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Abstract

In this thesis a numerical method o f calculating ground-scattered power from the 

results o f a ray tracing analysis is presented. The method is based on a conservation of 

energy approach and offers advantages over an alternative method derived from the radar 

equation. The improved numerical method is used to investigate two different physical 

phenomena by comparison with measured ground-scattered power observed by a high- 

frequency (HF) radar located in Kodiak, AK that is part o f the Super Dual Auroral Radar 

Network (SuperDARN). First, the effects o f artificial electron density layers on observed 

ground scatter is studied through a comparison o f simulated and measured power 

profiles. The results demonstrate that the location and spatial dimensions o f artificial 

layers may be estimated by a comparison o f the location and amplitude o f simulated and 

measured power enhancements. Second, a M onte-Carlo simulation method is used to 

characterize the temporal distribution o f ground-scattered power. Random processes 

including background electron density perturbations, polarization, noise, and sample 

correlation are modeled in simulation and used to estimate statistical moment profiles. 

The simulated statistical moment profiles are compared to measured profiles as a means 

o f model verification and to roughly approximate background electron density 

perturbations in the ionosphere.
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Chapter 1 Introduction

1.1 Objective

In this thesis, ray tracing techniques and observations made by a high-frequency 

(HF) radar are used to characterize the structure o f artificial density layers and the 

statistical properties o f ground scatter observed by an over-the-horizon (OTH) radar. 

High-power HF heating experiments recently have been shown to produce artificial 

density layers in the ionosphere, which have been observed using both optical 

instruments and ionosondes [Pedersen et a l., 2009; Pedersen et a l., 2010]. The ability to 

generate artificial layers may have important radio applications, particularly for HF 

communications. The analysis performed in this thesis provides an independent tool for 

investigating both the structure o f these artificial layers as well as potential radio 

applications.

The other concentration o f this thesis is the statistics o f ground scatter observed 

by OTH HF radars. By identifying influential random processes and using a M onte- 

Carlo simulation technique, the mean and standard deviation o f ground scatter 

distributions versus time delay range are estimated and compared to observations. A 

comparison o f simulation results and measurements yields insight into random 

ionospheric processes and a tool for resolving desired targets from clutter.

The topics studied here are ju st two applications o f a numerical method for 

calculating ground-scattered power that is presented in Chapter 3. Through detailed 

modeling and an analysis o f simulated and measured results, this thesis provides an 

independent tool for studying artificial density layers as well as insight into the physical 

phenomena that contribute to ground clutter distributions for HF OTH radars. Before 

exploring the focus o f this thesis, sections 1.2-1.4 provide a brief introduction to the 

ionosphere, radio wave propagation in the ionosphere, and the background o f the 

SuperDARN program.
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1.2 The Ionosphere

As radiation from the sun enters the Earth's atmosphere, energetic photons ionize 

neutral gas molecules creating free ions and electrons [Davies, 1965]. The amount of 

ionization that occurs depends on gas density and composition with the greatest 

concentration o f free charge produced in the altitude region 60-600 km, which is termed 

the ionosphere [Budden, 1985]. Above the ionosphere the atmosphere is nearly fully 

ionized but sparsely populated whereas below the ionosphere the density o f neutral gas 

molecules and the absorption o f radiation at high altitudes results in a small degree o f 

ionization.

The structure o f the ionosphere in altitude is influenced by the composition o f gas 

and is typically divided into layers corresponding to local maximums in electron density. 

The principal layers include the E and F layers, which have peak altitudes in the range 

100-110 km and 200-400 km [Budden, 1985]. A typical altitude cross-section o f electron 

density depicting the principal layers is illustrated in Figure 1.1.

Figure 1.1: Example ionosphere density profile versus altitude illustrating principal layers. The density 
profile illustrated here was generated with arbitrary values of peak electron density and a Gaussian 
distribution of density with altitude for illustration purpose only.
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The structure o f the ionosphere is often assumed to be spherically symmetric due 

to the symmetry in the neutral atmosphere. In this thesis, ray-tracing is restricted to two- 

dimensions so that variations in the horizontal dimension may be investigated but 

variations in the lateral dimension are neglected. Restricting ray-tracing to two 

dimensions and ignoring out-of-plane deviations has been shown to be sufficiently 

accurate for applications such as simulating ionograms and performing coordinate- 

registration for OTH radars [Coleman 1994, Coleman 1997, Coleman 1998]. Appendix 

II is devoted to investigating the effects o f the lateral structure o f artificial density layers, 

which cannot be determined from the ray-tracing performed here.

1.3 Radio W ave Propagation in the Ionosphere

A variety o f physical phenomena contribute to how radio waves propagate in the 

ionosphere. The most important o f these include the presence o f free charges, particle 

collisions, and the influence o f the Earth's magnetic field. From the viewpoint o f an 

electrical engineer, the influence o f these physical phenomena is elegantly summarized in 

the relationship between electric field intensity £  and the displacement flux D , or the 

permittivity e, in the ionosphere. M axwell's equations along with the expression for 

permittivity can be used to determine the fundamental characteristics o f waves in the 

ionosphere. Here the subjects o f wave polarization, phase-refractive index, and energy 

propagation for radio waves in the ionosphere are briefly presented. Note that the 

relationships derived here are conditioned on the important assumption that the 

ionosphere can be treated as a homogeneous plasma.

A plasma can be defined as a quasi-neutral gas that exhibits collective behavior. 

The quasi-neutrality condition implies that free charge is approximately evenly 

distributed between ions and electrons, or positive and negative charges. Collective 

behavior refers to the idea that motion in the plasma depends on the state o f the plasma as 

a whole rather than any local volume. A plasma demonstrates collective behavior on 

scale sizes that exceed a constant called the Debye length, which is the physical distance 

at which a potential introduced in a plasma decays by factor o f e -1 due to shielding by
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opposing charges [C^en, 1984]. If a process occurs over scale sizes much larger than a 

Debye length than the plasma acts collectively like a fluid. Typical Debye lengths in the 

ionosphere are on the order o f centimeters so for high-frequency radio waves the 

ionosphere can be treated as a plasma [Budden, 1985].

1.3.1 Permittivity

The permittivity o f the ionosphere is derived by considering the influence o f free 

charge, particle collisions, and the Earth's magnetic field, which are related by the force 

balance equation

—> dr —» dr d2r
E q + q - x B - m v - = m —  (1.1)

In (1.1), r  represents the displacement o f the charges due to the electric field, B 

represents a constant background magnetic field from the Earth, v  represents the average 

number o f particle collisions per unit time, q is the total charge per unit volume, and m  is 

the total mass equivalent to the particle density N  times the mass o f a single charge. Note 

that the three terms on the left hand side (LHS) o f (1.1) are the forces exerted by the 

electric field, magnetic field, and particle collisions on the plasma as a whole. 

Considering that the mass o f ions is on the order o f 103 greater than the mass of 

electrons, the acceleration experienced by ions is correspondingly 103 smaller than the 

acceleration experienced by electrons. Therefore, the assumption will be made that the 

ions are stationary and that q =  Ne,  which is the total number o f free electrons [Budden, 

1985].

Now define P =  N er  as the electric polarization vector where D =  e0E +  P . If
Q

(1.1) is multiplied through by the factor -— ,̂ the expression in (1.1) can be re-written as

Ne2 ^ e dP Y?__ V££ —
mo>2 mw2 dt ^  w2 dt w2 dt2. ( )

At this point, consider that the field vectors £  and P can be written in the form A =  

A 0e i u t , which corresponds to time-harmonic waves. Time derivatives o f the fields can 

be simply replaced with the term j w  and (1.2) can be simplified to
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e0XE =  UP +  i P x Y (1.3)

where =
Ne2

2 Y =  — , and U — 1 — i —. The values X and F — | f |  have physical

significance and are termed the plasma frequency and electron gyro-frequency [Budden, 

1985]. It is important to note the presence o f a cross product on the right-hand side 

(RHS) o f (1.3). The presence o f a cross-product implies that the components o f E are 

dependent on multiple components o f P. In general, the exact relationship between E 

and P depends on the geometry between the wave normal /  and the magnetic field. 

Consider the diagram in Figure 1.2, which illustrates a Cartesian coordinate system with 

a plane wave propagating in the z  direction and the field vector Y at an angle o f 9 to the 

z-axis.

Figure 1.2: Geometry of ?, 9, and /  used to develop permittivity tensor. 

Using the geometry o f Figure 1.2 , the relationship in (1.3) reduces to

Ey —
lEz\

U jY cos 0 0
-]'Y cos 0 u ]'Y sin 0

0 -JY sin 0 U py
.pz-

(1.4)

Similarly, the displacement flux can be expressed as D =  £0P  +  P =  e0e> E where s ’ is a 

tensor given by
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1 (£i+£2) cos2 0+s3 sin2 0 -y(£1- £ 2) cos 0 (-(£1+£2)+£3) sinfl cos 0

S —

and

1; (£ i-£ 2) co s0 :(£i+£2)
1
~7(£ i-£ 2) sin 0

(1 (£1+£2)+£3) sin 0 cos 0 1 1
2^(£i - £2) sin 0 -(£ i+ £ 2) sin2 0 +£3 cos2 0

(1 5 )

'e 1 — 1 —A /( £  +  f )
> 2 — 1 — a / ( £  — y). 

£3 — 1 — x / y
(1 6 )

The significance o f (1.5) is that D depends on multiple components o f £ , which is 

characteristic o f an anisotropic medium. Using M axwell's equations and the permittivity 

tensor in (1.5), it can be shown that anisotropy affects wave polarization, phase refractive 

index, and energy propagation in the ionosphere.

1.3.2 Polarization

An important consequence o f anisotropy between £  and D in the ionosphere is 

that a limited number o f wave polarizations can exist. Specifically, using Maxwell's 

equations and the tensor in (1.5), the polarization p  expressed as the ratio o f £ x/ £ y can 

be shown to be restricted to two values given by

- iy sin2 0+i[-y2 sin4 fl+cos2 0(U-X)21
p —2----------+-I4-------------------- (-----^ .  (1.7)^  (U-Z)cosfl v ’

The two values o f polarization that can exist are often distinguished as the ordinary and 

extraordinary polarizations [Budden, 1985].

1.3.3 Index of Refraction

Anisotropy also plays a pivotal role in the expression for phase refractive index, 

which under the assumption that the ionosphere is a cold, collision-less plasma simplifies 

to

u 2 - a *(1-M n  0^
^P — 1 ;------7------------------PTn (1 8 )

i-^ --y t2+|-yt4+y;2( i-^ )2}
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where — Y sin 9 and — Y cos 9. (1.8) is known as the Appleton-Hartree equation 

for a cold collision-less plasma. Note that the +  in the denominator o f the Appleton- 

Hartree equation corresponds to ordinary and extraordinary polarizations respectively. 

Consequently, the ionosphere is birefringent medium where refraction depends on 

polarization [Budden, 1985].

1.3.4 Energy Propagation

For time-harmonic waves, energy propagation can be shown to be in the direction 

o f the time-average Poynting vector expressed as

For plane waves in isotropic media, S is directed along the wave normal so that energy 

and phase propagate in the same direction [Rao, 2004]. However, in anisotropic media 

the coupling between different components o f D and £  leads to energy propagation in a 

direction other than the wave normal. Given the geometry illustrated in Figure 1.2, it can 

be shown that in the case o f collision-less plasmas the components o f S are

where Z0 is the impedance o f free space and the values o f p  and p p

are given by (1.7) and (1.8) [Budden, 1985]. Note that (1.10) illustrates that energy

propagates in the (x, z) plane which is offset from the wave normal by an angle of

S — iR e [£  X H*]. (1 9 )

( 1 1 0 )

(111)
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1.4 SuperDARN

The Super Dual Auroral Radar Network (SuperDARN) consists o f a global 

network o f HF radars used to perform high-latitude ionospheric research [Greenwald et 

al., 1985, 1995]. Each radar measures line-of-sight (LOS) plasma velocity at ranges up 

to 3500 km and over a field o f view (FOV) o f approximately 56° in order to provide an 

instantaneous mapping o f ionospheric convection. Although the main objective of 

SuperDARN is providing a real time map o f ionospheric convection, the radars also 

provide a valuable tool for investigating a variety o f other ionospheric phenomena 

ranging from gravity waves to artificial field-aligned irregularities produced by high 

power HF heaters [Bristow and Greenwald 1995; Wright et al., 2009; Wright et al., 

2006].

In this thesis, the SuperDARN radar located in Kodiak, Alaska is used to provide 

observations o f ground scatter. The SuperDARN radar observes ground scatter when a 

transmitted pulse launched by the radar refracts through the ionospheres and scatters off 

the ground. For the purpose of characterizing artificial layers in Chapter 4, ground scatter 

measurements made at Kodiak are analyzed and compared to simulation results during a 

period o f time when an artificial layer is induced at the High Frequency Active Auroral 

Research Program (HAARP) station in Gakona, Alaska. In Chapter 5, measured 

statistical moment profiles made during a short interval o f time are analyzed and 

compared to simulation results to study clutter distributions and to quantify physical 

phenomena such as background density perturbations.
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Chapter 2 Ray Theory

2.1 Introduction

Ray tracing is a useful tool for determining the path o f electromagnetic waves in 

anisotropic mediums. In this chapter a brief description o f ray theory and its limitations 

are presented before developing ray path equations by applying variational calculus to 

Fermat's principle o f least time. Next, the general form o f ray path equations as derived 

by Haselgrove are presented along with the derivations o f the explicit ray path equations 

in a cold-collisionless plasma. Finally, the ray tracing software and the specific 

numerical integration algorithm utilized in this thesis are discussed.

