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Abstract

Beluga whales (Delphinapterus leucas) are found across the Arctic and Subarctic in 

seasonally ice covered waters. Five stocks of beluga whales are associated with the waters near 

Alaska for at least part of the year and four of those five stocks are abundant and commonly 

hunted by Alaskan Natives. The belugas resident in Cook Inlet are also an important cultural and 

subsistence resource to Alaskan Natives in the area, but a ~50% decline in abundance in the 

1990’s led to the stock being designated as depleted under the Marine Mammal Protection Act in 

2000 and listed as endangered under the Endangered Species Act in 2008. Numerous studies of 

beluga whales in relation to stranding events, predation (killer whales), parasitism, disease, 

contaminants, and other potential population threats have not identified the reason for their 

inability to recover. Changes in diet have been considered, but are difficult to study because 

observations of feeding in muddy water and beluga stomachs are difficult to obtain. To 

investigate the past feeding ecology of beluga whales from Cook Inlet I sampled bone and teeth 

for isotopic analyses. I sampled bone from 20 individuals that died between 1964 and 2007 for

13 15stable carbon and nitrogen isotope analysis (values expressed as S C  and 5 N values). I also 

micro-sampled annual growth layer groups in the teeth of 26 individuals representing the years

13 15from 1962 to 2007. Bone and tooth data showed a general decrease in S C  and 5 N values over

13time. The 5 C values from analyses of growth layer groups declined from -13.4%o to -16.2%o 

and S15N values declined from 17.2% to 15.4%. Although these values are consistent with a 

change in feeding ecology over time, the magnitude of the decrease in S15N values (~2%) is

13insufficient for a full trophic level shift (~3%).The relatively large decrease in the 5 C values 

over the same time period (~3%), however, is much greater than a full trophic level shift (~1%)

13and suggests an increase in prey associated with freshwater, which typically have lower 5 C
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values than prey associated with marine water. To test this hypothesis I analyzed the strontium

87 86isotope composition ( Sr/ Sr ratios) of growth layer groups in teeth from a sub-set of

87 86individuals. The resulting Sr/ Sr ratios trended away from the global marine signature 

(0.70918) over time and toward the more freshwater signatures measured in rivers flowing into 

the upper reaches of Cook Inlet. These results indicate that the diet of Cook Inlet beluga whales 

has changed over time. This could be from feeding on different, more freshwater derived prey 

species, or from feeding on the same species, but on individuals from locations with a more 

freshwater influence. Both of these interpretations are consistent with population survey data 

indicating a retraction in beluga range into the upper reaches of Cook Inlet. This study presents 

the first evidence of a long term (~50 years) change in Cook Inlet beluga whale feeding ecology. 

The consequences of this change toward more freshwater-influenced prey, and how this change 

relates to Cook Inlet beluga whales’ decline or recovery remains unknown. However, to better 

examine this change in feeding ecology a follow-up study will; 1) develop a strontium isoscape 

for the Cook Inlet watershed; 2) analyze more teeth to better analyze changes in feeding ecology 

by demographic group (sex, age); and 3) analyze growth layer groups from Bristol Bay beluga 

teeth for a comparison with Cook Inlet belugas to determine if the changes represent an 

ecosystem change within Cook Inlet or a broader scale change affecting another region. This 

study builds towards a better understanding of the changes in Cook Inlet beluga feeding ecology 

and will help to determine if changes in diet could be a factor in their recovery.
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Chapter 1: General Introduction

Beluga whales (Delphinapterus leucas; Pallas, 1776) are medium-sized, toothed whales 

that share the family Monodontidae with one other species; the narwhal (Monodon monoceros). 

Belugas are found in the seasonally ice covered waters of the Arctic and Subarctic and are 

recognized by their white color, large melon (a structure on forehead composed of fat and 

connective tissue used by toothed whales for echolocation; McKenna et al. 2012), and the ability 

to turn their heads due to unfused neck vertebrae. At least 19 distinct stocks of beluga whales are 

found in the waters of Canada, Greenland, Norway, Russia, and the United States (five stocks 

occur in Alaska; Fig. 1.1; Smith et al. 1990, Laidre et al. 2015).

These five stocks of beluga whales are commonly associated with waters in Alaska for at 

least part of the year (Fig. 1.2). The five stocks are named by the general geographic location 

where they spend time during the summer months (i.e., Eastern Beaufort Sea, Eastern Chukchi 

Sea, Eastern Bering Sea, Bristol Bay, and Cook Inlet; Fig. 1.2), and all stocks, except the Cook 

Inlet beluga whale stock (CIBW), spend the winter months in the Bering Sea (Laidre et al. 2015, 

Citta et al. 2016a). The Eastern Beaufort Sea, Eastern Chukchi Sea, and Eastern Bering Sea 

stocks undertake a seasonal migration and spend the winter relatively far from their summer 

ranges (Citta et al. 2016a). The other two stocks in Alaska, Bristol Bay and Cook Inlet, are less 

migratory and spend the winter relatively close to their summer ranges (Hobbs et al. 2005, Rugh 

et al. 2010, Citta et al. 2016a, b). With the exception of CIBW, all stocks of beluga whales in 

Alaska are healthy, abundant, and hunted by Alaska Natives when available.

CIBW are the only stock of beluga whales in Alaska that have a documented decline in 

abundance from an estimate of 1,300 in 1979 (Calkins 1989) to 340 in 2014 (Shelden et al. 

2015a). National Marine Fisheries Service (NMFS) began annual aerial surveys to estimate
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abundance in 1994, which revealed a 50% decline (1,300 to 650 whales) from 1979 (Shelden et 

al. 2015a). Subsequent surveys from 1994 to 1998 detected another 50% decline (650 to 347 

whales). Declining abundance was attributed to an increase in subsistence hunting mainly by 

hunters who traveled to Anchorage from other communities (Mahoney & Shelden 2000). The 

success of the harvests in the 1990s was evident by the sale of beluga muktuk (beluga skin and 

blubber eaten together, a common food item from beluga) in Anchorage.

Once it was realized the population was declining (Mahoney and Shelden 2000), beluga 

hunters voluntarily stopped hunting in Cook Inlet in 1999. Soon after, NMFS proposed harvest 

reporting regulations, and in 2000 designated CIBW as depleted under the Marine Mammal 

Protection Act (MMPA; Mahoney & Shelden 2000). Because the decline was attributed to an 

increased subsistence harvest (approximately 30 whales taken per year during 1995-1998), 

restricting the harvest would stop the decline and the population would begin to recover, instead, 

a 10-year declining trend continued from 2004 to 2014 at -0.4% year-1 (SE = 1.3%, Fig. 1.3.; 

Hobbs et al. 2015, Shelden et al. 2015b, NMFS 2016). In 2008, CIBW were listed as endangered 

under the Endangered Species Act (ESA; NOAA 2008). As part of the listing process a recovery 

plan was completed in 2016 that outlined potential threats to CIBW recovery (NMFS 2016). 

Threats were rated as low (pollution, predation, subsistence hunting), medium (disease, habitat 

loss, reduction in prey, unauthorized take), and high (catastrophic events, cumulative effects of 

stressors, noise) relative concern (NMFS 2016). Concurrent with the decline in abundance, 

CIBW range has contracted into the upper Cook Inlet (Rugh et al. 2010). While the reason for 

the range contraction is unknown, possible explanations include avoidance of killer whales 

(Orcinus orca; Shelden et al. 2003), reduced intra-specific competition (fewer individuals 

require less space; Goetz et al. 2007), and a reduction in prey availability (Moore et al. 2000).
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Studying the effects of killer whale predation and intra-specific competition are difficult tasks, 

but studying diet or prey is possible through stomach content analysis and with isotope analysis.

