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Abstract

This thesis includes research conducted in the Dry Bay Preserve of Glacier Bay National 

Park in 2005 and 2006 for the U.S. National Park Service. The research mission was to 

determine the cause of collapse in the East Alsek commercial sockeye fishery. The focus 

of the study was to determine if the collapse was due to human caused events or if 

there was a broader ecological basis for the recent downturn in returning sockeye. The 

East Alsek had undergone a dramatic decline in returning sockeye in recent years and 

the changing quality and quantity of habitat was thought to be the culprit for this 

downturn. However, fishery records and other environmental variables were also 

examined in order to establish a retrospective association between reduced production, 

ambient environmental conditions, and commercial fishing. The research for this thesis 

was funded by the U.S. National Park Service under the request of the City and Burough 

of Yakutat.
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General Introduction

In 2000, the City and Burough of Yakutat, AK passed a resolution to determine the cause 

of collapse of the East Alsek sockeye salmon fishery due to its "cultural, sociological and 

economic impact" on local residents (CBY 2000). In the late 1980's and early 1990's, the 

price of sockeye reached a high of $3.08/lb, and run size of East Alsek sockeye peaked 

above 275,000 (Figure 0.1. Harvest and escapement record for the East Alsek set-gillnet 

fishery (Clark et al. 2003). The fishery was a substantial income source for Yakutat 

residents, and supported as many as 110 fishermen. This terminal set-gillnet fishery was

Figure 0.1. Harvest and escapement record for the East Alsek set-gillnet

fishery (Clark et al. 2003).



closed in 1999 when it failed to meet escapement goals set by the Alaska Department of 

Fish and Game (ADFG). Escapement levels were initially set between 26,000 and 57,000 

spawning sockeye surveyed through aerial counts (Clark et al. 1995). The sockeye fishery 

was reopened in 2003 after ADFG revised their escapement goal to a range between

13,000 and 26,000 spawners following a stock recruitment assessment (Clark et al. 

2003). Since the reopening, the fishery has supported a modest number of commercial 

fishermen who have harvested a combined average of 27,000 sockeye per year, far 

below the peak harvests experienced in the past. This thesis and subsequent research 

was funded by the National Park Service, stemming from the Yakutat resolution.

Hypothesized causes for the fishery's collapse have been provided by several ADFG 

biologists. Clark et al. (2003) suggested the paucity of recent returns was due to 

progressive sedimentation and subsequent colonization by aquatic vegetation atop 

previously accessible spawning substrate. This effect was thought to have reduced the 

available spawning substrate, resulting in diminished production of sockeye. The report 

also suggested that periodic flooding of the East Alsek by the adjacent Alsek River and 

concomitant silt removal on the East Alsek River through flood scouring might have 

contributed to high sockeye recruitment and productivity in the 1980's and early 1990's. 

In contrast, subsequent lack of flooding since 1987 has led to increased sedimentation, 

reducing spawning substrate quantity and quality, and thereby reducing recruitment. 

However, substantive ecological and biological evidence to support this hypothesis was
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limited. A thorough investigation was needed to establish if this hypothesis of reduced 

flood frequency was indeed valid, or if the reduction in recruitment was due to other 

factors.

Large-scale geologic, climactic and successional changes have been occurring in the 

immediate vicinity of the East Alsek River and within the Dry Bay Preserve of Glacier Bay 

National Park in a brief time period (100 years). These changes have likely influenced 

the geomorphology and hydrodynamics of the East Alsek, thereby impacting this 

sockeye population. Glacial rebound, a geologic phenomenon of land 'uplift' due to 

glacial recession, is reportedly occurring at a rate of 26 mm/year, as recorded at a fixed 

monitoring sites in close proximity of the East Alsek River (Larsen et al. 2005). Such high 

uplift has likely contributed to rapid plant community succession on the former glacial 

outwash plain of Dry Bay by changing the access plants have to groundwater, and the 

rapid establishment of topsoil. Also, the Alsek and Grand Plateau Glaciers are receding 

at a rapid rate resulting in a thirteen-fold increase (4,070,813 m2 in 1906 to 55,314,322

•y
m in 2000) in the size of Alsek Lake. This process acts to reduce sediment deposition 

downstream of the lake, and also attenuates any flood that originates upstream of the 

lake. Also, incision of the Alsek channel downstream of the lake may have an impact on 

the required flood volume necessary to overtop the existing East Alsek flood channel, 

and eventually flow down the East Alsek River (Ed Neal, USGS hydrologist, personal 

communication). The location and elevation of the East Alsek headwaters in relation to
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the Alsek River channel and stage height is an important feature relating to flood 

frequency.

The combined effects of uplift and lake expansion can influence flow and flooding 

downstream of Alsek Lake, and may also reduce the frequency of overflow of the Alsek 

into the East Alsek. The East Alsek River, which originated as a relictual channel of the 

Alsek, is located within 3 km of the Alsek River. Emanating from groundwater sources, 

the East Alsek is a low gradient (<1% slope) river that flows from north to south. It is 

located within the Dry Bay Preserve of Glacier Bay National Park. Historic maps indicate 

the headwaters of the East Alsek were first separated from the Alsek River sometime 

between 1906 and 1948. The river meanders 9 km through the relict glacial outwash 

plain of the Alsek and Grand Plateau Glaciers and empties into an estuarine lagoon fed 

by the East Alsek and Doame Rivers as well as numerous smaller creeks. Each of these 

drainages is a former distributary channel of the Alsek River. The East Alsek bisects the 

estuary orthogonally. The estuary runs from the mouth of the Doame River to the Gulf 

of Alaska from east to west and is separated from the open ocean by a vegetated dune. 

The estuary eventually empties into the Gulf of Alaska 10 km east of the mouth of the 

East Alsek.

Uplift, channel incision, reduced flood frequency and other large scale physical 

phenomena have had ecological ramifications within the Dry Bay Preserve. Rapid 

terrestrial plant succession, evident from aerial photography series since 1948, has
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occurred ever since the East Alsek and Alsek River channels diverged. Bank-side 

vegetation along the East Alsek has progressed beyond the barren gravel and sand 

observed and mapped in 1906-1908 (Morse 1908) and now consists of primarily . 

deciduous shrubs and trees, including cottonwood (Populus spp.), willow (Salixspp.) and 

alder (Alnus spp.).

The annual leaf-litter generated by these plants contributes to organic matter, and 

subsequent sediment development and deposition in the East Alsek River. Leaf-litter 

decays and is processed by aquatic insects, fungus and bacteria to form rich organic 

sediment. Generated sediment loads can accumulate on spawning gravels if flow is 

sufficiently low (Cummins et al. 1989) and floods are infrequent. Accumulated 

sediments contribute to the colonization and establishment of aquatic vegetation by 

providing a basis for root growth (Wood 1997). Aquatic plants such as white water 

crowfoot (Ranunculus aquatilis), mare's tail (Hippuris vulgaris) and at least two mosses 

(Cratoneuron filicinum and Drepanocladus aduncu) have become abundant and well- 

established in the East Alsek River. These aquatic plants also contribute annual inputs of 

organic material as the plants senescence in the fall. Once aquatic vegetation becomes 

established in the river, it provides a positive feedback loop between sedimentation and 

plant growth by slowing existing flows and trapping water borne sediments. Similar 

feedback loops have been identified in other rivers (Carpenter and Lodge 1986; Dawson 

1978; Welton 1980).
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The combination of annual inputs of terrestrial leaf-litter, aquatic vegetation growth and 

senescence, and input of marine-derived nutrients from salmon carcasses are potential 

sources of fine sediment in the East Alsek. The lack of flood scouring effects to displace 

both sediment and aquatic plants could thereby influence sockeye production by 

reducing spawning habitat quantity and quality. More directly, the potential exists for 

post-spawning, fine sediment deposition to cause high egg and embryo mortality.

Although these various components comprise a relatively complex hypothesis for 

declining sockeye productivity, there are many more variables that could also have 

deleterious and synergistic effects. These needed to be studied as well. Region-wide 

covariation of sockeye salmon recruitment has been observed and linked to regional 

environmental fluctuations (Peterman et al. 1998), processes which include regional 

variability in precipitation and air temperature. Early salmonid life history stages have 

shown particular susceptibility to related oxygen and temperature fluctuations in 

aquatic habitats (Beacham and Murray 1990, Ringler and Hall 1975) that are physically 

driven by these processes. Therefore it was necessary to identify and evaluate the life- 

stages most sensitive to environmental variables such as precipitation and temperature 

to assess if these factors played a role in the decline of the East Alsek fishery. Lastly, the 

marine life stage was investigated through a surrogate of condition (growth). The 

influence of the marine environment on salmon production has been attributed to 

decadal-scale shifts in productivity and regional sea-surface temperatures (Mueter et al.
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2002), necessitating a prolonged time scale to determine the effect of change for a 

particular population of salmon. Therefore patterns in adult scale-growth were 

assessed to determine if a relationship existed between survival and first-year marine 

growth.

In summary, in order to incorporate all these disparate variables into one manageable 

study, the following four research objectives were addressed: 1) quantify selected 

sockeye spawning habitat in the East Alsek River relative to sediment deposition and 

aquatic vegetation, 2) document early Quvenile) life-history attributes of sockeye in 

freshwater, 3) model the effect of flood patterns in relation to subsequent sockeye 

recruitment, and 4) model freshwater and marine environmental variables with respect 

to recruitment. The first chapter addresses the use of habitat by spawning sockeye, and 

the second chapter examines the population dynamics of East Alsek sockeye in relation 

to environmental conditions and flooding of the East Alsek by the Alsek River. Finally, 

Appendix 2 reports the findings on the relationship between scale growth and 

production of East Alsek sockeye.
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Figure 0.2. Dry bay change over time. Imagery from Morse 1908, USGS 1959, and NASA 

(Google Earth) 2000. Notice change in Alsek Lake area (from 4,070,813 m2 in 1906 to 

55,314,322 m2 in 2000) and channelization of Alsek.
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Chapter 1
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Spawning Habitat Loss for Ocean-type Sockeye Salmon due to 

Isostatic Rebound1

1 Faber, DM, C M Soiseth, M Adkison, (2008) Spawning habitat loss for ocean-type sockeye salmon due to 

isostatic rebound \  Transactions of the American Fisheries Society. Vol. Xx (xx), xxx-xxx.



Abstract

We evaluated spawning density of returning sockeye salmon in relation to 

characteristics of habitat in the East Alsek River. The East Alsek had undergone a 

dramatic decline in returning sockeye in recent years and the changing quality and 

quantity of habitat was thought to be the cause for this downturn. Aquatic vegetation 

and thick sediment are prevalent atop apparently suitable spawning gravels throughout 

the river. The adjacent Alsek River had periodically flooded the East Alsek channel at 

least three times in the 1980's, with the last flood in 1987. It was thought that these 

floods had kept spawning habitat free of sediment and plants that could reduce 

available spawning habitat or survival of sockeye embryos. The periodicity of Alsek 

flooding events was likely decreasing due to localized isostatic rebound of 26mm per 

year. We conducted thorough habitat and spawner density surveys to test this 

hypothesized mechanism. We found that sockeye avoid spawning in areas with 

sediment depths greater than 10cm, and the majority of sockeye choose areas with less 

than 5cm. Sockeye avoided areas with a high coverage of aquatic vegetation, preferring 

areas with no vegetation. Sockeye preferred spawning in areas with dissolved oxygen 

concentrations and water temperatures that were lower than average, presumably due 

to the upwelling groundwater. Water velocity did not appear to affect where sockeye 

spawned, and sockeye chose shallower water to spawn. Correlations among flow, 

percent vegetation cover and sediment depth provided evidence of a positive feedback 

loop between the colonization of aquatic vegetation and sedimentation. In the absence

13



of large-scale flooding events, this would lead to increases in vegetation and sediment 

depth over time. Given that East Alsek sockeye were highly selective for spawning 

habitat with little sediment or vegetation, it is very likely that the rapid sedimentation 

atop suitable spawning habitat contributed to the reduced production observed.

14



Introduction

The East Alsek sockeye salmon fishery has shown a dramatic decline in recent years; 

numbers of sockeye returning to the system have plummeted from highs exceeding

275,000 sockeye in 1985 to a low of 14,200 in 2002. The rapid decline caused the 

closure of the commercial fishery in 1999. The reason for the rapid decline is unknown; 

however, area biologists surmised the East Alsek River could no longer sustain high 

productivity due to a localized hydraulic regime shift (Clark et al. 2003). It is thought the 

East Alsek is slowly accumulating sediment and aquatic vegetation atop once clean 

spawning gravels.