2.2 Ray Theory

Consider the wave equation in free space which has the form

V2£  +  0 « 2£  — 0 (2.1)

where ^ 0 is the free space phase propagation constant and p  is the (possibly complex) 

index o f refraction. The solution to (2.1) is a time-harmonic phasor o f the form

E — £ 0e - ^ (™) — (2 .2)

where n  is a unit vector in the direction o f phase propagation, r  is a point in space, and 

the dot product o f these vectors is the function S (x ,y , z). Now we would like to find the 

solution to the wave equation in the case that the refractive index varies with position, i.e 

p  — ^ (x , y, z ) . Assume that the solution to the wave equation is almost (2.2) but let the 

amplitude o f the field vary in space as well so that the (2.2) becomes

£  — £ 0( x ,y ,z ) e - ^ o s (*.y.z). (2 .3)

After substituting (2.3) into the wave equation, simplifying, and re-arranging we obtain 

£ o b 2 — (VS)2] — OV£o)[£oV2S +  2(V£o) ■ (VS)] — (V2£ o /£ o 2). (2.4)
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If V2£ 0 << ^ 02 and [£0V2S +  2(V £0) ■ (VS)] << the terms on the RHS o f (2.4) can be 

ignored and the wave equation simplifies to

£ 0 b 2 — (VS)2] — 0. (2.5)

Ignoring the trivial solution £ 0 — 0, we have the relationship

M2 — (VS)2, (2.6)

which is known as the iconal equation. Under the condition that planes o f constant phase 

and planes o f constant amplitude are both normal to the phase propagation direction n , it 

can be shown that

pft — VS. (2.7)

The expression in (2.7) is the fundamental result o f ray theory and states that waves 

propagate normal to surfaces o f constant refractive index. Therefore, given a description 

o f how the refractive index varies in space, the direction o f wave propagation can be 

determined. However, (2.7) is only valid under the assumptions that V2£ 0 << ^ 0 and 

[£0V2S +  2(V £0) ■ (VS)] << ^ 0. The restriction V2£ 0 << ^ 02 limits ray theory only to 

regions where the amplitude o f the wave, £ 0, does not vary rapidly which eliminates 

regions containing point sources. Similarly, the restriction [£0V2S +  2(V £0) ■ (VS)] << 

^ 0 limits ray theory to regions where both VS, which is proportional to the refractive 

index ^ , and £ 0 vary slowly over spatial lengths compared to a wavelength. In general, 

ray theory is an accurate approximation whenever wave parameters such as index of 

refraction and amplitude are constant relative to a wavelength [Kelso, 1964].

2.3 Fermat's Principle

Let us define a ray path as a curve that is everywhere tangent to the direction of 

energy propagation. Using the result in (2.7) derived from ray theory, the phase path ^  

o f a wave traveling along a ray between points A and B in an anisotropic medium can be 

expressed as
D

V — fA Mr cos(a) ds — S (5 )  — S(A) (2.8)
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where ds is taken along the phase path, — — is the ray refractive index (directed alongvr

the Poynting vector), a  is the angle between the Poynting vector and the wave normal 

vector, and S is the function introduced in (2.2). Fermat's principle states that a ray will 

follow the path between two points that minimizes ^  in (2.8). Mathematically, this 

principle is expressed as a variation o f the integral in (2.8):
rB

S / ^ d s  — 0 . (2.9)

The relationship in (2.9) signifies that the phase path ^  in (2.8) will be a stationary point 

(a minimum) when (2.8) is integrated along the path that the wave travels. Given the 

condition imposed in (2.9) by Fermat's principle, one can apply the calculus o f variations 

to the integrand in (2.8) to obtain a set o f differential equations that describe ray paths 

through a medium whose index o f refraction varies with position.

2.4 Application of Calculus of Variations

Consider the general functional /  in (2.10),
D

7 — /  F (y ,y ,x )d x . (2.10)

The value o f /  depends on the limits o f integration, the integrand function F (y ,y , x ), and 

the curve y (x ) . In many physical problems, the limits o f integration and the form o f the 

integrand function F (y ,y , x) are known so the only way to manipulate the value o f /  is to 

vary the curve y (x ). Further, in some cases the value o f /  is known to be an extremum or 

a stationary value. The statement that /  is stationary is equivalent to saying that first order 

changes in the curve y (x )  only produce second order changes in the value o f /, which 

restricts the form o f the curve y (x ). Mathematically, this condition is expressed as
D

5 / — 5 /  F (y ,y ,x )d x  — 0. (2.11)

It can be shown that for (2.11) to be valid, a differential equation called the Euler- 

Lagrange equation that is expressed in (2.12) must be satisfied:

dF d /d F \^ ^ y . (212 )
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For a complete derivation o f the Euler-Lagrange equation see Riley [2006] pp.835-836. 

Note that the Euler-Lagrange equation is a differential equation in y  because the function 

F is known. If  the integrand function in (2.10) depends on n  dependent variables, y 1_n, 

their derivatives, and a single dependent variable x, then n  separate but simultaneous 

Euler-Lagrange equations must be satisfied, each taking the form

For the purpose o f ray tracing, the integrand function F in (2.13) corresponds to the ray 

refractive index . In the ionosphere may be related to the phase refractive index ^ P 

as given by the Appleton-Hartree equation, which has dependent parameters including 

electron density and angle from the magnetic field that are in turn a function o f the 

independent spatial coordinates (x ,y , z).

2.5 Haselgrove Method

The principles o f Hamiltonian optics were first applied to the problem of 

determining oblique ray paths through an anisotropic ionosphere by Haselgrove. The 

results o f applying Haselgrove's method in Cartesian coordinates will be presented here 

and a detailed derivation o f this method may be found in Kelso  [1964] pp.331-339.

As discussed in the previous sections, Fermat's principle states that the phase path 

o f a ray is a stationary point, which in anisotropic media leads to set a set o f Euler- 

Lagrange equations relating the ray refractive index to various parameters. However, the 

ray refractive index is a function o f the phase refractive index ^ P and the angle 

between the ray (energy) normal and wave (phase) normal directions. The set o f Euler- 

Lagrange equations obtained from Fermat's principle is simplified by working with the 

phase refractive index ^ P instead o f . The Haselgrove equations governing ray 

propagation in the ionosphere are

(2.13)

d t
d(x,y,z) 

 ̂ d t

(2.14)
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where c is the velocity o f light, and u  and G are defined as

u  =  y.pn , (2.15)

and

G ( x , y , z , u x, uy , u z ) =  -1  |u | =  -1 u  =  1. (2.16)

As defined previously, the vector n  in (2.15) is a unit vector in the direction o f phase 

propagation so that u  has a magnitude equal to the local phase refractive index and is 

directed along the wave normal. The function G in (2.16) is the description o f a surface 

where at every point on the surface the product o f the magnitude o f the vector u  and the 

phase refractive index is unity. This surface is termed the wave normal surface. The six 

differential equations in (2.14) depend only on the integration variable t , position 

coordinates, direction o f the wave normal, and the phase refractive index [Kelso, 1964].

2.6 Ray Path Equations for a Cold, Collision-less Plasma

In the previous section, six differential equations governing ray propagation in 

Euclidean space were presented in terms o f position coordinates, wave normal direction, 

and the phase refractive index. A specific set o f differential equations used by ray tracing 

software is obtained by evaluating the right hand side o f (2.14) using the Appleton- 

Hartree equation for phase refractive index. As discussed in 1.3.3, the Appleton-Hartree 

equation for a cold, collision-less plasma is

, p 2 =  1 -------------------- £ S = 2 -----------  (2.17)
i - x - l r , z± |1r t4+ r ,2( i - x ) z} 2

Note from (2.17) and the previous definitions o f X  and Yt/ X that ^P is in general a

function o f electron density and the angle between the magnetic field and wave normal,

i.e. =  f ( d ,  n e). However, given that ne is a function o f position (x,y ,  z )  and the

angle 6 is a function o f the vector u  directed along the wave normal, the phase refractive

index can be written as ^P =  f  ( 0 (ux, uy , uz), ne ( x , y , z ) ) .  The two expressions of

interest in obtaining the differential equations used in the ray tracing software are the
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partial derivatives o f the wave normal surface function G with respect to position (x, y,  z)  

and the wave normal direction u.

The differential equations governing the wave normal vector u  in (2.14) used in

software are found by simplifying the te r m - c — . Noting that G =  — u  and only b po(x,y,z) fip

da
is a function o f position (x, y,  z),  the term - — reduces toOXk

dG _  - u  d^p _  - l  d^p dne , .
dxk iJ.p2 dxk iJ.p dne dxk . ( . )

dw
The positional derivatives -r-2- can be calculated directly from the density profile used inoxk

simulation and the factor can be derived from (2.17) as

where

dne

d Bp l  BC—AD
dne 2^p C2

A =  X ( 1 - X )
y

B =  — ( 1 - 2 X )ne

(2.19)

C =  1 - X - \ Y t 2 ± \ 1J t i  +  Yl2( 1 - X - ) 2~)12 ' (220 )

x t  ^2,4 X (1„4
D =  - i t T Y ‘2( 1 - x ) - t { 4 Y‘, + Y ‘2( 1 - x ) 2)

The ray position equations in (2.14) are similarly derived by considering the term 

dG 1
- — . Substituting the expression G =  — u  and applying the rules o f differentiation yields 
duk Bp

dG
duk

l  du u d^
y p duk Bp2 (2 .21 )

Noting that

and

duk duk G U*2 + Uyl + U 2 )  u ’ (2 22)
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then (2.21) reduces to

_9G_

9ufc
1 Ufc u d^p 30

Pp u pp2 90 9up

Finally, noting that |u | =  , the ray position equations in (2.14) may be written as

9(x,y,z) c r 9pp ae i
=  M b2 ae a J

(2.24)

d t
(2.25)

where the term can be shown from (2.17) to be

^  = Z ( W ) { W{ 1  -  X -  ±  1{iF t4 + yj2(1 -  Z )2} 1/2 (Ft 3F; -  2 ^ ( 1  -  Z )2)}, (2.26)

90
and the term - —  can be derived from the inner product relation 5  • it =  |# | | i t |  cos 0 to

be

90
9^^

5^
+  cos 6 —

B!|tt| |tt| sin 0’
(2.27)

where 5  is the local magnetic field.

In summary, using the Appleton-Hartree equation for a cold collisionless plasma 

the differential equations in (2.14) may be reduced to

d^x,y,z   1 9pp
0

(2.28)
dt pp dne 5(x,y,z) 

d(x,y,z) _  c
dt Pp2 ^x,y,z Mp

dp.p aa '
aa

where the partial derivative on the RHS are evaluated using (2.19), (2.20), (2.26), and 

(2.27).

1

2.7 Ray Tracing Software

The original version o f the ray tracing software used for the research presented in 

this thesis was developed at the John Hopkins University Applied Physics Laboratory. 

Given parameters specifying the ionospheric conditions and the desired number o f rays 

and ray elevation angles, the ray tracing code numerically integrates the differential 

equations governing ray propagation illustrated in (2.28) over a two-dimensional grid.
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The ionospheric density profile is modeled as a collection o f layers that are 

normally distributed in elevation. The user may manipulate the peak density, peak density 

altitude, and width o f each layer. In addition to the background profile, a variety of 

density perturbations may be added including sinusoidal perturbations, model gravity 

waves, and a model o f the HAARP induced perturbation. Note that the electron density 

grid is populated in a spherically symmetric manner in order to account for the curvature 

o f the earth.

The software is implemented in FORTRAN and consists o f a collection of 

subroutines and data files. The parameters specifying the ionospheric conditions and the 

desired number o f rays and elevation angles are passed to the software by modifying the 

appropriate text files prior to execution. A logical flow diagram of the main routine 

raytrace.f 'which serves as an envelope for the rest o f the subroutines is depicted in Figure

2.1. The subroutines and/or data files associated with each logical partition o f raytrace.f 

are also illustrated in Figure 2.1.
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raytrace.f

Figure 2.1: Logical flow diagram of envelope routine raytrace.f. Subroutines and data 
files at each stage are depicted.

2.7.1 Runge-Kutta Method

The cornerstone o f the ray tracing software is the numerical integration o f (2.28) 

using a fourth-order Runge-Kutta (RK4) method. Although more efficient methods of 

approximating solutions to ordinary differential equations (ODE's) are available, Runge-
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Kutta methods can be simply implemented and only require knowledge o f xn in order to 

compute xn+l .

The RK4 method approximates the solution to the initial value ODE problem

[X' ^ X) (222 )A  H - j  A  q

by using a sum of weighted slopes to estimate the value o f x ( t  +  h). For the discrete 

case, the RK4 approximation to the ODE in (2.22) is
fa

xn+1 =  xn +  1 (Fl +  F2 +  F3 +  ̂ 4) (2 .23)

where

Fi =  f  ( tn, xn)
1 l

F2 =  f ( t n +  ?h , xn + - F l )
2 2 . (2.24)

F3 =  f  ( tn +   ̂h, xn +  2 F2)
- F4 =  f ( t n +  h , xn +  F3)

Note that the factors Fl 4 are approximations to the slope x' ( t )  at the start, midpoint, and

end o f an interval o f width h . The RK4 method can be simply but tediously derived from

the Taylor series o f x ( t  +  h) and f ( t  +  h ,x  +  h f )  by including the terms up to the one

involving h 4. As the RK4 method replicates the terms o f a Taylor series expansion up to

h 4, it has a local truncation error o f 0 ( h 5). A truncation error o f 0 ( h n) implies that the

error converges to zero at a rate o f hn as the step size h approaches zero [Kincaid and

Cheney 2002].