Stomach contents from dead CIBW have provided substantial diet information, including 

prey items identified to species (Quakenbush et al. 2015). Although this method allows for a 

detailed (often to species) analysis of prey items, it is limited to when (season) and which (sex 

and age) belugas die. Additionally, stomachs from known healthy belugas have become less 

available since the harvest was curtailed and limited samples in some years mean this method is 

not well suited to determine how diet has changed over time.

Isotope analysis is another approach for examining the feeding ecology of animals, which 

uses the chemical makeup of tissues to make predictions about what prey items were eaten, 

digested, and used to form those tissues. Each tissue within an animal forms and regenerates at 

different rates, some regenerate quickly (e.g., muscle) and represent more recent diet items 

whereas other tissues turn over very slowly (e.g. bone) and may represent an average of years or 

a lifetime of feeding (Fry 2008). This thesis uses carbon, nitrogen, and strontium isotope analysis 

of bone and teeth to describe CIBW feeding ecology over the last half century.
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1.2 Figures

Figure 0.1: Worldwide beluga whale range map. Source (NOAA 2007).
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Figure 0.2: Summer distribution of five beluga whale stocks commonly associated with waters in 
Alaska. Prepared by Justin Crawford (ADFG).

8



( D C T j C D C D C D C D C D O O O  o o o o o o o o o o o o  
rrrrrrr(N(N(NfMM(N|(NM(NM(NIMMfM(N

Year

Figure 0.3: Estimated abundance of Cook Inlet beluga whales from 1994 to 2014. Blue bars 
represent 95% confidence intervals for each estimate (Shelden et al. 2015b)1. Red line indicates 
the 10-year declining trend of -0.4% (SE = 1.3%).

1 Shelden et al. 2015b; Figure notes: Abundance estimates for belugas in Cook Inlet with 95% 
confidence intervals for revised coefficients of variation (CVs) (vertical bars). From 1994 to 
1998, when the harvest was unrestricted, the annual rate of decline was -13.7% (SE = 0.045) per 
year. In the years since a hunting quota was in place (1999-2014), the rate of decline was -1.3% 
(SE = 0.7%) per year. The 10-year trend (2004-2014) was -0.4% (SE = 1.3%) per year.
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Chapter 2: Fifty years of Cook Inlet beluga whale feeding ecology from isotopes in bone and 
teeth1

2.1 Abstract

Beluga whales (Delphinapterus leucas) that reside in Cook Inlet (CIBW) are important to 

coastal Alaska Native culture and subsistence, tourism, and ecologically as a top level predator. 

Due to a ~50% population decline in the 1990’s, the distinct population segment in Cook Inlet 

was designated depleted under the Marine Mammal Protection Act in 2000 and listed as 

endangered under the Endangered Species Act in 2008. Diet changes are a concern in CIBW lack 

of recovery, but their feeding ecology is difficult to study. Skulls from 20 CIBW and tooth 

growth layer groups (GLGs) from 26 individual CIBW showed decreasing trends for both

15 13nitrogen and carbon stable isotope ratios (expressed as 5 N and 5 C values) during 1962 to 

2007. The decline in 515N values (~1 to 2%o) is less than expected for a trophic level shift, but the

13magnitude of decline in 5 C values (~3%) is much greater (>5 times greater) than expected for

13a trophic level shift. A decline in 5 C values could be explained by an increase in freshwater 

influenced prey. We investigated this possibility by analyzing the strontium isotope composition

87 86( Sr/ Sr ratios) of GLGs and compared them to rivers that flow into Cook Inlet. Over time the

87 86Sr/ Sr ratios trended away from the global marine signature and towards values from rivers 

flowing into the upper reaches of Cook Inlet. This study presents the first evidence for a long

term (~50 years) change in CIBW feeding ecology.

1 Submitted to Endangered Species Research as Nelson MA, Quakenbush LT, Mahoney BA, 
Wooller MJ “Fifty years of Cook Inlet beluga whale feeding ecology from isotopes in bone and 
teeth”
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2.2 Introduction

The beluga whales (Delphinapterus leucas) in Cook Inlet (CIBW), Alaska (Fig. 1) are 

isolated genetically (O'Corry-Crowe et al. 2002) and geographically (Hobbs et al. 2005, Hobbs et 

al. 2008, Rugh et al. 2010, Goetz et al. 2012, Shelden et al. 2015) from the other four beluga 

whale stocks in Alaska (Allen and Angliss 2015). Aerial surveys, including those conducted by 

the National Marine Fisheries Service (NMFS), revealed a decline in the CIBW population by 

~50% between 1994 (653 belugas) and 1998 (347 belugas; Hobbs et al. 2015). This decline was 

attributed to an unsustainable subsistence harvest estimated between 287 and 406 for those five 

years (Mahoney and Shelden 2000). In 1999, the harvest was greatly reduced; first by a 

temporary voluntary hunting moratorium and soon after by harvest regulations. CIBW were 

designated as depleted under the Marine Mammal Protection Act in 2000 (NOAA 2000), listed 

as endangered under the Endangered Species Act in 2008 (NOAA 2008), critical habitat was 

designated in 2011 (NOAA 2011), and a recovery plan was published in 2016 (NMFS 2016). 

CIBW were also classified as critically endangered under the IUCN Red List of Threatened 

Species in 2012 (Lowry et al. 2012).

CIBW have been hunted throughout recorded history by coastal Alaska Natives for food and 

cultural purposes (Huntington 2000, Mahoney and Shelden 2000), and intermittently during the 

20th century by non-Natives for commercial and sporting purposes. Marine mammals were 

protected in 1972 when the Marine Mammal Protection Act was passed by Congress; however, 

an exemption allows the taking of marine mammals by coastal Alaska Natives, provided such 

taking is for subsistence purposes and conducted in a non-wasteful manner.

Five CIBW have been harvested since 1999; one in 2001, 2002, and 2003, and two in 2005 

(Mahoney and Shelden 2000). With the reduction in harvest the CIBW population was predicted
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to increase, but instead a slow (-0.4% year-1, standard error (SE) = 1.3%) 10-year decline 

occurred from 2004 to 2014 (NMFS 2016). Concurrent with the population decline, the summer 

range of CIBW contracted into the upper reaches of Cook Inlet (Rugh et al. 2010, Shelden et al.

2015). Although a range contraction may be the direct result of fewer animals requiring a smaller 

area, how a contracted range influences beluga feeding ecology is unknown. Increased concerns 

about their susceptibility to potential threats (NMFS 2016) were summarized in the 2008 status 

review, which included catastrophic events, disease, predation, small population effects, noise, 

ship strikes, and decreased prey availability (Hobbs 2008). The recovery plan examined these 

threats further and found that while the threat of a reduction in prey was of medium concern, 

little was known about prey availability and how availability has changed over time (NMFS

2016).

The diet of CIBW is mostly known from stomach contents of stranded and harvested animals 

(Quakenbush et al. 2015) and from subistence hunter knowledge (Huntington 2000). CIBW 

summer prey are known to be mainly seasonally available fish (e.g., eulachon, Thaleichthys 

pacificus; Chinook salmon, Onchorhynchus tshawytscha; chum salmon, O. keta; and coho 

salmon, O. kisutch) that pass through Cook Inlet to spawn. Other fish prey available year-around 

include saffron cod, Eleginus gracilis; walleye pollock, Theragra chalcogramma; Pacific cod, 

Gadus macrochephalus; starry flounder, Platichthys stellatus; and yellowfin sole, Limanda 

aspera. Invertebrates are also eaten, primarily shrimp from the families Caridea and 

Crangonidae; however, species of Polychaeta, Amphipoda, and Oregoniidae crabs are also eaten 

(Huntington 2000, Hobbs et al. 2008, Quakenbush et al. 2015). Stomach contents for CIBW 

provide prey identifiable to species, but content analysis is limited to whales that die shortly after 

eating that are available for sampling. Because of these limitations, there were not enough CIBW
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stomachs available throughout the year or annually to provide information about whether CIBW 

diet has changed over time.

