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Abstract

The Arctic is host to a taxonomically diverse group of birds, including species of 

conservation and subsistence importance that spend many months of their annual cycle in the 

region. With prospects for oil and gas resource development and increases in vessel traffic in the 

Beaufort and Chukchi Seas, arctic birds could be valuable bioindicators to monitor contaminants 

and specifically hydrocarbons from crude oil. Using liver cytochrome P4501A (CYP1A) 

activity, I measured levels of hydrocarbon exposure in three bird species of subsistence 

importance: king eiders (Somateria spectabilis), common eiders (Somateria mollissima), and 

greater white-fronted geese (Anser albifrons). Over the course of three years, I collected liver 

samples during spring and fall hunts near Utqiagvik (formally Barrow) and validated methods 

for both direct-take and opportunistic liver sampling. Enzyme activity results show significant 

differences in CYP1A activity levels among species, seasons, and years. Except birds collected 

during fall 2014, when significantly high enzyme activity was observed in all sampled species, 

all other collections resulted in median activity levels similar to those reported in other sea duck 

species in Alaska from un-oiled or non-industrialized habitats. I also used species-specific 

hepatocyte culture in a broader selection of arctic marine birds and waterfowl candidate 

bioindicators to assess and compare species CYP1A activity responses as a measure of 

sensitivity to hydrocarbons. Cytochrome P4501A results from hepatocyte cultures dosed with 

positive control reference reagents and Alaska North Slope crude oil showed differences in 

species responses. Based on sensitivity results, I recommend the common eider and common 

murre (Uria aalge) as bioindicators for use in CYP1A monitoring due to their consistent and 

measureable responses in our experiments. However, additional species are promising candidates 

(e.g., tufted puffin; Fratercula cirrhata) but further testing is needed. This is the first study of 

reference hydrocarbon exposure and comparative laboratory assessment of CYP1A inducing 

compounds for arctic marine birds and waterfowl and these results form the basis for 

hydrocarbon monitoring programs and risk assessments.
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Introduction

The Arctic is host to a range of species including a diverse group of marine-associated 

waterfowl, alcids, loons, gulls, and shorebirds which rely on the region for important stages in 

their life cycle including mating, nesting, brood rearing, molting, and migration staging. These 

birds represent a variety of foraging strategies (surface, sub-surface, benthic, terrestrial) that 

consume marine prey including small fishes, euphausiids, zooplankton, mussels, and coastal and 

tundra plants and insects. Among these species are birds of conservation concern due to 

population declines. Additionally, some arctic birds (e.g., sea ducks) are an important 

subsistence food resource for local coastal communities. As prospects grow for arctic industrial 

development, such as drilling for oil and gas resources and vessel traffic, (BOEM 2015, Smith 

and Stephenson 2013), these activities increase the risk for potential contaminant exposures for 

arctic marine birds and waterfowl. Due to diversity in life histories, habitat use, and foraging 

strategies, birds may serve as valuable bioindicators for environmental contaminants in the 

Arctic. This thesis focuses on assessing sensitivity to and measuring levels of exposure of arctic 

marine birds and waterfowl to polycyclic aromatic hydrocarbons (PAHs) found in oil using 

enzyme responses. Based on those results, I make recommendations for species to use as 

bioindicators for hydrocarbon monitoring programs.

Large numbers of migratory birds use the nearshore area and marine waters of the 

Beaufort and Chukchi seas as migration corridors and staging grounds to accumulate body 

reserves for breeding and migration. For instance, satellite transmitter data showed that migrating 

king eiders (Somateria spectabilis) staged in the eastern Chukchi Sea for 21 ± 10 (standard 

deviation; SD) days in mid April-early June and 13 ± 13 (SD) days between late June and early 

November (Oppel et al. 2009). King eiders also used the Beaufort Sea in late summer as a post­

breeding migratory staging area (Phillips et al. 2007). Common eiders (Somateria mollissima) 

that nested along the Beaufort Sea coast used both the Beaufort and Chukchi seas as migration 

staging areas (Petersen 2009). Additionally, spectacled eiders (Somateria fischeri) used the 

Beaufort and Chukchi seas as offshore migration corridors after breeding on the North Slope of 

Alaska (AK; Petersen et al. 1999). To get to their coastal nesting grounds, black brant (Branta 

bernicla) migrate along the southeastern Beaufort Sea coast (Reed et al. 1998). Shorebirds stage
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for southern migration at Beaufort Sea coastal river deltas in the Arctic National Wildlife Refuge 

(Perkins et al. 2016). Many birds spend several months in the region using the coastal tundra, 

lakes, and nearshore islands for nesting and brood or chick rearing. Islands and coastal areas with 

cliffs and rocky slopes in the southern Chukchi Sea and northern Bering Sea support millions of 

breeding marine birds including auklets (Aethia sp.), murres (Uria sp.) and puffins (Fratercula 

sp.; Stephenson and Irons 2003). Several waterfowl species, including king eiders, common 

eiders, spectacled eiders, Steller’s eiders (Polysticta stelleri), greater white-fronted geese (Anser 

albifrons), black brant, and tundra swans (Cygnus columbianus) nest on coastal tundra in the 

North Slope (Monda et al. 1994, Ely and Takekawa 1996, Reed 1998, Petersen 1999, 

Quakenbush et al. 2004, Phillips and Powell 2006, Petersen 2009). Several species of shorebirds 

including American golden-plover (Pluvialis dominica), sandpipers (Calidris sp.) and phalarope 

(Phalaropus sp.) nest near Utqiagvik (formally Barrow) in northern Alaska (Perkins et al. 2016). 

The yellow-billed loon (Gavia adamsii) uses large tundra lakes in northern Alaska for breeding 

(Earnst et al. 2005 a)

Several bird species of conservation concern use the Beaufort and Chukchi seas region. 

All four eider species nesting in the Arctic have experienced population declines. Spectacled 

eider and the Alaska-breeding Steller’s eider are both federally listed as threatened under the 

United States Endangered Species Act (Federal Register 1993, 1997) and king and common 

eider populations have decreased by 50% compared to historical levels (Suydam et al. 2000). 

Populations of long-tailed duck (Clangula hyemalis), another arctic sea duck, have declined 

since the 1970s (Hollmen et al. 2003 and references therein). Reasons for population declines in 

all these species are not well understood and many factors may be responsible. The yellow-billed 

loon is also a species of conservation concern due, in part, to primarily breeding in areas 

proposed for oil and gas developments (Earnst et al. 2005b).

Arctic coastal communities rely on marine resources for subsistence and include harvest 

of meat and eggs of several species of sea ducks and geese. Of sea ducks, common eiders, long­

tailed ducks and king eiders are harvested with king eiders, the most abundant sea duck, favored 

by hunters. Geese, such as greater white-fronted goose, black brant, and Canada goose (Branta 

canadensis) are hunted during spring arrival onto the North Slope with greater white-fronted 

geese as the main resource (Robert Sarren, personal communication).
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Arctic oil and gas resource exploration (BOEM 2015), development of coastal 

infrastructure for drilling activities, and increased shipping traffic through ice-free arctic waters 

(Smith and Stephenson 2013) elevate the risk for accidental release of oil into the environment. 

Many arctic marine birds tend to aggregate in large flocks while at sea making large proportions 

of the population susceptible to disturbances such as oil spills. Alexander et al. (1997) reported 

over 25% of the Beaufort Sea population of common eiders congregated in open water off Cape 

Bathurst in western Canada during spring migration. Large aggregations of auklets, murres and 

puffins were record in the Chukchi Sea from ship-based surveys during summer and fall (Kuletz 

et al. 2015). During wing molt, when birds are flightless for several weeks, they are also 

vulnerable to environmental disturbances. Spectacled eiders, common eiders, and king eiders all 

molt along coastal areas of the western Chukchi Sea with some king eiders using the Beaufort 

Sea as well (Petersen et al. 1999, Petersen and Flint 2002, Phillips et al. 2007).

PAHs are environmental contaminants, often found in complex mixtures, that can 

originate from natural sources (e.g., forest fires), but major sources are crude oil, coal, and oil 

shale (Douben 2003). PAHs, including those found in crude oil, can induce a wide range of toxic 

effects in birds and have been frequently studied in laboratory projects involving chickens 

(Gallus domesticus), mallards (Anasplatyrhynchos), and turkeys (Meleagris gallopavo; Albers 

2006 and references therein). When injected into fertile eggs, applied to surface of eggshells, or 

given orally to birds, developmental abnormalities, reduced weight gain, decreased survival, and 

endocrine and immune system effects were noted (Butler et al. 1979, Hoffman and Gay 1981, 

Peakall et al. 1982, Brunstrom et al. 1991, Brunstrom 1991, Trust et al. 1994). In the wild, birds 

can be exposed to PAHs from oil through ingestion of water and diet items, preening of oil 

contaminated feathers, dermal absorption, and inhalation (Albers 2006).

Several studies have used a biochemical approach to measuring and evaluating the effects 

of PAHs in birds by using induction of the liver enzyme cytochrome P4501A (CYP1A; Albers 

2006 and references therein). CYP1A, found in high levels in vertebrate liver, aids in the 

detoxification process of xenobiotic compounds (Livingstone 1996). After exposure to PAHs and 

persistent organic pollutants (POPs), the aryl hydrocarbon receptor (AhR), a nuclear 

transcription factor, is activated and induces CYP1A and liver enzyme 7-ethoxyresorufin-O- 

deethylase (EROD) activity (Mohammadi-Bardbori 2014, Head et al. 2015). The catalytic
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activity of CYP1A is commonly measured as EROD activity using a fluorescent assay and is a 

standard, and widely used, measurement for assessing exposure to hydrocarbons (Kennedy et al. 

1996, Short et al. 2008, Esler et al. 2010). Due to post-ingestion metabolism of PAHs, which 

prevents direct measurement of oil constituents in tissues, and the limited number of compounds 

that cause strong induction (PAHs, polychlorinated biphenyls (PCB), and dioxins; Payne et al. 

1987, Rattner et al. 1994, Goks0yr 1995), CYP1A activity is often used as a biomarker of oil 

exposure in marine waterfowl (Trust et al. 2000; Miles et al. 2007, Esler 2008, Esler et al. 2010). 

Previous field studies have validated elevated CYP1A activity as resulting from oil exposure, 

and not from another inducing compound, by measuring plasma biomarkers (Trust et al. 2000, 

Miles et al. 2007) or analyzing the bioavailable contaminants present in water (Short et al. 2008). 

It is important to note that CYP1A induction does not necessarily indicate harmful effects (Lee 

and Anderson 2005) and indicates only that there has been exposure to inducing compounds and, 

as a result, a potential for toxic impacts.

Field and laboratory studies have linked increased EROD activity to oil exposure in 

harlequin ducks (Histrionicus histrionicus), Steller’s eider, and Barrow’s goldeneye (Bucephala 

islandica; Trust et al. 2000, Miles et al. 2007, Esler 2008, Esler et al. 2010). These studies used 

non-lethal surgery or direct-take to collect liver biopsies from wild and captive birds and their 

methodology included freezing of liver samples with-in 10 minutes of collection. Residual oil 

from the Exxon Valdez oil spill in Prince William Sound, AK is likely thought to be the cause of 

elevated EROD activity in livers from harlequin ducks and Barrow’s goldeneye sampled 8-20 

years post-spill (Trust et al. 2000, Esler 2008, Esler et al. 2010). Miles et al. (2007) found 

increases in EROD activity in harlequin ducks and Steller’s eider near industrialized seaports in 

the eastern Aleutian Islands, AK when compared to non-industrialized habitats. To further 

understand EROD activity, Miles et al. (2007) also dosed captive Steller’s eiders with a CYP1A 

inducing reagent. While the captive birds induced CYP1A, enzyme activity was higher in wild 

Steller’s eiders potentially due to repeated exposure and exposure to higher concentrations and 

mixtures of PAHs and other inducing compounds. It is of interest to determine reference levels 

of EROD activity in arctic birds of the Beaufort and Chukchi seas prior to further industrial 

development, but these have not been reported. Additionally, the rate of CYP1A degradation in 

the liver after sampling has not been investigated. Defining the degradation rate could potentially
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expand the collection window beyond the established 10 minute protocol and increase feasibility 

of field sampling.

As an alternative to field or animal dosing studies, EROD activity in primary hepatocyte 

cultures provides a diagnostic tool to define species-specific sensitivity and responses to CYP1A 

inducing toxins. Cell culture techniques allow for testing and comparing species responses to 

individual and compound hydrocarbons by assessing the magnitude of EROD activity. In several 

studies, chickens were determined to be most sensitive to PAHs and halogenated aromatic 

hydrocarbons (HAHs) based on their EROD responses when compared to a variety of species 

including ring-necked pheasants (Phasianus colchicus), turkeys, mallards, herring gulls (Larus 

argentatus), greater scaup (Aythya marila), bald eagles (Haliaeetus leucocephalus) and common 

terns (Sterna hirundo) (Kennedy et al. 1996, Lorenzen et al. 1997, Kennedy et al. 2003, Head et 

al. 2015). Understanding a species response to hydrocarbon exposure, and how responses among 

species compare to each other, aids in identification of candidate species for monitoring 

programs. Species and individuals will likely respond differently to the same contaminant 

depending on their sensitivities to different chemicals (Head et al. 2015), and knowledge about 

variability in CYP1A responses among species and individuals would help prioritize sampling 

efforts. To date, assessment of sensitivity, using CYP1A activity responses, of arctic marine 

birds and waterfowl of the Beaufort and Chukchi seas to exposure from PAHs found in oil has 

not been investigated.

A good bioindicator species acts as an ecosystem sentinel showing the first signs of 

exposure or physiological impacts, i.e., a “canary in the coalmine” (Bonisoli-Alquati 2014).

Birds in general are good candidate bioindicators because of their ecological niche diversity, 

presence across different environments, abundance, visibility, and typically, unexpected changes 

in population sizes, health, or reproductive success provides an “alarm” to potential ecosystem 

changes or contaminants (Furness and Camphuysen 1997, Bonisoli-Alquati 2014). For instance, 

bird species were an early indicator of dichlorodiphenyltrichloroethane (DTT) bioaccumulation, 

which led to reproductive failures and population declines (Hellou et al. 2012). Early detection of 

pollutants through bioindicator species allows for remedial or preventative actions to be taken 

(Livingstone 1996). Using both field and CYP1A response laboratory data, this thesis provides
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information for the selection of candidate bird species from the Beaufort and Chukchi seas 

region for monitoring hydrocarbon exposure.

