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A b s t r a c t

We begin w ith an overview of the fluid mechanics governing ice flow. We review a 1985 

result due to  Balise and Raym ond giving exact solutions for a glaciologically-relevant Stokes 

problem. We extend this result by giving exact formulas for the pressure and for the basal 

stress. This leads to  a theorem  giving a necessary condition on the basal velocity of a 

gravity-induced flow in a rectangular geometry. We describe the finite element m ethod for 

solving the same problem  numerically. We present a concise im plem entation using FEniCS, 

a freely-available software package, and discuss the convergence of the numerical m ethod 

to  the exact solution. We describe how to  fix an error in a recent published model.
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C h a p te r  1 

I n t r o d u c t io n

The Stokes system  of partial differential equations models fluid flows where viscous effects 

dom inate. Examples include the flows of honey, lava, and glaciers as well as the movement 

of less viscous fluids through confined areas: blood flowing through capillaries and grit 

settling in engine oil. The purpose of this work is to  examine analytical and numerical 

strategies for solving the Stokes problem in a glaciological context.

Exact solutions are available only in special cases. A 1985 result due to  Balise and 

Raym ond gives exact solutions for transient, linear Stokes flow on a rectangle w ith periodic 

boundary conditions at the left and right sides, a free surface on top, and a sinusoidal 

imposed velocity a t the base [BR85]. We extend this result by considering a rb itrary  basal 

velocities and giving formulas for the pressure and basal shear stress.

The development of numerical simulations capable of approxim ating nonlinear (i.e. 

variable-viscosity) Stokes flow over realistic geometries is an active area of research in m ath­

ematics and glaciology. The linear problem is relevant because many algorithm s for the 

nonlinear problem repeatedly solve the linear one. We describe the use of finite elements 

in the solution of the linear problem and we present an im plem entation using the freely- 

available finite element software package FEniCS. We compare the approxim ations to  exact 

solutions.

The organization of this thesis is as follows.

In C hapter 2 we give an overview of elem entary fluid dynamics for glaciology. We 

introduce the tensors describing stress and strain  and we sta te  constitutive laws relating 

them . We then  derive the Stokes equations and we show how the biharm onic equation 

arises for the stream function th a t generates planar flows. We discuss boundary conditions 

and show what special form these conditions take in a rectangular geometry. We conclude 

with a working definition of Sobolev spaces.

In C hapter 3 we review and extend the results in [BR85]. The first five sections contain 

results th a t were sta ted  in th a t paper and also in the thesis [Joh92], although the equations 

appear different because we consider many Fourier term s instead of ju st one. The m aterial 

in the remaining sections is new. We provide analytical formulas for the pressure and basal 

stress and we give a necessary condition on the basal velocities th a t can be induced by
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gravity under the linear (Rayleigh) sliding law on a uniformly sloping bed.

C hapter 4 is an introduction to  the finite element m ethod in the context of a glaciological 

Stokes flow problem. Most tu torials on the finite element m ethod cover a simpler problem 

such as Poisson’s equation. This chapter addresses linear Stokes flow w ith a zero-stress 

surface boundary condition at an introductory level.

In Chapter 5 we present a concise im plem entation of the procedure discussed in C hapter 

4. We use the analytical solutions developed in C hapter 3 to  analyze the convergence of the 

numerical simulation. We also discuss and correct an error in a recent published numerical 

model [Jar08].
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C h a p te r  2 

P re lim in a r ie s

2.1 I n tr o d u c t io n

In this chapter we give an overview of several fundam ental topics in viscous fluid flow. 

In Section 2.2 we define the essential tensor quantities and discuss the equations th a t re­

late them . Section 2.3 contains the derivation of the Navier-Stokes and Stokes systems of 

partial differential equations for incompressible Newtonian fluids. In Section 2.4 we show 

how the Stokes problem can be reduced to  the biharm onic problem in two dimensions. 

Glaciologically-relevant boundary conditions for Stokes flow are considered in Section 2.5. 

In Section 2.6 we restate  these boundary conditions in the special case of a rectangular 

geometry, and then transla te  them  for the biharm onic problem. In Section 2.7 we briefly 

introduce Sobolev spaces, which are fundam ental to  the m odern theory of differential equa­

tions.

Three books [Wor09, Goo82, Ach90] were most helpful while I was learning the m aterial 

of sections 2.2 and 2.3. The first is a brief introduction, extremely well w ritten, striking 

a good balance between a m oderate pace and interesting observations and problems. The 

others are more comprehensive and I found it helpful to  read them  simultaneously, especially 

in their derivations of the Navier-Stokes equations. Another commonly cited reference, 

which I have not read, is [Bat00].

Many equations in vector calculus are greatly simplified by E instein’s notation for sums 

of products. If a1,a 2, ■ ■ ■ an and b1,b2, ■ ■ ■ ,bn are scalars then we write

T hat is, repetition of an index in a product implies sum m ation over th a t index. If a  is an 

n  x  n  m atrix  then aii =  a n  +  a22 +  ■ ■ ■ +  a nn =  Tr a. A vector-m atrix-vector product can 

be conveniently represented as aiaijbj  =  aab, and we avoid the bother of distinguishing row 

vectors from column vectors in the formulas.

n
(2 .1)

i=1

A generalization of the convention includes “products” w ith derivative operators. For
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example, the Divergence Theorem  can be w ritten  as either

f  ■ n  or (2.2)

This convention is very useful for vector and tensor integration by parts.

2.2 E le m e n ta ry  F lu id  D y n a m ic s

In this section we introduce the three most im portant tensors of elem entary fluid dynamics: 

stress, deviatoric stress, and rate of strain. We then discuss the consitutive laws th a t relate 

them . We will begin by studying the forces at work w ithin a moving fluid.

2 .2 .1  S tre s s , p re s s u re , a n d  d e v ia to r ic  s tr e s s

Suppose th a t a fluid occupies some open region Q C R3, and let P  be a point w ithin Q. 

Let n  be a unit vector at P  and let 5A  be an area element containing P  in the plane to 

which n  is normal. It may be helpful to  th ink of 5A  as a disk w ith center P . The fluid into 

which n  points exerts a force on 5A. The ratio  of th a t force to  the area of 5A  is called the 

stress and w ritten E (n ) . This quantity  depends on the point P  and the direction of n  but 

not on the area of 5A  if we assume th a t 5A  is sufficiently small ([Goo82], chapter 6). In 

the absence of viscous effects, the stress is in the direction of —n . Viscous fluids in m otion 

generally exert tangential stresses as well.

The m ap carrying the vector n  to  the vector S ( n )  is linear; such maps are called tensors. 

In Cartesian coordinates w ith respect to  an orthonorm al basis {e1, e 2, e 3}, tensors are 

conveniently represented by m atrices. Because we will use the Cartesian system exclusively, 

we identify all tensors w ith their matrices. We let a  be the m atrix  of the tensor n  ^  S (n ) :

a 11 a 12 a 13 n 1

S (n) =  a 2i a 22 a23 n 2 =  a ij n j . (2.3)

a 31 a 32 a 33 n 3

The m atrix  a  is called the Cauchy stress tensor or sometimes ju st the stress tensor ; it is a 

continuous function of the position P . The components of a  have physical meaning. The 

best way to  see this is by taking n  =  e i in (2.3); we see th a t the i-th  column of a  is the



5

stress on an area element w ith normal e i . We sta te  w ithout proof the useful fact th a t a  is 

a symm etric m atrix  ([Goo82], chapter 6).

We can now use the Cauchy stress tensor to  give a mechanical definition of pressure. 

For fluids a t rest there are no viscous effects and so the off-diagonal elements of a  vanish. 

Moreover, the m agnitude of S (n )  does not depend on the direction of n  and so the diagonal 

entries of a  are equal. We write a  =  —p i , where p is a scalar and I  is the identity m atrix. 

To generalize this to  moving fluids we define the pressure p as

Note th a t the trace of t  is aii +  dp =  0. This decomposition of a  as the sum of a trace-free 

part and a m ultiple of I  is unique. We say th a t t  is the deviatoric stress tensor because it 

induces volume-preserving shears and rotations. The pressure term  —p i  accounts for the 

isotropic stresses th a t induce dilation and compression in compressible fluids.

2 .2 .2  T h e  s t r a in  r a t e  te n s o r

We now abandon our discussion of stress and examine a tensor th a t describes the spatial 

variations in the velocity. Let u  be a velocity field. Then V u  is a tensor whose components 

are given by

- 1
(2.4)

where d is the dimension of the space (we take d =  3 for now). 

We now decompose the stress tensor additively by

a p i  +  t . (2.5)

(2.6)

We decompose V u  into symm etric and antisym m etric parts:

(2.7)

(2.8)
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The symm etric part e is called the strain rate tensor. The antisym m etric part £ is not 

needed in our discussion. Because e is real and symm etric it is diagonalizable, i.e. has 

real eigenvalues corresponding to  orthogonal eigenvectors. The eigenvalues quantify the 

variation of velocity of the fluid in the directions of the eigenvectors. One consequence is 

th a t the fluid is compressed or dilated according to  the sign of £«; if this vanishes then 

V ■ u  =  0 and we say th a t the fluid is incompressible.

2.2 .3  C o n s t i tu t iv e  law s

There is no universal law determ ining the deform ation rates of fluids under stress. Air, 

water, oil, syrup, blood, and ice all respond in different ways to  a given applied force. For 

each fluid we may a ttem pt to  model these reponses w ith an equation called a constitutive 

law relating t  to  e. For incompressible Newtonian fluids such as water, the constitutive law 

is a proportionality relation

t  =  2^e. (2.9)

and the proportionality constant ^  is called the viscosity of the fluid.

Glacier ice is a non-Newtonian fluid and requires a more complicated constitutive law. 

Its acceleration depends in a highly nonlinear way on the stress. It also depends on the 

size and orientation of the ice crystals, the presence of impurities, the tem perature, and 

the am ount of liquid water present. The effective viscosity defined by the elementwise ratio 

Tij /(2e.ij ) varies widely. A range of 1013 to  1017 Pa-sec is plausible for conditions on E arth  

(see figure 4.6 in [GB09]). A widely used model th a t corresponds well to  field observations 

is the generalized Glen's Law , which states th a t the viscosity of glacier ice is inversely 

proportional to  some power of the stress. T ha t is, the glacier ice flows more easily under 

high deviatoric stresses. To sta te  the law precisely, we define the scalars ||e|| and ||t | | by

(2.10)

then make the assum ption

||e|| =  A  | | t | |n , (2.11)

ij ij ij ij
1 1



7

and finally replace p, in (2.9) by the effective viscosity

(2.12)

=  1 A -1/n I|e||(1-n )/n 
2 H H (2.13)

Here A  is a scalar called the ice softness depending strongly on tem perature  and on the 

crystal size. The exponent n  is a constant usually taken equal to  3, although observations 

of n  in the literature range from 1.5 to  4 ([CP10], p.55). In particular, n  appears to  be 

somewhat smaller th an  3 for low stresses.

This flow law is sophisticated but still has shortcomings. Even if we include some 

therm odynam ics by employing a non-constant creep param eter -  an effort not undertaken 

in some current published models such as [LJG+12] -  this generalized flow law fails to 

take into account the phenomenon of anisotropy, the dependence of fluid response on the 

direction of an applied stress. This occurs when ice crystals align in some large region of 

ice, which then deforms more easily along one plane of the crystal structure.

In this paper we will mostly take n  =  1, which reduces G len’s Law to  the Newtonian 

case (2.9). There are good reasons to  investigate the behavior of a Newtonian ice sheet, 

despite its poor resemblance to  an actual ice sheet. In particular, the widely used Picard 

iteration for approxim ating nonlinear flows requires solving a linear problem repeatedly 

[LJG +12, Jar08].

