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A B S T R A C T

Spatial patterns at multiple observation scales provide a framework to improve understanding of pattern-related
phenomena. However, the metrics that are most sensitive to local patterns are least likely to exhibit consistent
scaling relations with increasing extent (observation scale). A conceptual framework based on multiscale
domains (i.e., geographic locations exhibiting similar scaling relations) allows the use of sensitive pattern
metrics, but more work is needed to understand the actual patterns represented by multiscale domains. The
objective of this study was to improve the interpretation of scale-dependent patterns represented by multiscale
domains. Using maps of tree cover disturbance covering North American forest biomes from 2000 to 2012, each
0.09-ha location was described by the proportion and contagion of disturbance in its neighborhood, for 10
neighborhood extents from 0.81 ha to 180 km2. A k-means analysis identified 13 disturbance profiles based on
the similarity of disturbance proportion and contagion across neighborhood extent. A wall to wall map of
multiscale domains was produced by assigning each location (disturbed and undisturbed) to its nearest
disturbance profile in multiscale pattern space. The multiscale domains were interpreted as representing two
aspects of local patterns – the proximity of a location to disturbance, and the interior-exterior relationship of a
location relative to nearby disturbed areas.

1. Introduction

A central question in landscape ecology is how patterns and
processes change with the scale of observation (Wu, 2013). A “scale
domain” has been defined (Wiens, 1989) as an interval in scale space
within which landscape patterns and/or pattern-process relationships
are stable or predictable. Knowledge of scale domains is important
because inferences made within one domain do not necessarily apply in
another domain (O’Neill et al., 1986). Furthermore, if pattern regulates
process, then scale domains in pattern space define constraint envel-
opes that regulate landscape processes occurring in those domains
(O’Neill et al., 1989). Thus, knowledge of scale domains in pattern scale
space is a powerful tool for describing and understanding the scaling of
pattern-dependent ecological processes in complex systems (Milne,
1998; Tscharntke et al., 2006; Zurlini et al., 2006; Wheatley 2010;
Zhao et al., 2016).

Progress has been limited by a tradeoff between accurate measure-
ment of local patterns and the ability to identify scale domains. Wu
et al. (2002) and Wu (2004) evaluated several pattern metrics with
respect to scale domains in univariate (i.e., one metric at a time) pattern

spaces. The evaluations were done at both the landscape level (Wu
et al., 2002) and the focal class level (Wu 2004). Those studies
concluded that if scale domains existed, they were contingent upon
the choice of metric because different metrics measure different aspects
of pattern. Furthermore, the metrics that were most sensitive to local
patterns did not exhibit consistent scaling relations with respect to
changing extent because of geographic variation of local patterns. In
other words, the best metrics for measuring patterns were also the
worst metrics for understanding how those patterns scaled with
changing extent. That logical dilemma implied a trade-off between
having a good description of patterns versus having a consistent
description of how patterns changed with spatial extent.

To alleviate that trade-off, Zurlini et al. (2006, 2007) proposed a
conceptual model to evaluate scaling with respect to extent while using
pattern metrics that were sensitive to local patterns. By analogy to scale
domains in pattern space, they considered the possibility of multiscale
domains in geographic space. They demonstrated the model using
binary maps of disturbed and undisturbed areas. The spatial scaling of
disturbance patterns is of particular interest as a driver of complex
ecological phenomena (Milne 1998). Disturbance patterns are complex
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because disturbances have multiple causes operating over a range of
spatial scales (Turner, 2005). Alternatives to the classical equilibrium
paradigm must be able to define stability in terms of disturbance at
multiple scales (Wu and Loucks, 1995). The conceptual model considers
a pattern space defined by the proportion (Pd) and contagion (Pdd) of
disturbance (Fig. 1). In that pattern space, there is a global convergence
point (GCP) which is the [Pd, Pdd] value for the extent (scale) that is
exactly the extent of the entire study area. For smaller extents, the
observed [Pd, Pdd] departs from the GCP if the local pattern is different
from the global pattern, where “local” is defined by a particular
location and extent. At a given location, the trajectory away from the
GCP is the “disturbance profile” which describes the scaling of pattern
at that location. A “multiscale domain” is a set of geographic locations
with similar disturbance profiles. Whereas classical scale domains are
identified by local invariance of pattern in pattern space, multiscale
domains are identified by local invariance of the scaling of pattern in

geographic space. This conceptual model made it possible to exploit the
local sensitivity of pattern metrics such as proportion and contagion, by
incorporating their geographic variance into the definition of a multi-
scale domain.

