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Abstract

Knowledge of the population structure of a species is essential for its effective 

management and sustained production. Although Pacific ocean perch (Sebastes alutus, 

POP) is an important species both economically and ecologically, little is known about its 

population structure and life history in Alaskan waters. The objectives of this study were 

to describe the population structure of POP in terms of the numbers and geographic scale 

of local populations, their connectivity, and the compatibility of that structure with 

current management. Fourteen microsatellite loci were used to characterize the 

population structure genetically in eleven geographically distinct collections from sites 

along the continental shelf from the Queen Charlotte Islands to the Bering Sea. In spite 

of the many opportunities for most life stages to disperse, there was strong geographically 

related genetic structure (F st =0.0123, p < 10'5). Adults appear to belong to 

neighborhoods that exchange genetic information at relatively small spatial scales (14 to 

90 km). Although this suggests limited movement, connectivity is evidenced by the 

isolation-by-distance relationship, the apparent northwestward movement of gene flow in 

the Gulf of Alaska (GOA), and the break in geneflow in the central GOA. The observed 

population structure has a finer geographic scale than management areas, which suggests 

that current fisheries management should be revisited.
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Introduction

The Pacific ocean perch (Sebastes alutus, POP) is one of more than 100 species of 

rockfishes worldwide, most of which are distributed in the northern Pacific Ocean. 

Rockfishes are an ecologically diverse and economically important group of marine 

fishes; consequently, their conservation is of interest to fisheries managers (Lyubimova 

1963, Westrheim 1975, Love et al. 2002). Pacific ocean perch, the most abundant 

rockfish in Alaskan waters, occurs along the Pacific Rim, ranging south to California and 

west to Japan. They have been fished extensively throughout their North American range 

since the 1940’s. Like many rockfish species, POP are long-lived and late-maturing 

(Paraketsov 1963, Gunderson 1977, Lunsford 1999, Hanselman et al. 2003, Spencer and 

Ianelli 2005). These life history characteristics and the general lack of knowledge 

regarding their population structure make POP, and most rockfishes, difficult to manage 

for commercial harvest.

Although the biology of some species of rockfish have been well studied, 

relatively little is known about the life history characteristics or population structure of 

many species distributed in Alaskan waters, including POP. Much of the life history 

information for POP was obtained from studies of British Columbia stocks (Gunderson 

1971,1972,1974, Leaman and Kabata 1987, Leaman 1991). Pacific ocean perch are 

viviparous; consequently, knowledge of the timing and locale of larval release and the 

distances larvae and juveniles disperse is essential in understanding their distribution, life 

history, and critical habitats (Moser and Boehlert 1991). After insemination females may 

migrate into deep water (500-700m) where they stay for the winter months until larvae
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are released in the spring; however, the precise locations and depths are not known 

(Gunderson 1972, Love et al. 2002). Because their larvae are planktonic for several 

weeks to a few months before they settle as juveniles, oceanic currents could play a role 

in their dispersal and survival (Carlson and Haight 1976, Ainley et al. 1993). Adult 

aggregations, composed of fishes age 6 and higher, are commonly found on shelf/slope or 

shelf/gully breaks along the continental shelf, are planktivorous, and are generally semi- 

demersal (Carlson and Haight 1976, Gunderson 1977,1997, Scott 1995). More studies 

are needed to understand population distribution, location of critical habitats throughout 

the POP life span, and the times of year when these habitats are necessary for survival.

The life history of POP and past fishing records indicate that they, like many 

rockfishes, are vulnerable to over harvesting. During the 1960’s and early 1970’s, POP 

were intensely targeted by a foreign trawl fishery, which was composed mostly of 

Japanese and Soviet vessels (Ito 1986). Between 1967 and 1984, Alaskan POP stocks 

were reduced by 80% from virgin biomass estimates throughout their range (Gunderson 

1977, Ito 1986, Hanselman et al. 2005, Spencer and Ianelli 2005). The domestic fishery 

took over in 1985 and continued to grow until 1991. From 1991 to 1996, the fishery was 

restructured and management practices were changed to encourage the rebuilding of POP 

stocks (Ianelli and Heifetz 1995, Hanselman et al. 2005). Since 1996, catches of POP 

have increased and there is evidence for increased recruitment and biomass. However, 

characterization of their population structure and life history is still necessary to 

understand their demography, which is the basis of any meaningful management design 

(Hanselman et al. 2005)
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Detecting population structure in marine species can be challenging. Many 

populations do not have obvious physical boundaries and the limiting biological or 

ecological factors may be difficult to observe. In addition, many species have the 

opportunity and ability to disperse long distances as larvae, juveniles, or adults. Many 

previous studies in the marine realm have been unable to detect population structure, and 

other studies detected only weak structure (Gold et al. 1994, Palumbi 1994, Garoia et al. 

2004). Demographic attributes, such as large population sizes and complicated age 

structures, and life history characteristics, such as planktonic larvae and mobile adults, 

may explain the weak population structures observed in some species (Waples 1987,

Gold et al. 1994, Palumbi 1994). In addition, the genetic tools that have been used in 

many previous studies have had low resolution. One of the consequences of the inability 

to detect population structure is the possible erroneous inference by many fisheries 

scientists that most marine organisms disperse widely and are genetically panmictic.

Even in a continuously distributed species, population sub-structure can occur if 

the average movement of an individual between birth and reproduction is much less than 

the species range. When movement is limited, genetic exchange will only take place 

among individuals in close geographic proximity to each other, which creates genetic 

structure within the species range. Consequently, genetic divergence over geographic 

distance may reflect the geographic scale of the population structure (Wright 1943, 

Matala et al. 2004a, 2004b). The existence of structure in commercially harvested marine 

fishes that have been presumed to be panmictic populations may expose them to 

overfishing and reduced productivity.
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In large marine populations, limited dispersal may not result in substantial 

population divergence, as measured by parameters such as Fst, which is a standardized 

measure of genetic divergence among populations (Wright 1956, Weir and Cockham 

1984). Consequently, low levels of divergence (small Fsts) do not necessarily signal lack 

of genetic isolation or structure, and may be consistent with restricted demographic 

exchange (Stepien 1999, Palumbi 2003). Currently used genetic markers can reveal 

small departures from panmixia, even in large marine populations. Recently developed 

biochemical genetic markers, such as microsatellite analysis, provide tools that can 

increase the resolution of population structure (e.g., Ruzzante et al. 1998, Roques et al. 

1999,2002, Withler et al. 2001, Buonaccorsi et al. 2002, Olsen et al. 2002, Cope 2004, 

Matala et al. 2004a, 2004b, Saillant and Gold 2006). Research conducted with 

microsatellites has uncovered evidence for finer-scale structure than was previously 

recognized in a number of species, including rockfishes. However, many of the 

analytical methods that are used to estimate characteristics of population demographics 

from genetic data yield undependable results when applied to species that have low levels 

of divergence (Waples 1998, Latch et al. 2006, Waples and Gaggiotti 2006). Even so, 

these results can provide some useful insights if the assumptions underlying the statistical 

tests are considered and an array of parallel analyses are used to evaluate the genetic data. 

For many marine populations, genetic analysis is the only practical method to investigate 

population structure and its underlying demographics for use in effective fisheries 

management.



An allozyme study in the mid-1980s proposed that Alaskan POP were genetically 

similar throughout their range, but a weak geographic cline observed at a single locus 

suggested that population structure might be present but that better tools would be 

required to resolve it (Seeb and Gunderson 1988). This structure could be explained if 

adults remain in a limited area and larvae that successfully recruit do not move far from 

their natal region even when there are opportunities to disperse (Stepien 1999, 

Buonaccorsi et al. 2002,2004, Taylor and Hellberg 2003). Microsatellite studies have 

also been used to characterize rockfish life history, determine effective management 

scales, estimate gene flow, and hypothesize patterns of dispersal in larvae (e.g., Roques et 

al. 1999,2002, Rocha-Olivares and Vetter 1999). A recent study of POP that was based 

on microsatellite variation reported genetically distinct populations in British Columbia 

within a small geographic area (Withler et al. 2001). However, the results of this study 

cannot be extrapolated to stocks of Alaskan POP, because the structure of the British 

Columbia populations occurred in a restricted area and appeared to be associated with the 

prevailing currents within this area.

In this study I used microsatellites to explore the population structure and 

resultant demographic implications for management of harvest of POP in Alaskan waters. 

The specific questions I asked were: (1) Is geographic population structure detectable in 

Alaskan waters? (2) If divergence or structure exists, what is the nature of this structure 

and its geographic scale and how are the populations connected? (3) Did historic 

influences, such as the large decline in POP abundance, leave a genetic signature that can 

be detected? and (4) Is the population structure observed compatible with current
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management? Previous studies of POP and other Alaskan rockfishes reported low Fsts, 

consequently, I used multiple parallel statistical procedures, when available, to address 

these questions.

Materials and Methods

Sample Collection and DNA Isolation

Alaskan POP samples were obtained opportunistically by National Marine 

Fisheries Service (NMFS) Auke Bay Laboratory personnel on trawl surveys in 1999, 

2000,2002,2003, and 2005. Tissue samples were taken from fish caught in the Bering 

Sea and the Gulf of Alaska (GOA). The numbers of fish sampled at any one site ranged 

from 15 to 100 (Table 1, Figure 1). Collections were pooled geographically for analysis 

into eleven “populations”: Queen Charlotte Island (QCI), Cross Sound (CSS), Yakutat 

(YAK), Cordova (CORD), Kodiak (KOD), Shumagins (SHU), Akutan (AKU), Central 

Aleutians (ALE), Western Aleutians (WAL), Southern Bering Sea (SBS), and Central 

Bering Sea (CBS). The geographic areas represented by some of the pools included 

multiple trawls, but all collections pooled into a “population” were caught within a radius 

of 100 km and all, except SBS, were caught in the same year (Table 1).

