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Abstract

Sensor errors cost the mining industry millions of dollars in losses each year. Unlike gross 

errors, “calibration errors” are subtle, develop over time, and are difficult to identify. Economic 

losses start accumulating even when errors are small. Therefore, the aim of this research was to 

develop methods to identify calibration errors well before they become obvious. The goal in this 

research was to detect errors at a bias as low as 2% in magnitude. The innovative strategy 

developed relied on relationships between a variety of sensors to detect when a given sensor started 

to stray. Sensors in a carbon stripping circuit at a gold processing facility (Pogo Mine) in Alaska 

were chosen for the study.

The results from the initial application of classical statistical methods like correlation, 

aggregation and principal component analysis (PCA), and the signal processing methods (FFT), 

to find bias (±10%) in “feed” sensor data from a semi-autogenous (SAG) grinding mill operation 

(Fort Knox mine, Alaska) were not promising due to the non-linear and non-stationary nature of 

the process characteristics. Therefore, those techniques were replaced with some innovative data 

mining techniques when the focus shifted to Pogo Mine, where the task was to detect calibration 

errors in strip vessel temperature sensors in the carbon stripping circuit. The new techniques used 

data from two strip vessel temperature sensors (S1 and S2), four heat exchanger related 

temperature sensors (H1 through H4), barren flow sensor (BARNFL) and a glycol flow sensor 

(GLYFL). These eight sensors were deemed to be part of the same process. To detect when the 

calibration of one of the strip vessel temperature sensors, S1, started to stray, tests were designed 

to detect changes in relationship between the eight temperature sensors. Data was filtered 

(“threshold”) based on process characteristics prior to being used in tests. The tests combined basic 

concepts such as moving windows of time, ratios (ratio of one sensor data to data from a set of
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sensors), tracking of maximum values, etc. Error was triggered when certain rules were violated. 

A 2% error was randomly introduced into one of the two strip vessel temperature data streams to 

simulate calibration errors. Some tests were less effective than others at detecting the simulated 

errors. The tests that used GLYFL and BARNFL were not very effective. On the other hand, the 

tests that used total “Heat” of all the heat exchanger sensors were very effective. When the tests 

were administered together (“Combined test”), they have a high success rate (95%) in terms of 

True alarms, i.e., tests detecting bias after it is introduced. In those True alarms, for 75% of the 

cases, the introduction of the error was detected within 39.5 days. A -2% random error was 

detected with a similar success rate.
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Chapter 1: Introduction

1.1 Background

The use of sensors to monitor industrial processes has become increasingly prevalent over the 

past few decades, and the mining industry is no exception. Sensors play a vital role in monitoring 

various process parameters, such as temperature, pressure, and weight in almost every industry in 

United States. The 21st century has witnessed the widespread use of sensors in all sectors of the 

mining industry, from drilling operations to mineral processing and recovery operations. The 

mining industry was quick to adapt sensor usage for its economic benefit. A recent study suggests 

that sensor usage in various stages of mining (for a moderately sized mine) can yield up to $10­

100 million per annum in added economic value (Buxton and Benndorf, 2013). Unfortunately, the 

opposite effect is true when sensors suffer from faults and provide erroneous data. According to 

one author, sensor faults are causing approximately 3-8% of production loss to US oil industry, 

ultimately leading to $20 billion in annual losses to the US economy (Wang et al., 2009). Plant 

instrumentation, which includes sensors, is not inexpensive; to replace instrumentation frequently 

is not a viable option. It is estimated that instrumentation costs alone comprise 2-8% of the total 

fixed costs associated with any process plant (Narasimhan and Jordache, 2000). Moreover, 

frequent maintenance and sensor calibrations result in process disruptions leading to production 

losses totaling in the millions. In some cases, these errors can cause unsafe conditions where 

maintaining the industrial environment at certain limits is essential; an example is carbon 

monoxide (CO) monitoring systems in underground mines.

Identifying the sensor faults and fixing them through periodically scheduled (or optimally 

scheduled) calibration processes can dramatically improve the sensors’ accuracy. Such processes

can reduce equipment downtimes, increase production, and improve overall safety in the industry.

1



While the common types of faults or “gross errors,” such as noise, failures (flat-outs), stuck-at- 

faults, can easily be detected and fixed through preventive or scheduled maintenance, “calibration” 

related errors are difficult to impossible to identify. Unlike gross faults—which are obvious due to 

their high magnitudes—these kinds of faults/errors are indistinguishable if the process is 

particularly non-linear or non-stationary. These insidious errors can, over time, cause significant 

losses to industrial operators. Calibration errors are often present in the data mimicking the form 

of “an added offset value (bias),” to the original (true) reading.

1.1.1 O rganization  of the D issertation

The following is a brief description of the organization of this dissertation. The titles of the 

chapters given here are concise versions of the actual ones. Each of these chapters are in the form 

of manuscript format outlined in the University of Alaska Fairbanks Graduate School’s “Thesis 

Formatting Handbook” (UAF, 2017), however, for the preparation of individual chapters, the style 

guide of Mining Engineering Journal, an international peer reviewed publication of Society for 

Mining, Metallurgy and Exploration, Inc. was followed (SME, 2017). Each chapter is prepared as 

a standalone paper that is publishable in the near future; with some editing to meet the specific 

requirements of the journal. Due to the reason, the reader should notice that certain sections or text 

were repeated among the chapters.

Chapter 1: Introduction

A general introduction to all the major topics presented in Chapters 2 through 5.

Chapter 2: Statistical Methods in Error Detection
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Review of various statistical methods and their application in finding sensor errors with a case 

study on bias detection in Fort Knox SAG mill circuit sensors.

Chapter 3: Signal Processing Methods in Error Detection

Review of signal processing methods and their application in finding calibration errors with 

a case study focused on bias detection using Fast Fourier Transform (FFT) in Pogo stripping circuit 

sensors.

Chapter 4: Peak-Readings Count and Sensitivity Analysis (PRCSA) in the Detection of Calibration 

Errors

Review of various innovative methods developed and their application in finding calibration 

errors with a case study focused on bias detection with PRCSA in Pogo stripping circuit sensors.

Chapter 5: Multiple Ratio Function Analysis with Automation (MRFAA) in the Detection of 

Calibration Errors

Review of various innovative methods developed and their application in finding calibration 

errors with a case study focused on bias detection with multiple ratio function analysis (MRFA), 

and MRFA with automation (MRFAA); study conducted on Pogo stripping circuit sensors.

1.1.2 O bjective o f the W ork

This research is intended to tackle the problem of “sensor calibration errors or faults,” 

specifically “bias,” in an industrial setting. The ultimate objective is to find practical solutions 

through innovative methods to identify such errors based on exploitation of sensor interrelations 

in a multi-sensor environment—without causing disruption to the industrial process itself.
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1.1.3 Problem  Statem ent

Sensors play a crucial role in monitoring and controlling various operations in mineral 

processing circuits. Accurate measurements of various physical and chemical parameters at each 

stage of processing are essential to achieve “overall system optimization.” Sensor errors of high 

magnitude like noise, short faults, and failures, are called “gross errors,” while those of lower 

magnitude that gradually develop are called calibration errors. The presence of these errors can 

cause disruption to the optimum state of the plant operation. This results in poor metal recoveries 

and high instrumentation costs. Gross errors can be mitigated through “calibration” process, 

however, errors caused by gradual calibration loss overtime are difficult to identify and require 

great deal of attention. The model building process for error identification in multi-sensor 

environments is challenging because multidimensionality of the inter-sensor relationships adds 

more complexity to the process. The goal of this research is to find innovative methods to 

recognize calibration faults, specifically bias, in a multi-sensor environment. Mineral processing 

is a nonlinear and non-stationary process, which adds to the complexity. Therefore, use of classical 

statistical methods might be disadvantageous. Exploitation of the sensor interrelations is the better 

choice in this context. For instance, there can be a particular “ratio” that can exist between sensor 

readings, and it can exhibit patterns. By capturing these “ratio statistics” for sensors in an error- 

free state, it may be possible to identify sensors with bias. Developing innovative methods and 

algorithms to identify bias in a non-invasive way is highly desired by the industries.

1.1.4 Scope o f the R esearch

The focus of the research is limited to the detection of “calibration errors.” These errors are

relatively difficult to isolate in comparison to other types of errors. The research depends chiefly

on inter-sensor relations and statistics. The scope and perspective does not include the examination
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of sensor hardware problems. While sensors in mineral processing circuits are examined, other 

industrial circuits are beyond the scope, however, the findings are generalizable or scalable to any 

other industrial process due to the similarities of industrial sensor networks. Few sensors in a 

moderately sized mineral processing circuit (carbon stripping circuit) are exploited for this 

research. While the findings can always be scaled up for any industrial circuits in the future, larger 

circuits (with hundreds of sensors) are beyond the scope of the work due to the higher dimensional 

complexity. Gross errors, which have been explored thoroughly by numerous researchers, are not 

included in this research.

1.1.5 C hallenges

Sensor interrelations and statistics are multi-dimensional. Exploiting or capturing inter-sensor 

data statistics in huge circuits (with hundreds of sensors) is an immense challenge. For the purpose 

of the research, a circuit with eight sensors was examined. The ability to locate errors in real time, 

in a time span of hours or days, is beneficial for the mining industry, however, this is a huge 

challenge, due to the insidious and subtle nature of calibration errors. Moreover, these subtle 

changes are merely process fluctuations. To develop statistics sensitive enough to observe and 

quantify such minute data changes (± 2% of true reading in the case of calibration errors) that are 

otherwise caused by industrial processes is a difficult task. For instance, in mineral processing 

circuits, process parameters change frequently to cope with changing ore types and other input 

parameters. Mill operators (or automated control systems) must make sudden changes to process 

variables to cope with the incoming ore types and to achieve maximum recoveries. The data 

analysis algorithms developed for the research should be robust to these “operator-induced” 

changes and still be able to detect “calibration errors.”
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1.2 Literature Review

The literature review presented in this section can be viewed as an overview for the rest of the 

chapters in the dissertation. An extensive and topic specific literature review can be found in each 

individual chapter.

1.2.1 F u nctionality  o f Sensors

According to the Institute of Electrical and Electronics Engineers (IEEE), a sensor is an 

electronic device that produces electrical, optical, or digital data (a signal) from a physical 

condition or event like pressure, temperature, flow, etc. (Institute of Electrical and Electronics 

Engineers, 2017). For example, a temperature sensor observes temperature and produces output— 

with the help of another device—in the form of a reading (°F). A typical car coolant temperature 

sensor and the thermocouple mechanism is shown in Figure 1.1, along with an industrial grade 

thermocouple sensor (inset) that can measure temperatures up to 2282°F (1250°C). A level sensor 

from Pogo flotation circuit is shown in Figure 1.2.

Source: Adapted from Kalwinder, 2017; Process Parameters Ltd, 2017. 

Figure 1.1: A car coolant temperature sensor mechanism, and an industrial 

grade thermocouple sensor (inset).
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Figure 1.2: A level sensor from Pogo flotation circuit.

1.2.2 A ccuracy o f a Sensor and R ole o f C alibration

Data quality plays an important role in the decision-making process for industries. The data 

quality must be known and well established beyond a reasonable doubt before it can be utilized. 

The closeness of a measured value to the true value is called accuracy. Accuracy is the most 

desirable requirement for any measurements (National Institute of Instrumentation Standards, 

2017a). In metrology, calibration is the process of comparing measurements to that of calibration 

standards established by concerned national bureaus; in the United States, this bureau is the 

National Institute of Instrumentation Standards (NIST). Calibration plays a vital role in 

maintaining the accuracy of a sensor. Overall accuracy of a sensor is the sum of the manufacturer’s 

end-to-end (ETE) accuracy, calibrating instrument accuracy and calibrating tolerance, added to the 

actual reading (Figure 1.3).
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Source: Adapted from Stum, 2006.

Figure 1.3: Overall accuracy of a sensor.

It is important to realize that manufacturer’s ETE accuracy of a sensor is limited to the sensor 

itself and is not for the transducer or other supporting gadgets involved (Stum, 2006). This may 

change the overall accuracy of the sensor. For the above reasons, sensors in the industrial circuits 

are periodically checked and calibrated, however, errors that develop between the scheduled 

periods of calibration are of concern because they can result in significant production losses.

1.2.3 C lassification  o f Sensor Faults

Fault categorization or classification helps to escalate the sensor fault detection process. They 

can be classified into two major categories: discontinuous, such as malfunctions and random faults, 

and continuous, such as biases and drifts. Bias can be a positive or negative offset to the sensor’s 

true reading (Baljak et al., 2012). Sensor faults are typically caused by hardware problems like 

damage, short-circuits, low battery, or are otherwise calibration related (Sharma et al., 2010). The 

faults also can result from the software errors. Depending on their type, sensor faults can also be 

classified as noise-related, short faults, constant or stuck-at faults, and calibration-related (Fang 

and Dobson, 2011). A constant and a short fault are shown in Figure 1.4.
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Source: Adapted from Sharma et al., 2010.

Figure 1.4: A constant and short faults.

1.2.4 Sensor Faults and Im pact on O perating Costs

This section reviews the impact of sensors on operating costs in terms of economic losses.

Several researchers have attempted to quantify the impact of sensor faults in economic terms. For

instance, Wang et al. (2009) discussed the direct and indirect losses that can be caused by sensor

faults. The authors describe the heavy losses sustained at a Beijing based chemical plant in 1997

and attribute the losses incurred to sensor faults. An ethane device exploded at the plant and the

losses totaled one billion Yuans (Quan-Bo and Cheng-Lin, 2006). While discussing the importance

of data reconciliation and gross error detection methods, Narasimhan and Jordache (2000),

describe the impact of sensor faults on overall instrumentation costs of a mineral processing plant.

Instrumentation costs comprise of 2-8% of the total fixed costs of any process plant (Narasimhan

and Jordache, 2000). Narasimhan and Rengaswamy (2017) attempted to quantify the annual value

gained by identifying and fixing the sensor faults in a continuous stirred-tank reactor (CSTR)

network. They found that “gross errors” can lead to the loss of resolution property for the
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corresponding sensor network. The value of detecting these faults can be quantified through the 

overall loss that one will incur due to the loss in resolution property (Narasimhan and 

Rengaswamy, 2017). Conversely, another author noted that sensor “biases” in non-control 

variables are related to the loss incurred through loss of precision (Bagajewicz et al., 2004). This 

was a study aimed at quantifying the economic value of using a data reconciliation package to 

correct the faulty sensor readings. Studying a crude distillation unit, the authors found that the 

existing faulty sensors were causing $7.36 million in losses. It was also found that, by using data 

reconciliation methods, the loss could be reduced to $7.12 million.

1.2.5 Fault D etection: S tatistica l M ethods

Various statistical methods used in sensor fault detection are widely described by Sharma et 

al. (2010). Some of the methods briefly described are as follows. “Rule-based” methods use 

domain knowledge to develop heuristic rules for identifying faults. These are generally highly 

accurate methods, but the choice of heuristics can affect the results. “Estimation based” methods 

depend upon inter-sensor correlations, whereas linear “Least-squares estimation” (LLSE) 

techniques are used to flag faulty readings in sensor networks; however, these techniques are 

disadvantageous for classifying fault types. “Time series analysis” based methods are capable of 

finding short duration faults but prove disadvantageous to find long duration faults like noise. For 

sensor readings that do not exhibit periodicity, the auto regressive moving average (ARIMA) 

methods proves to be a better option. “Learning based” methods infer the normal sensor readings 

from the training data set to identify classes of faults in the test or prediction data set. Neural 

networks are an example of learning based methods; however, with neural nets training is time 

consuming. Contrary to the mainstream statistical models or classical, descriptive and inferential 

statistics, “Bayesian statistics” use prior knowledge. “Data Reconciliation” methods involve
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adjusting the data according to conservation laws and other constraints. For data sets that follow 

particular statistical distribution, parametric methods are used; example: linear regression. For data 

sets that does not follow any distribution, non-parametric or distribution-free statistics are used; 

Examples: bagging and boosting. For non-linear and non-stationary processes data-mining 

techniques are very popular. These are generally used for extracting knowledge from huge data 

sets. “Heuristics” involve the theory and practical application of techniques for solving problems 

approximately that cannot be solved exactly (Journal of Heuristics, 2017). Hybrid methods employ 

any combination of the above techniques to achieve the task. Calibration errors are one exception 

that are hard to detect with the above methods. Without the availability of ground truth values, 

calibration errors become difficult to identify and even rectify. Compared to classical/parametric 

methods, data-mining based innovative methods seem to be the better choice to find calibration 

errors like bias in large industrial sensor data sets.

1.2.6 Fault D etection: Signal P rocessing  M ethods

A “signal” in communication systems is something that conveys information about the 

behavior or attributes of some phenomenon. Some examples are sound, video, and picture. An 

analog signal is a continuous signal, whereas digital signal is constructed from the discrete set of 

waveforms to represent the signal. An analog can be converted to digital using a converter (ADC). 

A signal is generally associated with noise. When the noise is filtered using digital “filters,” it is 

easier to study the signal. A signal can be studied by plotting its behavior against time (time 

domain), or against frequency, called frequency domain (Figure 1.5). Fast Fourier Transform 

(FFT) is a numerical algorithm that is used to convert a signal in time domain to frequency domain, 

or vice versa.
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Source: Adapted from National Institute of Instrumentation Standards, 2017b.

Figure 1.5: Time domain vs frequency domain.

Digital signal processing (DSP) has many applications in different industries; space, medical, 

and military are some of them. Digital filtering, spectral analysis, speech processing, image 

processing, and radar processing are some of the specific applications. Industrial “process 

monitoring and control” is one of the areas of application too. Sensors monitor many physical 

parameters in industrial processing circuits. Examples include pressure sensors, temperature 

sensors, pH level sensors, movement or level indicating sensors, etc. Data produced from these 

sensors can be considered as a signal. By processing the signal one can observe the key tendencies. 

In the presence of bias or error, a signal’s behavior (if biased) changes when compared to the signal 

with no bias (clean). The differences can be observed in the form of changes in the frequency and 

amplitude. A literature review related to industry specific applications is presented in Chapter 3.

The most essential requirement for a signal to be analyzed successfully with FFT approach 

is that the signal should exhibit periodicity. This could be a serious drawback when analyzing 

signals related to industrial processes, which tend to be dynamic rather than periodic.
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1.3 Introduction to Gold Mining, Fort Knox and Pogo

The two choices of mineral processing circuits for analysis of sensor data in this dissertation 

are from the gold mines located near Fairbanks, Alaska, i.e., a semi-autogenous (SAG) mill circuit 

from Fort Knox Mine (open-pit) and a carbon stripping circuit from Pogo Mine (underground). A 

typical gold mining operation is detailed in Figure 1.6. As depicted in the figure, a SAG mill is 

part of the grinding circuit and the stripping circuit is part of carbon-in-pulp process. Detailed 

descriptions of Fort Knox Mine and Pogo Mine are provided in the individual chapters.

Gold processing involves extraction of gold ore from an underground or open pit mine. The 

ore is broken into smaller pieces by a big cone or gyratory crusher, depending on the hardness and 

other characteristics of the rock. With crushing, the ore fragments are reduced to smaller pieces of 

approximately 2.75” (70 mm). These sizes are further reduced by a SAG mill or ball mill to as low 

as 0.04” (1 mm). The fine particles of ore are then sent to a “flotation” process to separate the gold 

bearing particles. The particles enter a batch of cyanide leaching tanks where the gold particles are 

separated out of the ore particles by the leaching solution. The gold particles are adsorbed by 

activated carbon (a type of charcoal) in a carbon-in-pulp (CIP) circuit which is then loaded into 

the “strip vessels” where a high heated (~280°F) solution called “elute” is circulated. An elute is a 

water-based solution with 1% sodium hydroxide and 0.1% sodium cyanide (Fast, 2016). The elute 

helps strip gold particles from carbon. The solution that is bearing gold particles is now called 

“pregnant leach solution” (PLS). This is sent to the electro-winning process to extract gold. The 

gold particles collected from the process are melted at high temperatures ultimately to pour into 

gold ingots.
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Source: Adapted from Mulotec, 2017.

Figure 1.6: Flow sheet for a typical gold processing operation.

1.3.1 Carbon Stripping C ircuit

The Pogo Mine stripping circuit consists of two strip vessels that work in tandem. While one 

vessel (vessel-1) is being loaded with gold-bearing activated carbon, the other previously loaded 

(vessel-2) is operated by circulating an elute solution at approximately 280°F and 65 PSIG to 

liberate gold particles. The process is called “pressurized Zadra stripping.” A typical pressurized 

Zadra stripping cycle lasts for 11 hours and consists of the following stages: loading the vessel (1

hr), circulating elution (8 hrs), carbon cooling (1 hr), and unloading carbon from vessel (^ hr)

(Table 1.1).
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Table 1.1: Operating schedule-pressure Zadra stripping.

Operation Solution Time
Load Column Transfer Water 90 minutes
Elution 0.1% NaCN, 1% NaOH 480 minutes
Carbon Cooling Fresh Water 60 minutes
Unload Column Transfer Water 30 minutes

TOTAL 11 hours

Source: Fast, 2016.

While the used carbon is discharged, the PLS is pumped out. The same process is repeated 

with strip vessel-2. The PLS, on its way out from the strip vessel, is cooled through exchanging 

heat with no. 3 and 4 heat exchangers. When the PLS reaches the electro-wining circuit, the gold 

particles are removed and the solution, now called “barren solution,” is reheated by a boiler with 

the aid of heat exchangers 1 and 2 and will be recirculated through strip vessels. A glycol solution 

is circulated between the boiler and heat exchangers as a medium of heat exchange. Sensors are 

strategically placed in various parts of the circuit to measure temperatures, flow rates, etc. (Figure 

1.7). If any of the sensors are biased, the circuit cannot be managed at an optimum level in terms 

of temperature and flows. This results in poor gold recoveries. Finding and fixing faulty sensors 

helps improve recoveries, which is the motivation for the research. It is very important to maintain 

temperatures in the strip vessels at certain levels (270-280°F) for certain periods of time to 

maximize gold separation. In this context, monitoring the temperatures becomes crucial. Sensors 

S1 and S2 are two important ones in this context, which will be analyzed in this chapter. Various 

sensors and their placements in the circuit are shown in Figure 1.7. The sensors are given code 

names for simplicity. Typical interrelations between these sensors are depicted in Figure 1.8.
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Figure 1.7: Pogo stripping circuit schematic diagram with sensor placements.



Barren flow
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Figure 1.8: Various sensors and their interrelations.

1.4 Methods and Materials

Choosing appropriate methodology is necessary to achieve the research goal. Detailed topic 

or problem specific methodology is available in individual chapters. Chapters 2 through 5 are 

arranged to reflect the maturity of ideas as the research progressed towards achieving the goal. 

Detailed descriptions on the data collection, and the visual overview of various sensor data streams 

are available in various plots in individual chapters. Detailed results sections are available in each 

individual chapter.

1.5 Overview of Work Done and Conclusions

Calibration errors or biases of small quantities (±2% of a sensors true reading) are hard to 

detect. The initial application of classical statistical methods— correlation, aggregation, PCA, 

etc.—in the detection of these errors, proved disadvantageous (Chapter 2). Parametric and methods
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based on linear relations are less effective in dynamic environments where the process parameters 

or variables change dramatically (non-linear and non-stationary). For similar reasons, the 

sophisticated digital signal processing methods like Fast Fourier Transform (FFT), which was 

applied on Fort Knox sensor SAG mill data, was not effective. FFT methods heavily depend on 

periodicity of a sensor signal and are not effective for less periodic or dynamic processes (Chapter 

3). For the above applications a 10% bias was used, which is high in magnitude. Finding bias at 

2% magnitude is preferred by industry operators like Pogo Mine. Moreover, SAG mill operation 

is too dynamic for initial model building stages. Due to these reasons, the comparatively less 

dynamic carbon stripping circuit located at Pogo Mine is chosen for the study.

Stripping operation is crucial in the gold extraction process. The temperatures in the strip 

vessels are maintained at ideal levels (270-280°F) to maximize the extraction of gold. Hence, strip 

vessel temperatures are of utmost interest for the Pogo Mine. Throughout the research, strip vessel 

sensor S1 was chosen for bias induction experiments. Several data-mining based approaches were 

used on pogo strip circuit sensor data. Peak-reading count and sensitivity analysis (PRCSA) was 

one of them (Chapter 4). In this approach, a +2% bias was introduced in one of the sensors’ data 

(S1). When compared to the clean data set of the sensor (S1), the number of times the biased 

readings crossed a preset temperature limit, i.e., Threshold (Thsi), was significantly high, signaling 

error presence. The method requires availability of a clean set of data for the same biased sensor 

under study, which is highly impractical in real life situations. This is a major disadvantage using 

PRCSA.

The algorithms developed in Chapter 5 are based on exploiting interrelations between sensors’ 

readings in the carbon stripping circuit. The multiple ratio function analysis (MRFA) method 

exploited the interrelations between strip vessel and heat exchanger sensors in the form of “ratio

18



functions”—these are not simple ratios (see chapter 5). When S1 is induced with +2% error, S2 

and other sensors are assumed error-free. It was observed that prior to the error introduction, the 

ratios, “S1 bias: Heat” and “S2 clean: Heat” kept crossing each other, i.e., no ratio remained 

consistently higher than the other. The test is named “Heat ratio test.” However, several tests 

performed with the algorithm revealed that the “truncation thresholding” criteria of MRFA is 

disadvantageous in finding bias at certain periods of the year, specifically the last quarter of the 

year. A “dynamic thresholding” strategy that depends and adjusts the thresholds based on 

maximum values of a peak-readings is added to the algorithm. The new algorithm is fully 

automated in Fortran language with improved speed of execution. The algorithm is called MRFA 

with automation (MRFAA).

MRFAA has multiple test capabilities. Like the Heat ratio test, the ratios of S1 and S2 with 

barren flow (“BARNFL test”) and glycol flow (“GLYFL test”) were exploited. The maximum and 

average reading values of a strip vessel cycle (or peak) are also better indicators of the temperature. 

Due to this reason, the average and maximum values of strip vessel sensors were compared in the 

form of “Ave test” and “Max test.” A “Combined test” that finds the performance of all tests 

together is also added to MRFAA. A cross-score algorithm helps MRFAA in finding relative 

positions of S1 ratios to S2 ratios when plotted against time. When a test finds bias after it is 

induced at a particular “cross-score threshold,” it is “True alarm,” and a test fails in doing so results 

in “False alarm.” The time a test takes to find bias is called “time till find days” (TTFD).

The Combined test has 95% true alarm success rate. It is also observed that for 75% of the true 

alarms, the algorithms are findings the bias within 39.5 days. The cross-score thresholds at which 

this is possible are 5 and 6. Coming to the individual tests, the Heat test is the better test of all; it 

is able to find the bias within 33 days after induction 75% of the cases at cross-score thresholds of
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5 and 6. The heat ratio, average value and max value tests showed comparable results, however 

BARNFL and GLYFL tests do not perform up to the mark, due to their poor response to dynamic 

threshold strategy. The negative bias analysis also provides similar results. Identifying bias at such 

low magnitudes (±2%) is a hard task to achieve and with the MRFAA it is identified within 

approximately one month span of time 75% of the time, which is valuable to the industry. For the 

stripping vessels with combined cycle spanning 24 hrs (one day) or more, finding the bias within 

the short periods of time is valuable.

Some of the disadvantages of MRFAA algorithm are as follows. At this time the algorithm 

is not capable of identifying bias in several sensors simultaneously. The algorithm is not capable 

of identifying different types of errors other than bias. Presence of relations between sensors is the 

fundamental requirement for the algorithm in order to be successful.

1.6 Future Work

Additional tests can be added to the algorithm through a few lines of code. With some process 

specific changes to the Fortran code, the algorithm’s capabilities can be extended or generalized 

to any other industrial applications. Since the algorithms are developed with open source Fortran 

95, scalability to specific industrial problems is less expensive. Finding errors in several sensors 

at a time is also one of the additional functionalities that can be added to the algorithm to reflect 

real life complex situations. The algorithm with the additional capabilities has the potential for 

commercialization.
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Chapter 2: Statistical Methods in the Detection of Industrial Sensor Calibration Errors

2.1 Abstract

Sensor faults are costing US industries millions of dollars each year, in direct 

(instrumentation) and indirect costs (production loss). For the metal mining industries, the loss 

occurs in terms of metal recoveries. While gross errors are easily detectible using existing classical 

statistical methods, “calibration errors” like “bias” are subtle and difficult to detect. In an attempt 

to study the behavior of bias in sensor data of Fort Knox SAG mill, several classical methods like 

correlation, aggregation, and principal component analysis (PCA) were applied. In the correlation 

based study, a 10% bias was introduced in a SAG mill’s “feed” sensor data and error trends were 

observed. Initially, the data was divided into several states and the correlations between various 

SAG mill sensors (feed, RPM, HP, etc.) in each state were captured. The values indicated that the 

relational changes are more drastic from state-to-state than they are predictable. For instance, the 

R-square values for RPM vs feed for states 1 through 3, are 0.113, 0.065, and 0.780, respectively. 

