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ABSTRACT

The optical emissions from two excited states of atomic nitrogen 

were observed in the aurora in order to determine the relationship 

between their absolute intensities when excited by particles of 

varied energies. In order to accomplish this, auroral emissions 

at 5200 A and 3466 A originating from the NI[2d+4s] and NI[2p+4$] 

transitions were observed simultaneously using two co-aligned Ebert- 

Fastie spectrometers from Longyearbyen, Svalbard. The relationship 

was determined to be linear with the ratio of 5200 A to 3466 A 

intensities being 1.84 ±0.40. This value differs significantly 

from current theoretical prediction (1(5200 A )/I(3466 A) = 30) 

suggesting that the reaction of N2 with 0 to form the NI[^D] state 

may not be as efficient as previously assumed or that another source 

of NI[2p] must be included in the model calculations.
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CHAPTER 1 

INTRODUCTION

Just two elements, nitrogen and oxygen, compose over 99 percent 

of the earth's atmospheric volume. Of this, 78 percent is nitrogen, 

almost all of which exists in the diatomic molecular form, N2. In 

the upper atmosphere diatomic oxygen, 0£, is dissociated by sunlight 

to form atomic oxygen, 0, the predominant form of oxygen above 200 

kilometers (km). More energy is required to photodissociate N2 than 

O 2 and relatively little atomic nitrogen, N, is normally present, 

even at 500 km. At high latitudes the atmosphere is bombarded by 

energetic particles, principly electrons and protons, forming regions 

of frequent atmospheric disturbance called auroral ovals. These 

particles are responsible for producing the Aurora Borealis and the 

Aurora Australis. The particles may penetrate down to heights of 80 

km before being thermalized and nearly 50 percent of the precipitating 

particle energy is expended in the ionization, dissociation or dis­

sociative ionization of N2. These three processes eventually lead 

to the production of atomic nitrogen (Hyman el al, 1976). Some of 

these nitrogen atoms are produced in excited states and react much 

faster with other atmospheric constituents than ground state nitrogen 

atoms. In this way, an auroral event may significantly affect the 

chemistry of the upper atmosphere.

In auroras atomic nitrogen may be formed in any of the available 

electronic states, such as the ^S°, 2d o > 0r 2po states. The excess

1
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electronic energy of excited atomic nitrogen atoms effectively speeds 

up the interaction of the metastable species with other atmospheric 

constituents. These reactions may proceed at rates that are orders of 

magnitude faster than for NI in the ground state. For example, it has 

been observed that the NI[^D] state reacts much faster than the NI(^S) 

ground state with O2 to form nitric oxide, NO (Slanger et al, 1971). 

Calculations of NO production are therefore very sensitive to the rela­

tive abundances of these two states (Hyman et al, 1976; Rees and Roble, 

1979). Reports of anamolous NO concentrations in auroras (Zipf et al, 

1970; Donahue, 1972; Swinder and Narcisi, 1974) have promoted the need 

for a quantitative measure of the production rate of the excited states 

of atomic nitrogen through the emissions which are their signatures.

The absolute abundances of atomic nitrogen in its various excited 

states are obtained by observing the optical emissions from the excited 

states. Atomic nitrogen produced by the interaction of energetic 

auroral electrons with atmospheric N2, is formed primarily in the low­

est electronic energy states, i.e. in the ^S, and 2p levels.

Atomic nitrogen formed in the 2p states can make transitions to either 

the or the states (see Figure 1.1). The ^Pi/2,3/2 * ^3/2,5/2 

transitions produce two closely spaced doublet emissions at wavelengths 

of 10,395 and 10404 Angstroms (A) while the ^ 1/2 + ^ 3/2 tran" 

sitions lead to one closely spaced doublet at 3466.4 A. The auroral 

intensities of these emissions depend on the total number of NI[2P] 

atoms formed in the aurora. The ^D3/2,5/2 + ^3/2 transitions produce 

a more widely spaced doublet with wavelengths of 5198.5 A and 5200.7 A.
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Figure 1.1 Energy level diagram of the atomic nitrogen 4so

ground state and the 2q o and 2po excited electronic 

states.
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Although studies have been done where these two emissions are consider­

ed as seperate entities (Sivjee et al, 1981) most observations of 

these lines have used equipment with insufficient resolution to separ­

ate them. These two emissions will be collectively refered to as the 

5200 A doublet, except where it is neccessary to be more explicit.

The ratio of 5200 A to 3466 A is indicative of the relative populations 

of NI[^D] and NI[2p] in auroras. This study is primarily concerned 

with the determination of this ratio through simultaneous spectrophoto- 

metric observations of the auroral 5200 A and 3466 A emissions. Both 

of these NI doublet emissions are relatively weak in the aurora, their 

intensities ranging from a few rayleighs (R) during aurorally quiet 

conditions, to a few hundred rayleighs during aurorally disturbed 

conditions.

The 5200 A doublet was first observed in the aurora by Slipher and 

Sommer (1929). Being a weak emission, it was not observed in the 

airglow until twenty years later by Courtes (1950). The 3466 A line 

was also first observed in the aurora, by Kaplan (1938). Both the 

[2p -*• 4s] and [2d 4s] transitions are "forbidden" by the spin change

rule since both must change multiplicities. The [^D + ^S] transition 

is doubly forbidden since it also breaks the electric dipole selection 

rule for orbital angular momentum, i.e. Al= ±1. These levels are 

called metastable and radiate according to electric quadrapole and 

magnetic dipole processes. The radiative lifetime of metastable 

levels is usually greater than 10_® seconds. The Einstein transition 

probabilities A(i,j), are inversely proportional to the radiative
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lifetimes. For the 5200 A and 3466 A emissions the A values were 

first calculated theoretically by Pasternak (1940). Some of these 

values were modified slightly several years later to account for inter­

actions between electron orbital shells (Garstang, 1952, 1956). An 

effective Einstein A coeficient for the [2p 4s] doublet transition 

was determined to be 5.4 xlO-3 per second. This value is considered 

accurate within 20 percent (Garstang, 1956). The calculated radiative 

lifetime of the NI[2p] state (x) is about 12 seconds. The [2d + 4s] 

transition has an effective A coeficient of 1.06 ±0.5 xlO'5 per 

second (Garstang, 1956). The radiative lifetime of the NI[2d] state 

is approximately 26 hours.

Not all excited atoms are de-excited radiatively. When in meta­

stable states, most atoms suffer collisions with ambient particles 

and loose their excess energy. During this process, called quenching, 

energy may be lost by exciting the quenching species or it may be 

transformed into the energy of motion by altering the velocity of both 

particles. At auroral heights the [NI] 5200 A radiation has an effect­

ive lifetime similar to the [01] 6300 A emission and its intensity 

appears to vary much like the [01] 6300 A radiation (Torr et al, 1976). 

This is apparently due to the effect of quenching by atomic oxygen 

resulting in the formation of NO. The importance of the NI[2d] 

state in the formation of nitric oxide has led to many studies of the 

5200 A emission (Torr et al, 1976; Frederick and Rusch, 1977; Rusch 

and Gerard, 1980: Sivjee et al, 1981). Studies of the NI[2p] state 

are more rare and most have been done only recently (Vallance Jones
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and Gattinger, 1975; Young and Dunn, 1975; Gerard and Harang, 1980). 

Only recently has a determination of the proportional yield of N+ , 

NI[2p], NI[2d] and NI(^S) atoms due to electron impact dissociation 

been accomplished (Zipf et al, 1980). The long radiative lifetimes of 

the 3466 A and 5200 A emissions makes their study a formidable task.

A laboratory study is almost impossible because of the large prob­

ability of collisional deactivation with other atoms or the walls of 

the vacuum chamber. As a result the radiation that is emitted is 

very weak producing a signal that is usually indistinguishable from the 

background noise. On the other hand, in the atmosphere above 120 km, 

the density of the air is small and thus the collision frequency is 

low enough to allow a significant proportion of excited nitrogen atoms 

to radiate.

Artificial means of exciting atmospheric emissions have been 

attempted with limited success (Hess et al, 1971; Davis et al, 1971; 

Davis et al, 1980). Such methods have the advantage of exciting the 

metastable species in a limited atmospheric region where physical and 

chemical conditions are relatively uniform. Still, problems involving 

optical tracking of such a weak signal and the cost of a rocket launch 

prevent this technique from being used routinely. The advent of reg­

ular space shuttle missions may make this type of study more common in 

the future. The aurora supplies a means of exciting the NI[^D] and 

NI[2p] states through, primarily, electron bombardment. Most of the 

5200 A and 3466 A emission is thought to be produced between the 

heights of 140 km and 300 km so it is important to look at auroras
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which occur in this region. Electrons precipitating into the atmos­

phere during most auroral events have almost a continous distribution 

of energies, from thermal to relativistic. The differential energy 

spectrum of this electron flux is usually represented by one of several 

functional distributions such as Gaussian, exponential, or Maxwellian. 

