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Abstract

Geomagnetic pulsations are minute variations in the 

ultra-low frequency spectrum of the earth's magnetic field. 

In order to develop models to explain these phenomena we 

have first to record data of pulsation events. A flexible, 

microprocessor controlled data acquisition device suitable 

for operation at remote sites has been developed. This 

instrument demonstrates the feasibility of integrating a 

microprocessor controller with traditional geophysical 

sensors to create a conceptually simple, yet powerful, data 

recording device.

Much information can be extracted from the data thus 

recorded. Geomagnetic pulsations are subdivided into 

several frequency bands; a digital computer routine has been 

developed which determines the signal power present in each 

band as a function of time. Pulsations signals tend to be 

elliptically polarized; another routine has been developed 

to calculate several polarization parameters, such as 

ellipticity and handedness, from these data.
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Chapter 1

Introduction

This thesis describes an instrument designed to collect 

data generated by geomagnetic pulsation events and presents 

some techniques useful in the analysis of these data. This 

chapter provides a review of the geomagnetic spectrum and 

some of the issues involved in geophysical data collection. 

In chapter 2 the description of the data collection 

instrument begins with a discussion of the physical 

construction of the machine. The method of controlling the 

data acquisition is covered in chapter 3. The data returned 

is reviewed in chapter 4 and the last chapter offers some 

suggestions for improvement. For completeness, the 

appendices include schematics and program listings.

1.1 Geomagnetic Pulsations

Pulsations of the earth's magnetic field were first 

reported by Stewart (1861). Early investigations were

1
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conducted with insensitive (by today's standards) 

equipment. As a result, there were not a large number of 

pulsation studies until the advent of induction coil 

magnetometers and the advocation of magnetohydrodynamic 

theory. Increasingly sensitive instruments and better 

explanations of the observations, coupled with the 

cooperative attitude of the International Geophysical Year, 

were responsible for a large increase in the amount of 

pulsations research (Saito, 1969). More recently, the 

introduction of digital data recording techniques has led to 

more informative data sets. Employment of computerized time 

series analysis algorithms has allowed much more information 

to be extracted from the data (Collier, 1983).

The range of frequencies in which geomagnetic events occur 

is rather broad, although much more restricted than the 

general electromagnetic spectrum. Jacobs, et al. (1964), 

divided the geomagnetic spectrum into a series of bands 

within which various types of geomagnetic pulsations were 

known to occur. These bands cover the range of pulsation 

periods from 0.2 seconds to 600 seconds. The series of 

continuous pulsation bands, as described by Jacobs, et al., 

is listed in Table 1. Pci pulsations, with a minimum period 

of 0.2 seconds, are the highest frequency events with which 

we are concerned. We want to record data within the 

continuous range of frequencies from Pci down to the lower
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Table 1. Classification of geomagnetic pulsations,

Type Period range (sec.) Frequency range (mHz)

Continuous

Pulsations

Pci 0.2 - 5 5000 - 200

Pc2 5 - 10 200 - 100

Pc3 10 - 45 100 - 22.2

Pc4 45 - 150 22. 2 - 6.7

Pc5 150 - 600 6. 7 - 1.7

Irregular Pil 

Pulsations Pi2

1 - 4 0  

40 - 150

1000

25

- 25

- 6.7
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edge of the Pc5 band (600 seconds). Note, however, that the 

power contained within a particular event is strongly 

dependent upon the frequency content of the event. Figure 

1, from Orr (1973), graphically depicts this dependence. We 

see that the higher frequency events tend to have lower 

energy content than lower frequency events. An excellent 

review of geomagnetic pulsations is given by Saito (1969).

Briefly, geomagnetic pulsations are ultra low frequency 

(ULF) band, semi-periodic variations in the earth's magnetic 

field. These events, detectable by ground-based 

magnetometers, fall into two major categories. Irregular 

pulsations (designated Pi) often occur at the beginning part 

of a magnetospheric substorm and tend not to have a well 

defined period. Continuous pulsations (designated Pc) are 

much more structured in their time variations (Jacobs,

1970).

Current theory for the formation of the long-period Pc 

events (Pc2-Pc5) holds that the local phenomena begin with a 

buffeting of the earth's magnetosphere by the solar wind 

(Southwood, 1974; Chen and Hasegawa, 1974). The 

Kelvin-Helmholtz instability generates wave packets at the 

magnetospheric boundary which couple to Alfven waves in the 

magnetosphere. These Alfven waves propagate along a 

resonant magnetic field line to the ionosphere.
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Figure 1. Power spectral density of geomagnetic variations 
in the total field (solid line). The dotted curve is a 
flattened spectrum obtained by removing a 7.1 dB/octave 
slope (dashed line) from the natural spectrum. From Orr, 
1973.
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Interactions with the electric fields in the ionosphere set 

up a secondary magnetic field which is detectable via ground 

based sensors (Hughes and Southwood, 1976).

The shorter period Pci events, on the other hand, are 

apparently not connected to the solar wind. Rather, the ion 

cyclotron instability generates a circularly polarized 

electromagnetic wave by resonance between the wave and a 

stream of charged particles running in the direction of 

propagation of the wave. This wave packet is thought to 

bounce between conjugate points along a magnetic field line 

(Jacobs, 1970). The reflection from mirror points in the 

upper ionosphere results in the loss of enough

electromagnetic energy to be detected by ground based 

instruments.

Pil and Pi2 pulsations are both associated with the onset 

of magnetospheric substorms. Short period irregular

pulsations (Pil) appear to be caused by the fluctuations of 

current systems in the ionosphere. Changes in the 

ionospheric conductivity from bombardment by magnetospheric 

particles cause abrupt shifts in the current flow which, in 

turn, changes the magnetic field. Pi2 pulsations appear to

be related to an impulse response of the magnetosphere to

sudden changes in the magnetospheric convection rate. These 

changes produce an influx of wave and particle energy from
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the magnetotail into the ionosphere. The transient response 

of the magnetospheric and ionospheric current systems causes 

the magnetic effects detected as Pi2 pulsations (Jacobs,

1971). Kan, et al., (1982) have given evidence that the Pi2 

pulsation can be thought of as the successive reflection of 

the initial impulse between the ionosphere and the source 

region in the magnetotail.

Through analysis of the pulsation data collected by 

passive sensors it is possible to check the accuracy and 

consistency of theoretical models of the earth's 

magnetosphere and ionosphere; these analyses may also serve 

as a diagnostic of the plasmas and fields through which the 

waves propagate (Nishida, 1978).

1.2 Data Collection

Geomagnetic pulsations are detectable as variations in the 

strength of the earth's magnetic field at a particular 

location, or set of locations. This indicates that standard 

fluxgate and induction coil magnetometers are the sensors to 

use when recording pulsations data. Fluxgate magnetometers 

measure the magnetic field strength and produce a voltage 

level proportional to it. Induction coil magnetometers 

produce a voltage proportional to the change in the field
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strength with respect to time. Both of these voltages are 

first amplified to an easily measurable level before being 

presented as the output of the instrument. These voltages 

are then recorded, in either analog or digital format, for 

analysis.

Magnetometer stations have been installed in many 

locations around the world, in both the northern and 

southern hemispheres. Occasionally, a single station is 

installed to measure local characteristics of the magnetic 

field; more commonly a chain of stations is installed to 

provide coherent data over a broad geographical zone. An 

example of such a chain is the Alberta Magnetometer Chain 

(Samson, et al, 1971). This chain of stations was located 

along a constant geomagnetic longitude; much information 

concerning the latitudinal characteristics of geomagnetic 

pulsations was gathered while it was in operation.

Our research effort is directed towards performing both 

latitudinal and longitudinal studies of pulsations. To meet 

this goal we need to have available data from a wide range 

of geomagnetic latitudes and longitudes. These data must 

also be coherent, i. e., have accurate and consistent timing 

information, so that the correlation of events at several 

stations may be investigated. The instrument described 

herein was designed to provide the data required for these
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studies.

1.3 Data Recording

Geomagnetic pulsations appear to occur most abundantly 

near the auroral zone, at high latitudes. The sparse 

population in this area mandates the use of remotely located 

sensors. It would be possible to have the data sent to the 

analysis site via telemetry but this technique is usually 

impractical for a small research effort with a limited 

budget. Telemetry equipment is costly; rarely does the need 

for instant analysis of pulsation data justify its expense. 

It is more realistic to employ self-contained data logging 

units located at remote weather stations or other scientific 

sites and have the data routinely sent back for analysis. 

This is the method we decided to employ.

When collecting geophysical data, or any other type of 

data, one first has to decide upon the format of the 

records. Most data collection devices now use digital

recording techniques although analog recording is useful in 

some circumstances. We chose to use a digital format

partially for ease of analysis; the data do not have to be

preprocessed in any way to be useful in digital computer 

analysis programs. Digital recording also has other

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10

important benefits. The recorded signal is linear; it does 

not suffer the nonlinearity due to hysteresis which analog 

magnetic tape units impart. Digital recording also allows 

one to record a large dynamic range. The range is dependent 

only on the number of bits recorded for each datum.

Another concern of note in our research is the need for 

versatility. Some locations from which we decided to

collect data already had available sensors which we could 

use, others required the installation of new sensors. As a 

consequence, more data channels were available at some 

locations than at others. We needed to be able to adjust

the number of channels sampled and the rate of sampling for

each site independently. Commercial data logging units are 

available which meet these criteria but they are rather 

expensive. They do not, however, include the capability for 

on-line analysis of the data; for example, they do not offer 

the ability to filter the data received to prevent

aliasing. The maximum scan rate of most commercial units is 

lower than that which we may decide to use in the future and 

these units also use an inefficient, but 

convenient-to-access, technique for storing the data. For 

these reasons we decided to construct our own microprocessor 

controlled data acquisition units. By varying the program 

which controls the microprocessor we are able to adjust and 

control all these parameters.
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Chapter 2

Physical Design Constraints and Construction

2.1 Introduction

This chapter discusses the issues involved in the design 

and selection of the hardware components for the data 

logging units. Specifically, I will describe the

environmental parameters which needed to be considered, the 

selection of "off-the-shelf" components and the design of 

custom-made ones, and provide an overview of the hardware 

system.

2.2 Environmental Parameters

There is a common misconception that everything in the 

arctic is permanently frozen. I say this is a misconception 

because many people live in the far north, and surely they 

are not frozen. Actually, much of the equipment intended 

for installation in polar regions does not need to be

11
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designed to work in extreme temperatures. The data logging 

units (field units) discussed herein were installed in

established stations within heated buildings. However, the 

low humidity associated with arctic winters can cause

problems. Often, static electricity will develop on 

equipment that is installed in a very dry environment. This 

static electricity could cause bursts of noise or short 

circuits within the equipment which may be harmful to some 

of the more delicate components. Having the equipment well 

grounded helps; so does placing it in a little-used area so 

that static caused by movement within the room does not 

develop. In extreme situations humidifiers or negative ion 

generators may need to be installed with the equipment.

2.3 Operational Parameters

The initial system proposal calls for four stations 

located in a diamond shape with College, Alaska as the 

southern tip. Mould Bay, N.W.T. is the northern tip of the

array and the eastern and western boundaries are defined by

Cape Parry, N.W.T. and Barrow, Alaska. Table 2 lists the 

geomagnetic locations of our field sites.

The remote locations of these stations call for equipment 

requiring a minimum of maintenance. Most stations are
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Table 2. Station Locations.

Geomagnetic 
Station Latitude Longitude

College, Ak. 64.72N 256.98E

Cape Parry, NWT 73.82 270.49

Mould Bay, NWT 79.25 256.41

Barrow, Ak. 68.63 241.52

L Value

5.44

14.20

38.79

8 . 1 0
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located at arctic weather stations where technically trained 

people may not be present. To reduce the chances of 

operator error we decided to use cartridge tape for 

recording the data. Cartridge tapes require only that 

someone pull out one cartridge and insert another in its 

place. Power failure is a common occurrence at these remote 

locations. We opted for microprocessor control of the field 

units to allow for automatic recovery after power failure 

with a minimum data loss. Of course, the operator will have 

to restore the power. No other maintenance should be 

needed.

Accurate timing of the data is mandatory since 

multi-station correlation of events is to be done. A 

common, accurate time base is available via the National 

Bureau of Standards GEOS time relay satellite. The timing 

signal from the satellite is received at each station, 

converted into a NASA standard 20-bit slow time code, and 

recorded as one channel of data. The signal is received by 

a Kinemetrics timer (Kinemetrics, 1981). The 20-bit time

code produced by the timer is slowed from one time frame per 

minute to one time frame per hour by logic boards designed 

and fabricated at the Geophysical Institute. This slow code 

ensures that the time code will be properly recorded even at 

very slow sampling rates. See the discussion below for 

information on the determination of the sample rate.
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2.4 Signal Characteristics

Geomagnetic pulsations fall in the period range from 0.2 

to 600 seconds. A 10 Hz sample rate would be required to 

sample the data sufficiently fast to record the entire 

spectrum. However, due to the nature of the higher 

frequency Pci signals, the sampling rate can be reduced, 

thus saving considerable data storage space. Most of the 

interesting polarization information contained in a Pci 

event is carried as slow modulations of the ~0.5 Hz carrier 

wave. Analog preprocessing of Pci band signals can 

eliminate the higher frequency carrier and provide estimates 

of the more slowly varying characteristics. ULF Spectrum 

Channel Cards (SCC's) have been designed which respond to 

these slow modulations. With the aid of the SCC's we are 

able to use a 0.1 Hz sample rate, thus saving a significant 

amount of data storage space. A detailed description of the 

SCC's is contained in the report by Olson (1982); a brief 

description of the cards is provided here.

The SCC's are a hardware realization of a common 

time-series analysis algorithm. The output of each card is 

a continuous estimate of the bivariate spectral matrix, S, 

formed from the x- and y-components of the magnetometer
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signal (the x- and y-components are referred to as H and D 

components, respectively). When working with a time series 

x^(t) we estimate the spectral matrix as follows. Let X^(u) 

be the Fourier transform of the time series x^(t)

and let |x> be the column vector of these transforms for N 

input signals

where superscript T represents the transform operation. 

Then an estimate of the spectral matrix S is the frequency 

band average of the outer product of |X> with its transpose

where E represents the averaging operation (Olson and 

Samson, 1980). By using a sliding window and examining only 

a portion of the time series we can calculate the individual 

elements of S as functions of time.