In this context, correlation is disadvantageous when attempting to observe subtle changes that are 

caused by calibration errors in highly dynamic processes like SAG mill operation. In a similar 

fashion (PCA was conducted on the SAG mill sensors with a focus on finding bias in “feed.” The 

analysis did not produce significant differences between its biased and clean sets of feed even at 

an error of +10% magnitude. The corresponding “loadings” and the “biplots” from the PCA did 

not show significant differences either. The discussion on the results with conclusions are found 

at the end of the chapter. The chapter also provides an overview on various statistical techniques 

used in the industrial sensor error detection.
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2.2 Introduction

Various statistical methods used in sensor fault detection are widely described by Sharma et 

al. (2010). Some of the methods briefly described are as follows. “Rule-based” methods use 

domain knowledge to develop heuristic rules for identifying faults. These are generally highly 

accurate methods, but the choice of heuristics can affect the results. “Estimation based” methods 

depend upon inter-sensor correlations, whereas linear “Least-squares estimation” (LLSE) 

techniques are used to flag faulty readings in sensor networks; however, these techniques are 

disadvantageous for classifying fault types. “Time series analysis” based methods are capable of 

finding short duration faults but prove disadvantageous to find long duration faults like noise. For 

sensor readings that do not exhibit periodicity, the auto regressive moving average (ARIMA) 

methods proves to be a better option. “Learning based” methods infer the normal sensor readings 

from the training data set to identify classes of faults in the test or prediction data set. Neural 

networks are an example of learning based methods; however, with neural nets training is time 

consuming. Contrary to the mainstream statistical models or classical, descriptive and inferential 

statistics, “Bayesian statistics” use prior knowledge. “Data Reconciliation” methods involve 

adjusting the data according to conservation laws and other constraints. For data sets that follow 

particular statistical distribution, parametric methods are used; example: linear regression. For data 

sets that does not follow any distribution, non-parametric or distribution-free statistics are used; 

Examples: bagging and boosting. For non-linear and non-stationary processes data-mining 

techniques are very popular. These are generally used for extracting knowledge from huge data 

sets. “Heuristics” involve the theory and practical application of techniques for solving problems 

approximately that cannot be solved exactly (Journal of Heuristics, 2017). Hybrid methods employ 

any combination of the above techniques to achieve the task. Calibration errors are one exception
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that are hard to detect with the above methods. Without the availability of ground truth values, 

calibration errors become difficult to identify and even rectify. Data-mining based innovative 

methods seem to be the right choice to find calibration errors like bias in large industrial sensor 

data sets.

2.3 Literature Review

2.3.1 E stim ation  B ased M ethods

Estimation based methods depend upon inter-sensor correlations and data-fitting. Least- 

squares estimation (LSE) is one technique that is frequently used in flagging faulty readings in 

sensor networks. Due to their availability as well-established methods, linear models were 

extensively used in sensor fault detection in the recent past (Kusiak and Song, 2009). In the context 

of data-fitting, a residual or error is the difference between the observed data and expected data 

(see Equation (2.1)). For any given sensor data set, in order to obtain the “coefficient estimates” 

for a fitted line, the LSE methods minimize the summed square of residuals. When fitting the data, 

the underlying assumption for LSE methods is error is distributed normally (Mathworks, 2017).

residual=data -  fit error ™ N (0, a z)

Linear least squares estimate/fit (LLSE) is another method that assumes the errors (residuals) 

are distributed normally, and the variance is constant for the given data sets. A “linear model” in 

this context is defined as a fitted line equation for the variable of observation that has “linear” 

coefficients. If any of these assumptions are not true for a set of a data—for instance, a set of data 

with a lot of outliers, the variance is unduly large or small—the LLSE estimate could not result in 

a good fit. In such cases, weighted least squares (WLSE) is used to address the problem. Robust
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least squares methods (RLSE) adjusts and standardizes the residuals in order to achieve a good fit 

(Figure 2.1). On the other hand, nonlinear least square methods build equations with nonlinear 

coefficients when the response data is non-linear. “Curve-fitting” methods are one example.

Source: Adapted from Mathworks, 2017.

Figure 2.1: Robust vs linear fit.

In all the above methods discussed, the “error” is found as the difference between the observed 

sensor data and the fit. Whether it is a single sensor or multiple sensors, these techniques are 

disadvantageous to classify the “types” of faults. Similarly, when multiple sensors are present, the 

sensors are dependent on each other, the interrelations are non-linear, and these methods are less 

effective.

2.3.2 Tim e Series M ethods

A Time Series is a data-set that results from taking samples from successively, equally-spaced 

points in time. It is a sequence of discrete time data. It can also be defined as an ordered sequence 

of values of a variable of interest at equally spaced time intervals (National Institute of
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Instrumentation Standards, 2017a). According to National Institute of Standards and Technology 

(NIST), Time Series Analysis is used for many applications: economic forecasting, budgetary 

analysis, stock market analysis, process/quality control, etc.

The fitting with time series methods is done by averaging techniques like Box-Jenkins 

ARIMA/Multivariate models (based on non-linear least squares) or exponential smoothing 

methods like Holt-Winters exponential smoothing (Figures 2.2 and 2.3). In a “moving average” 

method, the past observations are weighted equally, whereas in “exponential smoothing,” recent 

observations are given more weight in forecasting than the older observations (National Institute 

of Instrumentation Standards, 2017a). Error in data is generally estimated by observing the 

difference between forecasted and actual (observed) trends of data. When the data observed is 

highly variable in nature—like in mineral processing industries—it is very difficult to forecast the 

trends accurately. This is one disadvantage in the context of this research. Time Series based 

methods are capable of finding short duration faults but prove disadvantageous for finding long 

duration faults like noise.

Source: Adapted from National Institute of Instrumentation Standards, 2017a. 

Figure 2.2: Autocorrelation plot of residuals from ARIMA (2,1,0) Model.
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Exponential Smoothing: Original and Smoothed Values
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Source: Adapted from National Institute of Instrumentation Standards, 2017a.

Figure 2.3: Sample plot: smoothed data for 2 values of a (a factor).

2 .3 .3  N eural N etw orks

Neural Networks mimic the behavior of a complex non-linear system based on learning from 

a training data-set (Kusiak and Song, 2009). Like many non-linear methods discussed earlier, 

Artificial Neural Networks (ANN) are widely used to predict the sensor readings based on the 

training (input) data set (Figure 2.4). The difference between the neural net predicted value and 

the actual reading is considered as an error (Figure 2.5). Several researchers in the past used the 

ANNs to quantify the sensor errors. With Neural Networks, sensor faults are identified based on 

the magnitude of the error. Training the NNs for ever-changing process-related data is a time­

consuming process; once the process changes, the NN needs to be retrained in order to predict the 

sensor readings. Mineral processing involves sudden changes in operating parameters to cope with 

changing ore types. Due to the dynamic nature of process circuits ANNs prove cumbersome for 

sensor error detection.
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Input Layer of 5 Neurons

a = f(Wp+b)

Source: Adapted from Hagan et al., 2014. 

Figure 2.4: A typical Neural Network architecture.

Figure 2.5: Error progression with training in an ANN.

2.3.4 B ayesian  Statistics

The Bayesian approach treats population model parameters as random (not fixed) quantities. 

Even before looking at the current data set, prior knowledge like constraints and judgements are 

used (“prior distribution model”). The model developed with prior knowledge and the knowledge 

from the current data is called a “posterior distribution model” (National Institute of 

Instrumentation Standards, 2017b). Contrary to the mainstream statistical models like classical, 

descriptive and inferential statistics, Bayesian statistics use prior knowledge. A Bayesian belief
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network was developed by Mehranbod et al. (2003) to classify faults in a sensor network. The 

values of process variables, their possible faults and biases were discretized into several categories. 

Based on the process sensor readings and their normal readings, the authors were able to calculate 

the probabilities for possible error types. Bayesian maximum a posteriori probability method and 

a hierarchical special Bayesian space-time model (HBSM) were developed by Ni (2008) to detect 

sensor network data faults in environment monitoring sensors. The disadvantages for Bayesian 

models are: there is no correct way to choose a prior model, and the choice could heavily influence 

the posterior model.

2.3.5 C onservation  Laws and D ata R econ cilia tion

Data Reconciliation involves adjusting the data according to conservation laws and other 

constraints. In the mining industry it is common to find differences between observed and actual 

data. Besides removing “noise” using signal processing methods and wavelet de-noising, data 

reconciliation can further improve the quality of the process data. Authors Tahane and Mah (1985), 

used weighted least squares estimation (under constraints) to reconcile the flow measurement data 

in a chemical process network. Hodouin (2010) developed several data reconciliation methods for 

mineral/metallurgical plants that use mass conservation balance laws in order to correct the 

observed data for errors. Several classical methods were used to estimate various statistical 

parameters. Hodouin (2010) had to assume that the measurement errors are Gaussian and unbiased 

in order to develop the methodology. If the system is highly non-linear and the variables (errors) 

of study does not exhibit Gaussian distributions, linear models fail. This is one reason why methods 

such as data reconciliation are less powerful in terms of accuracy for mineral processing circuits.
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2.3.6 D ata-M in ing M ethods

Data-mining techniques are broadly classified as: “association” based, where relation 

between variables is exploited; “classification” based, where attributes of each class of items are 

studied; “clustering” based, where one or more attributes of the classes are examined and grouped 

together; and “pattern recognition” based, where identifying trends or regular occurrences is used 

(Brown, 2012). Some other techniques that use a combination of any of these aforesaid are: 

“prediction,” where classification, pattern recognition and association are use (an example is 

forecasting of a company’s stock performance); and “decision trees,” where classification and 

prediction are used (an example is classification of various sensor faults). In general, real world 

problems may require several combinations of these techniques or entirely innovative approaches 

that are specific to a particular problem.

For highly non-linear and non-stationary processes, it is difficult to develop analytical 

models based on classical or fundamental statistical methods. Moreover, sensor validation for such 

processes is equally tough due to production of false alarms in excessive amounts (Kusiak and 

Song, 2009). Data-mining techniques are very useful in such situations. The techniques have a 

wide range of industrial applications, and are generally used to extract knowledge from huge data 

sets—industrial sensor data sets are one example. Researchers Kusiak and Song (2009) were able 

to develop several algorithms that are based on the clustering technique to detect sensor faults in 

power plant boilers. Classification techniques were used in a “cloud” based application to detect 

errors in a big sensor data set (Yang et al., 2015). Detailed literature reviews on various data- 

mining methods and their applications are found in Chapters 4 and 5.
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2.3.7 H euristic  M ethods

Heuristics involve the theory and practical application of techniques for solving problems 

approximately that cannot be solved exactly (Journal of Heuristics, 2017). Heuristic methods are 

useful when all conventional or exact methods fail to give optimum solutions and consume plenty 

of time for even trying. The solution from heuristic methods is good, but not as accurate as the 

solution obtained from the conventional or exact methods (detailed in the previous sections); 

however, it consumes less time and might be the only way the solution can be obtained. Sometimes 

the solution may not exist through exact methods, which could be the reason to resort to heuristics 

(Marti and Reinelt, 2011). There are several types of heuristic methods. “Inductive” methods find 

general solutions to the smaller problem, then the solution is scaled up for the bigger problem. 

“Reduction” methods restrict the space of solutions to good solutions only. “Constructive” 

methods build solutions step-by-step from scratch. In “Decomposition” methods, the original 

problem is broken into smaller manageable pieces for better examination. Sivakumar and 

Venkatesan (2015) described a Meta-heuristic approach that was used for minimizing error in 

localization of wireless sensor networks. Several optimization algorithms were used in this 

connection. A root mean square error (RMSE) was used for the performance evaluation of these 

algorithms. A heuristic method for error correction in parallel probe-based storage devices is 

presented by Varsamou and Antonakopoulos (2009).

In some cases, heuristic approaches, when used in fault detection, combine rule-based analysis 

and a fault detection algorithm. One such application is described by Garcia et al. (2009). The 

algorithm is applied to detect faulty groups of instruments in a pilot plant that consists of an inline 

mixer process. Where high reliability is desired, multiple sensors can be used to measure the same 

quantity. If one sensor output differs, it can be tagged as faulty. An algorithm developed in this
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context, was used in finding a faulty sensor in a pool of four sensors that were measuring 

temperature (Oh, 2015). The drawback in this kind of approach is the expense of buying multiple 

sensors to measure the same quantity. The operational costs of such sensor networks are too high. 

Knowledge based systems (KBS) are another variation of the heuristic approach. The deployment 

of such system for detection and identification of several types of errors in an electro-mechanical 

actuator system, were described by Silva et al. (2012). The approach was also compared to a neural 

network based analysis.

2.3.8 D ata A ggregation

The widespread use of sensors in industrial automation often results in large sets of data. In 

order to observe certain trends of data, it is essential to reduce the amount of data without losing 

its quality (Arku and Ganguli, 2014). Data “aggregation” is one technique that can help reduce the 

amount of data to be analyzed. When data is averaged in certain intervals, like 5 or 10-min, in a 

closely sampled data-set, like 1-min sampling, this would not impact the outcomes of an analysis 

significantly. Aggregation could potentially save computer memory. Experimenting with a SAG 

mill sensor data, Arku and Ganguli (2014) found that aggregation of data at 5-min or 10-min 

intervals did not give any significant difference in prediction of the SAG mill horse power. The 

correlations between input and output variables, and the error performance of various subsets (with 

the help of Neural Networks) were analyzed in the study. For this research, aggregation of data 

has been performed in the context of reducing noise and to observe broad underlying trends of 

sensor data.
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2.3.9 Param etric and N on-P aram etric M ethods

The statistical methods that assume the given data is normally distributed and the relations are 

linear are called “parametric methods;” paired t-test, Pearson correlation, principal component 

analysis (PCA), and one-way ANOVA are some examples. In many real world problems, however, 

data could exhibit any kind of distribution or might be distribution-free, which warrants the use of 

“non-parametric” or “distribution-free” methods. Bagging, boosting, regression trees, and 

generalized additive models (GAMS) are some examples that can be used for highly dynamic 

processes (mineral processing). Bagging was proposed by Breiman (1994). Bootstrap aggregation, 

or bagging, is a technique that can be used with classification and regression methods to reduce 

the variance associated with “prediction,” thus improving the prediction process. Variance is 

reduced due to simple averaging (Sutton, 2005). Unlike bagging that uses simple averaging, 

boosting employs a weighted average of prediction results obtained from various samples. In other 

words, boosting is an iterative procedure that incorporates weights, as opposed to bagging (Sutton, 

2005). “Decision tree” learning is one of the machine learning or data mining techniques that maps 

the relations between predictor and response variables. Advantages with trees are: flexibility to 

suit a broad range of response data (numeric, categorical, and survival), ease and robustness, ease 

to interpret visually, and ability to handle missing data. Thus, trees are an alternative to many 

traditional techniques like multiple regression, analysis of variance (ANOVA), linear discriminant 

analysis, and survival models (De’ath and Fabricius, 2000).

2.3.10 H ybrid M ethods

Hybrid methods employ any combination of the above techniques to achieve the task. The 

innovative approaches undertaken in this dissertation fall under this category; they are mainly a 

combination of data-mining techniques.
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2.4 Introduction to Fort Knox Mine and Mill Operations

Fort Knox is an open-pit gold mine located near the city of Fairbanks, Alaska. It is mined 

through conventional open-pit methods: drilling and blasting to liberate ore from the earth, the use 

of electrical excavators to dig the broken rock, and haul trucks for transporting the ore. The basic 

stages of mining and mill operations are similar to those of any typical gold mining operation with 

some differences. For instance, high grade ore is processed at mill while low grade ore is processed 

at a valley-fill “heap leaching” facility. The mill has a daily capacity o f49,604 tons (45,000 tonnes) 

(Fort Knox, 2017). Along with large volumes of low grade ore, heap leaching operations handle 

mineralized waste too. The location of the operation is shown in Figure 2.6.

Source: Adapted from Fort Knox, 2017; Alaska Journal, 2017. 

Figure 2.6: Fort Knox mine.
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2.5 Methods and Materials

2.5.1 D ata collection

In order to apply the proposed methodology and observe the trends for sensor readings, a 

semi-autogenous (SAG) grinding mill operation or simply “SAG mill” or “mill” at Fort Knox mine 

was chosen. The SAG mill setting is similar to that depicted in Figure 2.7. Data was collected at 

1-min intervals. A snapshot of data collected and sensors of interest is summarized in Table 2.1. 

Various key operational parameters of SAG mill and their corresponding sensors are as follows: 

feed ore to mill in tonnage per hour (tph) is measured by “feed” sensor (feed is usually mixed with 

water before it is fed to mill to form “feed slurry”); bearing pressure of the rotating mill in pound- 

force per square inch (psig) is measured by “BP” sensor; the number of mill revolutions per minute 

(rpm) is measured by “RPM” sensor; the rate at which the work is done by the mill, i.e., horsepower 

(hp) is measured by “HP” sensor (1 imperial hp = 745.7 watts, and 1 watt = 1 Joule/s). After the 

feed is processed (ground) in the mill, some part of the product that could not meet the expected 

(or targeted) size distribution is recycled to feed, which is called “recycle feed” or simply “recycle” 

(Figure 2.7). The feed material when combined with recycle is named “feed+recycle” These two 

variables/parameters are also included in few analyses.

In addition to the above variables, the following variables are examined for correlations in 

some occasions (see data characterization section): the volume of solids in feed slurry in 

percentage (“solids”); percentage volume of steel balls out of mill volume (“ballvol”); noise 

coming from the mill in decibels (dB) (“noise”); the electric current intake of mill motors in 

amperes (amp) (“amps”). Approximately 20,000 records or readings (1-month worth of data) were 

used for the analyses described in this chapter.
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Source: Powder and Bulk Solids, 2017.

Figure 2.7: A typical SAG mill circuit.

Table 2.1: SAG mill sensors (RPM, BP, feed, HP) and data.

Time o f  
observation

Mill
revolutions/

min

Mill Discharge 
end bearing 

pressure

Mill new  
feed

Mill
power

Date-Time RPM BP (psig) Feed (tph) HP (hp)
5/14/04 6:30 10.4 768.6 1848.8 13692.3
5/14/04 6:31 10.4 768.4 1843.5 13665.9
5/14/04 6:32 10.4 768.6 1907.3 13643.0
5/14/04 6:33 10.4 768.9 1833.7 13626.3
5/14/04 6:34 10.4 769.2 1827.7 13610.8
5/14/04 6:35 10.4 769.4 1850.9 13592.8
5/14/04 6:36 10.4 769.7 1804.6 13584.9
5/14/04 6:37 10.4 770.0 1844.8 13595.6
5/14/04 6:38 10.4 770.2 1865.3 13591.9
5/14/04 6:39 10.4 770.5 1841.5 13577.5
5/14/04 6:40 10.4 770.7 1843.1 13562.9
5/14/04 6:41 10.4 770.8 1865.0 13548.4
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2.5.2 A ssum ption s and scope

Calibration errors are present in the data often in the form of an offset value (bias) added to the 

original or true reading; see Equation (2.2). Bias is the common error associated with sensors and 

often a hard one to identify, hence it is the focus of this research. Other common errors like gross 

errors are out of the scope of the research. For the purpose of this experimentation, it is assumed 

that the data collected from the Fort Knox mine is devoid of errors, hence the set is deemed as a 

“clean set.”

Observed or biased reading, xttas = True reading (xtrue)+bias (eAbias)  (2.2)

Bias is expressed as a percent over the true reading value. For the purpose of experimentation, 

bias was artificially induced in the clean data set. A +10% bias indicates 10% of the true reading 

added as bias, likewise -10% expresses adding -10% of the true reading. Even though 10% is 

slightly on the higher side, it is used in this chapter for the experimentation purpose, and to find 

out if  it is even detectable at that magnitude. The strategy was changed in the subsequent chapters 

since calibration errors are subtle and could be as low as 2% over the true reading. It is also learned 

that identifying the bias at such low magnitudes is preferred by the industries.

2.5.3 D ata P reparation

2.5.3.1 Program m ing and Software

The sheer volume of the data collected, the subsequent mathematical calculations and 

repetitions to be performed, statistical analyses to be conducted, and graphical presentation of the 

results, demanded the use of a mathematically intensive software package. Matlab 

program/package was chosen in this context. A positive (+10%) and a negative (-10%) bias were
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introduced in the data, only to identify them using innovative methods described in the subsequent 

sections. A series of “cut-offs” or “thresholds” also were applied through Matlab algorithms to 

cleanse the data for unreliable or corrupted readings. The algorithm description sections have the 

detailed account on the process. In addition, the SPSS and R software were used to plot some 

descriptive statistics and to conduct principal component analysis.

2.5.4 C orrelation  Based Sensor D ata C h aracterization  M ethod

The first step in analyzing any data set is to understand the trends of various sensor readings 

and to exploit if  there is any relation between the variables of measurement. This is called “data 

characterization.” Breakage of mineral from rock (ore) is essential to liberate the precious metals. 

Blasting operations in mines break the rock into approximately 40”-60” maximum diameter 

particles, called run-of-mine (ROM), which is sent to the mill for further reduction. A SAG mill is 

the first piece of equipment in the mill process flow that helps in reducing the ROM to the sizes of 

16” diameter to as low as 75 microns, before sending the product to ball mill for further reduction 

(Figure 2.7). The SAG mill is generally charged (4-12% of its space) with steel balls, 

approximately 4” in diameter. While the mill is rotated at a certain rpm, the ROM material (ore) 

is fed. The action of gravity and centrifugal forces with steel balls as medium, aids in breaking the 

rock into smaller sizes. The bearing pressure (BP) of the mill denotes how much material is being 

loaded into the mill. The power consumption of the mill (HP) is dependent on all of these factors.

Different types of ROM ore require different mill parameter settings to attain the desired size 

reductions. These gradual changes or states of operation (simply “states”) are observed through 

plotting the sensor raw data (Figure 2.8). In order to observe the changes in the states through 

different statistics, correlation methods were used. Using correlation methods, if  the change in
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trends of a clean set of sensor data is observed, it can be compared to an erroneous (biased) set of 

data to identify bias. This is the premise that is exploited in the correlation based methods.
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Figure 2.8: Sensor raw data “states” in time domain.

2.5.4.1 Data Characterization

Data characterization involves finding the statistical characteristics of the data and fitting them 

into specific distribution patterns. The characterization process can facilitate capturing statistical 

parameters between various combinations of sensor data variables. Initial examination of the 

sensor data in this context revealed the underlying distributions and the relations between various 

sensors (Figure 2.9). Correlation plots help to determine if the relations are relatable (“correlation” 

based). If it is determined such relations exist in the data set, R-squared values between the 

variables could be captured using Matlab statistical tools. The R-squared value (varies between 0­

1) is a statistical measure of how closely the data fit to the regression line; the higher the R-squared 

value, the better the fit. A root mean square value (RMSE) or simply “error” indicates how far the
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data are dispersed from the fitted regression line. The lesser the error, the better the “fit.” Various 

correlations between several variables of interest from SAG mill data (Fort Knox) are shown in 

Figure 2.9. The correlation values are summarized in Table 2.2. The data was cleaned for outliers 

and corrupted readings before it was used in the correlation plots.

Figure 2.9: Correlation plot (cleaned data). 

Table 2.2: Correlation matrix (raw data).

Correlation Matrix

rpm bp s o l id s n o ise recyc le feed a m p s ballvol

C orre la t ion  rpm 1.000 .704 -.054 .067 .587 .668 .675 .238

bp .704 1.000 -.286 .205 .561 .607 .612 .502
s o l id s - .054 -.286 1.000 -.412 -.064 .086 -.233 - .330
n o ise .067 .205 -.412 1.000 -.338 -.131 .074 .272
recycle .587 .561 -.064 -.338 1.000 .700 .490 .155
feed .668 .607 .086 -.131 .700 1.000 .650 .226
a m p s .675 .612 -.233 .074 .490 .650 1.000 .228
ballvol .238 .502 -.330 .272 .155 .226 .228 1.000
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When plotted the Fort Knox sensor data indicated multiple “states” (Figure 2.8). If various 

parameters (feed, RPM, BP, etc.) show consistency for a period of time, it was called a “state” of 

operation. Interrelations between sensors exhibit consistency within a state and differs 

significantly when compared to a different state (Figure 2.8). The same plot that is cleaned for 

outliers is shown in Figure 2.10. The subsequent sections show the regression analysis results for 

various states of the process.

Figure 2.10: Sensor raw data in time domain after removing outliers.

2.5.4.2 Description of Algorithm

A Matlab algorithm was developed to capture and plot various R-square and RMSE statistics 

for each state. The algorithm in Figure 2.11 was used in the conduction of correlation based data 

characterization analysis. The program interface is shown in Figure 2.12. In the initial steps (data 

preparation), the algorithm reads various sensor data and inputs, and cleans the data for any
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corrupted readings and outliers. Depending on the user input choices (based on the initial 

examination of the trends of data), the program divides the sensor data into different states. For

user interest. Once the R-square and RMSE values are captured, they are considered as the “base 

line statistics” (BSI), since they are from the “clean set” of the data. As an example, the “fitted line 

plots” for two pairs of fitted sensor measurement data are shown in Figures 2.13 and 2.14. The 

strategy is to compare these values to that of a future “erroneous data set” or “biased set.” At the 

end, the cleaned sensor data is also plotted state-by-state. This helps in the examination of state 

specific data trends.

each state the algorithm captures R-square and RMSE values for various sensor combinations of

Read sensor raw data and other 
inputs

Cleanse the data for outliers

Divide the data readings into different “states” 
based on user choices

Based on user option, plot and calculate R-sq. and RMSE values for 
a particular pair of variables

Plot the specific trends in 
graphs

Figure 2.11: Flow chart for the Matlab-based data characterization algorithm.
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Please input stage number:!
Please input starting cell number:1 
Please input starting cell number:20000

Linear Regression Model Options

For RPM vs HP results, enter Case number:1 
For Feed vs HP results, enter Case number:2 
For BP vs HP results, enter Case number:3 
For RPM vs Feed results, enter Case number:4 
For Feed vs BP results, enter Case number:5 
For RPM vs BP results, enter Case number:6

Please enter the CASE NUMBER from the above options:!

H  1 =  1 I - 63-
M odel Developm ent is Complete! Press o k  to  see

1 “ X 1

Figure 2.12: Matlab code with various model options.

Figure 2.13: State 3 fitted line plot -  BP vs. HP.

Figure 2.14: State 3 fitted line plot -  RPM vs. HP.
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2.5.5 A ggregation  T echniques and Lags to O bserve Trends

Data “aggregation” is a useful technique in observing the underlying trends of a sensor data 

set. Industrial sensor data exhibits frequent fluctuations and is in general associated with noise (see 

Figure 2.8). With aggregation, the readings for a particular interval are averaged into one value, 

for instance, a 60-min aggregation presents one average value for the 60 minutes’ worth of data. 

“States” in mineral processing circuits in general do not change minute by minute. In such cases, 

it would be worth observing the data for longer periods of time. Aggregation is a useful tool in that 

aspect. The effect of aggregation on raw sensor data is shown in Figures 2.15 through 2.17. From 

the figures, it is understandable that data trends are increasingly observable when aggregation is 

increased from 60 to 240 min average. Sometimes there might be a delay in the start of one process 

to another. For instance, there might be a small time gap (“lag”) when feed’s effect starts to show 

on mill horsepower (HP). If that lag is 30 min, then the correlation between HP reading and feed 

reading (observed 30 min ago) is the better estimate than the contemporary correlation estimate 

(R-value). Due to this reason, various correlation values at different lags were captured, just to 

study the effect in general. The results are provided in section 2.6.

Another technique to observe the behavior of data is “% match.” For instance, assume that an 

individual aggregated reading (current) of a sensor data stream (feed) is compared with its previous 

readings. If the previous reading is less than the current reading, a “direction” value of “ 1 ” is 

assigned to the current readings. If it is less than the previous one, a value “-1” is assigned. If they 

are equal, a value of “0” is assigned. An array that captures all these values for a sensor data stream 

is called “directions set.” The symbols/values 1, 0, and -1 indicate the upward or downward trends 

of a data stream when plotted in a graph with respect to time. If a “directions set” array is created 

for another sensor data stream (HP), and compared to feed array, in term of percentage of symbols
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matching (“%Match”), the similarity in behavior of these two data sets can be understood. A higher 

matching percentage indicates highly similar behavior. Results from the “% match” analysis are 

provided in section 2.6.

Figure 2.15: Data trends at 60 min aggregation.

Figure 2.16: Data trends at 120 min aggregation.
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Figure 2.17: Data trends at 240 min aggregation.

2.5.6 Use o f P rin cip al C om ponent A nalysis (PCA) in Sensor Fau lt D etection

When the sensor data trends follow normal distribution and there exist linear relations among 

the variables, PCA can be used successfully to detect errors. Measurement correlations captured 

by PCA, residual analysis, and a sensor validity index (SVI) were used to find the sensor faults in 

a boiler circuit (Ricardo, 1996). The “difference” between PCA in terms of “principal component” 

angles for clean and faulty sensor data sets was used as the basis for sensor fault detection in a 

structural health monitoring system (Kerschen et al., 2004). A non-linear method called Kernel 

PCA was used in the fault detection process of a simulated data set in a continuous flow stirred- 

tank reactor (CSTR) process in another study (Cho et al., 2005).

Taking inspiration from the past research, PCA was used in analyzing the Fort Knox sensor 

data (SAG mill sensors). Since feed was observed to be the most influencing parameter on HP 

compared to other input parameters, it was selected for the analysis. Assuming the “feed” data set 

collected from Fort Knox as the “clean set” or a “baseline-set,” a 10% random noise was induced
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into feed data to create “biased set” (Figure 2.18). The clean and biased sets are compared with 

each other in an attempt to detect bias presence.

X

Figure 2.18: Clean vs 10% noisy/bias data.

2.6 Results

2.6.1 C orrelation  Based Sensor D ata C h aracterization  M ethod

The following are the results from the correlations (R-sq values) captured between various 

variables. For each “state,” the sensor interrelations (correlations) were captured, which are called 

base line statistics (BSI). Once the BSI were established, the future data can be compared against 

the BSI to find the calibration faults. The tables 2.3 through 2.5 present the results from the three 

process “states.”
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Table 2.3: State-1 baseline sensor interrelations (BSI), records: 1-6000.