Because studying the diet of CIBW directly is difficult, examining changes in prey 

availability over time may also be a better indicator of changes in diet. Prey assemblages in the 

Gulf of Alaska have changed among warm (1947 to 1976), cold (1977 to 1997) and warm 

regimes (1998 to present) at a multi-decadal scale (Anderson and Piatt 1999, Overland et al. 

2008). Cold regimes produce more high quality forage fish for birds and marine mammals than 

warm regimes (Anderson and Piatt 1999). Little is known about how Cook Inlet prey 

assemblages are influenced by regime shifts in the Gulf of Alaska, but closures of commercial 

shrimp, crab, and herring (Clupeapallasii) fisheries in lower Cook Inlet have occurred (Moore et 

al. 2000, Hollowell et al. 2016, Shields and Dupuis 2017). Between the 1980s and 1990s the 

coho salmon escapement increased, while Chinook, chum, and pink (O. gorbuscha) salmon 

declined, and sockeye salmon (O. nerka) remained fairly stable in the Susitna River drainage 

(Moore et al. 2000). However, total salmon escapement may not be an appropriate estimator to 

determine the number of salmon available for CIBW because escapement in a particular river 

does not equate to fish available as CIBW prey (Moore et al. 2000, Citta et al. 2016).

Isotopic analyses of hard tissues from belugas can provide general diet information integrated 

over long periods (e.g., bone integrates an average diet of >10 years) or short periods (e.g., a 

growth layer group from a tooth integrates an average diet of one year), depending on how the 

tissue was formed and how it is maintained (turnover rate; Tieszen et al. 1983, Peterson and Fry 

1987, Newsome et al. 2010, Rioux et al. 2012, Witteveen et al. 2012). We examined changes in 

CIBW feeding ecology and foraging location using nitrogen, carbon, and strontium isotope ratio

15 13 87 86 15data (expressed as 5 N and 5 C values, and Sr/ Sr ratios respectively) from bone (5 N and

14



13 15 135 C values only) and annual growth layer groups (GLGs) in teeth (5 N and 5 C values, and

87 86Sr/ Sr ratios) to determine if changes in CIBW feeding ecology occurred during the last 50

15 13years. 5 N and 5 C values can be used to detect changes in trophic level because when a whale

15 13feeds a full trophic level higher, the isotopic value of their tissues increase for both 5 N and 5 C 

by ~3 and 1%, respectively (e.g., Peterson and Fry 1987, Hobson et al. 1996, Kelly 2000,

13Newsome et al. 2009). 5 C values can also be used to determine if the carbon source of prey is

13marine or freshwater. For example, marine prey items often have higher 5 C values than 

freshwater prey (e.g., Tieszen et al. 1983, Peterson and Fry 1987, Bentzen et al. 2007). 87Sr/86Sr 

ratios differ by geologic formation and influence the water flowing through them (e.g., Brennan 

et al. 2014, Brennan et al. 2015, Padilla et al. 2015), while marine waters are relatively uniform

87 86(Veizer 1989, Brennan et al. 2015), thus Sr/ Sr ratios can be used to determine the likely 

location within an estuarine system where prey or predators spent time.

2.3 Materials and Methods

Bone collagen extraction and preparation:

Bone was sampled, cleaned, demineralized, and collagen extracted from the skulls of 20 

CIBW (8 males, 6 females, and 6 unknown) that died during 1964 and 2007 (Fig. 2a), and were 

archived at the University of Alaska, Museum of the North (UAMN) in Fairbanks, Alaska.

Skulls from immature belugas, defined as having unfused sutures between skull plates, were not 

used in this analysis because their bone would be primarily influenced by suckling, which could 

be as much as a full trophic level higher than their mothers (Newsome et al. 2010).

A small piece (1 cm x 5 cm x 5 cm) of bone from the zygomatic arch was cut out with a 

rotary tool, sanded to remove the outer cortex, and the clean solid bone placed into a labeled 

glass culture tube. Each sample was then cleaned by: 1) rinsing twice with deionized water, 2)
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bathing for one minute in a sonication bath, 3) soaking for eight hours in ethanol, 4) soaking for 

eight hours in methanol, 5) rinsing with deionized water, 6) soaking for eight hours in acetone, 7) 

rinsing with deionized water, 8) soaking twice for eight hours in chloroform and air drying under 

a fume hood, and 9) rinsing with deionized water (entire process modified from Matheus 1997). 

The cleaned bone was air-dried under a fume hood overnight and weighed. Demineralization 

occurred by covering the bone with water, adding 1.0 to 2.0 ml of 6N hydrochloric acid (HCl), 

and refrigerating at 3 °C for 12 to 24 hours. Once the solution stopped bubbling, it was decanted 

and rinsed with fresh deionized water, then recharged with fresh HCl and repeated until bubbling 

ceased. Typically this step took 7-10 days to completely demineralize the bone samples. Once 

demineralized, the sample was gelatinized with HCl at a pH of 3 to 4 and capped with helium to 

displace the air. The samples were then placed in a heating block that was kept at 65 °C until the 

collagen dissolved, at which point the samples were then centrifuged for 3 to 6 minutes at 2000 

rpm. The supernatant was passed through a filter, 50 mm in diameter with a pore size of 0.45 

p,m, and the filtrate collected in a scintillation vial, which was covered with a glass filter disk and 

freeze-dried (lyophilized) until only dry collagen remained. A 0.2 to 0.5 mg sub-sample of each 

dried collagen sample was sealed in a tin capsule for stable carbon and nitrogen isotope analysis 

(described below).

Tooth collagen extraction and preparation:

Beluga teeth (n = 26 teeth from individual whales; 14 males, 10 females, and 2 unknown;

Fig. 2a), previously used to age the whales, were also analyzed for stable isotope composition. A 

thin longitudinal section was cut from the center of each tooth, leaving two halves (Fig. 2b; Vos 

2003). A micromill (ESI® New Wave™ Research) was used to remove dentin material along the
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selected GLG from one of the halves. A GLG was defined as a light and a dark layer of dentin 

(Vos 2003; Fig. 2b) representing one year of growth (Stewart et al. 2006). GLGs from whales 

determined to be three years of age and younger were not used in this analysis to avoid diet 

signals associated with suckling (Newsome et al. 2010). Mathews and Ferguson (2015) showed 

that 17 of 18 (94%) belugas had weaned during or before their third year.

The drilled powder from each GLG was collected with a small paintbrush into a 

microcentrifuge vial and demineralized by adding 0.25 N HCl to cover the powder, which was 

then left overnight in a refrigerator. Samples were centrifuged at 5000 rpm for five minutes to 

concentrate the remaining powder at the bottom of the vial and the liquid was pipetted off and 

discarded (Newsome et al. 2009). This was repeated until the white powder turned translucent 

indicating demineralization was complete. The samples were then rinsed with deionized water to 

remove HCl, frozen, and freeze-dried until dry fluffy collagen remained (~10 hours). A 0.2 to 0.5 

mg sub-sample of the isolated collagen was sealed into a tin cup for isotope analysis.

Stable nitrogen and carbon isotope analysis:

The 515N (n = 343 GLGs) and 513C (n = 296 GLGs) values for bone collagen and tooth 

dentin samples were produced using a Costech® Elemental Analyzer coupled to a ThermoFisher 

Scientific™ Delta V™ Isotope Ratio Mass Spectrometer. Stable isotope ratios are presented in 

delta (5) notation:

5X = (Rsample/Rstandard -1) *1000
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where R sample is the ratio of the heavy to light isotopes of the sample and R standard is the ratio of 

the heavy to light isotopes of the standards (i.e. atmospheric N2, for nitrogen and Vienna Pee Dee 

Belemnite for carbon). Analytical precision was validated by running a laboratory standard 

(peptone) after every ten samples, and standard deviation (of 71 analyses) was < 0.2% for both

13 155 C and 5 N values. Increased burning of fossil fuels since the industrial revolution continues 

to alter the isotopic composition of CO2 in the atmosphere and the ocean, a phenomenon known

13as the Suess effect, which gradually lowers the background 5 C value over time (Francey et al. 