2.3 T h e  N a v ie r-S to k e s  a n d  S to k e s  E q u a tio n s

N ew ton’s Second Law states th a t the force on an object is equal to  the product of its mass 

and its acceleration. We now apply this observation to  a hypothetical blob occupying a 

region Q w ithin a fluid. The blob may move, so we let Q =  Q(t) depend on time.

The forces acting on the blob include a surface force exerted by the surrounding fluid 

as well as a body force acting on all fluid particles. The surface force is a vector given 

by the surface integral of the stress tensor, which we write as a volume integral using the 

Divergence Theorem. In component form this reads

(2.14)
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while in vector form it is instead w ritten

I a  ■ n  = V  ■ a. (2.15)
Jeo Jo

For the vector equation we are using the possibly unfam iliar definition of the tensor diver­

gence
3T- ■

V ^  T  =  — ^ , (2.16)
dx j

as well as the convention th a t the integral of a vector field is the vector obtained by inte­

gration in each component. The only im portant body force for glaciological applications is 

th a t caused by gravity; see Chapter 5 of [GB09] for an argum ent th a t Coriolis forces can 

be neglected even for continental-scale models. The body force is therefore given by

f  Pg
J o

where p is the constant density and g  =  (0,0, —9.81 m /sec2) in the usual 3-dimensional 

basis.

Having described the forces acting on our blob of fluid, we now write down the rate  of

change of momentum , or the product of mass and acceleration. If the velocity field is u ,

the m om entum  of the blob is the vector

f  pu.
J o

To describe the rate  of change of the momentum , we m ust be careful to  distinguish 

between the quantities

d  I  Pu( t)  and d  I  Pu ( t ) .
dt JO(to) d t  JO(t)

The first gives the rate  of change of the m om entum  of the fluid occupying a fixed region

of space, while the second gives the rate  of change of the m om entum  of a fixed blob of the

fluid moving through space. The second quantity  is appropriate for our moving blob, and 

so fo ( to) Pdtu (t)  is unsuitable for describing the rate  of change of m omentum. We therefore 

introduce an operator DD called the derivative following the fluid  or material derivative.
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Let x ( t )  param eterize the position of a particle traveling according to  a tim e-dependent

velocity field u (t) , i.e. D x i (t) =  u i (t). For a scalar quantity  f  depending on position and

time, we define

D f  =  d f  ( t) =  d f  +  d f  d x i =  d f  +  d f  =  d f  +  (*7 f ) (2 i 7)
D t  =  d t f  ( x - t) =  s t  +  s x ,  ~st =  at  +  dx ; Ui =  d t  + (V f  > 'u - (2' 17)

The rate  of change of m om entum  of the moving blob at a given tim e t  =  t 0 now becomes

d_
dt f Pu(t) =  f p d D t ; (2.18)

t=to J o(t) JO(to) D ~t

see [Ach90] for details.

We now set the rate  of change of m om entum  equal to  the sum of the applied forces. 

This gives

f  p D -  = f  V ' a  + f  Pg. (2.19)o D t  o o

Because the region Q defining the blob was arbitrary, the integrands m ust be equal:

D u
P—  =  V ' a  +  Pg (2.20)

=  V ' t  — V p  +  Pg. (2.21)

Equation (2.21) is the famous Navier-Stokes equation. A standard  form uses Du =  | u  +

(V u) ■ u .

In a glaciological context, we instead make the approxim ation Du =  0. To see th a t this 

approxim ation is reasonable, we can compare the relative m agnitudes of the vectors Vp and 

P D  a t realistic values of the param eters. Greve and B la tter [GB09] take

horizontal extent L =  1000 km ,

vertical extent H =  1 km ,

horizontal velocity U =  100 m /a ,

vertical velocity W =  0.1 m /a ,

pressure P =  PgH  «  107 Pa,

time-scale t =  L / U  =  H / W  =  104 a.

(2.22)
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for an ice sheet. The ratio  of P D  to  Vp, known as the Froude number, is given for the 

horizontal direction by
=  PU/t  =  PU2/L  =  U 2  

P / L  P gH /L  g H '

Expressing U2 using seconds instead of years, we obtain the quantity  U2 =  104/(3600 x

24 x 365.251)2 w 104 x 10-15. Dividing by g w 10 and H  =  1000 we find Fr w 10-15. A

similar comparison in the vertical direction gives an even smaller ratio w 10-21. There may 

be unrealistic assum ptions in our models, but the approxim ation D  =  0 is harmless for 

physically realistic ice flow scenarios on E arth .

The combination of this Stokes equation and incompressibility forms the Stokes system  

of partial differential equations

0 =  V ■ a  +  Pg, (2.24)

0 =  V ■ u .  (2.25)

M athem atics books refer to  this system as the steady Stokes equations. It is often w ritten 

in term s of velocity and pressure:

—j A u  +  Vp =  Pg, (2.26)

V ■ u  =  0. (2.27)

We now dem onstrate the equivalence of these systems in the Newtonian case where 

t  =  2je .  To express a  in term s of u  and p, recall th a t a  =  t  — p i  so th a t V  ■ a  =  V  ■ t  — Vp. 

We also recall th a t e =  1 (V u  +  V u T ). This gives

V  ■ a  =  V  ■ t  +  Vp 

=  2/j.V ■ e — V p

=  j V  ■ (V u) +  j V  ■ (V u T) — Vp.  (2.28)

The first term  vanishes; indeed V ■ (V u) =  dX-JUz =  dXL(v ■ u) = 0 .  The second term  is the 

desired Laplacian since V  ■ (V u T) =  d D ix r =  ^ —. Hence V ■ a  =  j A u  — Vp as desired.
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2.4  T h e  B ih a rm o n ic  E q u a t io n

In the two-dimensional or planar flow case, the Stokes system in the form (2.26) is stated  in 

term s of three functions: the pressure and the two components of velocity. In this section 

we introduce the concept of a stream function and show th a t this reduces the Stokes system 

to  a simpler partial differential equation, namely the biharm onic equation, stated  in term s 

of the stream  function alone. This will enable us to  provide analytical solutions in C hapter 

3.

It is a theorem  in vector calculus th a t if the divergence of a vector field u  vanishes in a 

simply connected region, then  u  is the curl of some vector field A. In the two-dimensional

case u  =  (u, 0, w) ,  the function A  may be assumed to  have the form A  =  (0 ,Z (x ,z ) , 0).

Hence there is a real-valued streamfunction Z( x,  z) such th a t

d Z  d Z  . .
u =  d Z ; w  =  — w  (2-29)

We now divide (2.26) by j  and take the curl, which eliminates the gradients Vp and Pg: 

0 =  V  x (A u  — 1  Vp +  P g)  (2.30)
j j

=  V x  ( A  ( f , 0 . —g ) )  + 0  +  0 (2.31)

/  d 3Z  d3Z „ d3Z  d 3Z
x \  d x 2d z  +  d z 3 , , d x 3 d x d z 2

(2.32)

so th a t

d4Z  d4Z  d4Z  d4Z  \ ,
“ • a x 4 +  d i f d z 2 +  o z W  +  W ' ^  (2-33)

0 =  A A Z .  (2.34)

This is the biharmonic equation, which also arises in the context of m easuring the deflection 

of m etal plates or beams under a given load. We have shown th a t if u  is a velocity field 

satisfying (2.26), then a stream function satisfying (2.29) is biharmonic. In the next chap­

ter we will obtain analytical solutions for the Stokes equations by solving the biharmonic 

equation.
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2.5 G e n e ra l  B o u n d a ry  C o n d it io n s  fo r G lac io lo g y

We complete our boundary value problem by choosing glaciologically-relevant boundary 

conditions.

We begin w ith the ice-atmosphere boundary. It is reasonable to  assume the atm osphere 

exerts no normal force at the top of an ice sheet; atm ospheric pressure is insignificant 

compared w ith typical pressures under hundreds of m eters of ice. T ha t is,

n  ■ a  ■ n  =  0. (2.35)

We also assume th a t the atm osphere exerts no tangential force on the surface, i.e. wind 

blowing across the surface of a glacier will not alter the flow in a meaningful way:

a  ■ n  — (n  ■ a  ■ n ) n  =  0. (2.36)

These equations are equivalent to

a  ■ n  =  0. (2.37)

In some situations it may be necessary to  write this condition in term s of u  and p instead 

of a. We will do this in the next section when we specialize to  a rectangular geometry.

The simplest condition th a t may be imposed on the lower boundary is the no-slip condi­

tion u  =  0. In the next chapter we consider a generalization where the horizontal component 

is arbitrary: u  =  (u ,w )  =  ( f ,  0). In practice, the basal velocities of glaciers are unknown

and so we m ust search for alternatives. One of the simplest of these is the linear sliding law

given by the equations

u  ■ n  =  0, (2.38)

n  ■ a  ■ t  =  —ft2u  ■ t  (2.39)

where n  is the outward unit normal vector and t  is any vector tangential to  the boundary. 

The impermeability condition (2.38) implies th a t there is no flow into or out of the base. 

The second condition (2.39) relates the tangential component of the stress exerted by the 

ice on the base to  the slip rate. If the param eter ft2 is increased, then  a given slip rate
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requires a larger stress. Therefore ft2 can be understood as a friction coefficient.

If our goal is to  model a m ountain glacier whose term inus is on dry ground, then the 

upper and lower surfaces meet and there are no other boundaries to  consider. If we wish 

to  model only a section of a glacier or ice sheet, we must consider inflow and outflow at 

the lateral boundaries r  and r r . If the shapes of these boundaries are similar we can use 

periodic conditions such as

u u  I and
d u
d x \

d u
d x \

We do not consider the alternate scenarios of calving an d /o r ice shelves.

(2.40)

2 .6  B o u n d a ry  C o n d it io n s  in  th e  R e c ta n g u la r  C ase

We now restrict our atten tion  to  the case of two-dimensional or planar flow on a rectanglar

dom ain Q. We consider Q =  [0,L] x [0, H ] w ith the origin at the lower left corner. We

ro tate  the rectangle and our axes through an angle of —a  so th a t the force g  due to  gravity 

is given by the vector

g  =  ( 9 1 , 9 2 ) =  (gp sin (a), — gp cos(a)). (2.41)

In this special geometry the boundary conditions of the previous section can be expressed 

differently. We describe each of these conditions in term s of u  and p  and then derive 

equivalent form ulations for the stream  function.

We begin w ith the stress-free condition a  ■ n  =  0. The first step is to  express a  in term s 

of velocity and pressure. Using the equations a  =  —p I  +  t  and t  =  2 .e , the boundary 

condition becomes

(— p I  +  2pe) ■ n  =  0 (2.42)

or, w ith n  =  (0, 1) and in m atrix  form,

(2.43)'  —p  + 2.  dx1
1 1 ( dui 1 du2 /  
9  \  dx2 +  dxi J

l
O

1 1
O

1

.. ( du2 1 dm 4
9  /  dx\ +  dx2 ) —p + 2.  i x f , 1

1
O

1

r r r r
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This gives a pair of equations

P -  +  P  = 0 ,  (2.44)
dX2 dxi

2„ § |  =  p. (2.45)

It is now convenient to  change our notation, writing u  =  (u, w) instead of u  =  (u1,u 2) and 

renam ing variables x  =  x 1 and z =  x 2. We can then  write uz instead of , etc. The 

previous equations become

Uz +  Wx =  0, (2.46)

2 . w z =  p. (2.47)

The pressure appearing in the second equation can be converted back to  velocity through 

the Stokes equation, Vp =  . A u + g. This is a vector equation whose two scalar components 

read

px =  . ( u x x  +  Uzz) +  9 i, (2.48)

pz =  .(Wxx  +  Wzz) +  92. (2.49)

Because (2.47) holds on the upper surface { (x ,H ) : x  e  [0, L]}, we can differentiate it with 

respect to  x  (but not z) and elim inate the pressure derivative through (2.48). The result is 

a non-homogeneous boundary condition

2p wzx =  P(uxx +  uzz) +  g1. (2.50)

We now write the free-surface boundary conditions (2.46) and (2.50) in term s of the stream  

function 0 . Recalling th a t u  =  0 z and w =  —0 x, we have the conditions

0 zz 0 xx   0

2P0xzx =  9 ( 0  zxx +  0 zzz) +  g1.

