|f(x)|p(x)dμ(x) < ∞.

Equipped with the norm

‖f‖p(·) = inf
{

η > 0 : Ip(·)

(
f

η

)
≤ 1

}
,

this is a Banach function space. By p′(x) = p(x)
p(x)−1 , x ∈ X, we denote the

conjugate exponent.
We use the following notation:

p− = p−(X) = inf
x∈X

p(x), p+ = p+(X) = sup
x∈X

p(x),

P(X) is the set of bounded measurable functions p : X → [1,∞);
P log(X) is the set of exponents p ∈ P(X) satisfying the local log-

condition

|p(x) − p(y)| ≤ Ap

− ln d(x, y)
, d(x, y) ≤ 1

2
x, y ∈ X, (3.1)

where A = A(p) > 0 does not depend on x, y;
Alog(X) is the set of bounded exponents α : X → R satisfying the

condition (3.1);
P
log(X) is the set of exponents p ∈ P log(X) with 1 < p− ≤ p+ < ∞;

for X which may be unbounded, by P∞(X),P log
∞ (X),Plog

∞ (X),Alog
∞ (X)

we denote the subsets of the above sets of exponents satisfying the decay
condition:

|p(x) − p(∞)| ≤ A∞
ln(2 + d(x, x0))

x ∈ X, (3.2)

where x0 is any fixed point in X.
We will also use the decay condition in the form

|p(x) − p(∞)| ≤ A∞
ln μB(x, d(x, x0))

x ∈ X, d(x, x0) ≥ 2. (3.3)

Remark 3.1. It is easy to see that (3.2) implies (3.3) if μ satisfies the growth
condition (2.4) at infinity, and (3.3) implies (3.2) if μ satisfies lower Ahlfors
condition at infinity.

We will use the following boundedness result for the maximal operator
proved in [1, Corollary 1.6] (in [1] a more general result was obtained, we use
it in the form we need in this paper).

Theorem 3.1. Let X be doubling and p ∈ P
log
∞ (X). Then

‖Mf‖Lp(·)(X) ≤ C‖f‖Lp(·)(X).



1156 V. S. Guliyev and S. Samko MJOM

3.2. Estimates for ‖χB(x,r)‖Lp(·)(X) on Unbounded Quasi-metric
Measure Spaces

The estimate ∥∥χB(x,r)

∥∥
p(·) ≤ c [μB(x, r)]

1
p(x) (3.4)

for bounded open sets X was proved in the setting of quasi-metric measure
space in [22], see also an alternative proof in [3, Lemma 6] under the assump-
tions that the measure μ satisfies the lower Alhfors condition (2.5) and p(·)
satisfies the log-condition.

The following lemma provides an estimate for
∥∥χB(x,r)

∥∥
p(·) suitable

for unbounded sets X; in the Euclidean setting it was given in [10, Corol-
lary 4.5.9].

For an exponent p(x) defined on an unbounded set X and satisfying the
decay condition (3.2) we use the notation

pr(x) =
{

p(x), 0 < r ≤ 1,
p(∞), r ≥ 1 , x ∈ X.

Theorem 3.2. Let the measure μ be doubling and condition (2.3) be satisfied.
If p ∈ P log(X) and the decay condition in the form (3.3). Then∥∥χB(x,r)

∥∥
p(·) ≤ c [μB(x, r)]

1
pr(x) (3.5)

for all x ∈ X and r > 0.

Proof. We wish to show that∫

B(x,r)

dμ(y)

[μ(B(x, r))]
p(y)

pr(x)

≤ C for all r > 0 and x ∈ X.

For 0 < r ≤ 1 this is known, being contained in (3.4) (note that the case r ≤ 1
does not require X to be bounded, since we always have 1

| ln |d(x,y)|| ≤ 1
| ln r|

in this case).
So let r ≥ 1. We have to show that the function

F̃ (x, r) :=
∫

B(x,r)

dμ(y)

[μ(B(x, r))]
p(y)
p(∞)

is bounded. We fix any point x0 ∈ X. It is obvious that it suffices to show
the boundedness of the function

F̃ (x, r) :=
∫

{y∈B(x,r): d(y,x0)>1}

dμ(y)