1999). The background 513C values decreased by ~0.8% from 1960 to 2010 and all 513C values 

in this study were corrected for this effect following the approach described by Misarti et al. 

(2009).

Collagen quality:

The quality of collagen from bone and teeth was evaluated by atomic carbon to nitrogen ratio 

(C:N) calculated by the formula:

„  , T A 4 \  (  C oncentration  (%) Carbon'sC:N = I —) X I -------------:— - V - -------- j
\ 1 2 /  \C oncentration  (% )N itrogenJ

All C:N ratios for bone were between 3.1 and 3.5 (Appendix 1), indicating the collagen was 

of good quality (i.e., between 2.9 and 3.6; DeNiro et al. 1985, Ambrose 1990, Tatsch et al.

2016). C:N ratios from CIBW tooth dentin GLGs were between 3.1 and 5.7 (Appendix 2). When 

a sample had a C:N ratio >3.6, only its 515N data were used in further data analyses because C:N

13ratios higher than 3.6 indicate possibly compromised 5 C values (DeNiro et al. 1985, Ambrose

1990, Tatsch et al. 2016).
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15 13A subset of GLGs previously analyzed for 5 N and 5 C values were selected for strontium

87 86isotope ratio ( Sr/ Sr) analyses using approximately 20 mg of powdered dentin. GLGs that 

spanned 1968 to 2005 from three males and two females were analyzed (Appendix 4). The GLGs 

(n = 44) were chosen to match the years analyzed for carbon and nitrogen to better interpret 

those results.

Dentin strontium isotope analysis:

A ThermoFisher Scientific™, High Resolution Neptune™ Multicollector-Inductively 

Coupled Plasma Mass Spectrometer was used to analyze strontium samples, which had been

87 86purified for the Sr/ Sr analysis via an introduction system of aqueous solution using an inline 

chromatographic column (Brennan et al. 2014, Mackey and Fernandez 2011). This solution

87 86method was used to measure the Sr/ Sr ratios of water samples collected from the Cook Inlet 

region. Blanks or NIST standard reference material SRM987 were run between samples and the 

mean 1 SE was <0.00001 for all samples.

Water collection and strontium isotope analysis:

Water samples were collected (in triplicate) from eight freshwater rivers and one marine 

location (Turnagain Arm) in upper Cook Inlet and one marine location (Kachemak Bay) in the 

lower inlet during 27 May to 5 June 2016. Freshwater river samples were either collected above 

tidal influence (Susitna River, Yentna River, and Eagle River), or at low tide when access to 

areas above tidal influence was more difficult (Bird Creek, 20 Mile River, Portage Creek, and

Tooth dentin preparation:
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Placer River). Samples were collected for strontium isotope analysis following field collection 

methods described by Brennan et al. (2014), and sent via 2-day FedEx® to the Geochemistry 

Laboratory at the University of Utah, Salt Lake.

87 86Mean Sr/ Sr ratios from water samples collected in triplicate were calculated by weighting 

each individual mean by their respective SE.

Weighted triplicate mean (TM) = (Sr1) + (^  (Sr2) + (^  (Sr3)j /  ^

87 86Sr1 is the Sr/ Sr ratio from sample 1 and SE1 is the analytical measurement error from 

sample analysis from sample 1.

Weighted SE of the triplicate was calculated as:

(SE) = /(V 3)

87 86Sr/ Sr ratios are presented as triplicate mean ±2SE, where SE is calculated as above for

87 86samples collected in triplicate. Samples not collected in triplicate are presented as Sr/ Sr ratios 

±2SEa, where SEa is the analytical measurement error calculated when the samples were 

analyzed.

2.4 Results

15 13The 5 N and 5 C values of CIBW bone collagen generally declined over time (Fig. 3, 

Appendix 1). The mean 515N value for belugas that died before the documented population
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decline in 1995, (16.4% ±0.2, n = 7) was significantly higher than the mean value after 1995 

(15.6% ±0.1, n = 11, p < 0.01). Similarly, the mean 513C value for belugas that died before 1995 

(-12.6% ±0.7, n = 7) was also significantly higher than for those that died after 1995 (-14.0%

15 13±0.2, n = 11, p < 0.01, two sample t-test). A decline in both 5 N and 5 C values across the 

entire study period was also significant (R = 0.81, p < 0.01, and R = 0.83, p < 0.01; for 515N and

135 C values, respectively; Fig. 3).

15 13Annual GLGs from CIBW teeth showed significant declines in 5 N and 5 C values over

13time (p < 0.01; Figs. 4a and b, and Appendix 2). Although the decline in 5 C values (n = 296 

GLGs) was well explained by a linear regression (R = 0.76, p < 0.01; Fig. 4b and Appendix 2), 

the relationship for 515N values (n = 343 GLGs) was not (R = 0.27, p < 0.01; Fig. 4a and 

Appendix 2). The relationship for 515N values was more variable and possibly cyclic in nature 

(~10 years between highs and lows).

87 86Sr/ Sr (±2SE) ratios varied across the sample locations in the Cook Inlet watershed (Fig. 1,

87 86Table 1, Appendix 3). The highest Sr/ Sr ratio was found in Kachemak Bay (near Homer 

Spit), in lower Cook Inlet (#15, Fig. 1, Table 1, and Appendix 3) and was equivalent to the 

global marine ratio (0.70918 ± 0.00006; Brennan et al. 2015). The second highest 87Sr/86Sr ratio 

was also from marine waters in Turnagain Arm in upper Cook Inlet (#10, Fig. 1, Table 1, and

87 86Appendix 3). The Sr/ Sr ratios of all rivers tested were lower than the marine values; Bird 

Creek (#9, Fig. 1) was highest, followed by Susitna River below the Yentna River (#5, Fig. 1), 

Yentna River ( #4, Fig. 1), Susitna River above the Yentna River (#3, Fig. 1), Twenty Mile River 

(#11, Fig. 1), Placer River (#13, Fig. 1), Portage Creek (#12, Fig. 1), and Eagle River (#8, Fig. 1, 

Table 1, and Appendix 3).
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87 86We found a significant declining trend in annual GLG (n = 44) Sr/ Sr ratios (Fig. 5, 

Appendix 4) from 1968 to 2005 (R = 0.51, p < 0.01) when all GLGs from all whales were

87 86 15 13combined. We also compared the Sr/ Sr ratios with paired 5 N and 5 C values (same GLG 

on the same tooth; n = 34 GLGs) and found a significant positive correlation (R = 0.48, p < 0.01)

13 15with 5 C values but not with 5 N values.

2.5 Discussion

Stable isotope ratios preserved in CIBW bone and GLGs from teeth integrate the isotopic 

composition of beluga diet in Cook Inlet and this study analyzed them from the 1950s to 2007. 

Bone continuously replaces old material (made with diet items of the past) with new material 

(made with diet items available currently) at a very slow rate (2 to 3% year-1; Clarke 2008), such 

that bone integrates dietary isotopes for at least 10 years and possibly for the lifetime of a beluga 

whale. In contrast, GLGs remain biochemically unchanged after they are formed and, because 

belugas form one GLG each year, the isotopes in each GLG integrated diet for one year of a 

beluga’s life (Stewart et al. 2006, Luque et al. 2007). Both 515N and 513C values from CIBW 

declined during our study period (1950s to 2007) in both the bone and the teeth, providing 

definitive evidence that a change in CIBW feeding ecology occurred. For a full decrease in

15 13trophic level we would expect 5 N values to decline by ~3% and 5 C values to decline by ~1% 

(Peterson and Fry 1987). However, our data showed less than a full trophic level decline for 515N 

(~1 to 2%) and more than a trophic level decline for 513C (~3%; Fig. 4).