(2.51)

(2.52)
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Simplifying these we obtain

0 zz 0 XX =  0, (2.53)

30xxz +  0 zzz =  g1/ . .  (2.54)

These are the boundary conditions th a t we seek to  enforce on the free surface in the b ihar­

monic problem.

On the base we impose a velocity profile (u ,w )  =  ( f ,  0), where f  (0) =  f  (L). W ritten in 

term s of 0 , th is becomes

0 z =  f  on [0, L] x 0, (2.55)

0x  =  0 on [0, L] x 0. (2.56)

In this problem we are interested only in the derivatives of 0 . We may therefore add

arb itrary  constants to  0  w ithout affecting the derived velocity solution. Because (2.56)

implies th a t 0  is constant on the bed, we may w ithout loss of generality assume th a t 0  =  0 

on the bed. Hence we seek a solution satisfying

0 z =  f  on [0, L] x 0, (2.57)

0  =  0 on [0, L] x 0. (2.58)

We take periodic boundary conditions on the left and right sides. For the Stokes problem 

these take the form

u(0, z ) =  u (L ,z ) ,  (2.59)

u x ( 0 ,z ) =  u x (L ,z ) ,  (2.60)

w (0, z ) =  w (L ,z ) ,  (2.61)

w x (0 ,z )=  w x(L ,z ) .  (2.62)
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W ritten in term s of 0 , we have

0 z (0, z) =  0 z (L ,z ) ,  (2.63)

0 x z (0, z) =  0xz(L , z), (2.64)

0 x (0, z) =  0 x (L ,z ) ,  (2.65)

0 x x (0, z) =  0xx(L , z). (2.66)

2 .7  S o b o lev  S p aces

Sobelev spaces are fundam ental to  the m odern theory of differential equations because they 

allow us to  construct Banach spaces containing differentiable functions. The completeness 

of these spaces is a useful tool for proving existence and uniqueness theorem s [DM05]. In 

this work we will omit such proofs, but we give the basic definitions in this section.

Consider the one-dimensional absolute value function f  e  C (—1,1). According to  the 

classical definitions of calculus, f  fails to  be differentiable a t zero and so there is no function 

g e  C (—1,1) th a t we may call the derivative of f . Of course, a t all points o ther than  zero 

the derivative of f  is defined and equals x / |x | =  sgn(x).

The theory of distributions provides a more accom odating notion of derivative. Let

Q C Rn be an open set w ith Lipschitz boundary, and let D(Q) be the set of infinitely

differentiable functions with compact support contained in Q. Then a distribution is a 

continuous linear map from D(Q) to  R, where “continuous” means f  (p) =  limn^ ^  f  (pn)

whenever p (nm) —  ̂ ^  0 for each m. Taking Q =  (—1,1), one example is p  ^  p(0) 

and another is given by p  ^  f _ 1 p f  if f  e  L 2(—1,1). This allows us to  identify any L 2 

function w ith a distribution.

The derivative of a distribution g can always be defined by g '(p) =  —g(p').  In particular, 

whenever f  e  L 2 we may view f  as a d istribution and then find another distribution g th a t 

is its derivative. Of course, g is now a distribution and may not coincide w ith any L 2 

function; if it does, we say th a t g e  L 2 is a d istributional derivative of f . The qualitative 

result of this theory is th a t continuous functions failing to  be differentiable on a null set, 

like the absolute value function, can be said to  have derivatives in this distributional sense:

sgn =  abs'.
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Continuity is im portant; the sgn function has no distributional derivative. In two dimen­

sions, a function may be discontinuous a t a point (but not across a segment) and still have 

a distributional derivative.

We conclude w ith one essential definition. The Sobolev space H : (Q) is the set of L 2 

functions having distributional derivatives in each of the n  space directions:

The space H : (Q) is complete w ith respect to  the norm induced by the inner product

H*(Q) =  { f  e  L 2 : d f / d x i  e  L 2 for 1 <  i < n}. (2.67)

(2.68)
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C h a p te r  3 

E x a c t  S o lu tio n s

In this chapter we give exact solutions for the Stokes problem in a special case applicable 

to  glaciology. The m ain result was first given by [BR85] in the case of a single Fourier term  

for the basal forcing. We modify their proof of th a t result for the case of many Fourier 

term s. We then  extend [BR85] by giving formulas for the pressure and stress, and we 

give necessary conditions on basal velocities th a t can arise under the linear sliding law. A 

qualitative discussion of the solutions is included.

3.1 T h e  B o u n d a ry  V a lu e  P ro b le m

We consider the Stokes problem on a rectangle Q =  [0, L] x [0, H ]. We ro tate  the rectangle 

and our axes through an angle of - a  so th a t the force due to  gravity is given by the vector

g  =  (g1,g 2) =  (gp sin (a), — gp cos(a)). (3.1)

We impose an arb itrary  basal velocity u |z=o =  ( f ,  0), periodic conditions a t the lateral 

boundaries, and the stress-free condition at the surface. The boundary value problem can 

be stated  as the search for a velocity u  =  (u, w ) and pressure p  such th a t

Vp — 9 A u  =  g

V ■ u  =  0

u(0 , z) — u (L ,  z) =  0

d u
x (0 ,z)

d u
x (L,z)

(u, w)  =  ( f ,  0) 

dw du  
dx  +  dz

2 9 wzx 9 (uxx +  uzz) =  g1

on Q 

on Q , 

for all z,

for all z,

on {z =  0}, 

on {z =  H }, 

on {z =  H }.

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

0

The upper-surface conditions (3.7) and (3.8) are weaker than  the desired stress-free con­

dition (2.37) because we differentiated (2.47) while specializing (2.37) to  the rectangular 

case. As a result, the pressure solution is only determ ined up to  an additive constant in
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the system (3.2)-(3.8). In section 3.8 we will determ ine the correct constant term  and show 

th a t our solution satisfies the stronger condition (2.37).

The biharm onic boundary value problem obtained from (3.2)-(3.8) by putting  ^ z =  

u, —̂ x =  w is as follows: find a scalar function ^  on Q such th a t

A A -0 = 0 on Q, (3.9)

^ z (0, z) — ^z (L ,z) = 0 for all z, (3.10)

^xz (0, z) -  ^xz(L ,z) = 0 for all z, (3.11)

■0 x(0,z) — ^x (L ,z) = 0 for all z, (3.12)

^xx(0,z ) --  ^xx(L ,z) = 0 for all z, (3.13)

^ (x , 0) = 0 for all x, (3.14)

■0z (x, 0) = f for all x, (3.15)

^zz(x, H ) —^ x x (x ,H  ) = 0 for all x, (3.16)

3^xxz(x, H ) + "0 zzz (A  H ) =  -  g1/ ^ for all x. (3.17)

There are two nonhomogeneous conditions (3.15) and (3.17). Because the problem is linear, 

we will solve the two simpler problems obtained by setting their right-hand sides to  zero 

in tu rn  and then  add the two solutions. These solutions have physical meaning. The first, 

with (3.15) set to  zero, represents gravity driven flow with a no-slip condition at the glacier 

bed. The second represents a flow driven by basal forcing in the absence of gravity.

3.2 T h e  N o -S lip  C ase

The biharm onic problem (3.9)- (3.17) with (3.15) replaced by ^ z(x, 0) =  0 has a surprisingly 

simple solution. Indeed, the reader should verify th a t

T i(x ,z )  =  ( g H z 2 -  z 3 (3.18)
2^  6p.

solves the system. It is useful to  find the velocity field arising from this stream  function. 

The vertical component is w =  —̂ x =  0, so the flow is parallel, and for the horizontal
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Figure 3.1. The parabolic profile of a gravity-driven viscous flow field w ith frozen bed.

component we find a parabolic profile

u(x, z) =  0 z (x, z) =  ^ — z  — z 2. (3.19)
9  29

This formula agrees with equation (2.19) in [Ach90]; we have recovered the well-known exact 

solution known as lam inar flow . We note th a t (3.19) is reasonable qualitatively: horizontal 

flow is proportional to  the horizontal component of gravity and inversely proportional to 

viscosity. The velocity field is depicted in Figure 3.1 for a 40 km section of a glacier of 

thickness 1 km. W ith  a slope angle of 2° and viscosity 1014 P a  ■ s we obtain a surface speed 

of 52.2 meters per year.

3.3 T h e  N o -G ra v ity  C ase

We now consider the case where g =  0 and f  =  0. This requires more work and we divide 

the effort into several subsections.

3 .3 .1  R e d u c t io n  to  a n  o rd in a r y  d if fe re n tia l e q u a tio n

Our first goal is to  identify a collection of separated solutions of the biharm onic equation 

whose x-com ponents are periodic and form a complete basis for L 2([0, L]). A natu ral choice 

is to  seek solutions of the form 0( x ,  z) =  X ( x ) Z (z) where the function X (x) belongs to  the 

collection
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If X  e  B then  we have X " =  —A2X  and X (lv) =  A4X , where A =  for some nonnegative

integer n. The biharm onic equation then  has the form

0 =  AA-0 =  X  (lv)Z  +  2X  "Z " +  X Z (lv) (3.21)

=  X  ■ [A4Z  — 2A2Z " +  Z (lv)]. (3.22)

We will therefore seek functions Z (z) solving the ordinary differential equation

0 =  A4Z  — 2A2Z " +  Z (lv). (3.23)

We consider the cases A =  0 and A >  0 separately.

3 .3 .2  N o n z e ro  e ig e n v a lu e s

For positive A, (3.23) is a constant-coefficient ordinary differential equation w ith character­

istic polynomial

(y2 — A2)2 =  0. (3.24)

There are two roots ±A, each of m ultiplicity two, and so the standard  theory of ODEs gives 

the general solution:

Z  (z) =  a exp(Az) +  b exp(—Az) +  cz exp(Az) +  dz exp(—Az). (3.25)

We will be enforcing boundary conditions at z =  0 and z =  H , so we choose to  expand the 

solution in a more convenient basis:

Z  (z) =  a sinh(Az) +  b cosh(Az) +  cz sinh(A(z — H )) +  dz cosh(A(z — H )). (3.26)

We now use the boundary conditions (3.14), (3.16), and (3.17) to  write b, c, and d in term s 

of a. (3.14) imm ediately implies th a t Z (0) =  0 and so b =  0. The rem aining conditions
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involve three derivatives of Z . We list them  here, for reference:

Z '(z) =  Aa cosh(Az) +  c sinh(A(z — H )) +  d cosh(A(z — H ))

+  Acz cosh(A(z — H )) +  Adz sinh(A(z — H )),

Z ''(z ) =  A2 a sinh(Az) +  2Ac cosh(A(z — H )) +  2 Ad sinh(A(z — H ))

+  A2cz sinh(A(z — H )) +  A2 dz cosh(A(z — H )),

Z '''(z ) =  A3 a cosh(Az) +  3A2c sinh(A(z — H )) +  3A2d cosh(A(z — H )) 

+  A3cz cosh(A(z — H )) +  A3dz sinh(A(z — H )).

Because X ''(x ) =  — A2X (x), the conditions (3.16) and (3.17) become

Z'' (H ) +  A2Z  (H ) =  0,

—3A2Z '(H ) +  Z ' ' ' (H ) =  0.

On substitu ting the preceding formula for Z '' into (3.30) we obtain

(A2 a sinh(AH) +  2Ac +  A2d H ) +  A2 (a sinh(AH) +  d H ) =  0.

