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Abstract

Sensor errors cost the mining industry millions of dollars in losses each year. Unlike gross
errors, “calibration errors” are subtle, develop over time, and are difficult to identify. Economic
losses start accumulating even when errors are small. Therefore, the aim of this research was to
develop methods to identify calibration errors well before they become obvious. The goal in this
research was to detect errors at a bias as low as 2% in magnitude. The innovative strategy
developed relied on relationships between a variety of sensors to detect when a given sensor started
to stray. Sensors in a carbon stripping circuit at a gold processing facility (Pogo Mine) in Alaska

were chosen for the study.

The results from the initial application of classical statistical methods like correlation,
aggregation and principal component analysis (PCA), and the signal processing methods (FFT),
to find bias (£10%) in “feed” sensor data from a semi-autogenous (SAG) grinding mill operation
(Fort Knox mine, Alaska) were not promising due to the non-linear and non-stationary nature of
the process characteristics. Therefore, those techniques were replaced with some innovative data
mining techniques when the focus shifted to Pogo Mine, where the task was to detect calibration
errors in strip vessel temperature sensors in the carbon stripping circuit. The new techniques used
data from two strip vessel temperature sensors (S1 and S2), four heat exchanger related
temperature sensors (H1 through H4), barren flow sensor (BARNFL) and a glycol flow sensor
(GLYFL). These eight sensors were deemed to be part of the same process. To detect when the
calibration of one of the strip vessel temperature sensors, S1, started to stray, tests were designed
to detect changes in relationship between the eight temperature sensors. Data was filtered
(“threshold”) based on process characteristics prior to being used in tests. The tests combined basic

concepts such as moving windows of time, ratios (ratio of one sensor data to data from a set of

il



sensors), tracking of maximum values, etc. Error was triggered when certain rules were violated.
A 2% error was randomly introduced into one of the two strip vessel temperature data streams to
simulate calibration errors. Some tests were less effective than others at detecting the simulated
errors. The tests that used GLYFL and BARNFL were not very effective. On the other hand, the
tests that used total “Heat” of all the heat exchanger sensors were very effective. When the tests
were administered together (“Combined test”), they have a high success rate (95%) in terms of
True alarms, i.e., tests detecting bias after it is introduced. In those True alarms, for 75% of the
cases, the introduction of the error was detected within 39.5 days. A -2% random error was

detected with a similar success rate.
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Chapter 1: Introduction

1.1 Background

The use of sensors to monitor industrial processes has become increasingly prevalent over the
past few decades, and the mining industry is no exception. Sensors play a vital role in monitoring
various process parameters, such as temperature, pressure, and weight in almost every industry in
United States. The 21st century has witnessed the widespread use of sensors in all sectors of the
mining industry, from drilling operations to mineral processing and recovery operations. The
mining industry was quick to adapt sensor usage for its economic benefit. A recent study suggests
that sensor usage in various stages of mining (for a moderately sized mine) can yield up to $10-
100 million per annum in added economic value (Buxton and Benndorf, 2013). Unfortunately, the
opposite effect is true when sensors suffer from faults and provide erroneous data. According to
one author, sensor faults are causing approximately 3-8% of production loss to US oil industry,
ultimately leading to $20 billion in annual losses to the US economy (Wang et al., 2009). Plant
instrumentation, which includes sensors, is not inexpensive; to replace instrumentation frequently
is not a viable option. It is estimated that instrumentation costs alone comprise 2-8% of the total
fixed costs associated with any process plant (Narasimhan and Jordache, 2000). Moreover,
frequent maintenance and sensor calibrations result in process disruptions leading to production
losses totaling in the millions. In some cases, these errors can cause unsafe conditions where
maintaining the industrial environment at certain limits is essential; an example is carbon

monoxide (CO) monitoring systems in underground mines.