Herein, I report field methods and CYP1A activity observed in liver samples collected 

from 2014 to 2016 from three arctic bird species; king eider, common eider and greater white- 

fronted goose. Additionally, I determine species responses to hydrocarbon exposure by using 

species-specific liver cell culture as a tool to measure CYP1A activity in a broader selection of 

arctic birds: Steller’s eider, spectacled eider, common eider, king eider, long-tailed duck, greater 

white-fronted goose, black brant, common murre (Uria aalge), tufted puffin (Fratercula 

cirrhata) and horned puffin (Fratercula corniculata). Throughout the remainder of this thesis, I 

use the term “arctic birds” to encompass study species that use marine, near shore, or terrestrial 

habitats. Species were selected for the study based on their conservation status and subsistence 

importance. The selected species represent hosts for a variety of potential hydrocarbon exposure 

pathways due to diversity in habitat use and foraging strategies. Additionally, species life history 

diversity increases the chances an exposure event or changes in the ecosystem will be captured. 

Lastly, I make recommendations for using arctic birds in hydrocarbon monitoring programs 

based on field sampling and laboratory CYP1A results.

My specific objectives were to:

1. Measure levels of CYP1A activity in three arctic bird species.

2. Validate field liver collection methods and determine the feasibility of using liver 

samples collected from hunter-killed arctic birds as a CYP1A monitoring tool for the 

Beaufort and Chukchi seas.

3. Measure CYP1A enzyme degradation in liver samples postmortem to confirm a 

collection window.

4. Use species-specific CYP1A activity in hepatocyte culture in ten arctic bird species to 

identify which species are comparatively more sensitive to hydrocarbon exposure.

5. Using both field and sensitivity CYP1A results; identify potential bioindicator species 

and make recommendations for using arctic birds in hydrocarbon monitoring programs.
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The laboratory and field results for the first three objectives I discuss in Chapter 1. In Chapter 2, 

I address my fourth objective by measuring CYP1A activity in cell cultures dosed with a variety 

of concentrations of testing reagents and Alaska North Slope crude oil. The fifth objective I 

discuss in part in both chapters with final biomonitoring recommendations in the general 

conclusion.
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Chapter 1 Cytochrome P4501A Enzyme Activity in Arctic Marine Birds and Waterfowl: 

Opportunistic Field Collection Methods Validation and Enzyme Levels 2014-20161

1.1 Abstract

The Arctic is host to taxonomically diverse birds that rely on the habitat for many stages 

in their annual cycle. With potential increases in oil and gas resource development in the 

Beaufort and Chukchi Seas reference levels of exposure to polycyclic aromatic hydrocarbons 

have not been reported in arctic birds. Using liver cytochrome P4501A (CYP1A) activity we 

evaluated hydrocarbon exposure in king eiders (Somateria spectabilis), common eiders 

(Somateria mollissima), and greater white-fronted geese (Anser albifrons) by validating field 

methods and collecting livers during seasonal hunts over three years. Results show differences in 

CYP1A activity among species and years, with most activity levels similar to those reported in 

other sea duck species from un-oiled habitats, except significantly high enzyme activity in fall 

2014 birds. Our results provide a first assessment of CYP1A activity in these species and form a 

basis for development of programs monitoring exposure levels in arctic birds.

1 Riddle, A. E., T. E. Hollmen, R. Suydam, R. Sarren, and R. Stimmelmayr. Cytochrome 

P4501A Enzyme Activity in Arctic Marine Birds and Waterfowl: Opportunistic Field Collection 

Methods Validation and Enzyme Levels 2014-2016. Prepared for submission to Marine Pollution 

Bulletin.

1.2 Introduction

Arctic birds may be exposed to a variety of harmful contaminants in the Arctic and 

during life stages spent away from the region (e.g., wintering grounds). For example, waterfowl 

are at risk for lead poisoning by consuming lead shot left on hunting grounds (Flint et al. 1997, 

Wilson et al. 2004). Elevated, and potentially detrimental, levels of mercury exposure have been 

recorded in arctic-breeding shorebirds (Perkins et al. 2016). High levels of lead in spectacled 

eiders (Somateria fischeri), common eiders (Somateria mollissima), and juvenile long-tailed 

ducks (Clangula hyemalis) sampled near Prudhoe Bay, Alaska (AK), an active oil field, may
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indicate local exposure (Wilson et al. 2004, Miller et al. 2016). Also near Prudhoe Bay, Franson 

et al. (2004) reported low concentrations of analyzed trace elements and persistent organic 

pollutants except for selenium in long-tailed ducks and common eiders, and strontium in 

common eider eggs. Miller et al. (2016) sampled birds near Prudhoe Bay and Utqiagvik 

(formally Barrow), AK during pre-breeding through post-breeding, and found selenium, copper, 

and cadmium in spectacled eiders, common eiders, Steller’s eiders (Polysticta stelleri), king 

eiders (Somateria spectabilis) and long-tailed ducks but suggested the elements were acquired on 

non-breeding habitats. Spectacled eiders wintering off of St. Lawrence Island, AK in the Bering 

Sea accumulated elevated levels of copper, cadmium, and selenium, which may decrease 

fecundity or survival of young but currently no direct health impacts have been noted on adults 

(Trust et al. 2000b, Lovvorn et al. 2013). Toxicity levels of many trace elements have not been 

determined for arctic birds.

With prospects for increasing development of oil and gas resources and vessel traffic in 

the Arctic, specifically the Beaufort and Chukchi seas (BOEM 2015, Smith and Stephenson 

2013), current measurements of exposure in arctic birds to polycyclic aromatic hydrocarbons 

(PAH) found in crude oil are needed as a baseline, but have not been reported. As 

industrialization increases, understanding baseline exposure levels to PAHs is essential to assist 

with monitoring and protection of arctic bird populations. The Beaufort and Chukchi region 

supports a wide array of taxonomically diverse birds (e.g., waterfowl, alcids, loons, gulls, 

shorebirds) that rely on the region for key stages in their annual cycle. Many birds depend on the 

nearshore, marine waters, coastal tundra, and near-by barrier islands for migration, migration 

staging, breeding, and brood/chick rearing. Additionally, many arctic birds and their eggs are 

important subsistence resources for coastal communities. King eiders are abundant and 

commonly hunted sea duck, with common eiders and long-tailed ducks harvested as well.

Among geese, greater white-fronted geese (Anser albifrons), black brant (Branta bernicla), and 

Canada geese (Branta canadensis) are also hunted in the region.

Due to post-ingestion metabolism, direct measurement of oil constituents in bird tissues 

cannot be used to assess exposure to PAHs (Lee et al. 1985, Naf et al. 1992). Instead, 

cytochrome P4501A (CYP1A) enzyme induction has been used as a biomarker of oil exposure in 

wildlife, including marine waterfowl (Trust et al. 2000a, Miles et al. 2007, Esler 2008, Esler et
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al. 2010). CYP1A is activated with exposure to polychlorinated biphenyls (PCB), dioxins, and 

PAH constituents found in crude oil (Payne et al. 1987, Rattner et al. 1994, Goks0yr 1995). 

Activity of another liver enzyme, 7-ethoxyresorufin-O-deethylase (EROD) is used as an 

indicator of CYP1A induction. EROD activity measures the catalytic function of CYP1A and is 

a standard and widely used measurement for assessing exposure to hydrocarbons from oil 

(Kennedy et al. 1996, Short et al. 2008, Esler et al. 2010). Previous sea duck field studies have 

linked increased EROD activity to exposure from residual oil from the Exxon Valdez oil spill 

(Prince William Sound, AK) in harlequin ducks (Histrionicus histrionicus) and Barrow’s 

goldeneyes (Bucephala islandica) 8-20 years after the spill (Trust et al. 2000a, Esler 2008, Esler 

et al. 2010). Miles et al. (2007) also found increases in EROD activity in harlequin ducks and 

Steller’s eiders near industrialized seaports and PAH dosed captive Steller’s eiders.

In this study, our primary objectives were to establish levels of CYP1A activity in three 

arctic avian species and assess the feasibility of using liver samples from hunter-killed birds as a 

PAH exposure monitoring tool. We selected the common eider, king eider, and greater white- 

fronted goose as study species based on their population status, subsistence importance, and role 

as a potential bioindicator in the Beaufort and Chukchi areas. Additionally, sampling feasibility 

for use in long-term monitoring, including the potential for opportunistic sample collections from 

subsistence hunters, aided in the selection of these three species. Due to their relative abundance 

in easily accessible hunting areas, greater white-fronted geese can also be sampled to explore 

seasonal differences in CYP1A activity between arrival onto the breeding grounds (spring) and 

again at the end of breeding (fall). The Chukchi and Beaufort seas and adjacent terrestrial and 

nearshore areas provide important habitat for all of these species (Suydam et al. 2000, Dickson 

and Gilchrist 2002, Oppel et al. 2009) and population declines have been noted in king eider and 

common eider populations in the Beaufort Sea (Suydam et al. 2000). Also, due to differences in 

habitat use and foraging strategies, eiders have the potential to serve as bioindicators of the at-sea 

benthic environment and geese more terrestrial and near shore environments. The ability to 

monitor different habitats through these species expands our potential to capture various 

hydrocarbon exposure pathways.
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1.3 Methods

1.3.1 Field Collections

Liver samples were collected during seasonal hunts near Utqiagvik, AK (Figure 1.1) 

between August 2014 and May 2016 following State and Federal hunting regulations and 

University of Alaska Fairbanks Institutional Animal Care and Use Committee approval (project 

593132-7; Appendix 1.A). King and common eider samples were collected during fall (post­

breeding; August-October) and greater white-fronted goose samples were collected during spring 

(pre-breeding; May) and fall hunts. Eiders were not collected during spring as they migrate along 

the ice edge making them more difficult to sample. In previous CYP1A analysis studies, liver 

biopsies were frozen within 10 minutes of death/biopsy removal (Trust et al. 2000a), and 

information about potential postmortem enzyme degradation beyond this time frame has not 

been reported. To maintain a 10 minute postmortem sampling window, we targeted birds with a 

verifiable time of death by using direct-take (shotgun) or observing the death when collecting 

opportunistic samples from subsistence hunters. Postmortem, livers were quickly removed 

through one or two incisions near the spine along the bird’s back. Livers were cut into small 

pieces, samples placed in cryovials (~1 cm tissue minimum), and immediately frozen in a 

cryogenic vapor phase liquid nitrogen dewar (-150°C) in the field. When possible, samples were 

also frozen at less than 10 minutes postmortem in addition to the standard collection after 10 

minutes. To explore the postmortem degradation of CYP1A activity and determine if the 

sampling window can be expanded, additional liver vials were frozen at 20 and 30 minutes and 

1, 2, 4, 6, and 24 hours postmortem. Cryovials were kept at outdoor ambient temperatures until 

their assigned freeze time. Extra vials were frozen at 10 minutes, and 1 and 2 hours to use for 

laboratory QA/QC and determination of CYP1A activity degradation during long-term freezer 

storage. All birds underwent a necropsy and additional tissues were collected for archival and 

health assessment. Liver samples were transported in the vapor phase liquid nitrogen dewar to 

the Alaska SeaLife Center (ASLC) in Seward, AK, for laboratory analysis. Once at the ASLC, 

liver samples were transferred to -80°C for storage until analysis.
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Figure 1.1: Spring and fall liver sample collection areas. Spring (pre-breeding) greater white- 

fronted goose (GWFG) locations were hunted from snow blinds (blue diamonds). Fall (post­

breeding) GWFG locations were hunted inland on the tundra and at a pond near Pigniq (local 

hunting station; red stars). Fall (post-breeding) king eider (KIEI) and common eider (COEI) were 

taken also near Pigniq (red circle) as birds flew toward the Chukchi Sea.

1.3.2 Laboratory Analyses

We used microsome EROD activity to measure CYP1A induction in liver samples using 

methods adapted from Trust et al. (2000a) and Miles et al. (2007) and standard laboratory 

QA/QC procedures (Appendix 1.B). Microsomes were extracted within six months of collection 

(Daniel Esler personal communication) from 50-100 mg of liver tissue homogenized with 500 

|iL cold homogenizing buffer (0.05 M Tris, 0.15 M KCl, pH 7.4). Each homogenate was then 

centrifuged for 20 minutes at 10,000 g at 2°C. The resulting supernatant was transferred to a new 

cold vial and spun for 60 minutes at 20,800 g at 2°C. This supernatant was removed and the 

microsome pellet was resuspended in 100 |iL cold resuspension solution (50 mM Tris, 1 mM 

ethylenediaminetetraacetic acid, 1 mM dithiothreitol, and 20% (v/v) glycerol, pH 7.4). To
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determine EROD activity, microsomes were plated in triplicate in a black walled 96-well plate 

and read using a Gemini EM Dual-Scanning microplate spectrofluorometer fluorescent plate 

reader (Molecular Devices, Sunnyvale, California). Each well contained 200 |iL consisting of 10 

|iL microsomes (or resorufin standard), 150 |iL 2.5 |iM 7-ethoxyresorufin (7-ER) in 50 mM Tris 

buffer (pH 8.0), and 40 |iL 1.34 |iM catalyst nicotinamide adenine dinucleotide phosphate 

(NADPH) in 50 mM Tris buffer (pH 8.0). Fluorescence was measured once every minute for 6 

minutes at an excitation wavelength of 530 nm and an emission wavelength of 590 nm. EROD 

activity was averaged over the triplicates with mean calculated and then divided by the slope of 

the resorufin product curve (0, 5, 10, 20, 60 pmol) to yield pmol/min. Protein levels (mg/mL) 

were determined by diluting 1 |iL microsomes with 4 |iL distilled water (dH2O) and using the 

Bradford reagent (Sigma, St. Louis, Missouri) following manufacture protocols. Final EROD 

activity was expressed as pmol/min/mg protein and calculated using the formula:

EROD activity = (EROD pmol/min) / EROD sample volume (0.01 mL) / (mg/mL protein)

To validate the extraction process we tested EROD activity in the post-mitochondrial 

fraction before the 20,800 g 60 minute spin, the supernatant resulting from that spin, and finally 

the microsome pellet. Each fraction showed EROD activity but was on average 3-10 times lower 

than microsome fraction activity, confirming that we were using the fraction with the highest 

EROD activity.