The four signals produced by each SCO provide a continuous 

estimate of the components of S, averaged over 20 seconds, 

from the H and D induction magnetometer signals at a 

particular frequency. We do not, at present, record the Z

T/2

|X> = ( x 1 (o>) ,  x 2 ( w ) ,  . . . ,  x n (w ) ) t

<X|

S = E{ |xxx| }
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component of the induction magnetometer. Therefore, our 

estimated spectral matrix is only two dimensional. If we 

let the H magnetometer component be represented by 

HQexp[-i(U)t+(J)1) ] and the D component by DQe x p [ - K u t t ^ ) ] 

then the spectral matrix composed from these signals, 

adapted from the derivation of Fowler, et al. (1967) is

given by

S = 2
oH0 D0 e x P t 1 ( ^ i  “ (t)2 } 1 Dc

Inspection of the spectral matrix terms allows us to collect 

data on Pci band pulsations without having to employ a high 

sampling rate. The diagonal terms provide measures of the 

power in each channel; therefore, Trace(S) gives us a 

continuous estimate of the power in the signal. Signal 

coherency information is provided in the off-diagonal terms: 

the real portion of the complex element S12 is an estimate 

of the "in phase" component of the cross spectral power; the 

imaginary component of S^2 i-s the "out of phase" component 

of the power common to the H and D signals. If the spectral 

matrix is recorded at a number of frequencies all of the 

original polarization information, such as ellipticity and 

handedness, is still available for later analysis at a 

considerable savings of data storage space. Currently SCC's 

centered at 0.3 Hz and 1.0 Hz are in use at the College and 

Cape Parry sites.
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2.5 Component Selection

To ensure versatility and minimize operator intervention 

we elected to use a microprocessor to control the 

acquisition and storage of the data. Of course, this meant 

we also needed an analog-to-digital (A/D) converter to 

transform the data to digital format. Most of these items

are available as standard off-the-shelf components and there

are a large number of similar products to choose from. Our 

requirements indicated, most of all, the need for reliable 

equipment. It is prohibitively expensive to make site 

maintenance trips when the field sites are located in remote 

locations, serviced only by chartered aircraft. But at the 

same time we needed to keep the cost of the entire unit to a 

minimum so we had to find the most cost-effective components 

available. Due to the increasing popularity of home 

computer systems many manufacturers are producing 

inexpensive, high quality components to work with the IEEE 

standard 696 interface buss.1 We determined that a

selection of components to operate with the IEEE-696

protocol met our requirements of reliability and price.

1. Also known as the S-100 buss.
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There was also a different set of requirements which had

to be met. The hardware had to be sophisticated enough to

handle the software which was envisioned to run with it.

For instance, we wanted to be able to sample up to 16

different analog channels simultaneously. Further,

communication with a tape drive was mandatory and the

ability to query the processor through a computer terminal

was deemed very desirable. All these requirements were met

by a combination of the Sierra Data Sciences (SDS) Slave

Processor (Sierra Data Sciences, 1982) and the Dual Systems

Analog-to-Digital Converter (Dual Systems Control Corp.,

1981). The SDS processor includes 2 serial ports (for tape
2drive and terminal), 16 kilobytes of non-volatile 

programmable memory, and 48 kilobytes of read/write memory. 

The Dual A/D converter is capable of sampling up to 32 

different channels at a maximum rate of 40,000 samples per 

second. Samples are recorded with 12 bit resolution over a 

10 volt range. These specifications leave ample room for 

expansion.

Our control program requires over five kilobytes of 

non-volatile memory for storage. SDS markets two versions 

of their processor board: a Master which is intended for 

controlling multi-processor systems, and a Slave. These

2. One kilobyte is 210 8 bit bytes.
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units are very similar but there is an important 

difference. The Master includes provision for only 4 

kilobytes of non-volatile memory. We therefore had to use 

the Slave version of the SDS processor board as the Master 

does not include adequate program storage space. However, 

the slave was designed to interface directly to the master 

without benefit of the electrical buss being used for

communication by the rest of the digital system (i.e. the

A/D converter). This necessitated construction of a 

custom-designed board to provide the proper interface 

between the processor and the system buss. The schematic 

for this simple interface is given in Appendix A.

2.6 Hardware System

A logical block diagram of the field unit is provided in 

Figure 2. It separates naturally into two parts: one for 

data acquisition and another for data storage. The data are 

acquired by standard geophysical sensors, i.e. riometers,

fluxgate and induction coil magnetometers. The riometer and

fluxgate magnetometer signals are transmitted directly to 

the storage subsystem. Induction magnetometer signals, too, 

go directly to storage but also are preprocessed by the 

SCC's as described above.
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Figure 2. Hardware system block diagram.
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All these signals (including the time code) are presented 

to the storage subsystem in analog format. The A/D 

converter transforms them to digital signals which are 

placed on the digital data buss. The CPU is responsible for 

storing the data temporarily in the internal memory then 

transferring a block of data to the cartridge tape interface 

unit for permanent storage on magnetic tape. The CPU 

receives its control instructions from the internal 

non-volatile memory. A block diagram of the control program 

is provided in Chapter 3 where it is discussed in detail.

During testing in our laboratory we were unable to detect 

any noise added to the signals by the hardware system. The 

signals did include noise generated by the sensors; however, 

when a pure sine wave was directly applied, bypassing the 

sensors, no noise was observed in the recorded signal. We 

conclude that the noise added by the hardware system is less 

than one digital level (2.44 millivolts). The noise added 

by the sensors will depend upon the individual 

characteristics of each sensor.

During the final check-out phase of construction the 

photograph of Figure 3 was taken. This photograph shows the 

instrument which was later installed at Cape Parry. For 

convenience in construction and transportation all 

components were mounted in a standard 19 inch wide equipment
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Figure 3. Cape Parry Field Unit. Technician Rudy 
Domke is performing final checkout.
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rack. The satellite time clock is mounted at the top of the 

rack. The two open panels below it contain the 20 bit time 

code generator and the two SCC's. The "front panel" for the 

instrument is located directly below. It has thumbwheel 

switches to select the number of channels to sample and the 

station location to record with the data, and an analog 

voltmeter with a channel selector switch for use in 

monitoring the analog signals being recorded. The next 

panel hides the cartridge tape deck power supply and logic 

boards; the tape drive itself is mounted directly below 

that. The final compartment holds the enclosure for the 

digital subsystem. It contains a separate power supply, the 

S-100 buss connectors, the A/D converter, the processor 

board, and the custom-built interface board. Power for the 

unit is filtered by a regulator to reduce the effect of 

voltage transients on the equipment. The antenna for the 

time clock, sitting on top of the rack in the picture, is 

mounted separately in the field.
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Chapter 3

Software Development

This chapter examines software design issues. Program 

execution speed, development time, extensibility, and size 

all affect the selection of the computer language to be 

used. These each are discussed in detail. A review of the 

language selected, FORTH, follows. The chapter concludes 

with a discussion of the software used to control the data 

collection devices.

3.1 Execution Speed

Collecting geophysical data often requires a very fast 

sample-and-record operation. The minimum rate at which data 

are sampled is directly dependent upon the frequency of the 

event being observed. This rate, referred to as the Nyquist 

sampling rate, is determined by Nyquist's theorem to be 

twice the maximum frequency content of the signal. To 

reconstruct an event with a maximum frequency of one hertz

25
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requires a sampling rate of at least two hertz.

It is undesirable to sample at too high a rate. A certain 

amount of memory space is required to store data samples. 

If sampling is performed at an arbitrarily fast rate then 

there is the possibility of exhausting the memory capacity. 

Most instruments have only a limited amount of memory space 

available. The sampling could easily occur so rapidly that 

all memory would be used up before a useful number of event 

periods had been recorded.

As mentioned in Chapter 2 we chose to sample the data 

channels once every ten seconds. This does not mean that 

for a system with ten channels one sample will be recorded 

from every tenth channel each second. This technique could 

be used but it introduces unnecessary complexity into the 

subsequent analysis of the data. The complexity arises 

because each channel would then have a phase shift 

proportional to the time difference from the base time, 

which would have to be considered during multichannel 

analyses. Instead, it is desirable to keep the channel rate 

as high as possible; restated, we want to record the data 

from each channel in as nearly the same instant as 

possible. The frame rate, or rate at which the data from a 

group of channels is recorded, is then set to the desired 

sample rate. In our system events with a period on the
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order of 10-100 seconds are recorded 100 microseconds apart
5resulting in an error of less than one part in 10 . This 

error is small enough to be neglected. Even though the data 

may be sampled at a low rate it is still necessary to sample 

multiple channels rapidly.

Thus, since the channel rate of our A/D converter is under 

software control, the language selected for implementation 

of the control program must be capable of rapid execution. 

Most compilers available for microprocessor-based systems 

produce code which will execute sufficiently fast for data 

collection purposes but do not support convenient 

development tools. The fastest programs are, of course, 

written in assembler language. However, coding in assembler 

language has another set of problems, discussed below. The 

language selected in this effort, FORTH, is capable of 

executing programs at a sufficiently fast rate without 

incurring the problems associated with assembler language. 

FORTH will be discussed further in Section 3.5.

3.2 Program Development Time

Often, during the course of a project, the need arises for 

a small, special purpose program which will be used either 

very few times or occasionally but by very few people. It
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does not make sense to spend large amounts of time on the 

development of programs of this nature. Rather, it is 

preferable to have a set of software tools which can be 

quickly combined and extended to produce the proper 

program. Most high-level languages offer this capability to 

some extent. However, most assembler languages do not. 

This means that assembler language is not a good choice for 

developing new systems in a hurry. FORTH wholeheartedly 

embodies the philosophy of building on existing modules. As 

a result, program development time is reduced to a minimum.

3.3 Program Extensibility

Another aspect of software development to consider is that 

of program extensibility. Program extensibility refers to 

the ease of including additional capability within the 

framework of an existing program. For example, most 

programs written in a research environment initially perform 

the basic tasks which were recognized at the time the 

program was written. Additional tasks may subsequently be 

recognized and added to the code. More complex tasks may 

also be included after the success of the basic tasks has 

been demonstrated. This can become complex when working 

with assembler language programs. (Although it need not
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be.) It can also become complex if a high-level language is 

used. However, it is generally easier to maintain a program 

written in a high-level language than the same program 

written in assembler language. FORTH programs tend to be 

easily extensible due to the manner in which FORTH code is 

written.

3.4 Program Size

When coding for a small system, program size may be a 

crucial factor in the selection of the language to be used. 

If large amounts of data are to be buffered in limited 

memory before being sent to secondary storage, the size of 

the program controlling the collection needs to be 

minimized. In this way a maximum amount of memory is 

available for buffering data. High-level languages 

generally do not produce code which requires the smallest 

amount of memory possible. Properly written assembler code 

will require comparatively little memory. In some cases, 

however, FORTH programs can be written which require less 

memory than do assembler language programs. This is due to 

FORTH's insistence upon using the same piece of code many 

times.
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3.5 FORTH

After consideration of the selection criteria (execution 

speed, development time, extensibility, and program size) in 

terms of the programming systems available for 

microprocessors the language FORTH was chosen for 

implementation of the control program. FORTH is a small but 

flexible language designed for process control 

applications. Typical FORTH programs execute approximately 

an order of magnitude slower than the same program written 

in assembler language. However, this speed is still roughly 

10 times faster than that of most other interpreted 

languages running in a microprocessor environment. It is 

slower than many compiled high-level languages but FORTH has 

another advantage here, too. It is possible, and very easy, 

to write the time critical portions of the program in 

assembler language without giving up any of the other 

advantages FORTH has.

FORTH programs are written by literally extending the 

basic FORTH system. New functions are written in terms of 

previously defined functions, or in assembler language. 

This makes for an easily extendible program. It also lends 

itself to rapid program development in a top-down,
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structured manner. Although new functions must be defined 

in terms of old, during the program design phase new 

functions may be written in terms of undefined functions 

which are themselves defined later. After the functions 

have been entered into the FORTH system they are compiled 

into a pseudo-code which is very compact. Each function 

call requires only one computer word of memory space. The 

entire FORTH program is composed only of function calls plus 

the basic FORTH system so programs are memory efficient. 

However, there is a drawback to this technique: the basic 

FORTH system must be included in every program, no matter 

what size. In other words, there is no concept of linking 

previously compiled program segments in FORTH. This is not a 

disadvantage for programs of a moderate size and it can be a 

real advantage for very large programs. Thus, it is 

possible to have a FORTH program which requires less memory 

space than a comparable assembler language program.

FORTH has another advantage over most other languages. 

The basic system includes an interpreter which can be used 

to debug the code after it has been installed in an 

instrument (provided one can connect a computer terminal to 

the instrument). Having the ability to query the instrument 

is of primary importance during program development but may 

also be of value during installation and field testing.
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3.6 Control Program

The software we have developed, which controls the 

acquisition of data, runs in a stand-alone environment 

within the instrument. It is stored in erasable, 

programmable, read-only memory (EPROM) and requires 8305 

bytes of storage. Two-thirds of this space is taken by the 

basic FORTH system and approximately one-fourth of that is 

not required by the control program. The control program 

also requires almost 18 kilobytes of dynamic random access 

memory (RAM) to store a number of variables, some stack 

space plus two data buffers, each eight kilobytes in 

length.

The two data buffers are used to implement a double 

buffering algorithm. Double buffering involves an active 

buffer, within which new data are saved, and a passive 

buffer, which holds a previously collected block of data. 

The passive buffer is available for on-line analysis for as 

long a time as is required to fill the active buffer. When 

the active buffer is filled, it becomes the passive buffer 

and the other buffer becomes active. This scheme also 

reduces program complexity.
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The program is written almost entirely in FORTH, with a 

small amount of assembler code included. It is logically 

divided into four parts: some code to initialize the

hardware and software, a monitor, a sampling routine, and a 

routine for transmitting a full buffer of data to secondary 

storage on magnetic tape. The initialization code is called 

when the instrument is powered up. It ensures that all the 

hardware devices are configured correctly and that the

software variables are set to their initial values. Note

that this minimizes the problems caused by power failures: 

configuring the hardware includes setting the position of 

the tape to just after the last data record. This is 

accomplished by writing a file mark to tape after each 

record is written then spacing backwards over the mark so 

that it will be written over when the next record is 

written. If, however, a power failure occurs the end of the 

data recorded on tape is marked by the file mark. This file 

mark is searched for during initialization. Of course, 

unused tapes must have first had a file mark written on them 

for initialization to proceed. The initialization code also 

reads the values of the thumbwheel switches on the front 

panel to determine the number of channels to record and the

station location to be saved with each record. The monitor

and sampler are asynchronous processes. The monitor 

continuously checks the status of the active data buffer:
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when the active buffer is full it swaps the active and 

passive buffers and initiates the transmission of data in 

the passive buffer to secondary storage. The active buffer 

is filled by the sampler. Periodically, the system clock 

interrupts the monitor and causes the sampling routine to 

execute. It is responsible for collecting the data from the 

real world and storing it in the active data buffer. Figure 

4 summarizes the control program in a block diagram.

The first version of the control program included no code 

to control aliasing. Samples were taken every 10 seconds 

and the raw data were saved in the data buffer. In the 

second version, however, anti-aliasing code was included. 

Samples are still recorded every 10 seconds but now a 

triangular window over 25 points is used to produce one 

datum. The windowing algorithm is covered more fully in 

Chapter 4.

The astute reader may be be concerned at this point that 

the timing mechanism will introduce errors due to clock 

drift or instability. This problem is eliminated by 

including the slow time code (see Chapter 2) as the first 

channel of the data record. The instrument's clock receives 

the time relayed from a satellite in geosynchronous orbit. 

This time is accurate to within a few milliseconds, the 

error being introduced by the signal propagation time.
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Chapter 4

Data Recovery

4.1 Introduction

The field units for Mould Bay and Cape Parry were 

constructed and installed in 1982. We have been receiving 

data tapes continuously since these units were installed. 