Identifying the sensor faults and fixing them through periodically scheduled (or optimally
scheduled) calibration processes can dramatically improve the sensors’ accuracy. Such processes

can reduce equipment downtimes, increase production, and improve overall safety in the industry.
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While the common types of faults or “gross errors,” such as noise, failures (flat-outs), stuck-at-
faults, can easily be detected and fixed through preventive or scheduled maintenance, “calibration”
related errors are difficult to impossible to identify. Unlike gross faults—which are obvious due to
their high magnitudes—these kinds of faults/errors are indistinguishable if the process is
particularly non-linear or non-stationary. These insidious errors can, over time, cause significant
losses to industrial operators. Calibration errors are often present in the data mimicking the form

of “an added offset value (bias),” to the original (true) reading.

1.1.1 Organization of the Dissertation

The following is a brief description of the organization of this dissertation. The titles of the
chapters given here are concise versions of the actual ones. Each of these chapters are in the form
of manuscript format outlined in the University of Alaska Fairbanks Graduate School’s “Thesis
Formatting Handbook” (UAF, 2017), however, for the preparation of individual chapters, the style
guide of Mining Engineering Journal, an international peer reviewed publication of Society for
Mining, Metallurgy and Exploration, Inc. was followed (SME, 2017). Each chapter is prepared as
a standalone paper that is publishable in the near future; with some editing to meet the specific
requirements of the journal. Due to the reason, the reader should notice that certain sections or text

were repeated among the chapters.

Chapter 1: Introduction

A general introduction to all the major topics presented in Chapters 2 through 5.

Chapter 2: Statistical Methods in Error Detection



Review of various statistical methods and their application in finding sensor errors with a case

study on bias detection in Fort Knox SAG mill circuit sensors.

Chapter 3: Signal Processing Methods in Error Detection

Review of signal processing methods and their application in finding calibration errors with
a case study focused on bias detection using Fast Fourier Transform (FFT) in Pogo stripping circuit

SENnsors.

Chapter 4: Peak-Readings Count and Sensitivity Analysis (PRCSA) in the Detection of Calibration

Errors

Review of various innovative methods developed and their application in finding calibration

errors with a case study focused on bias detection with PRCSA in Pogo stripping circuit sensors.

Chapter 5: Multiple Ratio Function Analysis with Automation (MRFAA) in the Detection of

Calibration Errors

Review of various innovative methods developed and their application in finding calibration
errors with a case study focused on bias detection with multiple ratio function analysis (MRFA),

and MRFA with automation (MRFAA); study conducted on Pogo stripping circuit sensors.

1.1.2 Objective of the Work

This research is intended to tackle the problem of “sensor calibration errors or faults,”
specifically “bias,” in an industrial setting. The ultimate objective is to find practical solutions
through innovative methods to identify such errors based on exploitation of sensor interrelations

in a multi-sensor environment—without causing disruption to the industrial process itself.



1.1.3 Problem Statement

Sensors play a crucial role in monitoring and controlling various operations in mineral
processing circuits. Accurate measurements of various physical and chemical parameters at each
stage of processing are essential to achieve “overall system optimization.” Sensor errors of high
magnitude like noise, short faults, and failures, are called “gross errors,” while those of lower
magnitude that gradually develop are called calibration errors. The presence of these errors can
cause disruption to the optimum state of the plant operation. This results in poor metal recoveries
and high instrumentation costs. Gross errors can be mitigated through “calibration” process,
however, errors caused by gradual calibration loss overtime are difficult to identify and require
great deal of attention. The model building process for error identification in multi-sensor
environments is challenging because multidimensionality of the inter-sensor relationships adds
more complexity to the process. The goal of this research is to find innovative methods to
recognize calibration faults, specifically bias, in a multi-sensor environment. Mineral processing
is a nonlinear and non-stationary process, which adds to the complexity. Therefore, use of classical
statistical methods might be disadvantageous. Exploitation of the sensor interrelations is the better
choice in this context. For instance, there can be a particular “ratio” that can exist between sensor
readings, and it can exhibit patterns. By capturing these “ratio statistics” for sensors in an error-
free state, it may be possible to identify sensors with bias. Developing innovative methods and

algorithms to identify bias in a non-invasive way is highly desired by the industries.