Tissue was dissected from specimens, placed in DNA preservative (Seutin et al. 

1991), and stored at -20°C. Total genomic DNA was isolated from the tissue samples 

using the Puregene DNA™ (Gentra Systems, Minneapolis, MN) isolation protocol.

DNA was rehydrated with IX TE (0.01M Tris-HCl, 0.001M EDTA, pH 8.0) and stored 

at -20°C until it was analyzed.
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Table 1. Location and dates of Pacific ocean perch (S. alutus) sample collections.

Collections were grouped geographically into “populations” based on geographic 

proximity (n is the number of fish sampled at each location). Bold entries for latitude and 

longitude are weighted averages for multiple hauls in one geographic area and represent 

the sample sizes and coordinates used for each of the eleven “populations”.

Sample no. Sample name___________________________Year______ n_________Latitude_________ Longitude
1 Queen Charlotte Island (QCI) 1999 46 54.460 -133.480

2 54.660 -132.970
2 54.630 -132.870

combined totals 50 54.475 -133.435

2 Cross Sound (CSS) 2005 100 58.205 -137.134
3 Yakutat (YAK) 2005 100 58.775 -140.426
4 Cordova (COR) 1999 100 59.270 -146.350
5 Kodiak (KOD) 1999 49 56.100 -153.500
6 Shumagins (SHU) 2005 100 54.677 -158.365
7 Akutan (AKU) 1999 18 53.060 -166.530

6 53.200 -166.200
21 54.000 -165.330
2 53.300 -165.300
7 53.850 -163.890

combined totals 54 53.552 -165.639

8 Central Aleutians (ALE) 2000 50 51.860 -174.170
50 52.210 -172.950

combined totals 100 52.035 -173.560

9 West Aleutians (WAL) 2000 50 52.380 -179.690
10 Southern Bering Sea (SBS) 2000 48 55.020 -167.300

2000 51 55.410 -168.450
2003 50 56.100 -168.440
2003 50 56.020 -168.210

combined totals 199 55.638 -168.100

11 Central Bering Sea (CBS) 2002 50 58.620 -174.660
50 57.790 -174.190

combined totals 100 58.205 -174.425

GRAND TOTAL 1002



Figure 1. Map of collection sites and geographic groupings.

Geographic groupings are: Queen Charlotte Islands (QCI), Cross Sound (CSS), Yakutat (YAK), Cordova (COR), 

Kodiak (KOD), Shumagins (SHU), Akutan (AKU), Central Aleutians (ALE), Western Aleutians (WAL), Southern 

Bering Sea (SBS), and Central Bering Sea (CBS). Solid black lines represent management areas.



Microsatellite Amplification

After thirty microsatellite loci were tested for suitability, preliminary surveys 

were conducted with 17 loci: pSall, pSal2, pSal3, pSal4, pSal6 (Miller et al. 2000); 

pSR7-2, pSR7-25, pSR7-7 (Westerman et al. 2005); [JSma7, |jSma5, and |jSmal 1 

(Wimberger et al. 1999); |jSeb33 (Roques etal. 1999); |JSpi4, pSpi6, |jSpil0, |JSpi 12 

(Gomez-Uchida et al. 2003); and pSth3B (Sekino et al. 2000). Three loci (pSmal 1, 

pSeb33, and pSr7-25) were removed from the analysis because they appeared to have 

abundant null alleles; fourteen microsatellite loci were used for the subsequent survey. 

Protocols differed for specific loci; but all were 10 |Jl reactions that included 

approximately 1 unit of Taq polymerase and final concentrations of: IX PCR buffer 

(50mM KCI2, lOmM Tris-HCl pH 9.0,0.1% Triton x 100; Promega™, Madison, WI),

0.5 pM deoxyribonucleotide triphosphates, and approximately 0.05 to 0.10 pg DNA 

template; MgCl, primer, and DMSO concentrations were adjusted to optimize the 

reactions (Table A-l). Reactions included primers labeled with one of two ERDye® 

infrared dyes (LI-COR, Lincoln, Nebraska), which fluoresce at either 700 or 800 nm, to 

visualize the PCR products. The amplification profile was: 95°C for 5 min; 25-35 cycles 

of 0.5-0.75 min at 95°C, 0.5-0.75 min at annealing temperatures that ranged from 46°C to 

60°C (Table A-l), and 0.5-0.75 min at 72°C; and 72°C for 3 min.

Microsatellite Analysis

Following PCR-amplification, 0.4 to l.Opl of each sample and a LI-COR DNA 

standard (50-300bp) were loaded onto either a 0.25 or 0.4mm, 6% polyacrylamide gel 

(19:1 acrylamide/bisacrylamide) and run in IX TBE (0.09M Tris-Borate, 2mM EDTA,
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pH 8.3) buffer. Fluorescently labeled PCR products were visualized by using either a LI- 

COR LongReadIR™ 4200 or a LI-COR 4300 DNA sequencing system. Gels were run at 

1500V for 1.5 to 2.0 hours, depending on the size of DNA fragments. Images of the gels 

were analyzed with the allele scoring program SAGA™ v3.2 (LI-COR, Lincoln, 

Nebraska).

Data Analysis

Allele frequencies were estimated with the software MSA (Dieringer and 

Schlotterer 2003) and GENEPOP v.3.2 (Raymond and Rousset 1995). Tests of 

conformance to Hardy-Weinberg frequency expectations (HWE) were performed for all 

combinations of loci and populations and evaluated with a pseudo-exact test in 

GENEPOP v.3.2. Tests of linkage disequilibrium between the locus pairs were 

performed with GENETIX v. 4.03 (Belkhir et al. 2004). A G-test, for which significance 

was evaluated by using Monte Carlo simulations, was also performed with this software 

to test for pairwise divergence between collections. Multiple testing was corrected with a 

sequential Bonferroni adjustment that had an overall a  of 0.05 (Rice 1989).

The data were examined for correlations between genetic and geographic distance 

by an isolation-by-distance (IBD) model (Wright 1943, Mantel 1967). Geographic 

distances between collections were great circle distances along the continental shelf, with 

paths that circumscribed land masses. Pairwise (between collections) and individual Fst 

(0; Weir and Cockerham 1984) statistics were estimated with GENEPOP v.3.2, and 

plotted as Fst/(1-F st) (Rousset 1997) against the corresponding geographic distance (km) 

to determine if there was a linear relationship. The same method was used to determine
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the relationship when populations were separated into eastern and western GOA, and an 

ANCOVA analysis was used to compare the slopes of these two groupings. Isolation-by- 

distance analysis was also performed with geographic distance and genotype likelihood 

ratios ( D l r , Paetkau et al. 1997) as suggested in (Castric and Bematchez 2004).

Genetic divergence was also used to examine the similarities between collections 

by calculating genetic distances. Trees were constructed from chord distances (Cavalli- 

Sforza and Edwards 1967), which were estimated with the computer program PHYLIP 

v.3.5 (Felsenstein 1993) with the CONTML program (Felsenstein 1993), a restricted 

maximum-likelihood method. Unrooted neighbor-joining trees (Saitou and Nei 1987) 

were also constructed to compare topologies. Treeview v. 1.6.6 (Page 1996) was used to 

graph these relationships. Principal components analyses included alleles that had 

frequencies greater than 0.07 in at least one population. This approach reduced the 

influence of low-frequency alleles but incorporated most of the variation observed among 

populations. Allelic frequencies for each population were arcsine-square-root 

transformed and analyzed using SYSTAT v.l 1 (Systat Software Inc., Richmond, 

California) to obtain loadings of the first five components. The sum of the products of 

the component loadings and the arcsine-square root-transformed allele frequencies were 

used to plot the principal components for each geographic group.

I tested for correlations between allele frequencies and sample location to identify 

the primary allelic contributors to the divergence among collections. Tests were 

performed to estimate the correlations of the allele frequency with sample location by 

using both numeric order (east to west) and geographic (great circle) distances. Alleles
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that were highly correlated with geographic location and had an average frequency of at 

least 10% over all collections were further analyzed by regression analysis with SYSTAT 

v . l l .

Clustering algorithms, which identify groups of genetically distinct genotypes 

within the entire sample, can also be used to detect subgroup structure. The programs 

STRUCTURE v.2.1 (Pritchard et al. 2000, Falush et al. 2003), BAPS v.4.13 (Corander et 

al. 2003), and HWLER (Pella and Masuda 2001, 2006) estimate the number (K) of 

clusters (subpopulations) within a sample. All three methods were used to estimate K 

from the pool of all eleven populations.

Another approach to understanding population structure assigns individuals to the 

set of 11 populations that were defined. This approach examines the robustness and 

divergence of the adult POP genetic data and is often applied for stock identification. I 

used CBayes v.2.5 (Neaves et al. 2005) and SPAM v.3.7 (Debevec et al. 2000, Alaska 

Department of Fish and Game 2003), which have Bayesian resampling options. In both 

assignment methods, individual fish were reassigned back to the entire set of populations.

I also used SPAM v3.7 to assign simulated mixtures of the populations to the entire data 

set. Assignments tests were also performed with GeneClass2 v.2.0.g (Piry et al. 2004). In 

these analyses, the individual that was being assigned was excluded (a leave-one-out 

procedure) from the estimates of allele frequencies of the populations.