15 13Declining 5 N and 5 C values could represent a change in prey source (Peterson and Fry

15 131987), however a change in the 5 N and 5 C baseline values at the level of primary production 

in the environment could appear to be a change in prey when in fact the prey species are the 

same but their isotopic signature has changed over time (Schell 2000, Post 2002, Christensen and
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Richardson 2008, Casey and Post 2011, Marcoux et al. 2012). Because of the documented range 

contraction from more marine areas, middle and lower Cook Inlet, to more freshwater influenced

13areas in upper Cook Inlet (Rugh et al. 2010), we suspected the decline in 5 C values indicated a 

change from a marine prey base to a more freshwater influenced prey base.

13To test if the declining 5 C values indicated a change to more freshwater prey we used

87 86isotopes of a third element, strontium. Strontium isotope ratios ( Sr/ Sr) can be used to discern 

the role of freshwater-influenced prey because they are taken up by organisms via the water in 

which they reside. Beluga whales are not known to drink water, but rather receive their 

metabolic water, and thus strontium, from their prey. Fish exchange water passively over gills

87 86and their internal Sr/ Sr ratio reflects their surroundings (Brennan et al. 2014, Padilla et al. 

2015). When prey is consumed, strontium is incorporated into hard structures, such as bone and

87 86teeth, because of its similarity to calcium (Britton et al. 2009). The ratio of Sr/ Sr in a river’s 

water remains relatively unchanged at a specific site, but varies along the length of the river as a 

result of the geologic formation that river flows through. The world’s oceans are mixed and

87 86essentially homogenous throughout. Therefore, Sr/ Sr ratios measured in the hard structures of

87 86an organism can be compared to the Sr/ Sr ratios of various estuarine and freshwater sources, 

and used to determine when an organism switches from a marine influenced prey to a more

87 86freshwater influenced prey. In some cases, the Sr/ Sr ratio can identify the source (river) of 

freshwater prey.

87 86 13We compared Sr/ Sr ratios and 5 C values from the same GLG on the same tooth for five 

whales (representing diet during 1968 to 2005) to determine whether a change in CIBW diet to a

13more freshwater influenced prey was indicated. We found that the recent 5 C values were lower

87 86and correlated with lower Sr/ Sr ratios (R = 0.48, p < 0.01), suggesting that the recent lower
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135 C values were associated with more freshwater influenced prey. To determine which

87 86freshwater input was most influential, we compared the Sr/ Sr ratio from GLGs to known 

ratios in river systems flowing into Cook Inlet available from Brennan et al. (2014) and from this

87 86study (Fig. 1). Figure 5 shows that Sr/ Sr ratios from beluga GLGs were relatively steady 

between the late 1960’s and the late 1980s followed by a declining trend beginning about 1990. 

This shift most likely represents a dietary change from marine to more freshwater prey that 

started in ~1990, which is when CIBW were declining. Furthermore, this dietary change is 

concurrent with the contraction of CIBW into the upper reaches of Cook Inlet (Rugh et al. 2010), 

where freshwater prey items are more available. Although it was not possible to identify which

87 86river(s) influence CIBW the most, the recent lower Sr/ Sr ratios indicate that CIBW are now 

feeding on prey that is more influenced by freshwater.

Our carbon and nitrogen isotope data indicate a change in CIBW feeding ecology and the 

strontium data indicate a change towards a more freshwater influenced diet, however, whether 

these changes could also be explained by an environmental change in baseline was unknown. 

Therefore, we analyzed the 515N values of the amino acid phenylalanine from five bone collagen 

samples from CIBW that died during 1964 (2 whales) and after 2000 (3 whales). Phenylalanine 

is an essential amino acid (i.e., not manufactured or altered by digestion) and the 515N values of 

this amino acid have been used to identify the 515N value at the base of food chains (e.g., 

Chikaraishi et al. 2014; see Appendix 5 for methodology). We found the mean 515N value of 

phenylalanine from beluga whales that died more recently (after 2000) was lower than those that 

died at the beginning of our study period (during 1964; Appendix 6). Therefore the 515N value of 

the base of the food chain sustaining CIBW has changed over the duration of this record, 

although further analyses would be beneficial to strengthen this compound specific data set and

24



approach as part of future research directions. However, a change in the isotopic (N) composition 

of the base of the food chain could result from two scenarios: 1) CIBW have foraged in a similar 

location through time and the 515N value of the base of the food chain changed at that location 

or, 2) CIBW now forage in a different location with a different 515N value at the base of the food 

chain than in the past.

A change in CIBW distribution to greater use of the upper inlet was documented over three 

periods; 1978-1979, 1993-1997, and 1998-2008 (Rugh et al. 2010). This change in location puts 

CIBW in closer proximity to freshwater and likely to prey influenced by freshwater. Indeed, we

13suspect the decline in 5 C values indicate a change from marine prey base to more freshwater

87 86 13influenced prey base. The correlation between Sr/ Sr ratios and 5 C values also supports 

greater freshwater influence in foraging ecology as does the change in isotopic (N) composition 

of the amino acid phenylalanine in the CIBW. Based on our complete data set taken as a whole 

(including strontium isotope data that indicates a move in CIBW towards a more freshwater 

influenced diet) and the previous survey findings (Rugh et al. 2010) we consider the most likely 

explanation to be scenario 2 from above, that CIBW now forage in a different location (upper 

Cook Inlet) with a different 515N value at the base of the food chain than in the past. Although, 

our isotope data are consistent with more freshwater influenced prey through time the data also 

indicate that the change in foraging behavior began in the 1950s (Fig. 4), long before the 

documented population decline in the 1990s. Therefore, if this change in habitat and prey is 

related to the decline in CIBW abundance, then we must look farther back in time (i.e., before 

the documented decline in the 1990s) to determine what was responsible for the greater 

freshwater influence in CIBW feeding ecology.
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Unfortunately, useful prey data for most of Cook Inlet is limited, however, decreases in 

shrimp, crab, and some fish including herring and salmon (chinook, chum, and pink) over the 

last few decades have been documented (Moore et al. 2000, Hollowell et al. 2016, Shields and 

Dupuis 2017). Determining whether declines in prey populations correspond to declining CIBW 

foraging opportunities is difficult (Moore et al. 2000). The change in 515N values, while 

generally declining through the study period, appeared to show periodic oscillations (Fig. 4a). 

These oscillations could be related to long-term climate and regime shifts in the North Pacific 

(e.g., Pacific Decadal Oscillation) that influence primary productivity, as suggested for 515N 

values in Northern fur seal (Callorhinus ursinus) teeth (Newsome et al. 2007), but more evidence 

is necessary to determine the cause of the oscillations in CIBW.

We are pursuing additional research using strontium (e.g., more water sample locations, 

GLGs representing more recent years), carbon and nitrogen, and phenylalanine as these appear to 

be important to better understand the changes we identified in this study. Our data provides 

evidence of a change to a more freshwater influenced feeding ecology that supports a long-term 

shift into more freshwater influenced habitats. How this behavior relates to the CIBW continued 

decline or their possible recovery, however, remains unknown.
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2.8 Figures

I50°W

150°W

87 86Figure 0.1: Map of Cook Inlet with Sr/ Sr ratios marked from this study, numbers in black 
circles correspond to the ID in Table 1. Inset shows location of Cook Inlet in Alaska. (*denotes 
ratios from Brennan et al. (2014) and denotes weighted average ratio derived from samples 
taken in triplicate)

Figure 0.2: (a) A skull of a Cook Inlet beluga whale (CIBW) and (b) a CIBW tooth cut 
longitudinally to expose annual growth layer groups.