1.1.4 Scope of the Research

The focus of the research is limited to the detection of “calibration errors.” These errors are
relatively difficult to isolate in comparison to other types of errors. The research depends chiefly

on inter-sensor relations and statistics. The scope and perspective does not include the examination
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of sensor hardware problems. While sensors in mineral processing circuits are examined, other
industrial circuits are beyond the scope, however, the findings are generalizable or scalable to any
other industrial process due to the similarities of industrial sensor networks. Few sensors in a
moderately sized mineral processing circuit (carbon stripping circuit) are exploited for this
research. While the findings can always be scaled up for any industrial circuits in the future, larger
circuits (with hundreds of sensors) are beyond the scope of the work due to the higher dimensional
complexity. Gross errors, which have been explored thoroughly by numerous researchers, are not

included in this research.

1.1.5 Challenges

Sensor interrelations and statistics are multi-dimensional. Exploiting or capturing inter-sensor
data statistics in huge circuits (with hundreds of sensors) is an immense challenge. For the purpose
of the research, a circuit with eight sensors was examined. The ability to locate errors in real time,
in a time span of hours or days, is beneficial for the mining industry, however, this is a huge
challenge, due to the insidious and subtle nature of calibration errors. Moreover, these subtle
changes are merely process fluctuations. To develop statistics sensitive enough to observe and
quantify such minute data changes (= 2% of true reading in the case of calibration errors) that are
otherwise caused by industrial processes is a difficult task. For instance, in mineral processing
circuits, process parameters change frequently to cope with changing ore types and other input
parameters. Mill operators (or automated control systems) must make sudden changes to process
variables to cope with the incoming ore types and to achieve maximum recoveries. The data
analysis algorithms developed for the research should be robust to these “operator-induced”

changes and still be able to detect “calibration errors.”



1.2 Literature Review

The literature review presented in this section can be viewed as an overview for the rest of the
chapters in the dissertation. An extensive and topic specific literature review can be found in each

individual chapter.

1.2.1 Functionality of Sensors

According to the Institute of Electrical and Electronics Engineers (IEEE), a sensor is an
electronic device that produces electrical, optical, or digital data (a signal) from a physical
condition or event like pressure, temperature, flow, etc. (Institute of Electrical and Electronics
Engineers, 2017). For example, a temperature sensor observes temperature and produces output—
with the help of another device—in the form of a reading (°F). A typical car coolant temperature
sensor and the thermocouple mechanism is shown in Figure 1.1, along with an industrial grade
thermocouple sensor (inset) that can measure temperatures up to 2282°F (1250°C). A level sensor

from Pogo flotation circuit is shown in Figure 1.2.
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Figure 1.1: A car coolant temperature sensor mechanism, and an industrial

grade thermocouple sensor (inset).
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Figure 1.2: A level sensor from Pogo flotation circuit.

1.2.2 Accuracy of a Sensor and Role of Calibration

Data quality plays an important role in the decision-making process for industries. The data
quality must be known and well established beyond a reasonable doubt before it can be utilized.
The closeness of a measured value to the true value is called accuracy. Accuracy is the most
desirable requirement for any measurements (National Institute of Instrumentation Standards,
2017a). In metrology, calibration is the process of comparing measurements to that of calibration
standards established by concerned national bureaus; in the United States, this bureau is the
National Institute of Instrumentation Standards (NIST). Calibration plays a vital role in
maintaining the accuracy of a sensor. Overall accuracy of a sensor is the sum of the manufacturer’s
end-to-end (ETE) accuracy, calibrating instrument accuracy and calibrating tolerance, added to the

actual reading (Figure 1.3).
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Figure 1.3: Overall accuracy of a sensor.

It is important to realize that manufacturer’s ETE accuracy of a sensor is limited to the sensor
itself and is not for the transducer or other supporting gadgets involved (Stum, 2006). This may
change the overall accuracy of the sensor. For the above reasons, sensors in the industrial circuits
are periodically checked and calibrated, however, errors that develop between the scheduled

periods of calibration are of concern because they can result in significant production losses.