Understanding the geneflow pattern or connectivity among these genetically 

distinct populations is an important component of describing the population dynamics 

and connectivity within a species and, ultimately, provides guidance for effective
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conservation and management. Gene flow was estimated with MIGRATE v.2.2.2 (Beerli 

and Felsenstein 1999) and BAYESASSv.1.3 (Wilson and Rannala 2003). The program 

MIGRATE v.2.2.2. uses a maximum-likelihood method to determine the effective 

number of migrants (4Nem) by multiplying estimates of 0  and M (0  = 4NelJ, M = m/|J), 

while BAYESASSv.1.3 uses a Bayesian framework. Connectivity was also estimated 

with CBayes v2.5 by assigning individuals to the baseline from which the collection of 

origin was excluded in order to observe into which other collections) they would be 

included. This latter approach provides information about the inter-connectivity between 

the geographic groups; but it does not measure directional movement between them.

Historical catch records show that Alaskan POP were fished to very low levels in 

the 1970s. Because this decline might have left a signal in the genetic data, I tested for 

evidence of recent severe demographic changes with the programs BOTTLENECK 

v.1.2.02 (Comuet and Luikart 1996) and M_P_Val.exe (Garza and Williamson 2001). 

When a population passes through a bottleneck, rare alleles are lost faster than 

heterozygosity, which creates a theoretical “heterozygosity excess” relative to 

expectations from the perspective of a mutation-drift equilibrium that is based on the 

distribution of the number of alleles observed (Luikart and Comuet 1998). Testing for 

significant “heterozygosity excess” in a population involves comparing the observed 

heterozygosity with the heterozygosity expected in a mutation-drift equilibrium 

population that has the same number of alleles under a particular mutation model. Two 

fundamental mutation models are the stepwise mutation (SMM) and the infinite allele 

(IAM) models. The SMM model is more restrictive than the IAM model because
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mutations generally occur one “step” (e.g., one microsatellite repeat) at a time, as 

compared to the I AM model in which an allele can change from any state (allele) into any 

other state (allele). The infinite allele model (IAM), the stepwise mutation model (SMM), 

and several two-phase models (TPM), which combine the IAM and SMM models, were 

used and tested for significance with a Wilcoxon ranked sign test (Wilcoxon 1945, 

Wilcoxon and Wilcox 1964). Since microsatellites mutate primarily under the SMM 

model I examined combinations with greater than 70% SMM in the TPM (Shriver et al. 

1993, Valdes et al. 1993). In addition, I used a range of mutation models to calculate 

Garza’s M values for each population, which were compared to a null distribution for the 

same mutation model. The value M is the mean ratio of the number of microsatellite 

alleles to the range in allele size and should decrease following a reduction in population 

size because the rare alleles lost in bottlenecks are not always on the tails of the allele 

size distribution.

The effective population size (Ne) of each population was estimated to obtain an 

idea of local population sizes because that information may be valuable for future fine- 

scale management and provide additional information about connectivity. The 

approaches used by the programs included linkage disequilibrium, heterozygosity excess, 

and a Bayesian method that is currently under development (Hill 1981, Campton 1987, 

Bartley et al. 1992, Peel et al. 2004, Tallmon et al. in press). The program NeEstimator 

(Peel et al. 2004) was used to estimate effective population sizes based on (1) the linkage 

disequilibrium method, which uses linkage distance between loci to determine the 

effective number of breeders, and (2) the heterozygosity excess method, which applies

14
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the same theory as in the bottleneck estimates to determine the number of breeders. The 

program LDNe (Waples and Do, unpublished, NOAA Northwest Fisheries Science 

Center) which was also used, applies the linkage disequilibrium method and corrects for 

bias in sampling size because estimates from samples smaller than the true Ne tend to be 

biased downward (England et al. 2006, Waples 2006). I used LDNe to estimate Ne and 

compared the results to those of the linkage disequilibrium method that did not have a 

bias correction. An approximate Bayesian method was implemented in a program called 

OneSamp (Tallmon et al. in press) that uses summary statistics in a Bayesian framework 

to estimate Ne.

Another measure of population size that was applied to these data is an estimate 

of Wright’s neighborhood size, Nb, which is defined as the number of individuals in the 

area from which parents of an individual can be drawn (Wright 1969). This is an 

appropriate estimate for the neighborhood model (Malecot 1975). The relationship

between Fst and the effective number of migrants (Nem), , was used

to provide a rough estimate of neighborhood size and effective population size by using 

the relationships between Nem and distance in Slatkin 1993 and between Fst and distance 

described in Rousset 1997. In addition to linear distance (km), the number of steps 

between sample sites was also used to represent the space between neighborhoods. Ne 

was estimated from the y-intercept of the plots against linear distance and steps (Slatkin 

and Barton 1989, Slatkin 1993). The rationale is that the effective number of migrants 

(Nem) near 0 distance, where m -> 1, should be about Ne, which can be though of as a



neighborhood size (Slatkin and Maddison 1990). These estimates are biased by a term 

that is proportional to the constant Ai described in Sawyer (1977) and Rousset (1997), the 

. 1-dimensional plots in Rousset suggest that the influence may be small, but the value of 

the estimate is proportional to the reciprocal of the intercept, which is near 0, so it is 

difficult to judge its importance.

Dispersal distance, cr, can be estimated from the inverse of the slope of the 

regression of genetic [Fst/(1-Fst)] on geographic distance in linear habitats if the scale at 

which genetic divergence occurs is larger than the width of the habitat (Rousset 1997, 

Buonaccorsi et al. 2005). The inverse of the slope in this estimate is proportional to 

4Dc■?, where D refers to the density of individuals in the habitat and cr2 refers to the 

variance of parental position relative to offspring position (Rousset 1997, Buonaccorsi et 

al. 2004,2005). The program GENEPOP was used to estimate the slope of this 

relationship at both a population-and individual-level. Estimates of adult densities were 

used to solve forcr in this relationship. From census estimates conducted by NOAA 

Fisheries in their stock assessment surveys, estimates of adult densities per linear km 

ranged from 100 to 200 individuals (per comm. NOAA Fisheries, TSMRI, ABL). This 

linear density of POP was difficult to estimate because the width of the distribution is not 

uniform throughout the GOA, and because POP are patchily distributed throughout their 

range. Therefore, I performed a sensitivity analysis to determine how cr varied if the 

effective density was a fraction (0.5,0.1, 0.05) of the linear adult density.

Another measure of genetic structure is the relatedness between individuals within 

a population or sub-population (Queller and Goodnight 1989, Lynch and Ritland 1999,
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Ritland 2000,2005, Wang 2002). Investigation into the relatedness in POP samples was 

performed, although significant relatedness was not expected because die collections 

were composed of multiple age classes. The program Identix v l.l (Belkhir et al. 2002) 

was used to estimate three measures of average pairwise relatedness: the Lynch and 

Ritland (1999) measure, a pairwise adaptation of the Queller and Goodnight (1989) 

measure, and the Identity (Belkhir et al. 2002) measure. In addition to permuting the 

average pairwise relatedness of each geographic group, the variance in pairwise 

relatedness was also permuted.

Results

Genetic Variation Within Samples

■ A total of 998 fish was genotyped at fourteen microsatellite loci. The loci had 

between 15 and 51 alleles; their expected heterozygosities ranged from 0.345 to 0.964 

and averaged 0.800 (Table 2). Only six of the 168 locus-by-population combinations 

differed significantly from Hardy-Weinberg expectations, fewer than would be expected 

by random chance; and no tests were significant after sequential Bonferroni corrections 

for simultaneous testing. There was no evidence of linkage disequilibrium for any pair of 

loci within any population after a sequential Bonferroni correction.

Genetic Structure Among Samples

Allele frequency distributions at each locus differed significantly among 

populations (p < 10"5 for all loci), which indicated that POP are not genetically
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homogeneous throughout their Alaskan range. All pairwise tests of homogeneity 

between populations were significant after Bonferroni correction, which further 

demonstrated the divergence among populations. The overall Fst (0) was 0.0123 and 

was significant based on permutation analysis (p < 10'5). The Fsts for individual loci 

were significant, except for pSma5 (p=0.067; Table 2). Populations that were composed 

of multiple collections were tested for genetic homogeneity; QCI, AKU, and CBS 

showed no significant differences among groups. Significant differences were observed 

between collections within ALE at five loci (p < 10'3 over all loci). Four separate hauls, 

two sampled in 2000 and two sampled in 2003, contributed to SBS, which was the only 

location where a between-year comparison was possible. Significant genetic divergence 

was observed both within a year (2000, p = 0.0127; 2003, p = 10-4) and between years (p 

= 10-4). Because both between-year and within-year collections differed significantly, 

these genetic differences were most likely caused by fine geographic structure rather than 

interannual differences.

In order to further examine the observed divergence, I applied a wide range of 

genetic programs to characterize the structure within Alaskan POP. According to recent 

reviews and simulations, most of the commonly used genetic software works reliably on 

data sets that have an overall Fst of at least 0.05, but they may not work well if Fsts are 

smaller (Manel et al. 2005, Hauser et al. 2006, Latch et al. 2006, Waples and Gaggiotti 

2006). Because the Fst was 0.0123,1 used a variety of genetic programs to evaluate the 

population differentiation that was observed so that the chances of detecting and 

understanding various characteristics of the underlying structure were maximized.
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Table 2. Summary of population and locus characteristics for Pacific ocean perch.

For each locus the number of alleles, the range in allele size, heterozygosity with Nei’s correction (He), inbreeding coefficients 

(Fis) and overall Fst (** p < 10"3 ’ Weir and Cockerham 1984) are reported (population abbreviations are found in Table 1). At 

the loci significantly (p > 0.05) out of HWE, Fis’s are denoted with*; no correction was made for multiple testing.