The current ray tracing code applies the RK4 method given a hard coded step size 

in the software without monitoring the local truncation error. The precision o f the current 

ray tracing software would be improved by monitoring the local truncation error and 

dynamically altering the step size if  the error exceeds some threshold. One efficient 

method o f dynamically altering the integration step size is the Runge-Kutta-Fehlberg 

method which limits the truncation error at the cost o f two additional function evaluations 

over the RK4 method.
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Chapter 3 Estimation of Ground-Scattered Power from Ray Tracing1

3.1 Introduction

In this chapter we present a numerical method for calculating ground-scattered 

power from the results o f ray tracing analysis. Comparing estimates o f received power 

with measurements is a tool for studying ionospheric phenomena where the structure o f 

the electron density profile directly influences the received power profile. The motivation 

for developing a new method o f calculating ground-scattered power is discussed in 

Section 3.2 by illustrating the shortcomings o f the derivation presented by Bristow & 

Greenwald [1995]. The method presented here is based on a conservation o f energy 

approach and overcomes those shortcomings. In addition, we briefly introduce terrain 

cross section and a method o f modeling terrain cross section in Section 3.4.

3.2 Bristow &  Greenwald Method

Consider the radar geometry illustrated in Figure 3.1 where a pulse o f length t  is 

transmitted from the origin at the elevation angle a, refracted by the ionosphere, and 

scatters from the ground at a distance x.

1. We refers to the author and to co-author Dr. William Bristow. The content of Chapter 3 is 
included in an article published by the American Geophysical Union journal Radio Science. See: 
Theurer, T. E., and W. A. Bristow (2012), Observations and effects of artificial density layers on 
oblique high-frequency backscatter, Radio Sci., 47, RS2010, doi:10.1029/2011RS004861.
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c t /c o s (0)

X

Figure 3.1: Illustration of radar geometry used in derivation of ground-scattered power by Bristow & 
Greenwald 1995.

The radar transmits over a beam broad in elevation but restricted in azimuth to a beam 

width o f . The area subtended by the pulse on the ground is a function o f the incidence 

angle 6, total ray path length R, beam width , and pulse length t . Given the radar 

geometry illustrated in Figure 3.1, Bristow & Greenwald [1995] illustrated that the 

ground-scattered power could be calculated as

PA =  o 0Pty bcxAAG(a,  y ) f ( a ) f ( 0 )  s in (a )  s in (0 ) [ 8nR3 cos(d)}  l (3.1)

where a 0 is the surface backscattering coefficient, Pt is the total transmitted power, and 

G(a,  p )  is the antenna gain pattern as a function o f take-off angle a  and azimuth angle ^ . 

The term f ( a / 9 ) ,  labeled the focusing factor, in (3.1) accounts for the power focusing 

that is a function o f the reflecting layer structure. The focus factor term was derived by 

Bristow & Greenwald [1995] as

(3.2)
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and contains discontinuities at points where — sin2(0 ) approaches zero. In practice, it is

assumed that the incidence angle 6 equals the take-off angle a  which is restricted to the 

angular extent 5-45 degrees by the antenna gain pattern so that discontinuities in the 

focus factor are only introduced by sign changes in the term d x / d a .  Sign changes in 

d x / d a  are the result o f a non-monotonic relationship between ground range and take-off 

angle and physically correspond to the intersection o f rays on the ground. Numerically, 

these points o f discontinuity result in arbitrarily large calculated power returns when 

using the Bristow & Greenwald  [1995] method.

There are many common situations where the ionospheric conditions result in a 

non-monotonic relationship between ground range and take-off angle. For example, a 

strong E-layer in conjunction with an F-layer can produce two distinct regions o f ground 

scatter where there exists a non-monotonic relationship between ground range and take

off angle. Figure 3.2 (a-c) illustrates a ray path plot, x ( a )  plot, and the calculated 

ground-scattered power plot in such a situation. Note that the ground-scattered power 

plot in Figure 3.2 (c) contains curves for two sets o f take-off angles and demonstrates that 

discontinuities in f ( a )  result in an arbitrarily large received power, which in the limiting 

case approaches infinity.



Figure 3.2: Comparison of (a) ray path plot, (b) x(a) plot where x is the ground distance to the scattering point for a ray launched at angle a, and (c) the 
calculated ground-scattered power plot given a background ionosphere with a strong E-layer in conjunction with an F-layer. Note (c) contains curves for two sets 
of take-off angles to illustrate the arbitrarily large power return calculated using the Bristow & Greenwald [1995] method at time delay range locations where 
dx/da changes sign.

to
to
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3.3 Beam Method

The derivation presented by Bristow & Greenwald  [1995] is simply obtained from 

theory and can be readily applied to the results o f a ray tracing analysis, but it fails to 

gracefully handle the common case where there is a non-monotonic relationship between 

ground range and take-off angle. A new approach based on simply the conservation of 

energy is presented here.

The distribution o f power per unit solid angle o f a transmitted pulse o f power Pt is 

St (a)  =  Pt G ( a ) / [ 4 n ]  (W/ f i )  where G(a)  is the normalized antenna gain. In an 

unconstrained medium, power spreads in azimuth and elevation such that the power per 

unit area at a distance o f R is StR -2 (W /m 2). Here we assume power spreads normally 

in the azimuth direction so that the power per unit length-angle in elevation is StR -1 

(W /( ra d  • m )). However, the spreading in elevation is a function o f ionospheric 

structure. Assuming that the target fills the beam in azimuth, the total power scattered 

from the illuminated area per unit elevation angle is (St R-1) ( R ^ B) =  St p B which has 

units o f (W /ra d )  and illustrates that scattered power is conserved in the azimuth 

dimension. The total scattered power from the illuminated area is

Ps ( t ) =  <Pb Q  ^ 0(u ) St (u ) du  (3.3)

where a 0 is the surface backscattering coefficient to be discussed in section 3.4 and the 

limits o f integration correspond to the illuminated angular extent. Given a transmitted 

pulse o f length t  and the time delay to the scattering point as a function o f elevation 

angle, t deiay(a)  or equivalently a ( t deiay), the angular extent in elevation that is 

illuminated at time t  is a ( t deiay) \ t_ <  a  <  a ( t deiay) \ t . Figure 3.3 graphically 

illustrates the relationship between total scattered power and the plots o f St ( a ) R - 1 (a)  

and ^ ( tdeiay) .
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Figure 3.3: Graphical illustration of calculating scattered power in (3.3) from plots of (a) a(tdeiay) and 
(b) St (a)R-1 (a). Plot (a) illustrates an example of the angular extent that corresponds to the projection of a 
pulse on the ground at a given time. Plot (b) depicts the energy contained in the angular extent in (a) as the 
shaded area under the curve St (a)R-1(a).
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Note that ionospheric focusing occurs through the spacing o f the limits o f integration in

(3.3). In situations where t deiay(a)  is not monotonic, t deiay(a)  can first be divided into 

monotonic segments so that a ( t deiay)  is a single-valued function and Ps (t )  is then the 

sum of the results o f (3.3) for each segment.

Given the expression in (3.3) for the scattered power, the power received is found 

in a similar fashion. Assuming isotropic re-radiation in the upper half-plane, the 

distribution o f scattered power per unit solid angle is a constant Ss =  Ps/ 2 n  (W /fi). 

Again we assume power spreads normally in azimuth but is a function o f ionospheric 

structure in elevation so that the power per unit length-angle in elevation is SsR -1 

(W /( ra d  • m )). The radar presents a fixed effective area Aa (m 2) assumed to be a 

function o f elevation angle but uniform with respect to azimuth within the beam width. 

Let Lv  (m) be the effective length o f the antenna in the azimuth dimension so that the 

power per unit elevation angle is (SsR-1)(L^)  =  SsR -1L^ (W /rad ). The total power 

received may then be found by integrating over the elevation angular extent from the 

scattering area that subtends the illuminated length o f the antenna in elevation which may 

be formulated as

PR(t )  =  Q  LySsR - 1 (u)G(u)  du =  Lv Ss Q  R- 1 (u)G(u)du.  (3.4)

In (3.4) we include the antenna gain pattern G(u)  in the integrand to account for the 

dependence o f the antenna illuminated area on elevation angle. The effective length of 

the antenna in elevation is proportional to the wavelength and on the order o f tens of 

meters in this study. An effective length on this scale size corresponds to a minute 

angular extent from the scattering area so that (3.4) may be approximated as

PR(t )  =  CL^SsR - 1 ( a ( t ) ) G ( a ( t ) )  (3.5)

where we assume that the integrand in (4) is constant over a minute angular extent C 

(rad ). The expressions in (3.3) and (3.5) can be combined to give
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PR( t ) =  { 8 n 2} 1Pt (pBCLv R 1( a ( t ) ) G ( a ( t ) ) ( Q 0 O(? ) G ( v ) d v ) .  (3.6)

An important note is that in the applications studied here simulation results are expressed 

as a signal-to-noise ratio (SNR) where the noise level is scaled to produce the best fit o f 

simulated SNR profiles to measured SNR profiles. Therefore, the constant terms that 

appear in (3.6) have no bearing on the results. A comparison o f  the calculated received 

power from a smooth ionosphere given identical parameters using the alternative 

derivations presented in (3.1) and (3.6) is illustrated in Figure 3.4.

1100 1200 1300 1400 1500 1600 1700 1800 1900

Time Delay Range (km)

Figure 3.4: Comparison of calculated received power under identical operating parameters using Bristow 
& Greenwald [1995] derivation in (3.1) and the alternative derivation presented in (3.6).

Figure 3.4 illustrates that the new method produces a power profile that decays 

more rapidly than the Bristow & Greenwald [1995] derivation and differs near the skip 

distance in amplitude and trend. The Bristow & Greenwald  [1995] derivation results in a
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peak value at the skip distance range o f ~1050 km with an amplitude o f 55 dB that 

exceeds the dimensions o f the graph in Figure 3.4 before monotonically decreasing. The 

large amplitude at the skip distance in the Bristow & Greenwald  [1995] derivation is the 

result o f a discontinuity in the focus factor at this range as discussed in section 3.1. The 

alternative derivation in (3.6) results in a power profile that increases to a local maximum 

at ~1100 km of 30 dB before monotonically decreasing at a slightly greater rate than 

given by the Bristow & Greenwald  [1995] derivation. The smearing o f the skip distance 

peak in the power profile given by (3.6) is the result o f a convolution effect o f the spatial 

dimensions o f the transmitted pulse and the illuminated area. Near the skip distance, the 

illuminated area is smaller than the projection o f the transmitted pulse on the ground. 

Equivalently, at t 0 where ( t 0 — tminimum) <  t , the limits o f integration in (3.3) are 

[a1, a 2] where a 1 =  a ( t deiay)\ and a 2 =  a ( t deiay)\ . The effect is that the
m̂inimum 10

scattered power increases up until the point that the entire transmitted pulse is projected 

onto the ground and the limits o f integration in (3.3) are governed by the pulse 

dimensions. A similar effect is not witnessed in the Bristow & Greenwald [1995] 

derivation because the method is derived for the case that the entire pulse is projected 

onto the ground. The presence o f a skip distance maximum preceded by increasing 

power samples is consistent with measured results. The discrepancy between the trend of 

the power profiles given by the Bristow & Greenwald [1995] derivation and the method 

presented here are not investigated further as it will be shown in later chapters that power 

profiles generated using the new method produces curves that accurately approximate the 

trend o f measured results.

3.4 Terrain Cross Section

An influential factor in the received ground scatter power is the ground cross 

section a. Given that the ground is a distributed target, the ground cross section is a 

function o f the effective scattering area and can be written as

a  =  a 0Ac (3.7)
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where o 0 (m 2/ m 2) is the surface backscattering coefficient per unit area and Ac (m2) is 

the effective scattering area [Peebles, 1998]. In general, a 0 is a function o f angle of 

incidence, polarization, frequency, roughness, and permittivity at the scattering point 

[Moore, 2008]. Although various theoretical approximations o f a 0 have been derived, 

the complicated nature o f the scattering coefficient lends itself to an experimental 

approach where distributions o f a 0 are measured and used to derive empirical models. 

Empirical models o f a 0 for various terrain classes, polarization, and frequency are 

provided by M oore et al. [1980], Nathanson et al. [1991], and Ulaby [1980]. Figure 3.5 

illustrates a comparison o f empirical models o f a 0 as a function o f incidence angle for 

similar parameters given by the aforementioned authors.
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Incidence A n gle  (degrees)

Figure 3.5: Empirical curves of a0 as a function of angle of incidence using models presented by Moore et al. [1980], Nathanson et al. [1991], and 
Ulaby [1980].

29
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3.4.1 M odeling Terrain Cross Section

Several methods o f estimating and incorporating a terrain cross section into the 

simulation o f the ground scatter return profile were investigated with the goal o f isolating 

power enhancements due to ionospheric phenomena from those due to variations in a 0.

Ground cross section estimates based on empirically fitted curves for <r0( 0 , / )  

given by Ulaby [1980] and Nathanson et al. [1991] were both implemented. The

empirically fitted curve for <r0( 0 , / )  provided by Ulaby [1980] is valid for 6 G [0,80]

degrees and f  G [1,18] GHz and the empirically fitted curve provided by Nathanson et 

al. [1991] is valid for 6 G [30,90] degrees and f  G [1,2] GHz. However, lacking an 

empirical model o f <r°(0,/ )  for HF-band, the curve o f < r°(0 ,1 GHz) from both models 

was used for calculations. In addition, we note that the results obtained using these 

empirical models are crude because the models are based on scatter from vegetation 

and/or rural farmland which are significantly different than Alaskan terrain. The value of 

incidence angle 6 with respect to the surface normal was calculated from ray tracing 

parameters for both a smooth, spherical earth and also from a terrain profile generated 

with digital elevation model (DEM) data. The DEM  data used in analysis was taken at a 

3-arc second (~100 m) resolution along the bore-sight o f the radar. Given a terrain 

profile, the surface normal can be calculated using the geometry depicted in Figure 3.6 

(a) and equations (3.8)-(3.12).

a =  REarth+ h 1  (3.8)

b =  REa r t h + h2 (3 .9)

c =  ^ a 2 +  b 2 — 2ab cos q  (3.10)

Y =  s in - 1 ( ^ s i n ^ )  (3.11)

ft
e = n  — (Y +  1) (3.12)

Note that the surface backscattering coefficient as defined in (3.7) is given per unit area. 