In this chapter I will describe the installation of these 

field units, the quality and quantity of the data returned, 

and present some useful analysis techniques.

4.2 Installation

After the field units were assembled and tested at the 

Geophysical Institute they were shipped to Cape Parry, 

N.W.T., Canada and Mould Bay, N.W.T., Canada. Both units 

were equipped to record a fluxgate magnetometer, a riometer, 

and the time code. The Cape Parry unit was also fitted with 

1.0 Hz and 0.3 Hz Spectrum Channel Cards and a two component

36
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(H and D) induction magnetometer; the Mould Bay unit was 

not. At Mould Bay we were allowed access to the 

magnetometer and riometer being used for another project so 

no additional sensors needed to be installed. The Cape 

Parry site required the induction coil sensors to be 

installed with the field unit; however, riometer and 

fluxgate signals were available on-site. Installation was 

completed in mid-October, 1982. An additional field unit is 

currently being assembled. It will be installed later this 

year in Barrow, Alaska.

The units at Cape Parry and Mould Bay are maintained by 

personnel stationed at the Canadian arctic weather stations 

located at Cape Parry and Mould Bay. They are responsible 

for changing data tapes and mailing recorded tapes back to 

the Geophysical Institute for analysis. In addition, for 

the first version of the control program the operator had to 

manually reset the microprocessor after a power failure. 

Power failure recovery has been automated in the current 

version of the control program.
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4.3 The Data

We have been receiving data tapes from both sites 

continuously since the units were installed. The data 

recorded in 1982 are rather sporadic due to the above 

mentioned problem with the power fail recovery mechanism. 

After that problem had been identified, and the operator 

instructions modified accordingly, the data became more 

continuous. Unfortunately, we have been unable to process 

the data on the early tapes from Mould Bay. The tape unit 

developed a problem in encoding the data to be written to 

tape and our tape drives are not able to decode the 

information. We are currently seeking assistance from the 

manufacturer in extracting the data from the Mould Bay 

tapes. The tape unit was replaced when the revision to the 

control program was installed and appears to be operating 

satisfactorily.

We have been able to recover all the information from the 

Cape Parry tapes and it has been copied to high speed mass 

storage for computer processing. During the process of 

copying and reformatting the data files it was discovered 

that a programming error had occurred. It was the cause of 

a subtle problem: many of the records stored on tape (but
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not all) were missing the first sample of each channel in a 

block of data. Linear interpolation was used to estimate 

the values required for each data channel. The time code 

could not simply be interpolated. Fortunately, it is highly 

redundant and a few heuristics sufficed to generate the 

missing value. This error has been corrected.

One problem remains with the Cape Parry installation which

we have not corrected. The induction magnetometer signals 

and, therefore, the Spectrum Channel Card signals experience 

a periodic pulse overlaid upon the signal. These pulses, 

identified as emanating from the GOES system transmitter, 

are 93 seconds in duration and occur 12 minutes apart. The

interference signal has a small amplitude but it is

prominent in the sensitive induction magnetometer signal. 

It is carried through the installation's DC power supply; 

the only way to eliminate this interference would be to use 

a separate power supply for the magnetometer.

I mentioned in chapter 2 that some arctic (or antarctic) 

installations have difficulty with static buildup due to the 

low humidity of these regions. It is noteworthy that our 

stations have experienced no severe problems in this 

regard. There is, occasionally, one bit dropped from or 

added to a data word (these are easily identified in the 

time code). This may be caused by static but may also be
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due to other phenomena (such as tape head misalignment, 

X-ray bombardment, etc.).

In summary, the quantity of data received through May 1983 

is low: approximately 53 percent of the data we could have 

gathered was lost due to power failures at Cape Parry; none 

of the data from Mould Bay during this period of time has 

been recovered. The quality of the data we did receive, 

however, appears to be high. There is an occasional odd 

(very high or very low) value in the data, but these are 

infrequent: less than 1 per 500 samples. Since the

replacement of the defective tape deck at Mould Bay the rate 

of data return from that station has been comparable to that 

of the Cape Parry station. It is still too early to tell if 

automating the power failure recovery sequence has had a 

noticeable effect on the amount of data collected.

4.4 Aliasing, or How to Get Something From Nothing

Suppose your data logger was sampling at a 30 Hz rate and 

you were only interested in signals of 15 Hz, or lower, 

frequency. Further, suppose that a 50 Hz sine wave 

presented itself to your instrument. This signal, which 

doesn't exist by your criteria, would be sampled just often 

enough to be recorded as a 10 Hz sine wave. This phenomenon,
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known as aliasing, is a very real problem when taking data 

with broad band sensors. There are two solutions. 

Obviously, the sampling rate could be increased so that the 

highest frequency signal present would be sampled at least 

twice every period. This would increase the amount of space 

required to store the data and could result in the need for 

a data logger which sampled at an impossibly high rate. 

Often, a more practical solution is to employ an 

antialiasing filter.

4.5 Antialiasing

Antialiasing refers to the process of reducing the 

problems caused by the undersampling of a signal. An 

antialiasing filter is a low pass filter which has a cutoff 

frequency equal to the maximum frequency to be recorded. We 

know from Fourier analysis that any continuous signal can be 

represented as a series of sines and/or cosines of harmonics 

of the lowest frequency contained in the signal. A low pass 

filter works by reducing the amplitude of the higher 

frequency terms in this series to zero, in the ideal case. 

A real filter will reduce the higher order components 

significantly, but probably not to zero.

The only filtering performed with the first version of the
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control program was that provided by the SCC's. The SCC's 

adequately processed the higher frequency signals and 

eliminated the possibility of aliasing in their respective 

channels. For those channels which were not filtered by the 

SCC's, though, aliasing was a potential problem. We hoped, 

based on the observations made by Orr (1973), that any high 

frequency signals would be low enough in amplitude to cause 

no problem and that these signals would be very infrequent.

4.6 An Antialiasing Filter

We are currently more prepared to handle the vagaries of 

the natural spectrum. The major code modification between 

versions one and two (besides the bug fixes) was the 

inclusion of an antialiasing filter. We used a standard low 

pass, non-recursive digital filter implemented as part of 

the FORTH code which collects data samples. If we let y^ 

represent the k-th datum produced by the filter then the 

filter is the weighted average given by the function

N/2

Y* = T Z  aiXi (ai = a-i*
° i=-N/2

where the are the original data points, the a^ are the 

weighting coefficients, and Aq is a normalization factor
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equal to the sum of the coefficients. The coefficients were 

chosen to give a triangular window centered about the time 

at which the sample is considered to have been recorded. In 

this filter N = 25. To retain a 10 second period between 

samples and still have 25 data points to average together to 

produce one sample we needed to increase the sampling rate 

from once every ten seconds to once every four tenths of a 

second.

The frequency domain transfer function H(u) is represented 

in Figure 5. H(cj) is the ratio of the amplitude of the 

signal produced by the filter to that of the signal 

presented to the filter as a function of frequency. We can 

see that higher frequencies are, indeed, much lower in 

amplitude; signals above the cutoff frequency (0.05 Hz) are 

reduced in amplitude by a minimum of 14 decibels. H(w) is 

easily derived from the filter function. We transform the 

filter function to the frequency domain, then an application 

of the shift theorem gives us

N/2 N/2
Y (to) 1 ^— i i ^ — j
  = —  \  a cos(nuT) + —  \  a sin(nuT)
X (cu ) A  Z . J  n  A  n

° n=N/2 ° n=N/2

where T is the period between samples (0.4 seconds) and our 

transfer function is the magnitude of this ratio
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F ILTER  R E S P O N S E

0.5 1 5 10 50 100

FR EQ U E N C Y (m H z)
Figure 5. Antialiasing filter frequency response. Amplitude 
is in arbitrary units.
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H(W) =
Y(w)

X(u)

4.7 Pulsation Band Power

While trying to determine which portions of the data set 

warrant further analysis it is handy to have available tools 

to manipulate the data and restructure the information 

contained within them. One such tool which has been 

developed displays the power in the individual pulsation 

bands as it varies over a period of time.

As explained in chapter 2 the Spectrum Channel Cards 

provide a continuous estimate of the spectral matrix S for 

the signals detected by the induction magnetometer within a 

particular frequency band. The signal power P within that 

band can then be determined by

P = Trace(S)

This provides us with estimates of the power at 1.0 Hz and

0.3 Hz as functions of time.

Data from a typical day is shown in Figure 6. The top 

eight traces are the output of the 1.0 and 0.3 Hz SCC's. H, 

D, C, and Q refer to H and D magnetometer components and 

real and imaginary components of the off-diagonal terms of 

S, respectively. HL and DL are the induction magnetometer
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signals, R the riometer signal, and H, D, and Z are the
3three components of the fluxgate magnetometer. Its 

pulsation band power is plotted in Figure 7. The frequency 

bands correspond to those given in Table 1, except there is 

no entry on the graph for the Pc2 band (the annotation on 

the left of each trace refers to the center frequency of 

each band, in milli-Hertz). The signal at 0820 UT is of a 

Pi emission. The power spectrum follows the general trends 

given in Figure 1: the lower frequency bands contain much 

more power than do the higher frequency bands. The plots 

represent the time domain convolution of a rectangular 

window one half hour in width with the data. To perform the 

convolution the window was shifted by five minutes after the 

estimates of the power in the Pc bands were computed, then 

the next estimates were found. This results in an 

inevitable broadening of the band power in the vicinity of 

the pulsation signal. The power in each band increases at 

about 0800 UT but the signal does not actually begin until 

0815 UT. These plots represent the relative changes in power 

with respect to some base level. The 12 minute interference 

recorded in the induction coil magnetometer signals 

contribute to the power but, since this interference is 

continuous, its contribution to the power of the signal is

3. Z is defined to be positive in the downward direction, H 
is positive southward, D is positive westward.
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removed when the base level is subtracted.

4.8 Polarization Parameters

Another tool, more useful in the detailed study of

particular events, calculates the polarization parameters of 

a signal based on the magnetometer recordings for a specific 

period of time. Since these parameters depend upon the

estimates of the spectral matrix, the output of the Spectrum 

Channel Cards is found most useful here.

Signals can be divided into two classes: those which are 

completely polarized (the polarization parameters are 

independent of time) and those which are completely 

unpolarized. Geomagnetic pulsations generally consist of 

both a polarized component and an unpolarized one (Fowler, 

et al., 1967). Figure 8 gives a schematic representation of 

the polarization ellipse of an arbitrary elliptically 

polarized signal. The general theory for working with 

partially polarized waves and its application to geomagnetic 

pulsation analysis is given by Olson and Samson (1980). 

Given an estimate of the spectral matrix (either from the

Spectrum Channel Cards or via the equations in Chapter 2)

the following estimates of the polarization parameters may 

be found. The relative phase of the signal, (j), is derived

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Elllpticity 0 =  ■§•

I

Figure 8. Schematic polarization ellipse for an arbitrary 
elliptically polarized wave depicting ellipticity and 
orientation.
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from

Re(S,9)
tan((J)) = -------

Im(S12)

The direction of polarization (clockwise or 

counterclockwise) is determined by the sign of S-̂ 2' Pos;’-t;’-ve 

indicating clockwise polarization. The ellipticity, or 

ratio of major and minor axis of the ellipse, tan/9 , is 

found from

2S-. -I S„p
sin(2/3) =  p sin((j))

S11 + S22
The orientation, o, or angle between the major axis of the 

polarization ellipse and the X axis is derived from

2S-] -i Spp
tan(2a) = ----~------ cos(({))

(S11 ‘  S22 >

These parameters yield physical insight into the nature of 

the pulsation event being studied. For instance, Southwood 

(1974) has shown that the direction of propagation of a 

resonant pulsation wave can be determined from the direction 

of polarization. A wave with clockwise polarization 

(looking downward) would propagate eastward south of the 

resonance in the northern hemisphere; north of the resonance 

the wave would propagate westward. The reverse holds for 

counterclockwise polarized waves (Southwood, 1974). Olson 

and Samson (1979) have shown that the relative position of a
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Pc4 or Pc5 resonance (whether north or south of a sensor) 

can be determined using only data from a single station. 

Once the position is found the direction of propagation is 

determined by the direction of polarization.

Figure 9 illustrates the results of the above 

computations. The original data is that given in Figure 7 

between the hours 0700-1000 UT. The phase trace (PHA) 

represents the phase of the signal (as recorded by the 

detectors) as the signal passes by the detectors. The trace 

labeled ELL depicts the ellipticity of the wave as a 

function of time. The handedness (HND), or direction of 

polarization, is just the sign of the ellipticity and shows 

whether the signal is right-hand, left-hand, or linearly 

polarized. A positive value indicates a right-hand, or 

clockwise (looking down), polarized signal. A signal with 

counterclockwise polarization has a negative handedness 

value. The fourth plot (TRA) is Trace(S) and represents the 

power of the signal as described above. The last plot (ORI) 

is the orientation of the major axis of the signal's 

polarization ellipse with respect to the X (or H, in this 

case) axis.

As the trace of the spectral matrix is related to the 

amount of power present in a signal we can use this plot to 

determine when the signal was strongest, or most
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interesting. For instance, in Figure 9 there are two 

periods of time when the signal strength was much higher 

than usual. These fall on either side of 0820 UT. 

Immediately prior to the first strong period (which was at 

about 0819 UT) we see that the signal was rather incoherent: 

phase, ellipticity, and handedness all vary widely. As the 

signal strength increases, though, there is an abrupt shift 

from clockwise to counterclockwise polarization (as 

determined from the handedness plot) and the magnitude of 

the ellipticity decreases. (Note that in the figure 

ellipticity has both positive and negative values.) This 

suggests that the signal became more nearly linearly 

polarized. During this period the phase shifted from a 

small positive angle to a small negative angle; the 

orientation, which began as a negative angle, jumped to zero 

at the time when the signal power was at its maximum, then 

shifted back to a negative angle. Similar observations 

could be made for the signal peak at 0821 UT.

It should be noted that the availability of these 

polarization parameters will allow much more information to 

be extracted from pulsations data. Previous investigations 

had to rely on analog polarization analysis, such as 

hodograms, which were much less precise and did not yield as 

much information. It remains yet to be determined precisely 

what physical information may be extracted from digital data
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using these polarization parameters. We are, however, 

confident that the SCC's will prove useful in analysis of 

high frequency pulsation events.
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Chapter 5

Conclusions and Extensions

This thesis has presented an overview of an instrument 

which is in use collecting geomagnetic pulsations data, and 

a review of some of the data obtained with it. It 

demonstrates the practicality of integrating microprocessor 

controllers with traditional ground-based geophysical 

detectors. We are now in the process of cataloging the data 

and determining which events warrant further analysis. The 

signal analysis techniques presented in the previous chapter 

are valuable aids in this task.

The interactive capabilities of FORTH can be used to 

simplify the diagnosis of problems in the field. Attaching 

a computer terminal to the unit activates the FORTH 

interpreter. This allows check-out of the digital system 

and can be used to confirm that the sensors and tape deck 

are all operating properly. During installation, proper 

configuration can be determined quickly and easily. It 

would even be possible, with some extra programming effort 

beforehand, to make modifications to the control program in

56
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the field. Those portions of the program which might need 

modification would have to be written such that their 

critical portions were resident in read/write memory rather 

than in non-volatile memory. See the discussion of vectored 

execution in Brodie (1981) for details.