Collection
Locus

liSall pSal2 pSa!3 pSa!4 pSma7 pSr7-7 pSr7-2 pSma5 pSpilO pSth3B pSpi4 pSpil2 pSpi6 pSal6 All loci
QCI
num. alleles 22 11 15 10 21 25 33 5 10 13 13 8 13 7 14.71

range 107-191 81-133 91-161 95-143 118-166 184-248 155-227 108-116 107-143 144-170 154-222 75-107 111-167 130-148
He, Nei 0.924 0.807 0.844 0.773 0.918 0.939 0.962 0.221 0.808 0.831 0.800 0.592 0.805 0.692 0.780

Fis. Pop -0.051 -0.130 0.039 -0.041 0.121 0.009 0.033 0.014 0.094 0.000 0.010 -0.173 0.066 0.142 0.017
css
num. alleles 20 11 13 15 23 27 37 9 14 16 15 9 15 8 16.57

range 107-207 85-125 96-166 83-147 94-164 180-246 149-229 100-152 95-163 138-170 154-226 75-109 103-159 132-148
H,,, Nei 0.918 0.808 0.843 0.818 0.898 0.899 0.964 0.426 0.814 0.823 0.872 0.536 0.804 0.660 0.792

Fis. Pop 0.055 0.014 -0.050 0.076 0.005 0.037 0.040 -0.098 -0.026 -0.065 -0.050 - 0.021 0.010 -0.006 0.005
VAK
num. alleles 21 14 13 15 23 26 37 5 10 15 18 8 17 11 16.64

range 103-191 81-141 91-161 83-143 118-164 188-246 155-241 108-116 107-147 142-170 154-230 75-107 103-171 118-148
Nei 0.899 0.837 0.846 0.777 0.921 0.910 0.958 0.333 0.801 0.834 0.864 0.582 0.814 0.717 0.792

Fis. Pop 0.016 -0.071 -0.071 -0.167 0.074 0.071 0.045 -0.075 0.027 0.082 0.010 -0.164 0.010 -0.009 0.001
COR
num. alleles 24 14 12 14 26 25 42 12 9 12 18 12 15 11 17.57

range 103-207 81-149 86-151 83-147 104-166 182-246 147-247 102-128 107-167 144-166 154-230 73-107 103-159 128-148
He, Nei 0.888 0.682 0.865 0.854 0.906 0.925 0.954 0.451 0.830 0.836 0.820 0.695 0.879 0.771 0.811

Fis. Pop -0.008 -0.017 -0.018 -0.107 * 0.011 0.004 *0.043 - 0.022 *0.002 0.057 0.036 -0.048 0.091 -0.007 0.012
KOD
num. alleles 22 11 10 15 16 19 28 8 9 10 16 12 11 9 14.00

range 107-219 85-145 91-151 83-139 120-164 190-226 155-223 98-116 107-139 146-164 158-234 75-109 107-151 128-144
Ha Nei 0.911 0.641 0.806 0.861 0.887 0.920 0.944 0.387 0.792 0.839 0.786 0.723 0.805 0.778 0.791

Fis, Pop 0.047 -0.072 -0.003 0.038 0.044 - 0.010 0.037 0.009 0.005 0.062 0.050 -0.006 -0.004 -0.118 0.015
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Table 2 (continued).

Collection MSall pSal2 pSal3 pSaI4 pSma7 pSr7-7 pSr7-2 pSmaS pSpilO pSth3B pSpi4 pSpil2 pSpi6 pSa!6 All loci
SHU

num. alleles 22 14 13 11 23 27 40 8 10 12 15 13 15 8 16.50
range 107-195 81-137 91-156 91-131 120-166 184-246 139-243 102-130 103-143 144-166 150-234 75-115 103-167 130-144

H^Nei 0.856 0.687 0.830 0.850 0.898 0.913 0.947 0.334 0.818 0.868 0.735 0.752 0.880 0.802 0.798
Fis, Pop 0.082 -0.072 -0.007 -0.054 0.002 0.019 0.044 -0.073 0.015 0.060 0.025 -0.070 -0.007 0.083 0.014

AKU
num. alleles 24 11 9 12 20 24 33 4 9 13 15 12 14 9 14.93

range 107-211 81-125 106-161 91-143 118-160 190-242 145-227 110-116 99-147 144-172 158-222 75-107 107-159 126-146
Hj, Nei 0.920 0.694 0.779 0.838 0.899 0.938 0.953 0.283 0.783 0.844 0.733 0.759 0.868 0.801 0.792

Fis, Pop - 0.011 -0.085 -0.094 -0.064 -0.013 -0.013 0.003 -0.052 -0.037 0.043 0.120 0.062 -0.024 0.086 0.003
ALE

num. alleles 24 12 12 14 25 28 35 7 9 14 17 13 16 9 16.79
range 107-215 81-125 91-146 83-139 102-166 182-242 143-225 108-146 107-139 136-170 154-238 75-109 103-167 130-146

H„ Nei 0.917 0.657 0.816 0.858 0.916 0.940 0.948 0.246 0.774 0.841 0.791 0.751 0.827 0.831 0.794

Fis, Pop 0.012 0.001 0.024 -0.044 - 0.010 -0.027 0.045 0.072 0.036 0.032 0.150 0.047 0.074 0.007 0.029
WAL

num. alleles 21 10 8 12 24 24 31 5 9 10 15 12 12 9 14.43
range 107-215 81-121 106-141 83-131 118-164 176-242 139-227 108-116 107-143 146-166 158-234 75-111 111-155 128-148

Hj, Nei 0.916 0.468 0.816 0.849 0.898 0.928 0.950 0.341 0.762 0.847 0.789 0.758 0.881 0.798 0.786

Fis, Pop -0.038 -0.016 -0.117 -0.051 0.119 -0.003 0.084 -0.045 0.066 *-0.053 *0.047 -0.018 0.057 -0.093 0.003
SBS

num. alleles 29 13 14 14 25 30 43 12 15 14 19 13 16 10 19.07
range 107-219 81-129 81-171 83-151 106-164 182-248 145-243 100-184 99-159 138-172 150-230 71-109 103-167 128-146

Hj, Nei 0.913 0.625 0.822 0.850 0.904 0.919 0.956 0.364 0.766 0.835 0.769 0.736 0.874 0.807 0.796

Fis, Pop 0.001 -0.083 -0.017 -0.026 0.046 0.007 0.014 -0.018 -0.006 0.101 0.049 - 0.022 -0.025 -0.038 0.002

CBS
num. alleles 23 12 15 15 26 24 33 7 8 13 17 14 15 11 16.64

range 107-215 81-125 96-171 87-151 114-166 184-234 149-223 108-122 107-135 142-166 150-230 75-109 107-167 122-146
Hj, Nei 0.890 0.702 0.855 0.861 0.934 0.930 0.944 0.288 0.793 0.817 0.836 0.686 0.876 0.825 0.802

Fis, Pop -0.018 -0.074 -0.048 0.006 0.010 0.016 0.020 -0.073 -0.129 0.102 0.062 0.003 -0.034 0.084 0.004
Summary overall populations

num. alleles 30 18 19 18 34 36 51 20 19 18 23 20 18 15 15.90
range 103-219 81-149 81-171 83-151 94-166 176-248 139-247 98-184 95-147 136-172 150-238 71-115 99-171 118-148

Nei 0.914 0.721 0.845 0.850 0.923 0.933 0.964 0.345 0.805 0.848 0.818 0.698 0.861 0.793 0.800
FIS, Loci 0.010 -0.054 -0.029 -0.039 0.032 0.012 0.034 -0.038 - 0.002 0.049 0.042 -0.032 0.011 0.009 0.004
Fst, Loci 0.009** 0.039** 0.012* * 0 .010** 0 .012** 0.008** 0.007** 0.005 0.011** 0.009** 0.017** 0.009** 0.008** 0.019** 0.012** 20
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The analysis also provided an evaluation of the effectiveness of these methods for data 

that have relatively low Fsts.

A test for correlation between genetic divergence, (Fst/(1-F st), Rousset 1997), 

and geographic distance (km, shelf distance) indicated significant IBD (R2= 0.505, p < 

0.001; Figure 2). The correlation between the genotype likelihood ratios ( D l r ,  Paetkau et 

al. 1997) and geographic distance (Castric and Bematchez 2004) also had a significant, 

but weaker relationship (p < 10-4, R2= 0.25; Figure A-l). These correlations established 

a geographic basis for the genetic divergence. To determine the allelic sources of this 

divergence in GOA populations, I tested correlations between the frequencies of 

abundant alleles (>  0.10 average frequency overall populations) and geographic 

distances between populations. Ten abundant alleles, which represented seven of the 

fourteen loci, had significant correlations (p < 0.05) with distance (km) from the eastern 

GOA to the western GOA (Figure 3).

The relationship among POP populations was also examined with a maximum 

likelihood tree (Figure 4). A neighbor joining tree of chord distances had a similar 

topology (not shown). The predominant geographic pattern observed in these analyses 

was a break between the eastern GOA (QCI, CSS, YAK) and the western populations. 

Each node in the tree was significant based on homogeneity tests (p < 0.001); but the 

western GOA populations and the Aleutian Island/Bering Sea populations appeared to be 

more similar to each other than to the eastern GOA populations.



Shelf distance (km)
Figure 2. Isolation-by-distance of genetic ( F s t )  and geographic (km) distances.

Genetic distance, represented as standardized pairwise FSts (Fst/(1 - Fst)), regressed on geographic shelf distance 

(km) (y = 7.034 x 10'6 x + 0.0024).



I

GOA distance (km, east to west)

Figure 3. Allele frequency clines for POP in the Gulf of Alaska.