Simplifying and dividing by 2A, this gives one linear equation in a, c, and d :

0 =  aA sinh(AH) +  AdH  +  c.

Similarly, the second condition (3.31) implies th a t

A3a cosh(AH) +  3A2d +  A3cH  =  3A2[Aa cosh(AH) +  d +  AcH ].

Canceling 3A2d , moving all term s to  the right, and dividing by 2A3 we obtain

0 =  cH  +  a cosh(AH)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

so th a t

c =  cosh(AH).
H

(3.35)
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This lets us eliminate c from (3.33) and so we can write d as a m ultiple of a:

a 1
d =  —— — cosh(AH) — A sinh(AH) .

AH H
(3.36)

We have determ ined Z(z) up to  m ultiplication by an arb itrary  constant a:

Z(z) =  sinh(Az)
cosh(AH)

H
z sinh(A(z — H )) +

cosh(AH) sinh(AH)
AH2 H

^ zcosh(A(z — H )).

(3.37)

Notice th a t this formula is symm etric in the sense th a t replacing A with —A has the effect 

of m ultiplying Z(z) by —1. This sym m etry is expected since the characteristic polynomial 

(3.24) has the same property. As a result we do not have to  consider A <  0.

3 .3 .3  T h e  z e ro  e ig e n v a lu e

The case A =  0 corresponds to  the choice X (x ) =  1. In this case (3.23) reduces to  Z (iv) =  0. 

This implies th a t Z (z) is a cubic polynomial, so the stream function has the form

Now all term s with derivatives in the x-direction vanish from the boundary conditions (3.16) 

and (3.17). Thus Z(z) satisfies

Z (0) =  0, Z " (H ) =  0, Z '" (H ) =  0.

The first condition gives a =  0 and the last gives d =  0. Then 0 =  Z " (H ) =  2c and c =  0 

as well. Hence the zero eigenvalue gives a stream function

•0 (x, z) =  Z(z) =  a +  bz +  cz2 +  dz3. (3.38)

•0 (x, z) =  bz (3.39)

where b is arbitrary.
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3 .3 .4  T h e  n o n h o m o g e n e o u s  b o u n d a ry  c o n d it io n

We now seek to  satisfy the condition (3.15) by forming an appropriately-weighted sum of 

the eigenfunctions we have identified. Let

f  =  ao +  ^  an sin(Anx) +  bn cos(Anx) (3.40)
n=1

be the Fourier expansion of f . Define ^ 0(x, z) =  a0z  and for each n  e  N define

^n (x ,  z) =  [An sin(Anx) +  Bn  cos(Anx)] Zn(z) (3.41)

where Zn is defined by putting  A =  An in (3.37), and A n and B n are defined by

AnH  2 
AnH2 +  cosh2(AnH )

An =  an • x2 tt2 , n__, 2 (3.42)

2
Bn  =  bn • x2zj2 An\ 2,.  . (3.43)

AnH 2 +  cosh (AnH )

These choices of A n and B n are justified by the following calculation of |z=0. For n  =  0

we have

^ 0  (x, 0) =  a0 (3.44)

and for n  > 0 we have

(x, 0) =  [An sin(Anx) +  Bn  cos(Anx)] Z n (0). (3.45)

To obtain a formula for Zn' we substitu te  the values of c and d given by (3.35) and (3.36)

into (3.27). This gives

Z^(z) =  An cosh(Anz) — 1  cosh(AnH) (sinh(An(z — H )) +  Anz cosh(An(z — H ))) (3.46)
H

cosh(AnH) — AnH  sinh(AnH)
+------------------- --------------------------(cosh(An(z — H )) +  Anz sinh(An(z — H ) )) .

AnH 2
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This expression is much simpler after we put z =  0:

-z'^m \ i 1 m  • m  i cosh(A„H) — A„H sinh(A„H)Zn(0) =  An +  — cosh(AnH) sinh(AnH) +------------------- — —2------------------ cosh(AnH)
H  AnH 2

(3.47)

AnH  2 + cosh2(AnH ) , .
=  A n H  ■ (3-48)

Finally we may substitu te (3.48) into (3.45) and conclude th a t

(x, 0) =  [an sin(Anx) +  bn cos(Anx)] . (3.49)

By taking ^  =  ^ 0 +  S ^ L 1 ^ n we obtain a stream function th a t satisfies (3.15).

3 .4  E x is te n c e  o f  S o lu tio n s  fo r th e  B ih a rm o n ic  P ro b le m

We sta te  our results in a compact form. Suppose th a t the basal sliding velocity in meters 

per second is given by

f  =  ao +  ^ 2  an sin(Anx) +  bn cos(Anx),
n=1

where An =  for each n  e  N. For each n  define the functions

Zn (z) =  sinh(Anz) — -1  cosh(AnH  )z sinh(An (z — H )) (3.50)
H

(  cosh(AnH) sinh(AnH ) \
+  ( t x h  z cosh(A- ( z —H ))

and
{ \  A H  2

X n(x) =  ( ansin(Anx) +  bncos(A nx)) — n , 2 .- r . (3.51)
V /  AnH2 +  cosh2 (AnH )

Then the function

^  2 (x, z) =  aoz +  ̂  X n(x)Zn(z) (3.52)
n=1
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is the unique solution of the boundary value problem (3.9)-(3.17) w ith the homogeneous 

version of (3.17). Finally

^

solves the original problem (3.9) - (3.17) w ith both  nonhomogeneous boundary conditions. 

A classical uniqueness result for the biharm onic problem with Dirichlet and Neum ann con­

ditions imposed on the boundary appears on p.448 of [TS63]. We do not consider uniqueness 

with no-stress and periodic conditions.

3.5 R e c o v e ry  o f  V e lo c ity

We now differentiate the stream function ^  to  recover velocity. The horizontal velocity is 

u(x, z) =  (x, z)

(3.53)

or, more explicitly,

u(x, z) =  ao + z (a„ sin(A„x) +  b„ cos(Arax))Z4 (z)

(3.54)

where Z^(z) is given by (3.46). For the vertical velocity we obtain

w (x ,z ) =  - ^ x ( x ,z )

(3.55)

2
2 (bn sin(A„x) -  a„ cos(Arax))Z „(z). (3.56)
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3.6  R e c o v e ry  o f  P re s s u r e

Balise and Raym ond did not give a formula for the pressure p in [BR85], being concerned 

only w ith the velocity. Recovering p takes more work than  recovering u  since we need to 

go back to  the Stokes equations, which contain only derivatives of p. Once we find the 

pressure gradient, we m ust antidifferentiate its two components and reconcile the constants 

of integration. This determ ines the pressure up to  an additive constant and solves the 

Stokes problem in the form (3.2)-(3.8). However, we will see th a t the free surface condition 

in the original form a  ■ n  =  0, unlike its relatives (3.7) and (3.8) stated  in term s of u , does 

determ ine the additive constant.

In the x-direction we have px =  g (u xx +  ) +  g1 and in the z-direction we have

pz =  g(w xx +  ) +  g2. We therefore begin by finding the second derivatives of the velocity

components. Repeated differentiation of (3.53) and (3.55) gives the formulas

Here C(x) represents a function which does not depend on z. Integrating in the x-direction,

(3.57)

(3.58)

(3.59)

(3.60)

Integrating in the z-direction, we obtain one expression for pressure:

=  g2z +  ^  —X n I  Zn dz +  —■ +  C (x ) . (3.62)
.n=1 n=1
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we obtain another expression:

P =  J  Px dx =  J  ̂ (uxx +  uzz) +  gi dx

<X> ^
£  x n  z n + £g1x — g iP x +  g
n= 1 n= 1

X n dx Z'J. +  C  (z).

(3.63)

(3.64)

Note th a t the two linear term s in (3.64) cancel, so this is periodic in x as needed. To reconcile 

(3.62) and (3.64) we can let C (x) be an a rb itrary  constant and take C(z) =  g2z +  C(x); we 

then need only show th a t for each n  we have

—x n w  Zn d z —x n  z n = x n  z n + Xn dx Z" (3.65)

To verify this we recall th a t X n (x) is trigonom etric, and so taking an even num ber of 

derivatives of X n (x) has the effect of m ultiplication by a power of —An. We can therefore 

write X lll)l and J  X n dx  in term s of X '(x ). The previous equation becomes

A n x n /  Zn d z —Xn z n = Xn zn  — ^  Xn zn '. 
An

(3.66)

After rearrangem ent and m ultiplication by —An this gives

0 = x n (  z n '—2A n zn + a m  z r (3.67)

It suffices to  show th a t the factor involving z n vanishes. Recall th a t we constructed z n to 

solve the ODE (3.23). Hence the z-derivative of this factor vanishes. It follows th a t the 

factor itself vanishes for some choice of the constant of integration in (3.67). We conclude 

th a t the two expressions (3.62) and (3.64) are equal. It is unclear which is more convenient 

for com putation; we take (3.64) which we restate, following some simplification and the 

substitu tion C(x) =  — g2H :

^  AnH 2(an cos(Anx) — bn s i n ^ x ) ) /  , zn '(z)
P(x , z) =  g2z — g2H  +  P § -AnH2 + cosh2(A,,H) M “ (z) " A Ti

(3.68)
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A simple formula for the factor in large parentheses is

cosh(An (z — H )) . (3.69)

This formula can be obtained from (3.46) and (3.29) using the formulas for c and d given in 

(3.35) and (3.36), by cancelling term s and then  using the hyperbolic angle addition formula.

The value of the constant term  C(x) is irrelevant if we only want to  solve the boundary 

value problem (3.2)-(3.8), since only derivatives of p appear. However, the boundary con­

ditions (3.7)-(3.8) are weaker th an  the original stress-free condition a  ■ n  =  0, which does 

determ ine the constant term  in p. We justify  the choice C (x) =  — g2H  in Section 3.8. For 

now we note th a t the choice C(x) =  — g2H  gives zero pressure a t the upper surface in the 

case of a no-slip condition at the base (i.e. if all an and bn vanish).

We conclude this section by noting th a t the com putability of equation (3.68) depends 

on the aspect ratio  L /H  and the num ber of Fourier term s used. Since AnH  =  2 n n H , 

the quantity  cosh2(AnH ) appearing in the denom inator of the pressure can cause overflow 

errors.

3 .7  S tre s s  a t  th e  L ow er B o u n d a ry

Friction laws relating stress to  velocity are more common th an  Dirichlet conditions a t the 

base in numerical simulations. In this section we investigate what friction profile is necessary 

to  generate a given basal velocity. We consider the linear law (2.38)-(2.39).

In the rectangular geometry considered before, we have n  =  (0, —1) and we take t  =  

(1, 0). Then, w ith u  =  (u, w) as before, the im perm eability condition (2.38) implies w =  0 

and the stress relation (2.39) reduces to

since u |z=0 =  f . To find ^ 2 we need a formula for a 21 at the base. Under the linear flow 

law we have

a 21 ^ 2f (3.70)

/  dw d u \  du
a2i =  T2i =  ^ d x  +  T z )  = (3.71)
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since w = 0 on the base. We therefore differentiate (3.54) and (3.46) to  find th a t

g 1H  g1z ^  AnH  2 / . N i l  / \  \ \v ' 'fn \
W -(x ,z) =  —--------- — +  V  , 2 „ 2 ,------ , 2/x m  (an sin(Anx) +  bn cos(Anx ) )z n (0)dz g  g  n=1 AnH2 +  cosh (AnH )

(3.72)

where z , ( z )  is given by

zn'(z) =  a ,  sinh(Anz) — An cosh(AnH) (2 cosh(An(z — H )) +  A ,z sinh(An(z — H ))) (3.73)
H

cosh(AnH) — AnH sinh (A ,H ) . , . , , w
+-------------------- H 2----------------------(2 sinh(A ,(z — H )) +  A ,zcosh(A ,(z  — H ))) .