The conceptual model has a high potential for the prediction and
management of disturbance-related processes such as the spread of
invasive species across landscapes (Otte et al., 2007). But additional
testing is needed because the model has been tested with only one
disturbance map in the Apulia region of southeast Italy, for which the
choice of eight disturbance profiles was arbitrary (Zurlini et al., 2006).
Furthermore, the patterns represented by those disturbance profiles
have been interpreted only by comparisons with profiles derived from
neutral (random, hierarchical, multifractal) disturbance maps (Zurlini
et al., 2007). There has not been a systematic interpretation of
disturbance profiles in terms of actual disturbance patterns, and it is
not clear that eight disturbance profiles are optimum for another study
area large enough to contain many more types of disturbance profiles
(e.g., large fires in contiguous boreal forests versus dispersed forest
cutting in fragmented temperate forests). Because reliable interpreta-
tions of patterns are pre-requisite to reliable interpretation of pattern-
process relationships (Bogaert, 2003), the objective of this study was to
improve the interpretation of multiscale domains with respect to actual
patterns using maps of tree cover disturbance from 2000 to 2012 in
North American forest biomes.

2. Methods

Maps of tree cover disturbance were derived from the Global Forest
Change Database (GFCD) (Hansen et al., 2013). We defined forest
disturbance from the GFCD map of tree cover loss which represents
stand-replacement disturbances during the period 2000–2012. The
GFCD consists of a set of 10° × 10° map tiles in a geographic projection.
Following procedures detailed by Riitters et al. (2016), the 55 GFCD
map tiles covering North America from 20 to 80° north latitude and
50–180 ° west longitude were mosaicked. To ensure that the neighbor-
hoods used in later analyses were the same size everywhere, the
mosaicked map was projected to a Lambert azimuthal equal-area
geographic projection with a target pixel area of 0.09 ha (to match
the nominal resolution of the Thematic Mapper data that were used to

Fig. 1. The conceptual model is illustrated by three disturbance profiles in a pattern space
defined by the local proportion and contagion of disturbance. Each disturbance profile
connects the observed patterns across measurement extent (scale), and the size of the
symbols indicates the relative extent. In addition to the global convergence point (GCP),
there are two local convergence points for an extent equal to the size of one pixel that is
either disturbed (LCP1) or undisturbed (LCP2). The dotted lines illustrate a “cross-scale
mismatch” (Zaccarelli et al., 2008).

Fig. 2. Left: the study area included North American forest biomes. Right: examples of disturbed (black) and undisturbed (white) areas in (A) Northwest Territories, (B) British Columbia,
(C) Maine, and (D) Georgia (water is shown in blue). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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produce the GFCD). The corresponding GFCD data mask map identified
permanent water bodies which were subsequently ignored as missing
data. This study focused on North American forest biomes (Olson et al.,
2001; World Wildlife Fund 2004) (Fig. 2). Excluding missing data, the
study area was approximately 9.574 × 106 km2 (10.6 × 109 pixels), of
which approximately 0.488 × 106 km2 (5.1%) was disturbed forest
cover.

To identify multiscale disturbance profiles we followed the general
approach of Zurlini et al. (2006) by applying a moving window
algorithm (Riitters et al., 1997) to measure and map disturbance
proportion (Pd) and disturbance contagion (Pdd) over multiple spatial
extents, and by using k-means clustering to identify disturbance profiles
from the measurements. We improved the implementation of the
conceptual model by considering a much larger study area, by explicitly
including Pdd in addition to Pd in the k-means analysis, by not pre-
specifying the number of clusters (k) to consider, and by interpreting
results with respect to the local as well as the global convergence
points.