Plots of individual allele frequencies that had significant correlations with geographic distance from the eastern (QCI=0km) to 

the western (WAL=3400km) Gulf of Alaska. All regressions of allele frequencies against distance were significant from zero 

(p<0.05). |jSal6*134 -  p<0.001, |jSal2*89, |jSpil2*105, |jSpi6*119, |jSal2*101 -p<0.01, |jSal4*103, |jSma7*122, 

|jSal4*lll, pSpi4*198, |jSal2*85-p<0.05.
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1 1 1 1 1 1 1 1 1
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

Chord Distance
Figure 4. Tree of genetic distances among Alaskan Pacific ocean perch populations.

Maximum-likelihood tree from Cavalli-Sforza chord distances between geographic groups (CONTML in PHYLIPv3.5; 

Felsenstein 1993). Divergence among populations joined at each node is significantly different based on homogeneity tests. 

The vertical dotted line shows separation between eastern and western populations.
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A principal components analysis (PCA) that used alleles with frequencies exceeding 0.07 

also separated the eastern GOA from the other populations (Figure 5).

This geographic pattern prompted a reexamination of the isolation by distance 

analysis. Populations were separated based on the information from the genetic tree and 

PCA which divided them into eastern (QCI, CSS, YAK) and western (COR, KOD, SHU, 

AKU, ALE, WAL, SEB, SBS, CBS) groups. The regressions of geographic distances 

and pairwise genetic divergences, Fst/(1-Fst), performed within and between the two 

groups had parallel slopes for each group (ANCOVA, p = 0.584), but the intercept of the 

between-groups regression exceeded the within-group intercept (0.0157 (Fst/(1-F st)) 

compared to 0.0033 (Fst/(1-Fst)); Figure A-2). This shows no difference in the IBD 

relationship, but suggests a greater genetic divergence between groups than within 

groups, which is to be expected. The programs STRUCTURE, BAPS, and HWLER are 

designed to detect substructure within an aggregation of individuals which do not have 

pre-defined groupings. The program BAPS was the only program that detected structure 

in this data set; it identified two clusters that were the same as those observed in the 

genetic tree and PCA analyses:

Program Estimation of K

BAPS 2

Cluster 1: {QCI, CSS,YAK}

Cluster 2: {All others}

Structure 1

HWLER 1



Component 1
Figure 5. Principal component analysis of allele frequencies for Alaskan Pacific ocean perch populations.

PCA of arcsine-square root transformed allele frequencies. Circles represent the two geographically separated 

clusters of populations.

to



Connectivity

Estimates of migration and gene flow can give insight into the connectivity of 

these populations. I used the programs MIGRATE and BAYEASS+ to investigate the 

east-west break between populations that occurred in the mid GOA by looking for 

connectivity indicated by estimates of geneflow. I did not obtain robust, meaningful 

estimates of parameters with these programs. In MIGRATE, convergence was never 

reached; and in BAYESASS+, the parameters converged to the default values, which 

indicated an inability to estimate true parameters from the data.

Assignment tests were also used to examine connectivity. These tests were 

conducted using CBayes v2.5. Individuals were assigned to the baseline one population 

at a time. Genotypic data for the population that was being assigned was omitted from 

the baseline, which forced assignment to a population other than the source. Based on 

the IBD analysis, it was expected that individuals would be assigned to the populations 

that were geographically close (Table 3). Some populations followed those expectations; 

and for QCI, CSS, YAK, SHU, WAL, and SBS, more than half of the individuals were 

assigned to adjacent populations. However, other populations COR, KOD, AKU, ALE, 

and CBS had assignment rates of more than 0.20 to geographically more distant 

populations (Table 3).
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Table 3. Individual assignment probability for Alaskan Pacific ocean perch with the population of origin omitted.

Assignment of individuals in which the population of origin was omitted from populations available for assignment with 

CBayes (Neaves et al. 2005). Individuals are assigned to population i (row) from population j (column). The proportion 

assigned to each population is presented along with its standard deviation (SD). Values larger than 0.20 are highlighted. 

Abbreviations for populations are the same as in Table 1.

QCI CSS YAK COR KOD SHU AKU ALE WAL SBS CBS
QCI 0.034 (0.05) 0.052 (0.07) 0.003 (0.01) 0.006 (0.02) 0.026 (0.03) 0.005 (0.01) 0.006 (0.01) 0.005 (0.01) 0.001 (0.00) 0.006 (0.01)
CSS 0.404 (0.14) 0.928 (0.08) 0.120 (0.05) 0.003 (0.01) 0.004 (0.01) 0.024 (0.04) 0.001 (0.00) 0.003 (0.01) 0.001 (0.00) 0.002 (0.01)
YAK 0.374 (0.14) 0.933 (0.06) 0.065 (0.04) 0.004 (0.01) 0.004 (0.01) 0.058 (0.04) 0.001 (0.00) 0.002 (0.01) 0.001 (0.00) 0.002 (0.01)
COR 0.004 (0.01) 0.009 (0.02) 0.003 (0.01) 0.012 (0.03) 0.253 (0.20) 0.004 (0.01) 0.004 (0.01) 0.006 (0.01) 0.021 (0.03) 0.056 (0.05)
KOD 0.006 (0.02) 0.002 (0.01) 0.003 (0.01) 0.025 (0.03) 0.383 (0.26) 0.017 (0.03) 0.164 (0.14) 0.107 (0.08) 0.191 (0.07) 0.008 (0.02)
SHU 0.061 (0.04) 0.002 (0.01) 0.002 (0.01) 0.422 (0.09) 0.062 (0.08) 0.006 (0.02) 0.027 (0.04) 0.003 (0.01) 0.016 (0.02) 0.069 (0.08)
AKU 0.041 (0.05) 0.002 (0.00) 0.001 (0.00) 0.013 (0.03) 0.009 (0.03) 0.004 (0.01) 0.039 (0.06) 0.026 (0.05) 0.050 (0.06) 0.008 (0.02)
ALE 0.034 (0.04) 0.002 (0.00) 0.002 (0.01) 0.007 (0.02) 0.153 (0.15) 0.015 (0.03) 0.054 (0.07) 0.005 (0.02) 0.221 (0.07) 0.812 (0.08)
WAL 0.004 (0.01) 0.002 (0.00) 0.001 (0.00) 0.002 (0.01) 0.041 (0.08) 0.006 (0.02) 0.021 (0.04) 0.032 (0.05) 0.390 (0.07) 0.006 (0.02)
SBS 0.069 (0.05) 0.015 (0.02) 0.002 (0.00) 0.083 (0.06) 0.639 (0.14) 0.181 (0.08) 0.774 (0.09) 0.509 (0.11) 0.839 (0.10) 0.031 (0.05)
CBS 0.003 (0.01) 0.001 (0.00) 0.006 (0.01) 0.260 (0.07) 0.070 (0.09) 0.124 (0.09) 0.036 (0.05) 0.217 (0.12) 0.004 (0.01) 0.108 (0.05)
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Assignment tests conducted with CBayes v2.5 and SPAM v3.7 were also used to 

determine the robustness of this data set as a baseline for use in future studies of Alaskan 

POP population structure. In CBayes, each population was treated as a collection from a 

mixture; whereas in SPAM, a series of simulations were performed in which mixtures 

were sampled entirely from a single population. Self-assignment rates were high, greater 

than 0.75, for both methods (CBayes between 0.89 and 0.98, SPAM between 0.76 and 

0.93; Figure A-3, Figure A-4); however, neither method has a leave-one-out feature in 

which the individual that is being assigned to the baseline is excluded from the baseline 

allele frequency estimation. Therefore, an additional program that performed individual 

jackknifing was used GeneClass2 v.2.0.g. With this method, the assignment rates 

decreased to between 0.10 and 0.48, but the population of origin still had the highest 

assignment rate for the majority of populations (Table A-2). These assignment rates are 

low in comparison to the range of assignments seen without jackknifing individuals in 

GeneClass2 (between 0.50 and 0.80). This is probably due to the presence of low 

frequency alleles, which were partially compensated for by using a Bayesian method to 

estimate allele frequencies in each population (Baudouin and Lebrun 2000). In these 

analyses, the prior distributions that were used relied mostly on the observed data, which 

had many low frequency (< 0.02) alleles. After the low frequency alleles (< 0.02 overall) 

were pooled together, I obtained higher self-assignment rates with the jackknifing method 

(between 0.15 and 0.60 compared to between 0.10 and 0.48); and the average difference 

in assignment between the non-jackknifing (mixture) and jackknifing methods decreased 

(0.25 with pooling, compared to 0.44 without pooling, Table A-3, Table A-4). Such low
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self-assignment reflects the similarities that exist between the collections, which one 

would expect with low but significant variation, and the influence of low frequency 

alleles on assignment methods.

Bottleneck

Because there have been historic POP population declines, I tested for recent 

detectable genetic bottlenecks. Under the IAM model, the Wilcoxon (1945) ranked sign 

tests provided no evidence for a genetic bottleneck in any population, which is indicated 

by the lack of excess heterozygosity relative to that expected for the number of alleles 

observed. The two-sided Wilcoxon tests were significant for a heterozygosity deficit 

when the two-phase model included more than 70% of the stepwise mutation model 

(SMM). At 100% SMM, all populations had significant heterozygosity deficits (p < 

0.05); at 90% SMM (10% IAM), six populations were significant (QCI, CSS, YAK, 

COR, AKU, SBS); and at 80% SMM (20% IAM), two populations were significant 

(CSS, YAK). When the model was at less than 70% SMM (30% IAM), no significance 

was observed in two-tailed Wilcoxon tests. Garza’s M value provided no evidence for 

bottlenecks when compared to the null distribution that had the same number of alleles 

under multiple mutation models (Garza and Williamson 2001).