1.2.3 Classification of Sensor Faults

Fault categorization or classification helps to escalate the sensor fault detection process. They
can be classified into two major categories: discontinuous, such as malfunctions and random faults,
and continuous, such as biases and drifts. Bias can be a positive or negative offset to the sensor’s
true reading (Baljak et al., 2012). Sensor faults are typically caused by hardware problems like
damage, short-circuits, low battery, or are otherwise calibration related (Sharma et al., 2010). The
faults also can result from the software errors. Depending on their type, sensor faults can also be
classified as noise-related, short faults, constant or stuck-at faults, and calibration-related (Fang

and Dobson, 2011). A constant and a short fault are shown in Figure 1.4.
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Figure 1.4: A constant and short faults.

1.2.4 Sensor Faults and Impact on Operating Costs

This section reviews the impact of sensors on operating costs in terms of economic losses.
Several researchers have attempted to quantify the impact of sensor faults in economic terms. For
instance, Wang et al. (2009) discussed the direct and indirect losses that can be caused by sensor
faults. The authors describe the heavy losses sustained at a Beijing based chemical plant in 1997
and attribute the losses incurred to sensor faults. An ethane device exploded at the plant and the
losses totaled one billion Yuans (Quan-Bo and Cheng-Lin, 2006). While discussing the importance
of data reconciliation and gross error detection methods, Narasimhan and Jordache (2000),
describe the impact of sensor faults on overall instrumentation costs of a mineral processing plant.
Instrumentation costs comprise of 2-8% of the total fixed costs of any process plant (Narasimhan
and Jordache, 2000). Narasimhan and Rengaswamy (2017) attempted to quantify the annual value
gained by identifying and fixing the sensor faults in a continuous stirred-tank reactor (CSTR)

network. They found that “gross errors” can lead to the loss of resolution property for the
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corresponding sensor network. The value of detecting these faults can be quantified through the
overall loss that one will incur due to the loss in resolution property (Narasimhan and
Rengaswamy, 2017). Conversely, another author noted that sensor “biases” in non-control
variables are related to the loss incurred through loss of precision (Bagajewicz et al., 2004). This
was a study aimed at quantifying the economic value of using a data reconciliation package to
correct the faulty sensor readings. Studying a crude distillation unit, the authors found that the
existing faulty sensors were causing $7.36 million in losses. It was also found that, by using data

reconciliation methods, the loss could be reduced to $7.12 million.

1.2.5 Fault Detection: Statistical Methods

Various statistical methods used in sensor fault detection are widely described by Sharma et
al. (2010). Some of the methods briefly described are as follows. “Rule-based” methods use
domain knowledge to develop heuristic rules for identifying faults. These are generally highly
accurate methods, but the choice of heuristics can affect the results. “Estimation based” methods
depend upon inter-sensor correlations, whereas linear “Least-squares estimation” (LLSE)
techniques are used to flag faulty readings in sensor networks; however, these techniques are
disadvantageous for classifying fault types. “Time series analysis” based methods are capable of
finding short duration faults but prove disadvantageous to find long duration faults like noise. For
sensor readings that do not exhibit periodicity, the auto regressive moving average (ARIMA)
methods proves to be a better option. “Learning based” methods infer the normal sensor readings
from the training data set to identify classes of faults in the test or prediction data set. Neural
networks are an example of learning based methods; however, with neural nets training is time
consuming. Contrary to the mainstream statistical models or classical, descriptive and inferential
statistics, “Bayesian statistics” use prior knowledge. “Data Reconciliation” methods involve
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adjusting the data according to conservation laws and other constraints. For data sets that follow
particular statistical distribution, parametric methods are used; example: linear regression. For data
sets that does not follow any distribution, non-parametric or distribution-free statistics are used,;
Examples: bagging and boosting. For non-linear and non-stationary processes data-mining
techniques are very popular. These are generally used for extracting knowledge from huge data
sets. “Heuristics” involve the theory and practical application of techniques for solving problems
approximately that cannot be solved exactly (Journal of Heuristics, 2017). Hybrid methods employ
any combination of the above techniques to achieve the task. Calibration errors are one exception
that are hard to detect with the above methods. Without the availability of ground truth values,
calibration errors become difficult to identify and even rectify. Compared to classical/parametric
methods, data-mining based innovative methods seem to be the better choice to find calibration

errors like bias in large industrial sensor data sets.