A moving window algorithm measures and maps pattern metrics as
continuous variables representing the pattern context surrounding each
location. The observation scale is defined by the size (extent) of the
window. Within a fixed-area window, we measured Pd by the propor-
tion of pixels that were disturbed, and Pdd by the conditional
probability that a pixel adjacent to a disturbed pixel was also disturbed
(Riitters et al., 2000). Pd and Pdd were mapped by centering a window
on a given pixel, calculating Pd and Pdd within the window, storing the
two resulting values (on two new maps) at the location of that pixel,
and then repeating the procedure by centering the window on every
individual pixel in the study area. That process was repeated for 10
window sizes of 0.81 ha (3 pixels × 3 pixels), 2.25 ha (5 × 5), 4.41 ha
(7 × 7), 7.29 ha (9 × 9), 15.2 ha (13 × 13), 65.6 ha (27 × 27),
2.72 km2 (55 × 55), 11.1 km2 (111 × 111), 44.8 km2 (223 × 223),
and 180 km2 (447 × 447). In this way we prepared 20 surface maps,
each at 0.09 ha resolution, representing the local proportion and
contagion of disturbance at 10 observation scales.

We identified multiscale disturbance profiles by grouping pixels
(both disturbed and undisturbed) according to similarity of Pd and Pdd
across the 10 observation scales. We began by selecting a systematic 10
percent sample of non-missing locations (approximately 1.1 × 109

observations). We used a k-means clustering algorithm to group the
sample of locations according to similarity of Pd and Pdd across
observation scales, and tested alternate values of k when determining
the number of clusters to retain. Each cluster was assumed to represent
a typical disturbance profile. To interpret the disturbance profiles in
pattern space, the cluster means of Pd and Pdd were plotted across
observation scales in a pattern space similar to Fig. 1. To interpret the
disturbance profiles in geographic space, a map of multiscale domains
was constructed by assigning each location in the study area (including
non-sampled locations, but excluding water) to the nearest (by 20-
dimension Euclidean distance) disturbance profile.

3. Results and interpretation

3.1. Disturbance profiles and multiscale domains

With increasing extent, the cloud of data points representing
individual pixels shifted towards the lower right corner of the pattern
space (Fig. 3A & B). The LOESS curve through the data cloud for each
extent exhibited a steady progression towards the lower right corner of
the pattern space with increasing extent (Fig. 3C). The k-means
procedure identified 13 disturbance profiles (Fig. 4A & B) with an
overall r2 of 0.88 (see Supplementary material). Examples from the
map of multiscale domains (Fig. 5) will facilitate later interpretation of
the disturbance profiles with respect to actual patterns (similar maps
for the entire study area are in the Supplementary material). For the
disturbance maps shown in Fig. 5A, multiscale domains are shown for

all locations (Fig. 5B), for the subset of undisturbed locations (Fig. 5C),
and for the subset of disturbed locations (Fig. 5D). For comparisons to
profiles in pattern space, the map legend uses the same profile colors as
Fig. 4. The choice of colors is explained at the end of section 3.2.

The location of the global convergence point (GCP) can only be
approximated in Fig. 4B because it was not feasible to measure the
global [Pd, Pdd] value, and because there was no clear empirical GCP
due to spatial variation of Pd or Pdd at scales larger than the largest
extent tested in this study. As indicated in the conceptual model
(Fig. 1), and as expected from the LOESS curves (Fig. 3C), the profile
means became further from the GCP with decreasing measurement
extent (see Supplementary material for three-dimensional perspectives
of Fig. 4A). Profiles did not necessarily converge at a local convergence
point ([0,0] or [1,1]) because the smallest extent tested was larger than
one pixel. The Supplementary material shows that other k values were
plausible, and that k= 21 yielded similar disturbance profiles while
providing a more detailed partitioning of the pattern space.

Fig. 3. The distribution of observations in pattern space is illustrated for a sample of 5000
pixels for extents of (A) 2.25 ha and (B) 1100 ha. The LOESS curves (C) through the
sample observations move towards the lower right with increasing extent. Because there
are fewer possible values in smaller extents, (A) appears to be less dense than (B), and the
LOESS curves (C) for the smallest extents are less smooth than for larger extents. (The
observations at [0,1] and [1,1] were not used for these figures.). (For interpretation of the
references to colour in the text, the reader is referred to the web version of this article.)
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It is visually apparent (see also Supplementary material) that some
of the disturbance profiles are strongly associated with either undis-
turbed (Fig. 5C) or disturbed (Fig. 5D) areas. Profiles 1 and 2 occur
almost exclusively at disturbed locations, while profiles 7 through 13
are almost exclusively associated with undisturbed locations. Addi-
tional evidence of that fidelity is the observation that for the smallest
extent, the mean [Pd, Pdd] values of those profiles are close to the local
convergence point [1,1] for profiles 1 and 2, or [0,0] for profiles 7
through 13 (Fig. 4). Profiles 3 through 6 occur at both disturbed and
undisturbed locations (Fig. 5C &D) and the mean [Pd, Pdd] values for
the smallest extent not exhibit local convergence indicating either
disturbed or undisturbed areas (Fig. 4).