East Alsek sockeye are relative newcomers to the East Alsek River. The 1960's and 

1970's saw modest returns of sockeye, comparable to today's numbers. The East Alsek 

once supported a thriving population of chum salmon (ADFG 1984; Heinl et al. 2003), 

that gave way to the high numbers of returning sockeye in the 1980's and early 1990's. 

The rapid colonization of the East Alsek River by highly valued sockeye was a boon to 

the local economy, but the sustainability of the run was now in question.

Historically, the East Alsek experienced periodic flooding events when the adjacent 

Alsek River overran its banks and spilled into the East Alsek River. The additional flow 

from the much larger Alsek (mean annual discharge of the Alsek 850 m3/s; East Alsek 3-5 

m3/s) had the potential to flush sediment and vegetation downstream of spawning 

grounds and into the Gulf of Alaska, thereby improving existing substrate and exposing
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additional suitable spawning habitat for sockeye salmon. Similar sediment transport has 

been observed in other coastal salmon streams (Coats et al. 1985; Gottesfeld et al.

2005). Since 1987, no floods have been documented in the East Alsek River and area 

biologists have noticed an increase in aquatic vegetation and sediment. Flood 

frequency is likely diminishing due to local isostatic rebound rates of up to 26mm/year 

(Figure 1.1, Larsen et al. 2005). We examined spawning habitat selection by East Alsek 

Sockeye salmon in this rapidly changing environment to establish how the changes in 

sediment and aquatic vegetation might affect future sockeye returns.

Sedimentation has an important effect on the amount of aquatic vegetation in a lotic 

environment. Growth of aquatic vegetation can decrease flow velocity and flow 

patterns by increasing the bed roughness, allowing the further accumulation of 

sediments at the location of the aquatic vegetation (Carpenter and Lodge 1986; Dawson 

1978; Welton 1980). This effect causes a feedback loop where vegetation causes 

sediments to be deposited and provides substrate for additional aquatic vegetation 

growth.

Sediment can also have detrimental effects on salmonid embryo survival (Lapointe et al. 

2004; Sear 1993). Sediment that is allowed to settle on spawning gravels can entomb 

eggs and embryos, subjecting them to a low oxygen environment, thereby causing 

mortality through suffocation (Lisle 1989; Sowden and Powder 1985; Levasseur et al.

2006). Redds are constructed by salmonids so that their morphology allows intragravel
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flow to egg-pockets due to a pressure gradient that forms from the upstream to 

downstream direction (Wu 2000). Any interruption of this flow, such as by sediment 

infiltrating gravel upstream of the egg-pocket, can deprive the eggs of needed flow for 

oxygen and waste transfer (Lisle and Lewis 1992). However, areas with sufficient 

upwelling from groundwater may act to mitigate this effect by providing a source of 

interstitial flow independent of river flow. As a groundwater-fed system, the East Alsek 

is known to have upwelling sites, but their distribution and areal coverage relative to 

sockeye spawning habitat were unknown.

Sockeye salmon exhibit a diverse array of spawning strategies (Burgner 1991). 

Depending upon the population's particular life history, they can spawn in rivers, 

sloughs, flood-plains and along lake shorelines (Blair et al. 1993; Hendry and Quinn 

1997; Lorenz and Eller 1989; Hall and Wissmar 2004). Sockeye have been shown to 

spawn in upwelling and downwelling areas, in glacially turbid waters, or in areas that 

require wind-driven currents to oxygenate embryos (Burger et al. 1995; Lorenz and Eiler 

1989; Leonetti 1997; Brannon 1987). Little was known about the population on the East 

Alsek, in part due to their own unique life history characteristics.

The sockeye of the East Alsek have a life history attribute unusual for sockeye. East 

Alsek juvenile sockeye forego the traditional one or two year rearing period in 

freshwater, instead migrating to sea soon after emergence (Clark et al. 2003). Little has 

been documented on habitat selection, spawning habitat physical attributes, or
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adaptive traits for this ocean-type life history. These unknowns were of particular 

interest for how this unique trait might influence East Alsek sockeye production and 

spawning behavior.

The purpose of this investigation was threefold: 1. To determine if sockeye from the 

East Alsek River spawn in vegetated or sediment-laden habitat that may possess other 

attributes favorable for egg survival, 2. To determine if reduced flooding is likely to 

result in an increase in sedimentation and the establishment of aquatic vegetation, and 

3. To assess the capability of existing habitat to support production equivalent to 

historic large sockeye returns.
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. Methods

Study Site

The East Alsek River is located within the Dry Bay Preserve of Glacier Bay National Park, 

Alaska (Figure 1.2). The East Alsek River is approximately 9 km long from its headwaters 

to an estuarine lagoon. It is a low gradient (<1%), clear water river with vegetated 

banks. The river can be described as a series of large and comparatively deep pools 

separated by short stretches of shallow riffles. The pools varied in depth, but were 

generally deeper than 3 m (one pool > 5 m), and the riffles were typically less than lm  

deep at the time of our survey. Flow is relatively low during the spring and summer and 

increases into the fall and winter, with a measured discharge at the mouth of the river 

ranging between 2.4 m3/s to 6 m3/s (measured from June, 2005 to September, 2006). 

The stream channel is well established, and has changed little since aerial photography 

conducted in 1948. Wood riparian vegetation along the banks in 2005-2006 generally 

consisted of Sitka spruce, willow, alder, and cottonwood that overhung the bank 

throughout the river.

Habitat designation

From July 17 to August 17,2005, prior to the presence of spawning Pacific salmon, we 

delineated polygons that shared similar habitat characteristics in order to assess the use 

of various habitat types by spawning sockeye. Polygons were delineated by



circumnavigating designated habitat using a hand-held Trimble GeoXT™ global 

positioning system (GPS, Figure 1.3) that recorded the user's position once every second 

and was generally accurate to within 1-2 m.

Each polygon consisted of an area where the substrate, water depth, presence and type 

of vegetation, as well as water velocity appeared fairly homogeneous (Figure 1.4), and 

where the boundaries could easily be identified for spawning surveys. We mapped a 

total of 54 polygons.

The habitat perimeter of each polygon was uploaded from the GPS into a Global 

Information System (GIS) database so that physical attributes could be calculated (such 

as area, location, and perimeter). Each polygon was then subsampled in order to 

quantify habitat characteristics. Quadrats measuring 0.9 m x 0.9 m were randomly 

selected along a predetermined zigzag transect within the bounds of each polygon using 

a gridded wire mesh panel (Figure 1.5). A surveyor achieved random quadrat placement 

by tossing the quadrat over his/her shoulder. We allocated quadrats among polygons in 

a size-dependent fashion, with a minimum of 10 and a maximum of 20. A total of 1217 

quadrats were allocated among the 54 polygons. Within each quadrat, we measured 

water velocity (at 60% of depth), water depth, aquatic vegetation cover, plant height, 

substrate type, substrate composition, dissolved oxygen, specific conductivity, and 

temperature (Figure 1.5, precision in Table 1.1). All measurements requiring a visual 

estimate of percent allocation (e.g. vegetation cover percentage, small gravel
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percentage) were performed by the same researcher to prevent inter-observer 

variation.

Temperature, dissolved oxygen (DO), and specific conductivity were all recorded using a 

Yellow Springs Instrument (YSI) meter (Model 556 MPS Multi Probe System) at the level 

of the substrate. We calibrated the instrument's dissolved oxygen meter prior to each 

day's field collection, specific conductivity monthly and temperature prior to each year 

of field work. Water velocity measurements were only taken for 50% of the sample 

points to maximize efficiency. Mean water column velocity was estimated using a 

Pygmy™ or Price AA™ water velocity meter over a 50 second time period at 60% of the 

water depth (Bovee 1997). Water depth, plant height, and sediment depth were 

measured to the nearest cm at the four corners of the quadrat. Water depth was 

measured from the top of fine sediment to the water surface, sediment depth was 

measured from the top of fine sediment to the hard substrate below, and plant height 

was measured as the height of surrounding vegetation above the stream bottom 

relative to current flow conditions (Figure 1.5).

Substrate composition was quantified in a multi-step process. First, the relative percent 

composition of fine sediment or plant cover was recorded (Figure 1.5). If plants were 

established above the fine sediment, this superseded the sediment composition 

measurement. Second, the fine sediment and plants were removed from the underlying 

substrate by fanning the area with a canoe paddle so the underlying substrate
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composition could be evaluated as necessary. We then determined percent substrate 

composition of sand (l-2mm), small gravel (2-64mm), large gravel (64-128mm), cobble 

(128-256mm) and boulders (256mm+). Finally, if the underlying substrate was 

inaccessible due to an excessive amount of sediment or vegetation, then the 

composition was estimated by observing adjacent and more accessible substrate.

Mean values for each of the habitat measurements were calculated for each polygon for 

analysis purposes. To reduce substrate composition to one variable, the weighted mean 

for the gravel size was calculated using Equation 1.1. Each of the gravel sizes in the 

equation was the median value for the range of each category.

Spawning distribution and preferred spawning habitat surveys

We conducted in-stream spawning surveys in the fall of 2005 (Aug 27-Sep 1) and 2006 

(Sep 7-Sep 15) to quantify the use of spawning habitat by sockeye salmon. The number 

of spawning sockeye, number of sockeye redds, and number of sockeye carcasses were 

counted in each polygon. Due to the prevalence of brown bear in the area, three 

observers served as stream surveyors to count spawning sockeye, redds and carcasses, 

and one served as boat operator and bear lookout.

Two inflatable rafts were tethered together to provide a stable observation platform so 

the three observers could stand and observe spawning sockeye. Observers wore 

polarized sunglasses to reduce surface glare. Surveys were typically conducted in an
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upstream to downstream direction except in larger pools where currents were not a 

factor affecting viewing platform maneuverability. Spawning sockeye visibility was good 

given East Alsek River water clarity (Figure 1.6), although it did vary with weather 

conditions (e.g. rain, wind, cloud cover, etc.). Raft avoidance behavior by sockeye was 

minimal. Each surveyor independently counted all non-schooling sockeye, active 

sockeye redds and sockeye carcasses within each polygon on a hand-click counter. An 

'active' redd was one in which a minimum of one sockeye salmon was stationed above 

or adjacent to the redd, and appeared to be there for the purpose of spawning. Sockeye 

salmon holding in large schools were omitted from counts, as they did not appear to be 

actively spawning. These fish generally did not show full breeding colors and were 

tightly bunched in schools, along the lower reaches of the river.

Observed density was then calculated for each polygon by dividing the mean total from 

surveyor's observations of spawning sockeye, active sockeye redds or sockeye carcasses 

by the total area of the polygon (Figure 1.7).

Principal Components Analysis

We analyzed the 9 mean habitat measurements for polygons (temperature, specific 

conductivity, water velocity, water depth, dissolved oxygen, weighted substrate size, 

sediment depth, plant height, and the combined substrate and sediment cover) using 

principal components analysis to identify underlying patterns among generalized 

polygons within the East Alsek sockeye habitat.
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Analysis of habitat use

The relative density of redds per habitat polygon was compared to random habitat 

measurements within the same polygon. We calculated the fraction of the total area of 

the river in each habitat category then calculated the fraction of redds in each habitat 

category. This in effect compared the distribution of the area-weighted habitat 

measurements to redd weighted measurements in order to assess how sockeye were 

using the habitat available to them throughout the East Alsek River. The normalized 

distribution for each habitat measurement was calculated using Equation 1.2.
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Results

Correlation of habitat variables

Examination of the correlation matrix provided some insights into the interactions 

among habitat characteristics. For instance, water velocity was negatively correlated 

with vegetation cover and sediment cover, sediment depth and the height of aquatic 

vegetation (r= -0.55, -0.32, -0.37 respectively). Sediment depth was also highly 

correlated with vegetation height (r=0.71, Table 1.2).

Principal Components Analysis

Principal component analyses provided evidence that East Alsek River spawning sockeye 

selected habitat free of sediment and vegetation, and away from slower, deeper water 

(Figure 1.8). Principal component 1 (PCI) was strongly determined by an opposite 

relationship between water velocity and several habitat variables including water depth, 

sediment depth, vegetation + sediment percent cover, and vegetation height (Table

1.3). Principal component 2 (PC2) was similarly determined by an opposite relationship 

between gravel size and several water quality parameters including specific 

conductivity, temperature, and dissolved oxygen. Group-2 was composed of polygons 

that defined deeper and slower water habitats with higher sediment and vegetation 

loads (Figure 1.8). Generally, these features characterized the abundant large, deep 

pools within the East Alsek River.