R-sq values Error Statistical Parameters
SENSORS RPM Feed BP HP HP (RMSE) Mean Std Variance
RPM 1.000 0.113 0.192 0.537 278.3 10.4 0.2 0.1
Feed 0.113 1.000 0.137 0.085 391.3 1733.8 268.4 72043.1
BP 0.192 0.137 1.000 0.230 359.0 768.2 5.1 25.5

Table 2.4: State-2 baseline sensor interrelations (BSI), records: 6001-14000.

R-sq values Error Statistical Parameters
SENSORS RPM Feed BP HP HP (RMSE) Mean Std Variance
RPM 1.000 0.065 0.163 0.371 255.6 10.5 0.2 0.0
Feed 0.065 1.000 0.012 0.088 307.9 1672.7 157.8 24909.9
BP 0.163 0.012 1.000 0.243 280.5 771.0 4.0 15.9

Table 2.5: State-3 baseline sensor interrelations (BSI), records: 14001-20000.

R-sq values Error Statistical Parameters
SENSORS RPM Feed BP HP HP (RMSE) Mean Std Variance
RPM 1.000 0.780 0.626 0.789 283.7 10.1 0.5 0.3
Feed 0.780 1.000 0.552 0.510 432.7 1412.4 311.6 97122.7
BP 0.626 0.552 1.000 0.666 357.1 758.1 9.0 80.9

2.6.2 A ggregation  and Lags

The following are the correlation results (Table 2.6) from the Fort Knox data variables and 

corresponding “lags.” At several minutes of aggregation, 30-240 min, various correlation values 

were captured for various lags. For instance, lag-0 correlation means there is no delay between the 

variables correlated, lag-1 indicates there is one reading gap between the variables for correlation. 

The results populated in Table 2.6 are for 240 min aggregation. It is observed that at lag-0, there 

is better correlation between variables at 240 min aggregation. Likewise, at different values, “% 

Match” between two variables might be high at certain lag.
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Table 2.6: Analysis of various param eters and lags at 240 min Aggregation.

Feed vs HP Feed vs BP Feed vs Recycle Feed+Recycle vs HP
R-value

Lag0 0.74715847 0.81839207 0.81825094 0.74440247
Lag1 0.70051181 0.70528901 0.70199743 0.69122573
Lag2 0.55026374 0.61064728 0.54661373 0.53810150

% Match
Lag0 0.53086420 0.55555556 0.74074074 0.53086420
Lag1 0.57500000 0.60000000 0.51250000 0.55000000
Lag2 0.58227848 0.48101266 0.51898734 0.48101266

2.6.3 Use of P rin cip al C om ponent A nalysis (PCA) in sensor fau lt detection

The results from the PCA analysis (“loadings”) for clean and noisy data can be seen in Tables

2.7 through 2.8. Loadings indicate correlations between a component (combination of variables) 

to a particular variable (Example: component 1 vs feed). When compared to clean data (feed), it is 

observed that the loadings (component values) slightly changed due to the presence of noise in 

feed. The angle of the variables for highly influential components (1 and 2) also changed slightly, 

which is observed in biplots (Figures 2.21 and 2.22); feedN indicates noisy “feed.” These 

differences if quantified, could be used against certain preset limits/thresholds to identify the faulty 

sensors and the type of faults associated with each.

Table 2.7: Feed data without noise.
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Table 2.8: Feed data with 10% random  noise.

Loadings:
Comp.1 Comp.2 Comp.3 Comp.4 

feedN -0.509 0.348 0.656 | 0.436
recycle -0.483 0.632 -0.563 -0.222
rpm -0.513 -0.391 0.282 -0.710
BP -0.494 -0.571 -0.417 0.506

Figure 2.19: Variance for clean data set (pc.cr).

Figure 2.20: variance for noisy data set (pc.crN).
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Figure 2.21: Biplots for clean data set.

Figure 2.22: Biplots for noisy data set.
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Process “states” in industrial sensor data of a SAG mill operation were explored using 

correlation based methods. Baseline statistics (BSI) in the form of R-square and R-values are 

captured for each state of SAG mill operation. The main drawback from this kind of approach, 

however, is that the difference between R-square and R-values is minute from state to state, which 

might not even be significant at a level of ±10% bias over true readings. It was observed from 

Tables 2.3 through 2.5, that the difference between R-values of any given variable pairs is not 

consistent among states 1 through 3. For instance, the R-square values for RPM vs feed for states 

1 through 3, are 0.113, 0.065, and 0.780, respectively. This means either there is less correlation 

naturally between these variables or there is a lot of variance. In general, mineral processing 

operations are very dynamic and the states change from time to time. This is problematic when 

data behavior for certain times of the year is compared to behavior for some other year (in the 

same time frame). There is no guarantee they might be similar. This is the reason the future data 

at 10% bias is not worth comparing to clean data correlations. When comparing R-square values 

this might become difficult, due to inconsistency. Due to the above reasons, a method that adapts 

to changing values is explored in the subsequent chapters. Coming to “aggregation” as a technique, 

it is a reliable tool that could be used to condense/comprehend the data while not compromising 

its quality. When it comes to detection of subtle changes like bias, however, it is not a powerful 

tool. Even at 10% bias, correlations cannot show the difference between biased and clean data sets, 

and aggregation cannot be helpful due to the averaging effect. Time delay (“lag”) and “matchings” 

may improve the correlation performance; however, they are not better tools to find biases of 10% 

magnitude over true reading.

2.7 Discussion
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Parametric or non-parametric, linear or non-linear, each method has its own advantages and 

disadvantages in dimensionality reduction and error detection processes. For instance, linear 

methods are sensitive to outliers, whereas non-linear or ensemble methods like neural networks 

can produce “fits” better than linear models, although, over-fitting might be an issue. In this case 

the user should know where to stop the iterations or how to optimize the process. Principal 

component analysis is a powerful tool when the data is normally distributed and correlations are 

linear between the variables. For non-linear systems these are not effective. It is obvious from 

observing the loadings, variance, and biplots that the differences between clean and noisy data are 

subtle in case of SAG mill data. Non-linear PCA methods might transform the data to linear form 

in order to perform the analysis. Kernel PCA and other recent non-linear methods are some 

improvements to the non-linear PCA methods, which could be useful. These are out of the scope 

for this research. It is important to know the suitability of a method for a particular data set. In the 

subsequent chapters, some innovative approaches that are based on signal processing, data-mining, 

and other combinations of various methods are discussed.

2.8 Conclusions

It is important to study and understand the basic nature, distribution, and other underlying 

tendencies of data before applying any methodology to achieve the goal of research. In this chapter, 

sensor raw data (clean) that was collected from a SAG mill operation at Fort Knox mine, Alaska, 

to observe various key process measurements, was analyzed. From the time domain plots, various 

sensors were observed to exhibit similar trends in a “state” of operation. Using correlation plots, 

the data behavior was observed for each state (states 1-3). Developing a Matlab based algorithm, 

various R-square values for the sensor pairs in each state were captured. It was planned to compare 

these baseline statistics (BSI) to a noisy dataset (10% bias) at a later stage, however, comparison
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of BSI between the states revealed that the differences were dramatic and the subtle differences of 

biased and clean data sets are not worthwhile for comparison. In other words, when the differences 

between states are dramatic there is no chance to observe subtle differences caused by bias. A data 

aggregation technique was applied to observe the trends of data at 30 min, 60 min, 120 min, and 

240 min averages. At different delays (“lags”), the correlations between the variables were also 

observed. Neither of these results showed significant differences in observing state by state 

difference. This means the SAG mill process is highly dynamic and the sensor errors of 10% 

magnitude might not be observable.

A principle component analysis was also applied to observe the difference between a noisy 

(10% biased) data set and clean data set of “feed”. However, the results were not definitive in 

identifying bias. Therefore it is concluded that descriptive statistics, correlations, aggregation, 

regression analysis, and PCA are useful tools in reducing the dimensionality of the sensor data 

when the explanatory and response variables are linearly correlated. Non-parametric methods are 

useful if  the variables are not linearly related. Multivariate analysis and PCA could be useful tools 

in the fault detection process provided the variables relate to each other linearly. The PCA method 

is not effective with the data set due to the non-linearity of the relations between variables.
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Chapter 3: Signal Processing Methods in the Detection of Industrial Sensor Calibration

Errors

3.1 Abstract

In the field of communication systems, a “signal” is something that conveys information about 

the behavior or attributes of some physical phenomenon (sound, picture, or a sensor reading of 

temperature). Signal processing techniques have wide variety of applications in many industries 

in general; digital filtering, spectral analysis, image processing, and process control, to name a 

few. The techniques are powerful tools in analyzing data due to their ability to transform the data 

into more manageable forms. Fast Fourier Transform (FFT) is one of those techniques that can 

convert sensor data (signal) in “time domain” to “frequency domain” where data trends are 

observed. Sensors became vital part of process monitoring in many industries, including mining 

and mineral processing industries; however, each year sensor faults are causing the industry 

millions of dollars in direct (instrumentation) and indirect costs (production loss). For mining 

industry it is production lost in terms of metal recoveries. Errors of higher magnitude like short 

faults and failures (gross-errors) can be detected using classical statistical methods; however, their 

subtle forms like calibration errors are hard to impossible to identify. These are the errors like bias 

that develop over time. In this research, sensor signals from a carbon stripping circuit (Pogo Mine, 

Alaska), which plays a key role in recovering gold, were studied. A sensor that monitors the 

temperature of a strip vessel (S1) was studied using FFT analysis. Ten percent (10%) positive and 

negative biases were introduced into a clean dataset to create an artificially biased set. Then, the 

biased and clean sets were transformed into frequency domain using Matlab based FFT 

tools/algorithms. The goal is to find if bias can be identified through signal processing techniques, 

like FFT. This chapter describes the methodology, with findings and conclusions.
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A “signal” in communication systems is something that conveys information about the 

behavior or attributes of some phenomenon. Some examples are sound, video, and picture. An 

analog signal is a continuous signal, whereas a digital signal is constructed from the discrete set of 

waveforms to represent the signal. An analog signal can be converted to digital using an analog to 

digital converter (ADC). A signal is generally associated with “noise” (Figure 3.1). When the noise 

is filtered using digital “filters,” it is easier to study the signal. A signal is studied by plotting its 

behavior against time, i.e., time domain, and against frequency, i.e., frequency domain (Figure 

3.2). For instance an EKG signal of a heart when noise is removed (Figure 3.1) can convey 

essential information about heart behavior with clarity. Fast Fourier Transform (FFT) is a 

numerical algorithm that is used to convert a signal in time domain to frequency domain, and vice 

versa.

3.2 Introduction

ECG (noise-free)

0 50  100 150 200  2 5 0  3 0 0  3 5 0  4 0 0  4 5 0  500

Source: Adapted from Universite Laval, 2017. 

Figure 3.1: Noisy signal.
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frequency

Time dom ain Frequency dom ain

Source: Adapted from National Institute of Instrumentation Standards, 2017.

Figure 3.2: Time domain vs frequency domain.

Digital signal processing (DSP) has a lot of applications in different industries; space, 

medical, and industrial are some areas. Digital filtering, spectral analysis, speech processing, 

image processing, and radar processing are some of the area-specific applications. Industrial 

processing monitoring and control is one of the areas of application. Sensors monitor many 

physical parameters in industrial processing circuits. Examples include pressure sensors, 

temperature sensors, pH level sensors, movement or level indicating sensors, etc. Data produced 

from these sensors are considered as a signals since they convey certain information. Key 

tendencies of a signal are observed by “processing,” i.e., signal processing. In the presence of bias 

or error, a signal’s behavior (biased) changes when compared to the signal with no bias (clean). 

The differences can be observed in the form of changes in the frequency and amplitude. Some 

industry specific applications are described below.

65



A fault isolation algorithm for a light rail vehicle suspension system was developed by Wei 

et al. (2013), in order to isolate suspension mechanism related faults. In the process, the sensor 

data from the suspension system were fused and a Kalman filter was applied to obtain the 

“residuals.” Kalman filter, which is also known as linear quadratic estimation (LQE), is an 

algorithm that estimates unknown variables with improved accuracy by observing input data with 

inaccuracies (like noise). The FFT analysis was applied to convert the residual data into frequency 

domain, then compared to the known fault frequency trends to isolate the fault and determine its 

type. Tipsuwanporn et al. (2013) developed an FFT-based algorithm to detect faults in a 

compressor. The paper is aimed at studying compressor current signal with the help of FFT 

analysis. The frequency domain comparison of a biased compressor current signal with fault free 

(healthy) signal helped in the detection of the fault. Another mineral industry specific example is 

the study conducted by Spencer et al. (1999), where SAG mill operational parameters like feed 

weight, density, rotational speed and power are observed from the vibration signal registered by 

an accelerometer attached to the mill (Figure 3.3) . In another research project, signal processing 

methods like Hilbert transform and wavelet transform are used to study a SAG mill acoustics signal 

to identify a characteristic signal that was used to control a coal bunker level (Kang et al., 2006). 

From the above studies, it is understood that the most essential requirement for a signal to be 

analyzed successfully with the FFT approach is that the signal should exhibit periodicity. This is 

a serious drawback when analyzing signals related to industrial processes which tend to be 

dynamic rather than periodic.

3.3 L iterature Review
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Source: Adapted from Spencer et al., 1999.

Figure 3.3: Vibration signal from a SAG mill operation.

3.4 Introduction to Pogo Mine and Mill Operations

Except for the initial experimentation with the data, which was obtained from Fort Knox mine, 

the main body of research methodology was developed using the data collected from a carbon 

stripping circuit at the gold processing facility (mill) of Pogo Mine, Alaska. Due to the reason, the 

Pogo Mine and its mill operations are described in detail.

3.4.1 Pogo M ine and M ill

Pogo Mine is one of the biggest gold producers in Alaska (Figure 3.4). Located on the 

Goodpaster River, 38 miles (61 km) north of Delta Junction in east-central Alaska, the nearest city 

to Pogo is Fairbanks, located approximately 70 miles (112 km) northwest of the mine property 

(Konigsmann et al., 2017). Pogo is an underground operation. Elevations on the property range 

from 1,299 ft (396 m) on the Goodpaster River to over 4,003 ft (1,220 m) on the top of Pogo Ridge,
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an east-west trending ridge. The climate is classified as sub-Arctic with cold, dry winters and 

relatively mild summers (Konigsmann, 2017).

Source: Adapted from Pogo Mine, 2017.

Figure 3.4: Pogo Mine site map.

Pogo Mill processes up to 3,500 tons of ore daily. The process flowsheet is shown in Figure 

3.5. The Pogo plant’s process flow mainly is comprised of a crusher, semi-autogenous (SAG) mill, 

ball mill, floatation circuit, leaching tanks, carbon-in-pulp (CIP) circuit (described in detail in 

section 3.4.2), stripping circuit, and an electro-winning circuit. The Pogo plant is a closed-circuit
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operation; all the water used is recirculated and cleaned before it is released into a pond to 

minimize environmental impact. Up to 67% of the gold is recovered through the processing 

facility. A brief description of the process follows (Pogo Mine, 2017). Ore is fed to a conventional 

SAG/ball mill grinding circuit. Gravity recovery is the technique employed throughout the process. 

The ball mill circulating load is screened at one (1) mm, and the undersize is fed to two 48-inch 

centrifugal concentrators operating in parallel. The primary gravity concentrate is then fed to the 

intensive cyanidation circuit with the leach solutions reporting directly to electro-winning for final 

gold recovery. Primary gravity tailings are returned to the grinding circuit via the cyclone feed 

pump-box while the intensive leach residues are reground and pumped into the flotation 

concentrate leach circuit. Primary gravity gold concentrates are intensively leached on a batch 

basis; the typical leach residence times are approximately 14 hours. Grinding cyclone overflow 

reports to a sulphide rougher flotation circuit, which produces a 10% weight concentrate.

3  P LA N T  OPERATOR TR A IN IN G  * * *  SUM MARY FLOW SHEET AND LINKS TO SYSTEMS * * *  M ic ro s o f t  In te rn e t  E x p lo re r  0  “  ®

Source: Adapted from Pogo Mine, 2016. 

Figure 3.5: Pogo mine-gold processing flow sheet.
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The concentrate is then reground to 80% passing 10 microns using stirred media detritors 

prior to being leached in a conventional cyanidation circuit followed by gold recovery in an eight 

cell carousel CIP circuit. The particles then enter a stripping circuit. A more detailed description 

of the process can be found in subsequent sections.

3.4.2 C arbon-in-P ulp  (C IP) C ircu it

The purpose of the CIP process is to allow the gold previously dissolved in the leach tanks 

to be adsorbed by activated carbon— activated carbon is a form of charcoal that has a large number 

of low volume pores that can adsorb fine particles.

Source: Adapted from Pogo Mine, 2016.

Figure 3.6: CIP circuit at Pogo Mine.

During the CIP process, the gold particles are slowly adsorbed onto the carbon particles, and 

eventually will be extracted in the “stripping” process. The CIP circuit is designed to allow
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adequate time for the absorption process. The particle-bearing slurry spends 30 minutes in each 

CIP tank. The Pogo CIP circuit has eight such tanks (Figure 3.6). The slurry spends four hours in 

the circuit, and approximately 300 to 600 ounces of gold is adsorbed per ton of activated carbon 

used.

3.4.3 Carbon S tripp in g C ircu it

The Pogo stripping circuit in pictures is shown in Figure 3.7. The circuit consists of two strip 

vessels that work in tandem. While one vessel (vessel-1) is being loaded with gold-bearing 

activated carbon, the other previously loaded vessel (vessel-2) is operated by circulating a solution 

called ‘elute’ at approximately 280°F and 65 PSIG to liberate gold particles. An elute is a water- 

based solution with 1% sodium hydroxide and 0.1% sodium cyanide (Fast, 2016). The process is 

called “pressurized Zadra stripping.” A typical pressurized Zadra stripping cycle lasts for 11 hours 

and consists of the following stages: loading the vessel (1 hr), circulating elution (8 hrs), carbon

cooling (1 hr), and unloading carbon from vessel (^ hr) (Table 3.1).

Table 3.1: Operating schedule-pressure Zadra stripping.

Operation Solution Time
Load Column Transfer Water 90 minutes
Elution 0.1% NaCN, 1% NaOH 480 minutes
Carbon Cooling Fresh Water 60 minutes
Unload Column Transfer Water 30 minutes

TOTAL 11 hours

Source: Fast, 2016.

While the used carbon is discharged, the “pregnant leach” solution is pumped out. The same 

process is repeated with strip vessel-2. The pregnant leach solution (PLS), on its way out from the 

strip vessel, is cooled through exchanging heat with no. 3 and 4 heat exchangers. When the PLS
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reaches the electro-wining circuit, the gold particles are removed and the solution, now called 

“barren solution,” is reheated by a boiler with the aid of heat exchangers 1 and 2 and will be 

recirculated through strip vessels. A glycol solution is circulated between the boiler and heat 

exchangers as a medium of heat exchange. Sensors are strategically placed at various parts of the 

circuit to measure temperatures, flow rates, etc. (Figure 3.8). If any of the sensors are biased, the 

circuit cannot be managed at an optimum level in terms of temperature and flows. This results in 

poor gold recoveries. Finding and fixing faulty sensors helps improve recoveries, which is the 

motivation for this research. It is very important to maintain temperatures in the strip vessels at 

certain levels (270-280°F) for certain periods of time to maximize gold separation. In this context, 

monitoring the temperatures becomes crucial. Sensors S1 and S2 are two important ones in this 

context, which will be analyzed in this chapter. The sensors are given code names for simplicity, 

which are detailed in Figure 3.8.
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Figure 3.7: Pogo stripping circuit in pictures.
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Figure 3.8: Pogo stripping circuit schematic diagram with sensor placements.



3.5 Methods and M aterials

3.5.1 D ata C ollection

The raw sensor data was collected at 10-min average intervals from the Pogo mill database. 

Various sensors of interest and their data readings can be seen in the Table 3.2. The data was 

collected for a period of nine (9) months; Jan 1, 2015 through September 31, 2015. The visual 

format of various sensor raw data streams with close-up views can be seen in (Figures 3.8 through 

3.13). It should be noted that sensors H3 and H4 are not part of the study in this chapter. Various 

descriptive statistics for the sensor data are given in Table 3.3. The “data cleansing cut-off value 

(Thcteanse)” column in the Table 3.3 refers to the cut-off value based on which undesired and 

corrupted data were removed (cleaned), which is explained in the data preparation section.

Table 3.2: A snapshot of raw sensor data collected at 10-min average intervals.

Strip vessel 
sensors

Barren flow 
sensor

Heat exchanger 
sensors

Glycol flow 
sensor

Record # Time S1 S2 BARNFL H1 H2 GLYFL
(°F) (°F) (GPM) (°F) (°F) (GPM)

1 1/1/15 12:00 AM 90.5 261.6 35.4 299.4 300.7 204.0
2 1/1/15 12:10 AM 90.4 261.6 35.4 291.7 293.0 203.0
3 1/1/15 12:20 AM 90.3 261.6 35.3 284.3 285.4 200.0
4 1/1/15 12:30 AM 90.1 233.9 35.3 277.3 278.3 201.1
5 1/1/15 12:40 AM 90.0 219.2 35.2 270.5 271.5 202.3
6 1/1/15 12:50 AM 89.8 216.9 35.2 264.1 265.1 204.6
7 1/1/15 1:00 AM 89.7 215.3 35.2 258.0 258.8 204.4
8 1/1/15 1:10 AM 89.6 204.2 35.1 252.1 252.9 205.0
9 1/1/15 1:20 AM 89.4 192.4 35.1 246.5 247.3 201.9
10 1/1/15 1:30 AM 89.3 189.8 35.0 241.3 242.0 201.0
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Figure 3.9: Strip vessel-1 heat sensor (S1).

Figure 3.10: Strip vessel-2 heat sensor (S2).

76



Figure 3.11: Heat Exchanger-1 Sensor (H1).

Figure 3.12: Heat Exchanger-2 Sensor (H2).
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Figure 3.13: Barren flow Sensor (BARNFL).
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Figure 3.14: Glycol flow sensor (GLYFL).
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Table 3.3: Descriptive statistics for the sensor data collected.

Sensor
Measuring 

parame te r/variable
Unit Maximum Minimum Mean Median

Standard
deviation

Data cleansing 
cut-off value

(Th  cleanse)

S1
Strip vessel-1 
temperature

°F 302.7 52.1 150.1 104.9 78.3 150

S2
Strip vessel-2 
temperature

°F 304.3 57.7 148.8 105.2 77.6 150

H1
Heat exchanger-1 
outlet temperature

°F 334.0 50.0 144.9 82.7 96.7 250

H2
Heat exchanger-2 
outlet temperature

°F 336.2 56.3 263.1 296.0 63.6 250

BARNFL Barren solution flow GPM 302.7 0.0 40.4 35.0 17.9 20

GLYFL Glycol flow GPM 229.7 0.0 209.8 214.6 18.2 150

3.5.2 A ssum ptions and scope

Calibration errors are present in the data often in the form of an offset value (bias) added to the 

original or true reading; see Equation (3.1). Bias is the common error associated with sensors and 

often a hard one to identify. Other common errors like gross errors are out of the scope of this 

research. Gross errors are dramatically high or low errors, which are easily detected through 

common statistical techniques. For the purpose of this experimentation, it is assumed that the data 

collected from the Pogo mine is devoid of errors, i.e., the set is deemed a ‘clean set.’

Observed or biased reading, xttas = True reading (xtrue)+bias (eAbias)  (3.1)

Bias is expressed as a percentage over the true reading value. For the purpose of 

experimentation, bias is artificially induced in the clean data set. A +2% bias indicates 2% of the 

true reading added as bias to the true reading itself; likewise -2% expresses adding -2% of the true 

reading; see Equation (3.1). Calibration errors are subtle and can be as low as 2% over the true 

reading. Identifying the bias at such low magnitudes is preferred by the industries, specifically
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Pogo Mine, which sees the value in it. Only S1 and S2 sensors were analyzed with the methods 

described, due to the important role of these sensors in monitoring the temperature in the crucial

process of stripping, i.e., gold striping from activated carbon. Only one sensor with bias at a time

was analyzed in this study, using other sensors’ interrelations. Identifying the bias in multiple 

sensors at a time in a multi-sensor environment is out of the scope for this research. Due to the 

space constraints and to avoid redundancy, the results from S1 analysis and validation are only 

presented in this chapter; S2 analysis and validation also demonstrated similar trends.

3.5.3 D ata P reparation

3.5.3.1 Program m ing and Software

The sheer volume of data collected, the subsequent mathematical calculations/repetitions to 

be performed, statistical analyses to be conducted, and graphically presentation of the results, 

demands for the usage of a mathematically intensive software package. Matlab was chosen to meet 

these needs. Matlab has an excellent signal processing tool box that has functionality to perform 

various operations, like FFT, inverse FFT, etc. Matlab also has an excellent plotting capability that 

was utilized for the research. A positive (+2%) and a negative (-2%) bias were introduced in the 

data, only to identify them using signal processing methods described in the subsequent sections. 

The algorithm description session has the detailed account on the process.

3.5.3.2 A lgorithm  Description

The algorithm was developed using Matlab’s “signal processing toolbox,” which has a variety 

of Fourier Transform related functions. The function ‘f f t  can perform Fourier Transform, whereas
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‘iff t  can perform the inverse of the operation. A flowchart of the algorithm is shown in Figure 

3.15.

Step 1: The algorithm reads all the sensor data (clean and biased sets for a random week) and 

other necessary inputs like sampling frequency, filtering frequency, etc. A biased data set in this 

context, should be created by inducing noise in the middle of the week.

Step 2: The data is plotted in the time domain for visual examination. Then the data is 

converted into the frequency domain using FFT tools. Plotting the data in frequency domain 

provides the opportunity to summarize the whole dataset into few frequencies; examination for 

noise becomes easier in this format. Based on the frequencies related to noise, the filters’ “cut-off” 

frequencies are chosen.

Step 3: Digital filtering is applied to remove the noise from the biased data using low-pass 

filters at the chosen cut-off values.

Step 4: Biased and clean data are plotted in frequency domain to observe and detect the 

presence of bias. The data from frequency domain is then converted back to time domain.

Step 5: The data is reexamined in time domain. This is when effects of filtering on biased 

data can be observed. Filtering helps attenuates the data set for undesired noise.
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Figure 3.15: FFT analysis algorithm.

3.5.4 A pp lication  of Fast Fourier T ransform  (C lean vs B iased data)

3.5.4.1 Fast Fourier Transform  (Theoretical Background)

The Fourier Transform shows that any signal or waveform in time domain can be re-written as 

the sum of sinusoidal functions in frequency domain (Figure 3.16). The Fourier transform
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decomposes a function of time (a signal) into the constituent frequencies. Fourier Transform can 

also represent the wave as a mathematical expression (Fouriertransform.com, 2017).

Source: Adapted form Bocconi Students Investment Club, 2017.

Figure 3.16: Time Domain vs frequency domain.

The Fourier Transform of a time domain function g(t) is defined by:

Where

f  is frequency, 

i is an imaginary number, 

t is time, and

G f)  is the frequency or spectrum function.

The time domain function g(t) can also be obtained by inverse Fourier Transform of 

frequency function, G f). The time domain function and its frequency domain transform is called 

a “Fourier Transform Pair.”

83



Even though periodicity of the sensor data over a nine-month span is quite rare, specifically in 

mineral processing circuits, a week’s worth of data usually exhibits a certain level of periodicity 

(Figure 3.17). Due to this reason, the periodicity of a typical week’s worth of data was analyzed. 

A positive and negative 10% randomized error was introduced into the S1 data to create a “biased 

set.” Using FFT, the data was transformed to frequency domain. The raw data was aggregated to 

5 min intervals before it was input into the algorithm. A sampling time (Ts) of 300 seconds (five 

minutes) was chose due to the fact that each reading is the average of data observed for five 

minutes.
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Figure 3.17: Periodicity of sensor data measurements from Pogo stripping circuit.



3.5.4.2 Digital Signal Processing and Digital Filtering

A “digital signal” is a discrete form of the original electrical signal or data reading from a 

sensor. In contrast, “analog” signal represents a continuous form. In this context, any processing 

performed on a digital signal, like transformation (FFT) or noise filtering (simply “filtering”), is 

called digital signal processing (DSP). A filter in this context should be understood as a “digital 

filter” that uses mathematical formulae or logic to isolate noise from a digital signal. The digital 

signal in the form of a “text file” or any other accepted format was read using the Matlab algorithm 

developed and the digital filters were applied through the programming tools (specifically, signal 

processing tool box).

Two low-pass filters (band-1 and band-2) of different cut-off frequencies (fc) were applied to 

the bias-free data set to remove unwanted noise from the data. The cut-off frequencies for band-1 

and band-2 are 0.0001 Hz, 0.0003 Hz, respectively (1 Hz = 1 cycle/s). A low-pass filter (LPF) is 

a digital filter that passes frequencies lower than a certain preset cut-off value and attenuates the 

signal higher than the cut-off value. The choice of these filters are based on the observation of the 

data in frequency domain. When the data set is converted to frequency domain, the unwanted 

frequencies can be identified. Cleaning the data for unwanted noise improves the quality of the 

data. The effect of filtering on a “feed” sensor data set from the Fort Knox mine’s SAG mill 

operation is shown in Figures 3.17 and 3.18. Obviously, the data after filtering is more refined and 

reliable for future use. After applying these low-pass filters, the biased data set created for stripping 

circuit sensor (S1) of Pogo mill—with induced negative and positive 10% bias—was compared to 

its clean set. The results are presented in section 3.6. The following figure shows filtering effects 

on noise of a SAG mill “feed” sensor.
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Figure 3.19: “Feed” data re-transferred (ifft) to time domain after filtering.
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The following figures show the effect o f+10% bias that was induced in the middle of a random 

week’s worth of data (S1 sensor). For viewing convenience, the time domain data in seconds is 

converted to hours (Figure 3.20). The time domain observations reveal that there is an observable 

difference around the 80th hour (or after three days), due to the presence of bias. In order to know 

if  it is observable in frequency domain, the data was converted to frequency domain. This is an 

important aspect to observe, since the time domain difference for a week is easy to notice; however, 

in a span of a year, the frequencies of sensor data cycles differ a lot for mineral processing 

operations. If the difference in frequencies is not high in magnitude, it is difficult to observe.