There are a number of ways in which this basic design 

could be extended. It may be desirable to record higher 

frequency events from certain detectors while allowing 

others to continue recording events of a lower frequency 

while keeping magnetic tape consumption to a minimum. In 

this case the sampler would be programmed to execute at a 

rate equivalent to the greatest common multiple of the 

individual sample rates. Then, it would check each channel 

to see how often it is to be sampled and record samples only 

at the appropriate times. For instance, if channel one were 

to be sampled three times per second and channel two twice 

per second then the sampler would run six times per second. 

Channel one would be recorded every other time the sampler 

ran and channel two every third time.

Another extension which would be useful would be the 

inclusion of additional data preprocessing in the control 

program. During the design of the system whenever a choice 

of hardware was being made consideration was given to making 

the system as extensible as possible. There is sufficient
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memory (both RAM and EPROM) left over that some analysis 

could be performed in the field. Also, at the present rate 

of data collection there is a minimum of 45 minutes required 

to fill a buffer, some of which could be used to perform 

analyses. Since the monitor and sampler run asynchronously 

the time when the sampler is not executing could be used by 

an expanded monitor which also would perform some analysis 

of previously collected data. In the first version of the 

control program the sampler required about 2 minutes of 

processor time to record a full buffer of data; the current 

sampler (not completely optimized) needs over 6 minutes. 

The time difference between this and the total time required 

for filling the data buffer would be the amount of time 

available for use by an analysis routine. If on-line 

analysis is to be performed it may be possible to use a 

sampler which does not include the antialiasing filter, 

thereby increasing the time available for analysis.

Event detection is an obvious application of this 

instrument using on-line analysis. We could, for instance, 

look for some particular correlation between two (or more) 

channels and record data only when we have a positive 

correlation. If the data just prior to an event were needed 

the double buffering scheme could be extended to a triple 

buffering technique. With three data buffers (one active 

and two passive) one passive buffer would be used for
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analysis while the other would save the previously analyzed 

data. This would provide a minimum of 8 kilobytes of data 

prior to an event for later study.

This instrument could also be used in fields other than 

geomagnetic pulsation recording. By rewriting the sampling 

loop in assembler language and eliminating the antialiasing 

code the sample rate could easily be increased to one 

kilohertz for 10 channels. Due to hardware limitations the 

maximum rate would be one channel at 40 kilohertz. This is, 

however, quite rapid enough for many applications.

Moreover, the data collecting unit could be reconfigured 

to be more portable. The basic data logger is the section 

of Figure 2 under the "Digital Section" label. Physically, 

it consists of the front panel, tape deck, and 

microprocessor cabinet; with the satellite time clock, 26 

inches of vertical space in a standard equipment rack are 

required for mounting (see Figure 3). These components could 

be housed in a smaller equipment cabinet and transported as 

needed to the field sites.
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Appendix A

SDS Slave Processor to S-100 Buss Interface

This appendix provides electrical details of the logic 

board constructed to interface between the S-100 buss and 

the Sierra Data Sciences X-Buss on their Slave Processor. 

Understanding of the technical documentation for the CPU 

board and the A/D converter is assumed (Dual Systems 

Control, 1981; Sierra Data Sciences, 1982). Familiarity with 

the signals defined by the IEEE 696 standard (S-100) is 

helpful (see Libes and Gartez, 1981).

Figure 10 is the schematic diagram for the address and 

data buffer. Ul simply provides additional buffering for 

the address lines. The buffering of these lines provided by 

the CPU board is inadequate when other S-100 boards are 

added to the buss. Likewise U2 and U3 buffer the data buss 

between the X-Buss (Jl) and the S-100 Buss (J2). In 

addition, these tri-state buffers are only enabled during

60
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I/O operations. DOENA* and DIENA*'*' are normally high. When 

a read operation is requested, DIENA* goes low and enables 

U2, the input data buffer. DOENA* functions similarly for 

write operations. Address line A7 is used to disable

buffering for internal (to the CPU board) I/O operations. 

All I/O ports resident on the CPU board have address greater 

than or equal to 80 hex. Therefore, when a read (or write) 

is requested with an address less than 80 hex it is

referring to an I/O port which is not on the CPU board. 

OR-ing A7^ and DIENA* (or DOENA*) ensures that the data 

buffer is only enabled for external I/O operations.

Generation of the signals required for operation of the

A/D converter (and I/O requests) is provided by the top

schematic of Figure 11. U4 buffers both the signals taken as 

input from the X-Buss (Jl) and those produced as output to 

the S-100 Buss (J2). pWR* is a strobe which signals that the 

data output buss contains valid data and is the same signal 

on both busses. sOUT* is a status signal on the S-100 Buss 

which signifies that the CPU is writing data to the output 

data buss. It is high when both pWR* and IORQ* are low. 

sINP* functions in a similar manner for read operations. It

1. The "*" is used in place of overlining for those names 
which denote active-low signals.

2. Which is high for an address of 80 hex or above.
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is generated when RD* and IORQ* and low. pDBIN* is the

general S-100 read strobe. This signals a device that the

CPU is ready to read data from it. It is high when the CPU 

is fetching an opcode from memory (e.g. IORQ* and Ml* are 

low), or if it is reading from an input port (e.g. RD* is 

low). These signals are all that the A/D board requires for 

operation. None of the other buss signals are generated; if 

another board is added to the system, or the specific model 

of A/D board is changed, its schematic will have to be 

carefully examined to ensure that all required signals are 

present on the buss. If it requires control or status

signals other than those generated in Figure 12 then 

additional circuitry will have to be added to supply those 

signals.

Two circuits, labelled "Power Supply" and "Power-On

Reset," are at the bottom of Figure 12. The power supply 

provides a regulated five volt voltage source for use by 

components on the interface board. The power-on reset 

circuitry activates the signals RESET* and POC* for as long 

as it takes C5 to collect a charge each time the power is 

turned on. This provides for the resetting of all devices 

in the system and the automatic initialization of the 

control program.
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Figure 10. Schematic diagram of the Interface Board. Part A: 
buffer circuitry.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



R
eproduced 

with 
perm

ission 
of the 

copyright ow
ner. 

Further reproduction 
prohibited 

w
ithout perm

ission.

J1
2 l d >  
17CZ>r 
19 f >  
351 >

pWR 18

+5v
20?

IORQ 17
RD 14
M 1 13

V cc  OE 

U4 

G N D L E

19
16
15
12

1
+5v

( 1 / 2 )  7 4 L S 3 7 3

J2

50C= ^ - r  
100C^>— 1

7805
= 1
10/iF

IC
2 7 4 L S 0 4

U6
U6

->DOENA
->DIENA

8
U4

9 pWR
6 S O U T
5 SINP
2 PDBIN

J2
r  ~ > 7 7  
C Z > 4 5  
I > 46
d > 7 8

9*\U 6  ( 1 / 2 )  7 4 L S 3 7 3

+5vO

C2 C3
-o+5v

C4
0.1 /iF

50/xF

10
C5

■ 1 1 ^  
H  ic

RESET J2

U6
- d > 7 5

POWER SUPPLY

1Kfl^R1
J 3 N t ? P OC1̂1 ICU6

I > 9 9

P O W E R -O N  RESET

Figure 11. Schematic diagram of the Interface Board. Part B: 
buss signal transformation circuitry.

<y\



Table 3. Parts List for Interface Board.

Symbol

Ul, U2, U3, U4

U5

U6

U7

Cl

C2 ,C3,C4

C5

Rl

J1

J2

Component

74LS373

74LS02

74LS04

74LS32

10 microfarad capacitor

0.1 microfarad capacitor

50 microfarad capacitor

1000 ohm resistor

50 pin connector 
(to X-Buss)

100 pin connector 
(to S-100 Buss)
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Appendix B

Control Program Listing

This appendix provides detailed documentation of the 

control program. Familiarity with FORTH is assumed. Also, 

full understanding of the action of many of the FORTH words 

requires knowledge of the material contained in the 

technical documentation for the A/D converter, the cartridge 

tape drive, and the CPU board (Dual Systems Control, 1981; 

Alloy Engineering, 1980; Sierra Data Sciences, 1982).

B.l Glossary

The following pages contain a listing of all FORTH words 

which make up the control program. The words which belong 

to the basic FORTH system are documented elsewhere 

(Laboratory Microsystems, 1982; Nautilus Systems, 1981; 

Derick and Baker, 1982). As is standard in FORTH 

documentation, each entry begins with the name of the word 

followed by the stack contents, both before and after

66
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execution (the stack contents are the input to and the 

output from each word). A dashed line separates the input 

parameters on the left from the output parameters on the 

right. Beginning on the next line is a short English 

description of what each word does.

The following abbreviations are used to designate entities 

in the stack notation.

b 8 bit byte

d 4 byte double precision number

n 2 byte number

tf truth value (zero is false)

#SAMP! b----
Store number of samples being collected in proper
place in header of data buffer.

#SAMP@----------- - b
Return the number of samples being collected.

0-CHK-INIT - n
Return the address of the location where the
address of the checksum word for channel 0 is 
located.

0-PTR-INIT-------- n
Return the address of the location where the
beginning address of buffer 0 is saved.

1C&R b ----n
Send tape drive a 1 byte command and return
Drive/Interface Status Word (DSW).

1-CHK-INIT------ - n
Similar to 0-CHK-INIT, but for channel 1.
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1-PTR-INIT   n
Related to 0-PTR-INIT.

3C&R b b b --n
Send tape drive a 3 byte command and return DSW.

A-CLOCK ---
Initialize baud rate generator for SIO A.

A - S I O  -------
Initialize tape drive serial I/O port.

A/D-CH b ---
Tell A/D board which channel to sample next.

A / D - D A T A    n
Return 12 bits of A/D data.

A / D - G O  -------
Start measurement of next sample on A/D board.

A / D - R D Y  -------
Return when next A/D sample is ready for reading.
N o t  u s e d .

A / D - R E A D    d
Read current channel on A/D board, multiply by 
current weighting coefieient, and store 
temporarily.

B-CLOCK ---
Initialize baud rate generator for SIO B.

B - S I O  -------
Initialize terminal serial I/O port.

B K - F M K  -------
Backspace over last file mark.

BLINK-SELECT ---
Cause SELECT light on tape drive front panel to 
blink.

BUF! n----
Save a data value and increment buffer pointer.

B U F *   n
Returns the address of the word which keeps track 
of which buffer (0 or 1) is active.

68
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BUF-FULL?  tf
Return true if the current buffer cannot hold 
another set of data samples.

CARTRIDGE-IN? ---  tf
Return true if a cartridge is inserted in drive.

CHA! b ---
Send b to the uart control port for the tape 
drive.

CHA-INIT ---
Setup tape drive communications.

CHB! b ---
Send b to the uart control port for the terminal.

CHB-INIT ---
Setup terminal communications.

CHKSUM n ---
Update checksum.

CHKSUM! n ---
Store new value of checksum.

CHKSUM# --- n
Checksum address. Returns the address of the word 
in the active buffer which contains the checksum.

CHKSUM® --- n
Return current value of checksum.

CMD b ---
Send a command byte to tape drive.

CNT -- n
Returns the address of the word which holds the 
sample count.

CTC-INIT ---
Initialize interrupt timer and ISR.

DESELECT --
Deselect tape drive. Used with RESELECT to cause 
SELECT light on tape drive front panel to blink.

DEV-INIT --
Initialize programmable hardware.
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DI ---
D i s a b l e  i n t e r r u p t s .

DSW -------n
Return Drive Status Word composed of Interface 
Status (low byte) and Drive Status (hi byte) as 
returned from tape drive.

DUMP nl n2----
Display contents of n2 memory locations starting 
with nl rounded to next lower 16 byte boundary. 
Provided with 8086 FORTH. For debugging.

El ---
Enable interrupts.

EISR --
Not a FORTH word. Interrupt Service Routine (ISR) 
entry point. Transfers control to the FORTH ISR 
word.

EOT?  tf
Return true if at physical end of tape.

FIND-EOD ---
Locate end-of-data after power failure. Power-up 
always causes rewind of tape drive. EOD is 
signaled by a file mark.

GET-STATUS --- n
Return current drive status in DSW format.

GREEN-ON ---
Turn on green light on front panel and leave it 
on.

INIT-TAPE------ --
Set tape drive options. Of primary concern is the 
buffer length, specified by INI-MA.

IS-OK? n  tf
Return true if last tape command executed without 
error.

ISR------------ ---
Interruppt Service Routine control. Take another 
sample from each channel. If it is time to 
produce a filtered datum, then do it.

ISR1 ---
Not a true FORTH word. Label used by EISR to
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transfer control to the FORTH interpreter.

ISREXIT-------- ---
Restore the state of the machine after servicing 
an interrupt. Return from ISR.

KILL-TIME ---
Main time wasting loop. Reset stacks then do 
status check. If buffer is full, write it. If 
the terminal becomes active, go back to the FORTH 
interpreter. If the tape has been removed, set up 
for reinitialization.

NEXT-TRACK ---
Select next track and rewind tape. If at end of 
tape, wait for operator to replace tape.

NOT-OK? n ---tf
Return true if any error bits are on in DSW.

ON b ---
Turn the light(s) specified by the top nybble in b 
on.

ORANGE-BLINK ---
Cause amber light on front panel to blink.

OVER-RUN ---
Handle tape full errors. Wait for new tape, 
initialize drive and variables, then transfer to 
KILL-TIME.

PIO-INIT ---
Initialize front panel switches parallel I/O 
ports.

PIOA! b ---
Send a byte to program front panel switches 
parallel I/O port.

PIOA@  b
Get a byte from the front panel switches. (Number 
of channels)

PIOB! b ---
Send a byte to program front panel location 
selection switch parallel I/O port.

PIOB@  b
Get a nybble from front panel switch. (Location)
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PISR ---
Program Z-80 interrupt service mechanism.

PTR  n
THE buffer pointer. Returns the address of the 
next word in the active buffer to store a datum 
in.

READ -------
Read 8kb from tape to memory starting at location 
6000 hex. For debugging.

RED-BLINK ---
Cause red light on front panel to blink.

RESELECT ---
Reselect tape drive. Used with DESELECT to cause 
SELECT light on tape drive front panel to blink.

REWIND ---
Rewind tape.

RW-SKIP-R   n
Rewind then skip forward one record. Used to set 
status bits in DSW when determining where 
end-of-data is after power failure. Returns DSW.

S-RATE! b ---
Store sample rate (seconds per sample) in each 
channel's sample rate byte.

SAMPLE ---
Get and save a datum from each channel of the A/D 
board which has an instrument connected to it. 
Data are placed in a temporary buffer prior to 
being filtered.

S A V E  -------
Form the weighted average of the previously saved 
data values for each channel and store them in the 
active data buffer then update checksum. This 
word, with A/D-READ, implements the antialiasing 
filter.