The functional energy dependence varies from one aurora to another as 

well as in auroras formed at different local times. On the nightside 

of the oval the typical aurora results from particles having character­

istic energies of 2 to 10 thousand electron volts (KeV). These 

particles dissipate most of their energy at altitudes between 110 km 

and 130 km. At these altitudes quenching of NI[2p] and NI[2d] is 

dominant, hence very little 3466 A and 5200 A emissions are produced. 

These high energy electrons also excite other more intense molecular 

band emissions which tend to mask out weak lines like 5200 A and 

3466 A. On the day side of the auroral oval, the precipitating elect­

rons have a different energy spectrum, frequently having characteristic 

energies of less than 1 KeV. The lower energy electrons lose most of 

their energy to the atmosphere between 140 km and 500 km, where meta­

stable levels live long enough to radiate because of lower collision 

frequencies. An observing site permitting both day and night-time 

measurements would have the distinct advantage of being able to observe 

electron-atom collision processes over a wide range of energies in an 

almost thermally collisionless reaction chamber, having no walls.

A group of islands in the North Atlantic, collectively known as 

Svalbard, provide an excellent location for the study of both day and
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night-time auroras. Svalbard's geographic location at 80 degree north 

latitude is far enough poleward to allow 24 hour observation of the 

aurora for over 2 months of the year around the winter solstice. Its 

invariant geomagnetic latitude of 75 degrees north permits observa­

tions of the magnetospheric cusp under both quiet and moderately dis­

turbed conditions. For these reasons a ground-based optical observ­

ing facility was established in Longyearbyen, Svalbard (Geographic 

latitude; 78.2 degrees north and longitude; 11.9 degrees east), in the 

winter of 1978 as part of the International Magnetospheric Study (IMS) 

program. This was begun as a multi-national auroral expedition which 

is scheduled to continue through 1983. It is manned by researchers 

from the Universities of Tromsd and Oslo (Norway), the University of 

Alaska (United States), Ulster Polytechnic (United Kingdom) and the 

University of Saskatchewan (Canada). During the months of December 

and January the solar depression angle in Longyearbyen is never less 

than 5 degrees and for most of the period it is more than 9 degrees. 

Degradation of auroral optical signal due to scattered sunlight is 

therefore minimal, a definite advantage when dealing with weak auroral 

emissions.

The most obvious characteristic of the aurora is its temporal and 

spatial variability. This requires intensity measurements to be made 

more quickly than any gross changes occuring in the aurora if the data 

are to be meaningful. For rapid measurements of weak emissions, 

large throughput optical radiation detection equipment is necessary. 

The Geophysical Institute of the University of Alaska has developed a
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highly sensitive electro-optical system consisting of two co-aligned, 

large throughput, Ebert-Fastie scanning spectrophotometers and a 

four channel, fixed bandpass, meridian scanning photometer (MSP), 

operating in the photon counting mode. These instruments are inter­

faced to an interactive digital data processing and storage system, 

which is capable of data collection and storage while at the same time 

permitting real time analysis. The data used in this study were 

taken utilizing this system as part of the Svalbard Multi-National 

Auroral Expedition in Longyearbyen, during the 1979-1980 observing 

season. Absolute intensity measurements of [NI] 3466 A and 5200 A 

emissions in various day and night-time auroras (excited by electrons 

with average energies differing by almost an order of magnitude) and 

their analysis in terms of the relative populations of NI[^D] and 

NI[2p] states is the principle concern of this thesis.

Chapter 2 describes the experimental facilities employed for the 

study. Results of the observational program are presented in Chapter 3 

and their analysis will be discussed in Chapter 4.
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CHAPTER 2 

INSTRUMENTATION

2.1 The Optical System

The electro-optical system employed for the studies of NI[2P] and 

NI[2D] in auroras consists of two spectrometers and several photometers 

ail operating in the photon counting mode and coupled to a digital, 

real-time, electronic operating system. In addition, an all-sky camera 

provided a continuous record of auroral activities and the extent of 

any cloud cover. In this chapter the operational principles and physic­

al descriptions of the data acquisition systems are presented.

The instruments may be divided into three parts; light gathering 

and dispersion optics, detectors for converting the optical radiation 

to electrical pulses and the recording and analysis of the digitally 

coded information about the auroral emissions. Descriptions of the 

first two segments involving the optics and detectors are presented 

in sections 2.1, 2.2, 2.3, and 2.4. The last section of this chapter 

describes the digital electronic system used for data gathering, 

recording and analysis.

2.2 The Scanning Spectrophotometers

The heart of the entire optical detection system consists of two co­

aligned scanning spectrophotometers operating in the photon counting 

mode and mounted inside an insulated, heated and steerable container.

The container is a modified searchlight housing in which is mounted a 

one-meter and a one half-meter (focal lengths) Ebert-Fastie spectro-

10
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meter, having identical fields of view (FOV) (approximately 7 degrees 

square). An insulated plastic dome protects the instruments from the 

elements and provides a temperature controlled environment. Each spect­

rometer views the sky through an open hole in the dome which is capped 

when the instrument is not in use. The searchlight housing is remotely 

steerable and can be directed to view any part of the sky.

The configuration of the Ebert-Fastie spectrometer is shown in 

Figure 2.1. The optical system of Ebert uses a spherical mirror to 

render the incoming light parallel and a plane reflection grating to 

diffract this parallel beam into its component wavelengths. The 

inherent astigmatism in design of the Ebert spectrometer was corrected 

by Fastie (1952) who introduced curved entrance and exit slits. The 

use of curved slits also corrected an error in wavelength at the exit 

slit which had previously required the slit to be short. The incident 

light passes through an order-sorting pre-filter at the entrance slit 

and reflects off the first half of a 40 cm long section of a spherical 

mirror, having a 2 m radius of curvature. The slit plate lies in the 

focal plane of the 40 cm Ebert mirror so the light rays from the en­

trance slit, reflected from the mirror, are rendered parallel. The 

light is then reflected from the 25.6 cm x 15.4 cm, 1200 line per mm, 

plane-grating into component colors. The second half of the Ebert 

mirror focuses the dispersed light at its focal plane where the exit 

slit permits a small band of wavelengths to pass through it.

Directly behind the exit slit is a red sensitive E-type photo­

multiplier tube (PMT) with an extended S-20, corrugated photocathode.
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The PMT housed in a thermoelectric cooler which is kept at -25 degrees 

centigrade to reduce thermal noise. The photomultiplier's signal is 

fed into a pulse-amplifier-discriminator (PAD) which recognizes only 

pulses of a set voltage level or greater and then shapes the output 

pulse to be compatable with the computer's interfacing circuit. The 

PAD's rejection of low level pulses orginating from the dynodes helps 

to reduce the background noise still further.

The spectrum of the light leaving the spectrometer at the exit slit is 

centered about a wavelength given by the grating equation:

nX=d(sini+sinr) (2-1)

Where X is the wavelength, n = 0,1,2,..., is the order of is the 

grating, d is the spacing between grooves in the grating and i and r are 

the angles of incident and diffracted beams. As shown in Figure 2.2, 

i =0-4> and r=e+<|>. With a bit of manipulation equation 2-1 reduces to 

nX=2dsi n9cos<j> (2-2)

The term costj) is a fixed value depending only on the dimensions of the 

instrument. The wavelengths focused on the exit slit are proportional 

to the sine of the angle e between the grating normal and symmetry 

axis of the spectrometer. A linear scan of the wavelengths is produced 

by rotating the grating using a coupling arm riding on a sine-cam, 

which is driven by either a stepping or a synchronous motor. A set of 

10 cams allows a choice of free spectral ranges between 150 A and 

5700 A in the first order. Corning glass filters are used to select 

which order (n in equations 2-1 and 2-2) is passed into the spectro­

meter. These filters are mounted directly in front of the entrance
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slit. The slit width is varied by a micrometer type adjustment which 

pushes a wedge into the spring-loaded jaw assembly to open the slit.

The slitwidth may be varied from .1 mm to 10 mm as the situation 

requires.

The output of the spectrometer, in photons, can be shown to be 

given by:

S=BTAsAgcos0/F2 (2-3)

where B is the spectral brightness of the source in photons/cm^/ster,

T is the transmission, A s and Ag are the areas of the entrance slit and 

grating, respectively, and F is the focal length of the instrument. 

Since the spectrometer's output, S, is proportional to the length of 

the slit, a large throughput can then be achieved by increasing A s 

and Ag (for a given slitwidth). The modification of the Ebert design 

by Fastie corrected the inherent wavelength error by curving the slits 

which allowed the slit length to be increased, providing a significant 

increase in signal strength. Our spectrometer uses the maximum slit 

length permitted by the grating employed which has 15 cm long ruled 

grooves.

During airglow and auroral observations of extremely weak optical 

emissions the spectrometers are rarely used at their highest resolution 

since it usually becomes necessary to open the slitwidth in order to 

allow enough light in to provide a sufficiently usable signal. Since 

the spectrometer's resolution is a function of the slit width, the 

result is to sacrifice resolution for signal strength. When detecting 

low-level signals it is often useful to sum several scans in order to
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improve the signal-to-noise ratio. If each scan is not accurately 

initiated, summing successive scans results in a smearing of the sig­

nal. This is prevented by initiating the scan with a pulse from an 

optical pick-up which senses a hole in the cam during the fly-back 

period. The fly-back occurs as the cam returns the grating back to 

its initial scan angle.