3.6 Results

Figure 3.20: Time domain data comparison, clean vs. biased (+10%).
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It should be noticed that when the data in time domain is converted to frequency domain, it is 

normalized, with the amplitudes and frequencies falling between the values of 0 and 1. In 

frequency domain (Figure 3.21), it appears that the “difference” is very subtle. Several other 

random weeks of observations, also provided the same result. An error of 10% is very high in 

magnitude—Pogo mine prefers an error/bias as low as 2% over the true reading— and if it cannot 

be observed clearly, FFT could be disadvantageous for the stripping circuit data. Results from the 

10% negative bias analysis are plotted in Figures 3.21 and 3.22.

Figure 3.21: Frequency domain data comparison, clean vs. biased (+10%).
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Figure 3.22: Time domain data comparison, clean vs. biased (-10%).
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Figure 3.23: Frequency domain data comparison, clean vs. biased (-10%).
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From the results it is observed that conversion of sensor readings from time domain to 

frequency domain gives the opportunity to observe the data trends in manageable form. This is an 

excellent way to comprehend the data behavior from long periods of time (Pogo strip circuit data 

set is nine-months long). Observation of sensor data in frequency domain also assists in choosing 

proper digital filters for eliminating or attenuating noise. In this context, filtering data for noise 

can be considered as an excellent tool to improve data quality and reliability. Coming to the bias 

observation, unfortunately, the data sets at +10% and -10% bias when compared to clean sets did 

not register major differences; specifically, when observed in frequency domain. The difference is 

obvious in time domain, but is not noticeable in frequency domain.

Unfortunately, the week-by-week analysis of the strip circuit temperature sensor (S1) data did 

not yield consistent results. This is due to the fact that the data did not exhibit periodicity in terms 

of frequency and amplitude, which are the most essential requirement for FFT analysis. Revisiting 

the close-up windows from Figures 3.8 and 3.9 reveals that the periodicity of S1 and S2 readings 

is not consistent. The close-up view of heat sensor between the months April-May 2015 reveals 

the same (Figure 3.24). FFT method might be suitable for cyclical data, for instance, the acoustic 

signals coming from the rotating SAG mill. In this case, due to the continuous rotation of the SAG 

mill, the acoustics register a periodic signal. If the goal is to observe the signal coming from steel 

balls, it can be observed as a unique frequency in the frequency domain.

3.7 Discussion
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Figure 3.24: Heat sensor-Hl at Pogo stripping circuit.

A study conducted by Spencer et al. (1999) is one example where SAG mill operational 

parameters like feed weight, density, rotational speed, and power are observed from the vibration 

signal registered by an accelerometer attached to the mill (Figure 3.3). It can also be observed from 

the figure how periodic the signal is for four revolutions of the mill. In another study, signal 

processing methods like Hilbert transform and wavelet transform were used to study a SAG mill 

acoustics signal to identify a characteristic signal that was used to control a coal bunker level (Kang 

et al., 2006). In these studies the signals exhibited high periodicity whereas in the case of the 

stripping circuit, unfortunately, the characteristic is not consistent. This proved disadvantageous 

for FFT application.

3.8 Conclusions

Signal processing techniques have applications in many industries in general. The techniques 

are powerful tools for analyzing data due to their ability to transform data into more manageable 

forms. FFT is one of those tools that is capable of converting any given sensor data set in time
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domain (signal) into few observable frequencies (frequency domain). Signal processing methods 

are very effective tools where data exhibit periodicity and stationarity. Unfortunately, the tools are 

less effective where the cyclical frequency of sensor data changes very often. In the case of 

industrial process circuits and parameters, the periodicity assumption is violated due to their 

dynamic nature. For this reason, the FFT methods are less effective in observing the data trends 

and bias over longer periods of time. A similar conclusion was reached through the examination 

of a temperature sensor data (S1) in a strip circuit at the Pogo Mine, Alaska. Week-by-week 

observation of the data in time domain and frequency domain revealed that the data did not exhibit 

periodicity to the extent required by signal processing methods (FFT). The goal of the research 

was to find if the artificially induced bias of 10% magnitude (positive or negative) was observable 

compared to a clean set of data. The difference observed for S1 data stream was too subtle. Hence, 

it is concluded that the FFT tools are less effective in achieving the task in this particular case. The 

methods could be effective to some extent for data observed for shorter periods of time that exhibit 

consistent periodicity. The only advantage of the application of FFT methods for highly dynamic 

processes such as in mineral processing circuits is in refining (filtering) the data to more reliable 

forms by the reduction of noise. Digital filtering is a good tool in that respect.
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Chapter 4: Peak-Readings Count and Sensitivity Analysis (PRCSA), an Innovative Data-

Mining Technique in the Detection of Industrial Sensor Calibration Errors

4.1 Abstract

Sensor calibration errors are causing millions of dollars in losses to the mining and mineral 

processing industries, and due to their subtlety, they are hard to identify. It is very difficult to 

develop analytical models based on classical statistical methods for highly non-linear and non- 

stationary processes such as mineral processing operations. Data-mining methods are particularly 

effective in such cases. In this chapter, an innovative method developed to detect calibration errors 

(“bias”) in the sensors of a carbon stripping circuit at Pogo Mine, Alaska is described, i.e., peak- 

readings count and sensitivity analysis (PRCSA). For the purpose of the experimentations with 

PRCSA, a 2% bias was artificially introduced in one of the strip vessel sensors (S1). Several 

“thresholding” strategies were used to filter out undesired data. A strip vessel sensor’s cycle or 

“peak” is defined as the continuous rise and maintenance of its temperature above a certain desired 

value. If the number of readings (nrp) for each peak of a particular sensor data stream above a 

certain “threshold” (Th) is captured, it is expected that in the presence of bias, the variable nrp 

changes dramatically. If this change is captured in terms of certain percentage statistics, bias 

identification is possible. This is the key principle that was exploited with PRCSA. It is observed 

that peak-readings count of biased S1 sensor data— at a threshold (Thsi) value of 280°F and a Thnr 

value greater than 30— increased to 353% when compared to its clean data set (96%). This 

increment is caused by the presence of bias. Likewise, the cumulative number of peaks and 

temperatures were increased to 153% and 156%, respectively, for the biased set when compared 

to the clean set (108% and 109%, respectively). The high increase in percentage change values in 

these statistics indicate the presence of bias. Similar results were observed for negative bias. The
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important finding from the analysis is that the sensitivity of bias at certain temperature thresholds 

is high. For the stripping circuit sensors, it is 280°F (“effective threshold”). Analysis based on 

Sensor-S2 is not presented for space constraints; however, it demonstrated the similar trends. The 

main disadvantage of using PRCSA is that the availability of a “clean data set” for a biased sensor 

data stream for comparison is highly impractical in real-life situations. The PRCSA algorithm’s 

performance is presented at the end of the chapter.

4.2 Introduction

Usage of sensors in monitoring industrial processes has become increasingly prevalent in the 

recent past, and the mining industry is no exception. In fact, a recent study finds that usage of 

sensors in various stages of mining operations—for a moderately sized mine— can create millions 

of dollars in economic value; usage of sensors in mineral processing operations can yield $10-100 

million in added economic value annually (Buxton and Benndorf, 2013). The opposite effect is 

true, however, when sensors suffer from faults and produce erroneous data. For instance, it was 

observed that sensor faults are causing approximately 3-8% production loss to the US oil industry, 

resulting in $20 billion in annual losses to US economy (Wang et al., 2009). Identifying the sensor 

faults, and fixing them through a calibration process can dramatically improve the sensors’ 

accuracy. Such processes can reduce the equipment downtimes, increase production, and improve 

overall safety in the industry. The common type of faults, like noise, failures (flat-outs), stuck-at- 

faults, etc. (gross errors), can easily be detected and fixed through preventive maintenance and 

calibration processes; however, calibration bias related errors are hard to identify. These are the 

errors that are insidious, creep-up over time, and often times indistinguishable if the process is 

particularly non-linear or non-stationary. Data-mining techniques are of significant use in such 

situations. Calibration errors are present in the data often in the form of an added offset value (bias)
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to the original (true) reading. For the purpose of this research, calibration errors are those that 

occur in the form of a bias. Innovative techniques that are based on data-mining concepts are 

explored in this chapter in the pursuit of developing methodology towards finding solutions. Other 

standard errors were thoroughly explored by the previous researchers and the methodology is well- 

established to a large extent. Hence they are out of the scope for this research undertaking.

Sensors that monitor various operations in the carbon stripping circuit in the Pogo Mine, 

Alaska, are chosen for the study. The methods are applied on each sensor individually. Multiple 

sensor relations are not exploited and are out of scope for this chapter. The methodology and 

concepts described in this chapter are the basis for the successive innovative methods presented in 

Chapter 5.

4.3 Literature Review

Data-mining techniques are broadly classified as: “association” based, where relation 

between variables is exploited; “classification” based, where attributes of each class of items are 

studied, “clustering” based, where one or more attributes of the classes are examined and grouped 

together; and “pattern recognition” based, where identifying trends or regular occurrences is used 

(Brown, 2012). There are some other techniques that use a combination of any of the above. The 

“prediction” based techniques use classification, pattern recognition, and association (an example 

is forecasting of a company’s stock performance). The “decision trees” use classification and 

prediction together (an example is, classification of various sensor faults). In general, real world 

problems might require several combinations of these techniques or entirely innovative approaches 

that are specific to a particular problem.
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Data-mining techniques have a wide range of industrial applications, and are generally used 

for extracting knowledge from huge data sets—industrial sensor data sets are one example. For 

highly non-linear and non-stationary processes, however, it is difficult to develop analytical 

models based on classical or fundamental statistical methods. Moreover, sensor validation for such 

processes is equally tough due to production of false alarms in excessive amounts (Kusiak and 

Song, 2009). Researchers Kusiak and Song (2009) were able to develop several algorithms based 

on a clustering technique to detect sensor faults in power plant boilers. Classification techniques 

were used in a “cloud” based application to detect errors in a big sensor data set (Yang et al., 2015). 

A data-mining approach that employed “rough set” theory along with the artificial neural networks 

(ANN) was used by Hou et al. (2006) to identify sensor faults in a heating, ventilating and air 

conditioning (HVAC) system. The rough set theory is effective in the classification of uncertain 

and incomplete information, and any data set that met the criteria could be improved by using the 

rough set methodology. Historical performance data of a HVAC system in a building was used in 

the study. In addition, authors were able to describe several algorithms that were used in this 

connection. Using “decision-trees algorithms,” Baljak et al. (2012) developed a methodology to 

classify sensor faults. The authors based their classification on continuity and frequency of 

occurrence of a fault.

The bulk of the literature is devoted to data-mining approaches for finding gross-errors in 

the sensor data; thus, the motivation in this chapter is to develop innovative methodology to 

identify calibration-related errors. Approaches that employ a combination of data-mining methods, 

i.e., classification, decision-trees, and pattern recognition, are used in the process. Mineral 

processing is an energy intensive process and accounts for 39% of the energy consumed in mineral
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production (U.S. Department of Energy, 2000). The U.S. Department of Energy (DOE) identified 

sensors’ improvements as one of the opportunities to save energy in the mineral industry.

4.4 Introduction to Pogo Mine and Mill

The sensor data that was used for experimentation in this chapter is collected from Pogo 

Mine’s mill facility. Pogo Mine is a major gold producer in Alaska (Figure 4.1). Located on the 

Goodpaster River, 38 miles (61 km) north of Delta Junction in east-central Alaska, the nearest city 

to Pogo is Fairbanks, located approximately 70 miles (112 km) northwest of the mine property 

(Konigsmann et al., 2017). Pogo is an underground operation. Elevations on the property range 

from 1,299 ft (396 m) on the Goodpaster River to over 4,003 ft (1,220 m) on the top of Pogo Ridge, 

an east-west trending ridge. The climate is classified as sub-Arctic with cold, dry winters and 

relatively mild summers (Konigsmann, 2017).

Pogo Mill processes up to 3,500 tons of ore daily. The process flowsheet is shown in Figure

4.2. The Pogo plant’s process flow mainly is comprised of a crusher, semi-autogenous (SAG) mill, 

ball mill, floatation circuit, leaching tanks, carbon-in-pulp CIP circuit (described in detail in 

section 4.4.1), stripping circuit, and an electro-winning circuit. The Pogo plant is a closed-circuit 

operation; all the water used is recirculated and cleaned before it is released into a pond to 

minimize environmental impact. Up to 67% of the gold is recovered through the processing 

facility. A brief description of the process follows (Pogo Mine, 2017).
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Source: Adapted from Pogo Mine, 2017. 

Figure 4.1: Pogo Mine site map.

Ore is fed to a conventional SAG/ball mill grinding circuit. Gravity recovery is the technique 

employed throughout the process. The ball mill circulating load is screened at one (1) mm, and the 

undersize is fed to two 48-inch centrifugal concentrators operating in parallel. The primary gravity 

concentrate is then fed to the intensive cyanidation circuit with the leach solutions reporting 

directly to electro-winning for final gold recovery. Primary gravity tailings are returned to the 

grinding circuit via the cyclone feed pump-box while the intensive leach residues are reground and 

pumped into the flotation concentrate leach circuit. Primary gravity gold concentrates are
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intensively leached on a batch basis; the typical leach residence times are approximately 14 hours. 

Grinding cyclone overflow reports to a sulphide rougher flotation circuit, which produces a 10% 

weight concentrate. The concentrate from the floatation circuit is then reground to 80% passing 10 

microns using stirred media detritors, prior to being leached in a conventional cyanidation circuit 

followed by gold recovery in an eight cell carousel CIP circuit. The particles then enter a stripping 

circuit. A detailed description of the process can be found in the subsequent sections.
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Figure 4.2: Pogo Mine-gold processing flow sheet.

4.4.1 C arbon-in-P ulp  (C IP) C ircu it

The purpose of the CIP process is to allow the gold previously dissolved in the leach tanks 

to be adsorbed by activated carbon— activated carbon is a form of charcoal that has a large number 

of low volume pores that help in the adsorption of the fine particles. During the CIP process, the
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gold particles are slowly adsorbed onto the carbon particles, and eventually extracted in the 

subsequent “stripping” process. The CIP circuit is designed to allow adequate time for the 

absorption process. The particle-bearing slurry spends 30 minutes in each CIP tank. The Pogo CIP 

circuit has eight such tanks (Figure 4.3). The slurry spends four hours in the circuit, and 

approximately 300 to 600 ounces of gold is adsorbed per ton of activated carbon used.

Source: Adapted from Pogo Mine, 2016. 

Figure 4.3: CIP circuit at Pogo Mine.

4.4.2 Carbon S trip p in g C ircuit

The Pogo stripping circuit in pictures is shown in Figure 4.4. Pogo stripping circuit consists 

of two strip vessels that work in tandem. While one vessel (vessel-1) is being loaded with gold 

bearing activated carbon, the other previously loaded vessel (vessel-2) is operated by circulating a 

solution called “elute.” The temperature and pressure of elute is maintained approximately at 

280°F and 65 PSIG, respectively, to facilitate maximum liberation of gold particles. An elute is a
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water based solution with 1% sodium hydroxide and 0.1% sodium cyanide (Fast, 2016). The 

process is called “pressurized Zadra stripping.” A typical pressurized Zadra stripping cycle lasts 

for 11 hours and consists of the following stages: loading the vessel (1 hr), circulating elution (8

hrs), carbon cooling (1 hr), and unloading carbon from the vessel (^ hr) (Table 4.1).

Table 4.1: Operating schedule-pressure Zadra stripping.

Operation Solution Time
Load Column Transfer Water 90 minutes
Elution 0.1% NaCN, 1% NaOH 480 minutes
Carbon Cooling Fresh Water 60 minutes
Unload Column Transfer Water 30 minutes

TOTAL 11 hours

Source: Fast, 2016.

While the used carbon is discharged, the “pregnant leach” solution is pumped out. The same 

process is repeated with strip vessel-2. The pregnant leach solution (PLS), on its way out from the 

strip vessel, is cooled off by heat exchangers 3 and 4 (Figure 4.5). When the PLS reaches the 

electro-wining circuit, the gold particles are removed and the solution, now called “barren 

solution,” is reheated by a boiler with the aid of heat exchangers 1 and 2. The reheated barren 

solution is then recirculated through strip vessels. A glycol solution is circulated between the boiler 

and heat exchangers as a medium of heat exchange. Sensors are strategically placed at various 

parts of the circuit to measure temperatures, flow rates, etc. It is very important to maintain 

temperatures in the strip vessels at certain levels (270-280°F) for certain periods of time to 

maximize gold separation. A false “optimal temperature” will result in either poor gold recoveries 

or higher costs. Thus, monitoring the temperatures, and identifying sensor errors became crucial. 

S1 and S2, the temperature sensors for strip vessels 1 and 2, respectively, are the two important 

sensors in this context, and therefore are the focus of this chapter.
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Figure 4.4: Pogo stripping circuit in pictures.
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Figure 4.5: Pogo stripping circuit schematic diagram with sensor placements.



The methodology involves the following stages: data collection, data preparation, description 

of algorithms, and a detailed account on peak-readings count and sensitivity analyses.

4.5 Methods and M aterials

4.5.1 D ata C ollection

The raw sensor data was collected at 10-min average intervals from the Pogo mill database. 

Various sensors of interest and their data readings is summarized in Table 4.2. A 10-min average 

or aggregation helps save computer memory and the results are not significantly affected at that 

level of aggregation (Arku and Ganguli, 2014). The data was collected for a period of nine (9) 

months: Jan 1, 2015 through September 31, 2015. The visual format of various sensor raw data 

streams with close-up views can be seen in Figures 4.6 through 4.11. It should be noted that sensors 

H3 and H4 are not part of the study in this chapter. Various descriptive statistics for the sensor 

data are given in Table 4.3. The “data cleansing cut-off value (Thcieanse)” column in Table 4.3, 

refers to the cut-off value based on which undesired and corrupted data were removed (cleaned). 

This process is explained in the data preparation section.

Table 4.2: A snapshot of raw sensor data collected at 10-min average intervals.

Strip vessel 
sensors

Barren flow 
sensor

Heat exchanger 
sensors

Glycol flow 
sensor

Record # Time S1 S2 BARNFL H1 H2 GLYFL
(°F) (°F) (GPM) (°F) (°F) (GPM)

1 1/1/15 12:00 AM 90.5 261.6 35.4 299.4 300.7 204.0
2 1/1/15 12:10 AM 90.4 261.6 35.4 291.7 293.0 203.0
3 1/1/15 12:20 AM 90.3 261.6 35.3 284.3 285.4 200.0
4 1/1/15 12:30 AM 90.1 233.9 35.3 277.3 278.3 201.1
5 1/1/15 12:40 AM 90.0 219.2 35.2 270.5 271.5 202.3
6 1/1/15 12:50 AM 89.8 216.9 35.2 264.1 265.1 204.6
7 1/1/15 1:00 AM 89.7 215.3 35.2 258.0 258.8 204.4
8 1/1/15 1:10 AM 89.6 204.2 35.1 252.1 252.9 205.0
9 1/1/15 1:20 AM 89.4 192.4 35.1 246.5 247.3 201.9
10 1/1/15 1:30 AM 89.3 189.8 35.0 241.3 242.0 201.0

108



Figure 4.6: Strip vessel-1 heat sensor (S1).

Figure 4.7: Strip vessel-2 heat sensor (S2).
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Figure 4.8: Heat exchanger-1 sensor (H1).

Figure 4.9: Heat exchanger-2 sensor (H2).
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Figure 4.10: Barren flow sensor (BARNFL).
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Figure 4.11: Glycol flow sensor (GLYFL).
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Table 4.3: Descriptive statistics for the sensor data collected.

Sensor
Measuring 

parame te r/variable
Unit Maximum Minimum Mean Median

Standard
deviation

Data cleansing 
cut-off value

{Th cleanse)

S1
Strip vessel-1 
temperature

°F 302.7 52.1 150.1 104.9 78.3 150

S2
Strip vessel-2 
temperature

°F 304.3 57.7 148.8 105.2 77.6 150

H1
Heat exchanger-1 
outlet temperature

°F 334.0 50.0 144.9 82.7 96.7 250

H2
Heat exchanger-2 
outlet temperature

°F 336.2 56.3 263.1 296.0 63.6 250

BARNFL Barren solution flow GPM 302.7 0.0 40.4 35.0 17.9 20

GLYFL Glycol flow GPM 229.7 0.0 209.8 214.6 18.2 150

4.5.2 A ssum ptions and scope

Calibration errors are present in data often in the form of an offset value (bias) added to the 

original or true reading; see Equation (4.1). Bias is the common error associated with sensors and 

often a hard one to identify; hence it is the interest of this research. Other common errors like gross 

errors are out of the scope of this research. For the purpose of this experimentation, it is assumed 

that the data collected from the Pogo Mine is devoid of errors, hence the set is deemed as a “clean 

set.”

Observed or biased reading, xttas = True reading (xtrue)+bias (eAbias)  (4.1)

Bias is expressed as a percentage over the true reading value. It is artificially induced in the 

clean data set. A +2% bias indicates 2% of the true reading was added as bias to the true reading. 

Likewise -2% expresses adding -2% of the true reading; see Equation (4.1). Calibration errors are 

subtle and can be as low as 2% over the true reading. Identifying the bias at such low magnitudes 

is preferred by the industries. Pogo Mine specifically requested that errors be detected at the ±2%
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level. Only S1 and S2 sensors are analyzed with the methods described. Bias is introduced only in 

one sensor (S1) at a time in this project. Identifying the bias in several sensors at a time in a multi­

sensor environment is out of the scope for this research. Due to the space constraints and to avoid 

redundancy, the results from the S1-based analysis and validation only are presented in this 

chapter.

4.5.3 D ata P reparation

4.5.3.1 Program m ing and Software

The sheer volume of the data collected, the subsequent mathematical calculations and

repetitions to be performed, statistical analyses to be conducted, and graphical presentation of the

results, demand for the usage of a mathematically-intensive software package. Matlab was selected 

as the software of choice. Matlab has various discipline-specific toolboxes that can be added 

according to the need, i.e., optimization, signal processing, simulations, neural nets, etc.

The goal of the project was to detect an artificially introduced bias (+2% or -2%). For the 

purpose of conducting bias identification tests using algorithms, the bias was introduced at a 

random time period in S1. Once the bias was introduced, all following data for the sensor also 

contained the bias. The assumption was that once a bias occurred, the sensor remained 

“uncalibrated” until the error was detected. Thus, if  a -2% bias was injected into S1 on March 12, 

all S1 data starting March 12 was corrupted with a -2% bias. Algorithms were designed to detect 

the bias as soon as possible. The location of the error was systematically varied from Jan 1, 2015 

through September 31, 2015. A series of cut-offs or thresholds were applied to cleanse the data of 

unreliable or possibly corrupted readings. The algorithm description section has the detailed 

account of the process.
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Cleansing Threshold (Thcieanse):

The first process in the data preparation is to remove or clean undesired or corrupted data. 

Usually these are sensor data readings below a certain minimum value (“cleansing threshold”) that 

reflects when a piece of equipment is down for maintenance or idling. The last column of Table

4.3 provides these values, which were used as cleansing thresholds for each sensor data stream.

Peak (P) and Threshold (Th):

For the purposes of this research, a strip vessel cycle or “peak” is defined as the continuous 

rise and maintenance of a sensor’s temperature above a certain desired value. According to Pogo 

Mine, the desirable range for the strip vessels’ operational temperature is between 270°F and 

280°F. The data stream is filtered for the temperature sensors using a “threshold (Th)” value to 

define a cycle or peak. As described previously, the strip vessel temperatures are cyclical in nature. 

A peak is assumed to start (peak start-time) when the temperature rises above the threshold. It is 

assumed to have ended when the temperature goes below the threshold (peak end-time) (Figure 

4.12).

4.5.3.2 B asic C oncepts

9/1 /15  12:00 A M  9/8 /15  12:00 A M  9 /15 /15  12:00 A M

Figure 4.12: Cycles (peaks) vs thresholds in a clean set of S1 sensor data.
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Unlike a traditional “cycle,” which is typically associated with positive and negative 

components, a peak, for the purpose of the research, can be understood as a truncated form of a 

cycle (Figure 4.12). The readings below the threshold are ignored in this research. Figure 4.12 

shows the appearance of peaks above the 250°F threshold.

4.5.3.3 A lgorithm  D escription

Step 1: The algorithm reads the sensor raw data (readings) along with the corresponding 

time of observations (Table 4.2). All other input parameters that include various thresholds and 

cut-offs are also read simultaneously.

Step 2: The data are cleaned for undesired or corrupted values based on the given cleansing

cut-off values (Thcleanse).

Step 3: The algorithm creates a biased data set by adding the bias at the given percentage.

Step 4: The algorithm reads each and every measurement of the chosen sensor and checks 

them against the threshold (Thsensor). If it is for S1, the threshold is Ths i. As described previously, 

if  a reading is above the Th for a continuous period of time (t), the algorithm identifies it as a peak 

(P) and captures the number of readings that constitute a peak (nrp) along with the number of peaks 

(nP) simultaneously. While the peaks are captured, the cumulative temperature per peak (Tpeak-cum) 

and the average temperature per peak (Tpeak-Ave) are also calculated. The variables cum nrp, Tpeak- 

cum, and cum T (cumulative temperature) have proven to be good indicators of bias.

Step 5: The results from the algorithm are written to an excel spreadsheet where plotting of 

various graphs is performed.
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The variable nrp for the clean data set exhibits certain trend (Figure 4.12). In the presence of 

bias, the variable nrp will change dramatically. This is the underlying principle that is exploited in 

peak-readings count analysis (PRCA) and peak-readings sensitivity analysis (PRSA)—together 

called, peak readings count and sensitivity analysis (PRCSA)—which is explained in detail in the 

corresponding sections. The flow chart for the algorithm is shown in Figure 4.13.

Read sensor raw data and other inputs

Cleanse the data using cleansing cut-offs (Thdeame)

Prepare “biased” data by adding % bias at given date

Capture cycles 
(peaks), count no. of 

readings per peak, and 
calculate temperature 

per peak

Conduct peak-readings count analysis (PRCA)^M
f

■r 1
Conduct peak-readings count sensitivity analysis (PRCSA)^ ^ B

r

Observe 
for bias

Plot the specific trends in 
graphs

END

Figure 4.13: Flow chart for the peak-readings count and sensitivity analysis (PRCSA).
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In order to find the bias present in sensor data using PRCA, the following assumptions are 

made and procedure is used.

(i) Assume the sensor data collected is devoid of errors. In an industrial setting, this can be 

achieved by start with a proper calibration. For the purpose of this analysis, it is assumed that the 

data was collected from calibrated sensors. The rationale is if  the behavior of clean data is observed 

in terms of patterns, it can be compared with biased data to detect errors. This means that the clean 

set serves as a baseline to find bias.

(ii) Create another set of data by inducing bias on a known date, just to mimic the “biased data 

set.” Compare the biased set with the clean set. The change in the number of readings per peak of 

S1 data is obvious from the example shown in Figure 4.14. In the example, a 10 % bias was 

introduced on 5/17/15 12:40 PM and the bias stayed to the end of the set, i.e., 9/30/15.

(iii) Equations (4.2), (4.3) and (4.4) can be used to calculate the percentage change in peak- 

readings count, percentage change in cumulative number of peaks, and percentage change in 

cumulative temperature per peak, respectively, for a preset threshold (Th). The latter two measures 

are good indicators of bias.

4.5.4 P ea k -R ea d in g s  C o u n t A n a ly sis  (P R C A )
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cum nrp biased - cum nrp clean
cum nrp change% = -------------------------    (4.2)

cum nrp clean

where

cum nrp change% is percentage change in cumulative number of peak-readings count, 

cum nrp biased is cumulative number of readings per peak when bias is present, and 

cum nrp clean is cumulative number of readings per peak when data is clean.

cum nP biased - cum nP clean
cum nP change% = -------------------  —----------------  (4.3)

cum nP clean

where

cum nP change% is percentage change in cum number of peaks, 

cum nP biased is cumulative number of peaks when bias is present, and 

cum nP clean is cumulative number of peaks when data is clean.

cum T biased - cum T clean
cum Tchange% = -------------------- ---------------

cum T clean

where

cum Tchange% is cumulative percent change in temperature, 

cum T biased is cumulative temperature of all peaks combined when bias is present 

cum Tclean is cumulative temperature of all peaks combined for clean data.

From the example depicted in Figure 4.14, the change in the number of peaks (cum nP) —  

“before the bias is induced” plus “after the bias is induced”— and the reading-counts (cum nrp) is 

quite evident at a ThS1 of 270°F. The cum nP value (past the threshold) for the clean set of data is 

nine, whereas for biased data, it is twelve. Specifically, there is no percentage change in the nP 

value in either of the sets “before the bias is introduced,” whereas after the bias is introduced in 

one set, the number of peaks for that biased set increased by four. This is the clear indication of
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positive bias, whereas the reduced number of cum nrp indicates negative bias. The findings and 

graphs from the PRCA are presented in the results section.

Thresho ld  270°F

9/1/15 12:00 A M  9/8/15 12:00 A M  9/15/15 12:00 A M

Figure 4.14: Bias effect on Sl-sensor data set at various thresholds.