However, in this application the total scattered power is found by integrating over an 

angular extent as depicted in (3.3) and (3.4). Conversion o f a 0 to units o f per radian is 

achieved by multiplying the backscattering coefficient by the area per unit elevation
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angle. Considering the geometry o f Figure 3.6 (b), the illuminated area can be expressed 

in terms o f elevation angle as

A =  ( R y B)X =  (RtyB) ( RAa[ s i n ( a ) } -1), (3.13)

so that the surface backscattering coefficient per unit radian is

<7 ° =  A a 0 =  (R ^ B) ( R( 1) { sin(a ) } - 1 ) a 0 =  a 0R2^ B{sin(a ) } - 1 . (3.14)

Figure 3.6: Illustration of geometry pertinent to modeling terrain cross section. (a) illustrates the geometry 
of surface normal angle calculation from DEM data necessary to determine angle of incidence related by 
equations (3.8)-(3.12). (b) illustrates geometry relating elevation angle to distance along the ground 
necessary for conversion of a0 to units of per radian in equations (3.13)-(3.14).
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Chapter 4 Characterizing Artificial Layers1

4.1 Introduction

HF ionospheric heating experiments at HAARP appear to produce bottom-side 

plasma density enhancements. The signature associated with the enhancement is the 

formation o f an optical ring that results from the excitation o f electrons at energy levels 

consistent with ionization production [Pedersen et al., 2009]. The results o f ray tracing 

illustrate that modeling the artificial bottom-side density layer as a density perturbation 

Gaussian distributed in the horizontal and vertical directions results in the deflection of 

rays into a ring structure consistent with optical observations during heating experiments 

[Pedersen et al., 2009].

Independent observations o f the production o f artificial density layers at the 

HAARP station located in Gakona, Alaska were sought from the ground scatter return 

measured by the Kodiak, Alaska SuperDARN. The Kodiak SuperDARN is uniquely 

located to observe density perturbations due to its field o f view with respect to the 

Gakona HAARP station as illustrated in Figure 4.1 and has been used in previous studies 

to analyze the time scales o f irregularities produced by heating experiments [Kendall et 

al., 2010]. The potential effects o f an artificial density layer on received ground scatter at 

the Kodiak SuperDARN were investigated through ray tracing by inserting a model 

artificial layer into the density profile and using the resultant ray path lengths and time 

delays to calculate from (3.6) the expected ground scatter return. The expected ground 

scatter return was then compared to the observed ground scatter return during a period of 

time when high-power HF heating experiments were performed.

1. The content of Chapter 4 is included in an article published by the American Geophysical 
Union journal Radio Science written by the author and co-author Dr. William Bristow. See: 
Theurer, T. E., and W. A. Bristow (2012), Observations and effects of artificial density layers on 
oblique high-frequency backscatter, Radio Sci., 47, RS2010, doi:10.1029/2011RS004861.
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Figure 4.1: Map of the location of the Gakona, HAARP station with respect to the field of view in beam 
direction 9 of the Kodiak SuperDARN.

4.2 M easurement Interval

One period that high-power HF heating experiments were conducted with the 

potential to produce artificial layers was 18 November 2009 between 01:17-01:34 UT.

An RTI plot o f the return power observed by the Kodiak SuperDARN during this interval 

is illustrated in Figure 4.2.
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Figure 4.2: RTI plot of return power observed by Kodiak SuperDARN on 18 November 2009 between 
01:15-01:40 UT.

During the interval 01:17-01:34 UT, HAARP was operated at 2.92 M Hz with O- 

mode polarization at a power o f ~440 MW  ERP, which is consistent with test conditions 

under which artificial layers had been generated previously [Pedersen et al., 2010]. In 

Figure 4.2, the high-power back scatter observed in the range [500,800] km is an 

indicator o f high-power HF heating and results from specular reflection from plasma 

irregularities in regions o f instability. Note that the back scatter power present from 

[1100,1800] km can be divided into two regions, the first with a skip distance in the range 

[1100,1200] km and the second with a skip distance between [1500,1600] km in range. 

Ionograms measured during the period 1:15-1:35 UT demonstrate that the background 

ionosphere is composed o f distinctive E and F layers. The results o f a ray tracing 

simulation based on measured ionogram characteristics is illustrated in Figure 4.3.
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Figure 4.3: Ray path plot given ionospheric profile based on UT 01:17-01:34 ionosondes at HAARP on 18 
November 2009. The ray path plot indicates that the ground-scattered power is divided into two distinct 
regions which is supported by the structure of the RTI plot in Figure 7.

Note that the ray path plot in Figure 4.3 clearly depicts two distinct regions of 

ground scatter return from E-region deflected rays at low elevation angles and from F- 

region deflected rays at higher elevation angles, which supports the structure o f the RTI 

plot in Figure 4.2. Researchers have postulated that artificial density layers form when 

the transmit frequency, f T, matches the upper-hybrid frequency, f uh, and/or multiples of 

the electron gyro frequency, f ce [Pedersen et al., 2010]. These characteristic plasma 

frequencies correspond to electron densities obtained in the F-region during the time 

period in question and consequently the simulation results will be limited to calculating 

the expected ground scatter return due to rays deflected from the F-region.

A comparison o f the F-region simulated ground scatter return with the measured 

return power during the interval UT 01:32:34-01:32:35 on 18 November 2009 is 

illustrated in Figure 4.4.
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Figure 4.4: Comparison of F-region simulated ground scatter return using various terrain cross section 
models with the measured return during UT 01:32:34-01:32:35 on 18 November 2009. Note that the noise 
level of the simulation results was set such the the simulated profiles matched the mean of the measured 
profile.

Note from Figure 4.4 that the measured profile features very large fluctuations in power 

between range bins. Furthermore, a comparison o f consecutive integration intervals also 

demonstrates that there is a large variation in power at the same range bin over time. 

Despite the large natural fluctuations in the measured profile in Figure 4.4, note that the 

simulated ground-scattered power profiles accurately approximates the skip distance 

location and the trend o f the mean o f the measured profile regardless o f terrain cross 

section model implemented. It will be illustrated that the observed ground-scattered 

power over the time interval that was studied had a standard deviation o f approximately 4 

dB at all time delay ranges. Due to the large variance in the measured return power and 

the comparatively small difference between the simulated results using either the
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Nathanson [1991] or Ulaby [1980] ground cross section models instead o f a uniform 

ground cross section, a uniform ground cross section will be assumed for all results 

presented here.

4.3 Artificial Layer Model

Given a brief comparison o f the simulated and measured ground-scattered power 

as a function o f range due to the background density profile, the effects o f a model 

artificial layer on the simulated ground-scattered power can be investigated. Figure 4.5 

illustrates an ionogram from 18 November 2009 at UT 01:26:40 that illustrates an 

artificial density layer in addition to the background density profile.

Figure 4.5: Ionogram at UT 01:26:40 on 18 November 2009 illustrating an artificial density layer in 
addition to background profile. Ionogram publicly available from the HAARP webserver at 
http://www.haarp.alaska.edu.

http://www.haarp.alaska.edu
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The artificial density layer present in Figure 4.5 was simulated in ray tracing by inserting 

a perturbation in the density profile grid. The perturbation was Gaussian distributed in 

horizontal and vertical directions. The peak density, peak density altitude, and half

widths in the horizontal and vertical directions were all free parameters. In order to 

maintain consistency with previously published results, the horizontal and vertical half

widths were chosen to be 30 km and 8 km respectively [Pedersen et al., 2009]. The peak 

density was estimated from ionograms to be in the range 2.5-3.0 MHz. Note from Figure

4.6 (a) that a model artificial density layer produces a power reduction region with a 

width o f 60-100 km followed by a smaller amplitude power enhancement region with a 

width o f 80-120 km. The width o f the power reduction and enhancement regions 

increases as the artificial layer descends in altitude because lower elevation angle rays 

subtend a larger time delay region than the same angular extent at higher elevation 

angles.

Before comparing simulation results to the measured data, the format o f the 

measured data must be considered. In this study, the measured data from the Kodiak 

SuperDARN was analyzed in fitted  form. Fitted data consists o f the measured return 

signal from a number o f transmit sequences averaged over an integration interval. The 

fact that the return signal is being averaged over a period o f time has practical 

implications. Optical observations during high-power HF heating experiments 

demonstrate that after artificial density layers form, the layers rapidly descend at rates up 

to 0.26 km/s until reaching an altitude o f ~150 km where recombination processes exceed 

ionization production and the density perturbation dissipates [Petersen et al., 2010]. The 

effect o f integration can be approximated in the simulated ground-scattered power results 

by averaging the ground-scattered power profiles calculated with the density perturbation 

vertically displaced by the product o f the rate that the density layer descends and the 

length o f the integration interval. The effect o f the vertical displacement o f an artificial 

layer over an integration interval on the simulated ground-scattered power profile is 

illustrated in Figure 4.6 (b). Figure 4.6 (b) illustrates that the simulated profiles
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generated with the artificial layer displaced by 0.25 km in altitude differ by fractions o f a 

decibel. As the effect o f averaging produces a negligible change in the ground-scattered 

power profile compared to natural fluctuations, it will be ignored in all results presented 

here.
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Figure 4.6: Plots illustrating the effects of artificial layer altitude and vertical displacement on simulated 
ground-scattered power profiles. (a) provides a comparison of simulated ground-scattered power as a 
function of range including model artificial layers at various altitudes. (b) illustrates a comparison of 
ground-scattered power as a function of range given a model artificial density layer at altitudes displaced 
by the product of the estimated layer velocity and the integration interval of the Kodiak radar. The 
averaged profile depicted in (b) provides an estimate of the effect that the artificial layer vertical movement 
has on the measured ground-scattered power during an integration interval.
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4.4 M easurement Ambiguity

Given a description o f the effects o f a model artificial density layer on the 

simulated ground-scattered power, the measured data was examined for power reductions 

that may be due to focusing by an artificial layer. A  challenge faced in determining 

possible power reductions due to focusing by an artificial layer was the natural temporal 

distribution o f received ground-scattered power. For example, Figure 4.7 illustrates the 

mean and standard deviation o f back scattered power as a function o f range on 18 

November 2009 during the interval UT 01:20:00-01:25:00, which is during the period 

HAARP was heating but prior to any evidence o f artificial layers in ionograms. In Figure 

4.7, the mean and standard deviation in the range [1600, 1800] km where focusing from 

an artificial layer might be expected to create power enhancements is approximately 7 dB 

and 4 dB respectively. Application o f Chebyshev's inequality with these parameters then 

implies that one could expect received power levels anywhere between 1-13 dB 56% of 

the time at these ranges, which demonstrates the ambiguity in discerning a power 

enhancement rather than a natural fluctuation.

1500 1550 1600 1650 1700 1750 1800 1850 1900 1950
Range (km)

Figure 4.7: Mean and standard deviation of return power observed by Kodiak SuperDARN on 18 
November 2009 during the time interval UT 01:20-01:25.
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4.5 Results

Despite the difficulties mentioned, several measured profiles were identified that 

contained possible power reductions due to focusing by an artificial layer. Simulated 

profiles were generated to re-create the power reductions observed in these measured 

profiles. A  model artificial layer was included in the density profile and the parameters 

o f the artificial layer were varied in an attempt to fit the resultant simulated profile to the 

mean o f the measured profile. A  comparison o f the simulated profiles with and without a 

model artificial layer and the measured profile during the integration interval at UT 

01:26:58 is depicted in Figure 4.8.

Time Delay Range (km)

Figure 4.8: Comparison of Kodiak SuperDARN observed return power during 18 November 2009 during 
UT 01:26:58 integration interval with simulated ground-scattered power profiles generated with and 
without model artificial layers.
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Note in Figure 4.8 that both simulated profiles accurately approximate the location o f the 

skip distance maximum and the trend o f the mean o f the measured profile outside o f the 

regions annotated as power reduction or enhancement regions. At ranges between [1620, 

1700] km corresponding to the artificial layer induced power reduction region, the 

simulated profile generated without a model artificial layer overestimates the mean of the 

measured profile whereas the simulated profile generated with a model artificial layer 

approximates the mean o f the measured profile. Similarly, at ranges between [1700, 

1780] km corresponding to the power enhancement region, the simulated profile without 

a model artificial layer underestimates the mean o f the measured profile whereas the 

simulated profile generated with a model of the artificial layer approximates the mean of 

the measured profile. Given the similarity between the simulated profile including a 

model artificial layer and the measured profile, an estimate of the actual dimensions and 

location o f the artificial layer is provided by the model parameters listed in Figure 4.8.

Some discrepancy between the location, width, and amplitude o f the simulated 

and observed power reductions is due to the oversimplification of the artificial density 

layer model. W hile the evolution o f the artificial density layer in altitude has been 

discussed and found to be negligible, the spatial evolution of the density perturbation has 

been neglected. Optical observations during HF heating experiments illustrate that the 

interior o f an artificial density layer is highly structured [Pedersen et al., 2010]. 

Specifically, the interior o f an artificial density layer contains field-aligned filaments that 

evolve over the lifetime o f the artificial density layer [Pedersen et al., 2010].