2.3 The Meridian Scanning Photometer

The meridian scanning photometer (MSP) is positioned to scan the 

magnetic meridian from north to south. The MSP is housed in a small 

insulated and heated building which provides protection from inclimate 

weather and temperature fluctuations. The latter is important to 

ensure a constant bandpass for the interference filters in the photo­

meters. Clear plastic panels in the walls and the roof provide the 

necessary 180 degree view of the sky for the detectors. The MSP is 

composed of four fixed bandpass photometers mounted in a close parallel 

group each viewing a plane mirror positioned at 45 degrees to their 

optical axis (see Figure 2.3). The mirror is rotated approximately 

three times a minute allowing each of the photometers to scan the 

meridian once every revolution of the mirror. The incoming light is 

reflected from the rotating mirror directly into an interference filter 

located in the front of each field lens. The interference filters 

permit a narrow (approximately 15 A) band of light centered at the 

wavelength of interest to enter the detector. This study was concerned 

with only two of the four emissions detected by the photometers, the 

red auroral emission of atomic oxygen at 6300 A and the blue emission
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of N2+ at 4278 A. The light passes into a telescope and is focused 

on a diaphram in front of the photomultiplier tube (PMT). As with the 

spectrometers, the PMTs are housed in thermoelectric coolers which 

cool the PMTs to -25 degrees centigrade to reduce thermal noise pulses. 

The signal from the PMT is fed to a pulse-amplifier-discriminator 

which ignores pulses with voltage levels below a specified threshold. 

This further aids in eliminating spurious noise pulses due to thermal 

effects.

Using such a simple instrument design and relatively large-area 

filters (about 7.5 cm in diameter) provides for a very large through­

put. This makes the photometer a useful tool for monitoring weak 

emissions from relatively small (about 1.5 degree circular) regions 

of the sky.

2.4 The All Sky Camera

The observing station is equipped with a 35 mm automatic all sky 

camera (ASC). The camera has a large fish-eye lens allowing a 

160 degree view of the sky. Normally the camera takes one 8 second 

exposure every minute providing visual data throughout the observing 

period. Several other exposure rates are also available by adjusting 

the ASC's control box. The camera holds sufficient film to run con- 

tinously for a period of 24 hours. The ASC is equipped with a small 

data box that houses a 24 hour clock (UT) and a small placard showing 

the UT date, as well as the station identification. The contents of 

the data box are photographed every exposure and appears in the south­

east corner of every frame.
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The ASC is housed in the same building as the MSPs where a constant 

temperature is maintained. A hemispherical glass dome provides a 

viewing port and protection from the harsh climate for the ASC. When 

scattered sunlight along the sourthern horizon is intense or when the 

full moon is along the horizon a shade is used to block the scattered 

light. The ASC provides a reliable record of weather conditions and 

types of auroral forms being observed. It also provides information 

about the time history of auroral substorms.

2.5 The Data Processing System

Data from the two spectrometers and the four channel MSP are 

handled by a digital electronic data processing system. The brain of 

the data collection system is a Nova 800 mini-computer, built by Data 

General Co. Its 32 K words (16 bit) of magnetic core memory provide 

temporary data storage and executable program memory during operation. 

Permanent data storage is provided by a Digi-Data magnetic tape drive 

which permits twelve hours of data collection on each ten and one half 

inch diameter tape reel. A block diagram of the data collection system 

is presented in Figure 2.4. The system permits real-time user inter­

action through any display terminal with a keyboard, such as the 

Tektronix 4010 interactive graphics unit. While the computer is ac­

cumulating and storing the data scans of the six instruments to which 

it is connected, the same data may also be copied in three temporary 

storage buffers of the computer memory and displayed on the terminal. 

Each data scan for a particular instrument may be displayed individual­

ly or several scans may be summed to improve the signal-to-noise ratio.
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21

The contents of the data buffers may be manipulated through point-by- 

point addition, subtraction, multiplication, division and cross-cor­

relation by one of the other buffers.

The data are displayed graphically as a plot of photometric signal 

(in pulse counts) versus wavelength for the two spectrometers. Sample 

displays of the spectrometer data are shown in Figure 2.5, for the 

half-meter spectrometer, and Figure 2.6, for the one-meter spectro­

meter. The display for the meridian scanning photometers is a plot of 

photometer pulse counts versus elevation angle from the northern 

horizon. An example of the output from the [01] 6300 A photometer is 

shown in Figure 2.7.

The text on each of the graphs relates information such as what 

instrument the data originated from, the universal time (UT), the scale 

of the graph and other specific information about the operation of the 

detector. The header for the spectrometers includes the wavelength re­

gion being scanned and information about the slit width and order 

sorting filters used. The azimith and elevation information apply only 

to the spectrometers even though they are also printed on the MSP 

display.

The display may be altered significantly to suit the needs of the 

researcher. Any or all of the wavelength region originally recorded 

may be displayed. In Figure 2.6 the orginal scan was from 3435 A to 

3950 A, however the data can be viewed more easily when displayed from 

3435 A to 3500 A. The vertical axis of the display may be altered to 

provide the clearest representation of the intensity and line shapes
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Figure 2.5 Example of the one-half meter spectrometer display (not to scale).
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A-TRACEloNE METER SPECTROMETER TIME 360/02 •• 49 = 48
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Figure 2.6 Example of the one-meter spectrometer display (not to scale).
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Figure 2.7 Example of the 6300 A meridian scanning photometer display (not to scale).
ro



25

of interest. Once the desired effect is achieved on the display ter­

minal, the entire screen may be reproduced using a Tektronix 4531 hard 

copy unit, providing a permanent record of the data.

The computer collects the data from the six separate instruments 

instantaneously, for all practical purposes. An accurate account of 

exactly when each scan is taken allows the temporal variations of any 

of the observed emissions to be studied and correlated with other 

geophysical and solar data.
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CHAPTER 3 

OBSERVATIONS AND DATA PREPARATION

3.1 The Objective

The central task in this thesis project was to measure the

absolute intensities of optical emissions in NI[^D] and NI[2p] from

a large number of auroras excited by particles with average energies 

varying from less than 0.5 KeV to a few KeV in order to determine the 

NI populations in these two metastable energy levels. This objective 

was met by making simultaneous spectoscopic measurements of the 

[NI] 3466 A and [NI] 5200 A emissions in auroras occuring over 

Longyearbyen, Svalbard, around the winter solstice period when it is 

possible to observe both night-time and mid-day auroral activities.

The average energies of the observed auroral particles can be

estimated from photometric measurements of [01] 6300 A and N2+ 4278 A

emission intensities (Rees and Lucky, 1974). Both spectroscopic and 

photometric measurements of auroral emissions made in Longyearbyen are 

presented in this chapter. The procedure for the absolute calibration 

of these detectors is also described. The final section of this 

chapter is devoted to the analysis of the spectroscopic and photo­

metric data taken in Longyearbyen.

3.2 The Observing Program

The main observing season in Longyearbyen runs from late November 

into late January when the solar depression angle is always greater 

than nine degrees. During the 1979-1980 observing season the

26
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3466 A, 5200 A observations were made for approximatly two weeks, from 

December 24, 1979 to January 7, 1980. The full moon occured on 

January 2, 1980, so much of this period had a large percentage of moon- 

up time. This did cause scattered light problems with the MSP but 

did not appreciably effect the spectrometer data, except under 

aurorally quiet conditions when the [NI] 3466 A and [NI] 5200 A emis­

sions were extremely weak (less than 5 rayleighs). The MSP was run 

continously except when the sky was totally obscured by clouds or 

when intense background light overpowered the observable emissions.

The relative stability and position of any auroral activity could be 

easily monitored by observing the MSP record which produced three 

scans per minute of the magnetic meridian. The spectrometers were 

usually directed toward the brightest, most stable auroral feature in 

the sky. These were often bright arcs around the zenith which were 

relatively stable for periods of a half hour or more. During mid-day 

when the auroral activity was low, a slowly moving photometric 6300 A 

feature believed to be the optical signature of the magnetospheric 

cusp, provided very low energy electron data for the spectrometers. 

This feature was sub-visual and could only be located using the MSP 

record. Rapidly changing auroras such as those associated with an 

auroral break-up were not of any interest in this study since they did 

not meet the conditions of stability necessary for a realistic ratio 

of the two emissions for [NI] 3466 A and [NI] 5200 A with such dif­

ferent effective lifetimes.

Adverse weather conditions are common in Longyearbyen during the
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winter, often limiting the amount of data which may be collected.

During the observing period, cloud cover and blowing snow limited data 

collection to just seven days; December 25, 26, 27 and 29, 1979 and 

January 2, 5 and 6 , 1980. Periods of slight haze and patchy clouds 

affected a significant part of these data, the effects of which are 

discussed in section 3.6.