SEND-D ---
Send last filled buffer to tape.

SISR ---
Initialize ISR vector and hardware options.
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SITE! n----
Store site code in proper place in header of data 
buffer.

SKIP n---
Skip forward (n positive) or backward (n negative) 
over n records on the tape. For debugging.

SKIP-FIL---------
Forward space over file mark.

SWAP-BUF --
Toggle buffer selector prior to writing full 
buffer.

TAPE-ON? --
Check tape cartridge and drive. Blink SELECT if 
no cartridge installed. Blink orange if tape is 
SAFE. Blink red if tape is full. In other words, 
make sure the tape unit is ready to write data to 
tape.

TMP  n
Return the address of the first byte of the 
temporary data buffer.

TMP! d----
Save a double precision value in the temporary 
buffer.

TP i b ---
Send a byte to the tape drive.

TP0  b
Get a byte from the tape drive.

TPR? --
Return when tape drive port has a byte to be read.

TPX? ---
Return when tape drive port is ready to send a 
byte to drive.

UABORT --
ABORT, user version. Control transfers here after 
FORTH has done its own initialization. Initialize 
the programmable devices, the tape drive, and 
variables, then transfer to KILL-TIME.

VALS —  n
Return the address of the first byte of the array
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which contains the weighting coeficients for the 
antialiasing filter.

VAR-INIT ---
I n i t i a l i z e  h e a d e r  f o r  b o t h  d a t a  b u f f e r s .

W-PTR  n
Returns the address of the beginning of the 
passive buffer.

WAIT5 ---
Waste about 1/2 second.

WR-CMD ---
Send Write command to tape.

WR-EOF ---
Write end-of-file (2 file marks) on tape.

WR-FMK ---
Write file mark on tape.

WRA! b b ---
Send a pair of control bytes to serial channel A
(tape drive).

WRB! b b --
Send a pair of control bytes to serial channel B
(termianl).

WRITE-BUF ---
Swap buffers, write the full one to tape followed 
by a file mark, and backspace over the file mark.

WRITE-ENABLED? --- tf
Return true if cartridge is write enabled (not 
SAFE).

WRITE-IT ---
Send a buffer to the tape drive, being careful 
about things like end of track and end of tape.
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B.2 Program Listing

A listing of the entire FORTH program used for control of 

the data logging instruments follows. The program is 

written using a version of FORTH by Laboratory Microsystems 

implemented for the Intel 8086 microprocessor. The complete 

control program is cross-compiled for the Z-80 processor 

using the Nautilus Systems FORTH Cross Compiler. Although 

the entire code is listed, the controller program occupies 

only screens 57 through 77. Screens 9 through 55 are the 

FORTH interpreter distributed by the FORTH Interest Group. 

Screen 56 is an extension provided with the Laboratory 

Microsystems 8086 FORTH system. Screens 78 and 79 contain 

some routines found to be useful during the debugging phase; 

they are retained for use during possible field diagnosis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



76

0 ( Stand-alone ROMable Z-80 FORTH source code )
1 ;S
2 for use with Nautilus Systems Cross Compiler
3 ( Z-80 target version )
4
5 (c) 1981 by
6 Ray Duncan
7 Laboratory Microsystems
8 4147 Beethoven Street
9 Los Angeles, CA 90066

10 213-390-9292
11
12 Screens 57 through 77 copyright (c) 1983 by
13 Steve Messick
14 Geophysical Institute, Univ. of Alaska
15 Fairbanks, Alaska 99701

Screen 1
0 ( Explanation of load screens )
1 ;S
2
3 ( Cross-compiling: )
4 ( First edit screen 9 to set origin and memory size. )
5 ( From CP/M, type: A>CROSSZ80 ROMZ80.SCR <return>. )
6 ( wait for system id. then type: )
7 ( 7 LOAD <return> )
8 ( Target image is left in file IMAGE.COM on current disk. )
9 ;S 

10
11
12
13
14
15

Screen 2
0 ( Screen printing utility SHOW )
1 ( displays triads on list device )
2 ( command format: nl n2 SHOW )
3 0 VARIABLE FF.FLAG
4 : SHOW
5 FF.FLAG @ 0=
6 IF CR ." Does your printer have form feed capability? " KEY
7 DUP EMIT 89 = IF 2 ELSE 1 ENDIF FF.FLAG ! CR ENDIF
8 SWAP PRINTER
9 DO I TRIAD

10 FF.FLAG @ 1 =
11 IF CR CR CR CR CR CR CR ENDIF
12 3 +LOOP
13 CONSOLE
14 ;
15

Screen 0
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0
1
2
3
4
5
6
7
8 
9

10
11
12
13
14
15

Screen 4
0 ( System messages )
1 empty stack
2 dictionary full
3 has incorrect address mode
4 isn't unique
5
6 disc range ?
7 full stack
8 disc error !
9 

10 
11 
12
13 BASE must be DECIMAL
14 missing decimal point
15 Z-80 FORTH Laboratory Microsystems

Screen 5
0 ( System messages )
1 compilation only, use in definition
2 execution only
3 conditionals not paired
4 definition not finished
5 in protected dictionary
6 use only when loading
7 off current editing screen
8 declare vocabulary
9 

10 
11 
12
13
14
15

Screen 3
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0 ( Error messages for Cross Compiler's Z-80 Assembler )
1 16 bit register not allowed
2 8 bit register not allowed
3 address out of range
4 immediate data value not allowed
5 missing source register
6 missing destination register
7 illegal operation
8 illegal operand
9 instruction not implemented

10 illegal destination register
11 illegal source register
12 illegal condition code
13 register mismatch
14 destination address missing
15

Screen 6

Screen 7
0 ( Load screen for cross-compilation of Z-80 ROMable system )
1
2 DECIMAL
3
4 CROSS-COMPILE
5 ( NO-LOG )
6 09 79 THRU ;S
7
8 This screen loads the Mark II controller for the field units,

10
11
12
13
14
15

Screen 8
0
1
2
3
4
5
6
7
8 
9

10
11
12
13
14
15
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0
1
2
3
4
5
6
7
8 
9

10
11
12
13
14
15

Screen 9
( ROMable Z-80 FORTH --
HEX CO00 0 ORG/DB 

( HEX C000 7000 ORG/IMG 
0080 0080 ROM/RAM 

6000 MEM-END

Equates )
7 TARGET-WIDTH

)

1 EQU FIGREL 
0D EQU ACR 
8 EQU BSOUT

040 EQU US 
EM US - EQU

1 EQU FIGVER 
2E EQU ADOT 
10 EQU DLE

INIT-R0

83 EQU 
82 EQU
;s

STATUS-PORT
DATA-PORT

001
004

0 EQU USRVER 
07 EQU BELL 
0A EQU LF

0A0 EQU RTS 
INIT-RO RTS -

20 EQU ABL 
7F EQU BSIN 
OC EQU FFEED

EQU INIT-SO

EQU
EQU

RDA ( receive data available ) 
TBE ( transmit buffer empty )

Screen 10
0 ( ROMable Z-80 FORTH --  initialization )
1 ASSEMBLER
2 ECLD JP NOP NOP EWRM JP
3 FORTH
4 FIGREL C, FIGVER C, USRVER C, 0E C,
5 HERE LABEL INIT-FORTH 0 ,
6 BSIN , INIT-RO , INIT-SO , INIT-RO , INIT-SO , OIF , 0 ,
7 HERE LABEL INIT-FENCE 0 ,
8 HERE LABEL INIT-DP 0 ,
9 HERE LABEL INIT-VOC-LINK 0 , BASE-36 Z80. , , HEX

10 THERE LABEL RPP INIT-RO THERE ! 2 ALLOT-RAM
11 THERE LABEL UP INIT-RO THERE ! 2 ALLOT-RAM
12 FORTH ;S
13
14
15

Screen 11
0 ( ROMable Z-80 FORTH --  Cold start )
1 ASSEMBLER
2 HERE LABEL ECLD
3
4 BC, # CLDl LD
5 SP, # INIT-SO LD
6 IY, # INIT-RO LD
7 NEXT JP
8
9 HERE LABEL CLDl ] COLD [

10
11 FORTH ;S
12
13
14
15
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Screen 12
01 ( ROMable Z;-80 FORTH --- Inner interpreter and warm
J.
2 ASSEMBLER
3 HERE LABEL EWRM BC, # WRMl LD NEXT JP
4
C

HERE LABEL WRMl ] WARM [
D
6 ASSEMBLER
7 HERE LABEL DPUSH DE PUSH
8 HERE LABEL HPUSH HL PUSH
9 HERE LABEL NEXT A, (BC) LD BC INC L, A LD

10 A, (BC) LD BC INC H, A LD
11 HERE LABEL NEXTl E, (HL) LD HL INC D, (HL)
1 2 DE, HL EX (HL) JP
13 FORTH ;S
14
15

LD

Screen 13
( ROMable Z-80 FORTH --- lit execute branch Obranch )
FORTH DEFINITIONS
CODE LIT

CODE EXECUTE

0 
1 
2
3
4
5
6
7
8 CODE BRANCH
9 

10 
11
12 CODE OBRANCH
13
14
15 ; S

A, (BC) LD 
A, (BC) LD 
HPUSH JP

HL POP

HERE LABEL BRANl

BC INC 
BC INC 
END-CODE

NEXTl JP

L,
B,

C LD 
(HL) LD

HL POP 
Z, BRANl JP 
NEXT JP

C, (HL) 
NEXT JP

A, L LD 
BC INC 
END-CODE

LD

L,
H,

A LD 
A LD

END-CODE

H, B LD 
HL INC 
END-CODE

A, H OR 
BC INC

0
1
2
3
4
5
6
7
8 
9

10
11
12
13
14
15

Screen 14
( ROMable Z-80 FORTH --- (loop (do )

CODE (LOOP)

CODE (DO)

;S

(IY) INC NZ, XLOOl JP
HERE LABEL XLOOl
A, 2 (IY) SUB A, 1 (IY) LD
M, BRANl JP 
BC INC 
END-CODE

DE, # -4 LD 
(IY), E LD 
2 (IY), E LD 
END-CODE

DE, # 4 LD 
BC INC

IY, DE 
1 (IY), 
3 (IY),

ADD 
D LD 
D LD

1 (IY) INC 
A, (IY) LD 
A, 3 (IY) SBC 
IY, DE ADD 
NEXT JP

DE POP 
DE POP 
NEXT JP
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Screen 15

0 ( ROMable Z-80 FORTH --  (+loop )
1
2 CODE (+LOOP) DE POP A, D LD A, A OR
3 M, XPLOOl JP L, (IY) LD H, 1 (IY) LD
4 HL, DE ADD (IY), L LD 1 (IY), H LD
5 E, 2 (IY) LD D, 3 (IY) LD A, A OR
6 HL, DE SBC M, BRANl JP
7 HERE LABEL XPLOOO DE, # 4 LD
8 IY, DE ADD BC INC BC INC
9 NEXT JP

10 HERE LABEL XPLOOl L, (IY) LD
11 H, 1 (IY) LD HL, DE ADD (IY), L LD
12 1 (IY), H LD E, 2 (IY) LD D, 3 (IY) LD
13 DE, HL EX A, A OR HL, DE SBC
14 M, BRANl JP XPLOOO JR END-CODE
15 ; S

Screen 16
01

( ROMable Z-80 F O R T H ---i j digit )
1
2 CODE I E, (IY) LD D, 1 (IY) LD DE PUSH
3
A

NEXT JP END-CODE

5 CODE J E, 4 (IY) LD D, 5 (IY) LD DE PUSH
67 NEXT JP END-CODE
/
8 CODE DIGIT HL POP DE POP A, E LD
9 A, # 30 SUB M, DIGI2 JP A, # 0A CP

10 M, DIGI1 JP A, # 7 SUB A, # 0A CP
11 M, DIGI2 JP HERE LABEL DIGIl
12 A, L CP P, DIGI2 JP E, A LD
13 HL, # 1 LD DPUSH JP
14 HERE LABEL DIGI2 L, H LD
15 HPUSH JP END-CODE ;S

0
1
2
3
4
5
6
7
8 
9

10
11
12
13
14
15

Screen 17
( ROMable Z-80 FORTH --- (find )

CODE (FIND)

;s

HERE LABEL PFIN1DE POP 
HL POP HL PUSH
A, (HL) XOR A, # 03F AND
HERE LABEL PFIN2 
DE INC A, (DE) LD
A, A ADD NZ, PFIN3 JP
HL, # 5 LD HL, DE ADD
HERE LABEL PFIN6 
A, (DE) LD A, A OR
E, A LD D, # 0 LD
DPUSH JP

A, (DE) LD 
NZ, PFIN4 JP 
HL INC 
A, (HL) XOR 
NCY, PFIN2 JP 
(SP), HL EX 
DE DEC 
P, PFIN6 JP 
HL, # 1 LD
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0
1
2
3
4
5
6
7
8 
9

10
11
12
13
14
15

HERE LABEL PFIN3 
HERE LABEL PFIN4 
A, (DE) LD A, A OR
HERE LABEL PFIN5 
DE, HL EX E,
D, (HL) LD A,
NZ, PFINl JR HL POP
HPUSH JP
END-CODE

Screen 18
( ROMable Z-80 FORTH —  (find )

; s

(HL) 
D LD

LD

CY, PFIN5 JR 
DE INC 
P, PFIN4 JP 
DE INC 
HL INC 
A, E OR 
HL, # 0 LD

Screen 19
0 ( ROMable Z-80 FORTH --  enclose )
1
2 CODE ENCLOSE DE POP HL POP HL PUSH
3 A, E LD D, A LD E, # -1 LD
4 HL DEC
5 HERE LABEL ENCLl HL INC
6 E INC A, (HL) CP Z, ENCLl JR
7 D, I 0 LD DE PUSH D, A LD
8 A, (HL) LD A, A AND NZ, ENCL2 JR
9 D, # 0 LD E INC DE PUSH

10 E DEC DE PUSH NEXT JP
11 HERE LABEL ENCL2
12 A, D LD HL INC E INC
13 A, (HL) CP Z, ENCL4 JR A, (HL) LD
14 A, A AND NZ, ENCL2 JR
15 ; S

Screen 20 
0 ( ROMable Z-80 FORTH   cmove )
1
2 HERE LABEL ENCL3 D, # 0 LD
3 DE PUSH DE PUSH NEXT JP
4 HERE LABEL ENCL4 D, # 0 LD
5 DE PUSH E INC DE PUSH
6 NEXT JP
7 END-CODE
8
9 CODE CMOVE EXX BC POP DE POP

10 HL POP A, B LD A, C OR
11 Z, CMOVE2 JR LDIR
12 HERE LABEL CMOVE2
13 EXX NEXT JP END-CODE
14 .
15
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Screen 21
0 ( ROMable
1
2 CODE U*
3
4
5
6
7
8 
9

10 ; S
11 
12
13
14
15

Screen 22
0 ( ROMable Z-80 FORTH —  mpyx )
1 ASSEMBLER
2
3 HERE LABEL MPYX
4 HL, # 0 LD C, # 8 LD
5 HERE LABEL MPYX1
6 HL, HL ADD RLA
7 NCY, MPYX2 JP HL, DE ADD A, # 0 ADC
8 HERE LABEL MPYX2
9 C DEC NZ, MPYX1 JP RET