Liver microsomes from embryonated mallard (Anas platyrhynchos) eggs, injected with a 

dose of 4 mg P-naphthoflavone (BNF; dissolved in peanut oil) at day 11 of incubation, acted as a 

positive EROD assay control. Dosed mallard microsome pools from three different extraction 

rounds resulted in mean enzyme activity of 13.51 ± 0.83 pmol/min, CV = 6.1%, 16.5 ± 2.6 

pmol/min, CV = 16%, and 49.7 ± 9.9 pmol/min, CV = 19.9%. Resorufin 10 pmol was used for 

an inter- and intra-assay control and greater white-fronted goose 10 minute postmortem samples 

(birds #9 and #14) were used for inter-assay controls. EROD 10 pmol intra-assay results were

13.4 pmol/min ± 1.6 CV = 11.8%. EROD inter-assay control results were as follows: 10 pmol 

mean 8.9 ± 1.2 pmol/min, CV = 13%, greater white-fronted goose #9 mean 2.4 ± 3.9 pmol/min, 

CV = 16%, great white-fronted goose #14 mean 3.4 ± 0.56 pmol/min, CV = 16%. Bradford assay
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controls included 2 mg/mL protein standard (BSA) as an intra- and inter-assay control and 

greater white-fronted goose birds #9 and #14 as inter-assay controls. Bradford 2 mg/mL intra­

assay results were mean 1.95 ± 0.08 mg/mL, CV = 4% and inter-assay results were mean 2.04 ±

0.09 mg/mL, CV = 4.3%. Greater white-fronted goose Bradford inter-assay results were mean

3.1 ± 0.31 mg/mL, CV = 10% and mean 3.0 ± mg/mL, CV 12% for birds #9 and #14, 

respectively.

1.3.3 Statistical Analyses

Ten minute post mortem liver samples were used for all EROD (pmol/min/mg protein) 

result comparisons. EROD activity data was not normally distributed. For analysis, 10 minute 

postmortem median EROD results by year, season, and species were tested using the Kruskal- 

Wallis test and a post-hoc analysis performed using the Dunn test (p-values adjusted with the 

Holm method). EROD results for freezer storage and duplicate vial QA/QC were also analyzed 

using this method. All tests were calculated using R (R Core Team 2014) and an alpha level of

0.05 was used to determine statistical significances.

1.4 Results

1.4.1 Liver Collections

Table 1.1 presents the sample size for birds collected during spring and fall. All birds 

were collected using direct-take, except one king eider in fall 2015 was sampled 

opportunistically within 10 minutes of death. Complete time series samples were collected from 

all birds, and 81 of 92 birds had an additional liver sample collected and frozen at <10 minutes 

postmortem. In 2014, time series samples included 10, 20, 30 minutes and 1 and 2 hours. In 

2015, the time series was adjusted to include vials frozen at 4, 6, and 24 hours in response to 

learning that hunters often do not butcher their birds until hours or days later.
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Table 1.1: Numbers of birds collected during spring and fall hunts 2014-2016.

Species

Spring 2015 

(n=)

Spring 2016 

(n=)

Fall 2014 

(n=)

Fall 2015 

(n=)

Greater white-fronted goose 20 18 9 13

King eider --- --- 6 15

Common eider --- --- 9 2

1.4.2 EROD Activity

Median EROD activity results (pmol/min/mg protein) from microsome liver samples 

frozen at 10 minutes postmortem are shown in Figure 1.2. Due to small sample sizes in some 

sampling seasons, we combined all ages and sexes for each species for analysis. Individual 

EROD activity results ranged from 0-284 pmol/min/mg protein in king eiders, 27-367 

pmol/min/mg protein in common eiders, and 0-915 pmol/min/mg protein in greater white-fronted 

geese. The highest EROD activity responses were found in greater white-fronted geese in fall 

2014. Among all species fall 2014 was significantly different from fall 2015 (p = 0.031) and in 

geese also significantly different than spring 2015 and 2016 (p = 0.025 and 0.022 respectively). 

Enzyme activities in greater white-fronted geese were significantly different in fall 2015 than in 

spring 2015 (p = 0.044) but not spring 2016 (p = 0.072). There was no significant difference 

between spring 2015 and 2016 in the EROD activity in greater white-fronted geese (p = 0.88).
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Figure 1.2: Median EROD activity in liver samples frozen at 10 minutes postmortem in all birds 

from all sampling periods.

EROD activity was detected throughout the postmortem time series samples, including 

liver samples frozen 24 hours after death. Enzyme activity after 10 minutes postmortem had a 

high degree of individual variability within and among species (Figure 1.3). Vials frozen at <10 

minutes (2-9 minutes, average 5.5 minutes) showed similar activity to vials frozen at 10 minutes 

postmortem in all species and seasons (p = 1.0).

Figure 1.3: Mean EROD activity for triplicate sample wells (with standard error) for each time 

series point postmortem in two greater white-fronted geese sampled spring 2015.
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Figure 1.3 cont: Greater white-fronted goose (GWFG) #24 represents a sample with little 

variability over the time series while goose #18 is an example of variable enzyme activity.

Results for QA/QC duplicate microsome extractions (2015 and 2016 samples, no 

duplicate vial was collected in 2014) for 10 minute postmortem samples are in Table 1.2 and 

show a similar response between the two extracts (p = 1.0). Fall 2015 common eider samples 

were not included in analysis due to small sample size (n=2). Replicates from vials frozen at 1 

hour (p = 1.0) and 2 hours (p = 1.0) also showed no significant difference in EROD activity (data 

not shown). The first replicate vial from 10 minutes postmortem was used in all data analysis for 

consistency. EROD activity results for the freezer storage experiment with the 10 minute 

postmortem samples are in Table 1.3. The original samples from fall collections in 2014 were 

extracted in February 2015 (four to six months after collection). The same samples, from a vial 

that had not been previously thawed, were extracted in December 2015 after 16 months in 

storage at -80°C. The EROD results show a decrease in enzyme activity during long-term freezer 

storage with significant differences in common eiders (p = 0.001) and greater white-fronted 

geese (p = 0.01). King eider liver samples also decreased in EROD activity but not significantly

Table 1.2: Median EROD results (pmol/min/mg protein) with sample size by species and season, 

for vials frozen 10 minutes after death for duplicate microsome extraction QA/QC (KIEI=king 

eider, GWFG=greater white-fronted goose).

(p = 0.2).

EROD activity (pmol/min/mg protein)
Sample

First Replicate Second Replicate

GWFG Spring 2015 (n=16) 99.09 90.91

GWFG Fall 2015 (n=13) 19.99 28.01

GWFG Spring 2016 (n=18) 88.83 73.36

KIEI Fall 2015 (n=15) 19.62 25.86
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Table 1.3: Median EROD results (pmol/min/mg protein) for 10 minute postmortem samples 

(collected 2014 fall) from the freezer storage QA/QC experiment. Enzyme activity results for 

original microsome extraction (within 6 months of collection) in February 2015 and the same 

samples re-extracted in 2015 after 16 months in storage at -80°C (KIEI=king eider, 

GWFG=greater white-fronted goose). *p-value <0.05

Species
EROD activity (pmol/min/mg protein)

Frozen for 6 months Frozen for 16 months

GWFG (n=9) 518.57 68.49*

KIEI (n=5) 94.64 36.62

COEI (n=9) 254.51 30.23*

1.5 Discussion

1.5.1 Methods Validation

In this project samples were primarily collected by direct-take to ensure liver samples 

were frozen within the recommended 10 minute time frame postmortem. This approach made 

collecting and sampling all three species within 10 minutes of death feasible. We found that 

opportunistic sampling within 10 minutes of death can be challenging, but is possible with a 

close relationship with subsistence hunters. Due to the nature of goose and eider hunting around 

Utqiagvik, king and common eider opportunistic samples will be most feasible to obtain in the 

fall. During fall, eider hunters gather outside of town in a small area (Pigniq; Figure 1.1) and the 

close proximity between hunters gives more opportunities for interactions between hunters and 

researchers. Other opportunistic events may include spring eider collections from birds hunted 

and butchered at whaling camps set along the ice edge. Also, during spring goose hunts 

collaborating hunters could be provided a small, portable, liquid nitrogen dewar to take to remote 

field camps for sample collections. Opportunistic samples from greater white-fronted geese in 

the fall are unlikely because very few hunters target geese due to the preference for eiders during 

the fall season.
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Part of our methods validation was also to understand postmortem CYP1A enzyme 

degradation in the field and during freezer storage of liver samples. Our results indicate some 

EROD activity in liver samples through the time series samples, including those frozen 24 hours 

after death. However, EROD results for individual birds showed a high degree of variability in 

enzyme activity over the course of postmortem samples (<10 minutes-24 hours). It is unlikely 

this represents a sampling artifact since enzyme activity variability occurred in all collection 

periods and species, and our QA/QC replicates from single time-points showed similar EROD 

activity. The finding could be due to uneven degradation of proteins postmortem but whether 

protein degradation or some other biochemical processes are causing the uneven activity across 

the avian liver is unknown. We recommend maintaining the current protocol to freeze liver 

samples within 10 minutes of death for use in CYP1A analysis. Also, EROD activity 

significantly declines in liver samples during in long-term storage. We found samples kept at 

-80°C for over one year lost enzyme activity when compared to the same samples extracted 

within 6 months of collection. Based on these findings, we also recommend processing of 

samples within the currently used time frames.

1.5.2 EROD Activity

While our absolute enzyme activities are not necessarily directly comparable to other studies 

due to slight differences in laboratory protocols and different species, most of our median EROD 

results are similar to those reported for sea duck species in Alaska sampled in areas considered 

unexposed to oil. Trust et al. (2000a) reported average activity of 49.5 and 70.7 pmol/min/mg 

protein in Barrow’s goldeneye and harlequin ducks in areas untouched by the Exxon-Valdez oil 

spill in Prince William Sound and 94.3 and 204.6 pmol/min/mg protein in spill areas. Measuring 

EROD activity in harlequin ducks in Prince William Sound up to 20 years after the Exxon- 

Valdez oil spill, Esler et al. (2010) reported activity of 15-25 pmol/min/mg protein in un-oiled 

and 75-100 pmol/min/mg protein in oiled areas. Mean EROD activity in Steller’s eiders and 

harlequin ducks around Unalaska, AK at a clean reference site were 10-15 and 50 pmol/min/mg 

protein, respectively and enzyme activity around industrial areas were 20-50 and 100-275 

pmol/min/mg protein, respectively (Miles et al. 2007). Our median EROD activity for king eider 

were 92.65 and 19.97 pmol/min/mg protein, common eider 54.51 and 32.97 pmol/min/mg
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protein and greater white-fronted goose 518.57 and 25.04 pmol/min/mg protein (fall 2014 and 

fall 2015 respectably). EROD activity was significantly higher in greater white-fronted geese 

collected in fall 2014 than all other goose sampling periods. Enzyme activity in common eiders 

and king eiders from fall 2014 were also significantly higher than fall 2015 results in each 

species. Our EROD results from fall 2014 are also similar to enzyme activities from oiled areas. 

Greater white-fronted geese median EROD activity results for spring samples in 2015 and 2016 

were 89.90 and 82.78 pmol/min/mg protein respectably. These results, which are discussed in 

more detail below, may also indicate PAH exposure in some individuals.

There has been little research into the half-life of CYP1A enzyme in avian species but 

CYP1A half-life was estimated at ~19 hours in rats injected with a CYP1A inducer (BNF; Chen 

et al. 2010). Additionally, CYP1A activity continued in fish livers 4 days after removal from a 

PAH contaminated environment (Fragoso et al. 1998) and 10+ days after a BNF injection 

(Kloepper-Sams 1989). It is likely the fall 2014 birds were exposed while on the North Slope, 

instead of experiencing exposure in wintering areas, since the birds had been on the breeding 

ground for several months at the time of sampling.

We detected a seasonal difference in EROD activity between spring and fall in greater 

white-fronted geese; spring 2015 and 2016 were statistically similar, both significantly different 

than fall 2014, and spring 2015 significantly different from fall 2015. Additionally, while median 

greater white-fronted goose spring activities are similar to those measured in unexposed sea 

ducks, our results indicate exposure in some individual geese. This may be residual enzyme 

activity if exposure occurred before arrival onto the breeding grounds. If there was exposure, 

genetic polymorphisms in CYP1A coding regions could also contribute to variation in responses 

to CYP1A induction between individuals within a species (Courtenay et al. 1994). Previous 

studies have shown age, sex, and season can affect CYP1A induction in some fish and birds 

(Kammann et al. 2005, Lee and Anderson et al. 2005 and references therein). However, Esler et 

al. (2010) found age, sex, and body mass of harlequin ducks sampled in early and late winter had 

no influence on EROD activity between oiled and un-oiled habitats. In this study, sex, and age 

was not considered due to sample sizes but our samples do include juveniles and adults of both 

sexes in spring and fall collections. Future Beaufort and Chukchi seas PAH monitoring programs
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should include sampling adults and juveniles of both sexes during spring and fall hunts to further 

investigate how these parameters may impact CYP1A activity.

It is unknown at this time the source and identity of hydrocarbon, or other CYP1A 

inducing compound, which caused the elevated enzyme activity in 2014 in some spring geese. 

Also, with the current data we are unable to identify if the exposure was dietary or environmental 

(e.g., preening contaminated plumage) and acute or chronic. Areas close to Utqiagvik, where 

birds nest and forage, such as greater white-fronted geese, include historical military sites.

Several of these sites are designated “contaminated” by the Alaska Department of Environmental 

Conservation (ADEC) due to fuel spills and possible PCB contamination in the 1940-1970s 

(ADEC 2014). The role these contaminated sites might play in contaminant exposure and the 

elevated EROD activity in some sampled birds is uncertain. Previous studies in Prince William 

Sound, AK and St. Lawrence Island, AK have measured various PCBs in sea duck tissue and 

while some PCBs were detected, either potent CYP1A inducers were not, or levels were at trace 

concentrations (Trust et al. 2000a, Trust et al. 2000b, Esler et al. 2010). PAHs have been found 

in invertebrate sea duck diet items (e.g., blue mussels; Mytilus trossilus) and were tied to 

elevated sea duck EROD activity in the Eastern Aleutian Islands, AK (Miles et al. 2007) but 

direct measurement PAH load in arctic bird diet items haven’t been completed to our knowledge. 