35



re

SR

K>
-14

-16

Year of death

15 13Figure 0.3: 5 N and 5 C values from Cook Inlet beluga bone collagen (skulls) plotted against 
year and regression (linear) lines for both.
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15 13Figure 0.4: 5 N (a) and 5 C (b) values (± 2 standard error) from Cook Inlet beluga tooth growth 
layer groups (GLGs) plotted by year of formation. The number above each mean value 
represents the number of GLGs that make up that mean value.
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87 86Figure 0.5: Sr/ Sr ratios from Cook Inlet beluga growth layer groups (GLGs) by year of
formation. Solid line = female, large dashed line = male, and small dashed line = period with no 
data.
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2.9 Table

87 86Table 2.1: Summary of Sr/ Sr ratios from Cook Inlet rivers and marine waters, including date 
and location of sampling sites. ID matches the ID used in Fig. 2.1. Data from Brennan et al. 
(2014) are indicated by an *, average ratios and the standard error (SE) from triplicate samples, 
indicated by superscript *, are weighted by the SE from analysis. SE of single samples (i.e., not
collected in triplicate) represent the analytical measurement error (SEa).

ID Date Collected Waterbody Latitude Longitude
87 86

Sr/ Sr ±2SE (a)

*,t
1 11-Sep-10 Chulitna R. 62.568 -150.236 0.708948 0.000042

*,t
2 11-Sep-10 Susistna R. 62.178 -150.172 0.708127 0.000057

t
3 27-May-16 Susitna R. 61.588 -150.410 0.707232 0.000039

t
4 27-May-16 Yentna R. 61.608 -150.508 0.707349 0.000011

t
5 27-May-16 Susitna R. 61.533 -150.545 0.707353 0.000074

*,t
6 14-Sep-10 Matanuska R. 61.734 -148.765 0.705711 0.000013

*,t
7 14-Sep-10 Knik R. 61.476 -148.876 0.706074 0.000075

t
8 2-Jun-16 Eagle R. 61.309 -149.574 0.705793 0.000020

t
9

10

2-Jun-16

5-Jun-16

Bird Cr. 

Turnagain Arm

60.973

60.937

-149.467

-149.265

0.707406

0.709110

0.000050

0.000021

t
11 2-Jun-16 20 Mile R. 60.845 -148.989 0.706692 0.000014

t
12 2-Jun-16 Portage Cr. 60.827 -148.977 0.706558 0.000041

t
13 2-Jun-16 Placer R. 60.817 -148.988 0.706623 0.000005

*,t
14

15

12-Sep-10

2-Jun-16

Kenai R.

Lower Cook Inlet

60.487

59.606

-149.935

-151.436

0.706517

0.709206

0.000012

0.000028
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2.10 Appendices

15 13Appendix 2.1: 5 N and 5 C values and their atomic C:N ratios from Cook Inlet beluga whale 
bone. Identifiers are included for both National Marine Fisheries Service (NMFS ID) and 
University of Alaska, Museum of the North (UAMN ID).

NMFS ID UAMN ID Sex Year beluga died 515N (%») 513C (%o ) Atomic C:N ratio

11642 unknown 1964 16.5 -11.4 3.1

11643 unknown 1964 17.0 -11.8 3.2

16009 male 1974 16.4 -12.3 3.2

16006 unknown 1978 16.9 -11.6 3.1

16008 unknown 1978 16.1 -13.9 3.5

16010 male 1978 16.1 -12.1 3.3

16013 female 1986 16.3 -13.0 3.2

16014 unknown 1986 15.7 -13.1 3.4

28-Aug-96 #2 48680 male 1996 15.5 -14.2 3.3

27-May-97 48678 male 1997 15.4 -13.9 3.3

19-Jun-00 97401 male 2000 15.7 -14.0 3.3

13-Oct-03 91731 male 2003 15.8 -14.3 3.3

91732 male 2003 16.0 -14.0 3.3

16-Sep-03 91769 female 2003 15.7 -14.2 3.2

17-Sep-03 91771 male 2003 15.8 -14.5 3.3

31-Mar-03 92569 female 2003 15.1 -14.3 3.4

94549 female 2004 15.6 -13.9 3.2

10-Oct-06 86886 female 2006 15.8 -13.3 3.2

30-Sep-06 87332 female 2006 15.4 -14.0 3.3

29-Jan-07 87979 unknown 2007 15.5 -13.2 3.1
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15 13Appendix 2.2: Mean 5 N and 5 C values (2 standard error) and atomic C:N ratios (±2 standard error) from each Cook Inlet beluga 
whale tooth growth layer groups (GLGs). Identifiers are included for both National Marine Fisheries Service (NMFS ID) and 
University of Alaska, Museum of the North (UAMN ID).

NMFS ID UAMN
ID Sex Tooth

side
Tooth

number
Years of 
growth

S N S C

Number
GLGs

Mean %o 
(2SE)

Mean atomic 
C:N (2SE)

Number
GLGs

Mean %o 
(2SE)

Mean atomic 
C:N (2SE)

25-Sep-92 male N/A N/A 1963-1991 31 16.5 (0.2) 3.5 (0.1) 26 -13.1 (0.3) 3.4 (0.1)

30-Jun-93 male N/A N/A 1962-1988 19 16.9 (0.2) 3.7 (0.2) 12 -12.2 (0.4) 3.4 (0.1)

5-Jun-95 36565 female left 5 1968-1994 20 16.5 (0.2) 3.6 (0.1) 12 -13.1 (0.5) 3.5 (0.1)

13-Jul-96 unknown right 1 1988-1991 4 16.4 (1.2) 3.3 (0.1) 4 -13.3 (0.3) 3.3 (0.1)

28-Aug-96 #2 48680 male left 5 1962-1989 15 16.5 (0.2) 3.6 (0.1) 8 -13.5 (0.4) 3.5 (0.1)

7-Oct-96 67159 male left 5 1969-1995 18 16.3 (0.4) 3.5 (0.1) 14 -12.8 (0.4) 3.4 (0.1)

27-May-97 48678 male left 5 1979-1996 17 16.6 (0.1) 3.5 (0.2) 16 -13.5 (0.3) 3.4 (0.1)

28-Jul-98 male N/A 1 1989-1998 9 16.8 (0.2) 3.4 (0.1) 9 -13.8 (0.4) 3.4 (0.1)

11-Aug-98 male left 6 1987-1997 11 16.6 (0.4) 3.4 (0.1) 11 -14.0 (0.2) 3.4 (0.1)

1-Sep-99 #1 female right 4 1978-1999 20 16.2 (0.2) 3.3 (0.1) 19 -13.1 (0.3) 3.3 (0.1)

12-Jun-00 male left 8 1968-1993 19 16.4 (0.3) 3.5 (0.1) 17 -13.0 (0.4) 3.5 (0.1)

19-Jun-00 97401 male N/A N/A 1996-2000 5 17.4 (0.8) 3.4 (0.1) 5 -14.1 (0.4) 3.4 (0.1)

24-Jun-00 male left 7 1992-2000 8 17.0 (0.3) 3.4 (0.3) 7 -13.7 (0.2) 3.3 (0.1)

25-Sep-00 female left 4 1978-1998 20 16.3 (0.2) 3.3 (0.1) 18 -13.1 (0.3) 3.3 (0.0)

26-Sep-00 #1 female N/A 5 1987-1997 2 14.9 (1.7) 4.1 (1.3) 1 -14.4 (-) 3.4 (-)
21-Jul-01 63041 female left 6 1988-2001 13 16.9 (0.1) 3.3 (0.1) 13 -13.7 (0.2) 3.3 (0.1)

23-Sep-01 male N/A 2 1982-2001 13 15.8 (0.4) 3.7 (0.3) 10 -13.9 (0.5) 3.5 (0.1)