The 3466 A doublet was recorded on the one-meter spectrometer by 

scanning the third order from 3435 A to 3950 A using a 1 mm slitwidth 

which corresponds to an emission line halfwidth of about 2 A. The 

one-meter spectrometer used a 32 second scan period. A pulse- 

integration period of 25 miliseconds was adopted to preserve the 

inherent resolution of the data. Each scan consists of 1280 spectral 

elements. Scanning a 515 A wide wavelength region at about 2 A 

resolution produces about 257 resolution elements. The 1280 spectral 

samples thus preserve the resolution of the data since they provide

five spectral samples per resolution element.

The 5200 A doublet was recorded on the half-meter spectrometer by 

scanning the second order from 5150 A to 5270 A with a 1 mm slitwidth. 

The 6 A resolution of the half-meter spectrometer does not resolve the

two peaks of the 5200 A doublet. However this is not considered a

problem since the ratio of the two can be determined (see section 3.6). 

A scan period of 12 seconds is employed on the half-meter spectrometer 

with a 25 milisecond integration period thereby producing 480 spectral 

elements per scan. Since a 120 A wavelength region is covered during 

each scan, the 6 A resolution provides for 20 resolution elements.
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The inherent resolution of the data is easily preserved with about 24 

spectral elements composing each of the resolution elements.

3.3 Field Calibration Procedures

Two types of calibration are routinely performed during the 

observing season: absolute intensity calibration of the spectrometers 

and the photometers, and wavelength calibrations of the spectrometers.

The absolute intensity calibration employs a quartz iodide lamp 

with known spectral intensity characteristics. The lamp is placed a 

measured distance from the instrument being calibrated and a 1 amber- 

tian surface, large enough to fill completely the instrument's FOV, 

is used to scatter the light into the instrument. Several scans are 

monitored and recorded on a magnetic tape. A logbook entry including 

the procedure, distance from the lamp to the screen, the angle of the 

screen to the optical axis of the instrument and the exact universal 

time (UT) the scans were taken, is made. The calibration for the 

spectrometers is complicated due to the different combinations of 

order-sorting filters and slitwidths that may be used to observe 

different wavelengths. In order to ensure an accurate calibration, 

each combination of filters and slitwidth used for taking data must 

be calibrated separately. The logbook entry and information coded on 

the magnetic tape record of each scan must relate the exact time that 

a scan with a particular combination was taken. The largest cam, 

yielding the greatest change in grating angle, is generally used 

during calibrations to simplify the procedure by allowing a larger 

wavelength region to be scanned at one time.
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Using spectral lamps, a wavelength calibration is performed on the 

spectrometers in order to identify the important features and scale 

the wavelength axis of the data display. The wavelength calibration 

also provides a check on the optical alignment of the spectrometers as 

indicated by the instrumental halfwidths of the monitered emission 

lines. For this calibration, a lamp containing one or more elements 

that emit bright, sharp and well documented emission lines is used.

The lamp must have at least two well-spaced features in the wavelength 

region being calibrated (or in another detectable order of the wave­

length region) in order to scale the wavelength axis. For this reason, 

the particular lamp used depends on the wavelength region under study.

A neon lamp was used to calibrate both the one-meter spectrometer 

around 3466 A and the 5200 A region on the half-meter spectrometer.

Neon has several strong emission lines around 3466 A which are detected 

in the third order by the one-meter spectrometer. These same lines 

may be detected around 5200 A in the second order on the half-meter 

spectrometer and used for the 5200 A calibration. This does require 

the removal of the order sorting filters on the half-meter spectro­

meter, but it does not affect the wavelength calibration. As with the 

intensity calibrations a log entry is made to document the wavelengths 

calibrated, type of lamp used and the UT time the scans were taken.

3.4 Absolute Intensity Calibration

The absolute intensity of an emission is determined by comparing 

its signal to that of a source of known spectral brightness. To 

accomplish this, a factory-calibrated lamp is used. The quartz iodide
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lamp used in these calibrations had its irradiance versus wavelength 

characteristics measured at the factory when it was produced in 1970. 

This differential irradiance was measured in micro-watts/cm2/10A 

(erg/cm2/A/sec) at a distance of 40 cm and operating at a lamp 

curent of 6.5 amperes. This information was provided by the manufac­

turers in the form of a graph of irradiance versus wavelength, over a 

wavelength region from 2600 A to 26000 A. The irradiance must be 

converted to units of surface brightness (rayleighs, R) since, for cal­

ibration purposes, we need surface brightness rather than irradiance.

We can make use of the basic relationship between energy and wavelength 

to relate total energy, E, of light at a wavelength x to the number of 

photons, N, of this light:

N = EX/hc photons/cm2/sec/A (3-1)

where h is Planck's constant and c is the velocity of light in a 

vacuum. If we allow these N photons to be uniformly scattered from 

a lambertian surface into a hemisphere, then the number of photons 

scattered by the surface in any direction is:

N' = E\cos6/hcir photons/cm2/sec/sterad/A (3-2)

Where 6 is the angle between the incident light and the screen normal. 

The rayleigh is 10®/4n photons/cm2/sec/sterad so the screen 

brightness is:

SB = 4ttN'c o s6/106 = 4EAcos6/10®hc R/A (3-3)

Since the intensity varies as the inverse of the distance squared and 

E is given in micro-watts/cm2/10A with X given in Angstroms, the 

brightness of the screen placed at a distance d (in cm) from the lamp
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becomes:

SB = 201.2 EX(40/d)2cos5 R/A (3-4)

Where d is the distance from the light source to the screen, in cm.

This screen brightness must be multiplied by the instrumental 

halfwidth (HW) at the desired wavelength in order to express the 

intensity in rayleighs. A determination of the instrumental halfwidth 

at the 3466 A, 3914 A and 5200 A wavelengths was made using the 

wavelength calibration from day 361, 1979. The halfwidths were 

measured directly from the neon emission lines on the pulse count 

versus wavelength display. A value of 5.85 ±0.15 A was determined for 

the halfwidth of the 5200 A emission on the half-meter spectrometer. 

This agreed very well with the calculated resolution at this wavelength 

(5.88 A) for a half meter focal length spectrometer employing a 

1200 groove per mm grating and a 1 mm slitwidth. The halfwidth of 

the 3466 A emission was measured to be 2.20 ±0.15 A on the one-meter 

spectrometer. This is slightly larger than the theoretical dispersion 

of 1.95 A/mm. The bandpass for the photometers is the measured 

halfwidth of the interference filter's transmission. The 6300 A photo­

meter had a halfwidth of 15.4 A and the 4278 A photometer had a 15.9 A 

bandpass.

The field calibration signal is recorded in units of pulse counts 

for a known screen brightness, determined in rayleighs. A calibration 

factor is obtained by dividing the intensity in rayleighs by the 

number of pulse counts measured. This value is typically different 

for every emission being observed.
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The error associated with the calibration factor is the result of

inaccuracies in several measured quantities (details in Appendix):

1) The error in the quartz iodide lamp's irradiance versus 

wavelength calibration has been checked against an N.B.S. 

calibrated light source and varies by no more than ±5% 

(Romick,G., private communication).

2) The error in the distance measurement between the lamp and 

the lambertian screen of ±0.1 m results in less than ±2% 

error for d^ in all cases.

3) The inaccuracy in the measurements of the angle, <5, be­

tween the screen normal and the direction of the incident 

light is less than ±5 degrees. Allowing for this variation 

in screen angle the associated value for cos6 is accurate 

within ±17% for the one-meter spectrometer, ±4% for the 

one-half meter spectrometer and within ±9% for the MSP.

4) The signal pulses from the PMT occur randomly so the stat­

istics for the instrumental error, AC (in percent), is:

AC = ±100x(P)1/2/P 

Where P is the number of pulse counts in the calibration.

For the 3466 A emission the pulse count in accurate within 

±12%, within ±9% for 3914 A and it is within ±1.5% for 

the 5200 A and 6300 A emissions.

5) The error of the measured instrumental halfwidths is less 

than ±9% for the one-meter spectrometer, less than ±4% 

for the half-meter spectrometer and within ±2% for the
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6300 A photometer.

6) The error involved in the correction for atmospheric extinct­

ion (see section 3.5) is within ±15% for the value of the 

correction factor.

Using standard error propagation techniques for independant errors 

(Beers, 1953), the total accuracy of the calibration values were 

determined to be ±26% for the one-meter spectrometer, ±17% for the 

half-meter spectrometer and for the 6300 A photometer the error is 

within ±18%.

The calibration for the 3466 A and 3914 A emissions was made on 

day 329, 1979, at a distance of 18.4 m, with 6= 62.5 degrees. These 

data resulted in calibration factors of 2.4 ±0.6 R/count for 3466 A 

and 1.9 ±0.5 R/count for the 3914 A emission, including a correction 

for atmospheric attenuation (section 3.5). During the field calibra­

tions of the 1979-1980 season, the 5200 A region with the particular 

filter combination used in the observations was not calibrated. 