10
11 FORTH
12 ; S
13
14
15

Screen 23
0 ( ROmable Z-80 FORTH --  u/ )
1
2 CODE U/ EXX BC POP HL POP
3 DE POP A, L LD A, C SUB
4 A, H LD A, B SBC CY, USLAl JP
5 HL, # -1 LD DE, # -1 LD USLA7 JP
6 HERE LABEL USLAl A, # 10 LD
7 HERE LABEL USLA2 HL, HL ADD
8 RLA DE, HL EX HL, HL ADD
9 NCY, USLA3 JR DE INC A, A AND

10 HERE LABEL USLA3 DE, HL EX
11 RRA AF PUSH NCY, USLA4 JR
12 A, A OR HL, BC SBC USLA5 JR
13 ; S
14
15
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Z-80 FORTH --  u* )

DE POP 
B, H LD 
HL PUSH 

H LD 
D LD 
L LD 

BC POP 
END-CODE

B,
C,
D,

HL POP 
A, L LD 
H, A LD 
MPYX CALL 
HL, BC ADD 
L, H LD 
DE PUSH

BC PUSH 
MPYX CALL 
A, B LD 
DE POP 
A, # 0 ADC 
H, A LD 
HPUSH JP
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0
1
2
3
4
5
6
7
8 
9

10
11
12
13
14
15

Screen 24
( ROMable Z-80 FORTH --  u/ )

?S

HERE LABEL USLA4
HL, BC SBC NCY, USLA5 JR
DE DEC
HERE LABEL USLA5 
HERE LABEL USLA6 
A DEC NZ, USLA2 JR
HERE LABEL USLA7
DE PUSH 
END-CODE

EXX

Screen 25
( ROMable Z-80 FORTH --  and or xor )

1
2 CODE AND DE POP HL POP
3 A, L AND L, A LD
4 A, H AND H, A LD
5 END-CODE
6
7 CODE OR DE POP HL POP
8 A, L OR L, A LD
9 A, H OR H, A LD

10 END-CODE
11
12 CODE XOR DE POP HL POP
13 A, L XOR L, A LD
14 A, H XOR H, A LD
15 END-CODE ; s

Screen 26
0
1

( ROMable Z-80 FORTH-- sp@ sp! rp@ rp

2 CODE SP@ HL, # 0 LD HL , SP ,
3 END-CODE
4
5 CODE SPI HL, UP LD DE , # 6
6 E, (HL) LD HL INC
7 DE, HL EX SP , HL :
8 END-CODE
9

10 CODE RP@ IY PUSH NEXT JP
11
12 CODE RPI HL, UP LD DE , # 8
13 E, (HL) LD HL INC
14 DE PUSH IY POP
15 END-CODE ;s

A, A OR 
HL, BC ADD

DE INC 
AF POP

HL PUSH 
NEXT JP

A, E LD 
A, D LD 
HPUSH JP

A, E LD 
A, D LD 
HPUSH JP

A, E LD 
A, D LD 
HPUSH JP

HPUSH JP

HL, DE ADD 
D, (HL) LD 
NEXT JP

END-CODE

HL, DE ADD 
D, (HL) LD 
NEXT JP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



85

Screen 27
( ROMable Z-80 FORTH --  ;s leave >r r> )

2 CODE ;S C, (IY) LD IY INC
3 IY INC NEXT JP
4
5 CODE LEAVE E, (IY) LD D, 1 (IY) LD
6 3 (IY), D LD NEXT JP
7
8 CODE >R DE POP IY DEC
9 (IY), E LD 1 (IY ) , D LD

10 END-CODE
11
12 CODE R> E, (IY) LD IY INC
13 IY INC DE PUSH
14 END-CODE
15 ;S

Screen 28
0 ( ROMable Z-80 F O R T H ---r 0= 0< + )
1
2 CODE R E, (IY) LD D, 1 (IY) LD
3 NEXT JP END-CODE
4
5 CODE 0= HL POP A, L LD
6 HL, # 0 LD NZ, HPUSH JP
7 HPUSH JP END-CODE
8
9 CODE 0< HL POP A, H LD

10 HL, # 0 LD P, HPUSH JP
11 HPUSH JP END-CODE
12
13 CODE + DE POP HL POP
14 HPUSH JP END-CODE
15 ; s

Screen 29
0
1

( ROMable Z-80 F O R T H ---d+ d' - )
1
2 CODE D+ EXX BC POP
3 HL POP (SP), HL EX
4 DE, HL EX HL POP
5 DE PUSH HL PUSH
6 NEXT JP END-CODE
7
8 CODE D- EXX BC POP
9 HL POP (SP), HL EX

10 HL, DE SBC DE, HL EX
11 HL, BC SBC DE PUSH
12 EXX NEXT JP
13 ; s
14
15

B, (IY) LD 
END-CODE

2 (IY) , E LD 
END-CODE

IY DEC 
NEXT JP

D, (IY) LD 
NEXT JP

DE PUSH

A, H OR 
HL INC

A, A OR 
HL INC

HL, DE ADD

DE POP 
HL, DE ADD 
HL, BC ADC 
EXX

DE POP 
A, A OR 
HL POP 
HL PUSH 
END-CODE
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0 ( ROMable Z-80 FORTH --- minus dminus over )
1
2 CODE MINUS ' DE POP HL, # 0 LD A, A OR
3
A

HL, DE SBC HPUSH JP END-CODE
4
5 CODE DMINUS EXX DE POP BC POP
6 HL, # 0 LD A, A OR HL, BC SBC
7 HL PUSH HL, # 0 LD HL, DE SBC
8 HL PUSH EXX NEXT JP
9 END-CODE

10
11 CODE OVER DE POP HL POP HL PUSH
12 DPUSH JP END-CODE
13 ;S
14
15

Screen 31
0 ( ROMable Z-80 F O R T H ---drop 2drop swap dup 2dup )
1
2*3 CODE DROP HL POP NEXT JP END-CODE
J
4 CODE 2DROP HL POP HL POP NEXT JP
5£ END-CODE
0
7 CODE SWAP HL POP (SP), HL EX HPUSH JP
8Q END-CODE
y

10 CODE DUP HL POP HL PUSH HPUSH JP
11 END-CODE
12
13 CODE 2DUP HL POP DE POP DE PUSH
14 HL PUSH DPUSH JP END-CODE
15 ;s

Screen 32
0 ( ROMable Z-80 FORTH --- +! toggle @ )
1
2 CODE +! HL POP DE POP A, (HL) LD
3 A, E ADD (HL), A LD HL INC
4 A, (HL) LD A, D ADC (HL), A LD
5£ NEXT JP END-CODE
0
7 CODE TOGGLE DE POP HL POP A, (HL) LD
8 A, E XOR (HL), A LD NEXT JP
9 END-CODE

10
11 CODE @ HL POP E, (HL) LD HL INC
12 D, (HL) LD DE PUSH NEXT JP
13 END-CODE
14 ; S
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0
1
2
3
4
5
6
7
8 
9

10
11
12
13
14
15

0
1
2
3
4
5
6
7
8 
9

10
11
12
13
14
15

0
1
2
3
4
5
6
7
8 
9

10
11
12
13
14
15

Screen 33
( ROMable Z-80 FORTH --  c@ 2@ ! )

CODE C@

CODE 2@

CODE !

;S

HL POP 
HPUSH JP

HL POP 
D, (HL) LD 
DE PUSH 
HL DEC 
NEXT JP

HL POP 
HL INC 
END-CODE

L, (HL) LD 
END-CODE

DE, # 3 LD 
HL DEC 
HL DEC 
E, (HL) LD 
END-CODE

DE POP 
(HL), D LD

Screen 34
( ROMable Z-80 FORTH --  c! 21 1+2+ )

CODE C! 

CODE 2!

CODE 1+ 

CODE 2+

; s

HL POP 
NEXT JP

HL POP 
HL INC 
DE POP 
(HL), D LD

HL POP 
END-CODE

HL POP 
HPUSH JP

Screen 35
( P.OMable Z-80 FORTH 1- 2-

CODE 1-

CODE 2-

CODE -

CODE =

HL POP 
END-CODE

HL POP 
HPUSH JP

DE POP 
HL, DE SBC

HL POP 
HL, DE SBC 
NZ, HPUSH JP 
END-CODE

DE POP 
END-CODE

DE POP 
(HL), D LD 
(HL), E LD 
NEXT JP

HL INC

HL INC 
END-CODE

- = )

HL DEC

HL DEC 
END-CODE

HL POP 
HPUSH JP

DE POP 
H, A LD 
HL INC

;S

H, # 0 LD

HL, DE ADD 
E, (HL) LD 
D , (HL) LD 
DE PUSH

(HL), E LD 
NEXT JP

(HL), E LD

(HL), E LD 
HL INC 
HL INC

HPUSH JP

HL INC

HPUSH JP

HL DEC

A, A OR 
END-CODE

A, A XOR 
L, A LD 
HPUSH JP
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Screen 36
01 ( ROMable Z-80 FORTH---< > fill )
1
2 CODE < DE POP HL POP A, A OR
3 HL, DE SBC HL, # 1 LD M, HPUSH
4c HL DEC HPUSH JP END-CODE
0
6 CODE > HL POP DE POP A, A OR
7 HL, DE SBC HL, # 1 LD M, HPUSH
8Q HL DEC HPUSH JP END-CODE

10 CODE FILL EXX DE POP BC POP
11 HL POP HERE LABEL FILLl
12 A, B LD A, C OR Z, FILL2
13 (HL), E LD HL INC BC DEC
14 FILLl JP HERE LABEL FILL2
15 EXX NEXT JP END-CODE

0
1
2
3
4
5
6
7
8 
9

10
11
12
13
14
15

Screen 37
( ROMable Z-80 FORTH —  p@ p! )

CODE P@

CODE P!

;S

EXX
H, # 0 LD 
NEXT JP

EXX
(C), L OUT 
END-CODE

BC POP 
HL PUSH 
END-CODE

BC POP 
EXX

L, (C) IN 
EXX

HL POP 
NEXT JP

Screen 38 
0 ( ROMable Z-80 FORTH --  s= )
1
2 CODE S= EXX BC POP HL POP
3 DE POP
4 HERE LABEL STREQl
5 A, B LD A, C OR Z, STREQ2 JR
6 A, (DE) LD CPI NZ, STREQ3 JR
7 DE INC STREQl JP
8 HERE LABEL STREQ2
9 EXX HL, # 1 LD HPUSH JP

10 HERE LABEL STREQ3
11 EXX HL, # 0 LD HPUSH JP
12 ; S
13
14
15
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0
1
2
3
4
5
6
7
8 
9

10
11
12
13
14
15

Screen 39
( ROMable Z-80 FORTH --  rot s->d mon )

CODE ROT

CODE S->D

CODE MON
;s

DE POP 
DPUSH JP

HL POP 
END-CODE

DE POP HL, # 0 LD
A, # 080 AND Z, STODl JP
HERE LABEL STODl 
DPUSH JP END-CODE

0 JP END-CODE

(SP), HL EX

A, D LD 
HL DEC

0
1
2
3
4
5
6
7
8 
9

10
11
12
13
14
15

Screen 40
( ROMable Z-80 FORTH --  constant user : does>

CONSTANT

USER

DOES>

CREATE SMUDGE ,
;CODE DE INC DE, HL EX E, (HL) LD HL INC 
D, (HL) LD DE PUSH NEXT JP END-CODE 
CONSTANT
;CODE DE INC DE, HL EX E, (HL) LD D, # 0 LD
HL, UP LD HL, DE ADD HPUSH JP END-CODE
?EXEC !CSP CURRENT @ CONTEXT ! CREATE [COMPILE] 
;CODE IY DEC (IY), B LD IY DEC (IY), C LD 
DE INC C, E LD B, D LD NEXT JP END-CODE 
R> LATEST PFA ! ;CODE IY DEC (IY), B LD
IY DEC (IY), C LD DE INC DE, HL EX 
C, (HL) LD HL INC B, (HL) LD HL INC 
HPUSH JP END-CODE

0
1
2
3
4
5
6
7
8 
9

10
11
12
13
14
15

Screen 41
( ROMable Z-80 FORTH --  variable & vocabulary )

VARIABLE

VOCABULARY

CREATE SMUDGE HERE 2+ , , ;CODE 
DE INC DE, HL EX E, (HL) LD HL INC 
D, (HL) LD DE PUSH NEXT JP END-CODE

<BUILDS HERE 4 + ,
HERE VOC-LINK @ , VOC-LINK !
A081 , CURRENT @ CFA ,
DOES> @ 2+ CONTEXT ! ;

VOCABULARY FORTH IMMEDIATE 
;S
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Screen 42
0 ( ROMable Z-80 FORTH --- user-definitions )
1
2 06 USER SO 08 USER R0 0A USER TIB
3 OC USER WIDTH 0E USER WARNING 10 USER FENCE
4 12 USER DP 14 USER VOC-LINK 16 USER BLK
5 18 USER IN 1A USER OUT 1C USER SCR
6 20 USER CONTEXT 22 USER CURRENT
7 24 USER STATE 26 USER BASE 28 USER DPL
8 3A USER FLD 2C USER CSP 2E USER R#
9 30 USER HLD

10 ;s
11
12
13
14
15

Screen 43
0 ( ROMable Z-80 FORTH --- +origin cfa latest traverse
1 : +ORIGIN ORIGIN + ;
2 ; CFA 2 - ;
3 j LATEST CURRENT @ @ ;
4 2 TRAVERSE SWAP BEGIN OVER + 07F OVER C@
5 < UNTIL SWAP DROP ;
6 j PFA 1 TRAVERSE 5 + ;
7 2 (;CODE) R> LATEST PFA CFA I ;
8 2 HERE DP @ ;
9 2 ALLOT DP +! ;

10 2 t HERE ! 2 ALLOT ;
11 : ! CSP SP@ CSP ! ;
12 : HOLD -1 HLD +! HLD @ C! ;
13 2 SMUDGE LATEST 20 TOGGLE ;
14 tS
15

Screen 44
0 ( ROMable Z-80 FORTH --- ?comp compile literal count
1 2 7 COMP STATE @ 0= 11 ?ERROR ;
2 2 COMPILE 7 COMP R> DUP 2+ >R @ , ;
3 2 LITERAL STATE @ IF COMPILE LIT , ENDIF ; IMME
4 2 DLITERAL STATE @ IF SWAP [COMPILE] LITERAL
5 [COMPILE] LITERAL ENDIF ; IMMEDIATE
6 COUNT DUP 1+ SWAP C@ ;
7 -DUP DUP IF DUP ENDIF ;
8 TYPE -DUP IF OVER + SWAP DO I C@ EMIT LOOP
9 ELSE DROP ENDIF ;