4-Oct-01 female left 7 1975-2001 24 16.3 (0.1) 3.3 (0.1) 24 -13.1 (0.3) 3.3 (0.1)

10-Oct-01 male right 6 1994-2001 7 16.8 (0.2) 3.6 (0.3) 4 -14.0 (0.5) 3.3 (0.1)

13-Oct-01 female right 6 1980-2001 18 17.1 (0.2) 3.6 (0.1) 12 -14.1 (0.3) 3.4 (0.1)

31-Mar-03 92569 female N/A N/A 1984-2003 20 16.5 (0.1) 3.4 (0.1) 18 -13.9 (0.3) 3.3 (0.1)

16-Sep-03 91769 female N/A N/A 1984-2003 11 16.2 (0.4) 3.4 (0.1) 9 -14.1 (0.4) 3.3 (0.1)

17-Sep-03 91771 male N/A N/A 1989-2003 15 16.4 (0.1) 3.4 (0.1) 14 -14.4 (0.3) 3.3 (0.1)

13-Oct-03 91731 male left 6 1977-2003 27 16.9 (0.1) 3.4 (0.1) 25 -13.6 (0.3) 3.3 (0.1)
10-Oct-06 86886 female N/A N/A 1983-2006 18 16.5 (0.2) 3.4 (0.1) 16 -14.1 (0.2) 3.4 (0.1)

29-Jan-07 87979 unknown N/A N/A 1981-2007 19 16.5 (0.3) 3.4 (0.1) 18 -13.6 (0.3) 3.4 (0.1)
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87 86Appendix 2.3: Sr/ Sr ratios (±2 standard error) and concentration of strontium, calcium, magnesium, sodium, and potassium from
all water samples collected. The ID matches Fig. 1 sampling locations.

Figure 1. 
ID Date collected Waterbody Latitude Longitude 87Sr/86Sr ±2SE

Sr
(mg/kg)

Ca
(mg/kg)

Mg
(mg/kg)

Na
(mg/kg)

K
(mg/kg)

3 27-May-16 Susitna River 61.588 -150.41 0.707208 0.000028 0.090 13.66 2.533 2.782 1.094

3 27-May-16 Susitna River 61.588 -150.41 0.707266 0.000025 0.091 13.94 2.537 2.389 1.199

3 27-May-16 Susitna River 61.588 -150.41 0.707210 0.000028 0.089 13.36 2.484 2.313 1.130

4 27-May-16 Yentna River 61.608 -150.508 0.707335 0.000029 0.135 18.41 4.371 1.805 0.994

4 27-May-16 Yentna River 61.608 -150.508 0.707354 0.000023 0.136 17.92 4.386 1.733 0.954

4 27-May-16 Yentna River 61.608 -150.508 0.707352 0.000022 0.136 18.14 4.395 1.768 0.969

5 27-May-16 Susitna River 61.533 -150.545 0.707361 0.000035 0.134 17.08 4.305 1.668 0.907

5 27-May-16 Susitna River 61.533 -150.545 0.707411 0.000032 0.123 16.07 3.964 1.582 0.906

5 27-May-16 Susitna River 61.533 -150.545 0.707287 0.000032 0.091 13.76 2.541 2.327 1.173

8 2-Jun-16 Eagle River 61.309 -149.574 0.705768 0.000027 0.216 18.48 3.851 1.531 0.239

8 2-Jun-16 Eagle River 61.309 -149.574 0.705794 0.000020 0.233 20.29 4.164 1.933 0.225

8 2-Jun-16 Eagle River 61.309 -149.574 0.705806 0.000022 0.225 22.54 4.045 2.181 0.239

9 2-Jun-16 Bird Creek 60.973 -149.467 0.707434 0.000025 0.143 13.57 9.108 64.43 2.599

9 2-Jun-16 Bird Creek 60.973 -149.467 0.707418 0.000029 0.141 13.51 8.828 62.25 2.396

9 2-Jun-16 Bird Creek 60.973 -149.467 0.707349 0.000031 0.138 13.47 8.331 58.27 2.273

10 5-Jun-16 Turnagain Arm 60.937 -149.265 0.709110 0.000021 2.387 150.2 395.2 3,729 184.1

11 2-Jun-16 20 Mile River 60.845 -148.989 0.706677 0.000024 0.111 10.60 1.603 1.442 0.267

11 2-Jun-16 20 Mile River 60.845 -148.989 0.706702 0.000024 0.106 10.52 1.536 1.651 0.177

11 2-Jun-16 20 Mile River 60.845 -148.989 0.706695 0.000019 0.111 10.66 1.607 1.738 0.194

12 2-Jun-16 Portage Creek 60.827 -148.977 0.706517 0.000036 0.040 6.785 0.440 0.634 0.245

12 2-Jun-16 Portage Creek 60.827 -148.977 0.706552 0.000035 0.042 7.072 0.481 0.995 0.263

12 2-Jun-16 Portage Creek 60.827 -148.977 0.706586 0.000027 0.040 6.796 0.455 1.125 0.070

13 2-Jun-16 Placer River 60.817 -148.988 0.706629 0.000031 0.072 9.055 0.624 0.788 0.215

13 2-Jun-16 Placer River 60.817 -148.988 0.706621 0.000028 0.075 9.468 0.667 0.798 0.249

13 2-Jun-16 Placer River 60.817 -148.988 0.706621 0.000025 0.075 9.349 0.677 1.208 0.310
15 2-Jun-16 Lower Cook Inlet 59.606 -151.436 0.709206 0.000028 6.884 515.4 >1,000 11,492 563.1



87 86Appendix 2.4: Strontium isotope ratios ( Sr/ Sr; ±2 standard error) from individual growth 
layer groups. Identifiers are included for both National Marine Fisheries Service (NMFS ID) and 
University of Alaska, Museum of the North (UAMN ID).

NMFS ID UAMN ID Year of growth Sex 87Sr/86Sr ±2SE

25-Sep-92 1968 male 0.70921 0.00002

25-Sep-92 1969 male 0.70919 0.00003

25-Sep-92 1970 male 0.70921 0.00003

25-Sep-92 1982 male 0.70921 0.00003

25-Sep-92 1983 male 0.70920 0.00006

7-Oct-96 67159 1976 male 0.70917 0.00001

7-Oct-96 67159 1981 male 0.70918 0.00001

7-Oct-96 67159 1986 male 0.70918 0.00002

7-Oct-96 67159 1990 male 0.70917 0.00002

13-Oct-01 1982 female 0.70915 0.00002

13-Oct-01 1985 female 0.70914 0.00002

13-Oct-01 1990 female 0.70915 0.00002

13-Oct-01 1992 female 0.70913 0.00002

13-Oct-01 1997 female 0.70910 0.00002

10-Oct-96 86886 1991 female 0.70917 0.00001

10-Oct-96 86886 1992 female 0.70916 0.00001

10-Oct-96 86886 1993 female 0.70916 0.00001

10-Oct-96 86886 1994 female 0.70917 0.00001

10-Oct-96 86886 1995 female 0.70915 0.00001

10-Oct-96 86886 1996 female 0.70915 0.00001

10-Oct-96 86886 1997 female 0.70915 0.00001

10-Oct-96 86886 1998 female 0.70914 0.00001

10-Oct-96 86886 1999 female 0.70915 0.00001

10-Oct-96 86886 2000 female 0.70915 0.00001

10-Oct-96 86886 2001 female 0.70915 0.00001

10-Oct-96 86886 2002 female 0.70914 0.00001

10-Oct-96 86886 2003 female 0.70913 0.00001

10-Oct-96 86886 2004 female 0.70915 0.00001

10-Oct-96 86886 2005 female 0.70914 0.00001

13-Oct-03 91731 1981 male 0.70919 0.00005

13-Oct-03 91731 1982 male 0.70917 0.00003

13-Oct-03 91731 1983 male 0.70918 0.00001

13-Oct-03 91731 1984 male 0.70918 0.00003

13-Oct-03 91731 1985 male 0.70918 0.00001

13-Oct-03 91731 1986 male 0.70918 0.00002

13-Oct-03 91731 1987 male 0.70918 0.00002

13-Oct-03 91731 1988 male 0.70920 0.00003

13-Oct-03 91731 1989 male 0.70920 0.00004

13-Oct-03 91731 1991 male 0.70919 0.00002

13-Oct-03 91731 1992 male 0.70919 0.00002
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13-Oct-03 91731 1994 male 0.70918 0.00002