When the first two principal components of the habitat correlation matrix were plotted 

(Figure 1.8), we observed two distinct groupings of habitat polygons. Polygons that 

defined pools (Group 2, Figure 1.8) tended to be distinct from those that did not (Group 

1, Figure 1.8). Only two of 12 glides grouped with group 2, and one polygon designated 

as a pool and one riffle did not fit into either group. The remainder of the East Alsek 

River surveyed, 179,766 m2 (38%) were designated Group 2.

Although redd density was not used in the grouping of habitat types using PCA, no 

polygon contained in Group 2 had spawning density greater than 0.05 redds/lOOm2, 

whereas all polygons with redd densities greater than two redds/lOOm2 were contained 

within Group 1. These results were consistent for both 2005 and 2006 study years even 

when analyzed separately.

Sockeye use of habitat for spawning

Results of the spawning surveys were consistent with those of the principal components 

analyses. Spawning sockeye selected spawning sites in areas with reduced sediment 

and vegetation, as well as in colder and shallower water than what was available on 

average throughout the river. The relative use of habitat (e.g. redd density) was 

compared to the measured habitat variables in each of the 54 polygons. Redd density 

showed no north to south pattern, suggesting that sockeye did not select spawning 

habitat as a function of distance traveled, and the survey timing was appropriate (Figure 

1.9). Mean values for redd-weighted sediment depth, vegetation height, vegetation
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cover and temperature were all significantly lower than area-weighted means (Table

1.4).

Redd-weighted values were similar for sediment cover compared to area-weighted 

means for both survey years, although the percent coverage measurement did not 

discriminate between shallow and deep sediment (Figure 1.5). Mean values of water 

velocity and water depth were not significantly different for either year, suggesting 

sockeye were using the river proportionally to what was available for depth and velocity 

(Figure 1.10). Statistical significance for both dissolved oxygen and specific conductivity 

differed between years. When data for both years were combined, neither dissolved 

oxygen nor specific conductivity had redd-weighted values that were significantly 

different from area-weighted values.

Sediment depth and vegetation height exhibited the greatest differences between area 

and redd weighted values (Figure 1.10). Sockeye favored spawning areas with much 

lower sediment and vegetation loads than what was available to them throughout the 

river. East Alsek sockeye were also spawning in areas that were cooler, had lower DO 

and smaller substrate size than the typical available habitat.

There was little difference observed in the redd density weighted distribution of habitat 

measurements between the 2005 and 2006 survey years despite the 2006 return being 

two times as large as the 2005 survey. No density dependent shift in habitat preference 

was observed at these two density levels.
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Discussion

The sockeye of the East Alsek River showed definite spawning habitat preference. . 

Preferred sockeye habitat was generally low in sediment and plant cover, exhibited 

smaller sized spawning gravels, and occurred in upwelling areas. A localized change in 

hydrology within the East Alsek River, presumably due to glacial rebound and 

subsequent lack of periodic Alsek River flooding, has likely contributed to a decrease in 

preferred habitat since the last Alsek flood event.

Availability of spawning habitat can be difficult to assess because selection and actual 

use is certainly dependent on spawning fish density. As sockeye escapement increases, 

the use of substandard habitat will also increase, and the densities within preferred 

habitat may also increase to accommodate more salmon. This study was focused on 

answering several questions about habitat use by spawning sockeye in the East Alsek 

River. These questions were: 1) What criteria were sockeye using to select habitat? 2) 

Was use dependent on vegetation or sediment distribution? 3) Are conditions present 

that facilitate increasing in sediment deposition or aquatic vegetation growth and 

distribution?

Cues used by sockeye to select spawning habitat are difficult to determine because a 

vast combination of these cues are likely to influence a sockeye's final selection of a 

spawning site. Subsurface flows, slight salinity changes or other cues may influence the 

choice of spawning habitat (Geist and Dauble 1998; Baxter and Hauer 2000; Burger et al.
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1995). In the case of the East Alsek River, it was clear that much of the river had high 

sediment and plant loads atop gravel suitably sized for spawning salmon. It was 

possible that these sockeye could act as excavators, building suitable redds by removing 

sediment and other materials that overlay the substrate. This process has the potential 

for sockeye to maintain their spawning habitat by excavating the same redd sites from 

year to year, clearing fine sediment from spawning gravel (Quinn et al. 1995). Although 

this was probably the case for riffle areas that had sufficient flow to displace sediments 

downstream, the pool and glide areas of the river lacked sufficient flow to displace 

sediment once excavated and sockeye salmon did not use these areas.

The low gradient and low flow of the East Alsek River are not conducive for displacing 

any excavated material downstream of a redd. Moreover, precipitation event flooding 

effects are unlikely given the relatively flat and low gradient character of this river's 

watershed. A rise in the hydrograph was consistently detected during autumn of 2005 

and 2006. However this rise was not sufficient to create velocities (Miller et al. 1977) 

that would scour or displace sediment or plant material in the majority of river habitat 

(within pools and glides). The threshold of sediment displacement (fines and clays) was 

reached in short riffle sections, where sediment loads were significantly less than those 

in the pools and glides. The lack of scouring flows occurred even despite above average 

precipitation during 2006. This suggests that precipitation events alone are unlikely to 

influence water velocity sufficiently to scour sediment for the majority of the river. The
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large pools that dominate and comprise most of the existing habitat within the East 

Alsek River act to trap displaced sediments in these reduced velocity environments. A 

large-magnitude Alsek River flooding event would most benefit East Alsek River pool 

reaches to increase available spawning habitat.

Accumulated sediments provide an ideal nutrient-rich substrate for aquatic plants. The 

correlation of measured habitat variables supports the notion a positive feedback loop 

between water velocity, vegetation abundance, and sediment deposition exists because 

water-velocity was negatively correlated with vegetation height and sediment depth. 

Sockeye selected areas with less plant cover (Figure 1.10). Our evidence suggests the 

East Alsek will become less suitable for sockeye spawning through time in the absence 

of scouring flows to periodically displace sediment and aquatic vegetation from current 

and historic spawning habitat. Moreover, anecdotal evidence from area fishermen 

suggests that sediment volumes as well as vegetation spatial distribution have increased 

over time.

Our habitat measurements were suitable for evaluating spawning habitat use by East 

Alsek sockeye. Spawning sockeye showed an aversion to spawning in areas dominated 

by high sediment or plant loads. Excavation of sediment greater than 10 cm for the 

purpose of spawning was determined to be Very unlikely; conversely choosing a habitat 

with less than 5 cm of fine sediment was much more likely (Figure 1.10). This suggests 

sockeye had definite limits to what they would excavate. Sockeye apparently used
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other cues to seiect spawning habitat in addition to vegetation and sediment presence 

sockeye were spawning in areas that were generally cooler, had smaller spawning 

gravels and had lower dissolved oxygen levels than what was available. These 

observations suggest preference for areas with upwelling groundwater, which tends to 

be cooler on the East Alsek and exhibit reduced oxygen concentration compared with 

surface flows (Geist 2000).

The criteria sockeye use to select spawning habitat may also change as the density of 

sockeye populations increases, thereby crowding more spawners in less suitable habitat 

for spawning or increasing redd superimposition (Smoker, Gharrett, and Stekoll 1998; 

Fukushima 1996). However, despite spawning counts more than doubling between 

2005 and 2006, no change in habitat selection was seen between the two years. Much 

greater densities may be required to observe a shift in the spawning habitat used, as 

both years had runs much smaller than during the historical peaks.

The locations of high redd density polygons were intuitive from a hydraulic and/or 

upwelling perspective. Sockeye redd density was typically high along outer pool 

margins, because those areas exhibit higher water velocities compared with inner 

margins and pool cores. Riffles with suitable substrate almost always exhibited high 

redd densities as did areas downstream of remnant channels. This was especially true in 

the headwaters reach, presumably due to upwelling flow. Polygons exhibiting high redd
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densities typically occurred in areas of the river with sufficient flow, either interstitially 

(through upwelling) or in-stream flow, that would promote good embryo survival.

The criteria required for good embryo survival were generally met, with dissolved 

oxygen measurements at the substrate between 5—20 mg/L (Davis 1975; Coble 1961). 

Increased sediment and vegetation are likely the cause of the reduction in production 

that the East Alsek has undergone in recent years. Sediment has been shown to have 

detrimental effects on the viability of salmonid embryos (Wu 2000; Cooper 1965; Lisle 

and Lewis 1992). Sediment deposited after the fall spawning season had the potential 

to overlay existing redds and entomb eggs, and available spawning habitat was most 

likely reduced from the last flooding event. However, the habitat measurements that 

directly relate to embryo survival, such as interstitial flow and interstitial dissolved 

oxygen concentrations, were inferred from surface measurements and known physical 

relationships. As inferences, the criteria for embryo survival were not absolutes.

Our analyses (see also chapter 2, this volume) support the idea that flood frequency is 

decreasing. If so, then the spawning success of East Alsek sockeye salmon will likely be 

reduced. The ability of sockeye to maintain spawning habitat in this river over the long­

term is not likely due to the low gradient and low flow which is insufficient for displacing 

sediment away from spawning habitat and into the estuary. Flood waters from the 

Alsek have the potential to be the source of scouring flows that could flush fine 

sediment from the river into the estuary or even the Gulf of Alaska. Peak flows on the

32



Alsek were measured at 3653 m3/s for 2005 and 2006, whereas the peak flow for the 

East Alsek was measured at 6 m3/s, only 0.15% of the Alsek River's peak flow (USGS, 

Alsek River Gage). If only a small proportion of the river overran its banks into the East 

Alsek, the velocities generated would likely be sufficient to scour gravels and displace 

sediment and aquatic plants. Unfortunately, the evolving geomorphology of both the 

Alsek and East Alsek Rivers indicates that such floods will become increasingly 

infrequent, and consequently the outlook for the East Alsek sockeye salmon population 

will likely continue to deteriorate.
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Figure 1.1 Timeline of sockeye catch, uplift and plant succession for the East Alsek River. The man 

represented to the right of the uplift figure is 1.8 m tall, and uplift was assumed to progress at 26mm/year 

from 1900.



Figure 1.2 The East Alsek River study site showing the flood channels connecting the Alsek River to the East 

Aisek River. . . . . . . . 42
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Figure 1.3 An example of the delineation of polygons. The border of each polygon was walked with a GPS 

in order to quantify the area of a polygon.



Figure 1.4 A portion of the East Alsek River (left) and its subdivision into habitat polygons. The mean spawner

and redd density were computed for each polygon and compared to the habitat attributes (sediment depth,

velocity, etc.).
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Figure 1.5 Measurements within a quadrat (lower left) of habitat characteristics shown in a profile view 

(above left), and overhead view (right) for 1. Water Depth (cm) 2. Water Velocity (60% water depth.

m/s) 3. Plant Height (cm) 4. Sediment Depth (mm) 5. Dissolved Oxygen (mg/L), Specific conductivity 

(uS/cm) and Temperature (°C) 6. Percent cover - sediment (%) 7. Percent cover - vegetation (%) 8. 

Percent cover (%), Sand (l-2mm). Small Gravel (3-64mm), Large Gravel (65-128mm), Cobble (129­

256mm), and Boulder (257mm+).



Figure 1.6 Spawning sockeye within an East Alsek River riffle. Surveys of spawning activity 

were aided by clarity of East Alsek water.

46



Figure 1.7 Observed redd densities of spawning sockeye salmon in habitat polygons in the East Alsek 

River, for 2005 and 2006. Densities are displayed by sampled polygon.
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PC-1

PC-1

Figure 1.8 Principal component graphs of mean habitat characteristics for all 54 polygons surveyed. Redd 

density per sample year is also displayed as a function of circle size. A generalized description of polygon 

habitat is provided for reference, where P, G, R, B, PM, PS, RH represent Pool, Glide, Riffle, Backwater, 

Pool Margin, Shallow Pool and Riffle Head respectively.



Figure 1.9 Display of Northing coordinates in relation to the 2005 and 2006 redd density.
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Figure 1.10 Normalized distribution of habitat measurements for 2005 redd-weighted, 2006 redd-

weighted and area weighted habitat measurements. Axis values show the lower boundary of each bin.
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Figure 1.10 continued.