1.2.6 Fault Detection: Signal Processing Methods

A “signal” in communication systems is something that conveys information about the
behavior or attributes of some phenomenon. Some examples are sound, video, and picture. An
analog signal is a continuous signal, whereas digital signal is constructed from the discrete set of
waveforms to represent the signal. An analog can be converted to digital using a converter (ADC).
A signal is generally associated with noise. When the noise is filtered using digital “filters,” it is
easier to study the signal. A signal can be studied by plotting its behavior against time (time
domain), or against frequency, called frequency domain (Figure 1.5). Fast Fourier Transform
(FFT) is a numerical algorithm that is used to convert a signal in time domain to frequency domain,

or vice versa.
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Figure 1.5: Time domain vs frequency domain.

Digital signal processing (DSP) has many applications in different industries; space, medical,
and military are some of them. Digital filtering, spectral analysis, speech processing, image
processing, and radar processing are some of the specific applications. Industrial “process
monitoring and control” is one of the areas of application too. Sensors monitor many physical
parameters in industrial processing circuits. Examples include pressure sensors, temperature
sensors, pH level sensors, movement or level indicating sensors, etc. Data produced from these
sensors can be considered as a signal. By processing the signal one can observe the key tendencies.
In the presence of bias or error, a signal’s behavior (if biased) changes when compared to the signal
with no bias (clean). The differences can be observed in the form of changes in the frequency and

amplitude. A literature review related to industry specific applications is presented in Chapter 3.

The most essential requirement for a signal to be analyzed successfully with FFT approach
is that the signal should exhibit periodicity. This could be a serious drawback when analyzing

signals related to industrial processes, which tend to be dynamic rather than periodic.

12



1.3 Introduction to Gold Mining, Fort Knox and Pogo

The two choices of mineral processing circuits for analysis of sensor data in this dissertation
are from the gold mines located near Fairbanks, Alaska, i.e., a semi-autogenous (SAG) mill circuit
from Fort Knox Mine (open-pit) and a carbon stripping circuit from Pogo Mine (underground). A
typical gold mining operation is detailed in Figure 1.6. As depicted in the figure, a SAG mill is
part of the grinding circuit and the stripping circuit is part of carbon-in-pulp process. Detailed

descriptions of Fort Knox Mine and Pogo Mine are provided in the individual chapters.

Gold processing involves extraction of gold ore from an underground or open pit mine. The
ore is broken into smaller pieces by a big cone or gyratory crusher, depending on the hardness and
other characteristics of the rock. With crushing, the ore fragments are reduced to smaller pieces of
approximately 2.75” (70 mm). These sizes are further reduced by a SAG mill or ball mill to as low
as 0.04” (1 mm). The fine particles of ore are then sent to a “flotation” process to separate the gold
bearing particles. The particles enter a batch of cyanide leaching tanks where the gold particles are
separated out of the ore particles by the leaching solution. The gold particles are adsorbed by
activated carbon (a type of charcoal) in a carbon-in-pulp (CIP) circuit which is then loaded into
the “strip vessels” where a high heated (~280°F) solution called “elute” is circulated. An elute is a
water-based solution with 1% sodium hydroxide and 0.1% sodium cyanide (Fast, 2016). The elute
helps strip gold particles from carbon. The solution that is bearing gold particles is now called
“pregnant leach solution” (PLS). This is sent to the electro-winning process to extract gold. The
gold particles collected from the process are melted at high temperatures ultimately to pour into

gold ingots.
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Figure 1.6: Flow sheet for a typical gold processing operation.