P u ttin g  z =  0 we obtain

r / 'u ^  2A, , , 2/ \  m  ■ , 2/ x 2cosh (A ,H ) sinh (A ,H )
z ,(0 )  =  — —  ( cosh2 (AnH) — sinh2(A, H  ) ) ----------------- ^ --------------

2AnH  +  sinh(2AnH )
H 2

Hence a concise formula for a 21 along the lower boundary is

(3.74)

( u  ^  2AnH  +  An sinh(2AnH ) ( . M A M ^  ^^ 21 (x, 0) =  g 1H  — g ^  2--------- u2n  m  ( a ,  sin(A ,x) +  b , cos(A ,x)). (3.75)
n=1 A ,H 2 +  cosh2(A ,H ) v n

Therefore an explicit expression for the basal friction coefficient P 2 as a function of the 

horizontal coordinate x is

P 2 =  1
/ (x)

tt 2AnH +  An sinh(2AnH ) z • / \  \ i l  / \  w
g1H — g  ^  A ,H 2 +  Cosh2(AnH) (an sin(A,x) +  bn cos(Anx))

(3.76)

It is interesting to  note th a t the expression in brackets has average value 0 if g 1 =  0, which 

occurs if the slope angle is zero. In this case we can easily get a negative value for P 2. On 

the other hand, any imposed basal velocity yields P 2 >  0 if it occurs under sufficiently large 

gravity. If we want P 2 >  0 we can no longer choose the basal velocity independently of the 

other param eters. We can sta te  this as a theorem:

T h e o re m  3 .7 .1 . A basal velocity /  with Fourier coefficients (an ) and (bn ) can occur in a
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periodic Newtonian glacier o f constant height H  and slope angle a  only i f

sin (a)gpH  >  p  £  (an sin(Anx) +  bn cos(Anx)) (3.77)
n=1 AnH +  cosh (AnH )

fo r  all x .

3.8  S tre s s  a t  th e  U p p e r  B o u n d a ry

In this section we use the formulas for u  and p given above to  obtain an explicit expression 

for the surface stress at z =  H . This will allow us to  justify the choice Cx =  — g2H  for 

the constant term  in the pressure formula (3.68) as well as to  check our work by explicitly 

verifying th a t a  ■ n  =  0 a t the free surface. The surface normal is n  =  (0,1) and so we 

need expressions for the second column of a . We consider the two entries of this column 

separately.

For a 12 we can recycle some of the work of the last section. Instead of (3.71) we have

a 12 =  P ( S  +  I )  (3*78)

since |X  does not vanish. To find |X  we differentiate (3.56) with respect to  x to  obtain 

dw ^  A3 H 2
t o ( x z )  =  £  a 2H 2 +  a>sh2(A „ff) (b” cos(A” x) +  sin<A»x » Z'‘(z >* P . 79)n=1 n v '

P u tting  z =  H  in (3.50) gives

Z n (H ) =  , (3.80)
AnH

so
^  \ 2

S (x ' H * =  £  A ^ a r f ? A ? H ) (bn cos(Anx) +  sin(A” x )) - (3.81)

We now find |u  a t the upper surface by setting z =  H  in (3.72). P u ttin g  z =  H  in (3.73), 

we find after convenient cancellation th a t

Zn(H ) =  cosh( AnH) (3.82)
H
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and so

d j (x ,H ) =  — j r  A2H H+coSllh2, H H ) (an sin(Anx) +  bn cos(Anx )) . (3.83)
dz C=1 A ,H 2 +  cosh2(A ,H )

Now the sum of (3.81) and (3.83) is zero, so a 12 does indeed vanish a t the upper surface. 

For the other component of a  ■ n , we have

^22 =  —P +  2g |W . (3.84)

We therefore need expressions for pressure and dz  along the upper surface. P u tting  z =  H

in (3.68) (with constant term  Cx) and (3.69) gives

p(x, H ) =  g2H  +  Cx (3.85)
CO^  A ,H (a , cos(Anx) — bn sin(Anx)) /  , co sh (A ,H )

+  2^  A ,H 2 +cosh'2(A cff) [ K  s‘nh(A cH > Hn=1

Differentiating (3.56) with respect to  z gives 

dw ^  A 2 H 2
^ 7(x ,z) =  E  A2H 2 +  cnosh2( A H ) (bn sin(Anx) — an cos(Anx ) )z „ (z ). (3.86)

n=1 n V n y

We gave a formula for z , ( z )  in (3.46). P u tting  z =  H  gives

cosh( nH ) — n H  sinh( nH )
z n (z) =  ----------------- A n H -----------------. (3.87)

Hence

dw f m  ^  An(cosh(AnH) — A ,H  sinh( A ,H )) .
—  (x ,H ) =  > ----------—  , --------- (bn sin(Anx) — an cos(Anx )) . (3.88)
dz n=1 A ,H 2 +  cosh2 ( AnH)

W ith  these expressions for p and , equation (3.84) becomes

a 22(x, H ) =  —g2H  — Cx. (3.89)

To obtain a  ■ n  =  0 it suffices to  take Cx =  — g2H . This justifies the choice of the constant
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term  in (3.68).

3 .9  Q u a l i ta t iv e  D isc u ss io n

The formulas (3.54), (3.56), and (3.68) describe the components of velocity and pressure 

solving the Stokes problem (3.2)-(3.8). We note th a t the formulas are plausible in the sense 

th a t higher gravities and lower viscosities each result in faster flow.

For more detail it is helpful to  consider a specific example. Consider a 40km long section 

of glacier of thickness 1km sitting on a bed of inclination 1.5°. We take p =  917 kg m - 3 , 

g =  9.81 m sec- 2 , and p  =  1 x 1014 P a  sec. We specify a basal slip profile where most of 

the lower surface of the ice moves over the bedrock at a rate  of 100 m eters per year with 

the exception of one section which is almost frozen to  the bed. To be specific, we take

f  (x) =  200
1 1

+    ttw— r r r rv  +  10 4
1 +  e120(x/L-0.3) 1 1 +  e 120(-x/L+.5) (3.90)

Because f  is sm ooth there is little harm  in truncating  its Fourier series; here we truncated  

the trigonom etric expansion of f  after the term s with A50. The resulting velocity field and 

pressure are illustrated in the central plot of Figure 3.2. As one would expect, there is a 

pressure maximum upstream  of the obstacle and this maximum diminishes and spreads out 

with increasing height. If the melting and accum ulation at the surface were such th a t the 

rectangular geometry were preserved over time, the ice particles would rise upstream  of the 

obstacle or sticky spot and then  fall back to  their original depth  downstream . For the given 

param eters and basal velocity we see a vertical velocity as high as 31.8 m /a  at the surface 

above x =  12 km, so the rectangular geometry would be unstable under any realistic surface 

accum ulation regime.

The friction coefficient 2 given by (3.76) is graphed in the lower plot of Figure 3.2. Its 

value is approxim ately 7.5 x 1010 P a  s /m  away from the sticky spot; above the sticky spot 

it grows larger bu t remains finite since the basal velocity f  is bounded away from zero.
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Figure 3.2. Exact velocity, pressure, and basal friction induced by a sticky spot.
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C h a p te r  4

F in i te  E le m e n ts  a n d  th e  S to k e s  P ro b le m

4.1 I n tr o d u c t io n

In this chapter we develop a numerical technique for approxim ating the solutions of the 

Stokes boundary value problem considered in the previous chapter. This technique is an 

example of the widely used finite element method (FEM ). For the Stokes flow problem, 

the common approach in introductory treatm ents of the FEM , e.g. [ESW05, QV94, Ern04, 

DH03] is to  address only the simplest boundary conditions such as enclosed flow or flow 

through pipes with a Neum ann condition at the exit. The bilinear form required to  deal 

w ith the no-stress condition (2.37) appears in [Pir89, QV94] but these works do not sta te  the 

Stokes equation in term s of the stress tensor or discuss the integration by parts. In contrast, 

the glaciological literature frequently employs (2.37) but omits the m athem atical details of 

the finite element method: integration by parts, basis construction, m atrix  assembly, and 

solution of large linear systems. This chapter fills a pedagogical gap by discussing the Stokes 

problem at an introductory level while treating  glaciologically-relevant boundary conditions. 

The presentation is based on a 2012 paper by Leng et al. [LJG+12] and the 2005 book by 

Elm an et al., [ESW05]. We include many details om itted there; for example, Leng et al. 

skip from (4.1) to  (4.12) in one sentence.

4 .2  V a r ia t io n a l  F o rm u la tio n

We begin by putting  a  =  t — p I  in the Stokes system (2.24) to  obtain the system

We call this the strong form  of the system  in contrast to  the variational or weak formulation, 

which we now derive.

Let u  and p be velocity and pressure fields satisfying the strong form of the Stokes system 

(we delay stating  their relationship to  t ). Let v be any vector field whose components are 

all differentiable. Take a dot product w ith v on each side of (4.1) and integrate over Q to

0 =  V ■ t  — Vp +  pg 

0 =  V  ■ u .

(4.1)

(4.2)
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obtain

— (V ■ t ) ■ v + (Vp) ■ v =  p /  g  ■ v. (4.3)
,/n in  Jo

It is useful to  rewrite this equation in a form containing boundary integrals. Our main tool

for doing so is the Divergence Theorem  f Q V  ■ f  =  f dn n  ■ f . We therefore rewrite each

integrand so th a t it contains a divergence. This procedure is called integration by parts

because it ultim ately depends on the product rule for derivatives.

For the pressure term  in (4.3), we write

X (Vp) ■ v =  I n £ (4-4)

=  f  (pvi) — p ! ? 1 (4.5)
in dxi dxi

= V  ■ (pv) — pV  ■ v (4.6)
Jn

= n  ■ (pv) — pV  ■ v. (4.7)
./sn ./n

To deal with the stress term  in (4.3) we make use of the sym m etry of t . Before integrating 

we have

—( V . T ) . v  =  — d j

dvi d
=  Tij a x ;  -  a x ; (Tiivi)

dvi vv , X
=  T;i  ̂ —V - (T ■v)

=  T; i (V v);i — V ■ (t ■ v)

=  t : V v — V ■ (t ■ v). (4.8)

Here t ■ v is the usual m atrix-vector product, and t : V v =  t; ( V v )i; denotes the sum of 

the components of the elementwise product of these tensors. Integration now gives

— (V ■ t ) ■ v = t  : V v — n  ■ ( t  ■ v). (4.9)
Jn  t/n Jdn
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Adding equations (4.7) and (4.9), we obtain

— (V • t ) • v + (Vp) • v = t  : V v — pV  • v +  / n  • (pv) — n  • ( t  • v)
Jn  Jn  Jn  Jn  Jdn Jdn

1 T I>

/ pV -• v +
n Jn

f T I>

[  pV - v —
n J n

f T I>

[  pV - v —
n n

n  • (ct • v). (4.10)
2

Note th a t the Cauchy stress tensor ct =  —p i  +  t has appeared in the boundary term  in the 

last line. This will become im portant when we consider the boundary conditions. For now 

we observe th a t the parentheses are not im portant since, by the sym m etry of ct,

n  • (ct • v) =  Vj =  n ‘CTj‘Vj =  (n  • ct) • v. (4.11)

We have shown th a t (4.3) implies

/ t  : V v — pV  • v — / n  • ct • v =  p / g  • v. (4.12)
Jn  Jn  ./dn -Zn

We now proceed to  suppress the t and ct appearing in (4.12) in favor of u , v, and p. To

w rite t : V v in term s of u  and v we first exploit the sym m etry of t :

Tij (V v)ij =  Tij d x

=  o (Tij +  j  w—2 v ‘j dx
1 dvj 1 dvj
2 T‘j dx ‘ +  2 Tj‘ dx‘
1 dvj 1

=  2 T‘j d X  +  2 T‘j dXj
=  1 ( dvj +

2 T‘j \  dx ‘ dxj

Now we use the linear viscosity assum ption t =  2pe. This gives

1

(4.13)

Tij(Vv)ij =  1 • 2pejj (V v +  V v T) .2 r v V /jj

2 p (V u T +  V u )ij (V v +  V v T).j . (4.14)
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To addresss the boundary integral in (4.12) we consider the boundary subdomains sepa­

rately. We write d Q =  r bu r su r r u r , w ith the subscripts signifying the glacier bed, surface, 

and right and left boundaries respectively. On r s, the stress-free boundary condition (2.37), 

i.e. a  ■ n  =  0, gives

At the base we ensure th a t — J r  n  ■ a  ■ v vanishes by requiring th a t v |p b =  0. Because 

the normal vector on r  is the opposite of the normal on r r , the integrals over the lateral 

boundaries will cancel each other if v and a  are periodic. We therefore investigate what 

periodicity requirem ents on u  and p are necessary to  ensure th a t (a  ■ n ) |p ; =  —(a  ■ n ) |p r . 