Table 1.1 Precision of habitat measurements taken in each polygon and summarized 

for later analysis.

Habiitat Variable Precision and classification
Water depth 

Silt/fTnes depth

Vegetation height from substrate
Substrate % composition
Substrate beneath Vegetation or Silt/fines

W ater velocity (GOX water-column} 
Dissolved Oxygen (DO}
Conductivity
Temperature at Substrate________

l c m 
1 mm 
1 cm
1% Vegetation and 1% Silt/fines

1% Sand (l-2mra)
Small Gravel (2-64mm) 
Large Gravel (64-128mm) 
Cobble (128-256mm) 
Boulder (25frHnm)

CL02 m/s* *
0.01 m g/l 
Ip S  
0.1* c

*• One revolution on pygmy1" velocity meter
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Table 1.2 Correlation (r) matrix of mean habitat measurements.

V egetation* Geometric

• Sedim ent* Mean of Average Water Vegetation Sediment Desolved
Cover Gravel Sim Depth Velocity Height Depth Conductivity Temperature Ovygen

Vegetation %»

Sediment % Com

Mean of Grand Site t i n
Average Depth 0 1 5 0 0 4

Water Velocity -055 0 0 4 0 3 0
Vegetation Height 0 5 3 0 0 4 0 4 7 0 3 7

ve. -Jg*............m vfc yrr
x O flW I R  U t y l i l 0 4 6 0 1 9 0 5 4 0 3 2 0 7 1

CondoctMty 0 1 3 0 4 5 0 0 6 0 0 6 0 0 3 0 0 5
Temperature 0 1 6 0 5 3 -014 0 0 5 0 3 6 0 0 0  0 4 1

Drswtoed Oxygen -007 0 0 9 O il 02 7 0 2 3 0 0 2  0-10 0 5 5
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Table 1.3 Eigenvectors of habitat measurement variables.

P C I
Eigenvalue 2.82

Vegetation % +
n  m m

Sediment % Cover
Geometric Mean of

-0.05
Grave) Size

Average Depth 0 3 6
Water Velocity -0 3 8

Vegetation Height 0 3 2
Sediment Depth 0.48

Conductivity 0.1
Temperature 0.15

Dissolved Oxygen 0.03

PC2 PC3 PC4 PCS
2.19 132 0.92 0 3 7

0 j01 U 3 2 -0.49 03 2

-0.48 0 3 8 -0.16 0 3 7

-0.19 0.04 0.7 -0.17
0.15 0.42 03 7 0.12
0 j07 0 3 6 -0.03 -0.15
-0.17 0.25 0.12 0.14
0.41 -037 03 7 0.71
0 3 9 0.12 -0.13 -0.14
0.4 0 3 9 -OJ09 0.12

PC6 PC7 PC8 PC9
0.47 0 3 1 0 3 4 0.16

0 3 5 0 3 7 0 3 7 0.1

-032 -0 36 0 3 6 0.13

-033 0 3 1 0 3 5 0 3 2
0.68 0 3 3 0 3 4 -0.07
0.1 -039 0 3 3 -0.7

0 3 8 -0.16 -0.6 0 3 3
-0j04 -0.11 -0.04 -0.17
0.01 -0.4 0 3 6 0 3 4
-0.47 0.41 -038 -0D 7
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Table 1.4 Weighted mean and standard deviation for each measured habitat characteristic. Redd 

weighted survey results from 2005 and 2006 were compared to area weighted values using a 

standardized t-test with unequal variances.

Area Redd Weighted Redd Weighted 
Weighted________ 200S___________ 2006

Conductivity (pS/cm) 186 19 192* 53 185 27
Dissolved Oxygen (mg/L) 11.9 1.4 11.6 2.8 11.5* 2.6

Mean Substrate Size (mm) 72 60 55* 67 62* 54
Sediment % cover 33 38 42* 27 41* 28

Sediment depth (m) 0.11 0.3 0.02** 0 0.02* * 0.03
Temperature (°C) 9 2.S 8.4* 3.3 8.4* 3.3

Vegetation X  cover 61 36 32* 36 34* 33
Vegetation Height (m) 0.1 0.2 0.03** 0 0.03** 0.05

Water Depth (m) 0.46 0.4 0.42 0.2 0.39 0.2
Water Velocity (m/s) 0.09 0.1 0.06 0.1 0.09 0.16

*p< = 0.05**p <= 0.01



Equation 1.1 Equation to determine the mean size of gravel per quadrat.

x =  [(Sand %) x 1 mm] + [(Small Gravel %) x 33 mm] + 

[(Large Gravel % )x96 mm\ +[(Cobble % )xl92 mm]+ 

[(Boulder %)x256i?iro]
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Equation 1.2 Equation to determine weight of habitat variables used for spawning habitat use according 

to redd density in 2005, 2006, and compared to the total area sampled.

y% =1 i f  y,j Msimlobm K, Ootherwise 

A  =areaof polygon, or total number of redds in potygcfri(equals area* density) 

n- =mniiberof quadratsinpofygon j

Indices

K=bm of histogram 

j=Potygcn 

i=quadrat within polygon j
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Chapter 2

Spawning Habitat Degradation due to Decreased Flooding as a 

Consequence of Isostatic Rebound2

2 Faber, DM, M Adkison, C M Soiseth (2008) Spawning Habitat Degradation due to Decreased Flooding as 

a Consequence of Isostatic Rebound2. North American Journal of Fisheries Management. Vol. Xx (xx), xxx- 

xxx.



Abstract

We evaluated population trends of East Alsek River sockeye salmon near Yakutat Alaska 

in relation to freshwater and marine conditions. This study was conducted to determine 

the reason for a recent downturn in production of this population of ocean-type 

sockeye. The East Alsek River once saw returns of over 275,000 sockeye salmon, but 

recent returns have failed to meet escapement goals. We assessed the influence of 

environmental conditions such as temperature, number of freezing days, precipitation 

and the North Pacific index on critical life stages of these sockeye salmon. Also, 

periodic Alsek flood events were evaluated in conjunction with spawner/recruit data 

using a customized spawner/recruit model. The most compelling evidence suggests that 

the lack of periodic Alsek River flooding accounts for the boom in production observed 

in the 1980's as well as the more recent decline since the mid 1990's. The lack of 

flooding from the much larger Alsek River has likely led to increased sedimentation and 

aquatic vegetation that impacts East Alsek sockeye survival. Additionally, valuable life 

history information was derived from this study of ocean-type sockeye. We calculated 

that embryos from this fall run hatch in January and emerge from the gravel in April. 

Juvenile sockeye then grow to 55 mm - 75 mm (fork length) from April through July 

when they outmigrate to the Gulf of Alaska.
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Introduction

Changes in environmental conditions can have a direct impact on the population size 

and population growth rate of sockeye salmon by influencing survival. From spawning, 

embryo development and emergence in their natal streams, to wide ranging 

movements throughout the Pacific Ocean, sockeye experience a broad variety of 

environmental conditions. We examined the effect of a few of these environmental 

factors on the salmon returning to the East Alsek River near Yakutat Alaska.

East Alsek River sockeye salmon have shown dramatic fluctuations in abundance over 

the past 40 years, from high returns of 275,000 fish in 1985 to lows of 14,200 fish in 

2002. A recent drop in sockeye numbers below the escapement goal of 26,000-56,000 

fish caused the closure of the commercial fishery in 1999. Alaska Department of Fish 

and Game (ADFG) re-evaluated their escapement goal for the East Alsek, and in 2003 

the commercial fishery reopened with a new goal of 13,000-26,000 fish (Clark et al. 

2003).

In the early 1900's the East Alsek was one of three distributary channels of the Alsek to 

the Gulf of Alaska (Figure 2.1; Morse 1908). Sometime between 1908 and 1948, the 

channel of the East Alsek was isolated from the Alsek when another channel established 

itself as the primary route for the Alsek to the Gulf of Alaska. The East Alsek channel 

maintained its own flow from upwelling groundwater after its isolation (Morse 1908; 

USGS1959). However, the East Alsek is still connected to the Alsek through overflow
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flood channels. Periodic flooding has occurred via these channels, the most recent 

documented in 1987 (J. Lowenstein, Johnny's East River Lodge, personal 

communication). Sparsely documented accounts suggest more frequent flooding in the 

years immediately following the establishment of the East Alsek River, including five 

floods documented between 1964 and 1981 (Smith et al. 2006).

As a newly formed river, the East Alsek River was also only recently colonized by Pacific 

salmon. Chum salmon (Oncorhynchus keta) established themselves as the dominant 

Pacific salmon species in the East Alsek River until the mid 1970's (Heinl et al. 2003). 

Their early colonization and dominance may have been due to the presence of 

upwelling flow throughout the river, a known habitat attribute that chum salmon 

identify for spawning (Geist et al. 2002). Upon the rise of sockeye, chum salmon became 

less abundant but still occupy the river. There are also modest runs of coho (O. kisutch) 

and pink salmon (O. gorbuscha). However, it was the commercially valuable sockeye 

that garnered the greatest attention from commercial fishermen.

East Alsek sockeye do not require a freshwater lake for rearing. This rare life history is 

known as ocean-type, as they migrate to the ocean the same year that they hatch. 

Similarly, 0-check, refers to the lack of a 1st year freshwater annulus evident on adult 

scales). Sockeye whose offspring rear in a lake are well-represented in the literature 

(Burgner 1991; Fukushima 1996; Blair et al. 1993; Burger et al. 1995). Much less is

61



known about sockeye with ocean type life history. We explored mechanisms that would 

influence the production potential of this population.

There are many influences on the production of salmon in their natal streams. For 

instance, the effects of temperature, precipitation, and marine conditions on survival 

and production have been examined in Pacific salmon populations (Gargett 1997;

Hendry and Quinn 1997; Beamish and Bouillon 1993; Bradford 1995; Edmundson and 

Mazumder 2001). These in addition to periodic flooding were the variables we chose to 

evaluate for East Alsek sockeye.

Temperature has been shown to have a profound influence on all the Pacific salmon 

species, from influencing embryo development and hatch timing to directly affecting 

physiology. Temperature has been linked to increased growth of juvenile sockeye in 

lakes throughout Alaska and British Columbia (Edmundson and Mazumder 2001).

Higher temperatures with sufficient food resources allow larger sockeye smolt to enter 

ocean water, thereby improving their ocean survival (Henderson and Cass 1991). 

Temperature is directly related to development timing of eggs and emergence of fry 

(Brett 1971).

Precipitation directly affects the freshwater environment for sockeye. Precipitation can 

determine the amount of habitat available for spawning. Water flow also affects 

embryo viability thru oxygen supply and waste removal (Baxter and Hauer 2000; Coble 

1961; Geist 2000). It directly affects the quantity of organic inputs into freshwater
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environments, which can increase forage for juvenile salmon (Kawaguchi and Nakano 

2001). Because of their small size and poorly developed swimming ability, the early life 

stages of salmon are particularly influenced by water conditions such as velocity and 

temperature.

Excessive precipitation can cause higher river velocities which can displace juveniles to 

environments with differing influences on survival (Fleming and Jensen 2002).

Depending on the circumstances, precipitation events can cause an increase in survival 

by displacing juveniles into areas with greater food resources, or cause a decrease in 

survival by subjecting juveniles to greater numbers of predators.

Precipitation can increase upwelling of groundwater into a stream. Upwelling can 

influence habitat selection by and habitat availability to spawning adults (Geist 2000; 

Geist and Dauble 1998; Hall and Wissmar 2004). Upwelling also provides consistent 

interstitial flow which aids embryo viability and survival. In the case of the East Alsek 

River, whose source is primarily groundwater, precipitation directly influences the 

groundwater elevation (Lamb 1945, Soiseth et al. 2005).

Marine conditions have been shown to have a substantial impact on the production of 

Pacific salmon (Bradford 1995; Beamish and Bouillon 1993; Fleming and Jensen 2002; 

Mantua et al. 1997), but can be difficult to evaluate with regard to a particular salmon 

population because of localized variability. The productivity of forage species for newly 

emigrated sockeye has been shown to fluctuate with.changes in ocean current patterns
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and temperature within the Gulf of Alaska, which can subsequently influence sockeye 

survival. The Pacific Decadal Oscillation (DO), the North Pacific Index, and coastal sea 

surface temperatures are indices of the state of the marine environment which have 

been shown to be related to decadal-scale fluctuations in salmon productivity (Cole 

2000; Downton and Miller 1998).