4.5.5 P eak-R eadings C ount and Sen sitiv ity  A nalysis (PRCSA)

It was observed that the percentage change in the total number of peak-reading counts (cum 

nrp change%) and peak cumulative temperatures (cum Tchange%), are more sensitive to certain 

“thresholds” than others. The change is too high for the positive bias and too low for the negative 

bias. For instance, from the Figure 4.14, it can be observed that the difference between cumulative 

number of peaks in biased and clean data sets at a threshold of 270°F (four readings) is more than 

the difference registered at a threshold of 260°F (zero readings). At a threshold of 280°F, the 

difference is five which is even higher than the differences registered for previous thresholds. This 

means that the sensitivity of the difference (cum nP change%) is higher at Th=280°F— compared 

to other thresholds. Identifying the threshold (Thsensor) that is more sensitive to bias can make the 

entire process much easier to perform. The sensitivity analysis is aimed at finding such threshold 

values. Likewise, peaks that have readings more than a preset number, i.e., number of peak- 

readings threshold (Th„r), exhibited more sensitivity to bias. Using Equations (4.2), (4.3), and (4.4)
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at different Thnr and Thsensor values, bias was found in terms of sensitivity statistics. The findings 

are presented in the results sections.

The PRCSA is achieved using the following steps.

(i) Find a threshold at which there is a greater percentage of change between biased and the 

clean data sets in terms of these three key statistics, i.e., cumulative readings-count (cum nrp 

change%), cumulative no. of peaks (cum nP change%) and cumulative temperature (cum T 

change%).

(ii) Establish a threshold for the no. of readings per peak (Thnr) and observe all the three key 

statistics from (i) again. Increase the Thnr (30<40<50) and observe the same. The intent is to find 

at what values of Thnr all three statics are highly sensitive compared to other values.

(iii) For the thresholds (Thnr) established in step (ii), conduct sensitivity analysis. From the 

experimentation, the sensitivities at a value of 30 are found higher. This threshold is called as 

effective threshold (eff Thnr).

4.6 Results

4.6.1 P eak-R eadings C ount A nalysis (PRCA)

The analysis is basically a comparison between the clean data set and biased data set (+2% 

bias) for sensor S1. The results from the analysis are shown in Figures 4.15 through 4.17. In the 

figures, the number of readings per peak (nrp ) values are represented as flat lines rather than points 

to show where the step change in the values occur. It should also be noted that the values are 

aggregated to 1-hour averages to observe the broad trends.

120



121

Figure 4.15: Bias effect on S1-sensor data at 260°F threshold (Thsi).
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Figure 4.16: Bias effect on S1-sensor data at 270°F threshold (Thsi).
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It can be observed from the Tables 4.4 through 4.9 and Figures 4.18 through 4.23 that the 

sensitivities of peak-readings counts and corresponding cumulative temperatures are high at 280°F 

threshold. The reader should notice that the figures and tables arranged in pairs convey the same 

information (Example: Table 4.4 and Figure 4.19).

The peak-readings count sensitivity analysis (PRCSA) is conducted on the results obtained 

from the peak-reading count analysis (PRCA). The results are as follows. The results that 

constitute the effective threshold for S1 (eff Thsi) are summarized in Tables 4.10 through 4.12 and 

shown in Figures 4.24 through 4.26. Again, the reader should notice that the figures and tables 

arranged in pairs convey the same information (Example: Table 4.10 and Figure 4.24).

4.6.2 P ea k -R ea d in g s  C o u n t S en s itiv ity  A n a ly sis  (P R C SA )
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CLEAN DATA USED

O
Table 4.4: Cumulative peak-readings count (clean).

Sensor-Sl 
readings 

threshold (°F)

Threshold for 
'no. of 

readings/peak'

Cum peak-readings count
% Change

Period 1 Period 2

Thsl Thnr cum nr P cum nr P cum nr P change%
260 30 3479 3271 -6

270 30 1301 1584 22

280 30 144 282 96

BIASED DATA USED

O
Table 4.5: Cumulative peak-readings count (biased).

Sensor-S1 
readings 

threshold (°F)

Threshold for 
'no. of 

readings/peak'

Cum peak-readings count
% Change

Period 1 Period 2

ThSI Th nr nr P nr P nr Pchange%
260 30 3514 3875 10

270 30 1180 2072 76

280 30 144 653 353

Figure 4.19: Cumulative peak-readings count (clean). Figure 4.18: Cumulative peak-readings count (biased).

Note: Period-1 denotes both sets clean, while Period-2 denotes one set still clean while the other is +2% biased (see Figure 4.14)
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CLEAN DATA USED BIASED DATA USEDO
Table 4.6: Cumulative no. of peaks count (clean).

Sensor-Sl 
readings 

threshold (°F)

Threshold for 'no. 
of readings/peak'

Cum pe ak-re adings count
% Change

Period 1 Period 2

Th si Thnr cum nrP cum nrP cum nPchange%
260 30 3919 3815 -3
270 30 2323 2572 11
280 30 665 969 46

Table 4.7: Cumulative no. of peaks count (biased).

Sensor-S1 
readings 

threshold (°F)

Threshold for 'no. 
of readings/peak'

Cum peak-readings count
% Change

Period 1 Period 2

Th si Th nr cum nP cum nP cum nPchange%
260 30 3919 4239 8
270 30 2258 2934 30
280 30 658 1667 153

T h re s h o ld  fo r  n o . o f  read ings/peak, Thnr>iO
5000

5  4000 3815 3919

3000

2000

1000

Z3 IL
2323

969
665

-3 11 46

■ Period  2

■ Period  1

■ %  Change

260 270

S1 Readings th reshold , Ths] (°F )

280

Figure 4.21: Cumulative no. of peaks count (clean). Figure 4.20: Cumulative no. of peaks count (biased).

Note: Period-1 denotes both sets clean, while Period-2 denotes one set still clean while the other is +2% biased (see Figure 4.14)
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CLEAN DATA USED BIASED DATA USED

O
Table 4.9: Cumulative temperature (clean).

F>
Table 4.9: Cumulative temperature (biased).

Sensor-Sl 
readings 

threshold (°F)

Threshold for 
'No. of 

readings/peak'

Cum temperature 
(x1000)

% Change
Period 1 Period 2

Th v, Thnr cum T cum T cum T change%
260 30 1070 1049 -2

270 30 645 719 11

280 30 190 279 47

Sensor-S1 
readings 

threshold (°F)

Threshold for 
'no. of 

readings/peak'

Cum temperature 
(x1000)

% Change
Period 1 Period 2

ThS1 Th nr cum T cum T cum T change%
2 60 30 1070 1181 10

2 70 30 627 830 32

2 80 30 188 481 156

2000

1000

T h re s h o ld  fo r  n o . o f  read ings/peak, Hi„r>30

1181
1070

H  627
481

1SS 156
-3 I32 ■

260 270 280
SI Readings threshold,Ths , ( F )

l Period 2 

I Period 1 

I % Change

Figure 4.23: Cumulative temperature (clean) Figure 4.22: Cumulative temperature (biased)

Note: Period-1 denotes both sets clean, while Period-2 denotes one set still clean while the other is +2% biased (see Figure 4.14)



Table 4.10: Cumulative peak-readings count, clean vs biased (Thsi=280°F).

Data-set

Sensor-S1 
readings 

threshold (°F)

Threshold for 
'no. of 

readings/peak'

Cum peak-readings count
% Change

Period 1 Period 2

Th si Th nr cum nr P cum nr P cum nr P change%
Clean 280 30 144 282 96
Biased 280 30 144 653 353

Figure 4.24: Cumulative peak-readings count, clean vs biased (Ths i=280°F).
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Table 4.11: Cumulative no. of peaks count, clean vs biased (Thsi=280°F).

Data-set

Sensor-S1 
readings 

threshold (°F)

Threshold for 'no. 
of readings/peak'

Cum no. of peaks
% Change

Period 1 Period 2

Th s i Th nr cum nP cum nP cum nP change%
Clean 280 30 665 969 46
Biased 280 30 658 1667 153

ThS]>2W) and lh n>3()
1800

£ 
-i—T 1600

C 1400

op 1200
'SoS
P

1000

05 800
OCL 600

u
400
200

1667

969

s' r- {->665 658

153
46

Period 1 Period 2 % Change

i Clean 

i Biased

Figure 4.25: Cumulative no. of peaks count, clean vs biased (Ths i=280°F).

129



Table 4.12: Cumulative Tem perature, Clean vs Biased (Thsi=280°F).

Data-Set

Sensor-S1 
readings 

threshold (°F)

Threshold for 
’no. of 

readings/peak’

Cum temperature 
(x1000)

% Change
Period 1 Period 2

Th si T h nr cum T cum T cum T  change%
Clean 280 30 190 279 47
Biased 280 30 188 481 156

Thsl>2S0 and Th„,
orciA

ST
— 500 o0
X 400
P

1  3000 c_
1  200 

O 100

0

481

279 ■ Clean

190 188
■ Biased

1 JO

Period 1 Period 2 % Change

Figure 4.26: Cumulative Temperature, Clean vs Biased (Ths i=280°F).

4.7 Discussion

It can be observed from the figures that the cumulative number of peaks (cum nP) are 

increasingly sensitive to increasing temperature thresholds (260°F<270°F<280°F). In order to 

ensure the difference exist between clean and biased data sets in the presence of bias, cumulative 

temperature per peak (Tp) values were compared. There is dramatic change in Tp in the presence 

of bias. Similar trends were observed when cum nP values of clean and biased data sets were 

compared. For the purpose of the analysis, the plots (Figures 4.15 through 4.17) were divided into 

two parts, i.e., Part-1 which consists of two clean data sets before the bias was introduced (on
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5/17/15), and Part-2 which consists of one clean set and one biased set. In this arrangement, the 

bias effect in terms of change in the peak-readings count, number of peaks, and cumulative 

temperatures can be observed clearly.

In Figures 4.15 through 4.17, the biased set has registered a higher number of nrp or nP values 

than the clean set; however, the sensitivities varied. Visually, it is easily observed that at 280°F 

threshold, biased data had more readings count, peaks count, and cumulative temperature counts 

than the clean data set when compared to other thresholds, i.e., 270°F and 280°F; however, one 

observation seems anomalous. Even though the cumulative number of peaks for biased data in 

some places seems higher than that of clean data, the cumulative temperature per peak values 

seemed to be dipping low. This is because there were many peak-readings registered to make up 

for that cumulative temperature value. Dividing the cumulative temperature value (sum of all 

readings in a peak) with the high number of readings make the temperature per peak value appear 

very low. This seems inconsistent, and contrary to the rise in overall temperature in the biased set 

(compared to clean set); however, this phenomena indicates the presence of more number of 

readings per peak. In this context, it can be observed that cumulative temperature of a peak (cum 

T) is a good measure of sensitivity rather than temperature per peak value (Tp ). This is the reason 

the measure was chosen for the sensitivity analysis (PRCSA).

It was observed from Table 4.10 and Figure 4.24 that the change in peak-readings count for 

biased data— at a Thsi value of 280°F and Thnrvalue greater than 30 has increased to 353% (Part- 

2) when compared to clean data (96%) in Part-1. This sudden increase could be attributed to the 

presence of bias. Likewise, the cumulative peaks and the temperatures increased to 153% and 

156%, respectively for biased Part-2. For clean data they stayed at 108% and 109%, respectively 

(see Tables 4.11 and 4.12 and their corresponding Figures 4.25 and 4.26). The high increase in the
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percentage change indicates the presence of bias. Similar results were observed for negative bias 

analysis. Sensor (S2) data results are not presented for space constraints; however, the results 

demonstrated similar trends.

4.8 Conclusions

Calibration errors or biases of small magnitude (±2% of a sensor’s true reading) are hard to 

detect through classical statistical methods that are otherwise applied to detect gross errors. On the 

other hand, sophisticated digital signal processing methods like Fast Fourier Transform (FFT) 

depend heavily on periodicity of a sensor signal. Data-mining methods seem to be a better choice 

by contrast due to their flexibility and ability to work on large data sets; however, innovative 

methods that are tailored to tackle calibration-related errors like bias are needed. In this connection, 

peak-readings count analysis (PRCA) and peak-readings count sensitivity analysis (PRCSA) were 

developed to observe effects of bias on a clean set of sensor data (S1 data). While PRCA captures 

various key statistics like number of readings in a peak, number of peaks, cumulative temperature 

for the biased and clean sets, PRCSA tests the sensitivity of these statistics at certain thresholds. 

The sensitivity statistics showed that there is a dramatic increase in some key statistics, i.e., peak- 

readings count, cumulative number of peaks and cumulative temperature values for biased data, 

when compared to clean data. The change in these statistics is more drastic, particularly where 

number of consecutive peak-readings is greater than 30. This is a key finding from the analyses 

that is worth exploring more on future data. Chapter 5 provides a detailed account on such ventures.

Identification of sensor biases in a short span of time after they occur is important. If they could

be identified within a shorter span of time (few weeks), corrective actions could be taken

immediately. Obtaining a clean set of data from frequent calibration processes might cause

disruption to the production process and is therefore not practical for industrial operators. This is
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one major disadvantage when using PRCSA method, due to the requirement of clean set of data 

for the sensor of bias observation. Exploiting sensor interrelations might be viable option. In this 

chapter, the methods are applicable to a single sensor scenario only.
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Chapter 5: Multiple Ratio Function Analysis with Automation (MRFAA) in the Detection

of Industrial Sensor Calibration Errors

5.1 Abstract

Sensor calibration errors are causing millions of dollars in losses in the mining industry, and 

due to their subtlety, are hard to identify - “bias” is one of such error. In this chapter, an innovative 

data-mining approach, multiple ratio function analysis with automation (MRFAA) that was used 

in the detection of bias (±2%) in the strip vessel sensor (S1) of a carbon stripping circuit in the 

Pogo Mine is described. Several data-mining based innovative methods developed and their 

corresponding algorithms that exploit the sensor interrelations (“ratio functions”) also are 

described. At first, a single test— S1 to Heat ratio— algorithm, multiple ratio function analysis 

(MRFA), was developed. The algorithm has disadvantages in finding bias when strip vessels’ 

temperatures ran below a certain threshold, i.e., “truncation threshold.” A “dynamic thresholding 

strategy” with the addition of automated tests improved MRFA performance. The resultant 

algorithm (MRFAA) was capable of conducting multiple tests along with a “Combined test.” The 

Combined test has 95% success rate of finding +2% bias after it was induced (True alarms). The 

time taken by all the tests together to find the artificially induced bias, i.e., time till find days 

(TTFD), was within 39.5 days for 75% of the time, at the cross-score threshold of 5 and 6. Among 

the individual tests, the “Heat ratio test” is the better test; it is able to find the induced bias within 

33 days for 75% of the time, at the cross-score thresholds of 5 and 6. The heat ratio, “average 

value” and “maximum value” tests showed comparable results; however, BARNFL and GLYFL 

ratio tests did not perform well due to their poor response to the dynamic thresholding strategy. 

The negative bias analysis also produced similar results overall. Identifying bias at such lower
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magnitudes (±2%) is a hard task to achieve, and with the MRFAA algorithm, it is identified within 

approximately one month span of time for 75% of the time, which is very valuable to the industry.

5.2 Introduction

Usage of sensors in monitoring industrial processes has become increasingly prevalent in the 

recent past, and the mining industry is no exception. In fact, a recent study finds that usage of 

sensors in various stages of mining operations—for a moderately sized mine— can create millions 

of dollars in economic value; usage of sensors in mineral processing operations can yield $10-100 

million in added economic value annually (Buxton and Benndorf, 2013). The opposite effect is 

true, however, when sensors suffer from faults and produce erroneous data. For instance, it was 

observed that sensor faults are causing approximately 3-8% production loss to the US oil industry, 

resulting in $20 billion in annual losses to US economy (Wang et al., 2009). Identifying the sensor 

faults, and fixing them through a calibration process can dramatically improve the sensors’ 

accuracy. Such processes can reduce the equipment downtimes, increase production, and improve 

overall safety in the industry. The common type of faults, like noise, failures (flat-outs), stuck-at- 

faults, etc. (gross errors), can easily be detected and fixed through preventive maintenance and 

calibration processes; however, calibration bias related errors are hard to identify. These are the 

errors that are insidious, creep-up over time, and often times indistinguishable if the process is 

particularly non-linear or non-stationary. Data-mining techniques are of significant use in such 

situations. Calibration errors are present in the data often in the form of an added offset value (bias) 

to the original (true) reading. For the purpose of this research, calibration errors are those that 

occur in the form of a bias. Innovative techniques that are based on data-mining concepts are 

explored in this chapter in the pursuit of developing methodology towards finding solutions. Other
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standard errors were thoroughly explored by the previous researchers and the methodology is well- 

established to a large extent. Hence they are out of the scope for this research undertaking.

Sensors that monitor various operations in the carbon stripping circuit in the Pogo Mine, 

Alaska, were chosen for the study. The multi-sensor environment was exploited in the hope of 

finding induced bias in strip vessel temperature sensor S1.

5.3 Literature Review

Data-mining techniques are broadly classified as: “association” based, where relation 

between variables is exploited; “classification” based, where attributes of each class of items are 

studied, “clustering” based, where one or more attributes of the classes are examined and grouped 

together; and “pattern recognition” based, where identifying trends or regular occurrences is used 

(Brown, 2012). There are some other techniques that use a combination of any of the above. The 

“prediction” based techniques use classification, pattern recognition, and association (an example 

is forecasting of a company’s stock performance). The “decision trees” use classification and 

prediction together (an example is, classification of various sensor faults). In general, real world 

problems might require several combinations of these techniques or entirely innovative approaches 

that are specific to a particular problem.

Data-mining techniques have a wide range of industrial applications, and are generally used 

for extracting knowledge from huge data sets—industrial sensor data sets are one example. For 

highly non-linear and non-stationary processes, however, it is difficult to develop analytical 

models based on classical or fundamental statistical methods. Moreover, sensor validation for such 

processes is equally tough due to production of false alarms in excessive amounts (Kusiak and 

Song, 2009). Researchers Kusiak and Song (2009) were able to develop several algorithms based
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on a clustering technique to detect sensor faults in power plant boilers. Classification techniques 

were used in a “cloud” based application to detect errors in a big sensor data set (Yang et al., 2015). 

A data-mining approach that employed “rough set” theory along with the artificial neural networks 

(ANN) was used by Hou et al. (2006) to identify sensor faults in a heating, ventilating and air 

conditioning (HVAC) system. The rough set theory is effective in the classification of uncertain 

and incomplete information, and any data set that met the criteria could be improved by using the 

rough set methodology. Historical performance data of a HVAC system in a building was used in 

the study. In addition, authors were able to describe several algorithms that were used in this 

connection. Using “decision-trees algorithms,” Baljak et al. (2012) developed a methodology to 

classify sensor faults. The authors based their classification on continuity and frequency of 

occurrence of a fault.

The bulk of the literature is devoted to data-mining approaches for finding gross-errors in 

the sensor data; thus, the motivation in this chapter is to develop innovative methodology to 

identify calibration-related errors. Approaches that employ a combination of data-mining methods, 

i.e., classification, decision-trees, and pattern recognition, are used in the process. Mineral 

processing is an energy intensive process and accounts for 39% of the energy consumed in mineral 

production (U.S. Department of Energy, 2000). The U.S. Department of Energy (DOE) identified 

sensors’ improvements as one of the opportunities to save energy in the mineral industry.

5.4 Introduction to Pogo Mine and Mill

The sensor data that was used for experimentation in this chapter is collected from Pogo

Mine’s mill facility. Pogo Mine is a major gold producer in Alaska (Figure 5.1). Located on the

Goodpaster River, 38 miles (61 km) north of Delta Junction in east-central Alaska, the nearest city

to Pogo is Fairbanks, located approximately 70 miles (112 km) northwest of the mine property
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(Konigsmann et al., 2017). Pogo is an underground operation. Elevations on the property range 

from 1,299 ft (396 m) on the Goodpaster River to over 4,003 ft (1,220 m) on the top of Pogo Ridge, 

an east-west trending ridge. The climate is classified as sub-Arctic with cold, dry winters and 

relatively mild summers (Konigsmann, 2017).

Source: Adapted from Pogo Mine, 2017. 

Figure 5.1: Pogo Mine site map.

Pogo Mill processes up to 3,500 tons of ore daily. The process flowsheet is shown in Figure

5.2. The Pogo plant’s process flow mainly is comprised of a crusher, semi-autogenous (SAG) mill,
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ball mill, floatation circuit, leaching tanks, carbon-in-pulp CIP circuit (described in detail in 

section 5.4.1), stripping circuit, and an electro-winning circuit. The Pogo plant is a closed-circuit 

operation; all the water used is recirculated and cleaned before it is released into a pond to 

minimize environmental impact. Up to 67% of the gold is recovered through the processing 

facility. A brief description of the process follows (Pogo Mine, 2017).

Ore is fed to a conventional SAG/ball mill grinding circuit. Gravity recovery is the technique 

employed throughout the process. The ball mill circulating load is screened at one (1) mm, and the 

undersize is fed to two 48-inch centrifugal concentrators operating in parallel. The primary gravity 

concentrate is then fed to the intensive cyanidation circuit with the leach solutions reporting 

directly to electro-winning for final gold recovery. Primary gravity tailings are returned to the 

grinding circuit via the cyclone feed pump-box while the intensive leach residues are reground and 

pumped into the flotation concentrate leach circuit. Primary gravity gold concentrates are 

intensively leached on a batch basis; the typical leach residence times are approximately 14 hours. 

Grinding cyclone overflow reports to a sulphide rougher flotation circuit, which produces a 10% 

weight concentrate. The concentrate from the floatation circuit is then reground to 80% passing 10 

microns using stirred media detritors, prior to being leached in a conventional cyanidation circuit 

followed by gold recovery in an eight cell carousel CIP circuit. The particles then enter a stripping 

circuit. A detailed description of the process can be found in the subsequent sections.
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Figure 5.2: Pogo Mine-gold processing flow sheet.

5.4.1 C arbon-in-P ulp  (C IP) C ircu it

The purpose of the CIP process is to allow the gold previously dissolved in the leach tanks 

to be adsorbed by activated carbon— activated carbon is a form of charcoal that has a large number 

of low volume pores that help in the adsorption of the fine particles. During the CIP process, the 

gold particles are slowly adsorbed onto the carbon particles, and eventually extracted in the 

subsequent “stripping” process. The CIP circuit is designed to allow adequate time for the 

absorption process. The particle-bearing slurry spends 30 minutes in each CIP tank. The Pogo CIP 

circuit has eight such tanks (Figure 5.3). The slurry spends four hours in the circuit, and 

approximately 300 to 600 ounces of gold is adsorbed per ton of activated carbon used.
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Source: Adapted from Pogo Mine, 2016. 

Figure 5.3: CIP circuit at Pogo Mine.

5.4.2 Carbon Stripping C ircuit

The Pogo stripping circuit in pictures is shown in Figure 5.4. Pogo stripping circuit consists 

of two strip vessels that work in tandem. While one vessel (vessel-1) is being loaded with gold 

bearing activated carbon, the other previously loaded vessel (vessel-2) is operated by circulating a 

solution called “elute.” The temperature and pressure of elute is maintained approximately at 

280°F and 65 PSIG, respectively, to facilitate maximum liberation of gold particles. An elute is a 

water based solution with 1% sodium hydroxide and 0.1% sodium cyanide (Fast, 2016). The 

process is called “pressurized Zadra stripping.” A typical pressurized Zadra stripping cycle lasts 

for 11 hours and consists of the following stages: loading the vessel (1 hr), circulating elution (8

hrs), carbon cooling (1 hr), and unloading carbon from the vessel (^ hr) (Table 5.1).
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Table 5.1: O perating schedule-pressure Z ad ra  stripping.

Operation Solution Time
Load Column Transfer Water 90 minutes
Elution 0.1% NaCN, 1% NaOH 480 minutes
Carbon Cooling Fresh Water 60 minutes
Unload Column Transfer Water 30 minutes

TOTAL 11 hours

Source: Fast, 2016.

While the used carbon is discharged, the “pregnant leach” solution is pumped out. The same 

process is repeated with strip vessel-2. The pregnant leach solution (PLS), on its way out from the 

strip vessel, is cooled off by heat exchangers 3 and 4 (Figure 5.5). When the PLS reaches the 

electro-wining circuit, the gold particles are removed and the solution, now called “barren 

solution,” is reheated by a boiler with the aid of heat exchangers 1 and 2. The reheated barren 

solution is then recirculated through strip vessels. A glycol solution is circulated between the boiler 

and heat exchangers as a medium of heat exchange. Sensors are strategically placed at various 

parts of the circuit to measure temperatures, flow rates, etc. It is very important to maintain 

temperatures in the strip vessels at certain levels (270-280°F) for certain periods of time to 

maximize gold separation. A false “optimal temperature” will result in either poor gold recoveries 

or higher costs. Thus, monitoring the temperatures, and identifying sensor errors became crucial. 

S1 and S2, the temperature sensors for strip vessels 1 and 2, respectively, are the two important 

sensors in this context, and therefore are the focus of this chapter.
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Figure 5.4: Pogo stripping circuit in pictures.
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Figure 5.5: Pogo stripping circuit schematic diagram  with sensor placements.



The description of research methodology in this chapter is achieved in the following stages: 

data collection, data preparation, background on various concepts, terminology and previous 

methods, and the description of various algorithms developed.

5.5 Methods and M aterials

5.5.1 D ata C ollection

The raw sensor data was collected at 10-min average intervals from the Pogo mill database. 

Various sensors of interest and their data readings are summarized in Table 5.2. To facilitate the 

observation of data trends throughout the year, data was collected for a period of twelve (12) 

months: Jan 1, 2015 through December 31, 2015. The visual format of various sensor raw data 

streams with close-up views can be seen in Figures 5.6 through 5.10. Various descriptive statistics 

for the sensor data are given in Table 5.3. The “data cleansing cut-off value (Thcieanse)” column in 

Table 5.3 refers to the cut-off value based on which undesired and corrupted data were removed 

(cleaned). This process is explained in the data preparation section.

Table 5.2: A snapshot of raw sensor data collected at 10-min average intervals.

Strip vessel 
sensors

Barren How 
sensor

Heat exchanger sensors Glycol flow 
sensor

Reading # Time S1
(°F)

S2
(°F)

BARNFL
(GPM)

H1
(°F)

H2
(°F)

H3
(°F)

H4
(°F)

GLYFL
(GPM)

1 1/1/15 12:00 AM 91 262 35 299 301 239 104 204
2 1/1/15 12:10 AM 90 262 35 292 293 237 104 203
3 1/1/15 12:20 AM 90 262 35 284 285 236 103 200
4 1/1/15 1230 AM 90 234 35 277 278 228 102 201
5 1/1/15 12:40 AM 90 219 35 271 272 208 101 202
6 1/1/15 12:50 AM 90 217 35 264 265 196 100 205
7 1/1/15 1:00 AM 90 215 35 258 259 180 96 204
8 1/1/15 1:10 AM 90 204 35 252 253 185 92 205
9 1/1/15 1:20 AM 89 192 35 247 247 182 91 202
10 1/1/15 1:30 AM 89 190 35 241 242 176 90 201
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Figure 5.6: Strip vessel sensors (S1 and S2).
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Figure 5.7: Heat Exchanger sensors (H1, H2, H3, and H4).
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1/1/15 2/20/15 4/11/15 5/31/15 7 /20 /15 9/8 /15  10/28/15 12/17/15

Figure 5.8: Barren flow sensor (BARNFL).

Figure 5.9: Glycol flow sensor (GLYFL).
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Figure 5.10: Behavior of various sensors in 24 hours time span.



Table 5.3: Descriptive statistics for the sensor data collected.

Sensor
Measuring 

paramete r/variable
Unit Maximum Minimum Mean Median

Standard
deviation

Data cleansing 
cut-off value

(Th cleanse )

S1
Strip vessel-1 
Temperature °F 302.7 52.1 149.4 104.1 78.2 150

S2
Strip vessel-2 
Temperature °F 304.3 57.7 148.1 104.2 77.6 150

H1
Heat Exchanger-1 
outlet Temperature

°F 334.0 42.9 126.1 77.1 89.8 250

H2
Heat Exchanger-2 
outlet Temperature

°F 336.2 56.3 266.4 297.9 60.2 250

H3
Heat Exchanger-3 
outlet Temperature °F 287.6 48.4 191.4 223.5 71.0 250

H4
Heat Exchanger-4 
outlet Temperature °F 299.5 48.5 144.5 99.0 79.2 250

BARNFL Barren Solution Flow GPM 84.0 0.0 39.6 35.0 17.3 20

GLYFL Glycol Flow GPM 230.0 0.0 209.7 214.6 18.4 150

5.5.2 A ssum ptions and scope

Calibration errors are often present in the data in the form of an offset value (bias) added to the 

original or true reading; see Equation (5.1). Bias is the common error associated with sensors and 

often a hard one to identify. Other common errors, like gross errors, are out of the scope of this 

research. Gross errors are dramatically high or low in value (magnitude), which are easily detected 

through common statistical techniques. For the purpose of the experimentation, it is assumed that 

the data collected from the Pogo Mine is devoid of errors, i.e., the set is deemed a “clean set.”

Observed or biased reading, xttas = True reading (xtrue)+bias (eAbias)  (5.1)

Bias is expressed as a percentage over the true reading value. It was artificially induced in the 

clean data set. A +2% bias indicates 2% of the true reading was added as bias to the true reading.
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Likewise -2% expresses adding -2% of the true reading; see Equation (5.1). Calibration errors are 

subtle and can be as low as 2% over the true reading. Identifying the bias at such low magnitudes 

is preferred by the industries. Pogo Mine specifically requested that errors be detected at the ±2% 

level. Only S1 and S2 sensors are analyzed with the methods described. Bias is introduced only in 

one sensor (S1) at a time in this project. Identifying the bias in several sensors at a time in a multi­

sensor environment is out of the scope of this research. Due to the space constraints and to avoid 

redundancy, the results from S1-based analysis and validation only are presented in this chapter.