Fortunately measurements of this same wavelength region with the same 

filter combination, at the same slitwidth were made during the 

1978-1979 observing season. It is reasonable to assume that the 

instrument did not degrade appreciably in one year of service and this 

is borne out by comparing spectra from both seasons. Therefore the 

calibration was taken from day 003, 1979, at a distance of 20.75 m, 

with a screen angle of 25 degrees. The calibration factor for the 

5200 A emission was determined to be 1.5 ±0.3 R/count.

Scattered background light, such as scattered moonlight, made
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intensity measurements for the photometer data troublesome by increas­

ing the difficulty of determining a proper baseline for the emissions. 

The 4278 A photometer data was particularly error-prone, being much 

weaker than the 6300 A emission. For this reason the 3914 A emission 

was used to determine the amount of 4278 A emission present. These 

two emissions may be related to each other by their Frank-Condon 

factors, both being emitted by the same electronic and vibrational 

excited state of N£+ ; the ratio of the Frank-Condon factors for 

3914 A and 4278 A is 0.305. Including this result, the calibration 

factor for 4278 A, in terms of 3914 A counts, is 0.59 ±0.15 R/count.

The photometer calibration for 6300 A was taken on day 329, 1979, 

at a distance of 26.4 m with a screen angle, 6 ,of 45 degrees. The 

calibration is accomplished in the same way as for the spectrometer 

data except that a correction is required due to the large intensity 

of the calibration 6300 A emission. The pulse-amplifier-discriminator 

(PAD) experiences a pulse-pileup when the count rate exceeds 200,000 

counts/sec and as a result, the device becomes nonlinear. The PAD 

has been calibrated in the laboratory by monitoring both the analog 

output of the PMT using a pi coammeter and digital pulses going into 

the PAD to account for this behavior at high count rates. This cal­

ibration curve was used to correct the high count rate from the 6300 A 

photometer during the absolute intensity calibration procedure. The 

operation of the PAD under normal conditions is linear so this cor­

rection is only necessary for this calibration. A calibration factor 

of 0.23 ±0.04 R/count was found for the 6300 A photometer.
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3.5 Atmospheric Extinction

As any emission travels from its origin to the detector, some of 

it is absorbed leaving only a fraction of the initial intensity (Ig) 

to reach the instrument. The intensity of an emission passing through 

an absorbing gas layer can be expressed as:

I = Igexp[-khsece] (3-5)

So the original emission can be expressed;

Io = I exp[khsec&] (3-6)

where k is the extinction constant due to absorption and scattering, 

h is the thickness of the absorbing layer, 6 is the zenith angle 

and I is the intensity as seen by the instrument. Values for kh, 

based on the 1962 U.S. Standard Clear Atmosphere, can be found in the 

Handbook of Geophysics and Space Environments (1965) as total optical 

thickness parameters.

The 3466 A and 5200 A emissions received by the instruments 

orginate at altitudes exceeding 100 km. Nearly all of the absorption 

of these emissions occur in the troposphere so, to a very good approx­

imation, all of the emissions can be assumed to pass through the entire 

absorbing layer. In this way, a correction factor can be determined 

to remove the effects of absorption. In this study it has been assumed 

that the dependence of the absorption of an emission on e is negligible 

due to the increase in signal from resonant scattering. This assump­

tion can be checked by comparing the 5200 A to 3466 A ratios observed 

at the different values of 6 . With this assumption, the correction
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factor is:

CF = exp[kh] (3-7)

The actual values for kh were determined by linearly interpolating the 

published tabular values mentioned above. This results in a correc­

tion factor of 1.950 for the 3466 A emission, 1.135 for the 5200 A 

emission, 1.480 for the 3914 A emission and 1.059 for the 6300 A emis­

sion. These factors have been incorporated into the absolute 

intensity calibration values presented in section 3.4.

3.6 Data Analysis

The auroral optical measurements made in Longyearbyen are stored 

on magnetic tapes. The spectroscopic data of the relatively weak

[NI] 3466 A and 5200 A emissions were played back from the magnetic

tape into the computer for analysis. In an effort to improve the 

signal-to-noise ratio of the data, individual scans were summed for 

15 minute intervals. For the most part, the auroral forms observed 

were relatively stable over this time period with some exceptions

noted below. A typical sum over a 15 minute interval covered 28 scans

of the one-meter spectrometer and 65 scans of the half-meter 

spectrometer.

Not all of the collected data accurately describes the variations 

of the 3466 A and 5200 A emissions. The 3466 A ultra-violet (UV) 

doublet is very strongly absorbed by any haze or clouds while the 

5200 A emission is only mildly affected. For this reason data taken 

when any haze or clouds were present must be rejected to avoid an 

artificially high 5200 A to 3466 A emission ratio. Such points
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were identified in the all-sky camera data and logbook entries during 

the observing periods. A second source of error in determining the 

5200 A to 3466 A ratio is the radiative lifetime of the 5200 A emis­

sion which is much longer than that of the 3466 A emission. The 

measurements rely on the assumption of a steady state which is not 

attained during a rapidly (faster than the effective lifetime of 

N I [ ^ D ,2p]) changing particle flux. As a result, the intensity build­

up of the 5200 A emission is slower than the 3466 A emission, yeilding 

an artificially low 5200 A to 3466 A intensity ratio. By checking the 

15 minute sum of scans for a few individual scans that are much more 

intense than the rest, these points may be singled out and eliminated. 

Cloud coverage during observation periods was determined by visual 

search of the all sky camera films. However it was often questionable 

whether any thin, subvisual haze was present or not, or if a 

moderately rapid excitation occurred. If a clear distinction could 

not be made, the questionable points were not removed in an effort to 

keep the data as unbiased as possible.

The raw data taken from magnetic tape is displayed graphically as 

pulse counts versus wavelength for the spectrometers and pulse counts 

versus elevation for the photometers. The intensity of each emission 

feature on the graph is scaled in counts per inch of chart. The 

scaling factor, YSC in Fig. 2.5, 2.6 and 2.7, multiplied by the height 

of the emission feature on the chart yields the number of counts 

associated with that emission. Alternatively, the total number of 

counts associated with a particular emission feature may be obtained
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from a computer readout. In order to measure the intensity of an 

emission above the background, a baseline must be drawn to subtract 

any background light present. For strong emissions with large signal- 

to-noise ratios this is not necessary. During quiet periods, however 

the signal-to-noise ratio can approach unity on the spectrometer 

output so the choice of baselines may effect the intensity measurement 

by as much as 20%. Particular care must be exercised if the emission 

occurs on top of a background auroral emission which may, or may not 

be present, depending on auroral conditions. The effect is pronounced 

in the 3466 A data during quiet periods where scattered light is 

present. Determining a baseline for the photometer data is not 

difficult for bright arcs located near the zenith but broad bands near 

the horizon may cause problems. If scattered sunlight is strong, an 

effective baseline is difficult to determine as it can blend in with 

any broad emissions near the horizon. The error in the photometer 

data is believed to be less than 50% even under poor conditions.

The intensities of the spectrometer and photometers are correlated 

by taking the photometer's intensity value at the same elevation at 

which the spectrometers are set. This is not valid at all times since 

the spectrometer does not always view the magnetic meridian. Each 

graph of a 15 minute sum produces one intensity measurement, a data 

point. Approximately 200 such data points were taken for each of the 

3466 A, 5200 A, 4278 A and 6300 A emissions.

The raw data were plotted as the intensities of 5200 A versus 

3466 A emissions and a least squares linear regression was used to
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compute a best fit straight line. A plot of the 5200 A versus 3466 A 

intensities utilizing all the available data points is shown in Figure 

3.1. The intensities are expressed in rayleighs. The best fit line 

has a slope (the 5200 A to 3466 A ratio) of 1.62, the y-intercept is 

4.3 and the correlation coeficient is 0.920 (±1 is a perfect fit).

The non-zero y-intercept seems to indicate that a significant amount of 

5200 A radiation is present when no 3466 A light is produced. After 

removing data points identified as measurements taken under cloudy or 

non-equillibrium conditions, the reduced data was replotted (see 

Figure 3.2). The scatter is reduced considerably but the slope of the 

best fit line does not change radically, now having a value of 1.84.

The y-intercept does change significantly to a value of -0.2 and the 

correlation coeficient has improved to a value of 0.975. A calculation 

of the root-mean-square (RMS) deviation of the reduced data was under­

taken to estimate the accuracy of the 5200 A to 3466 A intensity ratio 

determined above. An RMS deviation of ±0.40 was calculated, making 

the ratio 1.84 ±0.40. The zero point 5200 A off-set is no longer 

apparent in the data (within the error), indicating that the two 

excited states are produced by the same primary source in the aurora.