Flooding can have an immediate physical impact on habitat and survival for all life 

stages that use the fresh water environment. In some cases, flooding has become an 

essential component to a fish's life history. Colorado pikeminnow (Ptychocheilus lucius) 

for instance require backwater areas for spawning. Backwaters on the Colorado River 

are formed by periodic flooding events that change channel morphology and create 

these areas (Patten et al. 2001). Flooding often produces flows with sufficient velocities 

to scour and displace substrate downstream and change channel morphology (Collieret 

al. 1997). This has been demonstrated in southeast Alaska where fall flooding has 

shown to displace sediments from spawning substrates (Sidle 1985), which can increase 

embryo and fry survival (Chapman 1988; Wu 2000; Thorne and Ames 1987). Clark et al. 

(2003) speculated that the increase in sockeye production was due to periodic flushing 

of sediment from spawning gravels of the East Alsek River during flooding events by the 

much larger Alsek River. Given the physical habitat alteration that can result, flood 

records for the Alsek River were investigated to determine if a relationship existed 

between Alsek River overflow flood events and sockeye production.

64



The purpose of this study was to investigate environmental influences on East Alsek 

sockeye production. To that end, we examined the freshwater life-history 

characteristics of East Alsek sockeye and their unusual ocean-type behavior through 

field investigation. Using spawner/recruit analyses, we investigated whether 

temperature, precipitation, or marine conditions influenced particular life-stages of 

sockeye; or if these variables acted in aggregate to influence the survival and production 

of sockeye. Finally, we examined Alsek River flood events and their effects on East Alsek 

sockeye production.
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Methods

6 6

Study Site

The East Alsek River is located within the Dry Bay Preserve of Glacier Bay National Park 

(Figure 2.2). The East Alsek River and associated estuarine lagoon were the focus of 

sampling and research efforts; however groundwater, water quality, weather, and water 

temperature measurements were taken throughout the Dry Bay Preserve as a part of a 

separate, supporting study (Soiseth et al. 2005). The East Alsek River is approximately 9 

km long from its headwaters to an estuarine lagoon. It is a low gradient, clear water 

river with vegetated banks. The river can be described as a series of large deep pools 

separated by short stretches of shallow riffles. The pools vary in depth, but are 

generally deeper than 3 m (one pool > 5 m), and the riffles are typically less than lm  

deep during spring and summer flows. Flow was relatively low, with a measured 

discharge at the mouth of the river from June 16th to August 25th, 2005 ranging 

between 2.4 m3/s to 6.0 m3/s. The vegetation along the banks in 2005 and 2006 

generally consisted of Sitka spruce (Picea sitchensis), willow (Salixspp.), alder (Alnus 

spp.), and cottonwood {Populus spp.), which overhung the bank throughout the river. 

The stream channel is well established, and has changed little since an aerial photo 

survey conducted in 1948. In contrast, the estuarine lagoon has changed greatly since 

the 1948 aerial photos, where most of the change was attributed to a 1959 earthquake 

that merged estuaries of the Doame River and East Alsek River to form one large lagoon.



In 2005 and 2006 the East Alsek/Doame lagoon had sparsely vegetated banks 

surrounded by grass covered sand dunes. The lagoon extends approximately 10 Km 

from the mouth of the East Alsek River to where it meets the Gulf of Alaska. It also 

extends another 6 Km to the mouth of the Doame for a total of 16 Km of estuary. The 

estuarine lagoon varied in depth and width depending on the tide and precipitation. 

From 1998 aerial photos, we estimated the lagoon to be 1 km at the widest and 50 m at 

the narrowest portions.

General Methodology

Basic information on the fresh-water life history of juvenile East Alsek sockeye was 

gathered for model development. The duration and timing of residence of differing life 

stages was needed to link environmental conditions or flooding to the recruitment of 

sockeye in the East Alsek River. Ambient environmental conditions present at the time 

of the egg, fry, and juvenile life stages of East Alsek sockeye residence in the river, 

estuary, and North Pacific were calculated. Spawner/recruit models were then 

constructed that incorporated environmental conditions present at the time sockeye 

occupied a particular habitat. Precipitation, temperature, number of days below 

freezing, and the North Pacific Index (NPI) were examined to determine if they might 

explain sockeye recruitment trends observed in the East Alsek River since 1970, 

including the recent downturn in the late 1990's. In addition, a flood effect model was 

constructed that incorporated known flood events in the Alsek River. As a control, this
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flood effect model was also applied to four other Yakutat area rivers where the Alsek 

River would not have caused flooding.

Freshwater residence of East Alsek Sockeye

The timing of the egg stage (pre-hatch), fry stage (alevin to fry) and juvenile (fry to 

smolt) life stages were determined to the nearest month based on field observation and 

sampling. The appropriate months for each life stage were compared to the 

corresponding average recorded monthly values of temperature, precipitation, freezing 

days, and the North Pacific Index. The egg incubation time period was estimated using a 

published relationship between temperature and egg hatch time from the time of 

spawning (Velsen F. P. 1980). The average daily stream temperature was used to 

calculate the number of temperature units or Celsius degree-days experienced by eggs. 

Three temperature loggers (Onset Inc.) recorded temperature at the river substrate 

every hour and were evenly distributed between the headwaters and the river mouth. 

Spawning time was assumed to range from August 15 to October 15 (Clark et al. 1995).

After hatching, the offspring were considered 'fry' until they emerged from the gravel 

with their yolk-sac completely absorbed. This time period was also calculated from 

stream temperature data using literature values (Mead and Woodall 1968; Figure 2.3). 

This was also confirmed in the field; the size of juvenile salmon collected in the first 

sampling period in June was consistent with fry having just emerged from the gravel 

(Mead and Woodall 1968). The life-stage following emergence was defined to be the
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'juvenile' life-stage, and comprised the months from emergence until the time of 

smolting when juvenile sockeye completed their seaward migration (Figure 2.4). The 

duration of this life stage was determined from the observed timing of declines in catch 

per unit effort from seine hauls taken in the estuary.

In order to evaluate their residence patterns and spatial distribution, we periodically 

captured juvenile sockeye throughout the river and estuary. Six sampling sites were 

established within the East Alsek River, including three sites located within pool-type 

habitats and three sites located in riffle-type habitats. Pool and riffle sites were 

adjacent to one another along the river. Three additional sites were located in the 

estuarine lagoon downstream of the East Alsek River for a total of 9 collection sites 

(Figure 2.2). The nine sites were sampled at three week intervals beginning on June 4, 

2005 and ending September 1, 2005, and then again from June 1,2006 to August 31, 

2006. A 4.5 m x 1.8 m fine mesh (6.4mm) beach seine was used to sample river sites 

and a larger 12.2 m x 1.8 m fine mesh (3.2mm)beach seine was used to sample 

estuarine lagoon sites (Figure 2.5).

Our sampling effort at each site depended on our success in capturing juvenile sockeye. 

We sampled for a maximum of five seine tows at each site or until we captured a 

minimum of 30 juvenile sockeye salmon, whichever came first. Each seine tow 

consisted of a 90 second sampling effort, where two individuals fished the seine along 

the substrate, either in an upstream or downstream direction. The seine was pursed at
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the end of the 90 second interval so the fish would be contained within the net. The 

pursed seine was then taken to the shoreline where any fish contained within the net 

were placed in buckets for processing. If we caught more than 30 sockeye, the 

remaining sockeye were counted and released. Weight was recorded as wet weight 

before each fish was placed in ethanol (preservative) using an electronic scale accurate 

to 0.1 g. Length was recorded from the fish's nose to fork using calipers accurate to 

within 0.1 mm. All other species were counted and returned to the water at the place 

of capture.

Condition and growth of juvenile sockeye

Analyses of the juvenile sockeye collections sought to determine the rearing locations of 

juvenile sockeye, as well as the time and size at which juvenile sockeye enter Gulf of 

Alaska waters. The fork length, weight and condition factor of juvenile sockeye were 

summarized by their collection-site, date of sample and collection period. Groups of 

sample dates were used for among site comparison. The samples were further 

analyzed to determine the relationship between weight, length, and condition factor, 

over time and by collection site. Condition factor, a mathematical function of length 

and weight, was calculated as the (weight/length3) x 100,000 (Beckman et al. 2000). 

Samples were analyzed for each collection site to determine if a temporal increase in 

size was detectable. Also, samples at both river and estuary locations were pooled to 

determine if differences in length, weight or condition existed. Juvenile sockeye
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collection samples were pooled by sample time period to determine if there were 

differences in length, weight, or condition by location on the river. All analyses were 

conducted using a parametric one-way ANOVA using equal or unequal variances, 

depending on the appropriateness of each test.

Environmental Data Collection

The influence of local precipitation and temperature on conditions in the East Alsek 

River was examined by comparing local Dry Bay temperature and precipitation with 

water temperature and flow of the East Alsek River. Ambient temperature and 

precipitation were monitored using an Onset Micro-weather station deployed in Dry 

Bay, approximately 2 km from the river. Precipitation data was compared to .

groundwater elevation at four piezometers and also compared to the Alsek and East 

Alsek stage height in order to establish which water source, precipitation or the Alsek 

River, had the greatest influence on the groundwater source of the East Alsek River 

(Soiseth et al. 2005).

Monthly precipitation and temperature data were compiled from a Yakutat (NOAA 

weather) observation station to compare with the meteorological data collected over 

the two seasons in Dry Bay. Monthly totals for precipitation and monthly temperature 

averages were compared and analyzed using a Pearson correlation test (Zar 1999). This 

provided a necessary comparison of Dry Bay weather to Yakutat weather so that the
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long-term Yakutat weather data could be used as a surrogate for the sparser Dry Bay 

weather data when necessary.

Modeling of environmental effects on life-stages

We examined the effect of environmental variables on the spawner/recruit relationship 

using equation 2.1 (Quinn and Deriso 1999). The environmental variables included 

temperature, precipitation, freezing days, and the North Pacific Index (NPI) where 

appropriate. The environmental conditions present during each of the freshwater or 

marine life stages were pooled over the months encompassing each life stage (Table 

2.1).

Fifteen separate spawner-recruit models (Eq. 2.1) were created using a standard Ricker 

model, as well as a modified Ricker that incorporated each of the environmental indices 

appropriate for each life stage investigated: egg, fry, juvenile and 1st year marine. 

Spawner abundance was estimated using Alaska Department of Fish and Game (ADFG) 

aerial counts multiplied by 3/2 (Clark et al. 2003). The number of recruits was 

calculated using age-structured estimates provided by ADFG scale samples from fish 

collected on the East Alsek spawning grounds (Clark et al. 2003). Alpha, beta and 

gamma were estimated for the model by minimizing the sum of squared residuals 

between the predicted and observed ln(R/S), using Excel™ Solver™. The small sample 

Akaike Information Criterion (AlCc) was calculated for each model; a smaller AlCc value 

indicated a better model (Akaike 1974; McQuarrie, and Tsai 1998).
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Modeling flood effects on sockeye recruitment

A modified Ricker spawner-recruit model was also constructed to incorporate the 

effects of known Alsek flooding events (Equation 2.2). The model preserved density- 

dependent effects inherent in Ricker type spawner-recruit models, and incorporated 

persistent benefits of flood events in the carrying capacity parameter (ji). The 

documented events included two accounts (1981 and 1987) from the owner of a fishing 

lodge located at the East Alsek River mouth (Lowenstein, personal communication).

Two other flooding accounts (1980 and 1983), were documented from ADFG reports 

(Smith et al. 2006) that also corroborated the 1981 flood account. Since flooding events 

were not well documented prior to 1979, the model was evaluated using only data after 

1979. The discharge or duration of individual flood events was lacking, and the model 

did not take these factors into account.

The same model that incorporated flood events was used on four additional ocean-type 

sockeye populations located nearby in the Yakutat forelands (Table 2.3). This was an 

effort to determine whether any flood effects seen in the East Alsek Model were due to 

a combination of regional events that corresponded with Alsek flood events rather than 

to the direct effects of flooding. The AlCc was again used to evaluate the performance 

of this model in comparison to standard Ricker models without flood effects.
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Recruitment trends in YakutatArea Rivers

Trends in recruitment were examined for four nearby Yakutat Area Rivers (the Italio, 

Situk, Akwe, and Lost Rivers) and these were compared to trends in the East Alsek River. 