1.3.1 Carbon Stripping Circuit

The Pogo Mine stripping circuit consists of two strip vessels that work in tandem. While one
vessel (vessel-1) is being loaded with gold-bearing activated carbon, the other previously loaded
(vessel-2) is operated by circulating an elute solution at approximately 280°F and 65 PSIG to
liberate gold particles. The process is called “pressurized Zadra stripping.” A typical pressurized

Zadra stripping cycle lasts for 11 hours and consists of the following stages: loading the vessel (1
hr), circulating elution (8 hrs), carbon cooling (1 hr), and unloading carbon from vessel (% hr)

(Table 1.1).
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Table 1.1: Operating schedule-pressure Zadra stripping.

Operation Solution Time

Load Column Transfer Water 90 minutes

Elution 0.1% NaCN, 1% NaOH (480 minutes

Carbon Cooling Fresh Water 60 minutes

Unload Column Transfer Water 30 minutes
TOTAL 11 hours

Source: Fast, 2016.

While the used carbon is discharged, the PLS is pumped out. The same process is repeated
with strip vessel-2. The PLS, on its way out from the strip vessel, is cooled through exchanging
heat with no. 3 and 4 heat exchangers. When the PLS reaches the electro-wining circuit, the gold
particles are removed and the solution, now called “barren solution,” is reheated by a boiler with
the aid of heat exchangers 1 and 2 and will be recirculated through strip vessels. A glycol solution
is circulated between the boiler and heat exchangers as a medium of heat exchange. Sensors are
strategically placed in various parts of the circuit to measure temperatures, flow rates, etc. (Figure
1.7). If any of the sensors are biased, the circuit cannot be managed at an optimum level in terms
of temperature and flows. This results in poor gold recoveries. Finding and fixing faulty sensors
helps improve recoveries, which is the motivation for the research. It is very important to maintain
temperatures in the strip vessels at certain levels (270-280°F) for certain periods of time to
maximize gold separation. In this context, monitoring the temperatures becomes crucial. Sensors
S1 and S2 are two important ones in this context, which will be analyzed in this chapter. Various
sensors and their placements in the circuit are shown in Figure 1.7. The sensors are given code

names for simplicity. Typical interrelations between these sensors are depicted in Figure 1.8.
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Figure 1.7: Pogo stripping circuit schematic diagram with sensor placements.
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Figure 1.8: Various sensors and their interrelations.

1.4 Methods and Materials

Choosing appropriate methodology is necessary to achieve the research goal. Detailed topic
or problem specific methodology is available in individual chapters. Chapters 2 through 5 are
arranged to reflect the maturity of ideas as the research progressed towards achieving the goal.
Detailed descriptions on the data collection, and the visual overview of various sensor data streams
are available in various plots in individual chapters. Detailed results sections are available in each

individual chapter.

1.5 Overview of Work Done and Conclusions

Calibration errors or biases of small quantities (2% of a sensors true reading) are hard to
detect. The initial application of classical statistical methods—correlation, aggregation, PCA,

etc.—in the detection of these errors, proved disadvantageous (Chapter 2). Parametric and methods
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based on linear relations are less effective in dynamic environments where the process parameters
or variables change dramatically (non-linear and non-stationary). For similar reasons, the
sophisticated digital signal processing methods like Fast Fourier Transform (FFT), which was
applied on Fort Knox sensor SAG mill data, was not effective. FFT methods heavily depend on
periodicity of a sensor signal and are not effective for less periodic or dynamic processes (Chapter
3). For the above applications a 10% bias was used, which is high in magnitude. Finding bias at
2% magnitude is preferred by industry operators like Pogo Mine. Moreover, SAG mill operation
is too dynamic for initial model building stages. Due to these reasons, the comparatively less

dynamic carbon stripping circuit located at Pogo Mine is chosen for the study.