The intensities of the 6300 A and 4278 A emissions were taken in 

an effort to provide some information about the characteristic particle 

energies during the observations. The spectral energy distribution of 

primary auroral electrons is frequently observed to have a Maxwellian 

functional form (Rees and Luckey, 1974):

N(E)dE = N0Eexp(-E/o)dE electron cm"2 sec"* eV"1
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NI[2P+4S] 3465 A (R)

Figure 3.1 A plot of the raw 5200 A versus 3466 A data. The slope 

of the best fitting line is 1.62 and the line intersects 

the 5200 A axis at 4.3 R.
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NI[2P-*-4S] 3466 A (R)

Figure 3.2 A plot of the reduced 5200 A versus 3466 A data. The 

slope of the best fitting line is 1.84 and the line 

intersects the 5200 A axis at -0.2 R.
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where Nq is the total number of electrons, E is the energy of the 

electron and a is the characteristic energy of the Maxwellian, occuring 

at the peak of the distribution curve. Observing 6300 A and 4278 A 

emissions, Rees and Lucky (1974) related their ratio to the character­

istic energy a.

The data were plotted as 6300 A versus 4278 A intensities (see 

Figure 3.3) in order to use the results of Rees and Lucky to estimate 

the range of characteristic energies of the primary particles producing 

the observed emissions. Most of the night-time data were from auroral­

ly very quiet periods so no reliable values resulted. Several trends 

were apparent in the analysis of the day-time data points however.

The inferred characteristic energies of the precipitating electrons 

ranged from less than 0.5 keV up to about 2.5 keV. Typical night-time 

auroras have characteristic energies of about 5 keV. When the upper 

atmosphere is sun-lit, part of the 4278 A contribution is due to 

resonant scattering so a is actually over-estimated. This is because 

Rees and Lucky's results are only valid for electron impact sources of 

4278 A and 6300 A emissions. The higher characteristic energies ap­

peared to be associated with bright, distinct arcs while the lower 

energies tended to be associated with the very broad auroral features. 

Comparison of the 5200 A to 3466 A ratio with the 6300 A to 4278 A 

ratio on a point-by-point basis indicates a weak positive dependence 

of the [NI] ratio on the characteristic particle energy, but the varia­

tion was within the error bars so no valid conclusion could be made.

As previously mentioned, the 5198.5 A and 5200.7 A emissions that
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Figure 3.3 A plot of 6300 A versus 4278 A data points, made in

order to estimate the range of characteristic energies 

in the auroras observed.
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make up the 5200 A emission has been found to vary in some high 

altitude auroras (Sivjee et al, 1981). The 5198.5 A to 5200.7 A ratio 

ranges from 1.56, for night-side auroras, to 1.20 during some day-side 

auroras. For comparison purposes, it is useful to identify what the 

predominant ratio is in the observed data. By adding two triangle 

functions spaced 2.2 A apart, with the same halfwidth as the half­

meter spectrometer (5.85 A), and comparing the resulting halfwidth 

with several measured halfwidths of the data, most of the data appear 

to have 5198.5 A to 5200.7 A ratios of 1.6 ±0.2. This would be 

consistent with the normal night-side variety and should be directly 

comparable to most other auroral studies.
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CHAPTER 4 

ATOMIC NITROGEN IN THE AURORA

4.1 Modeling the Excited States of Atomic Nitrogen

The main objective of the measurements presented in Chapter 3 is

to provide a comparison for model calculations which derive population 

rates of NIC^D] and NI[2p] in the aurora. The need for these model 

calculations arises from the nature of the electronic transitions 

which lead to the 3466 A and 5200 A emissions.

All optical emissions are due to an excited species undergoing 

either permitted or forbidden transitions to lower energy states. 

Permitted transitions occur in very short periods of time (about 

10"8 seconds) so the effects of collisional deactivation in the 

tenuous upper atmosphere may be neglected. In these transitions the 

intensity (I) of the emission is directly proportional to the popula­

tion of the excited state:

Iij = [X(i)]A(i,j) (4-1)

Where [X(i)] is the concentration of species X and A(i,j) is the 

Einstein transition probability from state i to state j.

On the other hand, if the transition probability (sec-*) of an 

excited energy state is comparable to, or less than, the local colli­

sion frequency, the above relation must be modified to include

quenching effects. These depend on both the quenching rate and the

population of the quenching agent and neither of these quantities are 

well known. In addition, the production rates of the excited states

46
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for various means of production must be taken into account. Modeling, 

therefore, involves the comparison of a number of probable situations 

in an attempt to fit the experimental data. While intricate theoretic­

al modeling is beyond the scope of this thesis project, an attempt 

will be made to review the essential elements of such a model. The 

results of measurements in Chapter 3 will be compared and contrasted 

with theoretical calculations reported in the literature in an attempt 

to determine what improvements are necessary to reconcile the theory 

with the measurements.

4.2 Atomic Nitrogen in the Auroral Atmosphere

Precipitating electrons in the aurora interact with molecular 

nitrogen, N2, through three major processes which lead to the produc­

tion of atomic nitrogen.

Auroral electrons produce atomic nitrogen by ionizing N2 (equation 

4-2), followed by a dissociative recombination reaction (equation 

4-3), (Hyman et al, 1976):

N2 + e N2+ + 2e (4-2)

N2+ + e + N + N (4-3)

Reaction 4-3, is exothermic and releases 5.8 eV in excess energy.

This excess energy is sufficient to produce NI both in the [2p] and 

[2d] states. Presently however, the relative amounts of NI atoms pro­

duced in the ^S, [^D] and [2p] states through this process have not 

been determined (Rees, 1975). N2+ reacts with 0 also, producing N

and N0+. N0+ then dissociativly recombines to form 0 and N:

N2+ + 0 ->• N0+ + N (4-4)
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N0+ + e 0 + N (4-5)

These two reactions do not provide enough excess energy to form NI[2P] 

but do form NI(^S) and NI[2q] . The relative abundances of NI(2S) 

and NI[2D] due to these reactions are still unknown (Hyman et al,

1976; Torr et al, 1976).

The second process for atomic nitrogen formation in auroras is 

through dissociative ionization of N2:

N2 + e -»• N+ + N + 2e (4-6)

Atomic nitrogen can be formed in any of the ^S, [2g] or [2p] states

in this reaction. Recent rocket observations of [NI] 3466 A auroral 

emission, combined with other laboratory measurements and model cal­

culations yielded values of 0.135, 0.165, 0.300 and 0.400, respective­

ly, for the relative abundances of N+, NI[2P], NI[2D], and NI(^S)

(Zipf et al, 1980). The N+ ion formed in reaction 4-6 then reacts 

with 02 to form N0+ :

N+ + 02 N0+ + 0 (4-7)

The N0+ dissociativly recombines with e to form NI(^S) and NI[2D] 

through reaction 4-5.

The third process utilizes the precipitating electron energy to 

form atomic nitrogen through the dissociation of Ng:

N2 + e > N  + N + e (4-8)

This reaction also produces NI(^S), NI[2D] and NI[2P] and was in­

cluded in the study by Zipf et al (1980).

Almost half of the precipitating electron energy in auroras is 

expended in the above reactions and ultimately produces odd nitrogen
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species. Nearly all of the remaining auroral electron energy is used 

up ionizing O2 and 0. There are some reactions involving N2 and the 

ions of molecular and atomic oxygen that do produce atomic nitrogen:

0+ + N2 + N0+ + NI(4S) (4-9)

The N0+ dissociatively recombines through reaction 4-5 to produce 

NI(4S) and NI[^D]. 02+ can also interact with N2 to form N0+ and NO:

N2 + 02+ + N0+ + NO (4-10)

The N0+ then produces NI(4S) and NI[^D] through reaction 4-5. Several 

of the major reactions which produce and depopulate Nlt^D] and NI[2p] 

are presented in Table 4.1 and Table 4.2, respectively.

Not all of the NI[^D] and NI[2p] produced actually radiates excess 

electronic energy. Most of this energy is lost when the NI[^D] and 

NI[^P] combine with O2 and NO, forming new species, or interacting 

with 0 converting the excess energy into the translational energy of 

both 0 and N. The major quenching reactions for NI[2d] are listed in 

Table 4.1 and for NI[^P] in Table 4.2. The two major quenchers for 

both species are O2 and 0. The most important quencher of NI[^D] 

depends on the altitude in the atmosphere. Q2 is the dominant quench­

ing agent for altitudes up to about 200 km but 0 becomes increasingly 

important with altitude, the concentration of 0 exceeding that of O2 

above 120 km. A significant portion of the 5200 A emission is produced 

above 120 km where atomic oxygen is an increasingly important quenching 

agent. The quenching effect of 0 on NI[2d] is about equal to the 

effect produced by O2 at about 200 km. The major quenching agent 

for NI[2p] has been found to be atomic oxygen (Torr et al, 1976;
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TABLE 4-1

Production and loss mechanisms for

5200 A doublet.

Production Mechanisms 

R1 N2 + e > N + NI[2D] + e

R2 N2 + e + N+ + NI[2D] + 2e

R3 N2+ + 0 ♦ N0+ + NI[2D]

R4 N2+ + e ♦ N + NI[2D]

R5 N0+ + e ♦ NI[2D] + 0

R6 NI[2P] + 0 + NI[2D] + 0

R7 NI[2P] + e + NI[2D] + e

R8 NI[2P] ♦ NI[2D] + hv

De-exitation Mechanisms

J
O I—
»

NI[2D] + 0 2 ■>■ NO +  0

Q 2 NI[2D] + 0  + N + 0

Q3 NI[2D] + e + N + e

Q4 NI[2D] N + hv

the NI[2D] state, which emits the

Rate Constants

6.0 xlO"*2 cm2/sec

5.0 xl0“13 cm2/sec

6.0 xl0"10[Te/300]1/2
cm2/sec

1.06 xl0_5 sec"l
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TABLE 4-2

Production and loss mechanisms for the NI[2P] state, which produces 

the 3466 A emission.