To remove the confounding effects of density, each river was modeled using a standard 

Ricker spawner/recruit model and the residuals for each year were examined for trends 

(Geiger 2004). The residuals for the five separate control rivers in each year (because of 

missing data, in some years there were less than four controls) were then sorted, and 

the percentile rank of the East Alsek River residual relative to the others was calculated. 

This provided an independent measure of how the East Alsek sockeye recruitment 

compared to other ocean type sockeye populations in the same vicinity.
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Results

Duration of freshwater residence stages

The resident time periods of egg, fry, and juvenile life stages for East Alsek sockeye 

salmon are displayed by month in Figure 2.3, for 2005 and 2006. We estimated a mean 

hatch date of January 26 and a mean date of fry emergence of April 30. Therefore we 

used September through January as the egg incubation period (Figure 2.4), and 

conservatively used January to March as the duration of the fry stage.

Juvenile sockeye were captured from the onset of the sampling season, beginning June 

1, until a steep reduction in numbers in early July. The juveniles caught in the river 

during this early time period were free of yolk sacs but were still very small (26mm to 

30mm) in both years of the study, suggesting recent emergence from spawning gravels. 

This observation corresponds with our predicted date of emergence based on published 

incubation-temperature relationships for sockeye (Mead and Woodall 1968).

We collected a total of 3426 and 3572 juvenile sockeye from all nine collection sites 

throughout the summer of 2005 and 2006 respectively. The catch-per-unit effort 

(CPUE) for these fish decreased throughout the sampling season, suggesting a drop in 

relative abundance in both the river and estuary (Figure 2.5). Both sampling years saw a 

dramatic decrease in CPUE in early July. Very few sockeye were caught during August 

and September within the river or estuary, indicating that the juveniles outmigrated to



the Gulf of Alaska prior to this time. Of the total number of juvenile sockeye caught, 

only 93 (3% of total) sockeye and 142 (4% of total) sockeye were caught within the river 

between August to September, 2005 and 2006 respectively. This confirms that East 

Alsek sockeye are ocean-type sockeye, and migrate to the ocean during their first year 

of life. The size of juvenile salmon in the estuary was somewhat larger than in the river, 

but didn't change significantly over the season, suggesting that juvenile sockeye use the 

estuary as a transitional environment to grow quickly and exit into the Gulf of Alaska.

Other species

A minimum of eight other species were also captured during seine tows in the river and 

estuary. These included juvenile coho (0. kisutch), king (O. tshawytscha), pink (0. 

gorbuscha), and chum (O. keta) salmon, as well as both adult and juvenile forms of 

Dolly Varden char (Salvelinus malma), starry flounder (Platichthys stellatus), sculpin 

(Cottus armatus, Leptocottus spp.), threespined stickleback (Gasterosteus aculeatus), 

and sandlance (Ammodytes hexapterus). Sample collections were dominated by 

juvenile sockeye and juvenile coho within the river, but exhibited greater diversity 

within the estuarine waters of the East Alsek Lagoon (Figure 2.6). We observed a peak 

in three-spined stickleback catch within the estuary during the mid summer as well as 

an increase in starry flounder and sculpin composition as the season progressed.

76



Condition and growth of juvenile sockeye

During the collection period, juvenile sockeye ranged in size from 26 mm to 104 mm. At 

estuary collection sites, sockeye sizes ranged between 0.45 g and 10 grams (wet weight) 

and between 35 mm and 103mm (FL). There was an increase in sockeye fork length 

and weight at the river collection sites in the early summer months, followed by a 

plateau later in the summer (Figures 2.7-2.87; ANOVA, p<0.05). The same increase was 

not detected within the estuarine lagoon; juvenile sockeye collections for estuarine 

locations did not show any growth or significant change in condition factor throughout 

the season.

Weight and length of juvenile sockeye was clearly larger at estuarine collection sites 

than at river collection sites (Figure 2.7 and 2.8; ANOVA, p<0.01). There was no 

significant difference in fork length, weight or condition factor between sample sites in 

either the river or lagoon (Figure 2.10).

77



Environmental influences

Dry Bay and Yakutat records were highly correlated (^=0.99 each) for both monthly 

average temperature and number of days below freezing over 15 months of data. 

Precipitation monthly averages were not as highly correlated, but the correlation was 

still statistically significant (r2=0.77, n = 14, p = 0.05). Precipitation records in 2006 were 

more correlated than in 2005 (r2=0.99, and ^=0.56 respectively). Given the significant 

correlation, the longer period of record from Yakutat NOAA weather station were used 

as surrogate data for the environmental effect modeling of East Alsek River sockeye 

recruitment.

Modeling of environmental effects on life stage

The only environmental effects model to perform better than the standard model was 

one using precipitation during the juvenile life-stage (Table 2.3, Figure 2.10). This model 

appeared to perform well in the first 20 years of the data; however, during the last 10 

years it did not explain the sudden downturn in recruitment (Figure 2.10).

Modeling flood effects on sockeye recruitment

Incorporating flood effects significantly improved the Ricker model in predicting East 

Alsek sockeye recruitment (Table 2.4, Figure 2.11). The parameter estimates for the 

standard Ricker model suggested a very large maximum recruitment for East Alsek
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sockeye (Table 2.4). However, the estimated value from the flood was more reasonable 

and this model did well at reproducing both the early 1980's recruitment as well as the 

downturn in recruitment seen in the 1990's (Figure 2.11). The East Alsek sockeye 

population was also the only population of five local sockeye populations (Akwe, Lost, 

Italio, and Situk) that had a better AlCc value for the model that introduced a flood 

effect (Equation 2.2; Figure 2.12).

Recruitment trends in Yakutat forelands rivers

Stock productivities, as indexed by the residuals of the East Alsek stock-recruitment 

relationship were consistently among the highest among residuals of five Yakutat Area 

rivers prior to 1990 (Figure 2.13). However, after 1990 the rank of East Alsek 

recruitment residuals fell to last place. This suggests that East Alsek sockeye stock 

productivity was following localized trends in recruitment, and not region-wide trends.

A lack of flooding in the East Alsek is coincident with the reduction in rank of 

productivity for the East Alsek, supporting the idea that East Alsek River sockeye 

benefited from the previous cluster of flooding events.
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Discussion

Evidence was found that flooding positively influences the recruitment of East Alsek 

sockeye. After exploration of local environmental effects, basin-wide population trends 

in sockeye production and marine conditions, the most compelling explanation for the 

recent downturn in East Alsek sockeye production is the absence of large-scale flooding 

events. In the past, these events originated when the Alsek River overflowed onto the 

spawning grounds of the East Alsek River. Several mechanisms associated with these 

scouring flows may explain why flooding boosts production in this system.

Sediment and aquatic vegetation compose a substantial proportion of habitat available 

to sockeye for spawning (Chapter 1). Flooding from the Alsek likely raised the East Alsek 

River velocity to a level capable of scouring fine sediments and vegetation and 

displacing them downstream to the estuary and Gulf of Alaska. The resultant 

displacement would have several effects, it would: 1) increase available spawning 

habitat, 2) introduce additional nutrients into the estuary for rearing juveniles, and 3) 

reduce the deposition of sediment atop eggs, a known source of mortality (Chapman 

1988).

We found that the flood effect was the best explanation of recruitment for East Alsek 

River sockeye. This model greatly outperformed the standard Ricker model. In contrast, 

models incorporating other environmental variables were not supported. The one 

environmental effect that was supported could not explain the sudden downturn in
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recruitment that the East Alsek sockeye experienced in the late 1990's whereas the 

flood effect model predicted both the rise and fall in sockeye recruitment. Additional 

support for the flood-effect hypothesis was derived from the comparison of East Alsek 

sockeye recruitment to that of four local rivers. None of these rivers showed a pattern 

of decline and fall related to East Alsek flooding, as would be expected if some regional 

environmental effect were producing a spurious correlation between East Alsek flooding 

and sockeye productivity.

Between the first recorded flood in 1980 and the last flood recorded in 1990, the East 

Alsek sockeye productivity (as residuals from a stock-recruitment relationship) was 

generally the highest among four other ocean-type sockeye populations in Yakutat Area 

Rivers. However, after 1990, the East Alsek productivity quickly dropped to last place 

for all five rivers examined. Assuming region wide environmental effects and marine 

conditions would impact these populations similarly, the years spanning known flood 

events on the East Alsek stand out in opposition to the trends on the four local rivers, 

giving further credence to increased production due to flooding.

Density dependence can occur when one production variable, such as habitat, is limiting 

the production potential of the population. When we examined the Ricker models in an 

attempt to predict East Alsek sockeye recruitment, density-dependence was not evident 

for this population of sockeye. Given the limited habitat available on the 9km river, and 

the varied escapements that the population has experienced since 1970 of between
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14,200 and 250,000 fish, this is not an expected result. The range of escapements 

provided sufficiently contrasting data to observe a density-dependent effect if habitat 

was a limiting factor in production. However, if the amount of available habitat varied 

over this time period due to the habitat-altering effects of flooding and sedimentation, 

then density dependence could not be tracked using the traditional stock-recruitment 

models.

Despite the strong evidence for a flood affecting recruitment, there are some limitations 

to our analyses. For instance, the flood effect model was based upon a cluster of flood 

events that occurred from 1980-1987. If any change in marine condition or other 

environmental event also occurred during that time period (other than flooding), the 

flood model might be spuriously supported. The cessation of foreign-fleet offshore 

gillnetting following the Magnuson-Stevens Fisheries Management and Conservation 

Act in 1976 also coincides with the steep rise in production of the East Alsek River 

sockeye. The 1980's were also a part of an Alaskan-wide trend of increased salmon 

production, widely attributed to favorable ocean conditions during that decade (Mantua 

et al. 1997). The combination of these effects would provide East Alsek sockeye 

increased marine survival, resulting in greater returns to the river. However, patterns in 

the East Alsek differed from those in neighboring rivers, which should also be subject to 

these influences.
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Precipitation was shown to have an immediate effect on groundwater and East Alsek 

flow (Soiseth et al. 2005), but the data from Yakutat that was used to model this effect 

was less correlated with Dry Bay precipitation than that of temperature (r2=0.77). 

Reasons for this discrepancy could be due localized meteorological and hydrological 

differences. The lack of a long term precipitation record in Dry Bay is a drawback to the 

accuracy of the environmental effects model that describes the impact of precipitation 

on production.

Hatch and emergence timing were taken from studies of stocks in British Columbia 

(Mead and Woodall 1968). The relationship between temperatures and hatch and 

emergence times for these sockeye stocks may differ from that of the population of 

sockeye on the East Alsek River. However, our seine samples corroborate the 

emergence timing estimates we calculated.

Finally, the population data for this study was derived from aerial surveys of 

escapement in concert with harvest data. Aerial surveys are notoriously noisy in their 

nature. On the other hand, the East Alsek is an ideal system for this type of survey due 

to the clarity of the river and the shallow water distribution of sockeye, making sockeye 

counts fairly accurate even under poor conditions. Nonetheless, the lack of a weir, 

counting tower, or sonar station for another source of escapement data undoubtedly 

introduced noise into the spawner/recruit data used in our analyses.
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Despite these qualifications, the evidence suggests that a recent lack of flooding has 

resulted in a downturn in East Alsek Sockeye production. Local land uplift due to glacial 

recession is a likely contributing factor to the change in the East Alsek flood frequency. 

This uplift has influenced the vegetation and hydrology in a relatively short time span. 

Historic maps of the area from 1850 to present (Morse 1908; USGS1959; NASA 2007) 

show how the Dry Bay area has changed from a barren and braided outwash delta to 

the mixed-shrub and coniferous forest of today. These maps similarly show the East 

Alsek shifting from a distributary channel of the Alsek to a river unto itself. These 

dynamic changes are likely to continue, with unknown consequences to the sockeye of 

the East Alsek.