Because n  =  ± (1 ,0 ) we have

similar to  the boundary condition (3.5) in th a t it enforces two periodic constraints on the 

partial derivatives of u .

We can now sta te  the variational form of the problem. Define the function spaces

(4.15)

a n (4.16)

It therefore suffices to  require periodicity in du1 , in the sum lU1 +  du2 , and in p. This is

u  e  H : (Q)2 : u | r b
du i d u i d u 2

u , - — ,  ----- + - —
d x 2 d x 1

H Eo =  {v e  H  1(Q)2 : v |r r =  v |r ;, v |r 6 =  0 }

=  {P e  T 2(Q) : p |pr =  p |p; }.

E o

(4.17)

(4.18)

(4.19)

We say th a t the pair (u ,p ) e  H E  x P E is a weak solution  and th a t (u ,p ) solves the 

variational problem  if for all (v, q) e  HE0 x L 2(Q) we have

1 p  I (V u T +  V u) : (V v +  V v T) — j
2 In .InJo. Jn

pV  ■ v =  p g  ■ v,/ n
(4.20)

(4.21)
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This pair of equations is, perhaps surprisingly, equivalent to  their sum

1 p  I (V u T +  V u) : (V v +  V v T) — j pV  ■ v +  f  qV ■ u  =  p /  g  ■ v. (4.22)
2 n n n n

To see this, note th a t if (4.22) holds for all (v, q) e  HE0 x L 2(Q), then  it holds for all (v, 0) 

which implies (4.20). Similarly we can take v =  0 in (4.22) to  obtain (4.21).

In the variational form of the problem we are requiring only th a t (u ,p ) e  H E  x P e , 

so the velocity has square-integrable first derivatives and the pressure is merely square 

integrable. These are much weaker requirem ents than  in the strong form (2.26), where u  

needs second derivatives and p needs first derivatives. This difference is the origin of the 

terminology strong and weak for these problems and their solutions. A strong solution, if 

we can find it, will also be a weak solution, bu t the converse is not obviously true.

4 .3  D is c re t is a tio n

The weak form ulation derived above is still a continuous problem stated  in term s of infinite­

dimensional vector spaces1. The exact solution may not be available. However, we can 

approxim ate the weak form by a discrete problem stated  in term s of a finite-dimensional 

vector space. The idea of the finite element m ethod is to  reduce the num ber of constraints: 

we will accept a pair (u ,p ) as an approxim ate solution if it satisfies (4.22) for each (v, q) in 

a fin ite -dimensional subspace of H E 0 x L 2(Q). We will prove th a t there exists a unique such 

pair in a finite-dimensional space approxim ating H E  x P e . We begin with the description 

of these finite-dimensional subspaces and the construction of useful bases for them . Once 

th a t is accomplished, we show how to  construct a system  of linear equations whose solution 

determines u  and p.

4 .3 .1  S om e f in ite  d im e n s io n a l fu n c t io n  sp a ce s

Consider a triangular mesh with n  nodes on Q, th a t is, a triangulation of Q such th a t the 

union of the interiors of the edges is disjoint from the set of nodes (vertices). Let M  denote 

the subspace of L 2 (Q) consisting of continuous functions which are linear in the interior of

x It is customary to note that H E is a vector space only when w =  0. For other w it is an affine 
translation of the w =  0 case. By a subspace of such a translate we mean a suitable translate of a subspace 
of the w =  0 space.
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Figure 4.1. A pressure basis function 0 . e  M  graphed on the edges of a triangular mesh.

each triangle. A function q e  M  is determ ined within each triangle by its values on the 

three vertices of the triangle, and hence q is uniquely determ ined by its values on the n 

nodes. This indicates th a t M  is an n-dim ensional vector space. We specify the convenient 

basis {0o, • • • , 0 n -1 } where 0 . is the unique function in M  taking the value 1 a t the i-th  

node and 0 a t all o ther nodes. A typical 0 . is depicted in Figure 4.1.

For the velocity we use a richer function space, for reasons th a t will become clear later. 

We begin by defining the scalar function space to  which the velocity components will belong. 

Using the same triangular mesh, let X  denote the set of continuous functions which are 

biquadratic in the interior of each triangle, i.e, the continuous functions whose restrictions 

to  any triangle have the form

2 2c1x +  c2z +  c3xz +  c4x +  c5z +  c6

for some constants c.. There are six constants, so a function in X  is uniquely determ ined 

within each triangle by its value a t six distinct points on th a t triangle. We choose to  specify 

functions in X  by giving their values on the m idpoints of each edge and on the vertices. 

This scheme gives the required six points on each triangle and also ensures continuity 

across edges, since quadratic functions on a segment coincide if they agree a t three points.
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Figure 4.2. An ordering of vertices and edge m idpoints w ith n  =  16 and r  =  49.

To construct an explicit basis, let r  denote the num ber of vertices and edges in the mesh and 

let {Po, P p  ■ ■ ■ , P r -1 } be some ordering of the vertices and edge m idpoints. As a practical 

example of such an ordering consider Figure 4.2; this ordering is employed in the finite 

element software FEniCS.

We then  define the basis {^ i}̂ -1  by requiring 0 j(P /) If P i is a point, th is implies

th a t 0 i vanishes on any triangle w ithout P i as a vertex; if P i is an edge m idpoint, then 

0 i vanishes on any triangle whose boundary does not contain th a t edge. We graph two of 

these functions (0 13 and 045 according to  the ordering of Figure 4.2) in Figure 4.3.

Now define a space of vector functions X  =  X  x X  to  represent velocity fields. We choose
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3 0.67 0.33 0.67

Figure 4.3. Velocity component basis functions 0 13,0 45 e  X .

a basis {^ j} 2! ^  1 by treating  the two coordinates in sequence. Specifically, we define:

00 =  (00, 0), (4.23)

0 r - i  =  ( 0 r - i ,  0), (4.24)

0 r  =  (0,0o), (4.25)

02r-1 =  (0 ,0 r - l) .  (4.26)

The scalar basis functions 0. have the convenient property th a t 0. vanishes a t each Pj 

such th a t i =  j . For the vector basis functions the corresponding condition is given by 

interpreting the point index modulo r. T ha t is, 0 .  vanishes at each P j such th a t i =  

j(m o d  r). We therefore assume th a t all point indices are interpreted modulo r.

We now have a basis for the finite-dimensional subspaces X  c  H  1(Q) and M  c  P 2(Q). 

The space X  will contain both  the approxim ate solution u  and the test functions v. Recall 

th a t on the Dirichlet boundary r b our test functions m ust vanish and the approxim ate

velocity m ust interpolate w , and both  u  and v should be periodic. Therefore we define two
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subspaces of X :

X 0 =  {v e  X  : v |p4 =  0 for all Pi e  r 6, v |p ; =  v |p r } (4.27)

Xw =  {u e  X  : u |p 4 =  w |p4 for all Pi e  r 6, u |p ; =  u |p r } . (4.28)

The discrete form  of the problem is to  find (u ,p ) e  X w x M  such th a t (4.22) holds for

all (v ,q) e  X 0 x M . Note th a t we have discarded the periodicity requirem ents on the 

derivatives of u  in the discrete problem.

We are now ready to  set up the linear system  mentioned previously.

4 .3 .2  A  l in e a r  a lg e b ra  p ro b le m

If (u ,p ) solves the discrete problem, then we can find coefficient vectors u  e  R 2r and p  e  Rn 

expanding them  in the bases for X  and M  above:

2r —1

u  =  ^  Uj ( 4.29) 
j =0
n— 1

p =  ^  pj . (4.30)
j =0

The problem is to  determ ine u  and p . Some entries of u  are determ ined im m ediately by

the Dirichlet condition at the base. We interpolate w  by setting

(Ui ,Ui+r ) =  w L  (4.31)1 p

for each i <  r  such th a t P i e  r b.

To determ ine p  and the remaining entries of u , we suppose th a t (4.20) holds for each 

v e  X o and th a t (4.21) holds for each q e  M . For simplicity and to  mimic the procedure 

used by FEniCS, we will ignore the periodicity requirem ents of these spaces while first 

assembling the system  and account for them  later by modifying th a t system. Therefore we 

assume for now th a t a basis for X 0 is the set of 0 i such th a t P i e  r b. For each such i we
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take v =  0 . in (4.20) to  find th a t

2  /  (V u  +  V u T) : ( V 0  +  V 0 T ) — /  pV  • 0 . =  p /  g  • 0 .. (4.32)
2 n n n

Using the linearity of the inner product and the derivative, integral, and transpose operators, 

we now rewrite the first term  of (4.32). We abandon the Einstein convention since we need 

explicit control over the values taken by the indices i and j  in the sum. We have

(  2r— 1 12r — 1 \  T\
2  '
2 in

2r - 1 / 2r - 1
T

V I ]  %  0 j +  V  I S  U  0 j
V j =0 \  j =0 j  J

: ( V 0 .  +  V0T ) (4.33)

=  E  Uj ( 2  J Q (V 0 j +  V 0 T ) : (V 0 . +  V 0 T ) )  (4.34)

=  E  uj +  E  Aj uj (4.35)
j:Pj j:Pj e r

where the entries of A e  R 2rx 2r are defined by taking Ay equal to  the factor m ultiplying

Uj in (4.34). We can rewrite the pressure term  in (4.32) by expanding p:

n - 1 \  n - 1 ( r \  n - 1

E  pj 0 j I V  • 0  =  E  p m  — 0 j V  • 0 m  =  E  pj (4.36)
j =0 j =0 n j =0

where B  e  R 2rxn is defined by B .j =  — f n 0 jV  • 0 .. Hence for each i such th a t P . 0  r D, 

the following restatem ent of (4.32) holds:

n -  1 J

E  Aj uj +  E  B j p j  =  — E  Aj uj +  p /  g  • 0  (4.37)
j:Pj e r  j=0 j:Pj e r b Jn

Similarly, for each 0 <  i <  n  we take q =  0 . in (4.21) to  obtain

/  2r - 1 \  2r - 1 2r - 1
0 =  / 0 .V  • u  = 0 .V  • I E  Uj0j I =  E  Uj / 0 .V  • 0 j =  E  B^U? (4.38)

n n j =0 j =0 n j =0
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or

j:Pj
Ui.u j =  y ^  Bjiu?

j:Pj e r
(4.39)

Equations (4.37) and (4.39) constitu te a linear system where the unknowns are p  and 

those entries u  of u  th a t are not determ ined by the Dirichlet boundary condition. This 

system has the block m atrix  form

(4.40)

where A is formed from from A  by dropping the i-th  row and column whenever Pi e  T d  , B 

is formed from B  by dropping the i — th  row whenever Pj e  r D, and f  and g are given by

A B u f
B  T 0 p g

f i =  — Aij uj +  W  g ' ^
j:Pj e r D

gfc

(4.41)

(4.42)

We can combine (4.40) and (4.31) into a single larger linear system by interpreting (4.31) 

as a diagonal system. Instead of adding (4.31) as a single diagonal block, we intersperse 

these new equations in order to  replace the rows and columns th a t were discarded in forming 

A  and B  from A and B . The sparsity structure of this system is illustrated in Figure 4.4 in 

the case of the mesh and num bering of Figure 4.2. This structure deserves a bit of attention, 

if only as a review of the ideas of this section. We will make several observations about 

Figure 4.4 and then seek to  explain them .