5.5.3 D ata P reparation

5.5.3.1 Program m ing and Software

The sheer volume of the data collected, the subsequent mathematical calculations and

repetitions to be performed, statistical analyses to be conducted, and graphical presentation of the

results, required the usage of a mathematically-intensive software package. Matlab was selected 

as the software of choice. Matlab has various discipline-specific toolboxes that can be added 

according to the need, i.e., optimization, signal processing, simulations, neural nets, etc.; however, 

at a later stage, the Matlab program was replaced with Fortran to improve on speed of execution.

The goal of the project was to detect an artificially-introduced bias (+2% or -2%). For the 

purpose of conducting bias identification tests using algorithms, the bias was introduced at a 

random time period in S1. Once the bias was introduced, all following data for the sensor also 

contained the bias. The assumption was that once a bias occurred, the sensor remained 

“uncalibrated” until the error was detected. Thus, if  a -2% bias was injected into S1 on March 12, 

all S1 data starting March 12 was corrupted with a -2% bias. Algorithms were designed to detect 

the bias as soon as possible. The location of the error was systematically varied from Jan 1, 2015
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to December 31, 2015. A series of cut-offs or thresholds were applied to cleanse the data of 

unreliable or possibly corrupted readings. The algorithm description section has the detailed 

account of the process.

5.5.3.2 M atlab, Super Com puting, and Fortran

Matlab’s parallel computing tool box is utilized in improving the execution speed of various 

algorithms, specifically MRFA and MRFAA. In order to execute a single experiment or test 

(iteration), Matlab-based algorithms required 5-10 minutes. It is a considerably long time, and for 

this reason, multiple tests were consuming even longer durations of time. As a result, the number 

of possible experiments became limited. The supercomputing center at Computing Systems (RCS) 

of the Geophysical Institute, University of Alaska Fairbanks, was utilized for a brief period of 

time. Utilizing the multiple cores at the center improved the algorithm speed of execution 

considerably. At this stage, the Matlab program was recoded into the Fortran 95 program. The 

built-in support for parallelization (dynamic allocation and vectorization) allows the Fortran-based 

programs to perform highly memory-intensive tasks. Functions and subroutines can be built in 

support of the main program, and can be organized into “modules” that work as a single program 

when called. After recoding, the algorithm (MRFAA) speed improved tremendously and each test 

(iteration) was completing in seconds.

5.5.4 B ackground on C oncepts, T erm inology, and Previous M ethods

The following text serves as a refresher on various basic concepts, terminology, and previous 

methodology applied in connection with the topics of the chapter. Due to the dynamic and non- 

stationary nature of the sensor data collected in the mineral processing circuits, the preliminary 

data characterization methods and the subsequent signal processing methods (FFT) applied on Fort
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Knox and Pogo Mine data sets did not yield definitive results in terms of finding bias. 

Consequently, innovative methods that are based on data-mining concepts were attempted. Data- 

mining and machine learning techniques are widely popular for gaining insights on the behavior 

of various parameters when the data sets are particularly large. The stripping circuit sensor data 

collected from the Pogo mill is very large (200,000 readings a year per sensor, if  collected in one- 

min intervals) and meets that qualification. The reason for choosing the stripping circuit for 

algorithm development is also due to the fact that SAG mill data is too dynamic to handle for any 

preliminary scientific experimentation; specifically, in the initial model building stages. The 

algorithms developed from this point forward are based on the Pogo stripping circuit sensor data.

Cleansing Threshold (Thcieanse):

The first process in the data preparation is to remove or clean undesired or corrupted data. 

Usually these are sensor data readings below a certain minimum value (“cleansing threshold”) 

which reflects where a piece of equipment is down for maintenance or idling. The last column of 

Table 5.3 provides these values, which are used as cleansing thresholds for each sensor data stream.

Peak (P) and Threshold (Th):

For the purposes of this research, a strip vessel cycle or “peak” is defined as-the continuous 

rise and maintenance of a sensor’s temperature above a certain desired value. According to Pogo 

Mine, the desirable range for the strip vessels’ operational temperature is between 270°F and 

280°F. The data stream is filtered for the temperature sensors using a “threshold (Th)” value to 

define a cycle or peak. As described previously, the strip vessel temperatures are cyclical in nature. 

A peak is assumed to start (peak start-time) when the temperature rises above the threshold. It is
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assumed to have ended when the temperature goes below the threshold (peak end-time) (Figure 

5.11).

9/1 /15  12:00 A M  9/8 /15  12:00 A M  9/15/15 12:00 A M

Figure 5.11: Peaks vs thresholds in a clean set of S1 sensor data.

Unlike a traditional “cycle,” which is typically associated with positive and negative 

components, a peak, for the purpose of this research, can be understood as a truncated form of a 

cycle (Figure 5.11). The readings below the threshold are ignored in this research. Figure 5.11 

shows the appearance of peaks above the 250°F threshold.

Effect of Bias on Peak Statistics, and PRCA:

If the number of readings (nrp) for each peak of a particular sensor data stream above a certain 

threshold (Th) is captured, it is expected that in the presence of bias, the variable nrp will change 

dramatically (Figure 5.12). If this change is captured in terms of certain percentage statistics, bias 

identification is possible. This is the key principle that was exploited in peak-readings count 

analysis (PRCA) and peak-readings sensitivity analysis (PRSA)—together referred to as peak- 

readings count and sensitivity analysis (PRCSA). For example, in Figure 5.12, after the bias 

(+10%) is introduced (9/8/15 12:00 AM), the number of peaks (nP) in the S1 data stream with bias 

are seven at a threshold of 270°F. For the same conditions, the number of peaks (nP) value for the
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S1 clean set is three. When compared to the clean S1 stream, there is 133% change in nP value for 

biased S1. The same effect is true for the constituents of a peak, i.e., the number of readings (nrp).

Thresho ld  270°F

9/1/15 12:00 A M  9/8/15 12:00 A M  9/15/15 12:00 A M

Figure 5.12: Bias effect on Sl-sensor data set at various thresholds.

PRSA:

After the peaks are captured by the PRCA algorithm for each data set (clean and biased) 

based on the threshold (Th), the cumulative temperature per peak (Tpeak-cum) and the average 

temperature per peak (Tpeak-Ave) values are calculated simultaneously. In addition, the following 

statistics are calculated for each data set: the cumulative number of peaks (cum nrp), and the 

cumulative temperature of all peaks (cum T), which prove to be effective indicators of bias. While 

the PRCA method helps capture these statistics, the PRSA method observes changes in these 

statistics (“sensitivity”) when bias is present in one of the data sets.

Peak Sensitivity and PRCSA:

As indicated in the previous sections, the PRCA and PRSA methods together are called 

PRCSA. At certain thresholds of temperature (Th) and number of readings per peak (Th nr ), the 

percentage change (sensitivity) in the above-mentioned statistics (cum nrp, Tpeak-cum, and cum T) is 

high due to the presence of bias. This is called “peak sensitivity,” which is the concept upon which 

the PRCSA and multiple ratio function analysis (MRFA) algorithms (Section 5.5.5) are modelled.
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The results from the PRCA algorithm for one of the experiments conducted on the S1 data 

set is plotted in Figure 5.13. From the figure, it can be observed that at a threshold of 280°F, the 

number of readings per peak (nrp ) for biased data stream (+2%) visibly departs (redline) from that 

of the clean data stream (blue line). A similar trend is observed for the temperature per peak values.

Results from the sensitivity analysis (PRSA) conducted on the same experiment can be seen 

in Table 5.4 (a bar chart representation is available in Figure 5.14). It can be observed that at a 

Thsi value of 280°F and Thnr of 30, the percentage change from part-1 (both sets clean) to part-2 

(one set biased) is high: 96% to 353%. This change is high when compared to any other thresholds: 

Thsi of 260 through 280, and Thnr of 30 through 50. The change can also be observed visually in 

Figure 5.13. The PRCSA algorithm in the form of flowchart is available in Figure 5.15.

The major drawback of PRCSA is its inability to function without a clean data set (from 

calibrated sensors) for comparison. In real life industrial situations, this is a highly impractical, 

invasive, and time-consuming process. In most of the industrial circuits, some calibrated sensors 

and some biased sensors co-exist at a given point of time. The MRFA algorithm is modelled to 

work in such practical situations.

159



09
1

Peak-read ings coun t (Thsl > 280°F )

70
-

' I  603
I  50
u

£  400
1 30
E|  20 

10

+2%  Bias introduced on 5/17/15
Periodl: Both sets clean Period 2: One set biased

0
1/1/2015

I1 "11 ii ii --1 Ji

r  1 
• 1in■1

-
II 2

i l l - " 1

-  B iased Data 
(+2 %)

1/31/2015 3/2/2015 4/1 /2015 5/1/2015 5/31/2015 6/30/2015

Tem pera ture /peak (ThSJ > 280°F )

260 
1/1/2015

P eriod l: Both sets clean

i , __ (----------------1 1___

+2%  Bias introduced on 5/17/15
Period 2: One set biased

i

" r  ' !  K t " T ---------_ j - l A r J r J 1
-« w 1_____I1— I----- P--------

-C lean  Data

-  Biased Data
(+2%)

Figure 5.13: Bias effect on S1-sensor data at 280°F threshold (Thsi).



Table 5.4: Cumulative peak-readings count, clean vs biased (Thsi=280°F).

Data-set

Sensor-S1 
readings 

threshold (°F)

Threshold for 
’no. of 

readings/peak’

Cum peak-readings count
% Change

Period 1 Period 2

Thsi Th„r cum nr P cum nr P cum nr P change%
Clean 280 30 144 282 96

Biased 280 30 144 653 353

Figure 5.14: Cumulative peak-readings count, clean vs biased (Ths i=280°F).
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Figure 5.15: Flow chart for the peak-readings count and sensitivity analysis (PRCSA).

5.5.5 M ultip le R atio Function A nalysis (M RFA)

For highly non-linear and non-stationary processes like mineral processing operations, the 

application of classical statistical methods prove disadvantageous. The Pogo carbon stripping 

circuit is an example where several dynamic processes were observed for this study. Although
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peak-readings count and sensitivity analysis (PRCSA) proved promising, there are drawbacks. The 

method requires comparisons between the corrupted data set and a clean data set. In real life, only 

one data stream would be present. To mitigate these disadvantages, the interrelations between 

sensors were exploited in a multiple ratio function analysis (MRFA), an innovative data-mining or 

hybrid method. For instance, in the carbon stripping circuit, the sensors S1 and S2 measure 

temperatures of strip vessels 1 and 2, respectively. The heat to the vessels is supplied by the 

circulation of a hot “barren solution” through a series of four heat exchangers and their 

corresponding boilers. Sensors H1, H2, H3, and H4 measure the outlet temperatures of these four 

heat exchangers, respectively (Figure 5.5). From the set up, it can be understood that there exists 

a relationship between the heat supplied by the heat exchangers and the heat retained by the strip 

vessels through the medium (barren solution). This means the measurements of S1 and S2 are in 

some way related to the measurements of H1 through H4. In fact, the sum of all the heat sensor 

measurements, simply called “Heat,” directly affects the temperature measurements of S1 and S2. 

In other words, the S1 and S2 measurements are a function of “Heat.” In a similar fashion, barren 

solutions flow is related to strip vessel functionality. Glycol flow through the boilers is also 

indicative of the heat exchange process. A higher glycol flow would indicate more “heat exchange” 

and heating of barren flow, thus affecting S1 and S2. Given the process, one could expect a 

relationship between BARNFL and GLYFL sensors, and strip vessel sensors (S1 and S2). Apart 

from these relations, there is also a relationship between the strip vessel sensors, S1 and S2, due 

to the strip vessels operating in tandem (Figure 5.10).

A schematic diagram for various sensor interrelations in the stripping circuit is provided in 

Figure 5.16. In the above context, the research explored the following aspects in the stripping 

circuit:
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(i) Existence of relations between the sensor measurements.

(ii) Possibility to express the relations mathematically.

(iii) Existence of the “difference” between sensor relations in error-free state (calibrated) and 

erroneous state (biased).

(iv) Quantification of the “difference” in terms of statistics.

(v) Identification of bias based on the quantification of difference.

(vi) Limitations on the “identification of bias” process; magnitude of error, location, etc.

Barren flow

Glycol flow

Figure 5.16: Various sensors and their interrelations.
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Ratio Function:

Several parametric (correlation, aggregation, and PCA) and non-parametric techniques 

(neural nets), used in the past in exploring the sensor interrelations were proved unsuccessful. This 

led to a new approach (MRFA), in which it is suspected that there may be a “ratio” based relation 

between various processes in the stripping circuit, so as between sensor readings. A simple “ratio 

analysis” is used in many of the industrial optimization applications and even in financial analysis; 

however, the ratio function that is explored in this new data-mining based approach is slightly 

complicated, and is explained in detail in the subsequent sections. Due to the dynamic nature of 

the stripping circuit processes, it is anticipated that a modified form of ratio function can become 

a better tool in describing the sensor interrelations. The relation in the form of a “ratio function” 

is defined in Equation (5.2); S1 and Heat are chosen for illustration purpose.

Ratio f[Tpeak-ave (Heat), Tpeak- ave (S1)] (5.2)

For sensor S2, the relation is expressed as follows:

Ratio f[Tpeak-ave (Heat), Tpeak- ave (S2)] (5.3)

* This is not a “simple ratio,” since several conditions have to be met--as detailed below--in order 

for the function to exist. Due to this reason, “ratio function” is used throughout the text instead of 

simple ratio.

The following are some of the features of the ratio function (Figure 5.17).

(i) The cycle of S2 starts only after S1 concludes its cycle since the two stripping vessels are 

used alternatively. Therefore, cycles cannot be compared in the same time span. Statistics from a
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S1 cycle are compared to statistics from a S2 cycle only if the S2 cycle started within 24 hours of 

the end of S1 cycle, i.e., the ratio function exists only between two peaks of S1 and S2 if captured 

within a 24 hour span. This process is called “matching forward.” For instance, ratios computed 

from the sensor data collected during a S1 peak is matched to ratios computed from sensor data 

collected during a S2 peak that appears 24 hours after S1 occurs (forward of S1 when data is 

viewed as a chart). Given the context, the term “matching” when used in the subsequent sections 

should be understood as “matching forward,” since “matching backward” was not used at all.

(ii) The peaks are truncated cycle forms resulting from using a preset “truncation threshold” 

(trunc Th). The trunc Th value is modelled where the ratio function sensitivity to bias is high—  

which is explained in the subsequent sections.

(iii) Based on the peak-start and peak-end times of S1 and S2, the corresponding heat 

exchanger sensor peaks (H1 through H4) are captured and the total “heat” is calculated.

(iv) The average temperature (Tpeak-ave) value for each and every peak is calculated.

(iv) Lastly, the Tpeak-ave ratios of S1 to heat and S2 to heat are calculated.

(v) All the peaks are at least 1-hour in duration. This is to avoid very small peaks, which are 

a distraction to the study.
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Figure 5.17: Ratio functions and matching.



Revisiting Figure 5.16, multiple ratio function relations can be exploited between various 

sensors in order to identify a biased sensor. For instance, if  bias is induced in S1 sensor data—  

while the other sensors are kept well-calibrated—the ratios between S1 to all other sensors and S2 

to all other sensors can be compared to find bias in S1. Since S1 and S2 are tandem processes, in 

an error-free state, the “ratio functions” they form with other sensors show similarities. In the 

presence of bias, the “ratio functions” a biased sensor (S1) forms with other sensors should show 

significant departure from that of a sensor with no bias (S2). This approach is clearly meritorious 

compared to PRCSA, where a clean set of data—for baseline statistics—is always required from 

the same biased sensor for comparison (highly impractical and a disruption to industrial production 

process). In that context, MRFA algorithm is more practical for industry applications. MRFA is 

designed as a single test that only exploits ratio relations between strip vessel sensors (S1 and S2) 

and Heat. The ratios of S1 and S2 with barren flow and glycol flow are exploited with other tests 

that are added to MRFA at later stages—to produce a more efficient MRFAA algorithm.

5.5.5.1 MRFA: Algorithm  Description

The algorithm is based on the concept of exploring ratio function relations between strip 

vessel sensors (S1 and S2) and Heat. For the purpose of the algorithm description, S1 is assumed 

to have bias. The flowchart is given in Figure 5.18.

Step 1: Reads sensor data sets with thresholds and other input data.

Step 2: Removes all the undesired or corrupted data by applying Thcleanse.

Step 3: Creates the biased data set for S1 by adding ±2% bias (depends on the user choice) to 

the clean set of S1 at the chosen date—bias stays in all data from that point forward.
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Step 4: Using a truncation threshold (trunc Th) the S1 biased data set is cleaned; for instance, 

at a trunc Th of 280°F, all the S1 readings below that value are deleted. The intention is to study 

only the readings above this threshold, since the sensitivity of peak ratios to bias at this threshold 

is high. Then, the peaks of S1 data set that are at least one-hour in duration are captured; smaller 

peaks are less significant and are of distraction to the study. For the same duration (start-end times) 

of S1 bias peaks, the algorithm captures the peaks for heat exchanger sensors individually (Figure 

5.17). The total “Heat” of all the heat exchanger sensors together for each peak of S1 bias data is 

calculated. Then, the cumulative temperature per peak (Tpeak-cum) and average temperature per peak 

(Tpeak-ave ) values are calculated; these values are truncated at Trunc Th to reduce their relative size, 

i.e., to make the S1 to heat ratio a small comparable value with respect to other sensor ratios. The 

ratio of S1 bias Tpeak-ave to Heat Tpeak-ave is calculated for each peak of S1. The whole process is 

repeated for S2 immediately. The above mentioned statistics along with peak-max values captured 

by the program are found in Table 5.5 for S1 and Table 5.6 for S2.

Revisiting Table 5.5, the S1 bias data statistics populated can be understood as below. For 

instance, the peak number-2 (highlighted) was captured from 1/26/15 5:00 pm through 1/26/15 

7:10 pm. It lasted for 2 hrs. 10 min. (2.17 hrs.), and there were 13 readings consecutively captured 

(each 10 min duration), which are above 280°F. The maximum value of the peak-readings is 

281.88°F. The truncated cumulative temperature is calculated as follows:

Cumulative sum of temperature of peak-2 readings= 3655.2°F

No. of peaks captured (nP) =13

Truncated cumulative temperature (Tpeak-cum) = 3655.2 -nP*trunc Th
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= 3655.2 -  (13*280)

= 3655.2 -  3640 

= 15.2

Truncated average temperature (Tpeak- ave) = Tpeak-cum /nP

= 15.2/13 

= 1.17

The calculations for the S2 peaks were done in similar fashion (see Table 5.6).
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Is S2 peak <= 24 hrs of S1 peak?

I
Match S1 and S2 peaks^ ^ ^ ^ ^ l /

r /
Compare biased vs clean ratios (multi-ratio analysis)®

r

Plot the specific trends in 
graphs

END

Figure 5.18: Flow chart for the multiple ratio function analysis (MRFA) algorithm.
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In a similar manner, the total “Heat” of all the heat exchanger sensor readings that fall in the 

same peak start-end periods of S1 and S2 are calculated. This means, for S1 peaks there are 

corresponding heat peaks and statistics, and for S2 peaks, there are corresponding heat peaks and 

statistics. These are in the form of Tables 5.5 and 5.6. Then, the ratio of “S1bias” to Heat peaks 

and “S2clean” to Heat peaks in terms of Tpeak-ave are calculated. This is clearly depicted in Figure 

5.17.

Step 5: In this step, the S2 clean data peaks that occur within 24 hours (matching forward) 

period of each of S1 peaks are captured. From Figure 5.10, it can be observed that after strip vessel 

sensor S1 cycle is completed, the S2 cycle starts. Only the peaks that are matched are retained for 

“ratio analysis.” Sometimes it is possible that within 24 hours of S1 peak, two or more peaks of 

S2 occur; this could be due to small process fluctuations. In this situation, the sum of all those peak 

temperatures is taken into account. As an example to demonstrate “matching” process, a matching 

peak is located for the S1 peak that occurred at 2/12/15 6:30 PM (see highlighted text in Table 

5.5), and the match is found in the corresponding Table 5.6 (S2 clean peaks), i.e., on 2/13/15 7:10 

AM.

Step 6: In the sixth step, the algorithm populates the matching S1 and S2 peak data and 

statistics into an Excel spreadsheet (see Table 5.7). From the table, it can be observed that S2clean: 

Heat ratio is obtained on a clean set of data. On the contrary, S1bias: Heat statistic is obtained on 

a bias set. The date from which the bias is introduced is marked in the same table (from 32nd peak 

onwards). Comparison of these ratios in a plot--in terms of trends and behaviors--can provide the 

clues to where the induced bias is located. It should be noted that this comparison process is not 

automated for the algorithm yet. The plot with comparison of these two ratios is available in Figure 

5.19.
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Table 5.5: A snapshot of peaks captured for sensor S1; trunc Thsi=280°F, bias=+2%.

S1Bias peaks or cycles captured (+2% induced on 6/17/15)

Peak
width
(hrs.)
Wpeak

Cum temp/ no. of Peak ave Peak max
Peak # PeakStartTime PeakEndTime peak (°F)

Tpeak-cum
peaks

nP
temp (°F)
Tpeak-ave

temp (°F)
Tpeak-max

1 1/17/15 11:20 AM 1/17/15 1:00 PM 1.67 4.04 10 0.40 280.68
1 2 1/26/15 5:00 PM 1/26/15 7:10 PM 2.17 15.20 13 1.17 281.88

3 1/30/15 3:50 PM 1/30/15 8:30 PM 4.67 46.84 28 1.67 281.99
4 1/31/15 5:40 PM 1/31/15 7:30 PM 1.83 13.10 11 1.19 281.48
5 2/12/15 6:30 PM 2/12/15 11:20 PM 4.83 421.44 29 14.53 297.09
6 2/14/15 7:00 AM 2/14/15 9:10 AM 2.17 14.77 13 1.14 281.61
7 2/19/15 2:20 AM 2/19/15 6:30 AM 4.17 72.37 25 2.89 285.19
8 2/20/15 5:00 AM 2/20/15 8:10 AM 3.17 11.30 19 0.59 280.97
9 2/21/15 9:20 AM 2/21/15 12:00 PM 2.67 13.77 16 0.86 281.53
10 2/22/15 11:30 AM 2/22/15 3:40 PM 4.17 43.42 25 1.74 282.74
11 2/27/15 6:30 AM 2/27/15 8:30 AM 2.00 45.39 12 3.78 285.84
12 3/22/15 9:10 AM 3/22/15 12:40 PM 3.50 116.55 21 5.55 288.83
13 3/22/15 2:30 PM 3/22/15 4:00 PM 1.50 5.32 9 0.59 281.00
14 4/5/15 10:30 AM 4/5/15 12:20 PM 1.83 50.41 11 4.58 287.17
15 4/15/15 11:30 AM 4/15/15 5:30 PM 6.00 206.87 36 5.75 287.14
16 4/18/15 2:40 AM 4/18/15 8:50 AM 6.17 481.93 37 13.03 295.51
17 4/19/15 8:00 AM 4/19/15 10:40 AM 2.67 92.93 16 5.81 290.25
18 4/20/15 4:30 PM 4/20/15 9:00 PM 4.50 124.92 27 4.63 286.47
19 4/21/15 7:40 PM 4/21/15 10:20 PM 2.67 48.71 16 3.04 284.33
20 4/23/15 4:40 AM 4/23/15 7:50 AM 3.17 105.04 19 5.53 288.73
21 4/28/15 11:20 AM 4/28/15 5:30 PM 6.17 108.68 37 2.94 286.63
22 4/30/15 12:40 AM 4/30/15 5:40 AM 5.00 105.33 30 3.51 286.90
23 5/1/15 8:00 AM 5/1/15 9:40 AM 1.67 69.25 10 6.92 291.45
24 5/3/15 7:10 AM 5/3/15 12:50 PM 5.67 551.06 34 16.21 302.26
25 5/4/15 2:40 AM 5/4/15 5:30 AM 2.83 58.52 17 3.44 284.66
26 5/5/15 7:40 AM 5/5/15 9:50 AM 2.17 83.64 13 6.43 294.04
27 5/13/15 11:10 AM 5/13/15 3:00 PM 3.83 169.62 23 7.37 292.89
28 5/14/15 11:40 AM 5/14/15 3:30 PM 3.83 249.83 23 10.86 295.00
29 5/15/15 7:10 PM 5/15/15 11:30 PM 4.33 174.03 26 6.69 290.95
30 5/16/15 9:10 PM 5/17/15 12:10 AM 3.00 92.02 18 5.11 289.24
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Table 5.6: A snapshot of peaks captured for sensor S2 (clean); trunc Thsi=280°F, no bias.

S2-peaks captured for clean data

Peak
width
(hrs.)
Wpeak

Cum temp/ no. of Peak ave Peak max
Peak # PeakStartTime PeakEndTime peak (°F)

Tpeak-cum
peaks

nP
temp (°F)
Tpeak-ave

temp (°F)
Tpeak-max

1 1/6/15 8:20 PM 1/7/15 12:40 AM 4.33 79.22 26 3.05 285.09
2 1/16/15 12:10 PM 1/16/15 3:00 PM 2.83 51.00 17 3.00 284.55
3 1/20/15 10:50 AM 1/20/15 2:00 PM 3.17 89.45 19 4.71 290.54
4 1/21/15 10:20 AM 1/21/15 12:40 PM 2.33 13.01 14 0.93 281.27
5 1/24/15 4:20 PM 1/24/15 8:10 PM 3.83 352.42 23 15.32 297.72
6 1/25/15 7:00 PM 1/25/15 11:10 PM 4.17 179.07 25 7.16 288.53
7 1/29/15 9:40 PM 1/30/15 2:40 AM 5.00 155.06 30 5.17 288.27
8 2/2/15 5:10 PM 2/2/15 9:50 PM 4.67 112.52 28 4.02 285.30
9 2/5/15 9:30 PM 2/5/15 11:40 PM 2.17 44.30 13 3.41 284.78
10 2/8/15 6:00 PM 2/8/15 9:50 PM 3.83 56.61 23 2.46 284.76
11 2/9/15 7:40 PM 2/9/15 11:40 PM 4.00 157.37 24 6.56 290.22
12 2/13/15 7:10 AM 2/13/15 11:10 AM 4.00 56.02 24 2.33 283.44
13 2/15/15 1:40 AM 2/15/15 5:40 AM 4.00 320.56 24 13.36 295.79
14 2/18/15 1:20 PM 2/18/15 8:30 PM 7.17 609.96 43 14.19 297.76
15 2/19/15 5:20 PM 2/19/15 7:30 PM 2.17 10.70 13 0.82 281.38
16 2/24/15 6:10 AM 2/24/15 11:30 AM 5.33 193.57 32 6.05 288.68
17 3/4/15 5:50 AM 3/4/15 10:20 AM 4.50 197.10 27 7.30 289.39
18 3/30/15 9:20 PM 3/30/15 10:40 PM 1.33 8.41 8 1.05 281.57
19 4/13/15 10:40 AM 4/13/15 2:50 PM 4.17 113.95 25 4.56 287.17
20 4/14/15 9:30 PM 4/15/15 2:50 AM 5.33 69.81 32 2.18 284.88
21 4/16/15 2:00 AM 4/16/15 7:00 AM 5.00 361.39 30 12.05 298.37
22 4/17/15 3:40 PM 4/17/15 10:00 PM 6.33 557.58 38 14.67 297.85
23 4/18/15 2:40 PM 4/18/15 10:00 PM 7.33 422.74 44 9.61 291.74
24 4/20/15 3:20 AM 4/20/15 5:10 AM 1.83 37.80 11 3.44 285.87
25 4/21/15 7:00 AM 4/21/15 10:00 AM 3.00 65.70 18 3.65 286.88
26 4/22/15 1:00 PM 4/22/15 5:00 PM 4.00 119.09 24 4.96 288.66
27 4/27/15 11:10 PM 4/28/15 2:30 AM 3.33 45.90 20 2.30 284.46
28 4/29/15 6:50 AM 4/29/15 10:20 AM 3.50 108.87 21 5.18 290.06
29 4/30/15 6:20 PM 4/30/15 8:50 PM 2.50 31.39 15 2.09 284.15
30 5/4/15 6:30 PM 5/4/15 8:10 PM 1.67 25.99 10 2.60 284.55
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Table 5.7: A snapshot of S1 and S2 peaks M atching; trunc Thsi=280°F, bias=+2%.