[μB(x, r)]
p(y)
p(∞)

is bounded. Let first d(x, x0) ≥ 2kr, where k is the constant from the triangle
inequality, so that d(y, x0) > 1

kd(x, x0) − d(x, y) > r. Then

|p(y) − p(∞)| ln μB(x, r) ≤ |p(y) − p(∞)| ln μB(x, d(x, x0)) ≤ C

by (3.3), which yields

[μ(B(x, r))]
p(y)
p(∞) ≥ Cμ(B(x, r)
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and provides the boundedness of F̃ (x, r).
Let now d(x, x0) < 2kr. Then B(x, r) ⊂ B(x0, (2k + 1)r), so that

F̃ (x, r) ≤
∫

1<d(y,x0)<(2k+1)r

dμ(y)

μB(x, r)
p(y)
p(∞)

,

where we proceed as follows:

F̃ (x, r) ≤
∑

j

∫

Lj(r)

dμ(y)

[μB(x, r)]
p(y)
p(∞)

,

where we denoted

Lj(r) := {y : d(y, x0) > 1} ∩ {y : 2−j−1(2k + 1)r < d(y, x0) < 2−j(2k + 1)r},

j = 0, 1, 2, . . . Hence,

F̃ (x, r) ≤
∑

j

∫

Lj(r)

dμ(y)

[μB(x, (2jd(y, x0)/(2k + 1)]
p(y)
p(∞)

.

By the property (2.3) we then have

F̃ (x, r) ≤
∑

j

C
−j

p−
p(∞)

∫

Lj(r)

dμ(y)[
μB(x, d(y,x0)

2k+1 )
] p(y)

p(∞)

≤
∑

j

C
−j

p−
p(∞)

∫

Lj(r)

dμ(y)

[μB(x, d(y, x0))]
p(y)
p(∞)

,

where the doubling condition was used in the last inequality. Then

F̃ (x, r) ≤
∑

j

C
−j

p−
p(∞)

∫

2−j−1(2k+1)r<d(y,x0)<2−j(2k+1)r

dμ(y)
μB(x, d(y, x0))

by the decay condition. We use the doubling condition again and obtain∫

2−j−1(2k+1)r<d(y,x0)<2−j(2k+1)r

dμ(y)

μB(x, d(y, x0))
≤ μB(x, r2−j(2k + 1)r)

μB (x, 2−j−1(2k + 1)r)
≤ C,

which completes the proof.

4. Variable Exponent Generalized Morrey Spaces

4.1. The Case of Variable Exponent Classical Morrey Spaces

Variable exponent Morrey spaces were introduced in the Euclidean setting
in [3] and on quasi-metric measure spaces in [25,26]. The definition below
follows the same approach, up to notation.

Let λ(x) be a measurable function on X with values in [0, 1]. The vari-
able Morrey space Lp(·),λ(·)(X) is introduced via the norm

‖f‖Lp(·),λ(·)(X) = sup
x∈X, t>0

μB(x, t)− λ(x)
p(x)

∥∥fχB(x,t)

∥∥
Lp(·)(X)

.
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In [3] such spaces in the Euclidean case X = Ω ⊂ R
n were also defined by

means of the norm

sup
x∈X, r>0

∥∥∥μB(x, r)− λ(x)
p(·) f χB(x,r)

∥∥∥
p(·)

.

This norm is equivalent to the above norm when X is bounded and p satisfies
the log-condition.

In [25] the following theorem for bounded sets X was proved.

Theorem 4.1. Let X be bounded and p ∈ P
log(X) and λ(x) ≥ 0, supx∈X λ(x)

< 1. Then the maximal operator M is bounded in Lp(·),λ(·)(X).

A version of such a result for X, d, μ with doubling condition replaced
by the growth condition on the measure μ was proved in [26, Theorem 3.4].

4.2. Variable Exponent Generalized Morrey Spaces

To avoid confusion in notation, we use the letter M for generalized Morrey
spaces defined by a general function ϕ(x, r), see (4.1), and we keep the letter

L for the classical version of Morrey spaces when ϕ(x, r) = μB(x, r)
λ(x)
p(x) .

Everywhere in the sequel the functions ϕ(x, r), ϕ1(x, r) and ϕ2(x, r)
are non-negative measurable functions on X × R+.