A few other notable results were derived from this research. The only model to 

outperform the standard Ricker model was one incorporating precipitation during the 

juvenile life stage. An increase in precipitation correlated with an increase in 

recruitment. Increased precipitation can introduce additional organic input into an 

aquatic system thereby providing terrestrial insects or other forage for juvenile sockeye 

(Kawaguchi and Nakano, 2001). In the case of the East Alsek River, the increased 

precipitation might also displace juveniles from the cooler river environment into the 

warmer estuarine environment. Given enough food, higher temperature is more 

favorable for rapid growth (Soiseth et al. 2005).
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We consistently observed fish as small as 30 mm into the month of July, suggesting a 

prolonged emergence of sockeye. This can be explained by a protracted spawning 

period coupled with the variable temperature regime (Figure 2.5). We estimated that 

late spawning sockeye (October/November), would not produce emergent fry until June 

or July, whereas the sockeye that spawn just a month earlier would produce offspring 

that would emerge in April and May. This late emergence may have survival 

consequences for the fry if they outmigrate as smaller individuals,

In summary, our investigation points to periodic flooding from the Alsek River as the 

primary cause of the excellent returns observed in the 1980's and 1990's. No flood has 

occurred in the last 20 years, and the probability of further flooding is decreasing as the 

land is uplifted. It seems likely that the resultant loss of habitat to sedimentation and 

growth of aquatic vegetation will further reduce productivity of this stock. However, the 

continued evolution of the streamside vegetation and streambed could result in novel 

characteristics with unexpected consequences to the sockeye salmon stock.
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Figure 2.1 Map of Dry Bay surveyed by William Morse between 1906 and 1908. Dry Bay area is depicted 

as a barren outwash plain, void of trees or shrubs. The Aisek distributary channel that is now the East 

Alsek River is shown with an arrow.



Figure 2.2 Contemporary map of Dry Bay from a 2000 LandSat 7 image. Map shows location of Alsek overflow 

channels; the last time Alsek water entered the East Alsek River was 1987. to
•vj
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Figure 2.3 Average temperature from 2005 and 2006 temperature for three temperature loggers equally 

distributed from the mouth to the East Alsek River headwaters (solid line). Dotted lines are the bounds of 

cumulative temperature units with respect to eggs deposited from Aug 15 to October 15. Hatching time 

and emergence time (shaded bars) correspond to literature estimates of temperature units required for 

hatch and emergence.

1 Clark et al. 2003;2 Velsen 1980;3 Mead and Woodall 1968
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Figure 2.4 Estimated duration of each life-stage.
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Figure 2.5 Catch per unit effort data for all juvenile sockeye sampled in the river (above) and estuary 

(below) relative to date sampled. Samples in 2005 are displayed as diamonds; samples taken in 2006 are 

circles.
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Figure 2.6 Species composition of seine samples taken in the river (left) and Estuary (right) for 2005 (above) 

and 2006 (below).
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Figure 2.7 Box-plots of juvenile sockeye fork-length for all samples collected in the river

and estuary during 2005 and 2006 summer months.
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Figure 2.8 Box-plots of juvenile sockeye weight for all samples collected in the river and estuary during

2005 and 2006 summer months.
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Figure 2.9 Box-plots of juvenile sockeye condition factor for all samples collected in the river and estuary

during 2005 and 2006 summer months.
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Figure 2.10 Predicted recruits/spawner vs. observed recruits/spawner using the cumulative 

precipitation during the juvenile life stage as a predictor.
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Figure 2.11 Predicted recruits/spawners with and without a flood effect in comparison to 

observed data for the East Alsek River. Floods occurred in 1980,1981,1983, and 1987.



107

Figure 2.12 Predicted recruits/spawners with and without a flood effect in comparison to observed data 
for five Yakutat area rivers (Akwe, East Alsek, Italio, Lost and Situk Rivers). Floods were introduced into 
the model for 1980,1981,1983, and 1987.
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Figure 2.13 Relative rank of the East Alsek stock-recruitment residuals in comparison to residuals of four 

nearby sockeye populations (some years fewer than four were available), on the Akwe, Italio, Lost and 

Situk rivers. A rank of 100% indicated the worst relative recruitment, and a rank of 20% was best relative 

recruitment.
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Table 2.1 Spawner/recruit and environmental data for the East Alsek River.
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Table 2.2 Spawner/recruit data used to construct spawner/recruit models for five Yakutat Area

rivers. Double asterisks indicate data that was unavailable.
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1 9 8 5 5 0 0 0 9761 9 0 0 0 0 1 9 4 4 0 0 28000 1850 • • aa 1 0 7 5 8 6 1 2 8086
1 9 8 6 1 5 740 2 4 9 2 2 55500 23 1 4 3 5 7600 3742 232 3 281 4 7 1 5 4 3 8 8 8 6 3
1 9 8 7 1 0 0 0 0 2 2 2 5 0 5 1 000 8 6 1 9 0 12800 663 1 aa aa 7 2 7 2 0 1 3 3 9 4 4
1 9 8 8 mm • • 5 7 000 2 0 9 1 9 0 5400 8S 39 230 8 4 6 2 4 4 6 1 6 0 9 5 4 1 8
1 9 8 9 mm • • 4 5 0 0 0 2 5 7 8 5 0 1100 5901 aa aa 8 3 6 7 6 1 63563

19 9 0 mm mm 6 3 0 0 0 1 6 8 8 4 0 260 0 5263 6 3 0 6 94 0 1 6 9 3 7 2 160805
19 9 1 3 0 0 0 0 3 4 1 7 2 5 7 000 4 6 7 4 0 288 4 4 2 6 4 284 6 5 6 7 3 7 7 9 2 2 194157

19 9 2 mm • * 6 4 5 0 0 9 7 3 9 5 10338 29 2 9 aa aa 76 015 172801

19 9 3 3 7 860 4 1 9 0 7 6 7 5 0 0 58725 670 0 310 3 aa aa 59 282 1 44989

1 9 9 4 2 0 0 0 3 8 6 0 4 8 6 0 0 4 8 6 0 0 510 0 3725 5311 6 4 8 9 70 984 155113
1 9 9 5 2 0 0 0 4 2 8 4 4 2 0 0 0 3 3 180 540 0 303 0 10388 12312 4 0 9 1 1 I11KS
19 9 6 10 0 0 397 5 4 2 0 0 0 3 1 5 0 0 3101 1335 S463 7212 6 3 2 8 5 167305
19 9 7 mm mm 4 2 0 0 0 2 9 4 0 0 275 7 250 5 23 5 4 3602 3 8 182 9 1 7 3 9
19 9 8 mm mm *54)4)4) 15375 mm aa aa aa 4 6 0 7 8 9 2 0 8 7

19 9 9 mm mm 29250 3 0 6 8 7 mm • • 350 2 5 0 1 4 58 632 1 68646
2 0 0 0 mm mm 31 500 32343 mm • • 345 4 4 9 5 4 36322 8 7 9 5 3
2 0 0 1 7 0 0 0 2 4 2 9 4 25 500 4 7 7 8 5 mm • • 22 1 5 3715 57692 1 2 5 5 5 0

2 0 0 2 aa • a 14200 4 5 1 8 1 *• mm 27 6 9 4 2 6 9 6 5 3 8 3 150269
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Table 2.3 Model parameters for Ricker spawner/recruit models applied to the East Alsek Sockeye 

population. Environmental effects were defined as the average condition during the residence period of a 

particular life stage of sockeye. AIC values indicate a model with a better fit than the standard model.

s s o « Y AlCt
Standard Rlckar

A l 7148 135 1.07E-05 N/A 6413
PitdpitJtioa

Egg 7139 1.41 101E-05 -0 005 66.11
Fry 69 34 159 8 58E-06 -0030 65.51
Juv 62 78 0.62 2.4QE-Q5 0.150 63.45
A l 71.38 142 993E-06 -0003 6611

Temperature
Egg 7113 197 106E-05 -0.017 6603
Fry 67.68 251 1.01 E-05 -0.041 65.01
Juv 71 15 000 112E-05 0029 66.04
A l 69.88 3.07 1.01 E-05 -0.047 65.67

Fit*zing Days
Egg 6960 1.16 1.10E-Q5 0012 65.58
Fry 6684 1.00 1 02E-05 0020 64.75
Juv 69.52 1.48 126E-05 •0.168 65.56
A l 6810 1.04 1.04E-05 0009 6513

North P a c ic  Index
Fast Fal 71.42 162 1.05E-05 -002 6612

First Winter 7104 155 1 1KE-05 -003 6601



Table 2.4 Parameter estimates and AlCc values for five Yakutat Area rivers with ocean-type 

sockeye populations modeled using a Ricker type model with and without flood effect. 

Lowest AlCc for each river is in bold.

Mode) Akwe East hallo Lost Situk
AlCc 665 1529 42 32 9 03 -351

■o SSQ 100 494 1959 048 131
o» a 092 185 005 068 120
**- P 513E+04 7 40E+O4 1 02E+O6 3246+04 1 236+05

Y 000 012 027 0 08 000
AlCc 5.00 28 94 41.73 2.73 -407o© SSQ 1 0 0 10 94 1960 062 131

o a 093 047 000 062 120
z P 498E+04 2 506+08 3 986+10 2576+04 1236+05
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Equation 2.1 The model used to incorporate environmental influences on the East Alsek sockeye 

population.

, s  r -
l n ( — )  =  a  -  — +  y

b  p

R = Recruits 

S=Spawners

a = Maximum recruits/spawners 

P  = density dependent effect 

7 =  Environmental parameter scalar 

E  = Environmental factor (e.g. average 

precipitation)

S  = Normally distributed random error
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Equation 2.2 The Ricker-type flood effect model that uses known flood events to predict recruitment on 

the East Alsek River.

R -  recruits 

S = s pawners

a = maximum recruits/spawner

fi = maximum possible recruitment

y = rate of decline in maximum possible recruitment

T  = years since last flood

S  = normally distributed random error



General Conclusions

Several key conclusions are summarized from this research. The conclusions pertain to 

the unique life history of East Alsek sockeye as ocean-type sockeye salmon, and to the 

effects of environmental fluctuations, including flooding, on the population dynamics of 

East Alsek sockeye.

Life History of East Alsek River Sockeye Salmon

1. Juvenile East Alsek sockeye (ocean type) outmigrate to the Pacific Ocean at a size 

between 55mm and 75mm.

2. A prolonged emergence of fry from the gravel exists between March and June. 

This process was dependent on the timing of spawning sockeye and the 

temperature regime in the river.

3. Adult East Alsek sockeye prefer to spawn in:

a. Areas with less than 10 cm of sediment (< 5cm strongly preferred).

b. Areas that are colder and with less dissolved oxygen than the 

surrounding river, presumably at upwelling water sites.

c. Substrate that is smaller than the average size on the East Alsek.

d. Shallower habitat on the East Alsek River.

e. Areas that have similar water velocities to those available throughout the 

East Alsek River.
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f. Areas with much less vegetation cover than what is available on average 

throughout the river.

4. The primary composition of sockeye taken in the East Alsek/Doame fishery was 

dominated by 0-check (ocean-type) sockeye prior to 2001, and dramatically 

shifted to primarily 1-check (lake-type) sockeye after 2001. Presumably due to a 

shift from East Alsek dominated catch to a catch dominated with Doame River 

sockeye.

Population Dynamics

1. When precipitation, freezing days, temperature, and the North Pacific Index 

were compared to population trends of East Alsek sockeye, only one pattern 

emerged.

a. Precipitation seemed to affect the juvenile life stage of East Alsek River 

sockeye, but did not predict overall downturn in recruitment.

2. Population trends in East Alsek recruitment were strongly related to flooding 

events in the past 30 years when modeled with a Ricker-type population 

dynamics model.

a. The lack of flooding events was consistent with low recruitment, and 

years immediately following Alsek flood events were consistent with high 

recruitment.
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b. This trend was likely due to rapid accumulation of sediment and aquatic ' 

vegetation atop suitable spawning substrate in the East Alsek River in the 

absence of flooding.

3. Analysis of region wide-trends in ocean-type sockeye recruitment for the East 

Alsek River and four other nearby sockeye streams supported East Alsek sockeye 

were responding uniquely localized hydrological conditions (e.g. Alsek flooding).

4. The East Alsek commercial fishery had a noticeable change in age composition 

(Appendix 2). This change in composition likely represents a shift in stock 

composition of the fishery. It has likely changed away from East Alsek River 

dominated catch to a more equal catch of both East Alsek River sockeye and 

Doame River sockeye.

In conclusion, continuing uplift and corresponding river incision in concert with 

decreasing groundwater levels will continue to negatively affect sockeye salmon 

spawning habitat in the East Alsek River. The quantity and quality of spawning 

habitat will continue to diminish over time as Alsek River flooding events become 

less probable. However, sockeye salmon are excellent excavators that should 

maintain riffle and marginal pool spawning gravels to perpetuate the East Alsek 

River population, albeit in numbers lower than historic returns.
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Appendix 1
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Table A l. l  Summary table of habitat measurements for the East Alsek River sampled polygon.



Table A.2 Summary of observed spawning densities per polygon for 2005 and 119

2006 survey years.