Production Mechanisms 

R9 N2 + e NI[2P] + N + e 

RIO N2++ e + NI[2P] + N 

Rll N2 + e + N+ + NI[2P] + 2e 

R12 N2 + NO -► NI[2P] + NO

De-exitation Mechanisms Rate Constants

Q5 NI[2p] + 0 + NI[4S,2d] + 0 1.2 xlO"H cm2/sec

Q6 NI[2P] + 02 NO + 0 2.6 xlO“*2 cm2/sec

Q7 NI[2P] + NO ♦ N2 + 0 1.8 xlO"^ cm2/sec

Q8 NI[2P] N(4S) + hv 5.4 xl0"3 sec"!

Q9 NI[2p] ♦ NI[2D] + hv 7.9 xlO“2 sec-*

Q10 NI[2P] + e ♦ NI[4S,2D] + e 6.0 xl0'10[Te/300]1/2
cm2/sec
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Gerard and Harang, 1980). O 2 also contributes significantly to the 

quenching of the NI[^P] state below 120 km (Zipf et al, 1980).

4.3 Theoretical Considerations

All of the above production and loss mechanisms must be considered

in estimating the ratio of NI[^D] to NI[^P] and relating the results

to observations i.e. the ratio of [NI] 5200 A to [NI] 3466 A. The

photon emission rate per unit volume for a species X, undergoing a

transition from energy level n to m, may be expressed:

Jv(X,n,m) = [X(n)] x A(n,m) (4-11)

where [X(n)] is the concentration of species X in the state n and

A(n,m) is the Einstein transition probability for this transition.

The time rate-of-change of the concentration of a state n is:

■$t{[X(n)]} = production - losses

= J(X,n)-[X(n)]IjA(n,j)-[X(n)]IiQi[Hi] (4-12)

where J(X,n) is the production rate of state n, [X(n)] is the

concentration of species X in state n, Qi is the quenching coeficient

for species i and H is the concentration of the i^h quenching

species. For a steady state condition, -$^[X(n)] = 0:

[X,n] = J(X,n)/{JjA(n,j)+XiQi[Hi]} (4-13)

By substituting this result into equation 4-11 we find:

Jv(X,n,m) - Afn.mlxJ(X.n) (4-14)
i j A i n J H i Q i M

We can now determine the emission rate per unit volume of any state 

n, assuming the related rate coeficients are known.

Including all of the terms for the source and loss equations
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listed in Table 4-1 and 4-2 results in an equation similiar to 4-14 

for each of the emissions. In practice a computer is necessary to 

effectively handle these equations. By only including the most 

important reactions, these equations may be simplified for most 

applications. The important loss reactions for NI[2d] are Ql, Q2 

and Q4 so the volume emission rate for the 5200 A emission may be 

expressed:

Jv(5200) l.fixlp-5 x ,1(NI[2D1) (4-15)
1.6X10'3 + Q1[02]’+ Q2C0]

Where 0(NI[^D]) is the total production rate of the [^D] state and

Ql and Q2 are the rate constants associated with reactions Ql and Q2,

respectively.

The significant loss reactions for the [2p] state are Q5, Q6 , Q8 

and Q9 so the volume emission rate is:

Jv(3466) g Qq x J(NI[2P]) (4-16)
Q8 + Qg + Q5L0J + Q6L02]

Where Q5 and Q5 are the quenching coeficients associated with reac­

tions Q5 and Q6, respectively and Qg and Qg are the Einstein transi­

tion probablities for transitions from the [2p] state. Equation 3-12 

depends on the concentrations of all the reactants involved and these

concentrations change with altitude. As a result the above equations

apply to only a specified altitude so the emission rate must be deter­

mined at every altitude in order to produce an altitude profile of the 

particular emission. This is usually expressed as a graph of altitude 

versus volume emission rate.

The spectrometers and photometers measure the light emitted by a
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column of air extending away from the instrument to infinity.

Normally, almost all of the light reaching the instrument is due to 

scattering or emission by the atmosphere so the column is normally 

approximated by the height from ground level to the top of the 

emitting region. The volume emission rate must be integrated along 

the height of the air column:

I = J”Jv(X,n,m)dh (4-17)

In practice this integration must be performed numerically in the form 

of a discrete sum by dividing the atmosphere into many thin layers,

Ah, and summing over all layers:

I = IiJi(X,n,m)Ah (4-18)

If all of the important production and loss mechanisms for the emis­

sion are accounted for, the light emitted due to a certain exitation 

can be calculated.

4.4 Model Calculations

Too few experimental studies of the odd nitrogen species have been 

accomplished to date, leaving many questions unanswered. Attacking 

these questions by using a theoretical approach, mathematically 

modeling the aurora, is adding much to our understanding of the odd 

nitrogen chemistry in auroras.

A significant model calculation involving the entire chemistry of 

the upper atmosphere was performed by Jones and Rees (Jones and Rees, 

1973; Rees and Jones, 1973). This extensive model also included 

calculations for atomic nitrogen and the production rates of NI[^D] 

and NI[2p]. The major sources of these states were assumed to be
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dissociative ionization of N2, equation 4-6, dissociative recombination

of N2+ , equation 4-3, and N0+ , equation 4-5. Also included was the

ion-atom interchange of N2+ with 0, equation 4-4. None of the relative 

proportions of the excited atomic nitrogen states were known to Rees 

and Jones so reasonable values were assumed: equal production of all

three states for equations 4-6 and 4-3, 75% of the products formed in

NI[2D] for equation 4-5, for equation 4-4, 25% formed in NI[^D] and 

75% formed in NI(^S). The production of N was related to the product­

ion of N2+ , yielding production rates:

J(2P) = .25x.33S(N2+ )+.33x2[N2+ ][e]a2

J(2D) = .25x.33S(N2+ )+.33x2[N2+][e]a2 
+.25[N2 ][0]y4+.33x2[N2 ][e]a3 
+ 10,400 A (2P +• 2D)

The rate constants used by Rees and Jones were: a2=2.9xl0"7 (300/Te) ^ 2, 

c»3=4.1xl0"7(298/Te) and y 4=1*1x 10-10 cm2/sec. The volume emission 

rates were determined to be:

0,(3466) , 5.4X10-3 » J(NIC2P]) OT-3sec-l 
0.0844 + QR

Jv(5200) = .L QtolQ:.5 x.JCljir.2DH.. an^sec’1
1.06xl0_b + QR 

where the quenching rate was given by:

QR = [02]e2+[02+ ]y15+[N0]34 sec-1 

Where P2=5.0xl0”^2 , yi6“1*8x10”^  and p4=2.2xl0"^ cm2/sec.

Using the altitude profiles of steady state volume production 

rates of [NI] 3466 A and [NI] 5200 A calculated by Rees and Jones 

(1973), the total emission intensity, as viewed from the ground, may 

be determined by numerically integrating the emission rates at the
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various altitudes. Using the altitude profiles calculated by Rees and 

Jones, the integrated intensities of the 5200 A and 3466 A emissions 

were determined and their ratio was found to be 1.4. This value com­

pares quite favorably with the value of 1.8 ±0.4 found in this stjdy. 

However, atomic oxygen was not included as a quenching agent by Rees 

and Jones (1973), raising some doubt about the validity of the cal­

culations. It has been found that in the midlatitude F-region iono­

sphere, atomic oxygen is a significant quencher of NI[2q] (Torr et 

al, 1976). The major quenching species of NI[2p] has since been 

found to be also atomic oxygen (Golde and Thrusch, 1972; Young and 

Dunn, 1975; Zipf et al, 1980) for altitudes above 120 km.

A model of odd nitrogen in the thermosphere developed by Oran et 

al (1975), dealt only with NI(^S), NI[2d] and NO. This model also 

assumes values for the production ratios of NI(^S) and NI[^D] and 

predicts that NI[^D] should be preferentially quenched by O2 over 

0. This does appear to be the case below 200 km but is questionable 

at higher altitudes.