Lastly, high natural concentrations of PAHs, from biogenic and terrestrial sources, have been 

found in the Beaufort Sea nearshore and shelf surface sediments (Yunker and MacDonald 1995, 

Vankatesan et al. 2013). However, it is unlikely the natural concentration of PAH are at levels to 

induce toxic effects but their presence may make the area more sensitive to releases of additional 

PAHs from human activities (Yunker and MacDonald 1995). Archived liver and kidney samples 

could be used for direct measurement of potential contaminants to aid in identification of the 

potential source of exposure and ruling out other toxins (e.g., PCBs) that can also activate 

CYP1A.

High activity levels of CYP1A only indicate exposure has occurred and there is a 

potential for detrimental effects. On postmortem examination the majority of all sampled birds 

appeared to be healthy and in good body condition. One king eider and one white-fronted goose 

were found in poor body condition (little to no subcutaneous fat) in fall 2014, but their EROD 

activity fell near the median results of each species. Additional health evaluations and
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biomarkers are necessary to fully determine the impact of elevated enzyme activity. Future 

research should involve supplementary tests, such as histopathology analysis, to further 

determine the health of all sampled birds and physiological factors potentially affecting seasonal 

variation in enzyme activity.

1.6 Conclusion

In summary, we present the first CYP1A reference data set for three arctic bird species 

that heavily use the Arctic during their annual life cycle: common eider, king eider, and greater 

white-fronted goose. We validated field methods for sample collections showing both direct-take 

and opportunistic sampling can be done within the current, and confirmed in this study, 10 

minute postmortem time frame. Our enzyme activity results show exposure during fall 2014 that 

likely occurred while the birds were in the Arctic, but the exact source is unknown. We also 

noted high EROD activity in individual greater white-fronted geese collected during spring 2015 

and 2016. Due to differences in EROD activity, diversity in diet and habitat use, and potential for 

opportunistic sampling, these three species are valuable candidates as bioindicators for 

hydrocarbon exposure monitoring.
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1.9 Appendices

Appendix 1.A

University of Alaska Fairbanks Institutional Animal Care and Use Committee Approval Letter

U N I V E R S I T Y  O F

ALAS KA
F A I R B A N K S

Institutional Animal Care and Use Com m ittee
909 N Koyukuk Dr. Suite 212, P.O. Box 757270, Fairbanks, Alaska 99775-7270

April 29, 2016

To: Tuula Hollmen
Principal Investigator

From: University of Alaska Fairbanks IACUC

Re: [593132-7] Baselines of Hydrocarbon Exposure in Marine Birds of the
Beaufort and Chukchi Seas

The IACUC has reviewed the P rogress Report by D esignated Member Review and the 
Protocol has been approved for an additional year.

Received: April 18, 2016

Initial Approval Date: May 29, 2014

Effective Date: April 27, 2016

Expiration Date: May 29, 2017

This action is included on the May 12, 2016 IACUC Agenda.

PI
responsibilities:

• Acquire and maintain all necessary permits and perm issions prior to beginning 
work on this protocol. Failure to obtain or maintain valid permits is considered a 
violation o f an IACUC protocol and could result in revocation o f IACUC approval.
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• Ensure the protocol is up-to-date and submit modifications to the IACUC when 
necessary (see form  006 "Significant changes requiring IACUC review" in the 
IRBNet Forms and Templates).

• Inform research personnel that only activities described in the approved  
IACUC protocol can be performed. Ensure personnel have been appropriately 
trained to perform their duties.

• Be aware o f status o f other packages in IRBNet; this approval only applies to this 
package and the docum ents it contains; it does not imply approval for other 
revisions or renewals you may have subm itted to the IACUC previously.

• Ensure animal research personnel are aware o f the reporting procedures 
detailed in the form 005 "Reporting Concerns".

Appendix 1.B

Laboratory Protocols for Microsome Extraction, EROD, and Egg Dosing

Liver Tissue Microsome Extraction

1. Process on ice as much as possible and keep buffers ice cold to prevent any enzyme 

activity in the liver sample

a. Put buffers and tubes in fridge/freezer

2. Weigh 50-100 mg (wet weight) liver

3. Homogenize with pestle in Tris+KCl buffer pH 7.4 on ice

a. Add 500 pL buffer to each sample

b. Use Teflon pestle, cleaning with ethanol (ETOH) after each sample

4. Centrifuge for 20 minutes at 10,000 g at 2°C

5. Transfer post-mitochondrial supernatant (PMS) to new cooled microcentrifuge tube

6. Centrifuge PMS highest possible speed (20,800 g) for 60 minutes at 2°C

7. Remove supernatant and toss

8. Resuspend microsome pellet in 100 pL 50mM Tris Resuspention Solution pH 7.4

9. Freeze microsomes at -80°C until ready to assay

a. If running the same day keep in fridge short term before EROD

b. If running Bradford assay later save 10 pL in separate tube
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Bradford Protein Assay

1. Follow kit protocol

a. Sigma catalog number B6916

b. 96 well assay protocol

c. Use SpectraMax Plus 384 absorbance microplate plate reader [Molecular Devices, 

Sunnyvale, California (CA)].

2. Gently mixed the Bradford reagent in the bottle and bring to room temperature

3. Prepare protein standards in buffer ranging from 0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0mg/mL 

using a BSA standard or an equivalent protein standard

a. Use 2 mg/mL protein BSA standard (Sigma catalog number P0834)

b. 2 mg/mg: straight standard

c. Example: 1 mg/ mL= 30 pL 2 mg + 30 pL distilled water (dH2O)

d. Negative control (0) is dH2O

4. Add 5 pL of the protein standards to separate wells in the 96 well plate. To the blank 

wells add 5 pL of dH2O.

5. Prepare the unknown samples(s) with an approximate concentration between 0.1-1.4 

mg/mL.

a. Dilute all unknown samples: 1 pL sample to 4 pL dH2O

6. To each well being used, add 250 pL of the Bradford reagent and mix in the plate reader 

for ~30 seconds (hold shake button down).

7. Let the samples incubate at room temperature for 10 minutes.

a. Assay can be incubated from 5-45 minutes, results don’t change with 

shorter/longer incubation, but be consistent with 10 minutes.

8. Measure the absorbance at 595 nm.

a. The absorbance of the samples must be recorded before 60 minutes (protein dye is 

stable for 60 minutes) and within 10 minutes of each other

9. Plot the absorbance vs. the protein concentration of each standard

10. Determine the protein concentration of the unknown sample(s) by comparing the net 

A595 values against the standard curve

a. Multiple concentration by dilution amount to get final concentration
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Microsome EROD

1. Run everything in triplicate on 96 well black plate

2. Use the Gemini EM Dual-Scanning Microplate Spectrofluorometer fluorescent plate 

reader (Molecular Devices, Sunnyvale, CA).

3. Add controls to plate

a. Resorufin standards for curve

b. Negative control (buffers only, no sample)

c. Positive biological control (dosed mallard liver)

d. Inter-assay biological control (microsome sample to run on every plate)

4. Resorufin standard dilution series

a. Add 10 pL of each control to well

b. Control 0, 5, 10, 20, 40 and 60 pmol (note stock used on each plate; use 

concentrations 100, 140 and 200 pmol if needed):

i. negative control: 10 pL dH2O

5. Total well volume 200 pL

6. Add to each sample well:

a. 10 pL microsome

b. 150 pL 7-ER buffer [2.5 pM 7-ethoxyresorufin (7-ER) in 50 mM Tris buffer at 

8.0 pH (final concentration)]

i. Color should be peach, if it is pink remake

ii. For a full plate make: 538 pL 7-ER + 15.5 mL 50 mM Tris

c. Add 40 pL of 1.34 mM of nicotinamide adenine dinucleotide phosphate 

(NADPH) in buffer to initiate activity (final concentration)

7. Measure fluorescence excitation wavelength of 530 nm and emission wavelength of 590 

nm at 1 minute intervals for 6 minutes at room temperature

8. Use Excel to calculate mean wavelengths for each sample and control.

9. Graph resorufin control pmol activity (x-axis) against fluorescence (y-axis). This should 

be a tight linear relationship.

i. Use a scatter plot graph
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ii. Standard line R-squared value should be close to 1 (i.e., 0.9973).

iii. Show the equation of the line to find slope of standard curve

10. The sample slope (fluorescence/min) is divided by the slope of the resorufin product 

standard curve (fluorescence/pmol) to yield pmol/min

11. Use Bradford protein concentration (mg/mL protein) for each sample for final activity 

calculation.

a. Activity is expressed as pmol/min/mg protein

12. Formula:

EROD activity = (EROD pmol/min) / EROD sample volume (0.01 mL) / (mg/mL protein)

Egg Injections

1. Embryonated mallard eggs

a. Artificial incubate in a Grumbach incubator (Grumbach, Germany)

b. Monitor eggs every 3-5 days by candling

i. Remove infertile or eggs that stop developing from the incubator

c. Incubator settings:

i. 37.5°C with 50-60% humidity

ii. Eggs gently rolling on automatic rollers over 24 hours

iii. Two 30 minute breaks with no heat per 24 hour period (10 and 14 hours)

2. Dissolve BNF into peanut oil to prepare dose

a. 4 mg BNF/50 pL peanut oil

3. Inject into air cell on day 11

a. Clean area with beta iodine

b. Helpful to stick sterile needle into a black rubber stopper. This will leave just a 

small section of needle poking out and help prevent the needle from going too far 

into the egg.

c. Make two holes in egg to allow for air to escape while injecting dose

d. Use small grade needle as the doses are chucky and can clog the needle

e. Once finished use liquid Band-Aid to cover holes
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4. Doses:

a. BNF/peanut oil dose inject ~50-100 pL

b. Dose with ~50-100 pL just peanut oil (control)

c. Dose with ~50-100 pL sterile 1X PBS (control)

5. Place eggs blunt end upward for 10-60 minutes following injection

6. Return to horizontal position in incubator

7. Harvest livers after 24 hours on day 12

a. Use sterile techniques (follow cell extraction protocol for liver removal; Chapter

2)

b. Place liver samples in cryovial

i. Can pool multiple eggs with the same dose

c. Freeze in liquid N2 with-in 10 minutes of death

Extraction Reagents:

Homogenizing Buffer (pH 7.4)

500 mL total volume

0.05 M Tris: Add 25 mL 1 M Tris

0.15 M KCl: Add 75 mL 1 M KCl 

400 mL dH20

50 mM Tris Resuspention Solution (pH 7.4)

250 mL total volume

250 ul 1 M EDTA (1 mM EDTA)

250 ul 1 M DTT (1 mM DTT)

50 mL glycerol (20% glycerol v/v)

12.5 mL 1 M Tris (50 mM Tris)

Bring volume to 250 mL with dH20 (187 mL)

1 M KCl Buffer 

250 mL total volume
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18.64 g KCl

Bring volume to 250 mL with dH20

1 M Tris Buffer 

250 mL total volume 

30.285 g Tris 

Bring volume to 250 mL

1 M DTT

1 g/vial

6.5 mL total volume

1 g DTT to 6.5 mL dH20

1 M EDTA

250 mL total volume

93.05 g EDTA

Bring volume to 250 mL

Need NaOH to go into solution

May need HCl to add more acidity to reach correct pH

EROD Reagents:

7-ER buffer

200 pL assay well volume

2.5 pM final concentration 7-ER

2.5 pM concentration in total well volume of 200 pL. Stock needs to be 3.33 pM to have the 

addition of 150 pL = 2.5 pM.

Stock 3.33 pM: 20 mL (make fresh)

7-ER stock=100 pM stored at -80°C (suspended in MeOH)

For assay combine: 538 mL 100 pM 7-ER and 15.5 mL 50 mM Tris buffer
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50 mM Tris Buffer (pH8.0)

500 mL total volume 

25 mL 1 M Tris buffer stock 

475 mL dH20

NADPH 

10 mg/vial

Need starting stock of 6.7 mM to get 1.34 mM in 200 pL assay well total volume (40 pL 

NADPH added to assay well)

6.7 mM stock

Add 1.8 mL 50 mM Tris buffer (to keep buffers the same as in 7-ER) to 10 mg vial

Egg Dosing Reagents:

BNF 

1 g/vial

4 mg/50 pL = 0.04 g BNF + 500 pL peanut oil

Control Reagents:

Resorufin 

1 g/vial

Add 79 mL dH20 to 100 mg for 5 mM concentration 

Dilute:

1 mM= 200 pL 5 mM stock + 800 pL dH20 

20 pM= 20 pL 1 mM stock + 980 pL dH20 

1 pM = 10 pL 20 uM stock + 190 pL dH20

All buffer and media reagents were purchased from Invitrogen (Grand Island, New York), 

Sigma-Aldrich (St. Louis, Missouri), Fisher Scientific (Pittsburg, Pennsylvania), or VWR 

(Radnor, Pennsylvania)
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Chapter 2 Assessing Arctic Marine Bird and Waterfowl Sensitivity to Hydrocarbon Exposure 

Using P4501A Enzyme Response in Liver Cell Cultures1

2.1 Abstract

As industrial activities increase in the Beaufort and Chukchi seas, determining the 

sensitivity of arctic wildlife to hydrocarbon exposure can provide reference data and information 

for monitoring programs and management of species potentially impacted by an oil spill. Using 

species-specific hepatocyte culture we assessed polycyclic aromatic hydrocarbon sensitivity by 

measuring liver enzyme cytochrome P4501A (CYP1A) activity in selected species of arctic 

birds. Our CYP1A results showed differences in species responses to dosing reagents chrysene, 

phenanthrene, P-naphthoflavone, and Alaska North Slope crude oil. Based on these results, we 

recommend the common eider (Somateria mollissima) and common murre (Uria aalge) as 

bioindicators for use in CYP1A monitoring due to their consistent and measureable CYP1A 

responses in our experiments. However, additional species are promising candidates (e.g., tufted 

puffin; Fratercula cirrhata) but further testing is required. This study is the first comparative 

laboratory assessment for arctic marine birds and waterfowl to CYP1A inducing compounds.

1 Riddle, A. E., T. E. Hollmen, R. Suydam, R. Sarren, C. Frost, K. Counihan, C. Latty, R. 

Stimmelmayr. Assessing Arctic Marine Bird and Waterfowl Sensitivity to Hydrocarbon 

Exposure Using P4501A Enzyme Response in Liver Cell Cultures. Prepared for submission to 

Marine Pollution Bulletin.