3.2. Interpretation of local disturbance patterns

One aspect of pattern that was reflected in the profiles was called
“proximity” in reference to the distance of a location to a locally-dense
concentration of disturbed area. For example, transects from a region of
much disturbance to a region of little disturbance (Fig. 5B) typically
contain the sequence of profile numbers from 1 to 13 in that order.

Some profiles in that sequence may not appear in some transects if Pd
was measured in an extent which contained several different distur-
bance locations. Apart from visual inspection, the proximity interpreta-
tion was also supported by examining the cross-scale mismatches
(Zaccarelli et al., 2008) of Pd with respect to extent. A cross-scale
mismatch is generally defined as a difference in the rate of change of
pattern (Pd, Pdd, or both) with respect to extent (see Fig. 1). For
example, Pd decreases slower with increasing extent for profile 1,
which is closer than profile 2 to locally-dense areas of more distur-
bance. At the other extreme, for profiles 9 through 13, Pd increases
faster with increasing extent for profiles that are closer to locally-dense
areas of more disturbance.

The second aspect of pattern was best illustrated by the intermedi-
ate disturbance profiles (3 through 8) which appeared to capture an
“interior-exterior” relationship of locations in relation to nearby
disturbed areas. The interior-exterior interpretation is supported by
the abrupt changes of direction of those profiles in pattern space that
represented cross-scale mismatches for Pdd as well as for Pd (Fig. 4).
Consider the three pairs of disturbance profiles: 3 and 4; 5 and 6, and; 7
and 8. In each pair, the first profile listed appeared to be “interior” and
the other appeared to be “exterior” (Fig. 5D) in relation to nearby
disturbed area. Both members of each pair had similar [Pd, Pdd] values
for the smallest extent (Fig. 4). For the interior profile of each pair, Pd
increased faster (and/or did not decrease) with increasing observation
scale in comparison to the exterior profile. Because relatively more
disturbance was included in larger extents for the interior member of
each pair, that profile approached a common point at the largest extent
from above (i.e., from a larger Pd value) while the exterior member of
each pair approached that point from below. The cross-scale mis-
matches for Pdd were the reason for approaching a common point from
above or below. In addition, the intermediate profiles often appeared as
interruptions of the typical proximity sequence in regions containing
moderate amounts of disturbed area that were not close to the largest
disturbed areas. Proximity and interior-exterior relationships are par-
tially confounded in the disturbance profiles because geometric packing
constraints lead to correlation of Pd and Pdd in any fixed extent
(Riitters et al., 2000). That correlation implies that proximity may also
be interpreted as the degree of interior-ness or exterior-ness.

With those interpretations we can provide the rationale for the
choice of profile colors in Figs. 4 and 5. A base color (black, orange,
green, purple, blue, or red) was assigned to a profile depending on the
location of its mean values for the smallest extent in pattern space
(Fig. 4). A lighter shade of a given base color was assigned to profiles
that were either interior or closer to disturbance, and a darker shade
was assigned to profiles that were either exterior or further from
disturbance.

4. Discussion

Reliable measurement of spatial patterns is prerequisite to inter-
preting the ecological causes or consequences of those patterns (Bogaert
2003). Thus, knowledge of actual disturbance patterns represented by
disturbance profiles should improve our ability to interpret disturbance
profiles in relation to the scaling of disturbance-related ecological
phenomena. A conceptual model alone may be sufficient to interpret
source/sink relationships in nested social-ecological landscapes
(Zaccarelli et al., 2008), environmental security and disturbance
regulation by different land uses (Petrosillo et al., 2010), or ecological
resiliency in adaptive management (Zurlini et al., 2014). But knowledge
of actual patterns is surely required for planning disturbances to
manage biological invasions (e.g., Zurlini et al., 2013). Desirable
disturbance profiles may be relatively easy to define in abstract terms,
but land management plans must also be able to identify specific
aspects of pattern to manage at particular locations and spatial scales.
By interpreting disturbance profiles in relatively simple terms of
disturbance proximity and interior-exterior relationships in geographic