13-Oct-03 91731 1995 male 0.70919 0.00001

13-Oct-03 91731 1997 male 0.70919 0.00001

13-Oct-03 91731 2000 male 0.70916 0.00001
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Appendix 2.5: Amino acid (phenylalanine) isotope analysis

To examine whether the stable nitrogen isotopic composition of the baseline has changed 

between the 1960s and 2000s we analyzed the stable nitrogen isotope composition of 

phenylalanine preserved in the collagen from beluga whale bone. Previous research has shown 

that the 515N value of phenylalanine retains a record of the 515N value at the base of the food 

chain with little fractionation (Chikaraishi et al. 2014, Yamaguchi and McCarthy 2017). In a few 

cases we had some collagen remaining from the bulk 515N analyses we had previously reported 

on during this research. We selected two individuals from early in the record (both died in 1964) 

and three individuals from late in the record (all died after 2000; Appendix 6). We prepared and 

analyzed the 515N of phenylalanine following previously published protocols (Yamaguchi and 

McCarthy 2017). We found that the mean 515N value of phenylalanine from beluga whales that 

died after 2000 (8.4%o, SE = 1.5) were lower than those that died during 1964 (13.6%o, SE = 0.3). 

Therefore, the 515N value of the base of the food chain appears to have changed over the duration 

of this record.

Literature Cited:
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Rugh DJ, Shelden KEW, Hobbs RC (2010) Range contraction in a beluga whale population.

Endang Species Res 12:69-75

Yamaguchi YT, McCarthy MD (2017) Sources and transformation of dissolved and particulate 

organic nitrogen in the North Pacific Subtropical Gyre indicated by compound-specific 

515N analysis of amino acids. Geochimica et Cosmochimica Acta, In Press
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Appendix 2.6: University of Alaska Museum of the North identifier, year beluga died, and 515N 
values of phenylalanine from bone collagen. Mean values for the two time periods are included 
with their associated standard error (SE).

UAMN ID Year beluga died Phenylalanine (%o)
11643 1964 13.8
11642 1964 13.3

Mean (SE) 13.6 (0.3)

92569 2003 6.6
86886 2006 11.5
87979 2007 7.2

Mean (SE) 8.4 (1.5)

46



Chapter 3: General Conclusions

Beluga whales (Delphinapterus leucas) in Cook Inlet (CIBW) have long been important 

to the region for subsistence, as a top level predator, and more recently, for tourism. While 

historically there were well over 1,000 individuals, recently the population has declined to 

around 300 individuals (NMFS 2016). The reason for the initial decline during the 1990s was 

identified as excessive subsistence harvest, mostly by hunters that traveled to Anchorage from 

other parts of Alaska (Mahoney and Sheldon 2000). CIBW numbers were expected to increase 

following a reduction in harvest, but the population continued to decline, was declared depleted 

in 2000 (NOAA 2000), listed as endangered under the Endangered Species Act in 2008 (NOAA 

2008), and a recovery plan was finalized in 2016 (NMFS 2016). The continued decline in 

abundance following harvest reductions sparked concerns that other parameters might be 

preventing the population from recovering. The recovery plan identified potential threats to 

CIBW including a change in habitat or available prey (NMFS 2016). The largest change in 

CIBW ecology has been the contraction of their range into the upper reaches of Cook Inlet 

during the summer months (Rugh et al. 2010). Although the range contraction has been well 

documented, the reasons CIBW are using only a fraction of their historic summer range has not 

(NMFS 2016). Furthermore, understanding how the contracted range influences prey availability 

is unknown.

In Chapter 2 I used naturally occurring isotope ratios of carbon, nitrogen, and strontium 

to study the feeding ecology of CIBW over the last 50 years. Carbon and nitrogen stable isotope

13 15values (expressed as S C  and 5 N respectively) of bone collagen from 20 individual CIBWs

13 15indicated that diet from the 1950s to 2007 changed as both 5 C and 5 N values declined. 

Because bone is continuously regenerating itself, the material that makes up bone reflects an
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average of diet over a long period of time (10 years to life; Clarke 2008). In order to analyze the 

changes over specific and known periods of time I used collagen from the dentin layers in teeth 

from 26 whales. Beluga teeth grow continually throughout life, laying down one light and one 

dark layer annually. These growth layer groups (GLGs) remain biochemically unchanged once 

formed and each GLG represents the diet for one year (Stewart et al. 2006, Luque et al. 2007);

13 15the specific year can be determined because the year of death is known. 5 C and 5 N values 

from the GLGs also indicated that beluga diet had changed over time, but the magnitude of

13change in 5 C (3%) was much greater (~7 times) than would be expected for a trophic level

15 13only change in 5 N (~1 to 2%; Fry 2008). Because 5 C values are better at indicating changes 

in prey source or location, I wondered if the documented range contraction (Rugh et al. 2010) 

was influencing their feeding ecology (e.g., available prey, foraging location). CIBW in the 

upper Cook Inlet tend to concentrate in areas with substantial river discharge (e.g., Knik Arm, 

Susitna flats, Turnagain Arm) and by using strontium isotope ratios from tooth dentin I showed

13 87 86that the lower values of 5 C were correlated with strontium ( Sr/ Sr ratios). This indicates that 

CIBW feeding ecology has shifted towards a diet of prey with a greater freshwater influence. I 

then collected water samples from rivers and marine areas in the Cook Inlet watershed and 

attempted to determine which river(s) were the most important. Due to limited funding I was

87 86only able to show that declining Sr/ Sr ratios are consistent with a change to more freshwater 

influenced prey.

87 86To further study these trends a more complete strontium isoscape (map of Sr/ Sr ratio

87 86changes across the waterscape) of the Cook Inlet watershed is necessary to compare Sr/ Sr 

ratios to the tooth dentin samples. For Chapter 2 I was only able to analyze GLGs from five 

CIBW teeth due to funding constraints, but sampling more teeth by demographic group (age,
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sex) may identify segments of the CIBW population that are using specific regions of Cook Inlet 

and which rivers are associated with the changes in CIBW feeding ecology. In order to continue 

this research I co-wrote a proposal that was funded as a three-year award (2017-2020) by the 

National Oceanic and Atmospheric Administration (NOAA) ESA Section 6 program. The 

research objectives are: 1) to develop a strontium isoscape for the Cook Inlet watershed; 2) 

strategically analyze GLGs from more CIBW for carbon, nitrogen, and strontium to allow for 

analysis by demographic group (sex, age); and 3) to analyze GLGs from beluga whales in Bristol 

Bay (a healthy, similarly non-migratory, stock of beluga whales) for comparison to the CIBW 

stock. Analyzing changes in feeding ecology (via changes in isotope ratios) by demographic 

group is critical to identifying which segments of the population have changed the most and 

when those changes occurred. This information must also be compared to a similar stock of 

beluga whales, like those found in Bristol Bay, to determine if these changes are unique to CIBW 

or if there have been widespread ecological changes in the Northern Pacific Ocean.

Although I have not identified what is preventing CIBW from recovering, I have 

documented, for the first time, a change in their feeding ecology over time and have ensured that 

additional research will continue to determine what changed, when the change occurred, and if 

the changes are related to CIBWs failure to recover.
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