2.2 Introduction

In the Arctic, the Beaufort and Chukchi sea region and nearby coastal habitat supports a 

rich variety of waterfowl and marine birds that use the area for breeding and migration (Reed et. 

al. 1998, Stephenson and Irons 2003, Phillips et al. 2007, Oppel et al. 2009, Petersen 2009, 

Perkins et al. 2016). The Beaufort and Chukchi seas are also areas of interest in oil and gas 

development (BOEM 2015), increasing commercial vessel traffic through ice-free arctic waters 

(Smith and Stephenson 2013), and is home to many hundreds of current and formally used 

defense sites with a high degree of contamination (von Hippel et al. 2016). This industrial
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activity adds a potential source of polycyclic aromatic hydrocarbon (PAH) exposure for arctic 

birds through accidental releases of oil. PAHs, including those found in oil, and can induce a 

wide range of toxic effects in birds (Albers 2006 and references therein) and are poorly studied 

in many arctic marine birds and waterfowl species.

Several previous studies have researched the toxic effect of PAHs on eggs, embryos, and 

birds primarily using chicken (Gallus domesticus), mallard (Anasplatyrhynchos), or turkey 

(Meleagris gallopavo) and less frequently, the common eider (Somateria mollissima) as test 

species (Albers 2006 and references therein). Single or mixtures of PAHs injected into fertile 

eggs, or applied to the eggshell, resulted in embryo cellular damage, decreased survival, 

developmental abnormalities, and reduced body weight (Hoffman and Gay 1981, Brunstrom et 

al. 1991, Brunstrom 1991). Exposure to PAHs during an egg injection study (Brunstrom et al. 

1990) identified domestic ducks as the most sensitive and chickens the least sensitive, when 

compared with turkeys and common eiders. Studies dosing juvenile or adult birds in controlled 

laboratory exposure experiments showed endocrine disruption, immune system effects, and 

reduced weight gain (Butler et al. 1979, Peakall et al. 1982, Trust et al. 1994).

Hydrocarbon studies often use induction of the liver enzyme cytochrome P4501A 

(CYP1A) to assess the relative potency of or exposure to PAHs in wildlife including birds (Trust 

et al. 2000, Miles et al. 2007, Esler et al. 2010, Head et al. 2015). Cytochrome P4501A (CYP1A) 

is activated by exposure to environmental contaminants such as polychlorinated biphenyls (PCB) 

and dioxins but also to PAHs including the constituents of crude oil (Payne et al. 1987, Rattner et 

al. 1994, Goks0yr 1995). Activity of the liver enzyme, 7-ethoxyresorufin-O-deethylase (EROD), 

is a standard and widely used measurement of the catalytic activity of CYP1A induction 

(Kennedy et al. 1996, Short et al. 2008, Esler et al. 2010).

Measuring EROD responses in hepatocyte cultures can provide diagnostic tools to 

characterize species-specific sensitivity and responses to CYP1A inducing toxins. Cell culture 

techniques allow testing of unique species-specific responses and comparisons among species by 

using a suite of reference compounds under controlled laboratory conditions. Additionally, the 

magnitude and duration of CYP1A induction to single or compound toxin mixtures can be 

assessed in individual species. Kennedy et al. (1996) used CYP1A induction in hepatocyte 

cultures, measured by EROD activity, to predict the sensitivity of chickens, ring-necked
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pheasants (Phasianus colchicus), turkeys, mallards, and herring gulls (Larus argentatus) to 

several halogenated aromatic hydrocarbons (HAHs). They ranked chicken as the most sensitive 

and herring gull the least sensitive to their testing reagents. Also using primary hepatocyte 

cultures, Head et al. (2015) ranked chickens more sensitive than Pekin duck (Anas platyrhynchos 

domesticus) and greater scaup (Aythya marila) to 18 PAHs. Bald eagle (Haliaeetus 

leucocephalus) and common tern (Sterna hirundo) hepatocyte cultures had low EROD activity 

responses to dioxins and HAHs when compared to chickens (Lorenzen et al. 1997, Kennedy et 

al. 2003). Species will likely respond differently to the same mixture of PAHs and HAHs 

depending on their individual sensitivities to different chemicals (Head et al. 2015).

CYP1A responses in arctic birds of the Beaufort and Chukchi seas from exposure to 

PAHs found in crude oil have not been investigated in controlled laboratory experiments. We 

selected ten arctic bird species to assess their sensitivity to PAHs and CYP1A inducing reagents: 

Steller’s eider (Polysticta stelleri), spectacled eider (Somateria fischeri), common eider, king 

eider (Somateria spectabilis), long-tailed duck (Clangula hyemali), greater white-fronted goose 

(Anser albifrons), black brant (Branta bernicla), common murre (Uria aalge), tufted puffin 

(Fratercula cirrhata), and horned puffin (Fratercula corniculata). We chose species based on 

their conservation status, subsistence importance, and potential to act as a bioindicator of 

different exposure pathways due to diversities in habitat use and foraging strategies. A good 

bioindicator species can also serve as an ecosystem sentinel and birds have previously been used 

as early indicators to environmental toxin bioaccumulation (Hellou et al. 2012).

Due to significant population declines and range contraction, spectacled eiders and 

Alaska-breeding Steller’s eiders, respectively, are listed as threatened under the United States 

Endangered Species Act (Federal Register 1993, 1997). King and common eider population 

numbers have decreased by 50% compared to historical levels (Suydam et al. 2000), and long­

tailed duck populations have declined as well (Hollmen et al. 2003 and references therein). 

Currently, reasons for population declines in all these species are not well understood and many 

factors may be responsible. Arctic coastal communities rely on several avian species including 

king eider, common eider, greater white-fronted goose, long-tailed ducks, and black brant for 

subsistence use. Greater white-fronted geese and eggs from geese and ducks are important
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resources during spring with migrating king eiders and common eiders as the primary targets 

hunted during fall (Robert Sarren, personal communication).

Birds may come in contact with hydrocarbons via their diet (e.g., ingestion of 

contaminated prey) or habitat (e.g., preening oil from feathers; Albers 2006). To represent 

different hydrocarbon exposure pathways in the food web, we chose both piscivorous (alcids) 

and benthic foraging (sea ducks) arctic bird species for the experiments. Two goose species were 

selected, 1) greater white-fronted goose represent a near shore and terrestrial foraging species 

and 2) black brant represent a goose species with a strong marine association (Ward et al. 2005). 

We also chose species based on their use of different habitats while in the Beaufort and Chukchi 

sea region. Many birds spend several months of their annual cycle in the Arctic for nesting and 

rearing young. For example, millions of murres (Uria sp.), puffins (Fratercula sp.), and auklets 

(Aethia sp.) use islands and coastal areas with cliffs and rocky slopes for nesting and chick 

rearing (Stephenson and Irons 2003), while all four eider species and black brant use the coastal 

tundra (Reed 1998, Petersen et al. 1999, Quakenbush et al. 2004, Phillips et al. 2007, Petersen 

2009). Life history diversity in a monitoring program increases the chances an exposure event or 

changes in the ecosystem will be captured by one of the indicator species.

This study aims to understand arctic bird comparative sensitivity to PAHs from oil using 

EROD activity responses in species-specific hepatocyte culture. Specific goals were to:

1) Establish species-specific EROD reference curves from hepatocyte cultures dosed 

with known CYP1A inducers chrysene, phenanthrene, and P-naphthoflavone (BNF).

2) Establish species-specific EROD reference curves from hepatocyte cultures dosed 

with Alaska North Slope crude oil.

3) Compare tested species and identify sensitive responders using EROD activity and 

cellular cytopathic effects.

4) Make recommendations for bioindicator species to use for PAH monitoring in the 

arctic marine environment.
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2.3 Methods

2.3.1 S ource Material

Eggs from several species were acquired from captive birds from private or commercial 

breeders: mallard eggs from Murray McMurray Hatcheries (Webster City, Iowa), efowl.com 

(Denver, Colorado), and Metzer Farms (Gonzales, California); chicken eggs from Murray 

McMurray Hatcheries, efowl.com, and Stromberg’s Chick and Game Birds Unlimited (Pine 

River, Minnesota); common eider and king eider eggs from Dry Creek Waterfowl (Port Angeles, 

Washington); and black brant eggs from private breeders (Washington). Additionally, the Alaska 

SeaLife Center [(ASLC) Seward, Alaska (AK)], a public aquarium and marine research facility, 

provided eggs from Steller’s eider, spectacled eider, tufted puffin, horned puffin, long-tailed 

duck, and common murre. Greater white-fronted goose and common eider eggs were collected 

on the North Slope of Alaska [Utqiagvik (formally Barrow) area and Kaktovik, respectively] in 

2015 and 2016.

2.3.2 Egg Development

After arrival at the laboratory, eggs were cleaned by dipping them in a 1X chlorhexidine 

solution. They were then allowed to air dry and given an individual identification number. Eggs 

were either placed directly into an incubator or kept at room temperature at a 45° angle for 1-48 

hours to stagger incubation start times. Eggs kept at room temperature longer than 12 hours were 

turned 180° every 12 hours. Artificial incubation occurred in a Grumbach incubator (Grumbach, 

Germany) at 37.5°C with 50-60% humidity and two 30 minute breaks with no heat per 24 hour 

period (10 and 14 hours). Eggs were placed on shelves in the incubator on top of slowly moving 

rollers which gently moved the egg over 24 hours. During incubation, eggs were monitored 

every 3-5 days by candling and eggs that were infertile, or stopped developing, were removed 

from the incubator.

2.3.3 Hepatocyte Extraction

We used established primary cell culture protocols (Brendler-Schwaab et al. 1994; 

Hollmen et al. 2013,) and followed standard cell culture QA/QC (Freshney 2000) to harvest
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embryonic liver tissue at approximately 11-18 days of incubation for all species (Appendix 2.A). 

To be able to directly compare species responses, incubation times were adjusted for each 

species so embryos represented a similar stage of development at the time of cell line 

establishment. Eggshells were sterilized with povidone iodine and rinsed with distilled water 

(dH2O) prior to opening. Using scissors to cut the shell, the top of the shell around the air cell 

was removed, the embryo quickly located and decapitated using scissors, and the torso placed in 

a Petri dish. The liver, without the gallbladder, was removed from the body and placed in cold 

1X phosphate-buffered saline (PBS). Livers were pooled in groups of 1-4 and rinsed with pre­

perfusion buffer II [Hanks Balanced Salt Solution 1X (HBSS) without CaCl2 and MgCl2, 10 mM 

HEPES, and 0.5 mM ethylene glycol tetraacetic acid (EGTA, pH 7.4)] after removal of the 1X 

PBS. The buffer was removed and livers were minced gently using sterile scalpels. Next, 

perfusion medium II [minimum essential medium (MEM) without L-glutamine, collagenase IV 

(100 U) and 0.125% trypsin] was added to the minced liver and the mixture added to a 

trypsinizing flask. For 1-2 livers 32 mL of perfusion medium II were added and for 3-4 embryos 

48 mL. Livers were digested for 30 minutes at 37°C with gentle stirring and digestion was 

stopped with the addition of 20% heat inactivated fetal bovine serum (HI FBS). The resulting 

mixture was filtered through nylon mesh (100 pm) into a sterile 50 mL tube containing 10 mL 

pre-perfusion buffer. The hepatocyte suspension was then centrifuged at 63 g and 4°C for 5 

minutes. The supernatant was removed and the remaining cell pellet was gently resuspended in 

10 mL pre-perfusion buffer. At this point, additional liver suspensions were combined, if 

necessary, to bring the total number of livers used per assay culture to 4-12. Cell suspensions 

were spun at 110 g and 4°C for 5 minutes, the supernatant removed, and the cell pellet gently 

resuspended in 10 mL low glucose media [high glucose Dulbecco's Modified Eagle Medium 

(DMEM), MEM, antibiotic mixture (nystatin, penicillin-streptomycin, and gentamycin) and L- 

glutamine] and 20% HI FBS. A cell count was then performed using a hemocytometer and cells 

diluted with low glucose media with 20% HI FBS as needed. Finally, hepatocytes were seeded in 

a black-walled 96-well plate at 30,000 cells/well and a total well volume of 200 pL. Hepatocyte 

lines from all species were incubated at 37°C in 5% CO2 atmosphere for 24-48 hours before 

dosing. Cultures were given fresh media with 20% HI FBS and checked by microscopy for 

confluency level, health, and morphology every 24 hours (Hollmen et al. 2002). All buffer and
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media reagents were purchased from Invitrogen (Grand Island, New York), Sigma-Aldrich (St. 

Louis, Missouri), Fisher Scientific (Pittsburg, Pennsylvania), or VWR (Radnor, Pennsylvania).

2.3.4 Cell Culture Assays

Before dosing, media was removed from the wells, cells gently washed 1-2 times with 1X 

PBS to remove any cellular debris, and replaced with fresh media (100 pL with no FBS).

Cultures were dosed, in triplicate, with carrier solvent control dimethyl sulfoxide (DMSO) or 

ethanol, negative controls (media only and cells with no dose), and different concentrations or 

amounts of single hydrocarbons or a reference laboratory chemical (chrysene, phenanthrene, or 

BNF) or compound mixture Alaska North Slope crude oil (ANS oil; Marathon Alaska Beaver 

Creek Crude Oil-Sweet). BNF, a standard laboratory chemical, is a known inducer of CYP1A 

activity and has been used in previous studies to measure avian EROD responses (Miles et al. 

2007, Hollmen et al. 2013). Phenanthrene and chrysene represent PAHs of different molecular 

weights (3 and 4 rings respectively) that are found in crude oil and induce CYP1A activity 

(Incardona et al. 2005, Short et al. 2008). Doses were prepared with low glucose media, when 

necessary, and stored in amber vials at 4°C. Cultures were returned to the incubator following 

dosing. After 24 hours of dose exposure, cells were first evaluated using microscopy for general 

cell morphology and cytopathic effects (CPE). Types of CPE observed were characterized and 

described for each cell line and dose used. Cells were scored on a semi-quantitative response 

scale from 0-4 (0=none to 4=100 % effect) for a suite of CPE responses including: 

vacuolarization, cytoplasmic swelling, granularization, non-viability, cellular debris, and other 

abnormality (Hollmen et al. 2013).

We used EROD methods adapted from both Hodson et al. (1996) and Hahn et al. (1996). 