Effective Population Size

Estimates of effective population sizes, Ne, for each population were made with 

three methods. Both the heterozygosity excess and the Bayesian methods included 

infinity in estimates of Nes for all populations. In contrast, the linkage disequilibrium



method estimated non-infinite Ne point estimates for nine out of the twelve populations. 

Those estimates ranged from 170 to 7Q00, however, all but four of the upper confidence 

intervals on these estimates were infinite (Table 4). The program LDNe (Waples and Do, 

unpublished, NOAA Northwest Fisheries Science Center), corrects for some of the bias 

involved with small sample size in comparison to a large Ne. This program gave similar 

estimates of Ne but also suggested infinite upper confidence intervals (Table 4). A robust 

estimate of Ne does not seem possible with these data, probably because the effective 

population sizes are large. It is difficult to distinguish a large Ne from an infinite Ne 

(pers. comm. Robin Waples) and this method also has high variability when the sample 

size is much less than the true Ne (Waples 2006).

Another estimate of the effective size of populations is an estimate of 

neighborhood size (Wright 1969). The relationships between Nem and distance in Slatkin 

(1993) and between Fst and distance described in Rousset (1997) were used to estimate 

effective numbers of individuals and dispersal (Slatkin and Barton 1989). The following 

regressions resulted in the slopes and intercepts listed: Fst/(1-Fst) vs. distance(km)

( y  = 6.68 x l0 “6x + 0.005), Fst/(1-Fst) vs ln[km] (y  = 0.0072x-0.0365), logNm vs km 

( y  = -2.6 x l0 “4x + 1.7046), logNm vs. ln[km] {y  =-0.6663* + 3.3853), and logNm vs. 

steps ( y  = -0.1199x +1.7445), where steps indicate the order sample sites, and are 

probably not demes. All of these regressions are significant, but this significance should 

be interpreted cautiously because the values regressed are correlated.
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Table 4. Estimation of the effective population sizes of populations of Alaskan 

Pacific ocean perch.

Estimates were performed for each geographic group with the linkage disequilibrium 

method in Ne Estimator (Peel et al. 2004) and the program LDNe (Waples and Do, 

unpublished, Northwest Fisheries Science Center). Included are the lower 95% 

confidence interval (L C.I.) and the upper 95% confidence interval (U C.I.). *Negative 

values in LDNe are interpreted as infinite values.

Ne (Ne Estimator) Ne (LDNe)
L C .I. value U C .I. LC .I. value U C .I.

QCI 651 3314 infinite 791 *-2771 infinite
CSS 1301 4752 infinite 1790 *-3200 infinite
YAK 1391 5710 infinite 657 1604 infinite
COR 388 523 792 136 161 195.8
KOD 834 infinite infinite 333 932 infinite
SPT 862 1644 14225 715 1910 infinite
SHU 287 449 994 369 1014 infinite
ALE 2239 infinite infinite 663 1564 infinite
WAL 724 7481 infinite 1172 *-1138 infinite
SBS 10936 infinite infinite 1774 7323 infinite

CBS 5644 infinite infinite 726 1906 infinite



The estimates of Nem at 0 for all three of the Nm regressions were similar, 

ranging from 50.2 to 55.5 individuals. The slopes of Rousset’s (1997) relationships, from 

both sample- and individual-level regressions, were significant (Mantel test in 

GENEPOP: sample, p=0.0004; individual, p<0.0001). The estimates of the slopes were 

similar, 6.61 x 10"6 to 6.68 x 10'6. The inverses ranged from 149,607 and 151,297 

individuals. These estimates were then used along with estimates of adult linear density 

(100-200 individuals per km) to estimate, cr, which is the standard deviation of dispersal 

for a range of effective adult densities (0.5, 0.1, and 0.05 of the linear adult density). 

Effective adult densities were used for a sensitivity analysis, to determine the influence of 

adult density on the estimate of dispersal. For the lower estimate of density (100), cr 

ranged from 20-90km, and for the higher estimate of density (200), cr ranged from 14

60km for the different effective densities used in the sensitivity analysis.

Relatedness

In a large population, average pairwise relatedness should be close to zero; 

significant relatedness will only be observed if few related families are involved in 

producing offspring, which would increase inbreeding and, consequently, relatedness 

within the population (Ritland 2005). Thus, estimating relatedness is another way to 

detect population substructure. Relatedness within POP populations was estimated with 

three different methods. Average pairwise relatedness was not significant for any 

population as estimated from permutation tests (Table 5a). For Akutan alone, the Queller 

and Goodnight (1989) method of estimating pairwise relatedness was significant (p = 

0.047), but the two other methods were not. The amount of relatedness observed did not
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exceed what would be expected in a panmictic population. The variance in average 

pairwise relatedness was also tested for significance with a permutation test. The 

variance was significantly (p < 0.05) higher than expected under a panmitic population 

for three populations for all three pairwise relatedness estimation methods (YAK, COR, 

ALE), for two with two methods (CSS, SHU), and three populations with one of the 

methods (QCI, KOD, AKU; Table 5b). The Bering Sea samples (SBS, CBS) did not 

have a significant variance in pairwise relatedness, even though SBS was composed of 

multiple collections; this may be because of the broad sampling scale. A variance of 

pairwise relatedness that is larger than expected suggests that the sample may be 

composed of many smaller related groups, which is consistent with finer geographic 

substructure within the populations defined in this study.
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Table 5. (a) Pairwise relatedness and (b) Variance in pairwise relatedness for Alaskan Pacific ocean perch populations.

(a) Percent chance that the average pairwise relatedness would be lower than observed under a random distribution of the 

observed allele frequencies based on three alternative methods (Lynch & Ritland 1999, Queller & Goodnight 1989, and 

Identity). These values were calculated with the program Identix v l.l after 1000 permutations of alleles; values less than 5% 

are significantly more related than expected with a random distribution.

QCI CSS YAK COR KQD SHU AKU ALE WAL SBS CBS
Lynch and Ritland 48.50% 87.80% 85.40% 41.30% N/A 39.10% 24.20% 73.00% N/A 16.20% 26.00%

Queller and Goodnight 5.20% 98.70% 69.80% 32.90% 29.10% 40.70% 4.70% 46.90% 69.60% 50.10% 64.00%
Identity 98.10% 98.60% 98.90% 73.00% 86.10% 92.80% 42.20% 91.10% 76.30% 84.80% 78.10%

Mean alter alleles permutated

(b) The percent chance that the variance in pairwise relatedness within geographic groups is larger than expected under a 

random distribution of the observed allele frequencies. The values were determined with the program Identix v l.l and the 

three methods used above after 1000 permutations of each. Values less than 5% have a significantly higher variance than 

expected.

QCI CSS YAK COR KQD SHU AKU ALE WAL SBS CBS
Lynch and Ritland 14.00% 2.10% 0.30%> 0.20% 13.80% 1.00% 4.20% 2.60% 55.60% 31.50% 35.80%

Queller and Goodnight 0.30% 0.20% 1.00% 1.00% 5.20% 7.20% 16.40% 1.00% 37.60% 92.80% 20.20%
Identity 21.90% 7.90% 0.90% 0.40% 0.60% 0.60% 13.60% 1.10% 53.60% 67.60% 32.60%

Variance after alleles permutated
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Discussion and Conclusions

Larvae of many marine fishes have the potential to disperse widely because they 

have extended planktonic life stages that are susceptible to transport by ocean currents 

(Roberts 1997, Bohonak 1999, Stepien 1999). In addition, adults of some species can 

swim great distances. This combination of larval and adult movements can result in 

panmixia (Gold et al. 1994, Palumbi 1994, Stepien 1999). In the GOA, the Alaska Gyre 

and other currents provide opportunities for transporting passive larvae, generally in a 

counter-clockwise pattern, to the northwest (Moser and Boehlert 1991, Hinckley et al. 

2001). In spite of the potential for larval drift and adult movement, my observations of 

adult POP indicated strong genetic structure. Pairwise tests, homogeneity, IBD, and 

allele frequency clines were all consistent with strong divergence and geographically- 

based population structure in Alaskan POP.

Fine-scale genetic structure was previously reported in POP within a relatively 

small geographic area in British Columbia (Withler et al. 2001). However, that locale 

had strong geographic and oceanographic features, which have the ability to isolate 

different population segments. The genetic divergence that I observed was based on 

samples collected over a much wider geographic scale, and the physical oceanography 

along the Pacific rim does not have obvious features that might give rise to discrete 

isolates over much of the area that was sampled. The divergence I observed indicates 

that the geographic sampling scale was coarser than the apparent natural neighborhood/ 

population scale.
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One aspect of the POP structure was a discontinuity between the eastern and 

western GOA populations on a Gulf-wide scale. This discontinuity coincides with a 

biogeographic break in groundfish diversity in the GOA that was described from NMFS 

groundfish survey data and occurs just south of Prince William Sound between Yakutat 

and Kodiak areas (Mueter and Norcross 2002). Similar, but weaker, patterns have also 

been observed for POP congeners, such as shortraker (S. borealis, Matala et al. 2004a) 

and rougheye rockfish (S. aleutianus, Gharrett et al. 2007). This break may be influenced 

by a combination of POP life history characteristics and biogeographic boundaries, which 

in turn may be influenced by oceanographic currents, historic distributions, or association 

with particular habitats. Specifically, the area between Yakutat and Cordova is 

oceanographically complex; in this area the narrow Alaska Coastal Current widens its 

influence as the shelf broadens and the formation of the strong Alaskan Stream begins to 

play a dominant role in shelf edge transport (Stabeno et al. 2004).