10 2 (.") R COUNT DUP 1+ R> + >R TYPE ;
11 2 PAD HERE 44 + ;
12 2 #> DROP DROP HLD @ PAD OVER - ;
13 2 SIGN ROT 0< IF 2D HOLD ENDIF ;
14 ?S
15
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Screen 45
0 ( ROMable Z-80 F O R T H ---m/mod # #s d+- dabs +- abs m/ /mod
1 : M/MOD >R 0 R U/ R> SWAP >R U/ R> ;
2 : # BASE @ M/MOD ROT 9 OVER < IF 7 + ENDIF
3 30 + HOLD ;
4 : #S BEGIN # 2DUP OR 0= UNTIL ;
5 : <# PAD HLD ! ;
6 : D+- 0< IF DMINUS ENDIF ;
7 : DABS DUP D+- ;
8 : +- 0< IF MINUS ENDIF ;
9 : ABS DUP +- ;

10 : M/ OVER >R >R DABS R ABS U/ R> R XOR +-
11 SWAP R> +- SWAP ;
12 : /MOD >R S->D R> M/ ;
13 : / /MOD SWAP DROP ;
14 : MAX 2DUP < IF SWAP ENDIF DROP ;
15 ;s

Screen 46
0 ( ROMable Z-80 FORTH --- spaces d.r d. .cpu m* * */mod u. )
1 : SPACE BL EMIT ;
2 : SPACES 0 MAX -DUP IF 0 DO SPACE LOOP ENDIF ;
3 : D.R >R SWAP OVER DABS <# #S SIGN #> R>
4 OVER - SPACES TYPE ;
5 : D. 0 D.R SPACE ;
6 : .CPU BASE @ 24 BASE ! 22 +ORIGIN 2@ D. BASE i .• t
7 : . S->D D. ;
8 : M* 2DUP XOR >R ABS SWAP ABS U* R> D+- ;
9 I * M* DROP ;

10 : */MOD >R M* R> M/ ;
11 : -TRAILING DUP 0 DO OVER OVER + 1 - C@ BL - IF LEAVE
12 ELSE 1 - ENDIF LOOP ;
13 : U. 0 D. ;
14 ; s
15

Screen 47
0 ( ROMable Z-80 FORTH --- terminal I/O )
1 ( port addresses and bit masks are equates in screen 9 )
2"> HEX

4 : EMIT BEGIN STATUS-PORT P@ TBE AND UNTIL
5c DATA-PORT P! 1 OUT +! ;
U
7Q : CR 0D EMIT 0A EMIT ;
O
9 : 7TERMINAL STATUS-PORT P@ RDA AND

10 IF 1 ELSE 0 ENDIF ;
11
12 : KEY BEGIN 7TERMINAL UNTIL DATA-PORT P@ 07F AND
13 ; s
14
15
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Screen 48
0 ( ROMable Z-80 FORTH --  message (abort error number ?exec )
1 : MESSAGE -DUP IF ." Message # " . ENDIF ;
2 J (ABORT) ABORT ;
3 J ERROR WARNING 0 0< IF (ABORT) ENDIF HERE COUNT TYPE
4 ." 7 " MESSAGE SP! BLK 0 -DUP
5 IF IN 0 SWAP ENDIF QUIT ;
6 ; 7ERROR SWAP IF ERROR ELSE DROP ENDIF ;
7 : (NUMBER) BEGIN 1+ DUP >R C0 BASE 0 DIGIT WHILE SWAP
8 BASE 0 U* DROP ROT BASE 0 U* D+ DPL 0 1+
9 IF 1 DPL +! ENDIF R> REPEAT R> ;

10 : NUMBER 0 0 ROT DUP 1+ C0 2D = DUP >R + -1 BEGIN DPL !
11 (NUMBER) DUP C0 BL -
12 WHILE DUP C0 2E - 0 7ERROR 0 REPEAT
13 DROP R> IF DMINUS ENDIF ;
14 : 7 EXEC STATE 0 12 7ERROR ;
15 iS

Screen 49
0 ( ROMable Z-80 FORTH --  u< ?stack blanks word -find nfa etc.
1 J U< 2DUP XOR 0< IF DROP 0< 0= ELSE - 0< ENDIF ;
2 J 7STACK SP0 SO 0 SWAP U< 1 7ERROR SP0 HERE
3 80 + U< 7 7ERROR ;
4 ; BLANKS BL FILL ;
5 ; WORD TIB 0 IN 0 + SWAP
6 ENCLOSE HERE 22 BLANKS IN +! OVER - >R
7 R HERE C! + HERE 1+ R> CMOVE ;
8 : -FIND BL WORD HERE CONTEXT 0 0 (FIND) DUP 0=
9 IF DROP HERE LATEST (FIND) ENDIF ;

10 j NFA 5 -- 1 TRAVERSE ;
11 j LFA 4 - ;
12 : ID. PAD 20 5F FILL DUP PFA LFA OVER - PAD SWAP
13 CMOVE PAD COUNT IF AND TYPE SPACE ;
14 tS
15

Screen 50
0 ( ROMable Z-80 FORTH ---  expect null min create interpret )
1 : EXPECT OVER + OVER DO KEY DUP OE +ORIGIN @ = IF DROP DUP I =
2 DUP R> 2 - + >R IF BELL ELSE BSOUT EMIT BL EMIT BSOUT
3 ENDIF ELSE DUP 0D = IF LEAVE DROP
4 BL 0 ELSE DUP ENDIF R Cl 0 R 1+ ! ENDIF EMIT LOOP DROP ;
5 : X R> DROP ; IMMEDIATE IS-X
6 : MIN 2DUP > IF SWAP ENDIF DROP ;
7 : CREATE -FIND IF DROP NFA ID. 4 MESSAGE SPACE ENDIF HERE
8 DUP C@ WIDTH 0 MIN 1+ ALLOT DUP AO TOGGLE HERE 1 - 8 0
9 TOGGLE LATEST , CURRENT 0 ! HERE 2+ , ;
10 : INTERPRET BEGIN -FIND IF STATE 0 < IF CFA , ELSE CFA EXECUTE
11 ENDIF ?STACK ELSE HERE NUMBER DPL § 1+ IF [COMPILE] DLITERAL
12 ELSE DROP [COMPILE] LITERAL ENDIF ?STACK ENDIF AGAIN ;
13 ; S
14
15
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Screen 51
0 ( ROMable Z-80
1 : QUERY
2 : [
3 : ]
4 : QUIT
5
6 : DEFINITIONS
7 : DECIMAL
8 : <BUILDS
9 : ABORT

10
11
12 ?s
13
14
15

Screen 52
0 ( ROMable Z-80
1 ( *** WARNING:
2 HEX
3 : ERASE
4 : 7PAIRS
5 : BACK
6 : BEGIN
7 : ENDIF
8 : THEN
9 : DO

10 : LOOP
11 : COLD
12
13
14
15 ; s

Screen 53
0 ( ROMable Z-80
1 : +LOOP
2 : UNTIL
3 : END
4 : AGAIN
5 : REPEAT
6
7 : IF
8 : ELSE
9

10 : WHILE
11 : 7CSP
12 • 1
13 ?s
14
15

FORTH ---  query quit definitions decimal etc. )
TIB @ 5 0  EXPECT 0 IN ! ;
0 STATE ! ; IMMEDIATE 
CO STATE ! ; IMMEDIATE 
0 BLK ! [COMPILE] [ BEGIN CR RP! QUERY 
INTERPRET STATE @ 0= IF OK" ENDIF AGAIN ; 
CONTEXT @ CURRENT ! ;
0A BASE ..! ;
0 CONSTANT ;
SP! DECIMAL ?STACK CR .CPU 
." fig-FORTH [stand-alone version]" CR 
[COMPILE] FORTH DEFINITIONS QUIT ;

FORTH --  erase ?pairs back begin endif etc. )
BACK and ENDIF changed from fig-FORTH model )

0 FILL ;
- 13 TERROR ;

7 COMP HERE 1 ; IMMEDIATE
7 COMP 2 7PAIRS HERE SWAP ! ; IMMEDIATE
[COMPILE] ENDIF ; IMMEDIATE 
COMPILE (DO) HERE 3 ; IMMEDIATE 
3 7PAIRS COMPILE (LOOP) BACK ; IMMEDIATE 
INIT-RO RAM-START !
INIT-RAM DUP >R 4 + RAM-START 2+ R> @ 2 - CMOVE 
12 +ORIGIN UP @ 6 + 10 CMOVE 
0C +ORIGIN @ ' FORTH 2 + 0 2 + 1  UABORT ;

FORTH --  +loop until end again repeat if etc. )
3 7PAIRS COMPILE (+LOOP) BACK ; IMMEDIATE 
1 7PAIRS COMPILE OBRANCH BACK ; IMMEDIATE 
[COMPILE] UNTIL ; IMMEDIATE
1 7PAIRS COMPILE BRANCH BACK ; IMMEDIATE 
>R >R [COMPILE] AGAIN R> R> 2 - 
[COMPILE] ENDIF ; IMMEDIATE
COMPILE OBRANCH HERE 0 , 2 ;  IMMEDIATE
2 7PAIRS COMPILE BRANCH HERE 0 , SWAP 2 
[COMPILE] ENDIF 2 ; IMMEDIATE 
[COMPILE] IF 2+ ; IMMEDIATE
SP@ CSP 0 - 1 4  TERROR ;
7CSP COMPILE ;S SMUDGE [COMPILE] [ ; IMMEDIATE
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Screen 54
0 ( ROMable Z-80 FORTH --  .r hex immediate [compile] ' warm )
1 : .R >R S->D R> D.R ;
2 : WARM ABORT ;
3 : ." 22 STATE @ IF COMPILE (.") WORD HERE C@ 1+ ALL
4 ELSE WORD HERE COUNT TYPE ENDIF ; IMMEDIATE
5 : HEX 10 BASE ! ;
6 : IMMEDIATE LATEST 40 TOGGLE ;
7 : ( 29 WORD ; IMMEDIATE
8 : [COMPILE] -FIND 0= 0 PERROR DROP CFA , : IMMEDIATE
9 : ' -FIND 0= 0 PERROR DROP

10 [COMPILE] LITERAL ; IMMEDIATE
11
12 20 CONSTANT BL
13 40 CONSTANT C/L
14 ; S
15

Screen 55
0 ( ROMable Z-80 FORTH --  mod ? forget vlist noop task )
1 : MOD /MOD DROP ;
2 : C, HERE C! 1 ALLOT ;
3 : ? @ . ;
4 : FORGET CURRENT @ CONTEXT @ - 18 PERROR [COMPILE] ' DU
5 FENCE @ < 15 PERROR DUP NFA DP !
6 LFA @ CURRENT @ ! ;
7 : VLIST C/L OUT ! CONTEXT @ @ BEGIN
8 C/L OUT @ - OVER C@ 01F AND 4 + <
9 ’ IF CR 0 OUT ! ENDIF

10 DUP ID. SPACE SPACE PFA LFA @ DUP 0=
11 ?TERMINAL OR UNTIL DROP ;
12 : NOOP ;
13 : NOT 0= ;
14 ; S
15

Screen 56
0 ( Case statement, by Charles E. Eaker )
1
2 : EXIT R> DROP ; (EXIT FROM CURRENT WORD )
3
t. ( from FORTH DIMENSIONS II/3 page 37 )
5 : CASE PCOMP CSP @ !CSP 4 ; IMMEDIATE
6 : OF 4 PPAIRS COMPILE OVER COMPILE = COMPILE OBRANCH
7 HERE 0 , COMPILE DROP 5 ; IMMEDIATE
8 : ENDOF 5 PPAIRS COMPILE BRANCH HERE 0 ,
9 SWAP 2 [COMPILE] ENDIF 4 ; IMMEDIATE

10 : ENDCASE 4 PPAIRS COMPILE DROP BEGIN SP@
11 CSP @ = 0= WHILE 2 [COMPILE] ENDIF
12 REPEAT CSP ! ; IMMEDIATE
13
14
15
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Screen 57
0 ( CONTROLLER — EQUATES )
1 0A EQU COUNT$VAL ( SECONDS BETWEEN SAMPLES )
z
3 80 EQU S$B
4 S$B EQU TAPE-DATA 70 EQU A$B
5 S$B 1+ EQU TAPE-STAT A$B EQU AD-STAT
6 ( S$B 2+ EQU DATA-PORT ) A$B 1 + EQU AD-INIT
7 ( S$B 3 + EQU STATUS-PORT) A$B 2+ EQU AD-LO
8 S$B 4 + EQU PIOA-DATA A$B 3 + EQU AD-HI
9 S$B 5 + EQU PIOA-CMND

10 S$B 6 + EQU PIOB-DATA 8000 EQU BUF0#
11 S$B 7 + EQU PIOB-CMND A000 EQU BUFl #
12 S$B 8 + EQU CTC0 2000 EQU BUF-LEN
13 S$B 9 + EQU CTC1
14 S$B A + EQU CTC2 6 EQU CTCOFS
15 S$B B + EQU CTC3 CTCOFS EQU ISRVCTROFS

Screen 58
01 ( CONTROLLER — EQUATES )
1
2 40 EQU GO-BACK 01 EQU WR-EN
3 02 EQU WRT 02 EQU REW
4 03 EQU WFMK 04 EQU EOT
5 07 EQU BCKF 10 EQU CR-IN
6 08 EQU REPORT-IN
7 0D EQU SKIP-F 70 EQU NO-LIGHTS
8 44 EQU SKIP-RB E0 EQU RED-LIGHT
9 DO EQU ORANGE-LIGHT

10 3000 EQU CMD-OK B0 EQU GREEN-LIGHT
11 OC EQU DRIVEl
12
13 02 EQU NSOFS 00 EQU INI-PA
14 80 EQU ARDY CO EQU INI-MA
15 ;S ( NOTE: INI-MA IS FOR 8K BUFFER

Screen 59
0I ( CONTROLLER — EQUATES )
1
2 40 EQU CH-LIMIT
3 800 EQU ZOFST
4 A9 EQU SIGCOEFF
5 19 EQU SAMP$VAL
6 6000 EQU RBUF
7 ;S
8
9 Currently set for 2.5 interrupts per second for a window of 25

10 samples per datum. Change SIGCOEFF, SAMP$VAL, and the stuff
11 after VALS in screen 62 for different sample rates.
12
13
14
15
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0 ( CONTROLLER —  INTERRUPT SERVICE ROUTINE ENTRY )
1 ASSEMBLER
2
3 HERE LABEL EISR DI ( INTERRUPT SERVICE ROUTINE ENTRY )
4 AF PUSH BC PUSH DE PUSH HL PUSH EXX
5 AF PUSH BC PUSH DE PUSH HL PUSH
6 IX PUSH IY PUSH BC, # ISRl LD NEXT JP
7
8 HERE LABEL ISRl ] ISR ISREXIT [
9

10 FORTH DEFINITIONS
11

S c re e n  60

12 CODE ISREXIT IY POP IX POP ( RETURN FROM INTERRUPT
13 HL POP DE POP BC POP AF POP EXX
14 HL POP DE POP BC POP AF POP El RETI END-CODE ;S
15

Screen 61
0 ( CONTROLLER —  ISR PROGRAMMING & INITIALIZATION )
1
2 ( PROGRAM INTERRUPT SERVICE ROUTINE )
3 CODE PISR
4 IM2 A, A SUB OED C,(T) 047 C,(T) ( I, A LD )
5 NEXT JP END-CODE
6
7 ( ENABLE INTERRUPTS )
8 CODE El El NEXT JP END-CODE
9 ( DISABLE INTERRUPTS )