S1bias peaks S2clean peaks

Peak# PeakStartTime
Pe ak max 
temp (°F) 

TT peak-max

Pe ak ave 
temp (°F)

T
T peak-ave

S1 bias:Heat
( T peak-ave

ratio)
Peak# Pe akStartTime

Pe ak max 
temp (°F) 

T
T peak-max

Pe ak ave 
temp (°F)

T
T peak-ave

S2:Heat ( T peak- 

ave ratio)

1 2/12/15 6:30 PM 297.09 14.53
____  -M

2/13/15 7:10 AM 283.44 2.33 0.0710.412 W  1

2 2/14/15 7:00 AM 281.61 1.14 0.032 2 2/15/15 1:40 AM 295.79 13.36 0.383
3 2/19/15 2:20 AM 285.19 2.89 0 . 1 0 0 2/19/15 5:20 PM 281.38 0.82 0.028w  3

4 4/15/15 11:30 AM 287.14 5.75 0.159
)
-
L

4 4/16/15 2:00 AM 298.37 12.05 0.425
5 4/18/15 2:40 AM 295.51 13.03 0.424 1 5 4/18/15 2:40 PM 291.74 9.61 0.352
6 4/19/15 8:00 AM 290.25 5.81 0.208 1 6 4/20/15 3:20 AM 285.87 3.44 0.103
7 4/20/15 4:30 PM 286.47 4.63 0.123 7 4/21/15 7:00 AM 286.88 3.65 0 . 1 1 0

8 4/21/15 7:40 PM 284.33 3.04 0.094 8 4/22/15 1:00 PM 288.66 4.96 0.142
9 4/28/15 11:20 AM 286.63 2.94 0.126 9 4/29/15 6:50 AM 290.06 5.18 0.187
1 0 4/30/15 12:40 AM 286.90 3.51 0.134 1 0 4/30/15 6:20 PM 284.15 2.09 0.103
1 1 5/4/15 2:40 AM 284.66 3.44 0.130 1 1 5/4/15 6:30 PM 284.55 2.60 0.108
1 2 5/5/15 7:40 AM 294.04 6.43 0.207 1 2 5/5/15 10:40 PM 281.53 0.79 0 . 0 0 0

13 5/13/15 11:10 AM 292.89 7.37 0.252 13 5/14/15 1:00 AM 292.51 7.13 0.238
14 5/14/15 11:40 AM 295.00 1 0 . 8 6 0.311 14 5/15/15 2:50 AM 303.07 14.51 0.396
15 5/15/15 7:10 PM 290.95 6.69 0 . 2 1 2 15 5/16/15 6:50 AM 291.44 6.07 0.215
16 5/16/15 9:10 PM 289.24 5.11 0.175 16 5/17/15 7:50 AM 304.27 18.88 0.510
17 5/18/15 12:10 AM 292.31 7.29 0.229 17 5/18/15 1:10 PM 290.97 6.74 0.230
18 5/19/15 1:30 AM 291.82 6.94 0.225 18 5/19/15 5:40 PM 295.92 9.61 0.306
19 5/20/15 6:50 AM 288.02 5.92 0.195 19 5/20/15 9:50 PM 285.32 3.94 0.126
2 0 5/23/15 12:20 AM 289.53 7.42 0.235 2 0 5/23/15 12:30 PM 286.28 4.86 0.149
2 1 5/24/15 3:00 AM 284.76 3.10 0.106 2 1 5/24/15 6:50 PM 284.24 2.18 0.077
2 2 5/25/15 6:50 AM 283.78 2.52 0.095 2 2 5/25/15 7:40 PM 283.30 1.98 0.059
23 5/27/15 2:00 PM 297.06 13.89 0.419 23 5/28/15 8:30 AM 287.64 3.48 0 . 0 0 0

24 5/28/15 8:50 PM 296.98 9.82 0.307 24 5/29/15 8:50 AM 293.95 7.57 0.148
25 5/29/15 8:40 PM 295.50 8.46 0.273 25 5/30/15 12:30 PM 297.94 11.30 0.234
26 5/31/15 4:00 AM 295.65 9.43 0.278 26 5/31/15 1:50 PM 302.54 14.95 0.329
27 6/1/15 6:20 AM 299.76 11.08 0.317 27 6/1/15 5:50 PM 299.30 12.31 0.391
28 6/2/15 6:00 AM 302.68 13.99 0.376 28 6/2/15 8:00 PM 295.93 9.14 0.358
29 6/3/15 10:40 AM 294.32 8.44 0.249 29 6/4/15 2:20 AM 296.38 9.81 0.254
30 6/10/15 1:10 AM 289.54 6.83 0.288 30 6/10/15 7:10 PM 285.99 3.25 0 . 0 0 0

31 6/12/15 12:30 PM 294.16 13.95 0.570 31 6/13/15 9:50 AM 281.66 1.25 0.213
32 6/17/15 8:10 PM 281.28 0.64 0.026 32 6/18/15 9:20 AM 0 . 0 0 0 . 0 0 0 . 0 0 0

33
34

6/18/15 8:00 PM 
6/20/15 12:10 AM

285.98
287.15

4.08 0.119 
3 . 9 9  Bla se d  0.119

33
34

6/19/15 10:30 AM 
6/20/15 5:10 PM

282.43
0 . 0 0

1.32
0 . 0 0

0.097
0 . 0 0 0

35 6/21/15 5:40 AM 284.88 3.55 0.096 35 6/21/15 5:10 PM 289.88 5.88 0.055
36 6/22/15 6:30 AM 286.43 3.90 0.125 36 6/22/15 9:00 PM 283.80 2.63 0 . 0 0 0

37 6/23/15 11:50 AM 292.65 6.51 0.192 37 6/24/15 3:30 AM 0 . 0 0 0 . 0 0 0 . 0 0 0

38 6/25/15 6:20 PM 294.00 8.43 0.239 38 6/26/15 7:30 AM 287.91 4.84 0.035
39 6/26/15 7:50 PM 296.58 9.20 0.260 39 6/27/15 8:10 AM 291.44 8.45 0 . 0 0 0

40 6/28/15 6:40 PM 300.07 10.93 0.410 40 6/29/15 7:10 AM 285.45 3.04 0.174
41 7/2/15 8:20 AM 285.22 2.89 0.109 41 7/2/15 7:30 PM 0 . 0 0 0 . 0 0 0.084
42 7/4/15 7:50 PM 281.00 0.57 0.024 42 7/5/15 10:00 AM 0 . 0 0 0 . 0 0 0 . 0 0 0

43 7/9/15 7:50 PM 287.86 5.37 0.189 43 7/10/15 3:10 PM 0 . 0 0 0 . 0 0 0.194
44 7/11/15 2:20 AM 286.83 4.22 0.145 44 7/11/15 7:30 PM 285.93 2.76 0.127
45 7/12/15 11:10 AM 292.24 8.52 0.303 45 7/13/15 3:10 AM 0 . 0 0 0 . 0 0 0.234
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+2% bias was induced here on 6/J 7/15

0 5 10 15 20 25 30 35 40 45 50 55 60
Peak num ber

Figure 5.19: Ratio analysis plot for S1 and S2 peaks; trunc Ths i=280°F, bias=+2%.



From Figure 5.19, it can be observed that after the bias is introduced on 6/17/15 (32nd 

matched peak), there is a positive shift of S1 bias ratios with respect to S2 clean ratios. Before the 

introduction of bias, the ratios crossed at regular intervals—which reflects the tandem nature of 

the underling processes. The positive shift indicated positive bias. In a similar fashion, when the 

negative bias (-2%) is introduced, negative shift is observed. In case of MRFA algorithm, the 

process of identifying bias is manual after the completion of plotting process. Due to this reason, 

it was very time consuming to conduct multiple experiments on multiple bias induction dates. 

Identification of bias on a particular date after induction is important and with MRFA, it cannot be 

achieved automatically. The duration between the bias induction date and bias identification date 

is called “time till find days” (TTFD). Lower values are highly desired. The MRFA algorithm 

needs to be improved to achieve this automatically, which is described in the subsequent sections.

After conducting several Heat ratio tests at different thresholds to find bias in S1—based on 

S2 clean Heat ratios—it was observed that at a truncation threshold (trunc Th) of 275°F, the S1 

sensor “drift” has more sensitivity to bias. This is called “effective threshold” (eff Th). Drift or 

shift is where biased sensor ratios (S1bias: Heat) grow apart from the clean sensor ratios (S2clean: 

Heat). When observed graphically, at the bias of +2%, the drift is upwards, whereas at -2% it is 

downwards (Figure 5.20); the shift is observed at 45th peak. For comparison purposes, a figure 

with no bias (S1 and S2 are clean) is also embedded within Figure 5.20 (see middle plot). In the 

absence of bias, there is no shift or drift observed in the plot.
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Figure 5.20: Comparison of positive (+2%) and negative (-2%) bias effects on S1 sensor clean data set.



5.5.5.2 MRFA with M ultiple Tests and Autom ation (M RFAA)

In order to compensate for the drawbacks of the MRFA algorithm described in the previous 

section, several changes were made to the algorithm as outlined below. The improved algorithm 

is more reliable in terms of finding bias and is named “MRFAA.”

(i) A “cross-score” algorithm was developed in order to assist the tests to detect bias 

automatically after it is introduced in the data.

(ii) Multiple tests were added that feature the cross-score algorithm, i.e., ratio tests such as, 

Heat, BARNFL, GLYFL, and value tests such as Ave value test and Max value test.

(iii) A “dynamic thresholding” strategy is included to compensate the disadvantages of 

“truncation threshold” strategy of MRFA algorithm.

Cross-Score Algorithm:

In order to automate the bias detection process from MRFA, a “cross-score algorithm” was 

developed (Figure 5.21) to score the relative position of the “S1bias to Heat ratio” with respect to 

“S2 clean to Heat ratio” (Figure 5.22). The figure demonstrates the scoring mechanism of the 

algorithm with the aid of a Heat test. For instance, for each of the peaks matched for S1 and S2, if  

S1 ratio value is greater than that of S2 ratio value at any given peak number, the algorithm assigns 

a score of 1 to that peak. If S2 ratio value is greater instead, the score assigned is -1. For example, 

at the 39th peak captured (and matched), S1 ratio is relatively higher than the S2 ratio. This means, 

for peak 39, the algorithm assigns a “score” of 1. The “cross-score” value for the same peak is the 

sum of the “scores” from the past 10 peaks including peak number 39, i.e., four (4). It is noticeable 

that the cross-score value at a given peak number is a moving sum, because the algorithm applies
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the same strategy for each peak number (matched). From Figure 5.22 it is noticeable that cross­

scores are low values (2) before the bias is introduced and turned out as high values (4) after the 

bias is introduced.

Figure 5.21: Cross-score algorithm.

Cross-Score Threshold Strategy:

From the previous section, it is understood that each of the peak numbers that are produced 

from the matching process is assigned with a cross-score value. A “cross-score threshold” (cross­

score Th) in this context is a preset value that ranges between -10 to 10. At a given peak number, 

if  the last 10 cross-scores observed were negative, a maximum score of -10 is possible. On the 

contrary, if  all the 10 cross-scores observed are positive, a maximum score of 10 is possible. Any 

combinations other than these will result in cross-scores that range in between -10 and 10. The 

algorithm uses this following strategy to identify bias. If the cross-scores of peaks are continuously
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showing negative values, it is the indication of negative bias, whereas if the cross-scores are 

continuously positive values, it indicates the presence of positive bias. In general, higher scores 

(±) implicate that S1 bias sensor ratios are drifting off from that of S2. Normally S1 and S2 should 

regularly cross each other to keep the cross-scores at low levels (0-2), due to the fact that these 

two sensors observe the processes that are tandem and identically cyclical.

Starting from the first peak (number) matched (in fact 10th peak to have at least 10 cross­

scores for summing), the algorithm checks the cross-score of each subsequent peak against the 

lowest cross-score threshold (-10). If the cross-score at a peak is greater than the threshold, the 

algorithm captures the peaks start time as the “bias date of identification,” and calculates TTFD. 

Then, the threshold is increased to find the TTFD again. The threshold at which the TTFD value 

is minimum, is the desired threshold for that test. The cross-score algorithm is shown in Figure 

5.21.
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+2% bias was inducedhere on 5/20/15

SK S2, score = -1 sum of last 10 scores (cross-score) = 4

sum of last 10 scores (cross-score) = 4

sum of last 10 scores (cross-score) = 4

sum of last 10 scores (cross-score) = 2
sum of last 10 scores (cross-score) = 2

sum of last 10 scores (cross-score) = 2
sum of last 10 scores (cross-score) = 2

Figure 5.22: Cross-score calculations to identify bias (clean vs biased data).



The MRFA algorithm is equipped with a single test, i.e., “Heat ratio test.” In order to exploit 

the ratio relations between the other sensors and to improve the TTFD performance of the 

algorithm, several other tests were included. If the Heat part of the ratio test is replaced with barren 

flow values it is called “BARNFL ratio test,” and if it is replaced with glycol flow values, the test 

is now a “GLYFL ratio test.” For any industrial process, the average and maximum values tend to 

be good indicators of change. Therefore, another class of tests, “value” tests, were created. Unlike 

the ratio tests that used data from two or more sensors, value tests utilized the average and 

maximum values of the S1 and S2 sensor peaks. In the “average value” test, peak-ave of S1 was 

compared to the peak-ave of S2. If the peak-ave of S1 was greater than the peak-ave of S2, the 

score of 1 was assigned to the peak. If not, the score was -1. In the “max value” test, the peak-max 

of S1 was compared to the peak-max of S2. If the peak-max of S1 was greater than the peak-max 

of S2, the score of 1 was assigned to the peak. If not, the score was -1. Class of tests are depicted 

in Figure 5.23.

In order to simplify the names of the five tests, they are called: Heat test, BARNFL test, 

GLYFL test, Ave test, and Max test. All tests are capable of identifying induced bias (on a 

particular date) with a cross-score threshold strategy, which was explained previously. The MRFA 

equipped with the new capabilities is named “improved MRFA algorithm.”

M ultiple Tests:
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Figure 5.23: Classification of multiple tests.

True Alarm vs False Alarm:

In a typical experiment, bias is introduced on a random day and it stays until the end of the 

year from that day, mimicking the real life industrial situation. A test designed in this context needs 

to find the bias after it occurs (or introduced in this case). Ideally it should find the bias, on the day 

it was introduced, which is difficult due to the process variabilities and the algorithms’ logical 

response. If a test finds bias after it is introduced, however, the result is a “success” and the alarm 

designated is “True alarm” (value=1). When a test identifies a date as bias introduction date even 

before the date bias is introduced, it is called “False alarm” or “failure” (value=0). The TTFD value 

is an absolute value and only indicates the difference in days between bias “introduction date” and 

the “finding date.” Only the alarm mechanism indicates if a test is True (desired) or False (not 

desired) at a particular cross-score threshold value.
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The success rate of a test is dependent on how good it is in producing true alarms. For instance, 

it can be observed from Figure 5.24 that a Heat test finds bias after four days (TTFD) from the day 

bias is introduced at a cross-score threshold of 6. It also finds bias within 19 days (TTFD) before 

the introduction day at a cross-score threshold of 3, which is not desired. Thus, it is understood 

that cross-score threshold 6 has a better success rate in finding bias for that particular test. Results 

from a single Heat test are summarized in Table 5.8. The ideal cross-score threshold at which a 

test can yield minimum TTFD values can be found through observation of TTFD values for 

multiple experiments, i.e., introduction of bias on multiple dates at multiple thresholds. From Table 

5.8, it can be observed that when +2% bias is introduced on 5/20/15 (day 140 of the year, see 

highlighted row), at a trunc th of 275°F, the minimum TTFD (8.81 days) occurs at a cross-score 

threshold of 5 (several cross-score thresholds were applied). At a threshold of 3, the test was able 

to identify bias in 5.54 days; however, the alarm for this test is false (0) indicating that the bias 

was found earlier than the introduction date, which is not desired. Multiple tests have multiple 

TTFD performances that can be observed from Table 5.9. The visual representation of multiple 

bias tests for a bias introduction date of 6/1/15 is found in Figure 5.25.
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Figure 5.24: True alarm vs false alarm.
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Table 5.8: S1 Bias detection, H eat ratio test (±2% bias induced in S1, while S2 is clean).

Test-1
Heat Ratio Test

D ay# S1Bias s ta r t  dt. S1Bias en d  dt.
Induced  

bias %
T runc

th re sh o ld
S1Bias identified  dt.

S1S2 c ro ss -  C ro ss-sco re  
score th re sh o ld

Tim e till 
finding-H rs.

Tim e till 
finding-Days

(TT FD )
A larm  type T rue  a larm  (1) 

Bais identified  
a fte r  it occu red

140 5/20/15 12:00 AM 12/30/15 12:00 AM 2 275 4/28/15 9:40 AM 0 -1 518:20:00 21.60 0 in 9 days, a
140 5/20/15 12:00 AM 12/30/15 12:00 AM 2 275 4/28/15 9:40 AM 0 B e tte r 0 518:20:00 21.60 0 d es ire d  value!
140 5/20/15 12:00 AM 12/30/15 12:00 AM 2 275 5/5/15 7:20 AM 2 choice o f 1 352:40:00 14.69 0
140 5/20/15 12:00 AM 12/30/15 12:00 AM 2 275 5/5/15 7:20 AM 2 th re sh o ld 2 352:40:00 14.69 0
140 5/20/15 12:00 AM 12/30/15 12:00 AM 2 275 5/14/15 11:00 A M 4 3 133:00:00 5.54 0
140 5/20/15 12:00 AM 12/30/15 12:00 AM 2 275 5/14/15 11:00 A M

4 V
4 133:00:00 5.54 0

140 5/20/15 12:00 A M 12/30/15 12:00 AM 2 275 5/28/15 7 :30  PM 6 ^ 5 211:30:00 8.81
140 5/20/15 12:00 AM 12/30/15 12:00 AM 2 275 5/28/15 7:30 PM 6 6 211:30:00 8.81 1
140 5/20/15 12:00 AM 12/30/15 12:00 AM 2 275 5/29/15 7:10 PM 8 7 235:10:00 9.80 1
140 5/20/15 12:00 AM 12/30/15 12:00 AM 2 275 5/29/15 7:10 PM 8 8 235:10:00 9.80 1
140 5/20/15 12:00 AM 12/30/15 12:00 AM 2 275 5/31/15 3:00 AM 10 9 267:00:00 11.13 1
140 5/20/15 12:00 AM 12/30/15 12:00 AM 2 275 5/31/15 3:00 AM 10 10 267:00:00 11.13 1
140 5/20/15 12:00 AM 12/30/15 12:00 AM -2 275 2/17/15 9:10 PM -2 -12 2186:50:00 91.12 0
140 5/20/15 12:00 AM 12/30/15 12:00 AM -2 275 2/17/15 9:10 PM -2 -11 2186:50:00 91.12 0
140 5/20/15 12:00 AM 12/30/15 12:00 AM -2 275 2/17/15 9:10 PM -2 -10 2186:50:00 91.12 0
140 5/20/15 12:00 AM 12/30/15 12:00 AM -2 275 2/17/15 9:10 PM -2 -9 2186:50:00 91.12 0
140 5/20/15 12:00 AM 12/30/15 12:00 AM -2 275 2/17/15 9:10 PM -2 -8 2186:50:00 91.12 0 F a lse  A larm  (0)

140 5/20/15 12:00 AM 12/30/15 12:00 AM -2 275 2/17/15 9:10 PM -2 -7 2186:50:00 91.12 0 Bais identified  in

140 5/20/15 12:00 AM 12/30/15 12:00 AM -2 275 2/17/15 9:10 PM -2 -6 2186:50:00 91.12 0 22 days before it
occure d! n o t

140 5/20/15 12:00 AM 12/30/15 12:00 AM -2 275 2/17/15 9:10 PM -2 -5 2186:50:00 91.12 0 desired!
140 5/20/15 12:00 AM 12/30/15 12:00 AM -2 275 2/17/15 9:10 PM -2 -4 2186:50:00 91.12 0
140 5/20/15 12:00 AM 12/30/15 12:00 AM -2 275 2/17/15 9:10 PM -2 -3 2186:50:00 91.12 0
140 5/20/15 12:00 AM 12/30/15 12:00 AM -2 275 2/17/15 9:10 PM -2 -2 2186:50:00 91.12 0
140 5/20/15 12:00 AM 12/30/15 12:00 AM -2 275 4/28/15 9:40 AM 0 -1 518:20:00 21.60 0
140 5/20/15 12:00 A M 12/30/15 12:00 AM -2 275 4/28/15 9 :40  A M 0 0 518:20:00 21.60 0
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Table 5.9: Multiples tests with bias identification dates.

Test-1 Test-2 Test-3 Test-4 Test-5
Heat ratio test Max value test Ave value test BARNFL ratio test GLYFL ratio test

Day# S1Bias start dt S1Bias end dt
Induced
bias%

Trunk threshold
(°F)

S1Bias identified dt. S1Bias identified dt. S1Bias identified dt. S1Bias identified dt. S1Bias identified dt.

7 1/7/15 12:00 AM 12/30/15 12:00 AM 2 275 2/12/15 6:20 PM 2/20/15 1:50 AM 2/12/15 6:20 PM 2/20/15 1:50 AM 2/20/15 1:50 AM
7 1/7/15 12:00 AM 12/30/15 12:00 AM 2 275 2/12/15 6:20 PM 2/20/15 1:50 AM 2/12/15 6:20 PM 2/20/15 1:50 AM 2/20/15 1:50 AM
7 1/7/15 12:00 AM 12/30/15 12:00 AM 2 275 2/20/15 1:50 AM 4/28/15 9:10 AM 4/29/15 9:20 PM 4/29/15 9:20 PM 4/29/15 9:20 PM
7 1/7/15 12:00 AM 12/30/15 12:00 AM 2 275 2/20/15 1:50 AM 4/28/15 9:10 AM 4/29/15 9:20 PM 4/29/15 9:20 PM 4/29/15 9:20 PM
7 1/7/15 12:00 AM 12/30/15 12:00 AM 2 275 5/1/15 7:20 AM 4/29/15 9:20 PM 5/1/15 7:20 AM 5/1/15 7:20 AM 5/1/15 7:20 AM
7 1/7/15 12:00 AM 12/30/15 12:00 AM 2 275 5/1/15 7:20 AM 4/29/15 9:20 PM 5/1/15 7:20 AM 5/1/15 7:20 AM 5/1/15 7:20 AM
14 1/14/15 12:00 AM 12/30/15 12:00 AM 2 275 2/12/15 6:20 PM 2/20/15 1:50 AM 2/12/15 6:20 PM 2/20/15 1:50 AM 2/20/15 1:50 AM
14 1/14/15 12:00 AM 12/30/15 12:00 AM 2 275 2/12/15 6:20 PM 2/20/15 1:50 AM 2/12/15 6:20 PM 2/20/15 1:50 AM 2/20/15 1:50 AM
14 1/14/15 12:00 AM 12/30/15 12:00 AM 2 275 2/20/15 1:50 AM 4/28/15 9:10 AM 4/29/15 9:20 PM 4/29/15 9:20 PM 4/29/15 9:20 PM
14 1/14/15 12:00 AM 12/30/15 12:00 AM 2 275 2/20/15 1:50 AM 4/28/15 9:10 AM 4/29/15 9:20 PM 4/29/15 9:20 PM 4/29/15 9:20 PM
14 1/14/15 12:00 AM 12/30/15 12:00 AM 2 275 5/1/15 7:20 AM 4/29/15 9:20 PM 5/1/15 7:20 AM 5/1/15 7:20 AM 5/1/15 7:20 AM
14 1/14/15 12:00 AM 12/30/15 12:00 AM 2 275 5/1/15 7:20 AM 4/29/15 9:20 PM 5/1/15 7:20 AM 5/1/15 7:20 AM 5/1/15 7:20 AM
21 1/21/15 12:00 AM 12/30/15 12:00 AM 2 275 2/17/15 8:50 PM 2/20/15 1:50 AM 2/20/15 1:50 AM 2/20/15 1:50 AM 2/20/15 1:50 AM
21 1/21/15 12:00 AM 12/30/15 12:00 AM 2 275 2/17/15 8:50 PM 2/20/15 1:50 AM 2/20/15 1:50 AM 2/20/15 1:50 AM 2/20/15 1:50 AM
21 1/21/15 12:00 AM 12/30/15 12:00 AM 2 275 2/20/15 1:50 AM 4/28/15 9:10 AM 4/29/15 9:20 PM 4/29/15 9:20 PM 4/29/15 9:20 PM
21 1/21/15 12:00 AM 12/30/15 12:00 AM 2 275 2/20/15 1:50 AM 4/28/15 9:10 AM 4/29/15 9:20 PM 4/29/15 9:20 PM 4/29/15 9:20 PM
21 1/21/15 12:00 AM 12/30/15 12:00 AM 2 275 5/1/15 7:20 AM 4/29/15 9:20 PM 5/1/15 7:20 AM 5/1/15 7:20 AM 5/1/15 7:20 AM
21 1/21/15 12:00 AM 12/30/15 12:00 AM 2 275 5/1/15 7:20 AM 4/29/15 9:20 PM 5/1/15 7:20 AM 5/1/15 7:20 AM 5/1/15 7:20 AM
28 1/28/15 12:00 AM 12/30/15 12:00 AM 2 275 2/17/15 8:50 PM 2/20/15 1:50 AM 2/20/15 1:50 AM 2/20/15 1:50 AM 2/20/15 1:50 AM
28 1/28/15 12:00 AM 12/30/15 12:00 AM 2 275 2/17/15 8:50 PM 2/20/15 1:50 AM 2/20/15 1:50 AM 2/20/15 1:50 AM 2/20/15 1:50 AM
28 1/28/15 12:00 AM 12/30/15 12:00 AM 2 275 2/20/15 1:50 AM 4/28/15 9:10 AM 4/29/15 9:20 PM 4/29/15 9:20 PM 4/29/15 9:20 PM
28 1/28/15 12:00 AM 12/30/15 12:00 AM 2 275 2/20/15 1:50 AM 4/28/15 9:10 AM 4/29/15 9:20 PM 4/29/15 9:20 PM 4/29/15 9:20 PM
28 1/28/15 12:00 AM 12/30/15 12:00 AM 2 275 5/1/15 7:20 AM 4/29/15 9:20 PM 5/1/15 7:20 AM 5/1/15 7:20 AM 5/1/15 7:20 AM
28 1/28/15 12:00 AM 12/30/15 12:00 AM 2 275 5/1/15 7:20 AM 4/29/15 9:20 PM 5/1/15 7:20 AM 5/1/15 7:20 AM 5/1/15 7:20 AM
35 2/4/15 12:00 AM 12/30/15 12:00 AM 2 275 2/17/15 8:50 PM 2/20/15 1:50 AM 2/20/15 1:50 AM 2/20/15 1:50 AM 2/20/15 1:50 AM
35 2/4/15 12:00 AM 12/30/15 12:00 AM 2 275 2/17/15 8:50 PM 2/20/15 1:50 AM 2/20/15 1:50 AM 2/20/15 1:50 AM 2/20/15 1:50 AM
35 2/4/15 12:00 AM 12/30/15 12:00 AM 2 275 2/20/15 1:50 AM 2/23/15 5:00 PM 2/23/15 5:00 PM 2/23/15 5:00 PM 2/23/15 5:00 PM
35 2/4/15 12:00 AM 12/30/15 12:00 AM 2 275 2/20/15 1:50 AM 2/23/15 5:00 PM 2/23/15 5:00 PM 2/23/15 5:00 PM 2/23/15 5:00 PM
35 2/4/15 12:00 AM 12/30/15 12:00 AM 2 275 2/23/15 5:00 PM 4/29/15 9:20 PM 5/1/15 7:20 AM 5/1/15 7:20 AM 5/1/15 7:20 AM
35 2/4/15 12:00 AM 12/30/15 12:00 AM 2 275 2/23/15 5:00 PM 4/29/15 9:20 PM 5/1/15 7:20 AM 5/1/15 7:20 AM 5/1/15 7:20 AM
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Figure 5.25: Multiple tests in finding bias (+2%) for S1 sensor data.



The “improved MRFA” algorithm that resulted from the inclusion of cross-score algorithm, 

and multiple tests with automatic detection capabilities is similar to the MRFAA algorithm (Figure 

5.29) except for one aspect. It continues to use a “truncation threshold” (trunc Th) strategy, as 

opposed to the “dynamic threshold” strategy of MRFAA.

Disadvantage with Trucation Threshold (trunc Th) Strategy:

The only disadvantage with the improved MRFA is related to the choice of truncation 

threshold value. Several experimentations with the trunc Th value have revealed that it was highly 

sensitive to bias at a value of 275°F (effective threshold). However, at this threshold the algorithm 

was unable to capture peaks for the last quarter of the year; specifically after September, 2015. 

This is due to the fact that the strip vessel temperatures (observed by S1 and S2 for the time) often 

ran below 275°F. In the absence of S1 and S2 peaks— eliminated by truncation threshold 

strategy—the cross-score algorithm for various tests failed to detect bias. From the Figure 5.26 it 

is evident that no peaks were captured around the time in order to identify bias that was introduced 

in the month of November 2015. This means that the algorithm is not capable of calculating ratio 

statistics and cross-scores in order to detect bias. The disadvantage is mitigated through dynamic 

thresholding strategy, which is explained in the subsequent section.
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Figure 5.26: Disadvantage with truncation threshold (trunc Th).



In order to observe the effect of a reduced truncation threshold value (from 275°F to 260°F) 

in capturing peaks when bias is introduced in the November month of 2015, an experiment was 

conducted (Figure 5.27). It is noticed that more peaks were brought into the “matching” process, 

making the bias detection possible for that time frame. However, it is observed that lowering the 

trunc th has a compromising effect on the sensitivity of cross-scores with respect to the thresholds 

and ratios in finding bias. This is compensated by dynamically adjusting the trunc Th based on the 

maximum value of a peak. The new technique that dynamically adjusts the trunc Th value to 

improve the TTFD performance of a test is named, “dynamic thresholding” (dyn Th). The resultant 

improved algorithm is called MRFAA, and is Fortran based. Unlike trunc th value, a dyn Th value 

is not a fixed one. For the purpose of the study, a 90% of the maximum reading value of any given 

peak (peak-max) is chosen as the dynamic threshold for that peak. For instance, if  the maximum 

value of the readings of a S1 peak is 290°F, then the 90% of the value, i.e., 261°F, is established 

as the dyn th. The strategy provides flexibility in adjusting the threshold to cope with the varying 

high values of a data-set. The strategy is depicted in Figure 5.28. From the figure, it can be 

observed that the S2 peak with a peak-max value of 261°F was not captured at a truncation 

threshold of 265°F. However, it was captured with dynamic thresholding strategy when the 

threshold is adjusted to 90% of the peak-max value (234.9°F).