Little is known about the timing and location of POP parturition, therefore 

variations in them may contribute to the observed genetic discontinuity (Gray et al.

2006). POP larvae are released in the spring, when oceanographic changes occur in the 

GOA as the stormy winter season ends and the calm summer begins. Consequently, the 

timing and location of their release may determine the extents and paths of their 

dispersals. The retention of larval POP in mesoscale features, such as eddies that have 

been observed to form episodically in the eastern Gulf at various scales, could be a 

possible mechanism for a discontinuity in gene flow because some larvae may be 

retained in the eastern Gulf by these eddies, while others are caught up in currents and
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transported westward along the shelf or seaward into the GOA basin where they may not 

successfully recruit back to adult populations. For example, the area between Yakutat 

and Cordova is oceanographically dynamic, characterized by seasonal eddy formations 

(Stabeno et al. 2004). Drifter trajectories have shown reoccurring eddy formation west of 

Kayak Island, which is to the east of the Cordova collection (Stabeno et al. 2004). This 

eddy may prevent eastern GOA larvae from moving further westward, and contribute to 

genetic discontinuities. The extent to which oceanographic patterns influence the 

dispersal of POP larvae needs to be studied further in order to better understand their 

population structure and connectivity.

Other influences on the genetic diversity of some long-lived marine species, such 

as POP, are sweepstakes effects and bottleneck events. Sweepstakes effects describe 

genetic drift that may occur among larval cohorts as a result of high variances in family 

size (Li and Hedgecock 1998, Flowers et al. 2002). While the influence of a sweepstakes 

effect cannot be ruled out, it is unlikely that it would produce the strong correlation 

between genetic divergence and geographic distance that was observed.

Bottleneck events, in which genetic diversity is reduced, occur when populations 

decline to severely low abundances. Populations of POP decreased dramatically from 

overfishing in the 1960-70s, approximately 30 years before these samples were taken; 

however, those declines do not seem to have been large enough to leave genetic signals 

that are detectable by currently available bottleneck analyses. Restoration of genetic 

divergence following bottleneck events involves accumulation of mutations and 

reduction of genetic drift. Geneflow can also restore variation. Mutation acts too slowly
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to be of consequence, and my results indicate that geneflow probably had little influence 

in that time span, which leaves random drift. Pacific ocean perch are long-lived (100+ 

years) and late-maturing (50% maturity is approximately 10.5 years); if populations had 

declined to extremely low levels there would most likely be a detectable signal even after 

30 years. Although a bottleneck event was not detectable, which means only that the 

population did not reach critically low levels from a genetics perspective, the decline in 

POP abundance could have influenced present day distributions and may have played a 

role in the population structure.

The characterization of structure and connectivity of POP populations was limited 

by the inability of many statistical estimators to perform well at low levels of divergence. 

Homogeneity tests, IBD, and PCA analyses recognized structure within POP, even at an 

overall Fst of 0.0123. However, methods that estimate migration rates, such as 

MIGRATE and BAYESASS+, did not provide meaningful estimates, and model-based 

clustering methods that were used to estimate the number of contributing groups (K) 

performed poorly; only BAPS successfully identified the large-scale structure within 

Alaskan POP. Finally, assignment methods, such as CBayes and Geneclass, had 

decreased assignment rates when the individual that was being assigned was removed 

from the baseline. Overall, available genetic tools, even ones that used Bayesian 

approaches, did not adequately characterize population structure when low, but 

significant, divergence existed. In spite of these analytic limitations I was able to 

construct a coarse preliminary description of POP population structure.
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The dispersal of just a single life history stage can result in a homogeneous 

population in marine fishes; consequently, for a population to be genetically structured, 

the movements of larvae, juveniles, and adults must all be limited geographically. 

Surviving larval fish may be locally retained near their area of release (short dispersal), 

they may have vertical migratory behavior that keeps them close to their natal area, or 

they may have directed movement back to their parturition site or natal population as 

juveniles or young adults (homing). Limited larval dispersal has been observed in other 

rockfish species and was hypothesized as the primary mechanism that contributed to the 

genetic divergence in some Sebastes species (Withler et al. 2001, Buonaccorsi et al. 

2002,2004, Miller and Shanks 2004).

Based on the genetic structure observed, the movement of adults must also be 

restricted and at least the spawning populations belong to relatively small (at my 

sampling scale) “neighborhoods” or localized populations. Because adult fish were not 

sampled from spawning populations, the observed structure cannot be explained simply 

by homing to spawning areas. It appears to be a more static structure. This implies that 

adult POP may associate with features in their habitat, as has been described for other 

Sebastes species (Scott 1995, Brodeur 2001, Mitamura et al. 2002, Johnson et al. 2003). 

Adult POP have been observed in schools that congregate demersally in benthic 

depressions or gullies along the continental shelf break (Brodeur 2001, Lunsford et al. 

2001). The extent of movement of these schools is unknown, but annual depth 

migrations have been observed; adults inhabit shallow waters in the summer (200-275m) 

and move into deeper waters (300-450m) in the winter (Gunderson 1972,1977, Scott
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1995). Such behavior may be a component of their fine-scale population structure. Even 

though dispersal is limited, the strong IBD signal and overall northwestward movement 

of gene flow (Figure 3, Table 4) implies limited connectivity between neighborhoods that 

is accompanied by a low level of gene flow by larvae and/or adults.

Describing the demographics of these adult POP neighborhoods is constrained by 

the scale of sampling in this study, a lack of comprehensive life history information for 

POP, and the low but significant genetic differentiation (Fst= 0.0123). Although 

population structure was apparent, the design of the sampling scale was too large 

(approximately 400 km between samples) to adequately characterize finer structure or to 

determine the scale of population structure. Both the divergence between collections 

within ALE and SBS and the significantly high variance in relatedness within populations 

provided evidence for structure that has a finer scale than the sampling scale. However, 

without more intensive sampling I was only able to roughly estimate the size of the 

neighborhoods or localized populations. The estimates of neighborhood size (Nb) were 

conflicting because they depend on the geographic scale. However, I could approximate 

Ne at 0 distance (50 individuals) and the dispersal distance, cr (14-90km), both of which 

suggest limited effective neighborhoods compared to actual adult biomass. As an 

indirect estimate of dispersal, these distances should be used with caution because they 

include errors from estimates of both genetic diversity and density. The lower range of 

the estimate of <y is based on estimated adult densities of 100-200 individuals/km and 

most likely underestimates the true dispersal distance. The larger values of a  were 

estimated from a range of plausible effective densities (Whitlock and McCauley 1999,
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Buonaccorsi et al. 2005). Both dispersal and effective numbers estimates indicate that 

population structure may be more complex than simple localized populations. Although 

the Ne at 0 distance estimates were small, the estimated effective population sizes were 

uniformly large, which suggests that there is no measurable influence from the number of 

breeders at this sampling scale (England et al. 2006, Waples 2006).

The scale of population structure observed here was finer than the scale that is 

used to manage Alaskan POP. The POP management areas are divided into the GOA and 

Bering Sea/Aleutian Islands (BSAI); the GOA is further divided into eastern, central, and 

western management areas (Figure 1) and the BSAI is further divided into the Bering Sea 

and the Aleutian Islands management areas. In the GOA, each management area may 

encompass multiple populations, which could create the potential for over-harvesting of 

some populations and under-harvesting of others. Rockfish, which are long-lived 

species, are slow to recover from over-harvesting. Management at geographic scales that 

substantially exceed the scale of population structure may make those populations 

susceptible to overfishing and reduced productivity (Parker et al. 2000). In contrast to 

POP, the spatial scales of population structures of other rockfish species, such as 

shortraker (S. borealis) and rougheye (S. aleutianus), along the western coast of North 

America appear to be larger and more consistent with the spatial scales of boundaries 

used for management (Matala et al. 2004a, Gharrett et al. 2007). While these three 

species of rockfish inhabit the same areas, they differ in feeding behavior; POP are 

planktivorous, whereas rougheye and shortraker rockfish are carnivorous. In addition, 

POP are found in large aggregations while these other species do not appear to exhibit
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this behavior, which may also influence their population structure. Determining an 

effective management scale for adult POP will involve characterizing their aggregations 

as either neighborhoods or localized populations, determining the geographic scale of 

these units, and estimating dispersal distance.

There are still many unanswered questions about POP life history that deserve 

attention. First, confirmation is needed to demonstrate that sweepstakes effects do not 

contribute substantially to genetic divergence; second, a more precise estimate of the 

scale of POP neighborhoods is needed. The scale of population structure depends on the 

extent of larval dispersal and the movement of juveniles and adults, which could be 

estimated with finer spatial scale sampling. Dispersal and neighborhood size of POP 

need to be evaluated in terms of the bathymetric and oceanographic features within their 

distribution range. Ultimately, a method that incorporates relevant life history 

information into a population model for POP will provide a basis for estimating the 

effects of spatial scale on the management of POP and other marine species. Although 

more research is necessary to complete the picture of POP life history, my results 

complement recent studies that suggest that broad larval dispersal and/or the presence of 

panmictic marine populations are not universal in marine fishes, particularly rockfishes 

(Bentzen et al. 1996, Rocha-Olivares and Vetter 1999, Gomez-Uchida and Banks 2005, 

Miller et al. 2005, Ruzzante et al. 2006). In conclusion, this coarse-scale genetic analysis 

contributed some insight into POP population structure and dispersal, but more research 

is needed to further illuminate the complex life history of Alaskan POP.
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Appendix

S h e lf  d istance  (k m )

Figure A-l. Isolation-by-distance of geographic shelf distance (km) and genotype 
likelihood ratios (DLR)

Shelf distance (km)

Figure A-2. Isolation-by-distance between eastern and western GOA.