Fig. 4. Disturbance profiles in pattern space with Pd shown in (A) original scale and (B)
logarithmic scale for detail. The approximate location of the global convergence point
(GCP) is indicated in (B). (For interpretation of the references to colour in the text, the
reader is referred to the web version of this article.)
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space, our results should provide a useful alternative to planning
disturbances in a higher order (e.g., 20-dimension in this study)
pattern-scale space.

Our simplification of the interpretation of disturbance profiles leads
directly to identification of pattern-process hypotheses that can be
tested. For example, since the disturbance profiles describe relative
proximity to areas of more or less disturbance, it is plausible that the
risk of colonization by invasive plants from nearby disturbances is
related to disturbance profiles. Similarly, since the profiles describe
interior-exterior relationships in relation to previous disturbances, it is
plausible that the risk of wildfire spread is related to disturbance
profiles. For these applications, the disturbance profiles for sets of
locations with field observations of invasive plants or wildfires could be
extracted by geographic overlay from the map of multiscale domains to
serve as independent variables in an analysis of the phenomenon of
interest. One of the benefits of wall-to-wall mapping of disturbance
profiles is that even though separate sets of observations may be
extracted to address different questions, the results can still be

integrated within the same pattern-scale space. That is important
because consistency of pattern measurements makes it possible for
management plans to more easily consider trade-offs between compet-
ing ecological objectives.

Because pattern varies continuously across landscapes and we
employed methods which measured and mapped proportion and
contagion as continuous variables, we anticipated that the disturbance
profiles would represent a gradient of multiscale patterns rather than a
finite set of unique multiscale patterns. Thus, it was not surprising that
the k-means procedure yielded disturbance profiles that could be
interpreted as gradients of pattern in geographic space, or that the
choice of a larger k produced a similar yet more detailed characteriza-
tion of pattern space. In future work, the k value in k-means clustering
may be considered as a tuning parameter controlling the desired level
of detail for describing multiscale patterns.

To achieve our objective of interpreting patterns, we identified
typical disturbance profiles and mapped the corresponding multiscale
domains according to the relative distance (in 20-dimension pattern

Fig. 5. Local example of disturbance multiscale domains. The left column is the area shown by the locator map; the right column is the indicated enlarged area. (A) Disturbed (black),
undisturbed (white) and water (blue). Multiscale domains for all land (B), undisturbed land only (C), and disturbed land only (D). Note: the legend uses colors comparable to Fig. 4. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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space) of a given location to each of the typical profiles. Unless k is very
large, the locations exhibiting unusual or uncommon disturbance
profiles are not likely to be identified by our procedure. And yet, those
locations may be interesting if, for example, they represent abrupt
transitions between typical disturbance profiles. Such “jumps” in
pattern space could represent abrupt boundaries or local discontinuities
of patterns in geographic space. To identify such locations, we can
suggest a modification of our procedure in which the assignment of a
location to a typical profile is performed for subsets of observation
scales, for example large extents versus small extents. The locations of
interest would be those for which the assignment was scale-dependent.

We expect that similar multiscale analyses of proportion and
contagion on any raster binary map will yield similar interpretations
of actual patterns because the results depend more on the fundamental
measurements (proportion and contagion) than on the choice of which
attribute to measure. We analyzed disturbance for comparability with
the original implementation of the conceptual model (Zurlini et al.,
2006), and we defined disturbance in terms of tree cover loss in order to
take advantage of a high-resolution continental dataset (Hansen et al.,
2013). Since tree cover loss could have occurred only at locations where
there was originally tree cover, the original distribution of tree cover
necessarily constrained the patterns of disturbance which could have
been observed (Wickham et al., 2008; Riitters and Wickham, 2012). For
example, the largest Pd values could not be obtained where the original
tree cover was not extensive to begin with. Our definition of dis-
turbance was reasonable because our focus was on actual disturbance
patterns no matter how they were generated or why they were
constrained. Regional comparisons of multiscale domains naturally
must account for differences in the constraints imposed by the original
amount and pattern of the attribute of interest.
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