4.6 Conclusions

In this chapter, the estimated ground-scattered power profile generated using a 

simple model of an artificial layer was compared to the measured return power profile 

during a time interval where an artificial layer was present in ionograms. It was found 

that a simple model of the artificial layer could be used to generate a simulated ground-
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scattered power profile that contained a power reduction o f the appropriate width and 

location as the power reduction observed in the measured data.

However, a number o f challenges presented ambiguity in the results. Foremost, it 

was found that the observed return power naturally fluctuates over a wide range of 

values, which limits the ability to discern enhancements. Future work might include 

quantifying the natural variation in ground-scattered power through a M onte Carlo 

approach o f varying the ionospheric density in a random fashion and observing the 

resulting spread o f simulated ground-scattered power. In addition, the model o f the 

artificial density layer used in simulations is an oversimplification that does not account 

for the evolution o f the artificial layer density and structure. Although some encouraging 

simulation results have been illustrated, the combination o f these factors make the 

identification o f power enhancements in ground-scattered power return due to artificial 

layers a challenging task.
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Chapter 5 Statistical Properties of Oblique HF Ground Scatter1

5.1 Introduction

HF radar ground scatter measurements made by the SuperDARN radar located in 

Kodiak, AK exhibit fluctuations in power over short periods o f time in which the average 

ionospheric conditions appear to be static. To illustrate, Figure 5.1 (a) depicts the range- 

time-intensity (RTI) plot o f signal-to-noise ratio (SNR) in beam direction 9 on 16 

October 2009 between UT 00:25:00-00:40:00 and Figure 5.1 (b) illustrates a time series 

o f 816 samples taken from a range bin in the skip distance region. Although the RTI plot 

in Figure 5.1 (a) illustrates that the ground-scattered power appears to be relatively 

uniform over the time interval, the corresponding time-series plot o f observed SNR at a 

particular range bin in Figure 5.1 (b) has a sample standard deviation o f more than five 

decibels. The sample mean in Figure 5.1 (b) is 28.4 dB above the estimated noise level 

which indicates that the fluctuations in observed power are not simply the result o f noise, 

but rather the result o f some fluctuation o f the target or o f the index o f refraction along 

the propagation path from the radar to the ground scatter location and back. Since the 

fluctuations o f the ground scatter cross section at HF are expected to be small, we assume 

the observed fluctuations are due to the latter effect.

1. The content of Chapter 5 has been submitted as an article to the American Geophysical Union 
journal Radio Science and is under review at this time. The article was written by the author and 
co-author Dr. William Bristow.
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Figure 5.1: (a) depicts an RTI plot of lag-zero power measured in beam direction nine at Kodiak on 16 
October 2009 UT 00:25:00-00:40:00 while (b) depicts the time-series of observed power at a range of 1260 
km along with sample mean and standard deviation levels. Time-series samples in (b) are spaced by the 
integration period of 1 second.
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In this study, a M onte-Carlo approach to quantifying observed distributions of 

ground-scattered power has been investigated using ray-tracing techniques. Four 

influential random processes were considered in modeling the expected distribution of 

ground-scattered power. These processes include a time-variant propagation path due to 

random electron density fluctuations, random signal polarization, noise, and data 

processing. Using the numerical technique o f estimating ground-scattered power from 

ray tracing results presented in Chapter 3, simulated distributions o f ground-scattered 

power were generated for randomly perturbed ionospheric conditions. Subsequently, the 

effects o f a random signal polarization, noise, and data averaging were modeled as 

transformations o f the probability density function (PDF) obtained from considering a 

time-variant propagation path. Sample estimates o f the mean and standard deviation 

obtained from simulation and from measured distributions are compared to analyze the 

validity o f the models and obtain an estimate o f electron density fluctuations in the 

ionosphere. An accurate characterization o f the expected ground-scatter distribution has 

important applications for any HF radar work involving target discrimination.
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5.2 Simulation Models

The objective o f this study was to re-create the ground-scattered power 

distributions observed by the Kodiak SuperDARN radar. At a given range bin, the 

distribution o f ground-scattered power observed over a short interval o f time is a function 

o f several random processes including propagation path, signal polarization, noise, and 

data processing. A discussion o f how each o f these random processes is modeled in 

simulation follows.

5.2.1 Electron Density Perturbations

Perturbations in electron density correspond to perturbations in the group 

refractive index seen by a radar pulse as it traverses the ionosphere. The perturbations in 

group refractive index create focusing effects that either enhance or diminish the received 

power. Therefore, the amount o f ground-scattered power observed by a radar at a given 

sample time during two different measurement intervals will vary if  the background 

electron density is perturbed between measurement intervals. Consequently, a randomly 

fluctuating ionospheric density profile will produce a distribution o f observed ground- 

scattered power.

In this study, ray tracing was performed using software that numerically integrates 

the equations o f Hamiltonian optics over a two dimensional grid. A randomly fluctuating 

ionosphere was modeled by perturbing the background electron density profile grid used 

by the ray tracing software. Assuming that electron density perturbations occur 

perpendicular to the local magnetic field and considering the high latitude location o f the 

Kodiak radar, perturbations in simulation were restricted to the horizontal direction. 

Specifically, the two dimensional density grid was assumed to be composed o f M  

columns and the background density profile o f each column was perturbed by the factor 

(1 +  s)  w hereM values o f £ were drawn from a random distribution. Figure 5.2 

illustrates a ray path plot where the background density profile has been perturbed given
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column widths o f 5 km and values o f e drawn from a zero mean Gaussian distribution 

with a standard deviation o f 5%, ^ (0 ,5 % ).

500 1000 1500 2000 2500
Range (km)

Figure 5.2: A ray path plot illustrating a randomly perturbed ionospheric density profile. The amplitude of 
the perturbations is (1 + e) times the background density where e is distributed according to ^(0,5°%). The 
perturbations widths are 5 km in the horizontal direction.

Ground-scattered power is estimated from ray tracing results using the technique 

described in Chapter 3. The process o f randomly perturbing the background electron 

density and calculating a resultant ground-scattered power profile was repeated N  times 

to generate a distribution o f ground-scattered power at each time delay range where 

observations are made. Unless otherwise mentioned, N =  104 trials are performed for a 

given set o f perturbation parameters in this study.
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5.2.2 Random Polarization

The ionosphere is a birefringent medium where phase velocity depends on 

polarization. The difference in phase velocities for ordinary and extraordinary 

polarizations in the ionosphere result in a phenomenon termed Faraday rotation. W hen a 

linearly polarized signal propagates through the ionosphere the direction of polarization 

will rotate through an angle 6 given by

0 = 1 k ( P o - P x ) (5.1)

where k is the free space propagation constant and P0/x are the phase paths for the 

ordinary and extraordinary modes [Budden, 1988]. Due to Faraday rotation, the signal 

that is incident on the ground after propagation through the ionosphere will have 

components in both the vertical and horizontal polarizations so that we may assume the 

back-scattered signal also contains components in both polarizations. Here we model the 

received signal at the antenna as the sum of two transverse components that are rotated 

from a reference plane by the Faraday rotation angle 6 as illustrated in Figure 5.3.

Figure 5.3: Geometry relating the incident backscattered signal to the reference frame. The angular 
rotation d between the received signal polarization axes and the reference frame is assumed to be due to 
Faraday rotation.
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The general expression for the total field incident at the antenna is

Et =  E//COs(wt) +  E _|_ cos(m t +  (5.2)

where any signal polarization may be formed by appropriately modifying the transverse 

field amplitudes E//  /  E and the relative phase shift ^  between these components. If 

we assume the antenna is linearly polarized along the x-axis, the field seen by the antenna 

is the projection of the total electric field onto the antenna, which is

EX =  E// cos B cos(m t) +  £_|_ sin B cos(m t +  ^ ) .  (5.3)

The ratio of time-average power received over incident power may be expressed as

nfa  n (Ex2) _  cos2 0+p2 sin2 0+2p cos 0 sin 0 cos(<p) , .
P (0,p ,  V) = J ^ - T ) = ------------------- — 2-------------------  (5 4 )

where the variable p  is the ratio o f transverse field amplitudes p  =  E |_ / £ / / .  Note that 

P is a function o f the three random variables 6, p,  and ^ . The distribution o f 6 may be 

found from ray tracing results using the expression in (5.1). However, the distributions 

o f p  and ^  are related to the complex scattering coefficients o f the ground and do not 

have a simple representation. W e approach this problem instead by assuming ^  and p  to 

be independent RV's with assumed distributions. Due to the complexity of the problem 

we assume the distribution o f  ̂  to be uniform over a range [0,2^]. For the PDF o f p  we 

choose the general exponential distribution of the form

i -£
Pp(P ) = - e ^  (5 .5)

which is a function o f the single parameter p. If  we let p  ^  0, then pp (p)  approaches a 

delta function at zero which corresponds to a received signal that is linearly polarized 

along what we have denoted the parallel axis in Figure 5.3. In the limit that p  ^  ro, 

pp (p)  approaches a uniform distribution, which would correspond to a received signal 

that whose ratio o f transverse amplitudes may take any value in the range [0, ro] with 

equal probability. Therefore, the choice o f an exponential distribution for p  provides a 

convenient method of testing a variety of cases by varying a single parameter.
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Given distributions o f p  and ^ ,  (5.4) may be averaged over these parameters to

obtain

2n  radians. In section 5.3, we will investigate the dependence o f the results on the form 

o f the distribution pp (p).  Given the PDF o f 6 from ray tracing results and the constant 

coefficients A and B for a given distribution pp (p),  the PDF o f P is found from the RV 

transformation denoted in (5.6).

After obtaining a distribution o f incident power Sj from ray tracing results as 

described in the section 5.2.1, the distribution o f received power may be formulated as 

the product

5.2.3 Noise

The measured distribution o f ground-scattered power is a function in part of 

various noise processes throughout the radar system. If  the random noise is assumed to be 

additive and independent o f the ground scattered signal then the overall variance o f the 

received signal is simply the sum of the variance o f the ground scattered signal and the 

variance o f the noise. In addition to the effect o f additive noise, the measured results 

presented in this study are influenced by the fact that power is expressed in decibels

P(0)  =  A cos2 6 +  B s in 2 6 

where the coefficients A and B are given by

(5.6)

(5.7)

Note that P(0)  is independent o f  ̂  when ^  is assumed to be uniformly distributed over

SR =  SjP.

Note that if  P and Sj are transformed to a logarithmic base then (5.8) becomes

log SR =  log S ,P  =  log Sj +  log P , 

and P\ogsR(x)  can be expressed as

P\ogSR(X) =  PlogP (x ) * P\ogs,(x).

(5.8)

(5.9)

(5.10)
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above an estimated noise level. The effects of noise on the observed distribution will be 

discussed in terms of the separate effects of 1) addition of random noise power and 2) 

normalization by a random noise estimate.

5.2.3.1 Additive Noise

Consider first that the received signal at the antenna is converted into baseband 

in-phase (I) and quadrature (Q) components. If  the assumption is made that the band

pass noise is additive, white, and Gaussian (AWGN), then the baseband signal has noise 

components nj and n Q in the I  and Q dimensions that are identically distributed zero- 

mean Gaussian random processes, i.e. ^ ( 0 , a).  In addition, if  the power spectrum of the 

signal of interest is symmetric about the modulation frequency, then it can be shown that 

the low-pass noise components in the I  and Q dimensions are uncorrelated and 

independent [Carlson et al., 2002]. The total noise power under these assumptions is then 

given by

Up =  n 2 +  n Q2. (5.11)

Considering that nj and n Q are identically distributed zero-mean Gaussian random 

variables, pnp(x)  can be shown to be

1 __
Pnp(X) =  Pn,/Q2 * Pn,/Q2 = ^ 2 e ^  , X -  0 . (512)

Note (5.12) can be derived by finding the square o f a Rayleigh distribution. Given the 

distribution o f pnp(x)  and the distribution o f the received signal PsR(x)  derived by 

considering the effects of a time-variant propagation path and a random signal 

polarization, the distribution o f the sampled signal, pSM(x),  is the convolution o f the two 

component distributions:

PsM(x ) =  PnP(x ) * PsR(x).  (5.13)

In (5.13) it is important to note that the distributions o f pnp(x)  and pSp(x)  correspond to 

linear values o f the respective RV's. In Section 5.2.2 we found P\ogSp(x) so that pSp(x)  

may be found by a RV transformation from decibels to linear units.
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5.2.3.2 Noise Normalization

In standard operation, SuperDARN radars transm it multiple-pulse sequences and 

calculate the autocorrelation function (ACF) o f the backscattered signal. The ACF from 

N  transmit sequences are averaged together and a fitting method is used to calculate 

parameters including Doppler velocity and spectral width at each range bin. The ten 

lowest power (un-fitted) range bins are averaged together and interpreted as an estimate 

o f the noise level. Power values are then expressed in decibels above the estimated noise 

level.