Definition 4.1. Let p ∈ P(X). The generalized Morrey space Mp(·),ϕ(·)(X) is
defined by the norm

‖f‖Mp(·),ϕ(·) = sup
x∈X,r>0

‖f‖Lp(·)(B(x,r))

ϕ(x, r)
. (4.1)

Everywhere in the sequel we assume that

inf
x∈X

ϕ(x, r) > 0 (4.2)

for every r > 0, which makes the space Mp(·),ϕ(·)(X) nontrivial.
Note that by the definition of the norm in Lp(·) we have

‖f‖Mp(·),ϕ(·) = sup
x∈X,r>0

inf

{
η = η(x, r) :

∫
X

∣∣∣∣f(y)χB(x,r)(y)

ηϕ(x, r)

∣∣∣∣
p(y)

dμ(y) ≤ 1

}
.

(4.3)

The spaces Mp(·),ϕ(·)(X) contain in particular classical Morey spaces
with different measuring of the “Morrey-type regularity” for small and large
values of r, i.e., the spaces

Lp(·),λ(·),λ∞(·)(X)

defined by the norm

‖f‖Lp(·),λ(·),λ∞(·)

= sup
x∈X

(
sup

0<r<1
r− λ(x)

p(x) ‖fχB(x,r)‖Lp(·)(X) + sup
r>1

r− λ∞(x)
p(x) ‖fχB(x,r)‖Lp(·)(X)

)
,

corresponding to the choice ϕ(x, r) =
{

rλ(x), r ≤ 1,
rλ∞(x), r ≥ 1.



Vol. 13 (2016) Maximal Operator on Quasi-metric Measure Space... 1159

The norm (4.3) prompts us also to introduce another norm

‖f‖∗
Mp(·),ϕ(·) = sup

x∈X,r>0
inf

{
η = η(x, r) :

1

ϕ(x, r)p(x)

∫
X

∣∣∣∣f(y)

η

∣∣∣∣
p(y)

dμ(y) ≤ 1

}
.

(4.4)

The norms ‖f‖Mp(·),ϕ(·) and ‖f‖∗
Mp(·),ϕ(·) are non-equivalent in general

and we denote by

Mp(·),ϕ(·)
∗ (X)

the space of functions f with finite norm ‖f‖∗
Mp(·),ϕ(·) . In Lemma 4.2 we pro-

vide some conditions under which the spaces Mp(·),ϕ(·)
∗ (X) and Mp(·),ϕ(·)(X)

coincide.
In the spirit of (4.3), we may also introduce the corresponding versions

Lp(·),λ(·)
∗ (X) of classical type Morrey spaces, defined similarly to (4.3) by the

norm

‖f‖∗
Lp(·),λ(·) = sup

x∈X,r>0
inf

{
η = η(x, r) :

1
rλ(x)

∫
B(x,r)

∣∣∣∣f(y)
η

∣∣∣∣
p(y)

dμ(y) ≤ 1

}
.

(4.5)

We single out the case where

ϕ(x, r) ≡ const for r ≥ 1, (4.6)

i.e., the case where the “Morrey regularity” is measured only for small r. The
Morrey space with the function ϕ(x, r) satisfying the property (4.6), might
be called locally introduced Morrey space.

In Lemma 4.2 we use the log-condition in the form

|p(x) − p(y)| × | ln ϕ(x, r)| ≤ C for x, y ∈ X with d(x, y) ≤ r ≤ 1,

(4.7)

where C does not depend on x, y and r. The following lemma provides a
sufficient condition for the validity of (4.7).

Lemma 4.1. The condition (4.7) is satisfied, if p ∈ P(X), the function ϕ is
bounded, fulfills the condition (4.2) and

ϕ(x, r) ≥ C0

lna 1
r

, for some a > 0

in a neighborhood 0 ≤ r ≤ ε of the origin.

Proof. It suffices to consider the case where ϕ(x, r) ≤ 1
2 [otherwise there is

nothing to prove in (4.7)]. We may assume that C0 = 1 and consider small
r. Then

ln
1

ϕ(x, r)
≤ a ln ln

1
r

≤ a ln
1
r

≤ a ln
1

d(x, y)
,

so that the usual log-condition for p implies (4.7).

Lemma 4.2. Let p ∈ P and ϕ(x, r) fulfill the conditions (4.6) and (4.7). Then
the norms ‖f‖Mp(·),ϕ(·) and ‖f‖∗

Mp(·),ϕ(·) are equivalent.
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Proof. It suffices to prove that c1ϕ(x, r)p(x) ≤ ϕ(x, r)p(y) ≤ c2ϕ(x, r)p(x),
which follows from (4.7) under the condition (4.6).