Stripping operation is crucial in the gold extraction process. The temperatures in the strip
vessels are maintained at ideal levels (270-280°F) to maximize the extraction of gold. Hence, strip
vessel temperatures are of utmost interest for the Pogo Mine. Throughout the research, strip vessel
sensor S1 was chosen for bias induction experiments. Several data-mining based approaches were
used on pogo strip circuit sensor data. Peak-reading count and sensitivity analysis (PRCSA) was
one of them (Chapter 4). In this approach, a +2% bias was introduced in one of the sensors’ data
(S1). When compared to the clean data set of the sensor (S1), the number of times the biased
readings crossed a preset temperature limit, 1.e., Threshold (7%s;), was significantly high, signaling
error presence. The method requires availability of a clean set of data for the same biased sensor
under study, which is highly impractical in real life situations. This is a major disadvantage using

PRCSA.

The algorithms developed in Chapter 5 are based on exploiting interrelations between sensors’
readings in the carbon stripping circuit. The multiple ratio function analysis (MRFA) method
exploited the interrelations between strip vessel and heat exchanger sensors in the form of “ratio
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functions”—these are not simple ratios (see chapter 5). When S1 is induced with +2% error, S2
and other sensors are assumed error-free. It was observed that prior to the error introduction, the
ratios, “S1 bias: Heat” and “S2 clean: Heat” kept crossing each other, i.e., no ratio remained
consistently higher than the other. The test is named “Heat ratio test.” However, several tests
performed with the algorithm revealed that the “truncation thresholding” criteria of MRFA is
disadvantageous in finding bias at certain periods of the year, specifically the last quarter of the
year. A “dynamic thresholding” strategy that depends and adjusts the thresholds based on
maximum values of a peak-readings is added to the algorithm. The new algorithm is fully
automated in Fortran language with improved speed of execution. The algorithm is called MRFA

with automation (MRFAA).

MRFAA has multiple test capabilities. Like the Heat ratio test, the ratios of S1 and S2 with
barren flow (“BARNFL test”) and glycol flow (“GLYFL test”) were exploited. The maximum and
average reading values of a strip vessel cycle (or peak) are also better indicators of the temperature.
Due to this reason, the average and maximum values of strip vessel sensors were compared in the
form of “Ave test” and “Max test.” A “Combined test” that finds the performance of all tests
together is also added to MRFAA. A cross-score algorithm helps MRFAA in finding relative
positions of S1 ratios to S2 ratios when plotted against time. When a test finds bias after it is
induced at a particular “cross-score threshold,” it is “True alarm,” and a test fails in doing so results

in “False alarm.” The time a test takes to find bias is called “time till find days” (TTFD).

The Combined test has 95% true alarm success rate. It is also observed that for 75% of the true
alarms, the algorithms are findings the bias within 39.5 days. The cross-score thresholds at which
this 1s possible are 5 and 6. Coming to the individual tests, the Heat test is the better test of all; it

is able to find the bias within 33 days after induction 75% of the cases at cross-score thresholds of
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5 and 6. The heat ratio, average value and max value tests showed comparable results, however
BARNFL and GLYFL tests do not perform up to the mark, due to their poor response to dynamic
threshold strategy. The negative bias analysis also provides similar results. Identifying bias at such
low magnitudes (+2%) is a hard task to achieve and with the MRFAA it is identified within
approximately one month span of time 75% of the time, which is valuable to the industry. For the
stripping vessels with combined cycle spanning 24 hrs (one day) or more, finding the bias within

the short periods of time is valuable.

Some of the disadvantages of MRFAA algorithm are as follows. At this time the algorithm
is not capable of identifying bias in several sensors simultaneously. The algorithm is not capable
of identifying different types of errors other than bias. Presence of relations between sensors is the

fundamental requirement for the algorithm in order to be successful.

1.6 Future Work

Additional tests can be added to the algorithm through a few lines of code. With some process
specific changes to the Fortran code, the algorithm’s capabilities can be extended or generalized
to any other industrial applications. Since the algorithms are developed with open source Fortran
95, scalability to specific industrial problems is less expensive. Finding errors in several sensors
at a time 1s also one of the additional functionalities that can be added to the algorithm to reflect
real life complex situations. The algorithm with the additional capabilities has the potential for

commercialization.
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