Isolation by distance within and between two geographic groupings, east GOA (QCI, 

CSS, YAK) and the rest (COR, KOD, SHU, AKU, ALE, WAL, SEB, SBS, CBS). 

Squares are within group pairwise comparisons of Fst/(1- Fst) and triangles are between 

group pairwise comparisons. The slopes are parallel and not significantly different

D
lr



Figure A-3. Assignment rates using CBayes v.2.5.
Individual assignment rates to populations in the Gulf of Alaska (GOA) from CBayes; 

self-assignment rates are labeled on the pie charts.

QQ CSS YAK CORD KOD SHU AKU ALE WAL SBS CBS 

H o a  0  CSS □  YAK 11 CORD n  KOD B SHU H AKU ■  ALE 0  WAL H SBS H CBS

Figure A-4. Simulation assignment rates using SPAM.

Simulations using the program SPAM of one hundred percent from each geographic 

group.
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Table A-l. Amplification reaction conditions.

All components are reported as final concentrations in a 10 |JL reaction. Loci in italics 

were not included in the final analysis.

Primer Concentrations
Locus Forward, pM Reverse, pM Labeled, pM MgCl, mM DMSO, mM Annealing °C
Sail 0.350 0.400 0.040 1.875 - 45 °C
SaI2 0.350 0.400 0.040 1.875 - 48 °C
Sal3 0.350 0.400 0.040 1.875 - 48 °C
Sal4 0.350 0.400 0.040 1.875 - 52 °C
Sal6 0.350 0.400 0.040 1.875 - 55 °C

SR7-2 0.300 0.350 0.035 1.875 - 56 °C
SR7-25 0.300 0.350 0.035 1.875 - 56 °C

Sr7-7 0.300 0.350 0.035 1.875 - 56 °C
Sma7 0.350 0.400 0.040 1.500 0.0025 54 °C
Seb33 0.150 0.200 0.020 1.500 0.0025 54 °C
Sma5 0.200 0.250 0.025 1.875 - 54 °C
Spi4 0.200 0.250 0.025 1.875 - 54 °C
Spi6 0.200 0.250 0.025 1.875 - 58 °C

SpilO 0.200 0.250 0.025 1.875 - 60 °C
Spil2 0.200 0.250 0.025 1.875 - 58 °C
Sth3B 0.200 0.250 0.025 1.875 - 60 °C

Small 0.350 0.400 0.040 1.875 - 52 °C



Table A-2. Assignment proportions for all geographic groups from the program CBayes v.2.5.

Individuals are assigned from the population at the top to those on the left. Self assignment rates are bold face and standard 

deviations for each assignment rate are reported to the right.

QCI css YAK COR KOD SHU AKU ALE WAL SBS CBS

QCI 0.89 (0.06) 0.00 (0.01) 0.00 (0.01) 0.00 (0.01) 0.00 (0.01) 0.01 (0.01) 0.00 (0.01) 0.00 (0.01) 0.00 (0.01) 0.00 (0.00) 0.00 (0.01)

CSS 0.01 (0.02) 0.98 (0.02) 0.00 (0.01) 0.01 (0.02) 0.00 (0.01) 0.00 (0.01) 0.01 (0.02) 0.00 (0.00) 0.00 (0.01) 0.00 (0.00) 0.00 (0.00)

YAK 0.08 (0.06) 0.01 (0.01) 0.98 (0.02) 0.01 (0.02) 0.00 (0.01) 0.00 (0.01) 0.05 (0.04) 0.00 (0.00) 0.00 (0.01) 0.00 (0.00) 0.00 (0.01)

COR 0.00 (0.01) 0.00 (0.01) 0.00 (0.01) 0.89 (0.05) 0.00 (0.01) 0.00 (0.01) 0.00 (0.01) 0.00 (0.01) 0.00 (0.01) 0.00 (0.01) 0.01 (0.01)

KOD 0.00 (0.01) 0.00 (0.00) 0.00 (0.01) 0.05 (0.03) 0.97 (0.03) 0.00 (0.01) 0.00 (0.01) 0.00 (0.01) 0.01 (0.02) 0.00 (0.01) 0.01 (0.01)

SHU 0.00 (0.01) 0.00 (0.00) 0.00 (0.00) 0.00 (0.01) 0.01 (0.02) 0.97 (0.02) 0.00 (0.01) 0.00 (0.01) 0.00 (0.01) 0.00 (0.01) 0.01 (0.01)

AKU 0.00 (0.01) 0.00 (0.00) 0.00 (0.00) 0.00 (0.01) 0.00 (0.01) 0.00 (0.01) 0.91 (0.05) 0.00 (0.01) 0.00 (0.01) 0.00 (0.01) 0.02 (0.02)

ALE 0.00 (0.01) 0.00 (0.00) 0.00 (0.00) 0.00 (0.01) 0.00 (0.01) 0.00 (0.01) 0.00 (0.01) 0.97 (0.03) 0.00 (0.01) 0.11 (0.02) 0.00 (0.01)

WAL 0.00 (0.01) 0.00 (0.00) 0.00 (0.00) 0.00 (0.01) 0.00 (0.01) 0.00 (0.01) 0.01 (0.02) 0.01 (0.02) 0.96 (0.04) 0.01 (0.01) 0.00 (0.01)

SBS 0.00 (0.01) 0.00 (0.01) 0.00 (0.00) 0.00 (0.01) 0.00 (0.01) 0.00 (0.01) 0.00 (0.02) 0.01 (0.02) 0.01 (0.02) 0.95 (0.04) 0.01 (0.02)

CBS 0.00 (0.01) 0.00 (0.00) 0.00 (0.01) 0.02 (0.03) 0.00 (0.01) 0.00 (0.01) 0.00 (0.01) 0.01 (0.01) 0.00 (0.01) 0.02 (0.03) 0.95 (0.04)
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Table A-3. Assignment proportions with the leave-one-out procedure (individual jackknife) in GENECLASS2.

Individuals being assigned are removed from their population’s allele calculations.

QCI CSS YAK COR KOD SHU AKU ALE WAL SBS CBS
QCI 0.2126 0.1021 0.1003 0.0307 0.0398 0.0281 0.0021 0.0365 0.0137 0.0123 0.0348
css 0.1728 0.4775 0.2811 0.0919 0.0177 0.0220 0.0441 0.0077 0.0249 0.0100 0.0144

YAK 0.2153 0.2153 0.4661 0.0610 0.0219 0.0141 0.0523 0.0119 0.0013 0.0137 0.0144
COR 0.0352 0.0759 0.0443 0.3193 0.0934 0.0996 0.0420 0.0659 0.0316 0.0797 0.0757
KOD 0.0249 0.0131 0.0135 0.0643 0.0940 0.0562 0.0429 0.0507 0.1362 0.0998 0.0317
SHU 0.0698 0.0225 0.0203 0.0863 0.1099 0.3323 0.0775 0.0852 0.0429 0.0939 0.1055
AKU 0.0594 0.0109 0.0108 0.0485 0.0926 0.0492 0.2076 0.0813 0.0867 0.0641 0.0505
ALE 0.0563 0.0186 0.0180 0.0705 0.1304 0.0865 0.1413 0.2448 0.0795 0.1379 0.1824

WAL 0.0099 0.0104 0.0028 0.0179 0.0564 0.0382 0.0734 0.0797 0.2044 0.0876 0.0431
SBS 0.1019 0.0343 0.0114 0.1027 0.2294 0.1459 0.2202 0.1976 0.2879 0.2700 0.1366
CBS 0.0299 0.0100 0.0266 0.0917 0.0932 0.1127 0.0789 0.1283 0.0709 0.1149 0.2982
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Table A-4. Assignment proportions with low frequency alleles pooled.

Assignment proportions with the leave-one-out procedure using GENECLASS2 with low frequency (<0.02) alleles pooled 

with the most abundant alleles at their locus.

QCI CSS YAK COR KOD SHU AKU ALE WAL SBS CBS
QCI 0.3322 0.0786 0.0616 0.0387 0.0316 0.0286 0.0116 0.0143 0.0114 0.0175 0.0233
CSS 0.1295 0.5613 0.2380 0.0552 0.0277 0.0105 0.0524 0.0011 0.0131 0.0185 0.0107

YAK 0.1117 0.1836 0.5841 0.0496 0.0061 0.0216 0.0250 0.0048 0.0022 0.0099 0.0077
COR 0.0731 0.0433 0.0207 0.2535 0.0678 0.1372 0.0827 0.0767 0.0382 0.0757 0.0877
KOD 0.0201 0.0238 0.0132 0.0536 0.1631 0.0625 0.0630 0.0805 0.1107 0.0870 0.0424
SHU 0.0718 0.0157 0.0142 0.1553 0.1524 0.2473 0.0842 0.1025 0.0465 0.0923 0.1115
AKU 0.0333 0.0222 0.0153 0.0713 0.0667 0.0810 0.2407 0.0706 0.0616 0.0655 0.0569
ALE 0.0346 0.0069 0.0107 0.0812 0.1396 0.0934 0.1059 0.2685 0.0850 0.1258 0.1080

WAL 0.0571 0.0124 0.0067 0.0219 0.0530 0.0547 0.0816 0.0924 0.2596 0.1099 0.0409
SBS 0.1031 0.0273 0.0127 0.0773 0.1595 0.1253 0.1396 0.1525 0.2428 0.2670 0.1280
CBS 0.0169 0.0098 0.0162 0.1082 0.0923 0.1068 0.0757 0.1113 0.0951 0.0997 0.3603
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