5. Main Results

In this section, in both the theorems it is assumed that the space (X, d, μ) is
doubling and the condition (2.3) is satisfied.

5.1. Estimation of ‖Mf‖Lp(·)(B(x,t))

Theorem 5.1. Let μ be doubling and satisfy the growth condition (2.4) for
r → ∞ and let p ∈ P

log
∞ (X). Then

‖Mf‖Lp(·)(B(x,t)) ≤ CμB(x, t)
1

pt(x) sup
r>t

μB(x, r)− 1
pr(x) ‖f‖Lp(·)(B(x,r)), t>0

(5.1)
for every f ∈ Lp(·)(X), where C does not depend on f, x ∈ X and t.

Proof. We split f as

f = f1 + f2, f1(y) = f(y)χB(x,2kt)(y),
f2(y) = f(y)χX\B(x,2kt)(y), t > 0. (5.2)

where k is the constant from the triangle inequality (2.1).

Estimation of Mf1 By Theorem 3.1 we have

‖Mf1‖Lp(·)(B(x,t)) ≤ ‖Mf1‖Lp(·)(X) ≤ C‖f1‖Lp(·)(X) = C‖f‖Lp(·)(B(x,2kt)),

(5.3)

where C does not depend on f . To unify this estimate in the sequel with the
estimate for ‖Mf2‖Lp(·)(B(x,t)), we transform the obtained estimate to

‖Mf1‖Lp(·)(B(x,t)) ≤ CμB(x, t)
1

pt(x) sup
r>t

μB(x, r)− 1
pr(x) ‖f‖Lp(·)(B(x,r))

(5.4)

by the obvious inequality 1 ≤ μB(x, t)
1

pt(x) supr>t μB(x, r)− 1
pr(x) and

monotonicity of ‖f‖Lp(·)(B(x,t)) with respect to t.

Estimation of Mf2 For

Mf2(y) = sup
r>0

1
μ(B(y, r))

∫
B(y,r)∩ �(B(x,2kt))

|f(z)|dμ(z)

we observe that

B(y, r) ∩ �
(B(x, 2kt)) ⊆ B(x, 2kr) for every y ∈ B(x, t) (5.5)

whenever

B(y, r) ∩ �
(B(x, 2kt)) �= ∅. (5.6)

Note that the condition (5.6) implies r > t. Indeed, if z ∈ B(y, r) ∩ �

(B(x, 2kt)), then r > d(y, z) ≥ 1
kd(x, z) − d(x, y) > 2t − t = t.

Consequently, for z ∈ B(y, r)∩ �
(B(x, 2kt)) we have d(x, z) ≤ kd(y, z)+

kd(x, y) < kt + kr < 2kr, which proves (5.5).
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By (5.5) we get

Mf2(y) ≤ sup
r>t

1
μ(B(x, r))

∫
B(x,2kr)

|f(z)|dμ(z)

≤ sup
r>2kt

C

μ(B(x, r))

∫
B(x,r)

|f(z)|dμ(z)

≤ sup
r>t

C

μ(B(x, r))

∫
B(x,r)

|f(z)|dμ(z)

by the doubling condition, for all y ∈ B(x, t).
Hence by Hölder inequality and Theorem 3.2 we obtain

Mf2(y) ≤ sup
r>t

C

μ(B(x, r))
‖f‖Lp(·)(B(x,r)) ‖1‖Lp′(·)(B(x,r))

≤ C sup
r>t

‖f‖Lp(·)(B(x,r)) μB(x, r)−1+ 1
p′

r(x)

= C sup
r>t

‖f‖Lp(·)(B(x,r)) μB(x, r)
1

pr(x) ,

Theorem 3.2 is applicable by the conditions of our theorem, because the
assumption of Theorem 3.2 on the validity of the decay condition in the form
(3.3) holds, see Remark 3.1.

Thus, the function Mf2(y), with fixed x and t, is dominated by the
expression not depending on y. Then we integrate the obtained estimate for
Mf2(y) in y over B(x, t), we get

‖Mf2‖Lp(·)(B(x,t))≤C ‖1‖Lp(·)(B(x,t)) sup
r>t

‖f‖Lp(·)(B(x,r)) μB(x, r)− 1
pr(x) .