First, a solution of 6 pM 7-ethoxyresorufin (7-ER) was freshly prepared from 100 pM 7-ER 

stock and NaPO4 buffer and 25 pL added to each cell well. Next, catalyst nicotinamide adenine 

dinucleotide phosphate (NADPH; 10 mg) was resuspended in 1.5 mL NaPO4 buffer and 10 pL 

added to each well. Immediately, fluorescence was measured at excitation wavelength of 530 nm 

and an emission wavelength of 590 nm using a Gemini EM Dual-Scanning microplate 

spectrofluorometer fluorescent plate reader (Molecular Devices, Sunnyvale, California). To 

assess the cellular dose-response over time, and capture the threshold activity level, EROD
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activity was measured every 15 minutes for 3 hours. Protein levels were not quantified because 

cell counts per well were uniform (Hahn et al. 1996). Mallard cultures were used to validate 

protocols and test reagents.

2.3.5 Analysis

The number of eggs we were able to acquire for each species varied and we were unable 

to complete the full testing regimen on all species. Common murre cultures occasionally had a 

high EROD response to control doses of carrier reagents DMSO and ethanol. To account for this 

background activity, EROD responses from DMSO and ethanol control wells were subtracted 

when these carrier reagents were used in doses. In all species, due to high background EROD 

activity in controls of media with neat ANS oil (no cells), the fluorescent responses from these 

controls were removed from the cellular responses before analysis. Cell culture results were 

expressed as pmol/min/metabolic activity.

After visualizing trends in the EROD responses, we found it more appropriate to use a 

linear mixed modeling approach than a traditional logistic response. The linear mixed model had 

fixed effects of dose and EROD assay read time (0-180 minutes in 15 minute increments) and a 

random effect of individual cell line to create estimated EROD response curves with 95% 

confidence intervals. Data from each individual cell culture well was used in the model.

Chrysene 1.0 pM, BNF 1.0 pM and ANS oil 5.0 pL dose estimated EROD response curves for 

each species were visually compared to each other to assess relative sensitivity between species. 

Using those curves, species were categorized as having a high, moderate, or low EROD response 

to the testing reagent based on the highest activity reached during the 3 hour assay. Chrysene 1.0 

pM EROD responses of >125 pmol/min/metabolic activity were considered high, 124-51 

pmol/min/metabolic activity moderate, and <50 pmol/min/metabolic activity low. EROD 

responses of >150, 149-51, and <50 pmol/min/metabolic activity were ranked high, moderate, 

and low, respectably, for BNF 1.0 pM. ANS oil 5.0 pL estimated EROD response curves >350 

pmol/min/metabolic activity were ranked high, 349-101 pmol/min/metabolic activity moderate, 

and <100 pmol/min/metabolic activity low responders. Categories were chosen by comparing the 

range of responses from tested species at each reagent. Cytopathic effects were used to evaluate 

the dose response and subsequent EROD activity.
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2.4 Results

Table 2.1 summarizes test doses per species for this project. In most species, for the 

single reagent testing compounds, the highest EROD activity was recorded at the end of the 

assay (3 hours post-addition of catalyst). We rarely observed a decrease in EROD activity over 

the course of a single assay. Cellular responses to the compound mixture ANS oil were less 

consistent than the single compound testing reagents during the course of a single assay: EROD 

activity increased, decreased, or remained stable. Curve fitting results are shown in Figures 2.1­

2.4 with EROD activity by species and dose.

Table 2.1 shows all tested chrysene concentrations for each species and reference species 

mallard and Figure 2.1 shows the EROD results for these assays. All species were tested at 1.0 

pM chrysene with a 24 hour dose exposure as an initial dose for consistency and comparison. 

Previous testing (Hollmen et al. 2013) found this dose typically elicits a CYP1A response in 

most species without killing the culture or causing drastic CPE changes. These results indicate 

differences in species EROD responses at this dose with the highest comparative response from 

black brant and lowest from Steller’s eider. Horned and tufted puffins comparatively had a 

similar response to each other as did common, spectacled, and king eiders. Additionally, there 

was no apparent visual difference in pathological response between control wells and the 1.0 pM 

chrysene dose for all species. Doses higher than 2.5 pM chrysene resulted in lower EROD 

response and as dose concentration increased, cell coverage decreased, and cellular debris 

increased for all tested species.

Tested doses of BNF are listed in Table 2.1 and EROD response curve results for all 

tested species are shown in Figure 2.2. Again, we used a 1.0 pM dose as an initial comparison 

between species and to categorize species responses as high, moderate or low. For this CYP1A 

inducing compound, common murre had the highest EROD response and greater white-fronted 

goose the lowest at 1.0 pM. CPE results for all dose concentrations were similar for all tested 

species with little to no visual change compared to control wells. Common murre and mallard 

had the highest overall response to any dose concentration of BNF (1.0 pM and 2.0 pM 

respectably).
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Steller’s eiders, greater white-fronted geese and mallards were the only species we were 

able to test culture responses to the hydrocarbon phenanthrene. Using concentrations of 0.5-50.0 

pM, there was no enzyme response to this hydrocarbon (data not shown). However, 

phenanthrene at higher concentrations produced a black material (“asphalting”) that coated the 

well and obscured CPE readings of the cultures and leaving us unable to verify cell viability.

Table 2.1 summarizes ANS oil doses per species and Figure 2.3 represents EROD 

response curve results for five target species (tufted puffin, common eider, common murre, 

greater white-fronted goose and Steller’s eider), and control species mallard, dosed with 0.5-20.0 

pL of neat ANS oil. These results show a low degree of variation in enzyme activity over the 

course of the EROD assay compared to the other testing reagents. This indicates maximum 

cellular activity was potentially reached at these ANS oil doses. Overall, 5.0 pL ANS oil had the 

highest enzyme response observed in all testing reagents. Comparing the estimated response 

curves, tufted puffin and common murre were the highest responders of the target species and 

control species, mallard also showed a high EROD response to 5.0 pL ANS oil. Greater white- 

fronted goose had the lowest estimated EROD response to 5.0 pL ANS oil. CPE results showed 

that common murre had a higher amount of non-viable cells (CPE score 3-4) than other species 

and common eiders had a larger amount of cellular vacuolarization for all dose concentrations 

(CPE score 1-3). In all species, ANS oil doses had more non-viable cells than other testing 

reagents, and in general, a more non-viable cells were observed at the higher ANS oil doses (e.g., 

Steller’s eider ANS oil 1.0 pL CPE score 0-2 and 10.0 pL CPE score 1-3). The only trends in 

slope of the response curves were for ANS oil grouping from neat doses: 0.5 pL, 1.0 pL and 10.0 

pL ANS oil had slight negative slopes and 5.0 pL a slight positive slope.

To further explore cellular responses to ANS oil, we dosed Steller’s eider cells with 1.0 

pL of different dilutions of ANS oil and carrier reagent DMSO (1 part ANS oil to 1 part DMSO 

up to 10 parts ANS oil and 1 part DMSO; Table 2.1 and Figure 2.4). Tufted puffin and mallards 

responses were also tested at the 1:1 dose. In Steller’s eiders the 1:1 ANS oil:DMSO dose had 

the lowest enzyme response, but the highest amount of cellular debris in the well (CPE score 2­

4). Cells were also classified as unknown viability due to morphological changes (i.e., cellular 

membranes had a faded appearance). It is likely this dose overwhelmed the cell culture, limiting 

enzyme response. Mallards had similar EROD activity to the 1:1 dose as Steller’s eiders while
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tufted puffins had a near double response to the dose. Both mallard and tufted puffin also had a 

high amount of cellular debris and similar visual morphological changes and possible reduced 

viability. Steller’s eiders EROD activity increased with increasing amounts of ANS oil, with the 

highest activity from 10:1 ANS oil:DMSO dose. The highest EROD responses to ANS 

oil:DMSO doses were still comparatively lower than doses that used neat ANS oil.

Table 2.1: Summary of chrysene, P-naphthoflavone (BNF), phenanthrene, and Alaska North 

Slope crude oil (ANS oil) test doses by reagent for each species including control species 

mallard.

Species chrysene BNF phenanthrene ANS oil (neat)
ANS oil: 
DMSO

black brant 1.0 pM — — — —

greater white- 
fronted goose

0.5, 1.0, 1.5, 
2.0, 5.0 pM

0.5, 1.0, 2.0, 
5.0 pM

1.0, 5.0, 10.0, 
50.0 pM

0.5, 1.0, 5.0, 
10.0, 20.0 pL ----

0.5, 1.0, 2.0, 0.5, 1.0, 2.0,
common eider 3.0, 5.0 pM 5.0 pM -— 1.0, 5.0, 10.0 pL -—

Steller’s eider
0.5, 1.0, 1.5, 

2.0, 3.0, 5.0 pM
0.5, 1.0, 2.0, 

5.0 pM
0.5, 1.0, 2.0, 5.0, 

10.0, 50.0 pM
0.5, 1.0, 5.0, 
10.0, 20.0 pL

1:1, 3:1, 
5:1, 10:1

spectacled eider 1.0, 1.5 pM -— -— -— -—

king eider 1.0 pM — ---- ---- ----

0.5, 1.0, 1.5, 0.5, 1.0, 2.0
long-tailed duck 2.0, 3.0, 5.0 pM pM -— -— -—

tufted puffin 0.5, 1.0, 2.0 pM
0.5, 1.0, 2.0 

pM ---- 1.0, 5.0 pL 1:1

horned puffin 1.0, 2.0, 5.0 pM -— -— -— -—

common murre 0.5, 1.0, 2.0 pM 1.0, 2.0 pM ---- 1.0, 5.0, 10.0 pL ----

mallard
0.5, 1.0, 1.5, 
2.0, 2.5, 3.0,

0.5, 1.0, 1.5, 
2.0, 2.5, 5.0,

(control) 5.0, 10.0 pM 10.0 pM 0.5, 1.0, 2.0 pM 1.0, 5.0, 10.0 pL 1:1
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Figure 2.1: EROD results of tested species to different concentrations of chrysene doses (pM). 

Assay time in minutes is on the x-axis and pmol/min/metabolic activity on the y-axis. Real data 

(individual cell culture wells) is represented in dots and the solid line is the estimated response 

trend over time. Species abbreviations: coei-common eider, comu-common eider, tupu-tufted 

puffin, gwfg-greater white-fronted goose, hopu-horned puffin, kiei-king eider, ltdu-long-tailed 

duck, mall-mallard, spei-spectacled eider, and stei-Steller’s eider.

46



Figure 2.2: EROD results of tested species to different amount to different concentrations of 

BNF doses (pM). Assay time in minutes is on the x-axis and pmol/min/metabolic activity on the 

y-axis. Real data (individual cell culture wells) is represented in dots and the solid line is the 

estimated response trend over time. Species abbreviations: coei-common eider, comu-common 

eider, tupu-tufted puffin, gwfg-greater white-fronted goose, ltdu-long-tailed duck, mall-mallard, 

and stei-Steller’s eider.
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Figure 2.3: EROD results of tested species to different amount of neat Alaska North Slope crude 

oil doses (pL). Assay time in minutes is on the x-axis and pmol/min/metabolic activity on the y- 

axis. Real data (individual cell culture wells) is represented in dots and the solid line is the 

estimated response trend over time, and the shaded area is the 95% confidence interval. Species 

abbreviations: coei-common eider, comu-common eider, gwfg-greater white-fronted goose, 

mall-mallard, stei-Steller’s eider, and tupu-tufted puffin.
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Figure 2.4: EROD results of tested species to Alaska North Slope crude oil (ANS oil) dissolved 

in carrier reagent dimethyl sulfoxide (DMSO) at 1:1, 3:1, 5:1 and 10:1 ANS oil:DMSO. Assay 

time in minutes is on the x-axis and pmol/min/metabolic activity on the y-axis. Real data 

(individual cell culture wells) is represented in dots and the solid line is the estimated response 

trend over time, and the shaded area is the 95% confidence interval. Species abbreviations: mall- 

mallard, stei-Steller’s eider, and tupu-tufted puffin.

2.5 Discussion

2.5.1 Cell culture

Overall, tested cells from all species responded similarly to extraction and culture 

protocols with the exception of common murre cells. These cells required extra washings with 

1X PBS 24 hours after seeding due to a large amount of red blood cells present on top of the 

culture. We had previously attempted to remove minimal red blood cell contamination with a 

Percoll/sucrose gradient step during hepatocyte extraction (Kennedy et al. 2003) for mallard but 

this method was unsuccessful. Future work with common murre cells could attempt this step if
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red blood cell contamination becomes problematic. During the last year of our study we were 

able to acquire greater white-fronted goose and common eider eggs from the wild. While we do 

not have data from hepatocytes sourced from captive eggs from these species for comparison, 

Head et al. (2006) suggested that environmental levels of CYP1A inducing chemicals in eggs 

generally would not be expected to impact the potency of testing compounds.

2.5.2 Sensitivity Comparisons

We established reference EROD activity response curves with estimated response trends 

over time for many of our target species to chrysene, BNF, and ANS oil. In summary, the most 

sensitive responder comparatively was common murre which exhibited consistently high 

responses at all tested doses. The other tested alcids, tufted puffin had high BNF and ANS oil 

responses and low responses to chrysene, while horned puffin was only tested with chrysene and 

showed low EROD activity. Among the sea ducks, common eider and Steller’s eider were the 

only sea duck species tested with all reagents. Common eiders responded high to our initial test 

dose of 1.0pM chrysene but had moderate enzyme response to BNF and ANS oil doses. Steller's 

eider responses varied depending on the testing reagent. Greater white-fronted geese had 

moderate to low sensitivity at all test doses. Additional testing is needed to fully assess long­

tailed duck, spectacled eider, king eider, and black brant sensitivities to CYP1A inducing 

compounds.

Head et al. (2015) identified Pekin duck, a domestic duck species, as a relatively 

insensitive species to 18 PAHs including chrysene and phenanthrene (Head et al. 2015). In our 

testing, mallard, another domestic duck, showed sensitive EROD responses to many of our test 

doses, although previous work in our laboratory (Hollmen et al. 2013) showed mallard as a 

comparatively low, insensitive, responder to chrysene and BNF doses. We identified the 

variability in mallard responses was likely due to changes in egg sources. Eggs from large 

commercial providers had EROD responses 2-3x higher (at the final time-point 180 minutes) 

than small scale local private breeders. The reason for the discrepancy between sources is 

unknown and warrants further investigation.

Phenanthrenes are a common component in weathered crude oil (Incardona et al. 2005, 

Short et al. 2008) and at low concentrations ranging from 10-60 pM (similar to doses we used)
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caused cardiac rhythm changes in zebrafish embryos (Danio rerio; Incardona et al. 2005). 