M M -  H I h M I • ■»*> *■4*7100 -f>
1 M * *00 *00 *0* *113
7 1 M 006 *0* * 00 977
1 M l 1-07 *79 * 47 4019
* M O *0* *0* 0 00 971
s OOG a o i ft 6O Oft* 1*47
7 6 » *75 0 06 ft 3* 13047
* M t *74 ft Oft *06 1241
* 4-7* 164 ftio *4* 3007
M M t *1* ft Oft 2 03 497
11 IA 7 *64 *19 7-96 9406
17 1*7 509 *59 111 t**9
11 6JM 11*4 546 4.44 7060
M *-04 *06 ft 03 O O l *7510
15 1.30 049 *46 *106
M M l 1.7* 015 *30 5119
17 t o t *0* *0ft o t o M S I
1* U 1 *14 * 17 U l 1557
» *14 1 11 ft*7 ft 79 •00*
71 091 1 M *11 1-71 4101
77 7.17 *4* 1.9ft 340 2*13
71 *11 *76 *13 *14 11097
34 t M U l 0 17 M l 10507
» *0* *11 000 0 15 1*169
34 941 15.61 *19 5.14 10391
77 605 *0* ooe *oo !* M
29 *71 0*4 *10 047 17709
3ft 4-11 M l 144 1*1 14917
11 t w *71 ftOft 151 1101
17 t M *11 *16 7.15 1191
11 t n *1* OOft *00 3*771
M 000 101 ft 00 0.46 14416
» *77 1*01 7-91 470 7311
34 M l 1171 *51 157 M t
i t 1.17 333 047 7.17 7061
34 L l f 17* *55 *71 >*75
M 1.77 lu ll 11* 170 9467
40 *00 *00 «* • *00 4*75
41 061 771 ftftl *94 5249
«7 ***7 *7* *11 144 *371
41 054 *76 ft 19 161 1171
44 *04 *47 ftftl 070 169*4
41 o n 0 4* *00 O i l 7157
46 *64 1.41 COO 045 771
47 *00 151 *00 140 *15
46 *17 1.15 *05 041 9*70
44 M l 1.46 *70 *71 ■ M
» 711 10*0 177 *53 7595
11 *04 o n ftftl 029 9344
M t n 171 *13 *57 59*5
11 *00 *06 0.00 004 2095
M i . n 175 *59 147 M009
» **7 *91 O Ol 019 7915
66 *77 * 0 6 *54 144 17*11
57 444 15 11 7 ft* *45 914
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Freshwater-age of East Alsek/Doame Fishery

Sockeye scale data was analyzed from readings of East Alsek sockeye scales by ADFG's 

Mark, Tag and Age Lab in Juneau, Alaska. Scales archived in their scale collection 

originated from the East Alsek/Doame River commercial fishery and the East Alsek 

spawning grounds. Results from the analysis indicate that the primary composition of 

sockeye taken in the East Alsek/Doame fishery was dominated by 0-check (ocean-type) 

sockeye prior to 2002, and dramatically shifted to primarily 1-check (lake-type) sockeye 

after 2002 (Figure A2.1). This shift was likely due to a shift from an East Alsek 

dominated catch to a catch dominated by Doame River sockeye. East Alsek juvenile 

sockeye were shown to exit the river and estuary and move into the North Pacific by the 

end of July following spring and early summer (see Chapter 2). The existence of the 

Doame River fish, a known population of 1-check (lake-type) sockeye (Clark et al. 2003), 

likely explain this shift in catch composition. However several other small sockeye 

stocks from other adjoin tributary streams and lake systems are thought to contribute 

to this mixed stock fishery.

Scale growth analysis

East Alsek sockeye scales were analyzed from ADFG's collection of archived scales. 

Relative scale growth was compared to population variables such as recruits/spawner,



as well as to environmental variables in order to determine if a relationship existed 

between scale-growth and deterministic factors (Figures A2.2-A2.3).

Scales were retrieved from adult sockeye at the spawning grounds of the East Alsek 

River, as well as from the East Alsek fishery by ADFG. Occipital length and sex of each 

fish was recorded. Scales were subsampled from existing scale samples, where scales or 

scale-pressed acetates were available. A total of 50 scales from each sex were analyzed 

for spawning years 1982,1984,1985,1986,1987,1994,1995,1997,1998, 2000, 2001, 

2002. Scales were processed using Optimas™ software to determine freshwater 

residence. Scales from each fish were designated 1-check if a freshwater annulus 

existed, or 0-check if no freshwater annulus existed. The growth of each scale was then 

determined by measuring the number and distance between scale circuli to each 

annulus. This enabled calculation to broodyear, and backcalculation of sockeye occipital 

length at each annulus (Fukuwaka and Kaeriyama3 1997; Tables A2.1-A2.2). The average 

backcalculated length for pooled recruitment years was compared to recruitment and 

escapement for each broodyear by sex and type of sockeye (e.g. 0-check or 1-check; 

Figures A2.2-A2.3), as well as to average temperature, precipitation, and North Pacific 

index for the first year of ocean residence.
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3 Fukuwaka M, and M Kaeriyama (1997) Scale analyses to estimate somatic growth in sockeye salmon, Oncorhynchus 

nerka Canadian Journal of Fisheries and Aquatic Sciences. 54(3): 631-636



The use of scales to evaluate 1st year marine survival did not produce significant results. 

Many factors may influence this outcome. Some have hypothesized that juvenile 

salmon achieve a critical size at which survival is significantly enhanced4. This would 

confound any use of adult scales for evaluating retrospective growth or survival effects.
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4 Beamish, RJ and C Mahnken (2001)A critical size and period hypothesis to explain natural regulation of 

salmon abundance and the linkage to climate and climate change Progress in Oceanography (49)1-4,423- 
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Figure A2.1 Percent composition of 1-check sockeye taken from fishery samples (East Alsek/Doame 

combined fishery) and East Alsek escapement samples from the spawning grounds of the East Alsek River 

plotted over time. Notice dramatic shift in composition after the reopening of the fishery.
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Figure A2.2 Occipital length (mm) at age 1 of 0-check female sockeye backcalculated from scales 

collected on the spawning grounds of the East Alsek River in comparison to environmental and population 

variables. Precipitation and temperature were summarized from Yakutat historical weather data (NOAA) 

for the months spanning August to July of the first year of freshwater residence. The North Pacfic Index 

was the average index for the first winter of saltwater residence of juvenile salmon (September—March).
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Figure A2.3 Occipital length (mm) at age 1 of 0-check male sockeye backcalculated from scales collected 

on the spawning grounds of the East Alsek River in comparison to environmental and population 

variables. Precipitation and temperature were summarized from Yakutat historical weather data (NOAA) 

for the months spanning August to July of the first year of freshwater residence. The North Pacfic Index 

was the average index for the first winter of saltwater residence of juvenile salmon (September—March). 

Population variables were referenced to brood-year.



Table A2.1 Scale widths between annuli for East Alsek sockeye, listed by broodyear. Sockeye scale

samples were collected from spawning grounds by ADFG biologists.

MaleO-check
Broodyw

So 
Year 1

lie Grow 
Year 2

th |im )
Year 3 Year 4

Male 1-check 
Broodpear

Scale Growth (mm) 
Year 1 Year 2 Year 3 Year 4

1979 1.051 0698 0212 0300 1978 0.240 0287 0801 0240
1980 UD43 0646 0900 0300 1979 0.284 0L842 0666 0055
1961 0899 0695 0444 0.008 1980 0.309 0707 0773 0226
1982 1.031 0706 0216 0300 1981 0.432 a739 0747 0064
1983 1.020 0715 0174 0.000 1982 0.322 0.759 0812 niKX
1984 IjOOI 0729 0148 0306 1963 0.306 0.756 OS96 0305
1985 13381 0711 nwin 0300 1984 0.337 0938 0621 0081
1986 1.003 0063 0.000 0.000 1990 0-384 0955 0816 OOOO
1991 1.053 0730 0.122 0.000 1991 0.248 a777 0697 0082
1992 0936 0616 0.202 0.000 1992 0.307 0751 0790 0092
1993 0978 0450 0.000 0.000 1993 0.348 0.690 0895 0094
1994 1.194 0762 0.214 0.000 1994 0299 n «n 0722 0X76
1996 0992 0455 0.039 0.000 1996 0.336 0.648 0554 0X41
1996 0751 0027 OOOO 0.000 1997 0348 0933 0703 0102
1997 0940 0720 0.264 aoi3 1998 0.311 a 709 0838 0158
1998 1029 0764 0.114 0.003 1999 0304 0.736 0769 0024
1999 0955 0722 0.220 0.000
2000 1014 0635 0336 0.000

Female O-check Scale Growth (mm) Female 1-check Scale Growth (mm)
Broodpear Year 1 Year 2 Year 3 Year4 Broodpear Year 1 Year 2 Year 3 Year 4

1979 0950 0834 0341 0300 1978 0.325 L009 0758 0307
1980 1.152 0559 0345 0.000 1979 0l288 0920 0602 0040
1981 1063 0816 0.198 0.000 1980 a  307 a7io Q8Q3 0267
1982 1062 0677 0223 0.030 1981 0.332 a 7 ii 0736 0144
1983 1025 0802 0.170 0.006 1982 0268 a772 0696 0235
1984 1042 0747 0.159 0.002 1983 a  297 0.792 0821 OOSS
1985 0974 0537 0300 0.000 1984 0.290 0 l7 7 5 0746 0212
1991 1079 0739 0188 0300 1990 0354 0.688 1.151 0319
1992 1026 0674 0391 0,000 1991 a  304 1X27 0874 0134
1993 1062 0599 0354 0.000 1992 0.471 0851 0550 0X74
1994 1.135 0722 0379 0.018 1993 0l280 0897 0665 0194
1996 0889 0780 0.407 0.000 1994 0 «n 0801 0739 0L234
1997 0966 0743 0.143 0.004 1996 0.353 0731 0819 0X77
1998 0382 0754 0-273 0306 1997 0324 0815 0.669 0199
1999 1021 0807 0.199 0.000 1998 a  339 0797 0687 0161
2000 1056 0691 0320 0300 1999 0.440 0774 0723 0X81

2000 0.233 0946 0457 OOOO
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Table A2.2 Backcalculated mean occipital lengths for the first year of scale growth of East Alsek sockeye, 

listed by broodyear. Sockeye scale samples were collected from spawning grounds by ADFG biologists.

BariKrtcuriated Sadtcalcuated
Length IstYear length 1«Year

Male 0-check CflwM Male 1-check tanm)
a  oodyeai N Min U n Iken SrtMMhfW N Min Mae Mean

1579 31 66 437 256 1978 1 73 73 73
1980 9 80 399 293 1979 3 64 91 74
1981 22 65 380 204 1980 23 S3 280 100
1982 30 64 368 251 1981 2 61 215 138
1983 42 64 393 255 1982 6 59 136 98
1984 65 54 386 292 1983 2 298 354 326
1985 2 278 307 293 1990 1 108 108 108
1986 1 282 282 282 1991 6 62 300 110
1987 1 313 313 313 1993 2 74 115 94
1991 44 78 430 319 1996 1 133 133 133
1992 30 77 436 273 1997 3 80 127 103
1993 17 195 485 323
19»« 29 68 392 219
1985 9 100 387 309
1996 2 57 343 200
1997 7 183 391 302
1998 28 74 402 268
1999 22 99 361 261
2000 2 237 252 244

Brfcraarutated Bacfccakuiated
Length 1st tear Length 1st Year

fem ale 0-check (rw»» Female 1-check 1mm)

BrMdyCir N Min M u Mean BrOOd*ear N Mai M ai
1979 16 64 322 210 1978 3 62 103 78
1980 25 239 436 336 1979 6 57 95 79
1981 IS 80 337 209 1980 16 49 174 86
1982 31 49 459 212 1981 1 286 286 286
1983 76 54 368 239 1982 3 81 101 88
1984 75 37 555 272 1983 4 66 313 187
1985 2 337 348 342 1990 1 70 70 70
1986 1 232 232 232 1991 3 62 294 145
1981 72 70 386 285 1993 4 62 252 121
1992 42 103 420 282 1993 3 59 233 118
1993 21 189 364 301 1996 6 63 338 182
1994 36 59 327 192 1997 8 so 292 135
1997 23 88 425 294 1998 4 60 112 91
1998 52 72 474 229 1999 1 346 346 346
1999 30 63 365 224
2000 4 221 328 288