•  Rows 0,1, 2, 3,18, 23, and 27 have nonzero entries only on the diagonal. These are 

the numbers appearing on the lower boundary in Figure 4.2 and this corresponds to 

imposing a Dirichlet condition on the horizontal component of velocity a t the base. 

The indices of the other rows with this property can be obtained by adding 49 to 

each of these numbers (thus 49,50,51,52,67,72,76), corresponding to  the imposition 

of vertical velocity 0 a t the base. These diagonal entries are not all ones in this 

implem entation; after storing the system as A we can see them  at the command line:
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Figure 4.4. Sparsity structure of (4.40) augm ented by Dirichlet conditions.

D ir ic h le tD s  = a r r a y ( [ 0 ,1 8 ,1 ,2 3 ,2 ,2 7 ,3 ,4 9 ,6 7 ,5 0 ,7 2 ,5 1 ,7 6 ,5 2 ] )  

( d ia g ( A ) [ D ir ic h le tD s ] ) .r e s h a p e ( ( 2 ,7 ) )

In  [95]

In  [96]

Out[96]

a r r a y ( [ [  2 . ,  1 . ,  3 . ,  1 . ,  3 . ,  1 . ,  1 . ] ,

[ 2 . ,  1 . ,  3 . ,  1 . ,  3 . ,  1 . ,  1 . ] ] )

The numbers in D ir ic h le tD s  can be read in order along the lower boundary in Figure

4.2 from left to  right. The corresponding diagonal entries coincide w ith the numbers 

of mesh cells adjacent to  the nodes (e.g. P 2 is adjacent to  three cells and A22 =  3).
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We cannot explain this structure  w ithout a deeper investigation into FEniC S’s m atrix  

assembly methods.

•  The lower diagonal block of zeros is small: n  x n  =  16 x 16. This is a consequence 

of our choice of a richer space for the velocity approxim ation th an  for the pressure. 

There are 16 degrees of freedom in choosing p but 2[49 — 7] =  84 for u  if we do not 

count those used to  interpolate w  on the base. The system is singular if the zero block 

is too large, so the im portance of a rich velocity space should now be apparent.

•  The system has block structure  on a medium scale and on a fine scale, beyond the 

large scale indicated in equation (4.40). The medium level, consisting of four apparent 

49 x 49 blocks, reflects the organization of equations (4.23)-(4.26) defining our con­

struction of the vectors 0 . from the scalar functions 0.. W ithin these medium blocks 

we can discern still more structure, i.e. diagonal sub-blocks of dimension 16 and 33 

respectively. This fine structure  comes from our choosing to  enum erate the vertices 

before the edges in 4.2. The numbering of the evaluation points determines the spar­

sity structure  of A. For example, A0,10 =  2 f n (V 0 10 +  V 0 T0) : ( V ^ 0 +  V ^ T) will 

vanish because we see in Figure 4.2 th a t no triangle contains both  nodes 0 and 10. 

Consequently the supports of 00 and 0 18 do not meet, and so neither do those of 0 0 

and 0 18.

We now alter our system  of linear equations to  enforce the periodic boundary conditions. 

The periodic condition is equivalent to  glueing the lateral sides of the rectangle to  form a 

cylinder, whereupon we find fewer nodes and different basis functions. If i 1 and i2 are 

indices for degrees of freedom which are to  be glued (e.g. 4 and 7 or 49 and 50 using the 

order in Figure 4.2), then  we may no longer put v =  0 .1 or v =  ^  in (4.20). These two 

equations are lost from our system. On the other hand, we can take v =  0 .1 +  0.2 in (4.20) 

as this is a periodic function; this gives an equation similar to  (4.37):

n - 1 „

E  (A*1 j +  A.2 j )Uj +  E (B *lj +  B *2j )pj =  — E  (A*lj +  A.2j )Uj +  p /  g  • (0 .1 +  0 .2 ) .
j:Pj e rD j=0 j:Pj e r D Jn

(4.43)

Indeed, this equation is the sum of the two equations we threw  out. This leaves one fewer
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Figure 4.5. Sparsity structure  with both  Dirichlet and periodic conditions.

equation but the same num ber of unknowns, a situation th a t would lead to  an underdeter­

mined system  if we did not also impose the constraint

u i1 — u i2 =  0 (4.44)

which makes the velocity u  periodic. This gives a square system once again. We illustrate 

the sparsity structure of this modified system in Figure 4.5. Note th a t our naive enforcement 

of the periodicity condition has destroyed the symmetry.

The m atched pair of mesh points in the lower corners of the rectangle deserve attention
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as a special case. Because two numbers are each equal to  a if and only if their sum is 2a and 

they are equal, our procedure for applying the periodic condition can be applied harmlessly 

to  the diagonal subsystem  if the imposed velocity a t the bed is itself periodic. It is of course 

reasonable to  restrict to  periodic w  if we want to  find a periodic u .

4 .4  S o lu tio n  o f  th e  L in e a r  S y s te m

The solution of large sparse systems of linear equations like the one constructed in the last 

section is a vast subject in its own right. Many direct and iterative m ethods are available 

to  users of FEniCS. For the 2-dimensional simulations carried out in the next chapter, the 

systems are small enough to  perm it solution by direct m ethods on my desktop com puter. I 

chose the sp o o le s  routine [AG99]. The three-dimensional simulations reported in [LJG +12] 

required solving systems with more than  two million equations many times. Because the 

systems are nonsym m etric and indefinite, the iterative GMRES m ethod forms the core of 

their algorithm . The details of the preconditioning and the special tactics adopted to  exploit 

the block structure  are beyond our scope here.
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C h a p te r  5

A  N u m e ric a l  S to k e s  S o lv e r w i th  E r r o r  A n a ly s is

5.1 A  F E n iC S -b a s e d  G lac io lo g ica l S to k e s  S o lv er

The previous chapter described the finite element m ethod for solving the Stokes system 

of partial differential equations w ith boundary conditions of Dirichlet, periodic, and no­

stress types. It is now easy to  implement this technique on a com puter using a freely- 

available general purpose finite element software package called FEniCS. In Figure 5.1 we 

give a concise script implementing the technique described above. This script is based 

on Icetools, a 2008 FEniCS-based nonlinear Stokes solver described in [Jar08], although 

there is one im portant difference which we will discuss in Section 5.3. In this section we 

use this script as an example in order to  briefly point out some of the features of FEniCS 

and its accompanying d o l f in  module for Python. More information about FEniCS and a 

comprehensive tu to ria l can be found in [LMW12].

Mesh generation is accomplished by the call to  R ec tan g le  in line 9. The last two 

argum ents indicate th a t each dimension of the dom ain is to  be divided into three equal 

segments. Each subrectangle is then divided into two triangles as in Figure 4.2. The 

resulting mesh object consists of a 16 x 2 array containing the coordinates of the 16 nodes, 

together with an 18 x 3 array of integers wherein each row lists three nodes forming a 

triangle of the mesh.

A variety of discrete function spaces are available. The argum ent ' ' CG’ ’ in lines 10 and 

11 specifies continuity, and the argum ents 2 and 1 specify piecewise quadratic and linear 

functions respectively. Having chosen these velocity and pressure approxim ation spaces V 

and Q, it is easy to  form their Cartesian product W. Line 34 defines a function U in W; its 

expansion in the basis described in the last chapter is available through U .v e c to r ( ) .

To impose a Dirichlet condition we m ust specify a part of the boundary and supply a 

function defined on th a t boundary. This is the object of lines 14-17; note th a t in this demo 

we are imposing the basal velocity = 3  +  1 .7sin ( ^ p )  in meters per year.

To define a periodic boundary condition we m ust m ark one of the two boundary zones 

th a t are to  be m atched and give a function th a t maps points x on the unm arked boundary 

to  points y on the marked boundary in a bijective fashion. Here we m ark the left boundary 

and supply the m ap th a t subtracts the length Le from the first coordinate.
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from d o l f i n  import *
””” S e t  d o ma i n  p a r a m e t e r s  and  p h y s i c a l  c o n s t a n t s ”””
L e , H e  =  4e3 , 5e2 # l e n g t h  , h e i g h t  (m)
a l p h a  =  1 * p i / 1 8 0  # s l o p e  a n g l e  ( r a d i a n s )
r h o  , g =  9 1 7 ,  9 . 81  # d e n s i t y  ( kg  m— 3) ,  g r a v i t y  (m s ec  —2)
mu =  1 e 14 # v  i s  c o s i t y  (Pa  s e c  )
G =  C o n s t a n t  ((  s i n  ( a l p h a  ) * g * r h o ,  — c o s ( a l p h a )  * g * r h o ) )  # b o d y  f o r c e  
””” D e f i n e  a mes h  and  some  f u n c t i o n  s p a c e s ””” 
m esh =  R e c t  a n g l e  (0 , 0 , Le , H e , 3 , 3)
V =  V e c t o r F u n c t i o n S p a c e  ( m e s h , ”CG” , 2) #pw q u a d r a t i c  ( v e l o c i t y )
Q =  F u n c t i o n S p a c e  ( m e s h , ”CG” , 1) #pw l i n e a r  ( p r e s s u r e )
W  =  V * Q # p r o d u c t  s p a c e
” ” ” D e f i  n e t h e D i r i c h l e t c o n d i t i o n a t t h e b a s e ”””
d e f  L o w e r B o u n d a r y ( x , o n _ b o u n d a r y ):

re tu r n  x [ 1 ]  <  DOLFIN_EPS and o n _ b o u n d a r y  
S l i p R a t e  =  E x p r e s s i o n  ( ( ” ( 3 + 1 . 7  * s i n ( 2  * p i / % s  * x [ 0 ] ) ) / 3 1 5 5 7 6 8 6 . 4  ”%Le , ” 0 . 0 ” )) 
bcD =  D i r i c h l e t B C  (W. s u b  (0)  , S l i p R a t e ,  L o w e r B o u n d a r y )
” ” ” D e f i  n e t h e p e r i o d i c c o n d i t i o n on t h e l a t e r a l s i d e s ” ” ” 
c l a s s  P e r i o d i c B o u n d a r y _ x (  S ubD om ain  ) : 

d e f  i n s i d e ( s e l f  , x ,  o n _ b o u n d a r y ):
re tu r n  x [ 0 ]  = =  0 and o n _ b o u n d a r y  

d e f  m a p ( s e l f  , x ,  y ) :  
y [0] =  x [0] — Le 
y [ 1 ]  =  x [ 1 ]  

p b c _ x  =  P e r i o d i c B o u n d a r y _ x  () 
bc P  =  P e r i o d i c B C  (W. s u b  (0)  , p b c _ x )
” ” ” D e f i  n e t h e v a r i a t i o n a l p r o b l e m  : a (u , v )  =  L  (  v )  ”””
( v _ i ,  q_i  ) =  T e s t F u n c t i o n s  (W)
( u _ i ,  p_i  ) =  T r i a l F u n c t i o n s  (W)
a =  ( 0 . 5  *mu* i n n e r  ( g r a d  ( v_i  ) +  g r a d  ( v_ i  ) .  T,  g r a d  ( u_ i  ) +  g r a d  ( u_ i  ) .  T)  \

— d i v ( v _ i )  * p_i  +  q_i  * d i v  ( u _ i ) ) * dx 
L =  i n n e r ( v _ i  , G) * dx 
””” M a t r i x  a s s e m b l y  and  s o l u t i o n ”””

U =  F u n c t i o n  (W)
s o l v e  ( a = = L , U , [ bcD , b cP  ])
””” S p l i t  t h e  m i x e d  s o l u t i o n  to r e c o v e r  u and  p ”””
( u ,  p )  =  U.  s p l i t  ()

Figure 5.1. A numerical Stokes solver in 37 lines using FEniCS.
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The variational form of the problem is defined in lines 28-32. The power of this software 

is apparent when we compare the command

a = (0 .5 * m u * in n e r(g ra d (v _ i)+ g ra d (v _ i) .T , g r a d ( u _ i )+ g r a d ( u _ i) .T ) \

-  d iv (v _ i)* p _ i  + q _ i* d iv (u _ i)  )*dx

to  the quantity

1  ̂  I (V u T +  V u) : (V v +  V v T) — j pV  • v +  f  qV • u
2 «/n Jo J q

which formed the left hand side of the variational equation (4.22). The actual com putation 

of these integrals for our particular mesh is done automatically.