Phenanthrene dosed Steller’s eider, greater white-fronted goose, and mallard hepatocytes did not 

elicit an EROD response above the background similar to other studies. Phenanthrene 

consistently showed no EROD activity in dosed rat (Rattus sp.) hepatoma cells and rainbow trout 

(Oncorhynchus mykiss) hepatocytes (Bols et al. 1999, Bosveld et al. 2002). Additionally, 

phenanthrene produced no EROD response in Pekin duck, greater scaup, and chicken hepatocyte 

cultures (Head et al. 2015). We did note a black material (“asphalting”) that formed in cell 

culture wells at higher concentrations of phenanthrene preventing visual analysis of the culture 

and confirmation of cell viability. We are unsure of the mechanism that causes the formation of 

this material and if it could inhibit EROD activity.

Short et al. (2008) identified chrysene homologues as the primary source of CYP1A 

induction in Prince William Sound, AK (site of the Exxon Valdez oil spill) in a residual oil study 

using EROD responses from injected fish. While other PAHs were found in collected oil, they 

were less abundant, less potent, or both when compared to chrysene homologues. Chrysene, 

either alone or in a PAH mixture, can decrease embryo survival and cause growth retardation 

when applied to eggshells or injected into eggs (Hoffman and Gay 1981, Brunstrom et al. 1990). 

We found cellular changes at the highest tested concentrations of chrysene (>2.5 pM) which 

resulted in subsequent decrease in EROD activity. Several species (e.g., black brant, common 

eider and common murre) had comparatively high EROD responses to chrysene doses and in all 

species EROD activity decreased at the highest dose concentrations. The higher dose 

concentration likely killed cells or overwhelmed the cells’ capability to process the toxin 

resulting in lower EROD activity.

Cytopathic changes were also found in cells dosed with neat and DMSO diluted ANS oil. 

Additionally, the highest EROD responses, in all tested species, were observed with neat ANS 

oil doses. While the exact chemical composition of our sample of ANS oil is unknown, it is clear 

the compound mixture has a different impact on cellular EROD response than the individual 

testing reagents. It is likely the cumulative effect of several PAHs is causing the elevated enzyme 

activity.
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2.6 Conclusion

We provide the first reference EROD response curves for several arctic birds to 

individual PAHs and ANS oil. Based on our findings we suggest common murre and common 

eiders as sensitive responder candidate species for PAH monitoring programs. They both had 

moderate to high EROD responses to the suite of experimental doses. Additionally, as a sensitive 

alcid and sea duck EROD responders they add life history diversity and increase the amount of 

potential PAH exposure pathways to a monitoring program. Both common eider and common 

murre are widespread throughout Alaska (USFWS 2006, 2008) and common murre have shown 

they may be a sensitive indicator of ecosystem health after they experienced a large mortality 

event in response to prey availability changes (USGS 2016). While ideal bioindicators warn of 

environmental changes with a measurable, sub-lethal effect (Livingstone 1996), because of their 

consistently high EROD activity responses and presence throughout Alaskan waters, common 

murre are still a valuable option for PAH monitoring programs. However, our reference response 

curves also suggest that several species are possible candidate species, specifically the tufted 

puffin and promising sensitive EROD responders like black brant. As a group, arctic birds offer a 

wide diversity for PAH bioindicator species and selecting multiple species to monitor 

contaminants increases the likelihood an exposure event will be detected. Our EROD reference 

response curves provide valuable information about the sensitivity of this group to CYP1A 

induction from reference chemicals, PAHs in ANS oil, and ANS oil and this data will aid in the 

development of future monitoring plans.
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2.9 Appendix

Appendix 2

Laboratory Protocols for Harvesting Hepatocytes from Avian Sources, Media Recipes, Dosing 

Cell Cultures, Cytopathic Effects, and EROD Cell Culture Assay

Harvesting hepatocytes from avian sources

A. Egg maintenance

1. Before eggs arrive clean egg incubator by wiping all surfaces, internal and external, 

with ethanol (ETOH). Replace filter annually (filter is in a mesh holder above top egg 

tray). Refill reservoir with fresh distilled water (dH2O). Turn on incubator and make 

sure temperature and humidity are correct and hold over time. Settings on egg 

incubator should not need changing except for possible fine temperature adjusting. 

Egg incubator should be set at: 37.5°C, 50-60% humidity, trays roll every 1.5 hour for 

30 minutes, 2-30 minutes cooling periods at ~7 A.M. and ~5 P.M. (mimic incubation 

breaks).

2. Open egg-shipping boxes in cell culture lab and in biosafety hood when possible.

3. Brush fecal material off of eggs using kimwipe (don’t rub as it could get pushed into 

the egg). Dip eggs in room temperature 1X chlorohexidine solution and set on 

kimwipe in biosafety cabinet.

4. Label each egg using a pencil and record ID number in notebook. Put eggs in egg 

incubator finding eggs of similar size to match up and put “pointy” ends facing each 

other. If need to stagger incubation start dates, fresh eggs (a few days since laid), can 

be kept in the hood or on counter overnight propped up at a 45° angle. If longer than
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overnight needed, eggs must be manually turned 180° every ~12 hours to prevent 

yolk from sticking to the side of the shell.

5. Incubate eggs until day 10-15 (depending on species, type of cell harvesting, and 

embryo development). Livers of older embryos are not much bigger and you get more 

red blood cell contamination.

6. Candle eggs at day 7 and then every 3-4 days as needed. Remove eggs that are not 

fertile (no veins visible and light colored inside), that have died during incubation 

(dark with no veins), or are not needed for extraction by putting in the fridge for 24+ 

hours. All egg waste should be disposed of in biohazard waste containers.

B. Harvest of embryos and preparation of cell lines

1. Prepare necessary reagents and autoclave glassware and equipment (scissors, forceps, 

etc.) a few days before starting extraction procedure. Plastic handled knitting scissors 

(the best scissors to open eggs as they have a small sharp point) cannot be autoclaved 

but instead let sit in 95%+ ETOH before procedure. Medias can be used up to two 

weeks before they should be remade.

2. Record all pertinent information on cell preparation data sheet.

3. Pre-warm ~200 mL (stock bottle) collagen media at 37°C. Be careful not to overheat 

as this could damage the cells. Remove the bottle from the fridge in the morning and 

allow to come to room temperature, then 5-10 minutes before it is needed put it in a 

37°C water bath.

4. Keep pre-perfusion buffer II cool (leave in the fridge).

5. Place egg in cup or tray in biosafety cabinet, air cell side up, and swab with iodine 

solution. Rinse iodine off with 1X phosphate-buffered saline (PBS) and wipe dry with 

sterile gauze.

6. Pour cold 1X PBS (enough to cover the bottom) into a small Petri dish.

7. Get a large Petri dish, scissors, knitting scissors, scalpel, and tweezers ready.

8. Score, using scalpel, a circle around the air cell. The goal is to cut open right above 

the bottom of the air cell. Make sure the opening is big enough to remove embryo.

Use knitting scissors to cut top of egg open. Remove egg cap and discard.
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9. Find embryo and grasp with tweezers and immediately remove the head (leaving it in 

the egg) with sterile scissors. Be careful not to drop torso into egg as it can be 

difficult to find. Remove torso to large, dry Petri dish. You may also remove the 

entire embryo to the Petri dish before removing the head if it is easier for you. If the 

embryo looks morphologically abnormal do not use the liver.

10. Make a longitudinal cut through the breast area with sterile scalpel or scissors and 

remove viscera. Remove the liver, which will be the only brown organ and one of the 

biggest organs. Identify the gall bladder, which is attached to the liver and is a small, 

green dot. Use tweezers or a new scalpel to carefully remove the gall bladder. If the 

gall bladder breaks and contaminates the liver, the liver cannot be used for the EROD 

assay. Place liver in the small Petri dish with 1X PBS.

11. Livers can be pooled or kept separate at this point depending on need and number of 

embryos processed.

i. Pool up to 4 eggs (more can be pooled at later stage in protocol but add no 

more than 4 livers together for stirring step)

12. Pour or pipette off 1X PBS and wash liver surface with pre-perfusion buffer II (no 

specific amount, use enough to cover liver, ~10 mL).

13. Remove pre-perfusion buffer II and mince liver dry using sterile scissors or scalpels.

14. Add warm collagen media to minced liver and transfer liver pieces to a sterile 

trypsinizing flask, with a stir bar, for tissue digestion. Always make sure the stir bar is 

completely covered in media—better to use more media if unsure.

a. 3-4 embryos: 48 mL

b. 1-2 embryos: 32 mL

15. Stir flask gently at 37°C for 30 minutes on stir plate.

a. Stir plate setting: heat 1, stir 3

b. Rough stirring will damage cells

16. Turn on centrifuge to cool.

17. Stop the digestion with HI FBS (20%).

a. 3-4 embryos: 12 mL

b. 1-2 embryos: 8 mL
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18. Filter cell suspension over nylon mesh (100 pm) into a 50 mL centrifuge tube 

containing 5 mL pre-perfusion buffer II.

19. After filtering all cell material, wash mesh with 5 mL pre-perfusion buffer II. 

(Sometimes the volume is too large for one 50 mL tube. In that case split digested 

mixture into two falcon tubes each with 5 mL buffer and a 5 mL wash. Also, may 

need to use two filters).

20. Centrifuge the resulting single-cell suspension at 63g (~590 rpm) and 4°C for 5 

minutes.

21. Carefully remove the supernatant and discard.

22. Gently resuspend the cell pellet in 10 mL pre-perfusion buffer II. At this point if you 

had to use two 50 mL centrifuge tubes you can combine into one tube with 10 mL 

total volume.

i. Can also combine other cell pools at this point to create one homogeneous 

cell suspension

23. Centrifuge suspension at 110 g (~782 rpm) and 4°C for 5 minutes.

24. Carefully remove the supernatant and discard.

25. Resuspend the cell pellet in 2 mL low glucose media with antibiotics (A/B) and 20% 

HI FBS. The resulting cell suspension consists of liver and blood cells including 

erythrocytes. Let cells sit for ~5 minutes to resuspend before count.

26. Perform a cell count on the suspension first by combine 15 pL cell suspension and 60 

pL media. Add ~15 pL to 3-4 cell counting chamber wells and place under 

microscope. Cells will be very small and can be difficult to count. Focus up and down 

until cells are clear and some are darker (these are dead). Teardrop shaped cells or 

ones with two “pointy” ends are red blood cells, do not count these. Cells may be in 

clumps, do not count all cells in the clump as they are likely to die and will give you 

an over estimation on your count. Take average cell count between chamber wells 

and plug into the formula:

(average number of cells)(104)(5) = X cells/mL

If resuspended in 2 mL multiple final number by two for total cell count.

104=cell chamber number
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5=dilution factor

Dilute suspension if above target cell count.

C. Plating cells

1. Plate cells from the cell suspension: ~30,000 cells/well in a 96 well plate at 200 |iL 

total volume per well. Use low glucose DMEM:MEM with A/B and 20% HI FBS.

2. Plate cell for EROD assays in black walled plates with clear bottoms.

i. Make sure to leave three wells empty for media control

Avian Hepatocyte Culture Media 

Antibiotic mix (A/B)

20 mL nystatin

40 mL penicillin-streptomycin 

2.0 mL gentamycin 50 mg/mL

1. Combine the above ingredients to total 62 mL

2. Aliquot into 8 mL aliquots.

3. Freeze at -20°C until added into media.

Low glucose DMEM:MEM Media 

55.55 mL high glucose DMEM 

194.45 mL MEM 

4 mL A/B mix

2.5 mL L-glutamine 200 mM

Pre-Perfusion Buffer II (pH 7.4)

2 mL HEPES buffer 

1 mL 0.1 M EGTA

197 mL HBSS without CaCl, MgCl, and MgSO4 

Perfusion Medium II/Collagen Media 

475 mL MEM 

25 mL trypsin 2.5%
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192 mL collagenase type IV

1 M NaOH

Bring 5 g NaOH up to 125 mL in dH20

0.1 M EGTA

1.9 g EGTA 

50 mL 1 M NaOH

Dosing hepatocyte cultures

1. Grow cells 24 hours.

a. Check cell culture my microscopy

i. Cells should be attached over 50-100% of the dish surface area and 

creating colonies. Do not use cells if they look abnormal.

2. Change media after 24 hours.

a. Either before dosing or continuing to let cells grow 24 hours longer

b. Remove old media

c. Gently wash cells with 1X PBS

i. Add ~300 |iL 1X PBS to the well, pipette it off, and repeat 2-3 times.

d. For cultures continuing to grow add 200 |iL low glucose media with 20% FBS 

and A/B

e. For cultures to be immediately dosed add 100 |iL low glucose media without FBS 

to all wells.

3. Doses.

a. Cell only: 100 |iL media

b. Media only: 100 |iL media

c. Vortex chemical doses well before adding to wells

d. DMSO control (chrysene carrier solvent control): 4 |iL to well of 1:3 DMSO: 

media stock

e. Chrysene example: 1.0 |iMm=4 |iL to well of 25 |iM stock
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f. ETOH control (BNF and phenanthrene carrier solvent control): 2 pL of 1:1 

ETHO: media stock

g. BNF example: 1.0 pM=2 pL to well of 50 pM stock.

h. Phenanthrene example: 1 pM=2 pL to well of 50 pM stock

i. AK North Slope crude oil is used straight

Cytopathic Effects (CPE) protocol

1. After dose exposure (typically 24 hours) evaluate culture using microscopy.

a. general cell morphology and cytopathic effects (CPE)

2. Characterize and describe types of CPE observed.

a. CPE should be read by a qualified person familiar with the cell type as changes 

can be subtle.

3. Score on a semiquantitative response scale from 0-4 (0=none to 4=100 % effect) for a 

suite of CPE responses.

a. e.g., vacuolarization, cytoplasmic swelling, granularization, non-viability, 

cellular debris, and other abnormalities

Protocol for 96-well plate cell culture EROD assay

1. Turn on Spectramax Gemini plate reader and laptop (runs at ambient temp).

2. Set up experiment to read at 530-590 nm (excitation/emission); read for 3 hours every 15 

minutes.