Assuming that noise samples from different transm it sequences are independent 

and identically distributed, the noise power distribution after averaging N transmit 

sequences together can be found by convolving pnp(x)  in (5.12) with itself N — 1 times 

and scaling by a factor o f 1 /N  to yield pnp_AVE(x ) . Next, pnp_AVE(x)  can be convolved 

with itself nine times and scaled by a factor o f 1 /1 0  to yield the noise estimate 

distribution, pnEST(x)  that results from averaging ten range bins together. If  we perform 

a RV transformation o f the sampled signal SM and the noise level estimate nEST from 

linear units to decibels then the PDF o f the sampled received signal distribution S in 

decibels above the estimated noise level can be expressed as

P\ogS(x ) =  P\ogsM(x ) * (— P\ognEST(x )). (514)

5.2.3.3 Determining Noise PDF's from Measurements

Given the analysis in sections 5.2.3.1-5.2.3.2, the effects o f noise on the measured 

signal distribution can be accounted for by estimating the parameter a  that controls the 

shape o f the noise power, pnp(x),  and estimated noise level, pnEST(x),  distributions. A 

maximum-likelihood-estimate (MLE) o f a  was determined by comparing theoretical 

curves o f pnEST(x)  for arbitrary values o f a  to a data set o f observed noise level 

estimates. The distribution o f pnp(x)  can then be found from (5.12) after finding the
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M LE of a. Figure 5.4 (a) illustrates a comparison o f a measured distribution o f estimated 

noise level and a M LE fit curve o f pnEST(x)  whereas Figure 5.4 (b) illustrates the 

corresponding curve o f pnp(x).
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X

Figure 5.4: A comparison of theoretical and measured distributions of estimated noise level pnEST(x) in (a) 
and the corresponding theoretical distribution of noise power pnp (x) in (b). The measured distribution was 
generated from 3245 samples of sky noise taken 16 October 2009 between UT 00:00:00-01:00:00. Note 
that the x-axis values of power in (a) and (b) are relative to the analog-to-digital converter sample values of 
the radar hardware. These probability distributions are subsequently normalized to the maximum observed 
mean power level so that an equivalent distribution can be generated relative to the numerical values 
produced in simulation.



57

Note that the M LE fit curve o f pnEST(x)  in Figure 5.4 (a) does not provide an 

accurate fit to the measured distribution. The discrepancy between the theoretical and 

measured distributions is likely due to the fact that some of the range bins that are 

averaged to produce a noise estimate contain backscatter from either ionospheric 

irregularities or the ground. A  better fit may be achieved using an alternative theoretical 

distribution for pnEST(x)  but the advantage o f using the given distribution is that pnp(x)  

is directly known from the relationship discussed in section 5.2.3.2. Note that the 

theoretical fit o f pnEST(x)  has less variance than the observed estimated noise and 

consequently the theoretical curve o f pnp (x)  will have less variance than the true curve 

o f noise power. As discussed in sections 5.2.3.1-5.2.3.2, the noise PDF's are convolved 

with either linear or logarithmic versions of the received signal distribution to account for 

addition and normalization. The effect of convolution on the ground-scattered power 

distribution is an increase in variance proportional to the variance of the noise 

distributions. Consequently, underestimating the variance in the noise distributions will 

result in an underestimate o f the variance in the simulated signal power distribution. 

However, it will be shown that the noise processes contribute a negligible amount of 

variance to the total observed ground-scattered power distribution in comparison to the 

effects of a time-variant propagation path, random polarization, and data averaging. 

Hence, a more accurate model of the noise distributions will not be pursued here.

5.2.4 Ground Scatter Correlation

As discussed in section 5.2.3.2, the data product in this study undergoes 

averaging. Specifically, the ACF's from N  transmit sequences are averaged together and 

the lag zero power value of the averaged ACF is taken as an estimate of the received 

signal power during the integration period. The effect of averaging on the measured 

distribution of signal power depends on the amount of correlation in the ground scatter 

between transmit sequences. If samples from different transmit sequences are assumed to 

be independent and identically distributed then the effect o f averaging over N  transmit
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sequences can be determined by convolving the PDF of the received signal plus noise, 

pSM(x),  with itself N — 1 times and scaling by a factor o f 1 /N .  Conversely, if  samples 

from different transmit sequences are assumed to be deterministic then the distribution of 

received signal plus noise is unaltered by averaging.

The variance of the received signal plus noise distribution after averaging is a 

function o f the correlation, p, in the ground scatter between transmit sequences. In 

general, the variance o f an average o f N  random variables that have an average 

correlation o f p is

VAR[*] = £  +  ^ = V 2. (5.15)

As can be seen from (5.15), the variance o f the distribution after averaging is bounded by

- o 2 < oave2 < o 2 (5.16)

where a 2 is the variance prior to averaging. These bounds correspond to the cases of 

either independent or deterministic ground scatter samples between transmit sequences 

that were discussed. It will be shown in section 5.3 that signals are correlated over a 

period of approximately three integration intervals which implies that signals during a 

single integration interval are well correlated. Simulation results will be presented for the 

upper and lower bounds in (5.16).

5.2.5 Simulation Overview

A simulated distribution o f ground-scattered power is achieved by first obtaining 

a distribution given a randomly perturbed ionosphere and then transforming that 

distribution to account for random polarization, noise, and ground scatter correlation. 

First, L ray tracing trials are performed to generate a simulated PDF o f incident power, 

pSl(x),  due to a time-variant propagation path resulting from random electron density 

fluctuations. Next, given the distribution o f the Faraday rotation angle 6 determined 

from ray tracing results and a choice o f the distribution pp (p),  the PDF o f the averaged 

polarization factor P is determined from the RV  transformation in (5.6). The received
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signal distribution P\ogsR(x)  accounting for a random polarization may then be found 

from convolving the distributions o f p logp (x)  and P\ogs,(x)  . On the assumption that 

AW GN corrupts the signal, PsR(x)  is convolved with a theoretical noise power 

distribution pnp(x)  to yield the sampled signal PDF pSM(x).  At this point, the effect of 

data averaging in the limiting cases that ground scatter samples between transmit 

sequences are either deterministic or independent is considered. W hile PsM(x)  is 

unaltered by data averaging in the case o f deterministic samples, the assumption of 

independent samples requires a transformation o f pSM(x)  as discussed in Section 5.2.4 to 

yield pSM*(x). Finally, PsM(x)  and pSM*(x) are transformed to reflect normalization by a 

random noise estimate, pnEST(x),  to yield the theoretical PDF o f ground-scattered power, 

ps (x) or ps *(x).

5.3 Analysis

The result o f the simulation process described in section 5.2 is a PDF o f ground- 

scattered power at each time delay range where observations are made by the Kodiak 

SuperDARN. These results will be analyzed in terms o f the corresponding statistical 

averages o f mean and standard deviation versus time delay range. First in section 5.3.1, 

the contribution o f each random process modeled in simulation to the simulated mean 

and standard deviation versus time delay profile will be investigated. Next, in section

5.3.2 the simulation results and observations will be analyzed by comparing sample 

estimates o f mean and standard deviation as a function o f time delay range. Given 

observed ground-scattered power distributions o f N  samples at each range bin, estimates 

o f the mean and standard deviation are calculated using the expressions

(5.17)

and
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5.3.1 Comparison of Random Process Effects

Here we investigate the effects o f each o f the modeled random processes on the 

simulated mean and standard deviation profiles as a function o f range. First we 

investigate the effects o f the noise processes and verify our claim in section 5.2.3 that 

noise processes contribute a negligible amount o f variance to the overall profile. N ext we 

study the effects o f random polarization as discussed in section 5.2.2. In particular, we 

will explore the choice o f the pp (p)  distribution on the composite standard deviation 

profile. Finally, we consider the effects o f altering the width o f the electron density 

perturbation amplitude distribution and the perturbation scale size.

5.3.1.1 Noise Process Effects

Figure 5.5 (a)-(b) illustrate the simulated mean and standard deviation profiles 

that were calculated by considering the effects o f the noise processes discussed in section

5.2.2 in addition to electron density perturbations with amplitudes drawn from ^ (0 ,1 0 % ) 

and a scale size o f 5 km. For clarity Figure 5.5 illustrates upper-bound curves only which 

means that the ground scatter samples between transm it sequences are assumed to be 

completely correlated. In Figure 5.5 (a) the three mean profile curves generated 

considering electron density perturbations alone and electron density perturbations in 

addition to the noise processes are nearly indistinguishable. Similarly, in Figure 5.5 (b) 

the three standard deviation profile curves differ at most by tenths o f a decibel which 

supports our earlier claim that the noise processes contribute a negligible amount of 

variance to the observed ground scatter statistics.
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Figure 5.5: A comparison of the contribution noise processes to the simulated mean and standard deviation 
profile for typical simulation results. Note that the mean and standard deviation curves for each random 
process are in addition to the depicted curves generated with electron density perturbations. The electron 
density perturbation amplitudes were distributed according to ^(0,10°%) with a scale size of 5 km. In 
addition, the curves illustrated in (b) are upper-bounds on standard deviation which means that ground 
scatter samples between transmit sequences in the same integration interval are assumed to be completely 
correlated.
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5.3.1.2 Polarization Effects

Before investigating the effects o f the polarization factor P on the mean and 

standard deviation profiles, we demonstrate that the Faraday rotation angle 6 distribution 

is relatively insensitive to perturbation parameters. Figure 5.6 (a) illustrates the simulated 

histogram of 6 at an arbitrary range gate for a set o f density perturbation parameters and 

Figure 5.6 (b) illustrates the mean and standard deviation o f the simulated 6 distributions 

for a variety o f perturbation parameters. In Figure 5.6 (a) note that the simulated 

distribution is approximately Gaussian in shape as demonstrated by the overlaid Gaussian 

curve. In addition, the curves in Figure 5.6 (b) demonstrate that the mean and standard 

deviation o f the 6 distributions versus range are relatively independent o f the annotated 

density perturbation parameters. For simplicity, we assume that the 6 distributions are 

independent of the density perturbation parameters and have a Gaussian distribution at 

each range gate with mean and standard deviation given by the average of the curves for 

various perturbation parameters illustrated in Figure 5.6 (b).
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Figure 5.6: Example distribution of Faraday rotation in addition to the simulated moment profdes. The 
plot in (a) illustrates the histogram of simulated Faraday rotation angles at a range gate of 1482 km in 
addition to a fitted Gaussian curve with parameters ^ ( —11.9°, 27.6°). The plot in (b) depicts the simulated 
mean and standard deviation curves versus time delay range for the annotated perturbation parameters.
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Given the PDF o f 6, the polarization factor P distribution may be found from the 

RV  transformation in (5.6) given coefficients A and B. W e now turn our attention to the 

form o f the distribution pp (p)  which governs the values o f A and B. Recall that we 

chose pp (p)  to be a general exponential distribution as in (5.5) which is a function o f the 

single parameter p. Figure 5.7 (a)-(b) depict the mean and standard deviation profiles 

given the P distribution that corresponds to the annotated choice o f p  for a given set of 

perturbation parameters. Note in Figure 5.7 that each curve is generated considering the 

effects o f electron density perturbations, noise, and random polarization with a P 

distribution found using (5.5)-(5.7) for the annotated value o f p. However, only upper 

bound curves corresponding to completely correlated ground scatter samples between 

transmit sequences during an integration interval are illustrated in Figure 5.7. As 

depicted in Figure 5.7, the choice o f p  is an influential factor in the shape o f the mean 

and standard deviation profiles. In general, increasing the value o f p  increases the roll

off o f the mean profile and raises the standard deviation at time delay ranges greater than 

1300 km. In order to determine a value o f p  and fully specify the P distribution, we 

choose the value o f p  that produces the best fit o f both the simulated mean and standard 

deviation profiles to the measured results.
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Comparison of Mean Profiles vs. pp(p,p) | Electron Density Perturbation Ampitude/Scale Size = (10 %  | 10 km )
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Figure 5.7: A comparison of the simulated mean and standard deviation profiles for a variety of 
polarization factor, P, distributions. The P PDF used to generate each curve is found using the expressions 
in (5.5)-(5.7) for the annotated value of n. Note each curve in the figure is generated considering all 
random processes discussed in Section 5.2 where the electron density perturbations are distributed 
according to .^(0,10%) with a scale size of 10 km. In addition, the curves illustrated in (b) are upper- 
bounds on standard deviation which means that ground scatter samples between transmit sequences in the 
same integration interval are assumed to be completely correlated.
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5.3.1.3 Electron Density Perturbation Effects

Here we investigate the effect o f the electron density perturbation amplitude and 

scale size on the simulated mean and standard deviation profile. All random processes 

including noise and polarization are included in the results presented in this section. Note 

that we use a value o f p  =  10.0 and (5.5)-(5.7) to calculate the PDF o f the averaged 

polarization factor I5. In addition, only upper bound curves corresponding to completely 

correlated ground scatter samples between transm it sequences during an integration 

interval are illustrated. Figure 5.8 illustrates the mean and standard deviation profiles 

found by varying the perturbation scale size between 5-20 km while maintaining a 

perturbation amplitude distribution o f  ̂ (0 ,1 0 % ). Figure 5.9 illustrates the mean and 

standard deviation profiles found by increasing the width o f the perturbation amplitude 

distribution from ^ (0 ,5 % ) — ^ ( 0,2 0 %) while maintaining a constant scale size o f 10 

km.
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Comparison of Mean Power Profiles vs. Perturbation Scale Size
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Figure 5.8: A comparison of the simulated mean and standard deviation profiles for a variety of 
perturbation scale sizes. The perturbation amplitude for each curve was distributed according to 
^(0,10%). In addition, the curves illustrated in (b) are upper-bounds on standard deviation which means 
that ground scatter samples between transmit sequences in the same integration interval are assumed to be 
completely correlated.
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Comparison of Mean Profiles vs. Perturbation Amplitude
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Figure 5.9: A comparison of the simulated mean and standard deviation profiles for a variety of 
perturbation amplitude distribution widths. The perturbation scale size for each curve was held constant at 
10 km. In addition, the curves illustrated in (b) are upper-bounds on standard deviation which means that 
ground scatter samples between transmit sequences in the same integration interval are assumed to be 
completely correlated.
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In general, note from Figure 5.8 and Figure 5.9 that the standard deviation is 

proportional to the slope of the mean profile. To illustrate, note that the large local 

maximum region in all the standard deviation profiles around 1200 km in range 

corresponds to the region of the mean profile preceding the skip distance maximum 

where the slope is very steep. Similarly, at ranges greater than the skip distance 

maximum where the slope of the mean profile is relatively constant, the standard 

deviation profile remains approximately constant. Next, note that increasing either the 

perturbation width or the perturbation scale size has the effect of raising the level of the 

mean profile. In general, the magnitude of power enhancements or reductions is 

proportional to perturbation amplitude and scale size. However, the mean profile tends to 

increase as the width of the perturbation amplitude distribution increases or the 

perturbation scale size increases because the minimum power received is bounded below 

by the noise level. Therefore, even though power reductions are as likely as power 

enhancements, the mean increases because the distribution of ground-scattered power can 

only expand in one direction.