The linear system of equations is assembled and solved by the so lv e  command, which 

takes as argum ents the variational formulation, a F u n c tio n  object to  store the solution, 

and a list of boundary conditions. This command uses a default direct solver. If we want 

to  specify a solver or examine the assembled m atrix, we can take more control over this 

process by replacing the so lv e  command with a sequence such as

A,bb = assem b le_system (a ,L ,bcD ) 

b cP .ap p ly (A ,b b )

s o lv e ( A ,U .v e c to r ( ) ,b b ,’s p o o le s ’ )

which replicates the assembly process described in the last chapter. The symm etric sys­

tem  of Figure 4.4 is obtained by calling s p y (A .a r r a y ( ) )  following the assem ble_system  

command, using the module p y lab . The periodic conditions are applied in an asymm etric 

m anner in the next line, producing the system depicted in Figure 4.5. Finally the system 

is solved w ith the sparse LU solver sp o o le s  [AG99].

This script can easily be modified for the three-dimensional case. We replace R ec tan g le  

with Box in line 9, add a new periodic boundary condition, and make a few minor ad just­

ments such as adding a th ird  component to  the gravity vector G.

5.2 E r r o r  A n a ly s is

The analytical results of C hapter 3 allow us to  measure the errors of our numerical solver 

directly. In this section we give numerical evidence th a t the FEM  solutions converge to  the 

analytical solutions and we quantify the convergence rate  in several norms.
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Recall th a t we are imposing a basal velocity consisting of a single sine frequency. In 

this case the formulas (3.54), (3.56), and (3.68) giving exact solutions reduce to  the simpler 

expressions:

, . A iH 2a i sin(Aix)
“ (X' Z) =  A'2/ e  +cosh^(A 1H )

A1 cosh(A1 z) — -1  cosh(A1H ) (  sinh(A1(z — H )) (5.1)
H  V

+  A1Zcosh(A1(z — H }}) +  cosh(A1 H > — H H  sinh(A1 H} • (cosh(A 1(z — H ))

w(x, z) =

+  A1z sinh(A1(z — H ))

—A1H 2a 1 cos(A1x) 
A2H2 + c o sh 2(A1H )

. g1H  g1 2
+  a 0 + z — — z

sinh(A1z) — -1  cosh(A1 H  )z sinh(A1(z — H )) (5.2)
H

cosh(A1H ) — A1H sinh(A 1H ) . . .

+  V 1 7 A H zcos h( A1 (z — H ))

p ( x , z ) =  92(2 — H ) +  2MA?Ha1
A2H2 +  cosh2 (A1H )

sinh(A1z) — cosh(HA1) cosh (A1(z — H )) 
A1H

(5.3)

We use the param eters appearing in the script of Figure 5.1, i.e. L =  4000, H  =  500, a0 =  

3/31557686.4, a 1 =  1.7/31557686.4, A1 =  n /2 0 0 0 ,^  =  1014, g =  9.81 * 917(sin(1), — cos(1)). 

Note th a t w ith H  =  500, the frequently occurring quantity  A1H  is equal to  n /4 .

We write these exact formulas as E x p re ss io n  objects. For example, the pressure is 

represented by

p_E = "% s*(x[1] -  %s)+ 2*°/oS*pi/4*yos*0/oS*cos(0/o S * x [0 ])/(p o w (p i,2 )/1 6 + p o w (\ 

c o s h (p i /4 ) ,2 ) )* ( s in h ( % s * x [ 1 ] ) -  4 * c o s h ( p i /4 ) /p i* c o s h ( / s * x [ 1 ] - p i /4 ) ) " \  

y (g2 ,H e ,m u ,L a1 ,a1 ,L a1 ,L a1 ,L a1 ) 

p_E_Expr = E xp ression (p_E )

FEniCS provides autom atic com putations of errors in several norms, but only by com­

paring F u n c tio n  objects. To make use of this capacity we m ust first interpolate the exact 

solutions using the command p_e = in te rp o la te (p _ E _ E x p r,Q 1 ) after defining the inter­

polation space Q1. This interpolation, however, introduces further errors which are difficult 

to  separate from the original numerical errors.

We therefore use a direct comparison th a t avoids interpolation altogether. The FEM
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Figure 5.2. Errors in FEM  velocity and pressure plotted against maximum element diam e­
ter, together w ith convergence rates m.

im plem entation gives solutions u and p stored as vectors expanding these functions in the 

basis described in the previous chapter. The entries are the function values a t mesh points 

(or in the case of velocity, edge m idpoints as well). We evaluate the exact solutions a t these 

points as well and m easure the difference between these vectors in the and norms.

Errors for the the script given above are reported in Figure 5.2. We use an aspect ratio 

of 1:8 for the dom ain and our mesh construction divides the dom ain into an equal num ber of 

vertical and horizontal pieces. We let the num ber of subdivisions range from 3 (as it appears 

in line 9 in Figure 5.1) up to  60. For these meshes, the m aximum  element diam eter ranges 

from 1344 down to  67. Experim entation shows th a t numerical errors s ta rt to  interfere with 

convergence on meshes of maximum diam eter less th an  100. The convergence rates m are 

obtained by fitting a first-degree polynomial to  the logs of the d a ta  appearing in Figure 5.2 

(using the normal equations to  solve the least-squares problem).

5.3 Im p ro v e m e n t o f  Ic e to o ls , a  F E M  S to k e s  S o lv er

One consequence of d istributing open-source software is the possibility th a t users will im­

prove it by identifying errors. This section identifies an error in the variational form used
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in Icetools and suggests a simple correction.

The paper [Jar08] does not give details about the variational form ulation used to  solve 

the linear problem. The demo uses the forms

a = ( in n e r ( g r a d ( v _ i ) ,  n u * g ra d (u _ i))  -  d iv (v _ i)* p _ i  + q _ i* d iv (u _ i) )* d x  

L = in n e r ( v _ i ,  f )* d x

and so the original Icetools code evidently solves the variational equality

p  /  V v : V u  — pV  ■ v + qV ■ u  = g  ■ v. (5.4)
Jo Jo Jo Jo

This equation is more common in m athem atics tex ts th an  (4.22). For example, it appears 

on p. 279 of [DH03] if we take t  =  0 in the N eum ann condition

d u
—p n  +  p —  =  t  (5.5)

d n

applied at the upper surface. W ith  t  =  0 and since n  =  (0,1) on the upper surface, we can 

write (5.5) in the coordinate form

du
=  0 M

—P +  =  0. (5.7)

It is unclear, however, why this Neum ann condition is equivalent to  the stress-free condition 

a  ■ n  =  0. Indeed, we can use the analytical results from [BR85] as discussed in C hapter 3

to  show th a t the two conditions are not equivalent. Recall th a t we gave an exact formula

for fU L= h  in (3.83). In the simple case where the imposed basal velocity has the form 

3 +  1.7 sin (2nL), this gives

du  A2#  cosh(A iH )
d Z (^  ) =  — A2# 2 +  cosh2(A iH )+ r ( x ,H ) =  — ' 2 J 2 ;,2^ , , ■ 1.7sin(Aix) (5.8)

with A1 =  2 n /L  =  2n/4000. Clearly this quantity  does not vanish for all x, and so the 

analytical solution u  violates (5.6) and also (5.5). On the o ther hand, we showed in Section

3.8 th a t this velocity solution along with the corresponding pressure yields zero stress a t the
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Figure 5.3. H 1 convergence of velocity using the recommended form (4.22) and the Icetools 
form (5.4).

surface. In light of this counterexam ple, (5.4) and (5.5) should be regarded as unsuitable 

for use in a glaciological context.

To give numerical evidence, we try  both  variational forms for increasingly fine meshes 

and compare the results w ith exact solutions. The errors for the current Icetools code 

and for the recommended script illustrated above are plotted in the H 1 norm  in Figure 

5.3. The errors were com puted by the command e rro rno rm  following interpolation of the 

exact solution to  the finite-dimensional velocity space. The variational form (5.4) does not 

generate convergence to  the analytical solution.

There is one exception to  this conclusion, and this exception is exactly the case th a t 

was used for verification in [Jar08]. If a no-slip condition applies everywhere on the lower 

boundary, (3.83) yields (x, H ) =  0 and (3.88) yields (x, H ) =  0. Therefore we can 

enforce (5.5) by taking p =  0 at the surface, and the stress-free condition is then  equivalent 

to  the Neum ann condition (5.5). The nonlinear model proposed in [Jar08] is a Picard
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iteration where the linear problem we have considered is solved repeatedly. T ha t paper 

describes a verification where the ou tpu t was tested numerically against a known exact 

solution for the nonlinear case with a no-slip condition at the base. The first linear problem 

in the iteration was precisely the special case where (4.22) and (5.4) give the same answer. 

It is plausible th a t the two bilinear forms are equivalent whenever the flow is parallel, which 

remains the case throughout this P icard iteration. The Icetools model was never tested 

against a non-parallel exact solution such as th a t given by [BR85] in the linear case. The 

presence of such an error in a recent published model dem onstrates the continued relevance 

of exact solutions such as those in [BR85].

Fortunately for users of Icetools, the problem is very easy to  remedy. The line

a = ( in n e r ( g r a d ( v _ i ) ,  n u * g ra d (u _ i))  -  d iv (v _ i)* p _ i  + q _ i* d iv (u _ i) )* d x

should be replaced by

a = (0 .5 * n u * in n e r (g ra d (v _ i)+ g ra d (v _ i) .T , g r a d ( u _ i )+ g r a d ( u _ i) .T ) \

-  d iv (v _ i)* p _ i  + q _ i* d iv (u _ i)  )*dx

This suffices to  give the superior results of Figure 5.3 for non-parallel linear-viscosity flows.
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C h a p te r  6 

C o n c lu s io n

In this work we considered the problem of determ ining linear Stokes flows on a rectangle 

w ith an arb itrary  imposed basal velocity, a no-stress condition at the surface, and periodic 

conditions on the lateral sides. We extended an earlier result giving exact solutions by 

providing expressions for the pressure and basal stress. We then used the finite element 

m ethod to  solve the same problem and discussed the convergence of an im plem entation in 

FEniCS.

This work could be extended in several directions in the future. On the numerical side, 

we can address the nonlinear problem by iterating the algorithm  presented in C hapter 5. 

G enerating more interesting domains and extending the algorithm  to  3D problems should 

both  be straightforw ard in FEniCS. Following [LJG+12], we can implement the linear sliding 

law instead of the Dirichlet condition at the base. This would provide a simple open-source 

nonlinear Stokes solver, verified in the linear case against the exact solutions of C hapter 

3. On the analytical side, replacing the Dirichlet condition w ith the linear sliding law for 

constant-viscosity flow may lead to  another tractab le  problem and more exact solutions. 

We could then  impose the friction profile ^ 2(x) instead of obtaining it as an output.
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