Rees and Roble (1979) developed an auroral substorm model 

attempting to reproduce anomalous NO concentrations reported earlier 

(Zipf et al, 1970). The quantity called NI[^D] in this study was 

actually the sum of both NI[^D] and NI[2p], the two states not being 

differentiated under the assumption that they act the same in the 

over-all chemistry. The calculations predict the time varying concen­

trations of NI(As), NI[2d], and NO during a periodic electron precipi­

tation event. The fractions of NI(^S), [^D] and [^P] produced by
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the dissociation of N2 had not been determined so three cases were 

considered:

1) 1/2 NI[2D] + 1/2 NI(4S)

2) 3/4 NI[2D] + 1/4 NI(4S)

3) 1/4 NI[2D] + 3/4 NI(4S)

Case 1) predicted a small enhancement of both NO and NI(4S). Case 2)

predicted a large enhancement of NO at the expense of NI(4S) and 

case 3) predicted just the opposite of case 2). A decrease in the 

concentration of NO is just the opposite of what had been observed so 

case 3) seems unlikely and the enhancement of NO in case 1) is not as 

large as has been observed. Although case 2) seems the most likely, 

perhaps the actual value lies somewhere between cases 1) and 2). The 

fractions determined by Zipf et al (1980), for the dissociative 

ionization of N2 correspond to a value somewhere between cases 1) and

2), indicating that this is a strong possibility.

According to the previous studies, already cited, the most impor­

tant reaction for the production of NI[2P] in the aurora is believed 

to be the dissociation of N2 (reaction R9) by electron impact. This 

reaction is also a major source of NI[2D] and since this state is 

also produced by the NI [2P + 2D] transition (cascading) it would be 

reasonable to assume that more NI[2D] than NI[2P] should be produced. 

While the dissociation of N2 is thought to produce a large percentage 

(80-90%) of NI[2p] atoms, it contributes only about a third of the 

NI[2D] atoms. The dissociative recombination of N0+ (reaction R5) 

is believed to contribute about one-third of the NI[2D] atoms in the
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aurora and the ion-atom interchange of N2+ with 0 (reaction R3) is 

thought to provide almost as many. The production mechanisms for 

NI[2D] appear to have very high efficiencies; 80% or better for 

reactions Rl, R2 and R5 with reaction R3 thought to be almost 100% 

efficient (Rusch and Gerard, 1980; Oran et al, 1975).

Laboratory studies indicate a larger cross section for the ioniza­

tion of N2 than dissociation by electron impact. The dissociation of 

N2 produces NI in both the [2D] and [2P] states through reactions Rl, 

R2, R9 and Rll while the ionization of N2 produces only the [2D] state, 

through reactions R3 and R4 and studies of these two reactions indicate 

a large reaction rate. Consequently with more sources for NI[2D] 

than NI[2P] it would be expected that significantly more NI[2D] than 

NI[2P] would be produced in the aurora. A recent theoretical calculat­

ion of the 5200 A to 3466 A ratio by Rees (private communication,

1981) predicts a value of about 30 while the measurements of this 

study show a value of 1.8 ±0.4. The current measurements therefore 

indicate, either a much smaller population of NI[2D] than implied by 

the sources given in Table 4-1 or a larger population of NI[2P] than 

suggested by the sources listed in Table 4-2.

The relatively large discrepancy between the measurements and 

the most recent model predictions may be reconciled in two ways.

First, the NI[2D] yield from reaction R4 cannnot be measured directly 

because of the severe quenching effects of NI[2D]. It is possible 

that this reaction is not as efficient as is currently assumed, and 

consequently the model calculations over-estimate the NI[2D] popula-
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tion. Alternatively, if the accepted rates for the sources of NI[2D] 

are correct then additional sources of NI[2P] must be sought. A 

possible source of the NI[2P] state that has not been considered in 

any model calculations reported in the literature is the interaction 

of N2[A3zJ] with NI(4S):

N2[A3E+] + NI(4S) -v N2(X1zJ) + NI[2P] (4-21)

An analogous process between N2[A3i*] and OI(^P) has been suggested to 

account for the auroral 0I[2S 3p] 5577 A emission. It is plausible

that reaction 4-21 may be equally efficient in producing NI[2P].

Another possibility is the reaction of vibrationally excited N2+ with 

0 to produce N0+ and NI[2P] as suggested by Zipf et al (1980):

N2+* + 0 N0+ + NI[2P] (4-22)

Such reactions may explain why the 5200 A measurement of Rusch and 

Gerard (1980) required such high efficiencies for the sources of NI[2D] 

to be reconciled, through cascading from a larger than expected NI[2P] 

population.

In conclusion, the most important result of the research for this 

thesis project is to force a re-evaluation of the present understanding 

of the sources for NI[2D] and NI[2P] in high latitude, particle 

precipitation events.
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CHAPTER 5 

SUMMARY

The NI[^D] and NI[2p] excited electronic states of atomic nitrogen 

are created by electron impact in the aurora. This occurs through 

three major processes; 1) the dissociation of N2 producing both 

excited states directly, 2) the dissociative ionization of N2, which 

may produce both excited states directly and indirectly and 3) the 

ionization of N2 which generates both states indirectly through reac­

tions involving N2+ . Once produced, most of the atoms in the excited 

states are quenched by atomic and molecular oxygen. The NI atoms in 

the [^D] and [2p] states left unquenched relax radiatively, emitting 

5200 A and 3466 A photons. The absolute intensities of the emissions 

are functions of the populations of the excited states producing them. 

By simultaneously measuring these intensities, relations between the 

excited states, and the ground state, can be inferred. Again it should 

be stressed that the measurements of the 3466 A and 5200 A emissions 

in this study were not only taken at the same time but also from the 

same region of the auroral display.

Extensive simultaneous spectroscopic measurements of the auroral 

NI[2d + 4$] 5200 A and NI[2p -► 4s] 3466 A emissions show that the ratio 

of these two emissions is 1.84 ±0.40 in the aurora. Within the 

accuracy of the measurements reported here (±22%), this ratio is 

independent of the energy of the auroral particles precipitating into 

the atmosphere. The best fitting straight line of Figure 3.2 passes

60
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through the origin (within the experimental error) as would be 

expected, assuming electron impact is the major excitation source.

The electron energy spectrum in the aurora is broad enough that any 

precipitation producing NI[2d] should also produce NI[2p], through 

the reactions in Chapter 4. A comparison between Figures 3.1 and 3.2 

illustrates that the 5200 A to 3466 A intensity ratio is very sensitive 

to cloud cover.

The values of the 5200 A to 3466 A ratio derived from auroral 

models are quite diverse. The value of 1.45 determined from the model 

by Rees and Jones (1973) is comparable to the present findings, but 

this model did not include atomic oxygen as a quenching agent. A more 

recent calculation by Rees predicts a ratio of approximately 30. A 

value comparable with the value observed in the present study could 

possibly be arrived at if reaction R3 (Table 4.1) is not actually as 

efficient as has been assumed at producing NI[^D] or if another exci­

tation mechanism for NI[2p] exists and has not been taken into account 

in the models. In comparing the present experimental result with the 

current model calculations it becomes obvious that there are definite 

discrepancies which must be addressed. Our understanding of the auroral 

processes must be re-evaluated as far as the chemistry of atomic nitro­

gen is concerned and this could be greatly facilitated if more studies 

involving the excited states of atomic nitrogen were undertaken. 

Although progress is being made, there is still much to accomplish 

before an understanding of the odd nitrogen species and their processes 

in the aurora is achieved.
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APPENDIX 

ERROR CALCULATIONS

The accuracy of the various measured quantities refered to in 

the text were determined using standard procedures for the deter­

mination of non-systematic error (Beers, Y., 1953).

For a quantity t, with an associated variation of At, the 

range of error associated with the measurement (in percent) is:

R = x 100

So the quantity and it's associated error is; t ±R/2 %.

A sample calculation of the accuracy of the calibration factor 

for the 5200 A emission is as follows:

1) The distance d (see Figure A.l) enters the calculation in equation

3-4 as d^. Since d=20.75 ±0.10 meters, Ad=0.20 m.

DS =-2A{f x 100 = -2 0 ^ 5  x 100 = 1.93% « ±0.96%

2) The angle 6=25 ±5° and enters the calculation as coss so:

sc = •AcoH‘ x 100 88 ‘£0Scol'£j??3° x 100 = 8-w a ±4-1%
3) For c=4350 counts, the photon statistics shows a C=2(4350)1/2 so:

CT = -AS.x 100 = 2 L x 100 = 3.0% « ±1.5%

4) The halfwidth measurement was X=5.85 ±.20 A so AX=.40 and:

HE = J&jj-x 100 100 = 6.8% = ±3.4%

All the terms above are combined as products along with the 

accuracy of the calibration lamp measurement (Ic) and the correction 

factor for atmospheric extinction (CF) to form the calibration factor. 

The total accuracy of the calibration factor can be determined by
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LAMBERTIAN SCREEN

Figure A.l The setup for the absolute intensity calibrations.
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observing how the errors are propagated through the calculation.

This propagation can be shown to be:

TE = {(DS)2+(SC)2+(CT)2+(HE)2+(Ic )2+(CF)2}1/2 

So the total error (TE) in the 5200 A calibration factor calculation 

can be found to be:

T E ( 5 2 0 0  A )  = { ( 1 . 9 3 ) 2+ ( 8 . 1 ) 2+ ( 3 . 0 ) 2+ ( 6 . 8 ) 2+ ( 1 0 ) 2 + ( 3 0 ) 2 } 1 / 2  

= 33. 5% «  ±17%

Hence a calibration factor of 1.5 ±0.3 R/count.
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