Finally, note that increasing the perturbation amplitude or scale size results in a 

modest increase in the standard deviation profile. In the local maxima region between 

1200-1250 km of the standard deviation profile, doubling or quadrupling the width o f the 

perturbation amplitude distribution or the perturbation scale size results in an increase of 

about 1 dB. In addition, the width o f the local maximum region increases between 10-20 

km for each doubling of either the perturbation amplitude or scale size. At ranges greater 

than 1300 km of the standard deviation profile, doubling or quadrupling the perturbation 

parameters results in an increase on the order of tenths of a decibel.

5.3.2 Comparison of Simulated and Measured Distributions

In performing this study, a time period was sought where the ground-scattered 

power observed at Kodiak appeared to be uniform over an extended duration. After 

finding an appropriate time period, correlation of ground scatter between integration
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intervals was investigated by calculating the sample ACF o f lag zero power at numerous 

range bins using the expression

R(k)  =  ^  (5.19)
c0

where c(k)  is an estimate o f the autocovariance at lag k given by

c (k ) =  1 'Z t= i(xt  — x ) ( x t+k — x),  (5.20)

and x t is the discrete time series o f measured lag-zero power. Inspection o f the sample 

ACF at various range bins was used to determine the minimum lag spacing K  required 

for a set o f independent samples. In addition to being spaced by a minimum number of 

integration intervals, the samples were also filtered based on whether or not the spectral 

width and Doppler velocity at that range bin are consistent with ground scatter. Given an 

appropriate set o f measured samples at each range bin, simulated distributions were then 

generated as described in section 5.2.5 given variable perturbation amplitude distributions 

and scale sizes. The background ionospheric density profile used in simulation was based 

on ionosonde measurements made at the High Altitude Auroral Research Program 

(HAARP) station in Gakona, Alaska.

5.3.2.1 Measured Statistics

As previously discussed, visual inspection o f RTI plots illustrates that the ground- 

scattered power observed in beam direction 9 is relatively uniform on 16 October 2009 

between UT 00:25:00-00:40:00 where Figure 5.1 (a) illustrates the RTI plot during this 

interval. Figure 5.10 illustrates the corresponding sample ACF calculated over a time 

series o f N =  164  samples where each sample corresponds to an integration interval o f 1 

second.
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Figure 5.10: Sample autocorrelation function of lag zero power at various range bins on 16 October 2009 
UT 00:25:00-00:40:00. Note the sample population size was N = 816 and (5.20) was calculated for lags 
0 < k <  164.

Note in Figure 5.10 that lag-zero power values are correlated over an interval of 

no more than K =  3 lags regardless o f range. A set consisting o f 816 samples during the 

time period UT 00:25:00-00:40:00 was decimated by a factor o f 1 /3  and further filtered 

by considering only those samples flagged as ground scatter. The final set of 

independent measured ground scatter samples includes N =  136 samples at 300 range 

bins spanning a time delay range o f 180-1974 km.
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5.3.2.2 Results

Simulation results were generated for a variety o f perturbation parameters given a 

background ionospheric density profile based on ionosonde measurements made at the 

HAARP station in Gakona, Alaska during the period 16 October 2009 between UT 

00:25:00-00:40:00. A value o f  ̂  =  50 was chosen in order to calculate the polarization 

factor P distribution from (5.5)-(5.7) after visually inspecting the fit o f the simulated 

mean and standard deviation profiles to the measured results. As discussed in section 

5.3.1.3, the effects o f increasing the width o f the perturbation amplitude distribution is 

similar to increasing the perturbation scale size so there is not a unique set o f perturbation 

parameters that approximate the measured data.

Figure 5.11 (a)-(b) illustrates a comparison o f the measured mean and standard 

deviation profile to the simulation results obtained with electron density perturbation 

amplitudes distributed according to ^ (0 ,1 0 % ) and a scale size o f 20 km. In Figure 5.11 

(a), the solid and dashed curves represent the simulated mean profile given sample sizes 

o f N =  104 and N =  136  respectively. Note that at distances greater than the skip 

distance maximum, the simulation curves accurately approximate the trend o f the 

measured profile. The effect o f the relatively small sample size o f N =  136  on the 

simulation results is to introduce perturbations on the order o f one decibel about the curve 

obtained with N =  104 samples.
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Figure 5.11: A comparison of observed and simulated mean, (a), and standard deviation, (b), profdes. The 
observed profiles are estimated from a sample set of N = 136 samples on 16 October 2009 between UT 
00:25:00-00:40:00. Simulation curves are presented for sample sizes of N = 136 and N = 104 in both 
plots. Note that (b) features simulation curves for the upper and lower bounds on standard deviation 
corresponding to assumptions of complete correlation or complete independence between ground scatter 
samples from different transmit sequences in the same integration interval.
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Figure 5.11 (b) illustrates a comparison o f three simulation curves with the 

measured profile. The red and blue colored curves illustrate the upper and lower bounds 

on standard deviation that are a function o f ground scatter sample correlation between 

transmit sequences as discussed in section 5.2.4. As in Figure 5.11 (a), the solid and 

dashed red curves illustrate simulation results for sample sizes o f N =  104 and N =  136  

respectively. The effect o f a small sample size o f N =  136 is to introduce perturbations 

on the order o f one-half decibel about the curve obtained with N =  104 samples. Note in 

Figure 5.11 (b) that the upper-bound simulation curves capture the most prominent 

features o f the measured profile including a local maxima region centered at 1225 km 

with a width o f 50 km and a peak value o f approximately nine decibels. In addition, at 

ranges beyond 1300 km the simulated curves are approximately flat and within one-half 

decibel o f the measured standard deviation profile. However, we note that the simulated 

curves feature a dip in standard deviation near 1275 km that is not a characteristic o f the 

measured profile. In addition, the simulated curves fail to capture the small negative 

trend o f the measured profile at ranges greater than 1250 km.

One o f the objectives o f this study was to quantify background electron density 

perturbations in the ionosphere. From inspection o f Figure 5.11 (a)-(b), we find that the 

annotated electron density perturbation parameters re-create the most prominent 

characteristics o f the mean and standard deviation profiles such as trend and local 

maxima. However, a number o f factors limit the accuracy o f our estimate o f the 

perturbation parameters. As mentioned previously, the effects o f increasing the width of 

the amplitude distribution and increasing the perturbation scale size are very similar 

which creates ambiguity in any attempt to specify a particular set o f perturbation 

parameters by comparison with the measured statistical moment profiles. In addition, we 

noted that restrictions on the independence o f ground scatter samples between integration 

intervals and a static background ionospheric profile limits the size o f the measurement 

sample set. A limited sample size may obscure important features in the measured 

statistical moment profiles. Finally, we utilized an averaged polarization factor I5 whose
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PDF is found by assuming PDF's o f unknown parameters and averaging over the 

spectrum of the unknown parameters as discussed in section 5.2.2. Although we found 

that the simulated profiles capture the most prominent feature o f the measured results, 

some o f the noted discrepancies may be resolved with a more accurate model o f the 

polarization factor.

5.4 Discussion

In this chapter, the ground-scattered power distributions observed by the Kodiak 

SuperDARN were investigated by comparing estimates o f mean and standard deviation 

as a function o f time delay range. Four fundamental random processes including time- 

variant propagation path due to electron density perturbations, random signal 

polarization, system noise, and ground scatter correlation were modeled in generating 

simulated distributions o f ground-scattered power.

A number o f factors contribute to discrepancies between the simulated and 

observed statistics. These factors include ambiguity between the width o f the electron 

density perturbation amplitude distribution and the perturbation scale size, the limited 

sample size o f measured results, and uncertainty in the form o f the polarization factor 

PDF.

Despite these limitations, it was shown that the most prominent features in the 

measured statistical moment profiles are directly related to the effects o f electron density 

perturbations. Future work may include refining the model o f the polarization factor 

through experimental observations and obtaining tighter bounds on the standard deviation 

profile by calculating the correlation o f ground scatter samples between transmit 

sequences in the same integration interval. W ith the refinements suggested above, the 

simulation method presented here would provide a more accurate tool for quantifying 

electron density perturbations in the ionosphere and predicting oblique HF clutter 

distributions.
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Chapter 6 Conclusions & Future W ork

6.1 Conclusion

The objective o f this thesis was the development o f a robust numerical method of 

calculating ground-scattered power for HF OTH radars from the results o f ray tracing 

along with two significant applications. In Chapter 3, an improved numerical method of 

calculating ground-scattered power from the results o f ray tracing was presented. The 

improved method overcomes limitations in a previous method published by Bristow & 

Greenwald 1995 and provides a valuable tool for studying a variety o f different physical 

processes. Two applications were investigated in Chapter 4 and Chapter 5. In Chapter 4, 

the effects o f an artificial layer on observed ground-scattered power was investigated and 

it was demonstrated that a simple model could be used to accurately predict the location 

and amplitude o f power enhancements. Conversely, a comparison o f simulated and 

observed ground-scattered power profiles can be utilized to estimate the physical 

dimensions and altitude o f artificial layers. In Chapter 5, a method o f investigating the 

physical processes that produce the temporal variation in observed ground-scattered 

power was investigated. Specifically, statistical moment versus time delay range profiles 

were simulated using a M onte-Carlo method. It was demonstrated that the observed 

statistical moment profiles could be related to the random processes o f electron density 

fluctuations, polarization, noise, and correlation o f ground scatter samples.

6.2 Future W ork

There are a number o f areas in which the research presented here may be 

improved or expanded. First, all o f the research presented in this thesis is based on ray 

tracing that is performed in two dimensions with the implicit assumption o f uniformity in 

the remaining dimension. It is a straightforward and simple matter to modify the existing
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ray tracing code to be performed in three dimensions as discussed in the theory presented 

in Chapter 2. Furthermore, the numerical method presented in Chapter 3 can be modified 

in a straightforward manner to calculate the ground-scattered power from the results o f a 

three-dimensional ray tracing analysis. Note that the results o f a ray-tracing analysis in 

three dimensions would be (x, y )  coordinates o f rays that intersect the ground plane as a 

function o f time delay. Following the theory presented in Chapter 3, the rays contained 

in the illuminated area at an arbitrary time could be related to a solid angle o f the 

transmitted beam pattern and consequently a total amount o f scattered power may be 

found by integrating over the appropriate solid angle surface. Assuming isotropic re

radiation, one would arrive at an expression very similar to equation (3.6) where the 

single integral over an elevation angular length would be replaced by a double integral 

over a solid angle surface. The most important advantage o f performing ray tracing in 

three dimensions and using the results to calculate ground-scattered power would be the 

ability to investigate focusing effects that occur in azimuth rather than elevation. The 

ability to determine ray focusing in azimuth may provide further insight into the 

investigation o f artificial layer effects on ground-scattered power presented in Chapter 4.

The Monte-Carlo simulation method presented in Chapter 5 provided insight into 

the physical phenomena that contribute to observed ground scatter statistics. However, a 

number o f factors limited the utility o f the method to accurately characterize background 

electron density perturbations. These factors include ambiguity between the width o f the 

electron perturbation amplitude distribution and the scale size o f the perturbations, 

uncertainty in the form o f the polarization factor PDF, and also the amount o f correlation 

between ground-scatter samples from different transmit sequences but the same 

integration interval. The ambiguity between the width o f the electron perturbation 

amplitude distribution and the scale size o f the perturbations may be eliminated in future 

work by allowing the scale size to be a random variable with a defined distribution and 

then averaging the results over the scale size distribution. In addition, uncertainty in the 

form o f the polarization factor PDF may be removed through experimental results where
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the full polarization o f the incident signal is measured and used to determine an empirical 

PDF. Similarly, the amount o f correlation between ground scatter samples from different 

transmit sequences within the same integration interval is a quantity that can be 

determined experimentally and used to develop an empirical model.



79

Appendix I Numerical Error in Ray Tracing Results

AI.1 Introduction

The numerical error in ray tracing results are briefly presented here. Specifically, 

the error in the calculated path length o f a ray obtained through ray tracing will be 

determined as a function o f both the truncation error in numerical integration and the 

resolution o f the electron density profile grid.

AI.2 Numerical Integration Error

As discussed in Chapter 2, the numerical integration o f ray paths is performed 

using a fourth-order Runge-Kutta (RK4) method that has a local truncation error of 

0 ( h 5). The local truncation error for a given step size may be estimated by halving the 

step size and then taking the difference o f the results [Kincaid et al., 2009]. The 

cumulative error in path length is upper-bounded by the sum of the absolute values of 

local truncation errors. Figure AI.1 illustrates a typical ray path plot and Table AI.1 

depicts the corresponding comparison o f the total path length and cumulative path length 

error. Note that the upper-bound on path length error is on the order of tens of meters. 

From (3.6), calculated power is proportional to f t-1  so a difference in path length o f tens 

o f meters relative to thousands o f kilometers introduces a negligible amount o f error.
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Figure AI.1: Typical ray path plot corresponding to tabulated data in Table AI.1.

Table AI.1: Comparison of ray path length and cumulative path length truncation error
Elevation Angle a  (°) Path Length P (km ) Error SP (m ) S P /P

5 2059 1.46 7 x  10-7
10 1644 1.59 1 x  10-6
15 1437 2.84 2 x  10-6
20 1355 4.00 3 x  10-6

AI.3 Grid Resolution Error

Another source o f error in ray tracing results from modeling the continuous 

ionospheric electron density distribution as a finite sized grid o f electron density values. 