Dynamic Thresholding:
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Figure 5.27: Effect of lowering the threshold to 260°F on peaks captured.
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Figure 5.28: Truncation threshold vs dynamic threshold.



The flowchart for the algorithm is shown in the Figure 5.29. The following are some salient 

features of the MRFAA algorithm. Since the algorithm is an extension of the MRFA algorithm, 

there is no exclusive description provided. The only additional feature of the algorithm, i.e., 

dynamic thresholding was described in the previous section. MRFAA is a Fortran-based algorithm.

(i) Fully automated algorithm, right from the choice of date for bias induction to the writing 

of results to the output file of choice (text or Excel).

(ii) Ability to select different thresholds; can switch between dynamic and truncation 

threshold if necessary. A combination of these threshold is also possible. A snapshot of the Fortran 

interface used is shown in Figure 5.30.

(iii) Ability to add an automated new test by adding a few lines of code.

(iv) Ability to validate the user choice of test by calculating performance statistics for the 

success (true alarms) and failure rates (false alarms).

(v) Ability to identify either positive or negative bias.

(vi) When compared to previous Matlab-based algorithms MRFAA has better speed of 

execution.

5.5.5.3 M RFA A : A lgo rithm  D escrip tion
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Write
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Results.

Figure 5.29: Flowchart for MRFA automation with dynamic thresholding (MRFAA).
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Figure 5.30: Fortran interface where multiple input options are available.

5.6 Results and Validation

This section presents results from various experimentations with MRFAA algorithm along 

with validation.

5.6.1.1 MRFAA Algorithm

Using MRFAA, multiple bias identification tests were conducted by inducing bias (±2%) on 

each day of the year (365 days of the year) in the S1sensor data set. Then each test is validated by 

capturing TTFD values. The performance of each test in terms of success (True alarms) and failure 

rates (False alarms) is also captured (see Table 5.10).
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Table 5.10: Multiples tests with dynamic thresholding (90% of peak-m ax value).
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The results from the automatic detection of the bias using MRFAA algorithm are given 

below. In fact, various tests were conducted with a combination of dyn Th, i.e., 90% of the peak- 

max value of any matched peak, and a trunc Th of 255°F (the bigger of the two is selected as the 

dynamic threshold for a peak). In this context, the trunc Th is only used to prevent the dynamic 

threshold from capturing peaks with too low of readings (<255°F); too low values can compromise 

the sensitivity of “ratios” to bias. For each threshold (ranges between -10 to 10), bias was 

introduced at the first day of the year (2015) and the test captures bias identification date and the 

TTFD for that threshold. The process was repeated for 365 days of the year. When a test (cross­

score algorithm) completely failed to identify bias, a value of 365 was assigned as TTFD. This 

was to symbolically indicate the test attempted to detect bias by checking all the peaks that were 

matched (representing the whole year) and failed. A snapshot of various tests and results are 

presented in Table 5.10. A +2% and -2% bias were introduced in two separate cases, in each and 

every day of the year 2015 for S1 data to observe the effect on TTFD values. The success rates for 

the “alarm” tests and their corresponding TTFD performances are shown in Figure 5.31. The 

results shown in Figure 5.31 are also summarized in tabular form for reader’s convenience. The 

alarm and TTFD performances at cross-score thresholds 5 or 6 are summarized in Table 5.11. The 

summary for threshold 7 or 8 is available in Table 5.12.
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Figure 5.31: Combined test - Alarm and TTFD performances.

Table 5.11: Combined test - Performances at Thresholds 5 or 6.

Cross-score thresholds 
No. of True alarms 

No. of False alarms 
Total tests 

Success (True alarm) rate

+75% o f the 347 True alarms (260.3) have detected bias within 39.5 days (TTFD) 

at the thresholds, 5 or 6.

*75% of the 18 False alarms (13.5) have completely failed to detect bias, i.e, took 365 days (TTFD) 

at the thresholds, 5 or 6.

Table 5.12: Combined test - Performances at Thresholds 7 or 8.

Cross-score thresholds 
No. of True alarms 

No. of False alarms 
Total tests 

Success (True alarm) rate

+75% o f the 327 True alarms (245.3) have detected bias within 242.6 days (TTFD) 

at the thresholds, 7 or 8.

*75% of the 38 False alarms (28.5) have completely failed to detect bias, i.e, took 365 days (TTFD) 

at the thresholds, 7 or 8.

Alarm Performance TTFD Performance (days)
7 or 8 7 or 8 (75% of Alarms)
327 242.6+ (245.3)
38 365* (28.5)

365 273.8 (75% of 365)
90%

Alarm Performance TTFD Performance (days)
5 or 6 5 or 6 (75% of alarms)

347 39.5+ (260.3)

18 365* (13.5)

36 5 2 73.8 (75% o f 365)

95%

200



The results from the analysis where +2% bias was inducted in S1 were presented in this 

section. However, it should be noted that similar trends were observed for -2% bias. The tests with 

minimum TTFD values and corresponding cross-score thresholds can be observed in Table 5.10.

A “Combined test” is designed to capture the minimum TTFD value of all tests together at a 

particular threshold. For instance, it can be observed from Table 5.10 that when bias is induced on 

4/2/15, the algorithm that can find it with success (alarm=1) at a minimum TTFD (42.42 days) is 

Heat test at a cross-score threshold of 5 or 6. The Combined test is also capable of providing the 

success (true alarms) and failure (false alarm) rates of all the tests together.

The true alarm performance of the Combined test can be found in Table 5.13. In 75% of 

cases, the algorithms find the bias within 39.5 days (see highlighted text in the table). The results 

can be visually observed in Figure 5.32 .The Combined test false alarm performance in terms of 

the percentages of cases a test is yielding false alarms is found in Table 5.14. From the table it is 

observed that when all the tests fail, 75% of the time the TTFD value is 271 days at a threshold of 

4. The performance of all the other tests can be found in the appendix of this chapter.
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Table 5.13: Combined test True alarm  perform ance.

Cross-score
Threshold

5th percntl True 25th percntl_True
50 th percntl 

(Median)_True
75th percntl_True 95th percntl_True Alarm (True)

- 1 0 365.0 365.0 365.0 365.0 365.0 1

-9 365.0 365.0 365.0 365.0 365.0 1

- 8 365.0 365.0 365.0 365.0 365.0 1

-7 365.0 365.0 365.0 365.0 365.0 1

- 6 365.0 365.0 365.0 365.0 365.0 1

-5 365.0 365.0 365.0 365.0 365.0 1

-4 365.0 365.0 365.0 365.0 365.0 1

-3 365.0 365.0 365.0 365.0 365.0 1

- 2 365.0 365.0 365.0 365.0 365.0 1

- 1 365.0 365.0 365.0 365.0 365.0 1

0 365.0 365.0 365.0 365.0 365.0 1

1 365.0 365.0 365.0 365.0 365.0 1

2 365.0 365.0 365.0 365.0 r 365.0 1

3 7.2 365.0 365.0 365.0 365.0 1

5 / 7.2 365.0 365.0 365.0 365.0 1

2 . 6 8.5 17.4 39.5 63.1 1

6 2 . 6 8.5 17.4 39.5 63.1 1

7 9.0 62.1 152.3 242.6 365.0 1

8 9.0 62.1 152.3 242.6 365.0 1

9 9.4 18.9 41.2 365.0 365.0 1

1 0 9.4 18.9 41.2 365.0 365.0 1

Table 5.14: Combined test False alarm performance.

Cross-score
Threshold

5th percntl_False 25th percntl_False 50th percntl (Median)_False 75th percntl_False 95th percntl_False
Alarm
(False )

-10 18.3 90.5 180.8 271.0 343.2 0
-9 18.3 90.5 180.8 271.0 343.2 0
-8 18.3 90.5 180.8 271.0 343.2 0
-7 18.3 90.5 180.8 271.0 343.2 0
-6 18.3 90.5 180.8 271.0 343.2 0
-5 18.3 90.5 180.8 271.0 343.2 0
-4 18.3 90.5 180.8 271.0 343.2 0
-3 18.3 90.5 180.8 271.0 343.2 0
-2 18.3 90.5 180.8 271.0 343.2 0
-1 18.3 90.5 180.8 271.0 343.2 0
0 18.3 90.5 180.8 271.0 343.2 0
1 /  18.3 90.5 180.8 271.0 / 343.2 0

2 ^ 18.3 90.5 180.8 271.0 ^ 343.2 0
3 ^ 18.3 90.5 180.7 271.0 ^ 365.0 0

1 4 18.3 90.5 180.7 271.0 365.0 0
5 365.0 365.0 365.0 365.0 365.0 0
6 365.0 365.0 365.0 365.0 365.0 0
7 308.9 365.0 365.0 365.0 365.0 0
8 308.9 365.0 365.0 365.0 365.0 0
9 365.0 365.0 365.0 365.0 365.0 0
10 365.0 365.0 365.0 365.0 365.0 0
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Figure 5.32: Combined test perform ance.



Various algorithms described in the chapter are based on exploiting ratios that depend on 

sensor interrelations. The multiple ratio function analysis (MRFA) introduced is based on 

exploiting the strip vessel sensor (S1 and S2) relations with combined “Heat” of the heat exchanger 

sensors all together. The main disadvantage with this algorithm is that it cannot achieve the bias 

finding process automatically, which is time consuming and a major hindrance for conducting 

multiple tests on multiple days. The MRFA algorithm’s efficiency is mainly dependent on the 

sensitivity of ratios at higher temperatures, i.e., between 270 through 280°F. The truncation 

threshold value was designed based on that premise and eliminates peaks (and ratios) that are less 

sensitive to bias. The disadvantage with establishing truncation threshold at higher values is that 

it eliminates some peaks that are essential in identifying bias; for instance, the peaks from the last 

quarter of the year 2015. The MRFA is chiefly a heat ratio test. A dynamic threshold strategy 

adjusts the threshold to the maximum value of the peak-readings, and compensates for the 

disadvantages of truncation threshold; a 90% of peak-maximum value is selected in this research. 

The Fortran-based MRFAA algorithm employs dynamic thresholding strategy and hence, is more 

efficient than MRFA.

It can be observed from the Combined test results that all the tests together have a success 

(True alarms) rate of 95% at the cross-score thresholds of 5 or 6. Out of 365 tests conducted by 

inducing bias on each day of the year, 347 tests showed true alarm performance, and 18 tests failed. 

In those “True” alarms, 75% of the cases, all tests together are finding the bias within 39.5 days, 

and in 63 days for 95% of the cases. Out of 18 “False” alarms, 75% of the cases the tests completely 

failed (TTFD=365). At the cross-score thresholds of 7 or 8, the true alarm success rate is 90% 

(327) out of 365 tests; however, the TTFD (242.6 days for 75% of the cases) performance at these

5.7 Discussion
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thresholds is poor when compared to the thresholds at 5 or 6. Given that a combined cycle of strip 

vessel sensors (S1 and S2) takes more than a day, identifying the bias within a month span of time 

is very valuable for the industries. When all the tests fail (False alarms) in 95% of the cases, it is 

when the cross-scores are low which is observed from the high TTFD values, i.e., >340 days. This 

means S1 and S2 are exhibiting perfect cyclical behavior, and due to the cancelling effect, the 

cross-score values stay low in between the values -2 to 2. If the cross- scores starts to sway towards 

positive high values (>4) or negative low values (<-4), the algorithms detects bias. Coming to the 

individual tests, the Heat test was capable of detecting bias within 33 days after induction for 75% 

of the cases, and, within 55 days for 95% of the cases at cross-score thresholds of 5 and 6. The 

“max value test” identified bias in 44 days for 75% of the cases at thresholds of 7 and 8. The 

average value test can find bias in 65 days for 50% of the cases. This could be attributed to the 

minimizing effect of the “average” on peak-readings and bias, which is disadvantageous for the 

sensitivity at very lower magnitudes of bias (2%). Average test may be better suited for errors of 

higher magnitude but for the subtle errors like bias, it might be disadvantageous. The BARNFL 

and GLYFL tests did not show promise, and are less sensitive to the dynamic thresholding strategy. 

The ratios of flows to strip vessel temperatures are very minute and produced low cross-score 

values. At such low cross-scores, the algorithm is less effective and sensitive to thresholds in 

finding bias.

5.8 Conclusions

Identification of bias at 2% is crucial for Pogo and valuable for the optimum operation of the 

strip vessels. It can be concluded from the results that bias as low as 2% in magnitude can be 

identified in a reasonable amount of time with MRFAA algorithm. The algorithms developed in 

this chapter are based on exploiting interrelations between sensors’ readings in the carbon stripping
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circuit, in the form of ratio function relations. The MRFA algorithm is capable of performing single 

heat ratio test with manual analysis of the results. A cross-score algorithm is the key feature of 

MRFA that is capable of finding the bias induction date with a cross-score thresholding 

mechanism. To exploit the relations between S1 and S2 with other sensors readings, i.e., BARNFL 

and GLYFL, additional ratio tests were added (BARNFL ratio test and GLYFL ratio test). The 

maximum and average values of the strip vessel cycles play an important role in observing the 

temperature trends. Due to this reason, “average value” and “maximum value" tests that can 

compare peak-max and peak-ave values for S1 and S2, respectively, were added. Several tests 

with the improved MRFA algorithm revealed that the truncation thresholding criteria is 

disadvantageous in finding bias at certain periods of the year, specifically, the last quarter of the 

year. A dynamic thresholding strategy that depends on peak-max values (90%) was added to the 

MRFA algorithm to produce a fully automated multi-test capable MRFAA algorithm.

A “Combined test” was created to capture the time till find days (TTFD) of all the tests 

together. The results from the test proved that all the tests together have a high success rate (95%) 

in terms of True alarms at the cross-score thresholds of 5 or 6. From the Combined test results, it 

can be observed that 75% of the cases the tests are findings the bias within 39.5 days. Regarding 

the individual tests, the Heat test is the most effective, which is capable of identifying the bias 

within 33 days after induction 75% of the time at cross-score thresholds of 5 and 6. The tests that 

used GLYFL and BARNFL were not very effective. Although Combined test results at the 

thresholds of 7 and 8 have the True alarm success rate of 90%, it had poor TTFD performance 

(242.6 days for 75% cases). In this context, it can be concluded that at cross-score thresholds of 5 

or 6 all the tests together have high chance of detecting bias for any future data set. A -2% random 

error was detected with a similar success rate. Additional tests can be added in the future to
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improve the TTFD performance of the MRFAA algorithm. It is also scalable and generalized to 

any industry due to its flexibility and speed.

At this time the algorithm is not capable of identifying bias in several sensors at the same 

time in a multi-sensor environment. The algorithm is also not capable at this time of identifying 

different types of errors other than bias. Presence of relations between sensors is the fundamental 

requirement for the algorithm in order to be successful.
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Figure 5.33: H eat ratio test perform ance.
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Table 5.15: H eat ratio test True alarm  perform ance.

Cross-score
Threshold

5th percntl_True 25th percntl_True
50th percntl 

(Median) True
75th percntl_Trae 95th percntl_True Alarm (True)

-10 365.0 365.0 365.0 365.0 365.0 1
-9 365.0 365.0 365.0 365.0 365.0 1

-8 365.0 365.0 365.0 365.0 365.0 1

-7 365.0 365.0 365.0 365.0 365.0 1
-6 365.0 365.0 365.0 365.0 365.0 1
_5 365.0 365.0 365.0 365.0 365.0 1

-4 365 0 365 0 365 0 365 Ci 365.0 1

-3 365.0 365.0 365.0 365.0 365.0 1
-2 365.0 365.0 365.0 365.0 365.0 1

-1 365.0 365.0 365.0 365.0 365.0 1

0 365.0 365.0 365.0 365.0 365.0 1
1 365.0 365.0 365.0 365.0 t 365.0 1

2 365.0 365.0 365.0 365.0 / 365.0 1

3 365.0 365.0 365.0 365.0 / 365.0 1
A i s ;  m i s ;  m i s ;  m i s ;  m i s ;  m 1
5 2.6 7.9 14.4 32.9 55.2 1
6 2.6 7.9 14.4 32.9 55.2 1
7 5.7 12.8 26.4 64.8 365.0 1
8 5.7 12.8 26.4 64.8 365.0 1
9 1053 23.5 53.2 365.0 365.0 1
10 1053 23.5 53.2 365.0 365.0 1

Table 5.16: Heat ratio test False alarm performance.

Cross-score 
Threshold

5th percntl_False 25th percntl_False
50th percntl 

(Median)_False
75th percntl_False 95th percntl_False

Alarm
(False)

-10 18.3 90.5 180.8 271.0 3432 0
-9 18.3 90.5 180.8 271.0 3432 0
-S 18.3 90.5 180.8 271.0 3432 0
-7 18.3 90.5 180.8 271.0 3432 0
-6 18.3 90.5 180.8 271.0 3432 0
-5 18.3 90.5 180.8 271.0 3432 0
-4 18.3 90.5 180.8 271.0 3432 0
-3 18.3 90.5 180.8 271.0 3432 0
-2 18.3 90.5 180.8 271.0 3432 0
-1 18.3 90.5 180.8 271.0 / 3432 0
0 18.3 90.5 180.8 271.0 / 3432 0
1 18.3 90.5 180.8 271.0 / 3432 0
2 18.3 90.5 180.8 271.0 ~ 3432 0
3 13.2 90.4 180.7 2109 343.1 0
4 13.2 90.4 180.7 2109 343.1 0
5 ----------- 17 1 A----------- ---------- TTTTi---------- ------------ TTTTi------------ ----------TZTT'i---------- ------- 7T-------1303 .u 303.0 303 .U 303 .U j Oj .U u
6 365.0 365.0 365.0 365.0 365.0 0
7 365.0 365.0 365.0 365.0 365.0 0
3 365.0 365.0 365.0 365.0 365.0 0
9 365.0 365.0 365.0 365.0 365.0 0

10 365.0 365.0 365.0 365.0 365.0 0
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Figure 5.34: Max value test performance.
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Table 5.17: Max value test True alarm  perform ance.

Cross-score
Threshold

5th percntl_True 25th percntl_True
50th percntl 

(M edian)_True
75th percntl_True 95th percntl_True Alarm (True)

-10 365.0 365.0 365.0 365.0 365.0 1
-9 365.0 365.0 365.0 365.0 365.0 1
-8 365.0 365.0 365.0 365.0 365.0 1
-7 365.0 365.0 365.0 365.0 365.0 1
-6 365.0 365.0 365.0 365.0 365.0 1
_5 365 0 365 0 365 '3 365 0 365 1
-4 365.0 365.0 365.0 365.0 365.0 1
-3 365.0 365.0 365.0 365.0 365.0 1
-2 365.0 365.0 365.0 365.0 365.0 1
-1 365.0 365.0 365.0 365.0 365.0 1
0 365.0 365.0 365.0 365.0 365.0 1
1 365 0 365 0 365 '3 365 0 365 1
2 365.0 365.0 365.0 365.0 365.0 1
3 365.0 365.0 365.0 365.0 . 365.0 1
4 365.0 365.0 365.0 365.0 / 365.0 1
5 6.2 365.0 365.0 365.0 J 365.0 1
fi 6 2 365 0 365 0 365 0 365 0 1
7 5.9 11.5 20.3 44.2 365.0 1
8 5.9 11.5 20.3 44.2 365.0 1
9 11.4 37.0 93.4 365.0 365.0 1
10 1 1 4 37.0 93.4 365.0 365.0 1

Table 5.18: Max value test False alarm performance.

Cross-score
Threshold

5th percntl_False 25th percntl_False
50th percntl 

(M edian) False
7 5th percntl_False 95th percntl_False Alarm (False)

-10 18.3 90.5 180.8 271.0 343.2 0
-9 18.3 90.5 180.8 271.0 343.2 0
-8 18.3 90.5 180.8 271.0 343.2 0
-7 18.3 90.5 180.8 271.0 343.2 0
-6 18.3 90.5 180.8 271.0 343.2 0
_5 18.3 90.5 180.8 271.0 343.2 0
-4 18.3 90.5 180.8 271.0 343.2 0
-3 18.3 90.5 180.8 271.0 343.2 0
-2 18.3 90.5 180.8 271.0 343.2 0
-1 18.3 90.5 180.8 271.0 343.2 0
(' 18.3 90.5 180.8 271.0 343.2 0
1 18.3 90.5 180.8 271.0 . 343.2 0
2 18.3 90.5 180.8 271.0 / 343.2 0
3 18.2 90.4 180.7 270.9 J 343.1 0
4 182 90 4 180 7 270 9 343 1 0
5 18.1 90.3 180.5 270.8 365.0 0
6 18.1 90.3 180.5 270.8 365.0 0
7 365.0 365.0 365.0 365.0 365.0 0
8 365.0 365.0 365.0 365.0 365.0 0
9 365.0 365.0 365.0 365.0 365.0 0
10 365.0 365.0 365.0 365.0 365.0 0
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Figure 5.35: Ave value test performance.
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Table 5.19: Ave value test True alarm  perform ance.

Cross-score 
Threshold 5th percntl True 25th percntl True 50th percntl 

(Median) True 75th percntl True 95th percntl True Alarm (True)

-10 365.0 365.0 365.0 365.0 365.0 1
-9 365.0 365.0 365.0 365.0 365.0 1
-8 365.0 365.0 365.0 365.0 365.0 1
-7 365.0 365.0 365.0 365.0 365.0 1
-6 365.0 365.0 365.0 365.0 365.0 1
-5 365.0 365.0 365.0 365.0 365.0 1
-4 365.0 365.0 365.0 365.0 365.0 1
-3 365.0 365.0 365.0 365.0 365.0 1
_2 365.0 365.0 365.0 365.0 365.0 1
-i 365.0 365.0 365.0 365.0 365.0 1
0 365.0 365.0 365.0 365.0 365.0 1
1 365.0 365.0 365.0 365.0 365.0 1
2 365.0 365.0 365.0 365.0 365.0 1
3 365.0 365.0 365.0 365.0 365.0 1
4 365.0 365.0 365.0 365.0 365.0 1
5 365.0 365.0 365.0 365.0 365.0 1
6 365.0 365.0 365.0 / 365.0 365.0 1
1 224.9 365.0 365.0 J 365.0 365.0 1
8 : : - 9 7S5 u 7SA u 7S5 u 7SA u
9 11.2 27 2 65.2 138.4 365.0
10 11.2 27 2 65.2 138.4 365.0

Table 5.20: Ave value test False alarm performance.

Cross-score
Threshold

5th percntl_False 25th percntl_False
50th percntl 

(Median )_Fals e
75th percntl_False 95th percntl_False

Alarm
(False)

-10 18.3 90.5 180.8 271.0 343.2 0
-9 18.3 90.5 180.8 271.0 343.2 0
-8 18.3 90.5 180.8 271.0 343.2 0
-7 18.3 90.5 180.8 271.0 343.2 0
-6 18.3 90.5 180.8 271.0 343.2 0
_5 18.3 90.5 180.8 271.0 343.2 0
-1 18.3 90.5 180.8 271.0 343.2 0
-3 18.3 90.5 180.8 271.0 343.2 0
-2 18.3 90.5 180.8 271.0 343.2 0
-1 18.3 90.5 180.8 271.0 343.2 0
0 18.3 90.5 180.8 271.0 343.2 0
1 18.3 90.5 180.8 271.0 343.2 0
2 18.3 90.5 180.8 271.0 343.2 0
3 17.9 90.1 180.4 270.6 / 342.8 0
4 17.9 90.1 180.4 270.6 / 342.8 0
5 18.2 90.4 180.7 270.9 / 343.1 0
6 187 9n 4 tpn 7 77n £ 747 1 0
7 17.9 90.1 180.3 270.6 352.5 0
8 17.9 90.1 180.3 270.6 352.5 0
9 365.0 365.0 365.0 365.0 365.0 0
10 365.0 365.0 365.0 365.0 365.0 0
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Figure 5.36: BARNFL ratio test performance.
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Table 5.21: BARNFL ratio test True alarm  perform ance.

Cross-score
Threshold 5th percntl_True 25th percntl_True

50th percntl
(Median)_True 75th percntl_True 95th percntl_True

Alarm
(True)

-10 365.0 365.0 365.0 365.0 365.0 1
-9 365.0 365.0 365.0 365.0 365.0 1
-8 365.0 365.0 365.0 365.0 365.0 1
-7 365.0 365.0 365.0 365.0 365.0 1
-6 365.0 365.0 365.0 365.0 365.0 1
-5 365.0 365.0 365.0 365.0 365.0 1
-4 365.0 365.0 365.0 365.0 365.0 1
-3 365.0 365.0 365.0 365.0 365.0 1
-2 365.0 365.0 365.0 365.0 365.0 1
-1 365.0 365.0 365.0 365.0 365.0 1
0 365.0 365.0 365.0 365.0 365.0 1
1 365.0 365.0 365.0 365.0 365.0 1
2 365.0 365.0 365.0 365.0 365.0 1
3 365.0 365.0 365.0 365.0 365.0 1
4 365.0 365.0 365.0 365.0 365.0 1
5 209.3 365.0 365.0 365.0 365.0 1
6 209.3 365.0 365.0 365.0 365.0 1
7 365.0 365.0 365.0 365.0 365.0 1
8 365.0 365.0 365.0 365.0 365.0 1
9 365.0 365.0 365.0 365.0 365.0 1
10 365.0 365.0 365.0 365.0 365.0 1

Table 5.22: BARNFL ratio test False alarm performance.

Cross-score
Threshold

5th percntl_False 25th percntl_False
50 th percntl 

(Median)_False
75th percntl_False 95th percntl_False

Alarm
(False)

-10 18.3 90.5 180.8 271.0 343.2 0
-9 18.3 90.5 180.8 271.0 343.2 0
-8 18.3 90.5 180.8 271.0 343.2 0
-7 18.3 90.5 180.8 271.0 343.2 0
-6 18.3 90.5 180.8 271.0 343.2 0
-5 18.3 90.5 180.8 271.0 343.2 0
-4 18.3 90.5 180.8 271.0 343.2 0
-3 18.3 90.5 180.8 271.0 343.2 0
-2 18.3 90.5 180.8 271.0 343.2 0
-1 18.3 90.5 180.8 271.0 343.2 0
0 18.3 90.5 180.8 271.0 343.2 0
1 18.3 90.5 180.8 271.0 343.2 0
2 18.3 90.5 180.8 271.0 343.2 0
3 18.2 90.4 180.7 270.9 343.1 0
4 18.2 90.4 180.7 270.9 343.1 0
5 365.0 365.0 365.0 365.0 365.0 0
6 365.0 365.0 365.0 365.0 365.0 0
7 365.0 365.0 365.0 365.0 365.0 0
8 365.0 365.0 365.0 365.0 365.0 0
9 365.0 365.0 365.0 365.0 365.0 0
10 365.0 365.0 365.0 365.0 365.0 0
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Table 5.23: GLYFL ratio test True alarm  perform ance.

Cross-score
Threshold

5th percntl_True 25th percntl_True
50 th percntl 

(Median)_True
75th percntl_True 95th pe rcntl_True Alarm (True)

-10 365.0 365.0 365.0 365.0 365.0 1
-9 365.0 365.0 365.0 365.0 365.0 1
-8 365.0 365.0 365.0 365.0 365.0 1
-7 365.0 365.0 365.0 365.0 365.0 1
-6 365.0 365.0 365.0 365.0 365.0 1
-5 365.0 365.0 365.0 365.0 365.0 1
-4 365.0 365.0 365.0 365.0 365.0 1
-3 365.0 365.0 365.0 365.0 365.0 1
-2 365.0 365.0 365.0 365.0 365.0 1
-1 365.0 365.0 365.0 365.0 365.0 1
0 365.0 365.0 365.0 365.0 365.0 1
1 365.0 365.0 365.0 365.0 365.0 1
2 365.0 365.0 365.0 365.0 365.0 1
3 7.2 365.0 365.0 365.0 365.0 1
4 7.2 365.0 365.0 365.0 365.0 1
5 9.6 365.0 365.0 365.0 365.0 1
6 9.6 365.0 365.0 365.0 365.0 1
7 28.0 365.0 365.0 365.0 365.0 1
8 28.0 365.0 365.0 365.0 365.0 1
9 365.0 365.0 365.0 365.0 365.0 1
10 365.0 365.0 365.0 365.0 365.0 1

Table 5.24: GLYFL ratio test False alarm performance.

Cross-score
Threshold 5th percntl False 25th percntl_False

50th percntl 
(Median)_False 75th percntl_False 95th percntl_False

Alarm
(False)

-10 18.3 90.5 180.8 271.0 343.2 0
-9 18.3 90.5 180.8 271.0 343.2 0
-8 18.3 90.5 180.8 271.0 343.2 0
-7 18.3 90.5 180.8 271.0 343.2 0
-6 18.3 90.5 180.8 271.0 343.2 0
-5 18.3 90.5 180.8 271.0 343.2 0
-4 18.3 90.5 180.8 271.0 343.2 0
-3 18.3 90.5 180.8 271.0 343.2 0
-2 18.3 90.5 180.8 271.0 343.2 0
-1 18.3 90.5 180.8 271.0 343.2 0
0 18.3 90.5 180.8 271.0 343.2 0
1 18.3 90.5 180.8 271.0 343.2 0
2 18.3 90.5 180.8 271.0 343.2 0
3 18.3 90.5 180.7 271.0 365.0 0
4 18.3 90.5 180.7 271.0 365.0 0
5 18.1 90.3 180.6 270.8 365.0 0
6 18.1 90.3 180.6 270.8 365.0 0
7 365.0 365.0 365.0 365.0 365.0 0
8 365.0 365.0 365.0 365.0 365.0 0
9 365.0 365.0 365.0 365.0 365.0 0
10 365.0 365.0 365.0 365.0 365.0 0
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