10 CODE DI DI NEXT JP END-CODE
11
12 ( INITIALIZE INTERRUPT SERVICE ROUTINE )
13 : SISR PISR EISR ISRVCTROFS ! ;
14 ; S
15

Screen 62
0 ( CONTROLLER —  VARIABLES )
1
2 0 VARIABLE PTR 0 VARIABLE 0-PTR-INIT
3 0 VARIABLE W-PTR 0 VARIABLE 1-PTR-INIT
4 0 VARIABLE CHKSUM# 0 VARIABLE 0-CHK-INIT
5 0 VARIABLE CNT 0 VARIABLE 1-CHK-INIT
6 0 VARIABLE BUF* 0 VARIABLE MA
7 0 VARIABLE NTIMES 0 VARIABLE CT
8 201 VARIABLE VALS
9 3 C,(R) 4 C,(R) 5 C, (R) 6 C,(R) 7 C,(R) 8 C,(R) 9 C
.0 A C, (R ) B C,(R) C C, (R) D C, (R)
.1 C C, (R) B C,(R) A C,(R) 9 C,(R) 8 C
.2 7 C,(R) 6 C,(R) 5 C, (R) 4 C,(R) 3 C,(R) 2 C,(R) 1 C
13
14 0 VARIABLE TMP CH-LIMIT ALLOT-RAM
15
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Screen 63

01 ( CONTROLLER —  DEVICE PRIMITIVES )
-L
2 : CHA! TAPE-STAT P! ; ( PROGRAM TAPE UART )
3 : CHB! STATUS-PORT P! ; ( PROGRAM TERMINAL UART )
4 : TP@ TAPE-DATA P@ ; ( READ TAPE PORT )
5 : TP! TAPE-DATA P! ; ( WRITE TAPE PORT)
6 : PIOA@ PIOA-DATA P@ ; ( READ NO. CHANNELS )
7 : PIOA! PIOA-CMND P! ; ( NOT USED )
8 : PIOB@ PIOB-DATA P@ OF AND ; ( READ STATION ID )
9 i PIOB! PIOB-CMND P! ; ( NOT USED )

10 : ON PIOB-DATA P! ; ( TURN A LIGHT ON )
11 : WRA! CHA! CHA! ;
12 i WRB! CHB! CHB! ;
13 : A-CLOCK 47 CTC0 P! 0C CTC0 P! ; ( COUNTER, 9600X16 )
14 : B-CLOCK 47 CTC1 P! CO CTC1 P! ; ( COUNTER, 300X32 )
15 iS ( SET TO 6 FOR 9600B)

Screen 64
0 ( CONTROLLER —  DEVICE PROGRAMMING
1
2 : PIO-INIT CF PIOA! FF PIOA! 07
3 CF PIOBi OF PIOBi 07
4 : A-SIO 18 CHA! 4C 04 WRA!
5 00 01 WRA! Cl 03 WRA!
6 68 05 WRA! ;
7 : B-SIO 18 CHB! 84 04 WRB!
8 00 01 WRB! 00 02 WRB!
9 Cl 03 WRB! 68 05 WRB!

10 : CTC-INIT SISR 00 CTC0 P!
11 27 CTC2 P! 19 CTC2 P!
12 C7 CTC3 P! FA CTC3 P!
13 : CHA-INIT A-CLOCK A-SIO ;
14 : CHB-INIT B-CLOCK B-SIO ;
15 : DEV-INIT CHA-INIT CHB-INIT CTC-

)

PIOA! ( MODE 3 0A/4B IN ) 
PIOB! ; ( NO INTS )

( RESET 16X CLK 2 STP NP )
( NO INT R:8 B/C RX EN )
( T :8 B/C TX ENABLE )
( RST 32X CLK 1 STOP NPAR ) 
( NO INT 0 INT VCTR )

; ( RX&TX AS ABOVE )
( 0 INT VECTOR )
( NO INT P=256 TC=25 )

; ( EN INT CNTR TC=250 )

INIT PIO-INIT

Screen 65
0 ( CONTROLLER — CARTRIDGE TAPE PRIMITIVES )
X
2 : TPX? BEGIN TAPE-STAT P@ TBE AND UNTIL ;
3 : TPR? BEGIN TAPE-STAT P@ RDA AND UNTIL ;
4 : CMD TPX? TP! ;
5 ; DSW TPR? TP@ TPR? TP@ 100 * + 10 0 DO NOOP LOOP ;
6 : 1C&R CMD DSW ;
7 ; 3C&R CMD CMD 1C&R ;
8 : INIT-TAPE REPORT-IN INI-PA INI-MA MA ! INI-MA 3C&R DROP
9 i GET-STATUS REPORT-IN 1C&R ;
10 ; CARTRIDGE-IN? GET-STATUS CR-IN AND ;
11 t WRITE-ENABLED? GET-STATUS WR-EN AND ;
12 : REWIND GO-BACK 1C&R DROP ;
13 : DESELECT REPORT-IN INI-PA INI-MA DRIVEl + 3C&R DROP ;
14 ! RESELECT REPORT-IN INI-PA MA @ 3C&R DROP ;
15 : WAIT5 500 0 DO NOOP NOOP NOOP NOOP NOOP LOOP ; ;S
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Screen 66
0 ( SPARE )
1 ;S
2
3
4
5
6
7
8 
9

10
11
12
13
14
15

Screen 67
01 ( CONTROLLER —  BUFFER PRIMITIVES )
1
2 • #SAMP! [ BUFO# NSOFS + ] LITERAL C! ;
3 : #SAMP@ [ BUFO# NSOFS + ] LITERAL C@ ;
4 : SITE! BUFO# ! ;
5 ; S-RATE! [ BUFO# NSOFS 1+ + ] LITERAL PTR ! #SAMP@ 0
6 DO COUNT$VAL PTR @ C! 1 PTR -i ! LOOP ;
7 j CHKSUM® CHKSUM# @ @ }
8 : CHKSUM! CHKSUM# @ ! ;
9 : SWAP-BUF BUF* @ DUP NOT BUF* !

10 IF 0-PTR-INIT @ PTR ! 0-CHK-INIT @ CHKSUM#
11 BUFl# W-PTR !
12 ELSE 1-PTR-INIT @ PTR ! 1-CHK-INIT @ CHKSUM#
13 BUFO# W-PTR !
14 ENDIF ;
15 rS

Screen 68
01 ( CONTROLLER — TAPE ROUTINES )
1
2 : WR-FMK WFMK 1C&R DROP ;
3 £ WR-EOF WR-FMK WR-FMK ;
4 ; BK-FMK BCKF 1C&R DROP ;
5 : WR-CMD MA @ CMD INI-PA CMD WRT CMD
6 j EOT? GET-STATUS EOT AND ;
7 : SEND-D W-PTR @ DUP BUF-LEN + SWAP
8 DO I C@ CMD LOOP ;
9 i NEXT-TRACK 1 MA +! MA @ 3 AND

10 IF RESELECT REWIND
11 ELSE INI-MA MA ! OVER-RUN
12
13 : ZTMP TMP #SAMP@ 4 * 0  FILL ;
14 i S
15
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Screen 69
0 ( CONTROLLER —  TAPE ROUTINES )
1
2 : NOT-OK? CMD-OK AND ;
3 : IS-OK? NOT-OK? NOT ;
4 : SKIP-FIL SKIP-F 1C&R DROP ;
5 : RW-SKIP-R SKIP-RB INI-PA MA @ 3C&R ;
6 : FIND-EOD REWIND INI-MA 4 + MA ! 4 0
7 DO -1 MA +! RW-SKIP-R IS-OK?
8 IF SKIP-FIL LEAVE ENDIF
9 LOOP BK-FMK ;

10 : BLINK-SELECT DESELECT WAIT5 RESELECT WAIT5 ;
11 : ORANGE-BLINK NO-LIGHTS ON ORANGE-LIGHT ON WAIT5
12 NO-LIGHTS ON WAIT5 ;
13 : RED-BLINK NO-LIGHTS ON RED-LIGHT ON WAIT5
14 NO-LIGHTS ON WAIT5 ;
15 : GREEN-ON NO-LIGHTS ON GREEN-LIGHT ON ;

Screen 70
0 ( CONTROLLER —  TAPE ROUTINES )
1
2 : TAPE-ON? NO-LIGHTS ON INIT-TAPE
3 BEGIN
4 BEGIN
5 CARTRIDGE-IN? NOT
6 WHILE
7 BLINK-SELECT
8 REPEAT
9 WRITE-ENABLED? NOT

10 WHILE
11 BEGIN
12 ORANGE-BLINK CARTRIDGE-IN? NOT
13 UNTIL
14 REPEAT FIND-EOD EOT? IF OVER-RUN ENDIF
15 GREEN-ON ;

Screen 71
0 ( CONTROLLER —  VAR-INIT AND BUF-FULL? )
1
2 : VAR-INIT PIOA0 DUP F AND 30 + PAD 2+ C! 10 / F AND
3 30 + PAD 1+ C! 2 PAD C! 20 PAD 3 + C!
4 PAD NUMBER DROP 1+ #SAMP!
5 PIOB@ DUP 0= IF 4F43 ELSE ( CO )
6 1 - DUP 0= IF 5043 ELSE ( CP )
7 1 - 0= IF 424D ELSE ( MB )
8 0000 ENDIF ENDIF ENDIF ( UNDEF)
9 SITE! S-RATE! PTR @ 1+ FFFE AND

10 DUP 0-CHK-INIT ! DUP CHKSUM# ! DUP 2000 +
11 1-CHK-INIT ! 2+ DUP DUP 0-PTR-INIT ! PTR !
12 2000 + 1-PTR-INIT ! 0 BUF* ! 0 CNT !
13 BUF0# BUF1# PTR @ BUF0# - CMOVE ZTMP ;
14 : BUF-FULL? BUF* @ IF BUF1# ELSE BUF0# ENDIF
15 BUF-LEN + PTR @ - #SAMP0 2 * SWAP > ;
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Screen 72
0 ( SPARE )
1 ; S
2
3
4
5
6
7
8 
9

10
11
12
13
14
15

0
1
2
3
4
5
6
7
8 
9

10
11
12
13
14
15

Screen 73
( CONTROLLER —  A/D CONVERTER ROUTINES )

CODE A/D-CH 

CODE A/D-GO

EXX
(C),
EXX
EXX

BC,
OUT
BC,

# AD-STAT LD
EXX 

# AD-INIT LD
NEXT JP

HL POP
END-CODE 

(C), L OUT
NEXT JP

( CODE A/D-RDY NEXT JP END-CODE
CODE A/D-DATA EXX

BC INC
BC, # AD-LO LD 
A, (C) IN

H, A LD HL PUSH EXX

END-CODE

L, (C) IN 
A, # F AND 
NEXT JP END-CODE

; s

0
1
2

Screen 74 
( CONTROLLER —  A/D CONVERTER ROUTINES )

: BUF! PTR ® ! 2 PTR +! ;
3 : TMP! 4 * TMP + DUP >R 2® D+ R> 2! ;
4 : CHKSUM CHKSUM® + CHKSUM! ;
5 : A/D-READ ( A/D-RDY ) A/D-DATA VALS CNT @ + C@ U*
6 ROT TMP! ;
7 : SAMPLE 0 A/D-CH #SAMP@ 1
8 DO A/D-GO I A/D-CH 11- A/D-READ LOOP
9 A/D-GO #SAMP@ 1- A/D-READ ;

10 : SAVE #SAMP@ 0 DO I 4 * TMP + DUP >R 2® SIGCOEFF
11 DUP CHKSUM BUF! DROP
12 0 0 R> 2! LOOP ;
13 ;S
14
15
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Screen 75
0 ( SPARE )
1 ;S
2
3
4
5
6
7
8 
9

10
11
12
13
14
15

Screen 76
0 ( CONTROLLER
1
2 : WRITE-IT
3
4
5 : WRITE-BUF
6
7
8 : KILL-TIME
9 

10 
11 
12
13
14
15

Screen 77
0 ( CONTROLLER
1
2 : OVER-RUN
3
4
5 : ISR
6
7
8
9 : UABORT 

10 
11 
12
13
14 ; S
15

WRITE BUFFER )

BEGIN WR-CMD SEND-D DSW NOT-OK?
WHILE EOT? IF NEXT-TRACK ENDIF 
REPEAT ;
SWAP-BUF WRITE-IT EOT?
IF WR-EOF NEXT-TRACK 
ELSE WR-FMK BK-FMK ENDIF ;
RP! SP!
BEGIN

BUF-FULL? IF WRITE-BUF ENDIF 
?TERMINAL IF KEY DROP DI QUIT ENDIF 
DI CARTRIDGE-IN? NOT 

IF TAPE-ON? ENDIF
El 

AGAIN ;

INTERRUPT DRIVEN DRIVER )

DI REWIND BEGIN CARTRIDGE-IN? WHILE RED-BLINK 
REPEAT TAPE-ON? VAR-INIT El KILL-TIME ;

SAMPLE 1 CNT +!
CNT § SAMP$VAL =
IF 0 CNT ! SAVE ENDIF ;

WAIT5 WAIT5 WAIT5 WAIT5 ( GIVE TAPE DRIVE TIME) 
DEV-INIT ( ABORT KILL-TIME ; )
SP! DECIMAL [COMPILE] FORTH DEFINITIONS 
0 BLK ! [COMPILE] [ RP!
TAPE-ON? VAR-INIT El KILL-TIME ;
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0
1
2
3
4
5
6
7
8 
9

10
11
12
13
14
15

16 0 
OVER 
CR I 
I 16

( save current BASE 
( print titles )

Screen 78
( Dump, intrasegment, byte format ) DECIMAL
( display n memory locations in hex and ASCII, starting
( at addr rounded to next lower 16 byte boundary )
: DUMP ( addr n DUMP -> )
BASE @ >R HEX CR CR 5 SPACES
16 0 DO I 3 .R LOOP 2 SPACES

DO I 0 <# } |> TYPE LOOP CR
+ SWAP DUP i5 AND XOR DO 
0 4 D.R 1 SPACES 

2 DUP
DO I C@ SPACE 0 <# # # #> TYPE LOOP ( hex ) 
2 SPACES

< IF DROP 46 ENDIF ( ASCII
IF DROP 46 ENDIF EMIT LOOP 
: ( restore BASE )

;S

( round starting address 
( print address )

+ I

DO I C@ DUP 32 
DUP 126 > 

16 +LOOP CR R> BASE ! ;

0
1
2
3
4
5
6
7
8 
9

10
11
12
13
14
15

Screen 79
( Read a block for debugging ) HEX

: SKIP DUP 0< IF ABS 86 ELSE 84 ENDIF SWAP 1- MA C@ 3C&R DROP ; 
: READ 1 CMD TPR? TP@ TPR? TP@ [ RBUF BUF-LEN + ] LITERAL RBUF 

DO TPR? TP@ I C! LOOP 100 * + U. ;
IS-FENCE 
FINIS ;S
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