One method o f investigating the error associated with grid resolution is to find the 

difference in calculated ray paths for various grid resolutions. Figure AI.2 illustrates
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curves of ray path length versus elevation angle calculated at the annotated grid 

resolutions.
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Figure AI.2: Curves of ray path length vs. elevation angle as the electron density profile grid size is 
increased.

Note in Figure AI.2 that the curves are indistinguishable for low elevation angles. 

At higher elevation angles, doubling the grid size from 500 x  500 to 1000 x  1000 

results in a maximum path length difference on the order o f 10 km. An error in path 

length o f 10 km  results in an error o f ~ 0 .05  dB in calculated power using (3.6) for path 

lengths greater than 1000 km. However, the greatest path length difference obtained 

upon further doubling the grid size from 1000  x  10 0 0  to 2000  x  2000  is <  1 0 -6 , 

which indicates there is a negligible change in the results for grid resolutions exceeding 

100 0  x  1 0 0 0 . Given that the phenomena under investigation here result in power
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enhancements on the order o f several decibels, the numerical error in the results due to 

finite grid resolution is ignored.
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Appendix II Investigation of Diffraction around an Artificial Layer

AII.1 Introduction

One phenomena o f interest that was not investigated in Chapter 4 is the 

diffraction o f a wave front around an artificial density layer. In Chapter 4 it was 

illustrated through ray tracing that rays tend to refract around artificial density layers 

which produces focusing effects observed as enhancements in the ground-scattered 

power. One may expect that when a wave front refracts around an artificial layer region 

that there may be interference effects or areas o f constructive and destructive phase 

addition. Interference effects could result in a fading characteristic where the power 

enhancements produced by the artificial density layer are a function o f range. Here a 

simplified investigation o f diffraction effects is performed.

AII.2 Simplified Diffraction Problem

The effects o f diffraction around an artificial layer were approximated by 

assuming a plane wave incident on an obstruction that is centered in azimuth o f the beam 

pattern. The problem was reduced to one dimension and the pertinent geometry is 

illustrated in Figure AII. 1.
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The size o f the aperture elements was estimated from the 3 dB azimuth beam 

pattern and the range o f the artificial layer from the transmitter. Assuming an azimuth 

beam width o f 6°, an artificial layer width o f 30 km, and a distance o f 800 km between 

the transmitter and the obstruction, the aperture lengths annotated in Figure AII.1 are 

L =  30 km  and D =  27 km.

In addition, whether the curvature o f the waves emanating from the aperture 

should be accounted for in the calculation o f intensity depends on the size o f the aperture 

with respect to the range at which the intensity is being calculated. As a general rule, the 

boundary between the Fresnel and Fraunhofer diffraction regions is approximately given 

by F =  1 where F is

f = ^  . (AH.1)

In (AII.1) a is the largest linear dimension o f the aperture, A is the wavelength, and P is 

the distance to the point at which the intensity is calculated. Given a =  D =  27 km  and 

A =  30 m, the boundary between Fresnel and Fraunhofer diffraction regions is at
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P =  2 x  104 km. The intensity at values o f P in the range [600 ,800] km is desired 

which implies that F >  1 and the curvature o f the waves must be accounted for in 

calculating intensity. The expression for the scalar E-field at a range R given an aperture 

surface S is

E =  H r  E(x,y',0) e - jpRd s
2n JS R (AII.2)

Using the geometry illustrated in Figure AII.1, the values o f the variables in (AII.2) are

E (x ' ,y ' ,0 ) =  Eo 

R =  ^ ( x  — x ' ) 2 +  z 2. (AII.3)

dS =  dx'

After making two change o f variable substitutions, the expression in (AII.3) may be

reduced to

E (x , z )  =  — — j^ 2 E0 e j^zsec6secddd  — — E0e j^zsec6secdddv J 2nJ01 0 2nJ03 0 (AII.4)

where the limits o f integration are given by

V s
V

dx =  tan 1

J ( x —(!;

( (*  +  ( 2 + o

+  D
On =  tan

(AII.5)

03 =  tan

0A =  tan 1 l l * + 2 )

\
At this point the expression in (AII.4) is evaluated numerically and the intensity is 

calculated as

I =  — \E\2.
2Vo ' '

(AII.6)
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AII.3 Results

Figure AII.2 (a)-(b) illustrate plots o f intensity evaluated using (AII.4) and (AII.6) 

for L =  0 km  and L =  30 km  and correspond to the absence or presence o f an artificial 

layer respectively. Note in Figure AII.2 (b) that the artificial layer produces a power 

reduction in the center o f the beam along the ground as compared to Figure AII.2 (c) 

because waves emanating from the aperture have not "filled in" the obstructed area at 

these ranges. Although the presence of an artificial layer significantly affects the 

intensity on the ground, we are interested in the effect on the scattered power.

Given plots o f intensity along the ground, the scattered power is proportional to 

the sum of the intensity over the illuminated area. Assuming the illuminated area fills the 

beam in azimuth (x dimension) and is £ c t £  12 km  in ground range (z dimension), the 

scattered power along the ground given the plots illustrated in Figure AII.2 (a)-(b) is 

depicted in Figure AII.2 (c). Note that the only difference between the curves in Figure 

AII.2 (c) is a reduction o f the mean profile by £ 2  dB in the presence o f an artificial layer 

because the intensity on the ground is effectively averaged over a large spatial area. 

Recalling the large variance in observed ground-scattered power discussed in Chapter 4, 

we do not expect diffraction to play an important role in the observed ground-scattered 

power in the presence of an artificial layer.



87

(a) (b)
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Ground Range (km)

Figure AII.2: Plots of intensity and scattered power. (a) depicts the calculated intensity along the ground in the absence of an artificial layer. (b) 
illustrates the calculated intensity along the ground in the presence of an artificial layer. (c) depicts the scattered power versus ground range given the 
intensity plots in (a) and (b). Note that the values of intensity and power in (a)-(c) do not reflect absolute values and only illustrate the trend.
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Appendix III Random Variable Transformations & Numerical Implementation

AIII.1 Introduction

In Chapter 5 a number o f random variable transformations are performed to 

model the effects of random polarization and noise processes on a given distribution of 

ground-scattered power. In this chapter, a brief introduction to performing random 

variable transformation is presented followed by an illustration o f the random variable 

transformations that are performed in Chapter 5. In addition, challenges encountered in 

obtaining the PDF o f the polarization factor and the implemented solutions in numerical 

simulation are presented.

AIII.2 Random Variable Transformations

Consider a random variable (RV) X  with the corresponding PDF px(x). Now 

suppose that a new RV Y is defined as a function o f X, say Y =  h(X ). Over any 

monotonic range o f h(X ), we can find the PDF o f Y by equating the areas under the PDF 

curves

Note that if  h(X ) is not monotonic over the entire range o f values o f X, then multiple 

values o f X  yield the same F. However, each monotonic range o f X  can be treated as a 

mutually exclusive set so that the cumulative PDF o f Y can be expressed as

b y C y ^ y H P x W ^ I
(AIII.1)

which can be expressed in terms o f Y alone by using the inverse function X  =  h 1(F ) as

(AIII.2)
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where the monotonic region is denoted by the subscript on the transformation 

function h(X ) [Carlson et al., 2002].

In Chapter 5, we repeatedly perform transformations o f a RV  from linear units to 

decibels and vice-versa. Given a RV X  in linear units bounded by the range [0, to], the 

transformation Y =  10 log10 X  is monotonically increasing so the PDF o f Y may be 

expressed using (AIII.2) as

Py(y) =  P x(10 r/10 ) |1 0 r /1 0 (1 /1 0 )  ln 10 |. (AIII.4)

Similarly, the RV transformation from decibels to linear units is found to be

Py(y) =  P*(10 log10 n  |1 ( ^ ) j .  (AIII.5)

AIII.3 Numerical M odel of the Polarization Factor

In the previous section, the general expression for a RV  transformation and the 

specific expressions for RV  transformations between linear and decibel units were 

derived. In addition to these RV  transformations, in Chapter 5 we perform the 

transformation

X  =  A cos2 0 + 5  sin 2 0 (AIII.6)

where 0 is a RV with an arbitrary PDF and the terms A and 5  are constant coefficients. 

A number o f challenges arise when practically evaluating the PDF o f X  using (AIII.2). 

These challenges include the fact that 0 has an arbitrary PDF so an analytical expression 

for p e (0 )  is not available and also that the PDF o f X  may have discontinuities under the 

transformation in (AIII.6).

AIII.3.1 Modeling Arbitrary G Distribution

First, let us consider the problem that 0 may have an arbitrary PDF. W e 

overcome this problem by approximating p ^ (0 ) as the sum of a large number of 

weighted uniform distributions. The objective of this approach is to solve the 

transformation in (AIII.6) for a narrow uniform distribution so that the solution for an
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arbitrary distribution may be found as a weighted sum of simpler solutions. Figure AIII.1 

depicts this approach by illustrating a pg (0 ) that is Gaussian distributed along with an 

approximate p*e (0 ) composed o f N  =  40 weighted uniform distributions.

-150 -100 -50 0 50 100 150
8 0

Figure AIII.1: Illustration of an arbitrary pe (0) distribution along with an approximate p*e (0) distribution 
composed of the sum of weighted, narrow, uniform distributions.

Given the range 0 — 2rc subdivided into N  intervals, the approximate PDF o f an arbitrary 

distribution p*0 ( 0 ) may be expressed as

P*e (0 ) =  2f=1W iP0_yni/o rm (0) (AIII.7)

where P e-y nt/orm (^) is a uniform distribution o f width 2 tc/N  in the interval and the 

weights Wj are

W i = ^ p e (0;). (AIII.8)
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In (AIII.8), the value 0j is chosen to be the midpoint o f the interval. Before 

illustrating the solution to the transformation in (AIII.6) for a narrow uniform 

distribution, we first discuss the problem of discontinuities that may arise under the 

transformation in (AIII.6).

AIII.3.2 Discontinuities in Polarization Factor PDF

Consider the RV transformation in (AIII.6) for the case 5  =  0 and pg (0 ) is a 

uniform distribution over [0,2^]. The expression for px(x) in decibel units may be found 

using (AIII.3) as

At the values X  =  ( 0, - t o ) ,  px (x) asymptotically approaches + to  which prevents 

practical representation o f px(x)in  simulation. However, recall from Chapter 5 that the 

PDF px(x) is utilized in a convolution operation to find the effect o f random polarization 

on the received signal distribution. Reflect that the convolution o f two PDF's is 

expressed as

px(x) =  ( 1 / (4 1 0 ) ) ( log10  )
1 0 x / 1 0

(AIII.9)
rc[10*/10(1- 10*/10)]1/2.

Pz (z) =  Px * Py =  J  Px W  Py (Z -  A) dA, (AIII.10)

and that the cumulative distribution function (CDF) o f pz (z) in (AIII.10) is

Fz (z) =  J - ^ p ^ a J d a  =  / f j /  px(A) py (a  -  A )d l]d a . (AIII.11)

If  we change the order o f integration in (AIII.11) we obtain

^z(z) =  Px * fy  =  ^x * p r (AIII.12)
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where the CDF o f the result is expressed as a convolution o f a PDF and a CDF. 

Although we illustrated in (AIII.9) that px(x)  has discontinuities, the CDF o f X  can be 

shown to be

which is continuous in the range X E [—ro, 0]. Therefore, instead o f directly calculating 

the PDF o f the received signal power given the PDF o f the incident signal power and the 

possibly discontinuous PDF o f the polarization factor, we calculate the CDF o f the 

received signal using the relationship in (AIII.12) because there exists a practical 

representation o f the CDF o f the polarization factor even when the PDF is discontinuous. 

The PDF o f the received signal distribution may then be found by differentiating the 

result calculated in (AIII.13).

AIII.3.3 Linear Approximation of the Polarization Factor PDF

W e demonstrated in the previous section that an analytic solution can be found to 

the RV transformation in (AIII.6) in the specific case where B =  0 and pg(6)  is a 

uniform distribution over [0,2n]. However, recall that we wish to find the RV 

transformation given an arbitrary pg(6)  distribution which we have modeled as a 

weighted sum of narrow uniform distributions, Pe- uniform(6'), using (AIII.7) and 

(AIII.8). Given that the individual uniform distributions span a small angular width 6W, 

we may replace the terms cos2 6 and sin 2 6 in (AIII.6) with their linear approximations 

found from a Taylor series expansion. The linear approximation to the RV 

transformation in (AIII.6) considering a narrow uniform distribution centered at Qi is

The PDF o f a narrow uniform distribution spanning a width 6W centered at 6t under the 

RV  transformation in (AIII. 14) can be found from (AIII.2) to be the constant

(AIII.13)

X =  A* +  (0 — e t)B* 

where the terms A* and B* are constant coefficients given by

(AIII.14)

(AIII.15)



93

(AIII.16)

Further, the CDF o f (AIII.16) in decibel units can be expressed using (AIII.4) as

where =  10  logw m in(X).

Finally, given an arbitrary pg (0 ) distribution which we have approximated using 

narrow uniform distributions and the linear approximation to the RV  transformation in 

(AIII.14), we may express the cumulative CDF as

In Chapter 5, we use the expression in (AIII.18) to develop the CDF o f the polarization 

factor P given an arbitrary p ^ (0 ) distribution. The CDF o f P in decibel units is 

convolved with the PDF of an incident signal power distribution to determine the 

cumulative distribution of received signal power which is subsequently differentiated to 

obtain a PDF.

1 ln 10 
S* 100W

( 1 0v/1° -  10  vmin/10) (AIII.17)

=  Zf=1 WjPv(V) . (AIII.18)
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