3. Mix 5 mL 6 pM 7-ER stock, place on ice.

a. Mix 300 pL 100 uM 7-ethoxyresorufin (7-ER; in -80 in aliquots of 1 mL or 2 mL; 

is yellow and stored in methanol so does not freeze) to 4.7 mL NaPO4 buffer (in 

fridge) in a glass beaker or flask. Vortex slightly to mix. Mixture should be a 

peach color, if it is pink toss and remake.

b. Always use freshly made 6 pM 7-ER stock

4. Add 1.5 mL NaPO4 buffer to one 10 mg vial NADPH (two vials is enough for three 

plates); mix very well on vortexer.

a. Always use freshly made NADPH
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5. Load 25 pL of 6 pM 7-ER to plates using multiwell pipettor. Toss extra mixture.

6. Confirm plate reader is ready to go.

7. Add 10 pL NADPH per well using multiwell pipettor. Toss extra mixture.

a. At this point the reaction starts

8. Quickly replace cover, place in plate reader drawer and immediately hit “read”. Plate will 

shake for 5 seconds before reading.

9. Once reader data appears start timer for the 15 minutes break period. Once timer rings hit 

read. Repeat every 15 minutes for 3 hours.

10. You can read more than one plate at a time. Read second plate immediately after first 

plate is done. Make sure to note/label which plate reads belongs to which cell culture 

plate (e.g., odd number reads to cell plate one and even number reads to cell plate two)

11. If whole plate or several wells read as “saturated” pull off 100 pL and add it to a new 

black plate. Add 100 pL NaPO4 to original plate and 100 pL to new plate with the 100 

pL pulled off solution. Read both plates.

12. Once reads are complete copy data into Excel and calculate mean, standard deviation, and 

standard error for each dose at each time-point.
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Conclusion

This study is the first to report reference levels of CYP1A activity and assess 

hydrocarbon sensitivity for arctic birds to provide information prior to projected enhanced oil 

and gas resource development and vessel traffic in the Alaska Arctic. I measured CYP1A 

induction using EROD activity and validated opportunistic collection protocols for CYP1A 

analysis in three arctic bird species. I also compared species-specific EROD responses as a 

measure of sensitivity to PAHs and ANS oil in primary hepatocyte cultures for ten species of 

arctic birds found in the Beaufort and Chukchi seas. Based on results from field and laboratory 

sample analysis, I made recommendations for PAH bioindicator species.

In Chapter 1 I provided methods for collecting and sampling livers for greater white- 

fronted geese, common eider, and king eider from hunter-killed birds. I measured EROD activity 

in liver samples frozen at varying lengths postmortem to evaluate enzyme degradation and 

explore if the recommended sample collection window (with-in 10 minutes postmortem) could 

be expanded to facilitate field logistics including opportunistic collections. Enzyme results 

indicated a high degree of individual variability leading to a recommendation to maintain the 

currently used 10 minute postmortem collection window for consistency. I found that 

opportunistic sampling in the 10 minute window may be challenging, but it can be a feasible 

option when working in partnership with a subsistence hunter. There may be good opportunities 

for opportunistic collections of king eider and common eider near Utqiagvik, AK during both 

spring and fall. At spring whaling camps eiders are hunted from the ice edge and during fall 

many hunters gather in a small area near town. Spring hunts, near Utqiagvik and at remote field 

camps, are potentially the only time to acquire greater white-fronted geese opportunistic samples 

since most hunters prefer to target eiders during fall hunts.

Additionally, in Chapter 1 I measured CYP1A induction, using EROD activity, for 

greater white-fronted geese, common eiders, and king eiders sampled over three years near 

Utqiagvik. While the majority of the results were within EROD activity ranges previously 

reported for sea ducks in un-oiled or non-industrialized habitats in Alaska, fall 2014 birds had 

high enzyme activity. All three species had significantly higher EROD activity in fall of 2014 

when compared to samples collected in all other collection periods. The method of exposure and
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toxin causing the elevated activity are unknown but the birds likely were exposed while on the 

North Slope since at the time of sampling they had been in the area for several months. Knowing 

the CYP1A half-life in birds (discussed in more detail below) would help narrow identification 

of potential exposure windows. EROD results for spring greater white-fronted geese also 

detected potential exposure in some individual geese. This may be residual enzyme activity from 

previous exposure or could indicate individual variation in CYP1A induction due to genetic 

polymorphisms in CYP1A coding genes (Courtenay at al. 1994).

Future work should involve further investigations into the cause of elevated EROD 

activity in fall 2014. Archived liver and kidney samples could be used in toxicology testing to 

directly identify which CYP1A inducing contaminant is causing the high response and if it is the 

same toxin among species. Since elevated EROD activity only indicates exposure, additional 

biomarkers, besides evaluating body condition postmortem, could be used to gain further insight 

into the health of the birds. For example, abnormalities in histopathology tissues could be 

compared to EROD activity levels to assess if they correlate with high enzyme response.

Sex hormones could also be investigated to see if they play a role in EROD activity 

between sexes and season. For analysis in Chapter 1, I combined all sampled birds of a species 

together by season due to small sample sizes in some sampling periods. Esler et al. (2010) found 

sex, in addition to age and body mass, of harlequin ducks had no influence on EROD activity in 

liver biopsies from oiled and un-oiled habitats for birds sampled in winter (March, April, and 

November). Limited research has investigated the role of sex hormones and PAH exposure in 

wildlife, with most of the research on fish. Navas and Segner (2001) found that while EROD 

activity decreased with increasing female sex hormone 17P-estradiol (E2), when rainbow trout 

(Oncorhynchus mykiss) hepatocyte cultures were exposed to CYP1A inducer BNF, EROD 

activity didn’t change with the addition of E2.

Chapter 2 details primary hepatocyte culture methods and hydrocarbon EROD sensitivity 

results for ten arctic bird species: Steller’s eider, spectacled eider, common eider, king eider, 

long-tailed duck, greater white-fronted goose, black brant, common murre, tufted puffin and 

horned puffin. Using eggs from captive and wild sources, I dosed hepatocyte cultures with single 

hydrocarbons and ANS oil, measured EROD activity, and noted cytopathic effects. Cellular 

morphological changes were found at the highest doses of chrysene (>2.5 pM) and doses with
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neat and DMSO diluted ANS oil. I identified common murre as the most sensitive responder 

within the tested species based on comparatively high EROD activity to test doses. Several other 

species such as long-tailed duck, tufted puffin, and common eider had moderate or high enzyme 

activity responses. Greater white-fronted geese had low EROD responses and Steller’s eiders’ 

EROD responses were variable. I was not able to acquire enough cell culture material to do the 

full dosing regimen on black brant, spectacled eider, king eider, and horned puffin and these 

species require further EROD testing to fully assess their hydrocarbon sensitivity. Based on the 

hepatocyte culture results in Chapter 2, I recommend the most sensitive alcid, common murre, 

and the most sensitive sea duck, common eider, as potential bioindicator species for hydrocarbon 

monitoring. However, several tested species are promising PAH bioindicators (e.g., tufted 

puffin). Common eider and common murre differences in life histories (e.g., nesting locations) 

and foraging strategies (piscivorous vs. benthic) allows for monitoring of different PAH 

exposure pathways and increases the chances an exposure event will captured.

Greater white-fronted geese had the highest EROD activity reported from field liver 

collections but it was one of the least sensitive hepatocyte EROD responders comparatively to 

our other tested species. There could be several reasons for this discrepancy. First, greater white- 

fronted geese may have been exposed to a CYP1A inducing toxin that was not part of our cell 

culture testing. As mentioned previously, direct contaminant measurement from archived liver 

samples will help answer this question. The birds could have been exposed to different 

concentrations of PAH(s) than were used in culture dosing. However, greater white-fronted 

geese, along with all other tested species, showed lower EROD responses as concentrations of 

chrysene and ANS oil increased. Also, wild birds are under additional physiological stressors, 

not reflected in a cell culture, which could cause a different EROD response. While the greater 

white-fronted geese in this study appeared healthy on postmortem examination, without 

additional biomarkers it is unknown if there was some underling health condition.

The results from hepatocyte EROD sensitivity testing could also be applied to monitoring 

birds on wintering grounds and along migration routes, in addition to the Beaufort and Chukchi 

sea regions. Many of the species tested in this study winter in areas with industrial activities, for 

example, Miles et al. (2007) showed elevated EROD activity in Steller’s eiders wintering near 

industrialized sea ports. Traditional sampling methods, e.g., direct-take or non-lethal surgery,
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would need to be employed to get liver samples from species outside of subsistence hunting 

seasons or for species not targeted by hunters. Monitoring throughout the year could help 

identify if birds have chronic or acute exposure to CYP1A inducing compounds over the course 

of their annual cycle.

Future marine bird and waterfowl CYP1A monitoring programs and studies would 

benefit from knowledge about the half-life of the CYP1A enzyme. This information could help 

identify if exposure was chronic or acute, potentially where or when exposure occurred, and 

influence timing of field sampling. Studies mentioned in Chapter 1 found the CYP1A half-life in 

rats (Rattus sp.) to be ~19 hours (Chen et al. 2010) and CYP1A activity continued for 4-10 days 

after toxin exposure ceased in fish (Kloepper-Sams 1989, Fragoso et al. 1998). My hepatocyte 

culture data showed the arctic birds I tested had different enzyme responses to dosing reagents 

(Chapter 2) leading me to suspect CYP1A half-life may also change with different species. Since 

I used primary hepatocyte culture, cells start to naturally die 3-4 days after harvest limiting the 

inferences I can make about CYP1A activity beyond the life of the culture. I did complete three 

replicates of a 1.0 gM chrysene dose exposure experiment with Steller’s eider cells recording 

EROD activity at 12, 24, and 36 hours post-dose (Appendix Figure A-1). In general, the highest 

enzyme activity response was at 12 hours with the lowest responses at 36 hours with similar CPE 

over the course of the experiment. This may indicate a half-life of <24 hours but caution should 

be used when interpreting these results since cells were dosed with one PAH at one 

concentration. It would be beneficial to repeat this experiment with other species, such as the 

common murre, that are more sensitive than the Steller’s eider, with more reagents, including 

ANS oil, and at various concentrations. Future hepatocyte culture work could also determine 

EROD responses by increasing EROD assay time to capture enzyme activity decreases. I 

measured cellular activity for 3 hours, but EROD activity rarely declined during that time.

Lastly, the use of species-specific immortalized cell lines may be another cell culture tool to 

investigate longer time frames of dose exposure and repeated dose exposure and subsequent 

EROD responses that can’t be investigated within the limited time frame that primary cell culture 

provides.

Combining results from field collection and hepatocyte culture sensitivity data, multiple 

species can be considered for future monitoring programs. Since species move in and out of
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different areas of the Beaufort and Chukchi seas at different times, use of multiple species in a 

monitoring program increases the chance that a selected PAH bioindicator species would be in 

the area of an accidental oil release event. Common eider had moderate to high responses to 

hepatocyte culture testing reagents and it is a species often targeted by subsistence hunters. 

Opportunistic collections from common eiders could be collected seasonally with arrival onto the 

North Slope in spring and departure after breeding in the fall. Additionally, due to their wide 

range throughout Alaska and the Arctic, they represent a potentially useful bioindicator for many 

areas. While I was unable to complete the entire cell culture testing regime for king eider, and 

despite the fact that the species showed low responses to chrysene, field CYP1A results showed 

significant differences between fall 2014 and fall 2015. Reasons for this may be similar to those 

discussed in the previous paragraph for greater white-fronted geese. Additional EROD 

hepatocyte culture testing, including ANS oil, would offer more insight into king eider 

sensitivity responses. Since king eiders are one of the most commonly hunted bird in the Arctic, 

the chance to obtain samples through opportunistic sampling is greater and it also should be 

considered a species to include in monitoring programs. Adding black brant, a marine associated 

goose, to a monitoring program would provide further foraging and habitat use diversity and 

additional exposure pathways. Black brant are a promising indicator species because they are 

already targeted by subsistence hunters and the limited testing I was able to complete on them 

(1.0 pM chrysene) showed a high EROD response. Further cell culture testing is necessary 

confirm they have a consistent and measureable EROD responses to our testing reagents.

Similar to the common eider, common murre are abundant throughout many coastal areas 

in Alaska. Common murre was comparatively the most sensitive responder to hepatocyte culture 

dosing of the species tested for this project. While they are not often hunted by subsistence 

hunters in the North Slope area, they are hunted for meat and eggs further south on St. Lawrence 

Island in the Bering Sea (USFWS 2006). Recently, common murre have shown they may be a 

sensitive indicator of ecosystem health when they experienced a large mortality event in winter 

2015-2016, potentially due to warmer ocean temperatures and subsequent changes in prey 

availability (USGS 2016). While ideal bioindicators warn of environmental changes with a 

measurable, sub-lethal effect (Livingstone 1996), because of their wide range and high EROD 

activity responses common murre are still a valuable option for PAH monitoring programs.
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Future Arctic PAH monitoring programs should include sampling: 1) male and female 

birds 2) adult and juvenile birds 3) spring (pre-breeding) and fall (post-breeding) 4) multiple 

species. Sample sizes should be large enough to determine if sex/age are influencing EROD 

activity. Programs should include several bioindicator species, using recommendations from our 

field and laboratory EROD results, to represent species diversity and coverage in time and space 

in the Beaufort and Chukchi seas region. Opportunistic sampling is a viable option for CYP1A 

monitoring depending on selected species. Besides seasonal Arctic sampling, as discussed 

previously expansion to wintering grounds and migration routes would also benefit a PAH 

monitoring program. When possible, additional liver or kidney tissues should be archived for 

toxicology testing should elevated EROD activities be detected. Lastly, because elevated EROD 

activity doesn’t directly indicate toxic effects (Lee and Anderson 2005), inclusion of health 

assessments and biomarkers are essential to determine if PAH exposure is impacting the birds’ 

health.

In summary, using both EROD activity levels in wild birds and hepatocyte culture 

sensitivity assessments are valuable tools for measuring and understanding CYP1A responses in 

arctic birds. The EROD activity results provide valuable reference information for assessing 

potential future exposure, and field methods validated in this study assist in future collections of 

opportunistic liver samples from subsistence hunters. Additionally, this study contributes to the 

design of future monitoring programs by providing information about the sensitivity of a suite of 

arctic species to CYP1A induction to compounds found in crude oil and crude oil. Lastly, the 

arctic birds studied in this thesis represent a variety of life histories and thus possible 

hydrocarbon exposure pathways, providing a wide scope of potential bioindicators species that 

could be used in monitoring plans.
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Appendix

Figure A-1: EROD responses with standard error in Steller’s eider to 1.0 gM chrysene with 12, 

24, and 36 hour dose exposure. Each of three replicates (#1, #2, #3) is labeled next to the 

exposure time.
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