(5.7)

Then we apply Theorem 3.2 again and obtain the estimate for
‖Mf2‖Lp(·)(B(x,t)) as in (5.4) for ‖Mf1‖Lp(·)(B(x,t)). Gathering the estimates,
we arrive at (5.1). �

5.2. Preliminaries on Supremal Operator

By L∞(R+, v) we denote the space of all functions g(t), t > 0 with finite
norm ‖g‖L∞(R+,v) = supt>0 v(t)g(t). Let M+(R+) be the set of all non-
negative Lebesgue-measurable functions on R+ and M+(R+;↑) be the cone of
all non-decreasing functions in M+(R+) and

A =
{

ϕ ∈ M+(R+; ↑) : lim
t→0+

ϕ(t) = 0
}

.

Let u be a continuous non-negative function on R+. We define the supremal
operator Su for g ∈ M(R+) by

(Sug)(t) := ‖u g‖L∞(t,∞), t ∈ R+.

The following theorem was proved in [6].
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Theorem 5.2. Let v1, v2 be non-negative measurable functions with 0 <
‖v1‖L∞(t,∞) < ∞ for every t > 0 and let u be a continuous non-negative func-
tion on R. Then the operator Su is bounded from L∞(R+, v1) to L∞(R+, v2)
on the cone A if and only if∥∥∥v2Su

(
‖v1‖−1

L∞(·,∞)

)∥∥∥
L∞(R+)

< ∞. (5.8)

5.3. Theorem on the Boundedness

Theorem 5.3. Let the space (X, d, μ) and the exponent p satisfy the assump-
tions of Theorem 5.1. If

sup
t>r

inft<s<∞ ϕ1(x, s)

μB(x, t)
1

pt(x)
≤ C

ϕ2(x, r)

μB(x, r)
1

pr(x)
, (5.9)

where C does not depend on x and r. Then the maximal operator M is
bounded from the space Mp(·),ϕ1(·)(X) to the space Mp(·),ϕ2(·)(X).

Proof. For the norm

‖Mf‖Mp(·),ϕ2(·)(X) = sup
x∈X, t>0

ϕ−1
2 (x, t)‖Mf‖Lp(·)(B(x,t))

by Theorems 5.1 and 5.2 we obtain

‖Mf‖Mp(·),ϕ2(·)(X)

≤ C sup
x∈X, t>0

ϕ−1
2 (x, t)μB(x, t)

1
pt(x) sup

r>t
μB(x, r)− 1

pr(x) ‖f‖Lp(·)(B(x,r))

≤ C sup
x∈X, t>0

ϕ−1
1 (x, t)‖f‖Lp(·)(B(x,t)) = C‖f‖Mp(·),ϕ1(·)(X)

by (5.9), which completes the proof.

Remark 5.1. Supremal estimates for the maximal operator in generalized
Morrey spaces with constant p and in the Euclidean setting were obtained in
[2].

In the case of constant exponents p boundedness results for the maximal
operator in classical Morrey spaces go back to [7]. For Morrey spaces with
constant p but a general function ϕ(x, r) defining the Morrey space, such
results under these or those assumptions were obtained in [18,19,29,30].

Corollary 5.1. Let (X, d, μ) and the exponent p satisfy the assumptions of
Theorem 5.1. Under the conditions

0 ≤ λ(x) ≤ min
(

1,
p(x)
p(∞)

)
, (5.10)

the maximal operator M is bounded in the space Lp(·),λ(·)(X).

Proof. Apply Theorem 5.3 with ϕ1(x, r) = ϕ2(x, r) = μB(x, r)
λ(x)
p(x) .

Corollary 5.1 covers, in particular, the case of quasi-metric measure
spaces (X, d, μ) with constant dimension:

μB(x, r) ≈ ra
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for some positive a (i.e., there exist positive constants a, c1 and c2 such that
c1r

a ≤ μB(x, r) ≤ c2r
a for all x ∈ X and r → 0). Besides the Euclidean case,

an important example is a Carleson curve on the plane or fractal curves with
constant dimension.

The statement of Corollary 5.1 was proved in [3] for bounded sets X,
where the last of the conditions in (5.10) does not appear.
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